Sample records for main fault trace

  1. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.

  2. Elemental Geochemistry of Samples From Fault Segments of the San Andreas Fault Observatory at Depth (SAFOD) Drill Hole

    NASA Astrophysics Data System (ADS)

    Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.

    2006-12-01

    Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching of the wall rock during faulting.

  3. Tearing the terroir: Details and implications of surface rupture and deformation from the 24 August 2014 M6.0 South Napa earthquake, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Donnellan, Andrea; Ponti, Daniel J.; Rubin, Ron S.; Lienkaemper, James J.; Prentice, Carol S.; Dawson, Timothy E.; Seitz, Gordon G.; Schwartz, David P.; Hudnut, Kenneth W.; Rosa, Carla M.; Pickering, Alexandra J; Parker, Jay W.

    2016-01-01

    The Mw 6.0 South Napa earthquake of 24 August 2014 caused slip on several active fault strands within the West Napa Fault Zone (WNFZ). Field mapping identified 12.5 km of surface rupture. These field observations, near-field geodesy and space geodesy, together provide evidence for more than ~30 km of surface deformation with a relatively complex distribution across a number of subparallel lineaments. Along a ~7 km section north of the epicenter, the surface rupture is confined to a single trace that cuts alluvial deposits, reoccupying a low-slope scarp. The rupture continued northward onto at least four other traces through subparallel ridges and valleys. Postseismic slip exceeded coseismic slip along much of the southern part of the main rupture trace with total slip 1 year postevent approaching 0.5 m at locations where only a few centimeters were measured the day of the earthquake. Analysis of airborne interferometric synthetic aperture radar data provides slip distributions along fault traces, indicates connectivity and extent of secondary traces, and confirms that postseismic slip only occurred on the main trace of the fault, perhaps indicating secondary structures ruptured as coseismic triggered slip. Previous mapping identified the WNFZ as a zone of distributed faulting, and this was generally borne out by the complex 2014 rupture pattern. Implications for hazard analysis in similar settings include the need to consider the possibility of complex surface rupture in areas of complex topography, especially where multiple potentially Quaternary-active fault strands can be mapped.

  4. Three-dimensional fault framework of the 2014 South Napa Earthquake, San Francisco Bay region, California

    NASA Astrophysics Data System (ADS)

    Graymer, R. W.

    2014-12-01

    Assignment of the South Napa earthquake to a mapped fault is difficult, as it occurred where three large, northwest-trending faults converge and may interact in the subsurface. The surface rupture did not fall on the main trace of any of these faults, but instead between the Carneros and West Napa faults and northwest along strike from the northern mapped end of the Franklin Fault. The 2014 rupture plane appears to be nearly vertical, based on focal mechanisms of the mainshock and connection of the surface trace/rupture to the relocated hypocenter (J. Hardebeck, USGS). 3D surfaces constructed from published data show that the Carneros Fault is a steeply west-dipping fault that runs just west of the near-vertical 2014 rupture plane. The Carneros Fault does not appear to have been involved in the earthquake, although relocated aftershocks suggest possible minor triggered slip. The main West Napa Fault is also steeply west-dipping and that its projection intersects the 2014 rupture plane at around the depth of the mainshock hypocenter. UAVSAR data (A. Donnellan, JPL) and relocated aftershocks suggest that the main West Napa Fault experienced triggered slip/afterslip along a length of roughly 20 km. It is possible that the 2014 rupture took place along a largely unrecognized westerly strand of the West Napa Fault. The Franklin Fault is a steeply east-dipping fault (with a steeply west-dipping subordinate trace east of Mare Island) that has documented late Quaternary offset. Given the generally aligned orientation of the 3D fault surfaces, an alternative interpretation is that the South Napa earthquake occurred on the northernmost reach of the Franklin Fault within it's 3D junction with the West Napa Fault. This interpretation is supported, but not proven, by a short but prominent linear feature in the UAVSAR data at Slaughterhouse Point west of Vallejo, along trend south-southeast of the observed coseismic surface rupture.

  5. Active Structures as Deduced from Geomorphic Features: A case in Hsinchu Area, northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Shyu, J.; Ota, Y.; Chen, W.; Hu, J.; Tsai, B.; Wang, Y.

    2002-12-01

    Hsinchu area is located in the northwestern Taiwan, the fold-and thrust belt created by arc-continent collision between Eurasian and Philippine. Since the collision event is still ongoing, the island is tectonically active and full of active faults. According to the historical records, some of the faults are seismically acting. In Hsinchuarea two active faults, the Hsinchu and Hsincheng, have been previously mapped. To evaluate the recent activities, we studied the related geomorphic features by using newly developed Digital Elevation Model (DEM), the aerial photos and field investigation. Geologically, both of the faults are coupled with a hanging wall anticline. The anticlines are recently active due to the deformation of the geomorphic surfaces. The Hsinchu fault system shows complicate corresponding scarps, distributed sub-parallel to the fault trace previously suggested by projection of subsurface geology. This is probably caused by its strike-slip component tearing the surrounding area along the main trace. The scarps associated with the Hsincheng fault system are rather simple and unique. It offsets a flight of terraces all the way down to recent flood plain, indicating its long lasting activity. One to two kilometers to east of main trace a back-thrust is found, showing coupled vertical surface offsets with the main fault. The striking discovery in this study is that the surface deformation is only distributed in the southern bank of Touchien river, also suddenly decreasing when crossing another tear fault system, which is originated from Hsincheng fault in the west and extending southeastward parallel to the Touchien river. The strike-slip fault system mentioned above not only bisects the Hsinchu fault, but also divides the Hsincheng fault into segments. The supporting evidence found in this study includes pressure ridges and depressions. As a whole, the study area is tectonically dominated by three active fault systems and two actively growing anticlines. The interactions between active structural systems formed the complicate geomorphic features presented in this paper.

  6. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Swanson, Mark T.

    2005-05-01

    Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The sidewall ripout model, as a mechanism for adhesive wear during fault zone deformation, can be useful in studies of fault zone geometry, kinematics and evolution from outcrop- to crustal-scales.

  7. Heat flow and energetics of the San Andreas fault zone.

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1980-01-01

    Approximately 100 heat flow measurements in the San Andreas fault zone indicate 1) there is no evidence for local frictional heating of the main fault trace at any latitude over a 1000-km length from Cape Mendocino to San Bernardino, 2) average heat flow is high (ca.2 HFU, ca.80 mW m-2) throughout the 550-km segment of the Coast Ranges that encloses the San Andreas fault zone in central California; this broad anomaly falls off rapidly toward the Great Valley to the east, and over a 200-km distance toward the Mendocino Triple Junction to the northwest. As others have pointed out, a local conductive heat flow anomaly would be detectable unless the frictional resistance allocated to heat production on the main trace were less than 100 bars. Frictional work allocated to surface energy of new fractures is probably unimportant, and hydrologic convection is not likely to invalidate the conduction assumption, since the heat discharge by thermal springs near the fault is negligible. -Authors

  8. Width of the Surface Rupture Zone for Thrust Earthquakes and Implications for Earthquake Fault Zoning: Chi-Chi 1999 and Wenchuan 2008 Earthquakes

    NASA Astrophysics Data System (ADS)

    Boncio, P.; Caldarella, M.

    2016-12-01

    We analyze the zones of coseismic surface faulting along thrust faults, whit the aim of defining the most appropriate criteria for zoning the Surface Fault Rupture Hazard (SFRH) along thrust faults. Normal and strike-slip faults were deeply studied in the past, while thrust faults were not studied with comparable attention. We analyze the 1999 Chi-Chi, Taiwan (Mw 7.6) and 2008 Wenchuan, China (Mw 7.9) earthquakes. Several different types of coseismic fault scarps characterize the two earthquakes, depending on the topography, fault geometry and near-surface materials. For both the earthquakes, we collected from the literature, or measured in GIS-georeferenced published maps, data about the Width of the coseismic Rupture Zone (WRZ). The frequency distribution of WRZ compared to the trace of the main fault shows that the surface ruptures occur mainly on and near the main fault. Ruptures located away from the main fault occur mainly in the hanging wall. Where structural complexities are present (e.g., sharp bends, step-overs), WRZ is wider then for simple fault traces. We also fitted the distribution of the WRZ dataset with probability density functions, in order to define a criterion to remove outliers (e.g., by selecting 90% or 95% probability) and define the zone where the probability of SFRH is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary. In the absence of such a very detailed study, during basic (First level) SM mapping, a width of 350-400 m seems to be recommended (95% of probability). If the fault is carefully mapped (higher level SM), one must consider that the highest SFRH is concentrated in a narrow zone, 50 m-wide, that should be considered as a "fault-avoidance (or setback) zone". These fault zones should be asymmetric. The ratio of footwall to hanging wall (FW:HW) calculated here ranges from 1:5 to 1:3.

  9. Rates and patterns of surface deformation from laser scanning following the South Napa earthquake, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Lienkaemper, James J.; Pickering, Alexandra J; Avdievitch, Nikita N.

    2015-01-01

    The A.D. 2014 M6.0 South Napa earthquake, despite its moderate magnitude, caused significant damage to the Napa Valley in northern California (USA). Surface rupture occurred along several mapped and unmapped faults. Field observations following the earthquake indicated that the magnitude of postseismic surface slip was likely to approach or exceed the maximum coseismic surface slip and as such presented ongoing hazard to infrastructure. Using a laser scanner, we monitored postseismic deformation in three dimensions through time along 0.5 km of the main surface rupture. A key component of this study is the demonstration of proper alignment of repeat surveys using point cloud–based methods that minimize error imposed by both local survey errors and global navigation satellite system georeferencing errors. Using solid modeling of natural and cultural features, we quantify dextral postseismic displacement at several hundred points near the main fault trace. We also quantify total dextral displacement of initially straight cultural features. Total dextral displacement from both coseismic displacement and the first 2.5 d of postseismic displacement ranges from 0.22 to 0.29 m. This range increased to 0.33–0.42 m at 59 d post-earthquake. Furthermore, we estimate up to 0.15 m of vertical deformation during the first 2.5 d post-earthquake, which then increased by ∼0.02 m at 59 d post-earthquake. This vertical deformation is not expressed as a distinct step or scarp at the fault trace but rather as a broad up-to-the-west zone of increasing elevation change spanning the fault trace over several tens of meters, challenging common notions about fault scarp development in strike-slip systems. Integrating these analyses provides three-dimensional mapping of surface deformation and identifies spatial variability in slip along the main fault trace that we attribute to distributed slip via subtle block rotation. These results indicate the benefits of laser scanner surveys along active faults and demonstrate that fine-scale variability in fault slip has been missed by traditional earthquake response methods.

  10. San Andreas fault geometry in the Parkfield, California, region

    USGS Publications Warehouse

    Simpson, R.W.; Barall, M.; Langbein, J.; Murray, J.R.; Rymer, M.J.

    2006-01-01

    In map view, aftershocks of the 2004 Parkfield earthquake lie along a line that forms a straighter connection between San Andreas fault segments north and south of the Parkfield reach than does the mapped trace of the fault itself. A straightedge laid on a geologic map of Central California reveals a ???50-km-long asymmetric northeastward warp in the Parkfield reach of the fault. The warp tapers gradually as it joins the straight, creeping segment of the San Andreas to the north-west, but bends abruptly across Cholame Valley at its southeast end to join the straight, locked segment that last ruptured in 1857. We speculate that the San Andreas fault surface near Parkfield has been deflected in its upper ???6 km by nonelastic behavior of upper crustal rock units. These units and the fault surface itself are warped during periods between large 1857-type earthquakes by the presence of the 1857-locked segment to the south, which buttresses intermittent coseismic and continuous aseismic slip on the Parkfield reach. Because of nonelastic behavior, the warping is not completely undone when an 1857-type event occurs, and the upper portion of the three-dimensional fault surface is slowly ratcheted into an increasingly prominent bulge. Ultimately, the fault surface probably becomes too deformed for strike-slip motion, and a new, more vertical connection to the Earth's surface takes over, perhaps along the Southwest Fracture Zone. When this happens a wedge of material currently west of the main trace will be stranded on the east side of the new main trace.

  11. Hydrothermal minerals and microstructures in the Silangkitang geothermal field along the Great Sumatran fault zone, Sumatra, Indonesia

    USGS Publications Warehouse

    Moore, Diane E.; Hickman, S.; Lockner, D.A.; Dobson, P.F.

    2001-01-01

    Detailed study of core samples of silicic tuff recovered from three geothermal wells along the strike-slip Great Sumatran fault zone near Silangkitang, North Sumatra, supports a model for enhanced hydrothermal circulation adjacent to this major plate-boundary fault. Two wells (A and C) were drilled nearly vertically ??1 km southwest of the eastern (i.e., the principal) fault trace, and the third, directional well (B) was drilled eastward from the site of well A to within ??100 m of the principal fault trace. The examined core samples come from depths of 1650-2120 m at measured well temperatures of 180-320 ??C. The samples collected near the principal fault trace have the highest temperatures, the largest amount of secondary pore space that correlates with high secondary permeability, and the most extensive hydrothermal mineral development. Secondary permeability and the degree of hydrothermal alteration decrease toward the southwestern margin of the fault zone. These features indicate episodic, localized flow of hot, possibly CO2-rich fluids within the fault zone. The microstructure populations identified in the core samples correlate to the subsidiary fault patterns typical of strike-slip faults. The geothermal reservoir appears to be centered on the fault zone, with the principal fault strands and adjoining, highly fractured and hydrothermally altered rock serving as the main conduits for vertical fluid flow and advective heat transport from deeper magmatic sources.

  12. Structure of the San Andreas Fault Zone in the Salton Trough Region of Southern California: A Comparison with San Andreas Fault Structure in the Loma Prieta Area of Central California

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.

    2016-12-01

    The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active-source data collected after the earthquake for steep reflections.

  13. Up-dip partitioning of displacement components on the oblique-slip Clarence Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Nicol, Andrew; Van Dissen, Russell

    2002-09-01

    Active strike-slip faults in New Zealand occur within an obliquely-convergent plate boundary zone. Although the traces of these faults commonly delineate the base of mountain ranges, they do not always accommodate significant shortening at the free surface. Along the active trace of Clarence Fault in northeastern South Island, New Zealand, displaced landforms and slickenside striations indicate predominantly horizontal displacements at the ground surface, and a right-lateral slip rate of ca. 3.5-5 mm/year during the Holocene. The Inland Kaikoura mountain range occupies the hanging wall of the fault and rises steeply from the active trace to altitudes of ca. 3 km. The geomorphology of the range indicates active uplift and mountain building, which is interpreted to result, in part, from a vertical component of fault slip at depth. These data are consistent with the fault accommodating oblique-slip at depth aligned parallel to the plate-motion vector and compatible with regional geodetic data and earthquake focal-mechanisms. Oblique-slip on the Clarence Fault at depth is partitioned at the free surface into: (1) right-lateral displacement on the fault, and (2) hanging wall uplift produced by distributed displacement on small-scale faults parallel to the main fault. Decoupling of slip components reflects an up-dip transfer of fault throw to an off-fault zone of distributed uplift. Such zones are common in the hanging walls of thrusts and reverse faults, and support the idea that the dip of the oblique-slip Clarence Fault steepens towards the free surface.

  14. Fault-zone structure and weakening processes in basin-scale reverse faults: The Moonlight Fault Zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Alder, S.; Smith, S. A. F.; Scott, J. M.

    2016-10-01

    The >200 km long Moonlight Fault Zone (MFZ) in southern New Zealand was an Oligocene basin-bounding normal fault zone that reactivated in the Miocene as a high-angle reverse fault (present dip angle 65°-75°). Regional exhumation in the last c. 5 Ma has resulted in deep exposures of the MFZ that present an opportunity to study the structure and deformation processes that were active in a basin-scale reverse fault at basement depths. Syn-rift sediments are preserved only as thin fault-bound slivers. The hanging wall and footwall of the MFZ are mainly greenschist facies quartzofeldspathic schists that have a steeply-dipping (55°-75°) foliation subparallel to the main fault trace. In more fissile lithologies (e.g. greyschists), hanging-wall deformation occurred by the development of foliation-parallel breccia layers up to a few centimetres thick. Greyschists in the footwall deformed mainly by folding and formation of tabular, foliation-parallel breccias up to 1 m wide. Where the hanging-wall contains more competent lithologies (e.g. greenschist facies metabasite) it is laced with networks of pseudotachylyte that formed parallel to the host rock foliation in a damage zone extending up to 500 m from the main fault trace. The fault core contains an up to 20 m thick sequence of breccias, cataclasites and foliated cataclasites preserving evidence for the progressive development of interconnected networks of (partly authigenic) chlorite and muscovite. Deformation in the fault core occurred by cataclasis of quartz and albite, frictional sliding of chlorite and muscovite grains, and dissolution-precipitation. Combined with published friction and permeability data, our observations suggest that: 1) host rock lithology and anisotropy were the primary controls on the structure of the MFZ at basement depths and 2) high-angle reverse slip was facilitated by the low frictional strength of fault core materials. Restriction of pseudotachylyte networks to the hanging-wall of the MFZ further suggests that the wide, phyllosilicate-rich fault core acted as an efficient hydrological barrier, resulting in a relatively hydrous footwall and fault core but a relatively dry hanging-wall.

  15. Overview of SAFOD Phases 1 and 2: Drilling, Sampling and Measurements in the San Andreas Fault Zone at Seismogenic Depth

    NASA Astrophysics Data System (ADS)

    Zoback, M. D.; Hickman, S.; Ellsworth, W.

    2005-12-01

    In this talk we provide an overview of on-site drilling, sampling and downhole measurement activities associated with the first two Phases of the San Andreas Fault Observatory at Depth. SAFOD is located at the transition between the creeping and locked sections of the fault, 9 km NW of Parkfield, CA. A 2.1 km deep vertical pilot hole was drilled at the site in 2002. The SAFOD main borehole was drilled vertically to a depth of 1.5 km and then deviated at an average angle of 55° to vertical, passing beneath the surface trace of the San Andreas fault, 1.8 km to the NW at a depth of 3.2 km. Repeating microearthquakes on the San Andreas define the main active fault trace at depth, as well as a secondary active fault about 250 m to the SW (i.e., closer to SAFOD). The hole was rotary drilled, comprehensive cuttings were obtained and a real-time analysis of gases in the drilling mud was carried out. Spot cores were obtained at three depths (at casing set points) in the shallow granite and deeper sedimentary rocks penetrated by the hole, augmented by over fifty side-wall cores. Continuous coring of the San Andreas Fault Zone will be carried out in Phase 3 of the project in the summer of 2007. In addition to sampling mud gas, discrete fluid and gas samples were obtained at several depths for geochemical analysis. Real-time geophysical measurements were made while drilling through most of the San Andreas Fault Zone. A suite of "open hole" geophysical measurements were also made over essentially the entire depth of the hole. Construction of the multi-component SAFOD observatory is well underway, with a seismometer and tiltmeter operating at 1 km depth in the pilot hole and a fiber-optic laser strainmeter cemented behind casing in the main hole. A seismometer deployed at depth in the hole between Phases 1 and 2 detected one of the target earthquakes. A number of surface-to-borehole seismic experiments have been carried out to characterize seismic velocities and structures at depth, including deployment of an 80-level, 240-component seismic array in SAFOD in the spring of 2005. With knowledge of P- and S-wave velocities obtained from the geophysical measurements in conjunction with downhole recordings of the SAFOD target earthquake, it appears that the seismically active main trace of the fault is on the order of 400 m SW of the surface trace, in proximity to several candidate zones of particularly anomalous geophysical properties. Observations of casing deformation to be made over the next several years, as well as monitoring of the microearthquakes using seismometers directly within the fault zone, will pinpoint the exact location of this and other active fault traces prior to continuous coring in Phase 3. As will be elaborated in detail by the presentations of the SAFOD science team at this meeting, the activities carried out as part of Phases 1 and 2 of SAFOD lay the ground work for years of exciting research in earthquake physics, fault-rock geology, rock mechanics and the role of fluids and gases in faulting and earthquake generation.

  16. Characterizing the structural maturity of fault zones using high-resolution earthquake locations.

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2017-12-01

    We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.

  17. Fluid-rock interaction during a large earthquake recorded in fault gouge: A case study of the Nojima fault, Japan

    NASA Astrophysics Data System (ADS)

    Bian, D.; Lin, A.

    2016-12-01

    Distinguishing the seismic ruptures during the earthquake from a lot of fractures in borehole core is very important to understand rupture processes and seismic efficiency. In particular, a great earthquake like the 1995 Mw 7.2 Kobe earthquake, but again, evidence has been limited to the grain size analysis and the color of fault gouge. In the past two decades, increasing geological evidence has emerged that seismic faults and shear zones within the middle to upper crust play a crucial role in controlling the architectures of crustal fluid migration. Rock-fluid interactions along seismogenic faults give us a chance to find the seismic ruptures from the same event. Recently, a new project of "Drilling into Fault Damage Zone" has being conducted by Kyoto University on the Nojima Fault again after 20 years of the 1995 Kobe earthquake for an integrated multidisciplinary study on the assessment of activity of active faults involving active tectonics, geochemistry and geochronology of active fault zones. In this work, we report on the signature of slip plane inside the Nojima Fault associated with individual earthquakes on the basis of trace element and isotope analyses. Trace element concentrations and 87Sr/86Sr ratios of fault gouge and host rocks were determined by an inductively coupled plasma mass spectrometer (ICP-MS) and thermal ionization mass spectrometry (TIMS). Samples were collected from two trenches and an outcrop of Nojima Fault which. Based on the geochemical result, we interpret these geochemical results in terms of fluid-rock interactions recorded in fault friction during earthquake. The trace-element enrichment pattern of the slip plane can be explained by fluid-rock interactions at high temperature. It also can help us find the main coseismic fault slipping plane inside the thick fault gouge zone.

  18. Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California

    USGS Publications Warehouse

    Toke, N.A.; Arrowsmith, J.R.; Rymer, M.J.; Landgraf, A.; Haddad, D.E.; Busch, M.; Coyan, J.; Hannah, A.

    2011-01-01

    Investigation of a right-laterally offset channel at the Miller's Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/-4.3 mm/yr (1??) for the main trace of the San Andreas fault at Park-field, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the Carrizo Plain and rates implied by far-field geodetic measurements (~35 mm/yr). However, the rate is consistent with historical slip rates, measured to the northwest, along the creeping section of the San Andreas fault (<30 mm/yr). The paleoseismic exposures at the Miller's Field site reveal a pervasive fabric of clay shear bands, oriented clockwise oblique to the San Andreas fault strike and extending into the upper-most stratigraphy. This fabric is consistent with dextral aseismic creep and observations of surface slip from the 28 September 2004 M6 Parkfield earthquake. Together, this slip rate and deformation fabric suggest that the historically observed San Andreas fault slip behavior along the Parkfield section has persisted for at least a millennium, and that significant slip is accommodated by structures in a zone beyond the main San Andreas fault trace. ?? 2011 Geological Society of America.

  19. Fault Rupture Model of the 2016 Gyeongju, South Korea, Earthquake and Its Implication for the Underground Fault System

    NASA Astrophysics Data System (ADS)

    Uchide, Takahiko; Song, Seok Goo

    2018-03-01

    The 2016 Gyeongju earthquake (ML 5.8) was the largest instrumentally recorded inland event in South Korea. It occurred in the southeast of the Korean Peninsula and was preceded by a large ML 5.1 foreshock. The aftershock seismicity data indicate that these earthquakes occurred on two closely collocated parallel faults that are oblique to the surface trace of the Yangsan fault. We investigate the rupture properties of these earthquakes using finite-fault slip inversion analyses. The obtained models indicate that the ruptures propagated NNE-ward and SSW-ward for the main shock and the large foreshock, respectively. This indicates that these earthquakes occurred on right-step faults and were initiated around a fault jog. The stress drops were up to 62 and 43 MPa for the main shock and the largest foreshock, respectively. These high stress drops imply high strength excess, which may be overcome by the stress concentration around the fault jog.

  20. Palaeopermeability structure within fault-damage zones: A snap-shot from microfracture analyses in a strike-slip system

    NASA Astrophysics Data System (ADS)

    Gomila, Rodrigo; Arancibia, Gloria; Mitchell, Thomas M.; Cembrano, Jose M.; Faulkner, Daniel R.

    2016-02-01

    Understanding fault zone permeability and its spatial distribution allows the assessment of fluid-migration leading to precipitation of hydrothermal minerals. This work is aimed at unraveling the conditions and distribution of fluid transport properties in fault zones based on hydrothermally filled microfractures, which reflect the ''frozen-in'' instantaneous advective hydrothermal activity and record palaeopermeability conditions of the fault-fracture system. We studied the Jorgillo Fault, an exposed 20 km long, left-lateral strike-slip fault, which juxtaposes Jurassic gabbro against metadiorite belonging to the Atacama Fault System in northern Chile. Tracings of microfracture networks of 19 oriented thin sections from a 400 m long transect across the main fault trace was carried out to estimate the hydraulic properties of the low-strain fault damagezone, adjacent to the high-strain fault core, by assuming penny-shaped microfractures of constant radius and aperture within an anisotropic fracture system. Palaeopermeability values of 9.1*10-11 to 3.2*10-13 m2 in the gabbro and of 5.0*10-10 to 1.2*10-13 m2 in the metadiorite were determined, both decreasing perpendicularly away from the fault core. Fracture porosity values range from 40.00% to 0.28%. The Jorgillo Fault has acted as a left-lateral dilational fault-bend, generating large-scale dilation sites north of the JF during co-seismic activity.

  1. Fault zone structure and kinematics from lidar, radar, and imagery: revealing new details along the creeping San Andreas Fault

    NASA Astrophysics Data System (ADS)

    DeLong, S.; Donnellan, A.; Pickering, A.

    2017-12-01

    Aseismic fault creep, coseismic fault displacement, distributed deformation, and the relative contribution of each have important bearing on infrastructure resilience, risk reduction, and the study of earthquake physics. Furthermore, the impact of interseismic fault creep in rupture propagation scenarios, and its impact and consequently on fault segmentation and maximum earthquake magnitudes, is poorly resolved in current rupture forecast models. The creeping section of the San Andreas Fault (SAF) in Central California is an outstanding area for establishing methodology for future scientific response to damaging earthquakes and for characterizing the fine details of crustal deformation. Here, we describe how data from airborne and terrestrial laser scanning, airborne interferometric radar (UAVSAR), and optical data from satellites and UAVs can be used to characterize rates and map patterns of deformation within fault zones of varying complexity and geomorphic expression. We are evaluating laser point cloud processing, photogrammetric structure from motion, radar interferometry, sub-pixel correlation, and other techniques to characterize the relative ability of each to measure crustal deformation in two and three dimensions through time. We are collecting new and synthesizing existing data from the zone of highest interseismic creep rates along the SAF where a transition from a single main fault trace to a 1-km wide extensional stepover occurs. In the stepover region, creep measurements from alignment arrays 100 meters long across the main fault trace reveal lower rates than those in adjacent, geomorphically simpler parts of the fault. This indicates that deformation is distributed across the en echelon subsidiary faults, by creep and/or stick-slip behavior. Our objectives are to better understand how deformation is partitioned across a fault damage zone, how it is accommodated in the shallow subsurface, and to better characterize the relative amounts of fault creep and potential stick-slip fault behavior across the plate boundary at these sites in order to evaluate the potential for rupture propagation in large earthquakes.

  2. Mapping 3D fault geometry in earthquakes using high-resolution topography: Examples from the 2010 El Mayor-Cucapah (Mexico) and 2013 Balochistan (Pakistan) earthquakes

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Walker, Richard T.; Elliott, John R.; Parsons, Barry

    2016-04-01

    Fault dips are usually measured from outcrops in the field or inferred through geodetic or seismological modeling. Here we apply the classic structural geology approach of calculating dip from a fault's 3-D surface trace using recent, high-resolution topography. A test study applied to the 2010 El Mayor-Cucapah earthquake shows very good agreement between our results and those previously determined from field measurements. To obtain a reliable estimate, a fault segment ≥120 m long with a topographic variation ≥15 m is suggested. We then applied this method to the 2013 Balochistan earthquake, getting dips similar to previous estimates. Our dip estimates show a switch from north to south dipping at the southern end of the main trace, which appears to be a response to local extension within a stepover. We suggest that this previously unidentified geometrical complexity may act as the endpoint of earthquake ruptures for the southern end of the Hoshab fault.

  3. Historic Surface Rupture Informing Probabilistic Fault Displacement Analysis: New Zealand Case Studies

    NASA Astrophysics Data System (ADS)

    Villamor, P.; Litchfield, N. J.; Van Dissen, R. J.; Langridge, R.; Berryman, K. R.; Baize, S.

    2016-12-01

    Surface rupture associated with the 2010 Mw7.1 Darfield Earthquake (South Island, New Zealand) was extremely well documented, thanks to an immediate field mapping response and the acquisition of LiDAR data within days of the event. With respect to informing Probabilistic Fault Displacement Analysis (PFDHA) the main insights and outcomes from this rupture through Quaternary gravel are: 1) significant distributed deformation either side of the main trace (30 to 300 m wide deformation zone) and how the deformation is distributed away from the main trace; 2) a thorough analysis of uncertainty of the displacement measures obtained using the LIDAR data and repeated measurements from several scientists; and 3) the short surface rupture length for the reported magnitude, resulting from complex fault rupture with 5-6 reverse and strike-slip strands, most of which had no surface rupture. While the 2010 event is extremely well documented and will be an excellent case to add to the Surface Rupture during Earthquakes database (SURE), other NZ historical earthquakes that are not so well documented, but can provide important information for PFDHA. New Zealand has experienced about 10 historical surface fault ruptures since 1848, comprising ruptures on strike-slip, reverse and normal faults. Mw associated with these ruptures ranges between 6.3 and 8.1. From these ruptures we observed that the surface expression of deformation can be influenced by: fault maturity; the type of Quaternary sedimentary cover; fault history (e.g., influence of inversion tectonics, flexural slip); fault complexity; and primary versus secondary rupture. Other recent >Mw 6.6 earthquakes post-2010 that did not rupture the ground surface have been documented with InSAR and can inform Mw thresholds for surface fault rupture. It will be important to capture all this information and that of similar events worldwide to inform the SURE database and ultimately PFDHA.

  4. Slip Model of the 2015 Mw 7.8 Gorkha (Nepal) Earthquake from Inversions of ALOS-2 and GPS Data

    NASA Astrophysics Data System (ADS)

    Wang, K.; Fialko, Y. A.

    2015-12-01

    We use surface deformation measurements including Interferometric Synthetic Aperture Radar (InSAR) data acquired by the ALOS-2 mission of the Japanese Aerospace Exploration Agency (JAXA) and Global Positioning System (GPS) data to invert for the fault geometry and coseismic slip distribution of the 2015 Mw 7.8 Gorkha earthquake in Nepal. Assuming that the ruptured fault connects to the surface trace of the of Main Frontal Thrust fault (MFT) between 84.34E and 86.19E, the best-fitting model suggests a dip angle of 7 degrees. The moment calculated from the slip model is 6.17*1020 Nm, corresponding to the moment magnitude of 7.79. The rupture of the 2015 Gorkha earthquake was dominated by thrust motion that was primarily concentrated in a 150-km long zone 50 to 100 km northward from the surface trace of the Main Frontal Thrust (MFT), with maximum slip of ~6 m at a depth of ~ 8 km. Data thus indicate that the 2015 Gorkha earthquake ruptured a deep part of the seismogenic zone, in contrast to the 1934 Bihar-Nepal earthquake, which had ruptured a shallow part of the adjacent fault segment to the East.

  5. New Evidence for Quaternary Strain Partitioning Along the Queen Charlotte Fault System, Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Walton, M. A. L.; Miller, N. C.; Brothers, D. S.; Kluesner, J.; Haeussler, P. J.; Conrad, J. E.; Andrews, B. D.; Ten Brink, U. S.

    2017-12-01

    The Queen Charlotte Fault (QCF) is a fast-moving ( 53 mm/yr) transform plate boundary fault separating the Pacific Plate from the North American Plate along western Canada and southeastern Alaska. New high-resolution bathymetric data along the fault show that the QCF main trace accommodates nearly all strike-slip plate motion along a single narrow deformation zone, though questions remain about how and where smaller amounts of oblique convergence are accommodated along-strike. Obliquity and convergence rates are highest in the south, where the 2012 Haida Gwaii, British Columbia MW 7.8 thrust earthquake was likely caused by Pacific underthrusting. In the north, where obliquity is lower, aftershocks from the 2013 Craig, Alaska MW 7.5 strike-slip earthquake also indicate active convergent deformation on the Pacific (west) side of the plate boundary. Off-fault structures previously mapped in legacy crustal-scale seismic profiles may therefore be accommodating part of the lesser amounts of Quaternary convergence north of Haida Gwaii. Between 2015 and 2017, the USGS acquired more than 8,000 line-km of offshore high-resolution multichannel seismic (MCS) data along the QCF to better understand plate boundary deformation. The new MCS data show evidence for Quaternary deformation associated with a series of elongate ridges located within 30 km of the QCF main trace on the Pacific side. These ridges are anticlinal structures flanked by growth faults, with recent deformation and active fluid flow characterized by seafloor scarps and seabed gas seeps at ridge crests. Structural and morphological evidence for contractional deformation decreases northward along the fault, consistent with a decrease in Pacific-North America obliquity along the plate boundary. Preliminary interpretations suggest that plate boundary transpression may be partitioned into distinctive structural domains, in which convergent stress is accommodated by margin-parallel thrust faulting, folding, and ridge formation within the Pacific Plate, with strike-slip faulting localized to the primary trace of the QCF. Contractional structures may be occupying zones of pre-existing crustal weakness and/or re-activated fabrics in the oceanic crust, possibly explaining strain partitioning behavior in areas with a low convergence angle (<15°).

  6. Noncharacteristic Slip on the Northern San Andreas Fault at the Vedanta Marsh, Marin County, CA

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Niemi, T. M.; Allison, A.; Fumal, T. E.

    2004-12-01

    Three-dimensional excavations along the 1906 trace of the northern San Andreas fault at the Vedanta marsh paleoseismic site near Olema, CA have yielded new data on the timing and amount of slip during the penultimate earthquake on this fault section. The excavations exposed a 3-m-wide paleochannel that has been offset right-laterally 7.8-8.3 m by coseismic slip during the past two large earthquakes: 1906 and the penultimate earthquake. The paleochannel was eroded into a silty clay marsh deposit and was filled after AD 1400. Both the silty clay layer and the paleochannel deposit are directly overlain by an in situ burn/peat sequence. The penultimate earthquake occurred while the peat was at the ground surface whereas faulting from the 1906 earthquake terminates within an overlying gravel/fill sequence. Preliminary OxCal analyses of radiocarbon dates indicate that the penultimate earthquake occurred in the late 17th to early 18th century. In plan view, two main fault traces were mapped in the excavation. The northwestern portion of the paleochannel is offset across a single fault trace. Just southeast of this portion of the channel the fault splits into two traces. We believe that one of these traces likely slipped only during 1906 and the other trace slipped on during the penultimate earthquake. Unfortunately, the overlying stratigraphic section that could resolve the exact reconstruction of movement on these faults is missing due to the excavation of an artificial drainage ditch at this location in the 1940's. Matching the north margin of the paleochannel to the first exposure of gravel in the zone between the two fault traces gives an offset of 5 m. We have historic records that show the 1906 coseismic slip near the study site was about 5m from field notes of David Starr Jordan (Stanford University Archives) who describes two 16 ft (5m) offsets: one of a tree located about 150m SE of the offset channel and the other of a path to the Shafter barn located about 300m NW. As the locations of these two historical records are so close to the study site, it is reasonable to assume that our excavation site has the same amount of coseismic slip in 1906. Our data indicate that the paleochannel was offset about 2.8 to 3.3 m during the penultimate earthquake which occurred in the late 17th to early 18th century, and that the San Andreas fault at this section is capable of slip in earthquakes smaller than 1906.

  7. Analytic Study of Three-Dimensional Rupture Propagation in Strike-Slip Faulting with Analogue Models

    NASA Astrophysics Data System (ADS)

    Chan, Pei-Chen; Chu, Sheng-Shin; Lin, Ming-Lang

    2014-05-01

    Strike-slip faults are high angle (or nearly vertical) fractures where the blocks have moved along strike way (nearly horizontal). Overburden soil profiles across main faults of Strike-slip faults have revealed the palm and tulip structure characteristics. McCalpin (2005) has trace rupture propagation on overburden soil surface. In this study, we used different offset of slip sandbox model profiles to study the evolution of three-dimensional rupture propagation by strike -slip faulting. In strike-slip faults model, type of rupture propagation and width of shear zone (W) are primary affecting by depth of overburden layer (H), distances of fault slip (Sy). There are few research to trace of three-dimensional rupture behavior and propagation. Therefore, in this simplified sandbox model, investigate rupture propagation and shear zone with profiles across main faults when formation are affecting by depth of overburden layer and distances of fault slip. The investigators at the model included width of shear zone, length of rupture (L), angle of rupture (θ) and space of rupture. The surface results was follow the literature that the evolution sequence of failure envelope was R-faults, P-faults and Y-faults which are parallel to the basement fault. Comparison surface and profiles structure which were curved faces and cross each other to define 3-D rupture and width of shear zone. We found that an increase in fault slip could result in a greater width of shear zone, and proposed a W/H versus Sy/H relationship. Deformation of shear zone showed a similar trend as in the literature that the increase of fault slip resulted in the increase of W, however, the increasing trend became opposite after a peak (when Sy/H was 1) value of W was reached (small than 1.5). The results showed that the W width is limited at a constant value in 3-D models by strike-slip faulting. In conclusion, this study helps evaluate the extensions of the shear zone influenced regions for strike-slip faults.

  8. Active faulting on the Wallula fault zone within the Olympic-Wallowa lineament, Washington State, USA

    USGS Publications Warehouse

    Sherrod, Brian; Blakely, Richard J.; Lasher, John P.; Lamb, Andrew P.; Mahan, Shannon; Foit, Franklin F.; Barnett, Elizabeth

    2016-01-01

    The Wallula fault zone is an integral feature of the Olympic-Wallowa lineament, an ∼500-km-long topographic lineament oblique to the Cascadia plate boundary, extending from Vancouver Island, British Columbia, to Walla Walla, Washington. The structure and past earthquake activity of the Wallula fault zone are important because of nearby infrastructure, and also because the fault zone defines part of the Olympic-Wallowa lineament in south-central Washington and suggests that the Olympic-Wallowa lineament may have a structural origin. We used aeromagnetic and ground magnetic data to locate the trace of the Wallula fault zone in the subsurface and map a quarry exposure of the Wallula fault zone near Finley, Washington, to investigate past earthquakes along the fault. We mapped three main packages of rocks and unconsolidated sediments in an ∼10-m-high quarry exposure. Our mapping suggests at least three late Pleistocene earthquakes with surface rupture, and an episode of liquefaction in the Holocene along the Wallula fault zone. Faint striae on the master fault surface are subhorizontal and suggest reverse dextral oblique motion for these earthquakes, consistent with dextral offset on the Wallula fault zone inferred from offset aeromagnetic anomalies associated with ca. 8.5 Ma basalt dikes. Magnetic surveys show that the Wallula fault actually lies 350 m to the southwest of the trace shown on published maps, passes directly through deformed late Pleistocene or younger deposits exposed at Finley quarry, and extends uninterrupted over 120 km.

  9. An information transfer based novel framework for fault root cause tracing of complex electromechanical systems in the processing industry

    NASA Astrophysics Data System (ADS)

    Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani

    2018-02-01

    As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.

  10. Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada

    USGS Publications Warehouse

    Bender, Adrian M.; Haeussler, Peter J.

    2017-05-04

    We map the 385-kilometer (km) long surface trace of the right-lateral, strike-slip Denali Fault between the Totschunda-Denali Fault intersection in Alaska, United States and the village of Haines Junction, Yukon, Canada. In Alaska, digital elevation models based on light detection and ranging and interferometric synthetic aperture radar data enabled our fault mapping at scales of 1:2,000 and 1:10,000, respectively. Lacking such resources in Yukon, we developed new structure-from-motion digital photogrammetry products from legacy aerial photos to map the fault surface trace at a scale of 1:10,000 east of the international border. The section of the fault that we map, referred to as the Eastern Denali Fault, did not rupture during the 2002 Denali Fault earthquake (moment magnitude 7.9). Seismologic, geodetic, and geomorphic evidence, along with a paleoseismic record of past ground-rupturing earthquakes, demonstrate Holocene and contemporary activity on the fault, however. This map of the Eastern Denali Fault surface trace complements other data sets by providing an openly accessible digital interpretation of the location, length, and continuity of the fault’s surface trace based on the accompanying digital topography dataset. Additionally, the digitized fault trace may provide geometric constraints useful for modeling earthquake scenarios and related seismic hazard.

  11. Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data

    NASA Astrophysics Data System (ADS)

    Wang, Kang; Fialko, Yuri

    2015-09-01

    We use surface deformation measurements including Interferometric Synthetic Aperture Radar data acquired by the ALOS-2 mission of the Japanese Aerospace Exploration Agency and Global Positioning System (GPS) data to invert for the fault geometry and coseismic slip distribution of the 2015 Mw 7.8 Gorkha earthquake in Nepal. Assuming that the ruptured fault connects to the surface trace of the Main Frontal Thrust (MFT) fault between 84.34°E and 86.19°E, the best fitting model suggests a dip angle of 7°. The moment calculated from the slip model is 6.08 × 1020 Nm, corresponding to the moment magnitude of 7.79. The rupture of the 2015 Gorkha earthquake was dominated by thrust motion that was primarily concentrated in a 150 km long zone 50 to 100 km northward from the surface trace of the Main Frontal Thrust (MFT), with maximum slip of ˜ 5.8 m at a depth of ˜8 km. Data thus indicate that the 2015 Gorkha earthquake ruptured a deep part of the seismogenic zone, in contrast to the 1934 Bihar-Nepal earthquake, which had ruptured a shallow part of the adjacent fault segment to the east.

  12. Shallow Faulting in Morelia, Mexico, Based on Seismic Tomography and Geodetically Detected Land Subsidence

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Vergara-Huerta, F.; Chaussard, E.; Wdowinski, S.; DeMets, C.; Salazar-Tlaczani, L.

    2013-12-01

    Subsidence has been a common occurrence in several cities in central Mexico for the past three decades. This process causes substantial damage to the urban infrastructure and housing in several cities and it is a major factor to be considered when planning urban development, land-use zoning and hazard mitigation strategies. Since the early 1980's the city of Morelia in Central Mexico has experienced subsidence associated with groundwater extraction in excess of natural recharge from rainfall. Previous works have focused on the detection and temporal evolution of the subsidence spatial distribution. The most recent InSAR analysis confirms the permanence of previously detected rapidly subsiding areas such as the Rio Grande Meander area and also defines 2 subsidence patches previously undetected in the newly developed suburban sectors west of Morelia at the Fraccionamiento Del Bosque along, south of Hwy. 15 and another patch located north of Morelia along Gabino Castañeda del Rio Ave. Because subsidence-induced, shallow faulting develops at high horizontal strain localization, newly developed a subsidence areas are particularly prone to faulting and fissuring. Shallow faulting increases groundwater vulnerability because it disrupts discharge hydraulic infrastructure and creates a direct path for transport of surface pollutants into the underlying aquifer. Other sectors in Morelia that have been experiencing subsidence for longer time have already developed well defined faults such as La Colina, Central Camionera, Torremolinos and La Paloma faults. Local construction codes in the vicinity of these faults define a very narrow swath along which housing construction is not allowed. In order to better characterize these fault systems and provide better criteria for future municipal construction codes we have surveyed the La Colina and Torremolinos fault systems in the western sector of Morelia using seismic tomographic techniques. Our results indicate that La Colina Fault include secondary faults at depths up to 4-8m below the surface and located up to 24m away from the main fault trace. The Torremolinos fault system includes secondary faults, which are present up to 8m deep and 12-18m away from the main fault trace. Even though the InSAR analysis provides an unsurpassed synoptic view, a higher temporal resolution observation of fault movement has been pursued using the MOIT continuously operating GPS station, which is located within 100 m from the La Colina main fault trace. GPS data is also particularly useful to decompose horizontal and vertical motion in the absence of both ascending and descending SAR data acquisitions. Observations since July 2009 show a total general displacement trend of -39mm/yr and a total horizontal differential motion of 41.8 mm/yr and -4.7mm/yr in its latitudinal and Longitudinal components respectively in respect to the motion observed at the MOGA GPS station located 5.0 km to the SSE within an area which is not affected by subsidence. In addition to the overall trend, high amplitude excursions at the MOIT station with individual residual amplitudes up to 20mm, 25mm, and 60mm in its latitudinal, longitudinal and vertical components respectively vertical are observed. The correlation of fault motion excursions in relationship to the rainfall records will be analyzed.

  13. A Detailed Study of the Delacroix Island Major Fault and Its Role on Stratigraphic Horizons from the Middle Miocene to Present

    NASA Astrophysics Data System (ADS)

    Levesh, J. L.; McLindon, C.; Kulp, M. A.

    2017-12-01

    An in-depth field study of the Delacroix Island producing field illustrates the evolution of the main East-West trending Delacroix Island fault over the last thirteen million years. Well log correlation and 3-D seismic interpretation of eighteen bio-stratigraphic horizons across the fault reveal a range of stratigraphic thicknesses. A cross section, created with wells upthrown and downthrown to the fault, visually demonstrates varying degrees of thickening and displacement of the stratigraphic intervals across the fault. One upthrown and one downthrown well, with well log curve data up to 30 meters below the surface, were used to calculate interval thicknesses between the main tops as well as five more Pliocene/Pleistocene biostratigraphic markers. Isopach maps, created with these interval thicknesses, depict two styles of interval thickening both of which indicate differential subsidence across the fault. An interval thickness analysis was plotted in both depth and time as well as plots showing the rate of sediment accumulation and depth versus fault displacement. A lineation on the marsh surface consistent with a projection of the fault plane suggests that the fault movement has been episodically continuous to the present and that recent movement may have played a role in submerging the downthrown side of the surface fault trace.

  14. Recently active traces of the Bartlett Springs Fault, California: a digital database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2010-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Bartlett Springs Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale aerial photography. In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  15. Holocene surface ruptures of the Rurrand Fault, Germany—insights from palaeoseismology, remote sensing and shallow geophysics

    NASA Astrophysics Data System (ADS)

    Grützner, Christoph; Fischer, Peter; Reicherter, Klaus

    2016-03-01

    The Lower Rhine Embayment in Central Europe hosts a rift system that has very low deformation rates. The faults in this area have slip rates of less than 0.1 mm yr-1, which does not allow to investigate ongoing tectonic deformation with geodetic techniques, unless they cover very long time spans. Instrumental seismicity does only cover a small fraction of the very long earthquake recurrence intervals of several thousands of years. Palaeoseismological studies are needed to constrain slip rates and the earthquake history of such faults. Destructive earthquakes are rare in the study area, but did occur in historic times. In 1755/1756, a series of strong earthquakes caused significant destruction in the city of Düren (Germany) and the surrounding areas. In this study we document palaeoseismological data from the nearby Rurrand Fault. In contrast to earlier studies on the same fault, we found evidence for a surface rupturing earthquake in the Holocene, and we identified at least one more surface rupturing event. Our study shows that the Rurrand Fault currently accommodates deformation in earthquakes rather than by creeping. The coseismic offsets were determined to be between less than 0.5 m per event. We assign maximum possible magnitudes of Mw 5.9-6.8 for the Rurrand Fault and a slip rate of at least 0.02-0.03 mm yr-1 for the last ˜130-50 kyr. The surface ruptures did not occur at the main fault trace that has a clear morphological expression due to older tectonic motions, but on a younger fault strand in the hanging wall of the main fault. Terrain analyses based on 1 m resolution airborne LiDAR data have been used to image the subtle morphological expression of this young fault zone. Georadar and electric resistivity tomography were applied to image the fault zone at depth and to test if these shallow geophysical methods can be used to identify and trace the fault zone. Georadar failed to produce reliable results, but geoelectrics were successfully applied and allowed us to retrieve slip rate estimates. Our results indicate that the Düren 1755/1756 earthquakes did not produce surface ruptures at the Rurrand Fault, either because they did not rupture the surface at all, or because they occurred at another, neighbouring fault.

  16. Preliminary Pseudo 3-D Imagery of the State Line Fault, Stewart Valley, Nevada Using Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Saldaña, S. C.; Snelson, C. M.; Taylor, W. J.; Beachly, M.; Cox, C. M.; Davis, R.; Stropky, M.; Phillips, R.; Robins, C.; Cothrun, C.

    2007-12-01

    The Pahrump Fault system is located in the central Basin and Range region and consists of three main fault zones: the Nopah range front fault zone, the State Line fault zone and the Spring Mountains range fault zone. The State Line fault zone is made up north-west trending dextral strike-slip faults that run parallel to the Nevada- California border. Previous geologic and geophysical studies conducted in and around Stewart Valley, located ~90 km from Las Vegas, Nevada, have constrained the location of the State Line fault zone to within a few kilometers. The goals of this project were to use seismic methods to definitively locate the northwestern most trace of the State Line fault and produce pseudo 3-D seismic cross-sections that can then be used to characterize the subsurface geometry and determine the slip of the State Line fault. During July 2007, four seismic lines were acquired in Stewart Valley: two normal and two parallel to the mapped traces of the State Line fault. Presented here are preliminary results from the two seismic lines acquired normal to the fault. These lines were acquired utilizing a 144-channel geode system with each of the 4.5 Hz vertical geophones set out at 5 m intervals to produce a 595 m long profile to the north and a 715 m long profile to the south. The vibroseis was programmed to produce an 8 s linear sweep from 20-160 Hz. These data returned excellent signal to noise and reveal subsurface lithology that will subsequently be used to resolve the subsurface geometry of the State Line fault. This knowledge will then enhance our understanding of the evolution of the State Line fault. Knowing how the State Line fault has evolved gives insight into the stick-slip fault evolution for the region and may improve understanding of how stress has been partitioned from larger strike-slip systems such as the San Andreas fault.

  17. www.fallasdechile.cl, the First Online Repository for Neotectonic Faults in the Chilean Andes

    NASA Astrophysics Data System (ADS)

    Aron, F.; Salas, V.; Bugueño, C. J.; Hernández, C.; Leiva, L.; Santibanez, I.; Cembrano, J. M.

    2016-12-01

    We introduce the site www.fallasdechile.cl, created and maintained by undergraduate students and researchers at the Catholic University of Chile. Though the web page seeks to inform and educate the general public about potentially seismogenic faults of the country, layers of increasing content complexity allow students, researchers and educators to consult the site as a scientific tool as well. This is the first comprehensive, open access database on Chilean geologic faults; we envision that it may grow organically with contributions from peer scientists, resembling the SCEC community fault model for southern California. Our website aims at filling a gap between science and society providing users the opportunity to get involved by self-driven learning through interactive education modules. The main page highlights recent developments and open questions in Chilean earthquake science. Front pages show first level information of general concepts in earthquake topics such as tectonic settings, definition of geologic faults, and space-time constraints of faults. Users can navigate interactive modules to explore, with real data, different earthquake scenarios and compute values of seismic moment and magnitude. A second level covers Chilean/Andean faults classified according to their geographic location containing at least one of the following parameters: mapped trace, 3D geometry, sense of slip, recurrence times and date of last event. Fault traces are displayed on an interactive map using a Google Maps API. The material is compiled and curated in an effort to present, up to our knowledge, accurate and up to date information. If interested, the user can navigate to a third layer containing more advanced technical details including primary sources of the data, a brief structural description, published scientific articles, and links to other online content complementing our site. Also, geographically referenced fault traces with attributes (kml, shapefiles) and fault 3D surfaces (contours, tsurf files) will be available to download. Given its potential for becoming a referential database for active faults in Chile, this project evidences that undergrads can go beyond the classroom, be of service to the scientific community, and make contributions with broader impacts.

  18. Fault zone architecture within Miocene-Pliocene syn-rift sediments, Northwestern Red Sea, Egypt

    NASA Astrophysics Data System (ADS)

    Zaky, Khairy S.

    2017-04-01

    The present study focusses on field description of small normal fault zones in Upper Miocene-Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW-SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE-SW. The minimum ( σ3) and intermediate ( σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis ( σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ˜0.5 to ˜8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement < 1 m have fault cores ranging from 0.5 to 4.0 cm, while the faults with displacements of > 2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses' structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.

  19. Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield

    USGS Publications Warehouse

    Hole, J.A.; Catchings, R.D.; St. Clair, K.C.; Rymer, M.J.; Okaya, D.A.; Carney, B.J.

    2001-01-01

    Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70° to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.

  20. Seismic reflection evidence for a northeast-dipping Hayward fault near Fremont, California: Implications for seismic hazard

    USGS Publications Warehouse

    Williams, R.A.; Simpson, R.W.; Jachens, R.C.; Stephenson, W.J.; Odum, J.K.; Ponce, D.A.

    2005-01-01

    A 1.6-km-long seismic reflection profile across the creeping trace of the southern Hayward fault near Fremont, California, images the fault to a depth of 650 m. Reflector truncations define a fault dip of about 70 degrees east in the 100 to 650 m depth range that projects upward to the creeping surface trace, and is inconsistent with a nearly vertical fault in this vicinity as previously believed. This fault projects to the Mission seismicity trend located at 4-10 km depth about 2 km east of the surface trace and suggests that the southern end of the fault is as seismically active as the part north of San Leandro. The seismic hazard implication is that the Hayward fault may have a more direct connection at depth with the Calaveras fault, affecting estimates of potential event magnitudes that could occur on the combined fault surfaces, thus affecting hazard assessments for the south San Francisco Bay region.

  1. Character and Implications of a Newly Identified Creeping Strand of the San Andreas fault NE of Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Janecke, S. U.; Markowski, D.

    2015-12-01

    The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella Valley to join the blind Palm Spring dextral fault- a source of microearthquakes and differential subsidence. The ESS may also continue north parallel to the margin of the Salton Trough or have both a NW and NE branch. The risk of a future large earthquake directly beneath the greater Palm Springs metropolitan area may be larger if the first or last options are correct.

  2. Was Himalayan normal faulting triggered by initiation of the Ramgarh-Munsiari Thrust?

    USGS Publications Warehouse

    Robinson, Delores M.; Pearson, Ofori N.

    2013-01-01

    The Ramgarh–Munsiari thrust is a major orogen-scale fault that extends for more than 1,500 km along strike in the Himalayan fold-thrust belt. The fault can be traced along the Himalayan arc from Himachal Pradesh, India, in the west to eastern Bhutan. The fault is located within the Lesser Himalayan tectonostratigraphic zone, and it translated Paleoproterozoic Lesser Himalayan rocks more than 100 km toward the foreland. The Ramgarh–Munsiari thrust is always located in the proximal footwall of the Main Central thrust. Northern exposures (toward the hinterland) of the thrust sheet occur in the footwall of the Main Central thrust at the base of the high Himalaya, and southern exposures (toward the foreland) occur between the Main Boundary thrust and Greater Himalayan klippen. Although the metamorphic grade of rocks within the Ramgarh–Munsiari thrust sheet is not significantly different from that of Greater Himalayan rock in the hanging wall of the overlying Main Central thrust sheet, the tectonostratigraphic origin of the two different thrust sheets is markedly different. The Ramgarh–Munsiari thrust became active in early Miocene time and acted as the roof thrust for a duplex system within Lesser Himalayan rocks. The process of slip transfer from the Main Central thrust to the Ramgarh–Munsiari thrust in early Miocene time and subsequent development of the Lesser Himalayan duplex may have played a role in triggering normal faulting along the South Tibetan Detachment system.

  3. Evidence of shallow fault zone strengthening after the 1992 M7.5 Landers, California, earthquake

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Xu, Fei; Burdette, T.

    1998-01-01

    Repeated seismic surveys of the Landers, California, fault zone that ruptured in the magnitude (M) 7.5 earthquake of 1992 reveal an increase in seismic velocity with time. P, S, and fault zone trapped waves were excited by near-surface explosions in two locations in 1994 and 1996, and were recorded on two linear, three-component seismic arrays deployed across the Johnson Valley fault trace. The travel times of P and S waves for identical shot-receiver pairs decreased by 0.5 to 1.5 percent from 1994 to 1996, with the larger changes at stations located within the fault zone. These observations indicate that the shallow Johnson Valley fault is strengthening after the main shock, most likely because of closure of cracks that were opened by the 1992 earthquake. The increase in velocity is consistent with the prevalence of dry over wet cracks and with a reduction in the apparent crack density near the fault zone by approximately 1.0 percent from 1994 to 1996.

  4. The Devils Mountain Fault zone: An active Cascadia upper plate zone of deformation, Pacific Northwest of North America

    NASA Astrophysics Data System (ADS)

    Barrie, J. Vaughn; Greene, H. Gary

    2018-02-01

    The Devils Mountain Fault Zone (DMFZ) extends east to west from Washington State to just south of Victoria, British Columbia, in the northern Strait of Juan de Fuca of Canada and the USA. Recently collected geophysical data were used to map this fault zone in detail, which show the main fault trace, and associated primary and secondary (conjugate) strands, and extensive northeast-southwest oriented folding that occurs within a 6 km wide deformation zone. The fault zone has been active in the Holocene as seen in the offset and disrupted upper Quaternary strata, seafloor displacement, and deformation within sediment cores taken close to the seafloor expression of the faults. Data suggest that the present DMFZ and the re-activated Leech River Fault may be part of the same fault system. Based on the length and previously estimated slip rates of the fault zone in Washington State, the DMFZ appears to have the potential of producing a strong earthquake, perhaps as large as magnitude 7.5 or greater, within 2 km of the city of Victoria.

  5. Recently Active Traces of the Berryessa Fault, California: A Digital Database

    USGS Publications Warehouse

    Lienkaemper, James J.

    2012-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Berryessa section and parts of adjacent sections of the Green Valley Fault Zone, California. The location and recency of the mapped traces is primarily based on geomorphic expression of the fault as interpreted from large-scale 2010 aerial photography and from 2007 and 2011 0.5 and 1.0 meter bare-earth LiDAR imagery (that is, high-resolution topographic data). In a few places, evidence of fault creep and offset Holocene strata in trenches and natural exposures have confirmed the activity of some of these traces. This publication is formatted both as a digital database for use within a geographic information system (GIS) and for broader public access as map images that may be browsed on-line or download a summary map. The report text describes the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map.

  6. Surface faults on Montague Island associated with the 1964 Alaska earthquake: Chapter G in The Alaska earthquake, March 27, 1964: regional effects

    USGS Publications Warehouse

    Plafter, George

    1967-01-01

    Two reverse faults on southwestern Montague Island in Prince William Sound were reactivated during the earthquake of March 27, 1964. New fault scarps, fissures, cracks, and flexures appeared in bedrock and unconsolidated surficial deposits along or near the fault traces. Average strike of the faults is between N. 37° E. and N. 47° E.; they dip northwest at angles ranging from 50° to 85°. The dominant motion was dip slip; the blocks northwest of the reactivated faults were relatively upthrown, and both blocks were upthrown relative to sea level. No other earthquake faults have been found on land. The Patton Bay fault on land is a complex system of en echelon strands marked by a series of spectacular landslides along the scarp and (or) by a zone of fissures and flexures on the upthrown block that locally is as much as 3,000 feet wide. The fault can be traced on land for 22 miles, and it has been mapped on the sea floor to the southwest of Montague Island an additional 17 miles. The maximum measured vertical component of slip is 20 to 23 feet and the maximum indicated dip slip is about 26 feet. A left-lateral strike-slip component of less than 2 feet occurs near the southern end of the fault on land where its strike changes from northeast to north. Indirect evidence from the seismic sea waves and aftershocks associated with the earthquake, and from the distribution of submarine scarps, suggests that the faulting on and near Montague Island occurred at the northeastern end of a reactivated submarine fault system that may extend discontinuously for more than 300 miles from Montague Island to the area offshore of the southeast coast of Kodiak Island. The Hanning Bay fault is a minor rupture only 4 miles long that is marked by an exceptionally well defined almost continuous scarp. The maximum measured vertical component of slip is 16⅓ feet near the midpoint, and the indicated dip slip is about 20 feet. There is a maximum left-lateral strike-slip component of one-half foot near the southern end of the scarp. Warping and extension cracking occurred in bedrock near the midpoint on the upthrown block within about 1,000 feet of the fault scarp. The reverse faults on Montague Island and their postulated submarine extensions lie within a tectonically important narrow zone of crustal attenuation and maximum uplift associated with the earthquake. However, there are no significant lithologic differences in the rock sequences across these faults to suggest that they form major tectonic boundaries. Their spatial distribution relative to the regional uplift associated with the earthquake, the earthquake focal region, and the epicenter of the main shock suggest that they are probably subsidiary features rather than the causative faults along which the earthquake originated. Approximately 70 percent of the new breakage along the Patton Bay and the Hanning Bay faults on Montague Island was along obvious preexisting active fault traces. The estimated ages of undisturbed trees on and near the fault trace indicate that no major disc placement had occurred on these faults for at least 150 to 300 years before the 1964 earthquake.

  7. Geomorphic expression of strike-slip faults: field observations vs. analog experiments: preliminary results

    NASA Astrophysics Data System (ADS)

    Hsieh, S. Y.; Neubauer, F.; Genser, J.

    2012-04-01

    The aim of this project is to study the surface expression of strike-slip faults with main aim to find rules how these structures can be extrapolated to depth. In the first step, several basic properties of the fault architecture are in focus: (1) Is it possible to define the fault architecture by studying surface structures of the damage zone vs. the fault core, particularly the width of the damage zone? (2) Which second order structures define the damage zone of strike-slip faults, and how relate these to such reported in basement fault strike-slip analog experiments? (3) Beside classical fault bend structures, is there a systematic along-strike variation of the damage zone width and to which properties relates the variation of the damage zone width. We study the above mentioned properties on the dextral Altyn fault, which is one of the largest strike-slip on Earth with the advantage to have developed in a fully arid climate. The Altyn fault includes a ca. 250 to 600 m wide fault valley, usually with the trace of actual fault in its center. The fault valley is confined by basement highs, from which alluvial fans develop towards the center of the fault valley. The active fault trace is marked by small scale pressure ridges and offset of alluvial fans. The fault valley confining basement highs are several kilometer long and ca. 0.5 to 1 km wide and confined by rotated dextral anti-Riedel faults and internally structured by a regular fracture pattern. Dextral anti-Riedel faults are often cut by Riedel faults. Consequently, the Altyn fault comprises a several km wide damage zone. The fault core zone is a barrier to fluid flow, and the few springs of the region are located on the margin of the fault valley implying the fractured basement highs as the reservoir. Consequently, the southern Silk Road was using the Altyn fault valley. The preliminary data show that two or more orders of structures exist. Small-scale develop during a single earthquake. These finally accumulate to a several 100 m wide fault core, which is in part exposed at surface to arid climate and a km wide damage zone. The basic structures of analog experiments can be well transferred to nature, although along strike changes are common due to fault bending and fracture failure of country rocks.

  8. Evaluation of LiDAR Imagery as a Tool for Mapping the Northern San Andreas Fault in Heavily Forested Areas of Mendocino and Sonoma Counties, California

    NASA Astrophysics Data System (ADS)

    Prentice, C. S.; Koehler, R. D.; Baldwin, J. N.; Harding, D. J.

    2004-12-01

    We are mapping in detail active traces of the San Andreas Fault in Mendocino and Sonoma Counties in northern California, using recently acquired airborne LiDAR (also known as ALSM) data. The LiDAR data set provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault because it can be used to produce high-resolution images of the ground surfaces beneath the forest canopy along the 70-km-long section of the fault zone encompassed by the data. Our effort represents the first use of LiDAR data to map active fault traces in a densely vegetated region along the San Andreas Fault. We are using shaded relief images generated from bare-earth DEMs to conduct detailed mapping of fault-related geomorphic features (e.g. scarps, offset streams, linear valleys, shutter ridges, and sag ponds) between Fort Ross and Point Arena. Initially, we map fault traces digitally, on-screen, based only on the geomorphology interpreted from LiDAR images. We then conduct field reconnaissance using the initial computer-based maps in order to verify and further refine our mapping. We found that field reconnaissance is of utmost importance in producing an accurate and detailed map of fault traces. Many lineaments identified as faults from the on-screen images were determined in the field to be old logging roads or other features unrelated to faulting. Also, in areas where the resolution of LiDAR data is poor, field reconnaissance, coupled with topographic maps and aerial photographs, permits a more accurate location of fault-related geomorphic features. LiDAR images are extremely valuable as a base for field mapping in this heavily forested area, and the use of LiDAR is far superior to traditional mapping techniques relying only on aerial photography and 7.5 minute USGS quadrangle topographic maps. Comparison with earlier mapping of the northern San Andreas fault (Brown and Wolfe, 1972) shows that in some areas the LiDAR data allow a correction of the fault trace location of up to several hundred meters. To date we have field checked approximately 24 km of the 70-km-long section of the fault for which LiDAR data is available. The remaining 46 km will be field checked in 2005. The result will be a much more accurate map of the active traces of the northern San Andreas Fault, which will be of great use for future fault studies.

  9. Preliminary paleoseismic observations along the western Denali fault, Alaska

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Schwartz, D. P.; Rood, D. H.; Reger, R.; Wolken, G. J.

    2013-12-01

    The Denali fault in south-central Alaska, from Mt. McKinley to the Denali-Totschunda fault branch point, accommodates ~9-12 mm/yr of the right-lateral component of oblique convergence between the Pacific/Yakutat and North American plates. The eastern 226 km of this fault reach was part of the source of the 2002 M7.9 Denali fault earthquake. West of the 2002 rupture there is evidence of two large earthquakes on the Denali fault during the past ~550-700 years but the paleoearthquake chronology prior to this time is largely unknown. To better constrain fault rupture parameters for the western Denali fault and contribute to improved seismic hazard assessment, we performed helicopter and ground reconnaissance along the southern flank of the Alaska Range between the Nenana Glacier and Pyramid Peak, a distance of ~35 km, and conducted a site-specific paleoseismic study. We present a Quaternary geologic strip map along the western Denali fault and our preliminary paleoseismic results, which include a differential-GPS survey of a displaced debris flow fan, cosmogenic 10Be surface exposure ages for boulders on this fan, and an interpretation of a trench across the main trace of the fault at the same site. Between the Nenana Glacier and Pyramid Peak, the Denali fault is characterized by prominent tectonic geomorphic features that include linear side-hill troughs, mole tracks, anastamosing composite scarps, and open left-stepping fissures. Measurements of offset rills and gullies indicate that slip during the most recent earthquake was between ~3 and 5 meters, similar to the average displacement in the 2002 earthquake. At our trench site, ~ 25 km east of the Parks Highway, a steep debris fan is displaced along a series of well-defined left-stepping linear fault traces. Multi-event displacements of debris-flow and snow-avalanche channels incised into the fan range from 8 to 43 m, the latter of which serves as a minimum cumulative fan offset estimate. The trench, excavated into the fan across the main fault scarp and adjacent graben, exposed sheared debris fan parent material at its north and south ends, separated by a central zone of stacked scarp-derived colluvium and weakly developed peaty soils. Stratigraphic relations and upward fault terminations clearly record the occurrence of the past three surface-faulting earthquakes and suggest four or more such events. Results of pending 14C analyses are expected to provide new information on earthquake timing and recurrence. A Holocene slip rate for this section of the fault will be developed using back-slip models and an estimate of the age of the fan constrained by our detailed surveys of channel offsets and pending cosmogenic 10Be exposure ages for surface boulders, respectively.

  10. Surface slip and off-fault deformation patterns in the 2013 MW 7.7 Balochistan, Pakistan earthquake: Implications for controls on the distribution of near-surface coseismic slip

    NASA Astrophysics Data System (ADS)

    Zinke, Robert; Hollingsworth, James; Dolan, James F.

    2014-12-01

    Comparison of 398 fault offsets measured by visual analysis of WorldView high-resolution satellite imagery with deformation maps produced by COSI-Corr subpixel image correlation of Landsat-8 and SPOT5 imagery reveals significant complexity and distributed deformation along the 2013 Mw 7.7 Balochistan, Pakistan earthquake. Average slip along the main trace of the fault was 4.2 m, with local maximum offsets up to 11.4 m. Comparison of slip measured from offset geomorphic features, which record localized slip along the main strand of the fault, to the total displacement across the entire width of the surface deformation zone from COSI-Corr reveals ˜45% off-fault deformation. While previous studies have shown that the structural maturity of the fault exerts a primary control on the total percentage of off-fault surface deformation, large along-strike variations in the percentage of strain localization observed in the 2013 rupture imply the influence of important secondary controls. One such possible secondary control is the type of near-surface material through which the rupture propagated. We therefore compared the percentage off-fault deformation to the type of material (bedrock, old alluvium, and young alluvium) at the surface and the distance of the fault to the nearest bedrock outcrop (a proxy for sediment thickness along this hybrid strike slip/reverse slip fault). We find significantly more off-fault deformation in younger and/or thicker sediments. Accounting for and predicting such off-fault deformation patterns has important implications for the interpretation of geologic slip rates, especially for their use in probabilistic seismic hazard assessments, the behavior of near-surface materials during coseismic deformation, and the future development of microzonation protocols for the built environment.

  11. Forecast model for great earthquakes at the Nankai Trough subduction zone

    USGS Publications Warehouse

    Stuart, W.D.

    1988-01-01

    An earthquake instability model is formulated for recurring great earthquakes at the Nankai Trough subduction zone in southwest Japan. The model is quasistatic, two-dimensional, and has a displacement and velocity dependent constitutive law applied at the fault plane. A constant rate of fault slip at depth represents forcing due to relative motion of the Philippine Sea and Eurasian plates. The model simulates fault slip and stress for all parts of repeated earthquake cycles, including post-, inter-, pre- and coseismic stages. Calculated ground uplift is in agreement with most of the main features of elevation changes observed before and after the M=8.1 1946 Nankaido earthquake. In model simulations, accelerating fault slip has two time-scales. The first time-scale is several years long and is interpreted as an intermediate-term precursor. The second time-scale is a few days long and is interpreted as a short-term precursor. Accelerating fault slip on both time-scales causes anomalous elevation changes of the ground surface over the fault plane of 100 mm or less within 50 km of the fault trace. ?? 1988 Birkha??user Verlag.

  12. Digital Database of Recently Active Traces of the Hayward Fault, California

    USGS Publications Warehouse

    Lienkaemper, James J.

    2006-01-01

    The purpose of this map is to show the location of and evidence for recent movement on active fault traces within the Hayward Fault Zone, California. The mapped traces represent the integration of the following three different types of data: (1) geomorphic expression, (2) creep (aseismic fault slip),and (3) trench exposures. This publication is a major revision of an earlier map (Lienkaemper, 1992), which both brings up to date the evidence for faulting and makes it available formatted both as a digital database for use within a geographic information system (GIS) and for broader public access interactively using widely available viewing software. The pamphlet describes in detail the types of scientific observations used to make the map, gives references pertaining to the fault and the evidence of faulting, and provides guidance for use of and limitations of the map. [Last revised Nov. 2008, a minor update for 2007 LiDAR and recent trench investigations; see version history below.

  13. Geology along the Fairweather-Queen Charlotte fault system off southeast Alaska and British Columbia from GLORIA images and seismic-reflection data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruns, T.R.; Carlson, P.R.; Stevenson, A.J.

    1990-06-01

    GLORIA images collected in 1989 along southeast Alaska and British Columbia strikingly show the active trace of the Fairweather-Queen Charlotte transform fault system beneath the outer shelf and slope; seismic-reflection data are used to track the fault system across the continental shelf where GLORIA data are not available. From Cross Sound to Chatham Strait, the fault system is comprised of two sets of subparallel fault traces separated by 3 to 6 km. The fault system crosses the shelf from Icy Point to south of Yakobi Valley, then follows the shelf edge to Chatham Strait. Between Chatham Strait and Dixon Entrance,more » a single, sharply defined active fault trace underlies the upper and middle slope. This fault segment is bounded on the seaward side by a high, midslope ridge and by lower slope Quaternary( ) anticlines up to 35 km wide. Southeast of Dixon Entrance, the active fault trace trends back onto the outer shelf until midway along the Queen Charlotte Islands, then cuts back to and stays at midslope to the Tuzo Wilson Knolls south of the Queen Charlotte Islands. The fault steps westward at Tuzo Wilson Knolls, which are likely part of a spreading ridge segment. Major deep-sea fans along southeast Alaska show a southeastward age progression from older to younger and record both point source deposition at Chatham Strait and Dixon Entrance and subsequent (Quaternary ) offset along the fault system. Subsidence of ocean plate now adjacent to the Chatham Strait-Dixon Entrance fault segment initiated development of both Mukluk and Horizon Channels.« less

  14. Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Schwartz, David P.; Dawson, Timothy E.; Stenner, Heidi D.; Lienkaemper, James J.; Sherrod, Brian; Cinti, Francesca R.; Montone, Paola; Craw, Patricia; Crone, Anthony J.; Personius, Stephen F.

    2004-01-01

    The 3 November 2002 Denali fault, Alaska, earthquake resulted in 341 km of surface rupture on the Susitna Glacier, Denali, and Totschunda faults. The rupture proceeded from west to east and began with a 48-km-long break on the previously unknown Susitna Glacier thrust fault. Slip on this thrust averaged about 4 m (Crone et al., 2004). Next came the principal surface break, along 226 km of the Denali fault, with average right-lateral offsets of 4.5–5.1 m and a maximum offset of 8.8 m near its eastern end. The Denali fault trace is commonly left stepping and north side up. About 99 km of the fault ruptured through glacier ice, where the trace orientation was commonly influenced by local ice fabric. Finally, slip transferred southeastward onto the Totschunda fault and continued for another 66 km where dextral offsets average 1.6–1.8 m. The transition from the Denali fault to the Totschunda fault occurs over a complex 25-km-long transfer zone of right-slip and normal fault traces. Three methods of calculating average surface slip all yield a moment magnitude of Mw 7.8, in very good agreement with the seismologically determined magnitude of M 7.9. A comparison of strong-motion inversions for moment release with our slip distribution shows they have a similar pattern. The locations of the two largest pulses of moment release correlate with the locations of increasing steps in the average values of observed slip. This suggests that slip-distribution data can be used to infer moment release along other active fault traces.

  15. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.

    1992-01-01

    Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.

  16. Landforms along transverse faults parallel to axial zone of folded mountain front, north-eastern Kumaun Sub-Himalaya, India

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Negi, Sanjay S.

    2017-02-01

    The shape of the frontal part of the Himalaya around the north-eastern corner of the Kumaun Sub-Himalaya, along the Kali River valley, is defined by folded hanging wall rocks of the Himalayan Frontal Thrust (HFT). Two parallel faults (Kalaunia and Tanakpur faults) trace along the axial zone of the folded HFT. Between these faults, the hinge zone of this transverse fold is relatively straight and along these faults, the beds abruptly change their attitudes and their widths are tectonically attenuated across two hinge lines of fold. The area is constituted of various surfaces of coalescing fans and terraces. Fans comprise predominantly of sandstone clasts laid down by the steep-gradient streams originating from the Siwalik range. The alluvial fans are characterised by compound and superimposed fans with high relief, which are generated by the tectonic activities associated with the thrusting along the HFT. The truncated fan along the HFT has formed a 100 m high-escarpment running E-W for ˜5 km. Quaternary terrace deposits suggest two phases of tectonic uplift in the basal part of the hanging wall block of the HFT dipping towards the north. The first phase is represented by tilting of the terrace sediments by ˜30 ∘ towards the NW; while the second phase is evident from deformed structures in the terrace deposit comprising mainly of reverse faults, fault propagation folds, convolute laminations, flower structures and back thrust faults. The second phase produced ˜1.0 m offset of stratification of the terrace along a thrust fault. Tectonic escarpments are recognised across the splay thrust near south of the HFT trace. The south facing hill slopes exhibit numerous landslides along active channels incising the hanging wall rocks of the HFT. The study area shows weak seismicity. The major Moradabad Fault crosses near the study area. This transverse fault may have suppressed the seismicity in the Tanakpur area, and the movement along the Moradabad and Kasganj-Tanakpur faults cause the neotectonic activities as observed. The role of transverse fault tectonics in the formation of the curvature cannot be ruled out.

  17. Feasibility of estimating cementation rates in a brittle fault zone using Sr/Ca partition coefficients for sedimentary diagenesis

    NASA Astrophysics Data System (ADS)

    Hadizadeh, Jafar; Foit, Franklin F.

    2000-04-01

    Cement phases such as calcite or quartz often incorporate trace elements from the parent fluids as they crystallize. Experimental sedimentary diagenesis indicates that trace element partition coefficients reflect rates of cementation. The applicability of these findings to fault zone cementation is examined as we make a preliminary attempt to estimate calcite cementation rate in a brittle fault zone directly from the fault-rock composition data. Samples for this study were collected from the Knoxville outcrop of the Saltville fault in Tennessee. The cementation rates for the fault rock samples range from 1×10 -12 to 3×10 -13 m3/ h per m, in agreement with some experimental rates and the rates reported for samples from the DSDP sites. When applied to a non-responsive pore-system model, these rates result in rapid precipitation sealing indicating the influence exerted by the surface-area/volume ratio of the pore network. We find it feasible to obtain a reasonable range of values for the cementation rate using the trace element partition method. However, the study also indicates the need for relatively accurate values for the trace/carrier element ratio in the fault zone syntectonic pore fluid, and exhumed cement.

  18. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  19. Geophysical setting of the 2000 ML 5.2 Yountville, California, earthquake: Implications for seismic Hazard in Napa Valley, California

    USGS Publications Warehouse

    Langenheim, V.E.; Graymer, R.W.; Jachens, R.C.

    2006-01-01

    The epicenter of the 2000 ML 5.2 Yountville earthquake was located 5 km west of the surface trace of the West Napa fault, as defined by Helley and Herd (1977). On the basis of the re-examination of geologic data and the analysis of potential field data, the earthquake occurred on a strand of the West Napa fault, the main basin-bounding fault along the west side of Napa Valley. Linear aeromagnetic anomalies and a prominent gravity gradient extend the length of the fault to the latitude of Calistoga, suggesting that this fault may be capable of larger-magnitude earthquakes. Gravity data indicate an ???2-km-deep basin centered on the town of Napa, where damage was concentrated during the Yountville earthquake. It most likely played a minor role in enhancing shaking during this event but may lead to enhanced shaking caused by wave trapping during a larger-magnitude earthquake.

  20. Evolving geometrical heterogeneities of fault trace data

    NASA Astrophysics Data System (ADS)

    Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari

    2010-08-01

    We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.

  1. Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays

    NASA Astrophysics Data System (ADS)

    Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.-E.; Ross, Z. E.; Vernon, F. L.

    2018-04-01

    We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify P and S body waves, along with P- and S-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of P arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates P- and S-types FZTW. Inversions of high-quality S-type FZTW indicate that the most likely parameters of the trapping structure are width of ˜70 m, S-wave velocity reduction of 60 per cent, Q value of 60 and depth of ˜2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.

  2. Variation of the fractal dimension anisotropy of two major Cenozoic normal fault systems over space and time around the Snake River Plain, Idaho and SW Montana

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.

    2012-12-01

    The interaction of the thermally induced stress field of the Yellowstone hotspot (YHS) with existing Basin and Range (BR) fault blocks, over the past 17 m.y., has produced a new, spatially and temporally variable system of normal faults around the Snake River Plain (SRP) in Idaho and Wyoming-Montana area. Data about the trace of these new cross faults (CF) and older BR normal faults were acquired from a combination of satellite imageries, DEM, and USGS geological maps and databases at scales of 1:24,000, 1:100,000, 1:250,000, 1:1000, 000, and 1:2,500, 000, and classified based on their azimuth in ArcGIS 10. The box-counting fractal dimension (Db) of the BR fault traces, determined applying the Benoit software, and the anisotropy intensity (ellipticity) of the fractal dimensions, measured with the modified Cantor dust method applying the AMOCADO software, were measured in two large spatial domains (I and II). The Db and anisotropy of the cross faults were studied in five temporal domains (T1-T5) classified based on the geologic age of successive eruptive centers (12 Ma to recent) of the YHS along the eastern SRP. The fractal anisotropy of the CF system in each temporal domain was also spatially determined in the southern part (domain S1), central part (domain S2), and northern part (domain S3) of the SRP. Line (fault trace) density maps for the BR and CF polylines reveal a higher linear density (trace length per unit area) for the BR traces in the spatial domain I, and a higher linear density of the CF traces around the present Yellowstone National Park (S1T5) where most of the seismically active faults are located. Our spatio-temporal analysis reveals that the fractal dimension of the BR system in domain I (Db=1.423) is greater than that in domain II (Db=1.307). It also shows that the anisotropy of the fractal dimension in domain I is less eccentric (axial ratio: 1.242) than that in domain II (1.355), probably reflecting the greater variation in the trend of the BR system in domain I. The CF system in the S1T5 domain has the highest fractal dimension (Db=1.37) and the lowest anisotropy eccentricity (1.23) among the five temporal domains. These values positively correlate with the observed maxima on the fault trace density maps. The major axis of the anisotropy ellipses is consistently perpendicular to the average trend of the normal fault system in each domain, and therefore approximates the orientation of extension for normal faulting in each domain. This fact gives a NE-SW and NW-SE extension direction for the BR system in domains I and II, respectively. The observed NE-SW orientation of the major axes of the anisotropy ellipses in the youngest T4 and T5 temporal domains, oriented perpendicular to the mean trend of the normal faults in the these domains, suggests extension along the NE-SW direction for cross faulting in these areas. The spatial trajectories (form lines) of the minor axes of the anisotropy ellipses, and the mean trend of fault traces in the T4 and T5 temporal domains, define a large parabolic pattern about the axis of the eastern SRP, with its apex at the Yellowstone plateau.

  3. Fault linkage and continental breakup

    NASA Astrophysics Data System (ADS)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia

    2017-04-01

    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part simultaneously. Alternatively, extension may have varied in direction spatially if it were a rotation about a pole located to the north.

  4. Surface Rupture Map of the 2002 M7.9 Denali Fault Earthquake, Alaska: Digital Data

    USGS Publications Warehouse

    Haeussler, Peter J.

    2009-01-01

    The November 3, 2002, Mw7.9 Denali Fault earthquake produced about 340 km of surface rupture along the Susitna Glacier Thrust Fault and the right-lateral, strike-slip Denali and Totschunda Faults. Digital photogrammetric methods were primarily used to create a 1:500-scale, three-dimensional surface rupture map, and 1:6,000-scale aerial photographs were used for three-dimensional digitization in ESRI's ArcMap GIS software, using Leica's StereoAnalyst plug in. Points were digitized 4.3 m apart, on average, for the entire surface rupture. Earthquake-induced landslides, sackungen, and unruptured Holocene fault scarps on the eastern Denali Fault were also digitized where they lay within the limits of air photo coverage. This digital three-dimensional fault-trace map is superior to traditional maps in terms of relative and absolute accuracy, completeness, and detail and is used as a basis for three-dimensional visualization. Field work complements the air photo observations in locations of dense vegetation, on bedrock, or in areas where the surface trace is weakly developed. Seventeen km of the fault trace, which broke through glacier ice, were not digitized in detail due to time constraints, and air photos missed another 10 km of fault rupture through the upper Black Rapids Glacier, so that was not mapped in detail either.

  5. Insights Into Magma Ascent During Shallow-Level Crustal Shortening From Magnetic Fabrics of the Philipsburg Batholith, SW Montana

    NASA Astrophysics Data System (ADS)

    Naibert, T. J.; Geissman, J. W.

    2007-12-01

    Latest Cretaceous development of the Sevier fold and thrust belt in SW Montana overlapped spatially with silicic magmatism. In the fold thrust belt, large volumes of magma were emplaced well east of the main magmatic arc, now exposed as the Idaho Batholith. Hypothesized mechanisms for emplacement of magma within the overthrust belt often involve magma ascent along shallow, west-dipping faults. The ~ 74 Ma (K-Ar method) Philipsburg Batholith is a 122 km2 tabular granodiorite emplaced into deformed Precambrian Belt Supergroup through Cretaceous strata. The Philipsburg Batholith lies in the upper plate of the Georgetown- Princeton Thrust, NW of Anaconda, Montana and cross-cuts two other previously mapped faults. Anisotropy of magnetic susceptibility (AMS) measurements of 122 sites from the Philipsburg Batholith define magnetic foliations and/or lineations to test magma ascent along the Georgetown-Princeton Thrust. AMS fabrics in the Philipsburg Batholith, dominantly defined by magnetite, are generally oblate or triaxial and are typically very consistent at the site level. Preliminary fabric data show subhorizontal foliations across most of the batholith, with steeply dipping foliations near the margins and a minor increase in foliation dip near the inferred fault trace. The hypothesis of magma ascent along fault surfaces will be supported if further data confirm the concentration of relatively steep foliation orientations across the trace of the Georgetown-Princeton thrust.

  6. Surface and Subsurface Fault Displacements from the September 2010 Darfield (Canterbury) Earthquake

    NASA Astrophysics Data System (ADS)

    Meyers, B.; Furlong, K. P.; Hayes, G. P.; Herman, M. W.; Quigley, M.

    2012-12-01

    On September 3, 2010 a Magnitude 7.1 earthquake struck near Darfield, New Zealand. This was to be the first earthquake in an ongoing, damaging sequence near the city of Christchurch. The earthquake produced a surface rupture with measurable offsets of up to 5.3m along a 30km surface fault system. The spatial pattern of slip during this rupture has been determined by various groups using a range of approaches and several independent data sets. Surface fault rupture was measured in the field and fault slip at depth has been inferred from a seismologic finite fault model (FFM) and various geodetic observations including GPS and InSAR. Here we compare the observed segmented surface displacements with fault slip inferred from the other data. Measurements of the surface rupture show segmented faulting consistent with subsurface slip in the FFM. In the FFM, the main slip patch near the hypocenter can be directly correlated to the region of maximum surface displacement. The FFM and some evidence in the InSAR data also indicate that the Greendale fault system, the structure responsible for the bulk of the rupture, continues at depth closer towards Christchurch than is seen in surface rupture patterns. There is an additional 20km long patch with up to 3m of modeled slip seen in the eastern end of the inverted fault, offset to the south from the Greendale fault trace. This additional fault segment is consistent with a zone of aftershock activity of the main Darfield event, and with local patterns of strong motion. It thus appears that slip recorded at the surface does not describe the entire fault system. This eastward extension of the September rupture means that there is only a short segment of unruptured crust remaining along the entire fault system involved in the Canterbury earthquake sequence.

  7. Dynamic rupture modeling of thrust faults with parallel surface traces.

    NASA Astrophysics Data System (ADS)

    Peshette, P.; Lozos, J.; Yule, D.

    2017-12-01

    Fold and thrust belts (such as those found in the Himalaya or California Transverse Ranges) consist of many neighboring thrust faults in a variety of geometries. Active thrusts within these belts individually contribute to regional seismic hazard, but further investigation is needed regarding the possibility of multi-fault rupture in a single event. Past analyses of historic thrust surface traces suggest that rupture within a single event can jump up to 12 km. There is also observational precedent for long distance triggering between subparallel thrusts (e.g. the 1997 Harnai, Pakistan events, separated by 50 km). However, previous modeling studies find a maximum jumping rupture distance between thrust faults of merely 200 m. Here, we present a new dynamic rupture modeling parameter study that attempts to reconcile these differences and determine which geometrical and stress conditions promote jumping rupture. We use a community verified 3D finite element method to model rupture on pairs of thrust faults with parallel surface traces. We vary stress drop and fault strength to determine which conditions produce jumping rupture at different dip angles and different separations between surface traces. This parameter study may help to understand the likelihood of jumping rupture in real-world thrust systems, and may thereby improve earthquake hazard assessment.

  8. TEM prospection on quaternary faults: the case of San Ramón Fault (SRF), Central Chile

    NASA Astrophysics Data System (ADS)

    Estay, N. P.; Yanez, G. A.; Maringue, J. I.

    2016-12-01

    Quaternary faults are relevant study objects in geosciences to better estimation of seismic risk. Nowadays main efforts are focused on the improvement of paleoseismology and geophysics techniques. At this regard, we present here a TEM prospection of the San Ramón quaternary fault in the southern Andes. This fault has no record of historic activation, however, given its proximity to the Chilean capital, hazardous estimate is mandatory. Evidences of the SRF are restricted to geomorphologic features, and associated secondary faults on the hanging wall block, but any outcrop of the main fault have been identified. To observe the main fault in the basement rock, cover by a 30-100 m sedimentary basin, we carried out a TEM experiment. The best advantage of the TEM methodology compared to other near-surface electrical methods is it capacity to reach greater penetration depth compared to its spatial sampling rate. Taking this advantage, we define a 25x25 m transmitter loop (Tx) and 5x5 m receiver loop (Rx), allowing the suitable resolution to observe the fault core. To reach a deeper penetration depth but keeping high resolution of the shallow parts, we made two complementary measurements, the first with one-turn transmitter loop, and the second with 4-turn transmitter loops, to resolve the early and late times properly. As result we define vertical profiles of 100-150m depth, and including 48 measures (24 of one-turn transmitter loop, and 24 of four-turn transmitter loop), the resulting pseudo 2D image is a 500m profile with depth extent of 150m. In this section we can observe different resistivity domain, with a horizontal continuity in many measures. The experiment allows to cross the sedimentary cover, and observe the top of the basement rock. In the rock domain, it can be observed a high resistivity body, interpreted as a pristine rock, and some extremely low resistivity bodies, that are interpreted as a fractured rock saturated with water, and eventually mapping a fossil/actual hydrothermal flow. These fractured zone is interpreted as the main trace of the fault. Finally, this TEM experiment allow to estimate the associated cumulative slip, as well as the fault geometry of the first 150m, useful for BEM or FEM seismic modeling.

  9. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.

    2017-03-01

    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  10. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doug Blankenship

    Archive of ArcGIS data from the West Flank FORGE site located in Coso, California. Archive contains the following eight shapefiles: Polygon of the 3D geologic model (WestFlank3DGeologicModelExtent) Polylines of the traces 3D modeled faults (WestFlank3DModeledFaultTraces) Polylines of the fault traces from Duffield and Bacon, 1980 (WestFlankFaultsfromDuffieldandBacon) Polygon of the West Flank FORGE site (WestFlankFORGEsite) Polylines of the traces of the geologic cross-sections (cross-sections in a separate archive in the GDR) (WestFlankGeologicCrossSections) Polylines of the traces of the seismic reflection profiles through and adjacent to the West Flank site (seismic reflection profiles in a separate archive in the GDR) (WestFlankSiesmicReflectionProfiles) Pointsmore » of the well collars in and around the West Flank site (WestFlankWellCollars) Polylines of the surface expression of the West Flank well paths (WestFlankWellPaths)« less

  12. Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Reed, P.

    2010-12-01

    The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my, are located. The GIS based autocorrelation method, applied to the trace orientation, length, frequency, and spatial distribution for each age-defined fault set, revealed spatial homogeneity for each specific set. The results of the method of Moran`sI and Geary`s C show no spatial autocorrelation among the trend of the fault traces and their location. Our results suggest that while lineaments of similar age define a clustered pattern in each domain, the overall distribution pattern of lineaments with different ages seems to be non-uniform (random). The directional distribution analysis reveals a distinct range of variation for fault traces of different ages (i.e., some displaying ellipsis behavior). Among the Quaternary normal fault sets, the youngest lineament set (i.e., last 150 years) defines the greatest ellipticity (eccentricity) and the least lineaments distribution variation. The frequency rose diagram for the entire Quaternary normal faults, shows four major modes (around 360o, 330o, 300o, and 270o), and two minor modes (around 235 and 205).

  13. Features and dimensions of the Hayward Fault Zone in the Strawberry and Blackberry Creek Area, Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.L.

    1995-03-01

    This report presents an examination of the geometry of the Hayward fault adjacent to the Lawrence Berkeley Laboratory and University of California campuses in central Berkeley. The fault crosses inside the eastern border of the UC campus. Most subtle geomorphic (landform) expressions of the fault have been removed by development and by the natural processes of landsliding and erosion. Some clear expressions of the fault remain however, and these are key to mapping the main trace through the campus area. In addition, original geomorphic evidence of the fault`s location was recovered from large scale mapping of the site dating frommore » 1873 to 1897. Before construction obscured and removed natural landforms, the fault was expressed by a linear, northwest-tending zone of fault-related geomorphic features. There existed well-defined and subtle stream offsets and beheaded channels, fault scarps, and a prominent ``shutter ridge``. To improve our confidence in fault locations interpreted from landforms, we referred to clear fault exposures revealed in trenching, revealed during the construction of the Foothill Housing Complex, and revealed along the length of the Lawson Adit mining tunnel. Also utilized were the locations of offset cultural features. At several locations across the study area, distress features in buildings and streets have been used to precisely locate the fault. Recent published mapping of the fault (Lienkaemper, 1992) was principally used for reference to evidence of the fault`s location to the northwest and southeast of Lawrence Berkeley Laboratory.« less

  14. The 1999 (Mw 7.1) Hector Mine, California, Earthquake: Near-Field Postseismic Deformation from ERS Interferometry

    NASA Technical Reports Server (NTRS)

    Jacobs, Allison; Sandwell, David; Fialko, Yuri; Sichoix, Lydie

    2002-01-01

    Interferometric synthetic aperture radar (InSAR) data over the area of the Hector Mine earthquake (Mw 7.1, 16 October 1999) reveal postseismic deformation of several centimeters over a spatial scale of 0.5 to 50 km. We analyzed seven SAR acquisitions to form interferograms over four time periods after the event. The main deformations seen in the line-of-sight (LOS) displacement maps are a region of subsidence (60 mm LOS increase) on the northern end of the fault, a region of uplift (45 mm LOS decrease) located to the northeast of the primary fault bend, and a linear trough running along the main rupture having a depth of up to 15 mm and a width of about 2 km. We correlate these features with a double left-bending, rightlateral, strike-slip fault that exhibits contraction on the restraining side and extension along the releasing side of the fault bends. The temporal variations in the near-fault postseismic deformation are consistent with a characteristic time scale of 135 + 42 or - 25 days, which is similar to the relaxation times following the 1992 Landers earthquake. High gradients in the LOS displacements occur on the fault trace, consistent with afterslip on the earthquake rupture. We derive an afterslip model by inverting the LOS data from both the ascending and descending orbits. Our model indicates that much of the afterslip occurs at depths of less than 3 to 4 km.

  15. Upper mantle diapers, lower crustal magmatic underplating, and lithospheric dismemberment of the Great Basin and Colorado Plateau regions, Nevada and Utah; implications from deep MT resistivity surveying

    NASA Astrophysics Data System (ADS)

    Wannamaker, P. E.; Doerner, W. M.; Hasterok, D. P.

    2005-12-01

    In the rifted Basin and Range province of the southwestern U.S., a common faulting model for extensional basins based e.g. on reflection seismology data shows dominant displacement along master faults roughly coincident with the main topographic scarp. On the other hand, complementary data such as drilling, earthquake focal mechanisms, volcanic occurrences, and trace indicators such as helium isotopes suggest that there are alternative geometries of crustal scale faulting and material transport from the deep crust and upper mantle in this province. Recent magnetotelluric (MT) profiling results reveal families of structures commonly dominated by high-angle conductors interpreted to reflect crustal scale fault zones. Based mainly on cross cutting relationships, these faults appear to be late Cenozoic in age and are of low resistivity due to fluids or alteration (including possible graphitization). In the Ruby Mtns area of north-central Nevada, high angle faults along the margins of the core complex connect from near surface to a regional lower crustal conductor interpreted to contain high-temperature fluids and perhaps melts. Such faults may exemplify the high angle normal faults upon which the major earthquakes of the Great Basin appear to nucleate. A larger-scale transect centered on Dixie Valley shows major conductive crustal-scale structures connecting to conductive lower crust below Dixie Valley, the Black Rock desert in NW Nevada, and in east-central Nevada in the Monitor-Diamond Valley area. In the Great Basin-Colorado Plateau transition of Utah, the main structures revealed are a series of nested low-angle detachment structures underlying the incipient development of several rift grabens. All these major fault zones appear to overlie regions of particularly conductive lower crust interpreted to be caused by recent basaltic underplating. In the GB-CP transition, long period data show two, low-resistivity upper mantle diapirs underlying the concentrated conductive lower crust and nested faults, and these are advanced as melt source regions for the underplating. MT, with its wide frequency bandwidth, allows views of nearly a complete melting and emplacement process, from mantle source region, through lower crustal intrusion, to brittle regime deformational response.

  16. A comparison of long-baseline strain data and fault creep records obtained near Hollister, California

    USGS Publications Warehouse

    Slater, L.E.; Burford, R.O.

    1979-01-01

    A comparison of creepmeter records from nine sites along a 12-km segment of the Calaveras fault near Hollister, California and long-baseline strain changes for nine lines in the Hollister multiwavelength distance-measuring (MWDM) array has established that episodes of large-scale deformation both preceded and accompanied periods of creep activity monitored along the fault trace during 1976. A concept of episodic, deep-seated aseismic slip that contributes to loading and subsequent aseismic failure of shallow parts of the fault plane seems attractive, implying that the character of aseismic slip sensed along the surface trace may be restricted to a relatively shallow (~ 1-km) region on the fault plane. Preliminary results from simple dislocation models designed to test the concept demonstrate that extending the time-histories and amplitudes of creep events sensed along the fault trace to depths of up to 10 km on the fault plane cannot simulate adequately the character and amplitudes of large-scale episodic movements observed at points more than 1 km from the fault. Properties of a 2-3-km-thick layer of unconsolidated sediments present in Hollister Valley, combined with an essentially rigid-block behavior in buried basement blocks, might be employed in the formulation of more appropriate models that could predict patterns of shallow fault creep and large-scale displacements much more like those actually observed. ?? 1979.

  17. Paleoseismology at high latitudes: Seismic disturbance of upper Quaternary deposits along the Castle Mountain fault near Houston, Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Best, Timothy C.; Waythomas, Christopher F.

    2002-01-01

    Most paleoseismic studies are at low to moderate latitudes. Here we present results from a high-latitude (61°30′ N) trenching study of the Castle Mountain fault in south-central Alaska. This fault is the only one known in the greater Anchorage, Alaska, area with historical seismicity and a Holocene fault scarp. It strikes east-northeast and cuts glacial and postglacial sediments in an area of boreal spruce-birch forest, shrub tundra, and sphagnum bog. The fault has a prominent vegetation lineament on the upthrown, north side of the fault. Nine trenches were logged across the fault in glacial and postglacial deposits, seven along the main trace, and two along a splay. In addition to thrust and strike-slip faulting, important controls on observed relationships in the trenches are the season in which faulting occurred, the physical properties of the sediments, liquefaction, a shallow water table, soil-forming processes, the strength of the modern root mat, and freeze-thaw processes. Some of these processes and physical properties are unique to northern-latitude areas and result in seismic disturbance effects not observed at lower latitudes.The two trenches across the Castle Mountain fault splay exposed a thrust fault and few liquefaction features. Radiocarbon ages of soil organic matter and charcoal within and overlying the fault indicate movement on the fault at ca. 2735 cal. (calendar) yr B.P. and no subsequent movement. In the remaining seven trenches, surface faulting was accompanied by extensive liquefaction and a zone of disruption 3 m or more wide. The presence of numerous liquefaction features at depths of <0.5–1.0 m indicates faulting when the ground was not frozen—i.e., from about April to October. Sandy-matrix till, sand, silt, gravel, and pebbly peat were injected up to the base of the modern soil, but did not penetrate the interlocking spruce-birch root mat. The strength of the root mat prohibited development of a nonvegetated scarp face and colluvial wedge. In only one trench did we observe a discrete fault plane with measurable offset. It lay beneath a 2-m-thick carapace of liquefied sand and silt and displayed a total of 0.9–1.85 m of thrust motion since deposition of the oldest deposits in the trenches at ca. 13,500 yr B.P. We found liquefaction ejecta on paleosols at only one other trench, where there were bluejoint (Calamagrostis canadensis) tussocks that lacked an extensive root mat. From crosscutting relationships, we interpret three paleoliquefaction events on the main trace of the Castle Mountain fault: 2145–1870, 1375–1070, and 730–610 cal. yr B.P. These four earthquakes on the Castle Mountain fault in the past ∼2700 yr indicate an average recurrence interval of ∼700 yr. As it has been 600–700 yr since the last significant earthquake, a significant (magnitude 6–7) earthquake in the near future may be likely. Paleoseismic data indicate that the timing and recurrence interval of megathrust earthquakes is similar to the timing and recurrence interval of Castle Mountain fault earthquakes, suggesting a possible link between faulting on the megathrust and on “crustal” structures.

  18. Trench logs, terrestrial lidar system imagery, and radiocarbon data from the kilometer-62 site on the Greenville Fault, southeastern Alameda County, California, 2014

    USGS Publications Warehouse

    Lienkaemper, James J.; DeLong, Stephen B.; Avdievitch, Nikita N.; Pickering, Alexandra J; Guilderson, Thomas P.

    2015-01-01

    In 2014, we investigated an abrupt 8.5-meter (m), right-laterally deflected stream channel located near the Greenville Fault in southeastern Alameda County, California (-121.56224° E, 37.53430° N) that we discovered using 0.5-m resolution, 2011 aerial lidar imagery flown along the active fault trace. Prior to trenching we surveyed the site using a terrestrial lidar system (TLS) to document the exact geomorphic expression of this deflected stream channel before excavating a trench adjacent to it. We trenched perpendicular to the fault hoping to document the prehistoric history of earthquake ruptures along the fault. However, the alluvial stratigraphy that we document in these trench logs shows conclusively that this trench did not expose any active fault trace. Using other local geomorphic evidence for the fault location, a straight fault scarp immediately north of this stream projects slightly upslope of the west end of our trench and may be the actual location of the active fault trace. Five radiocarbon samples establish age control for the alluvial sequence documented in the trench, which may in the future be useful in constraining the long-term slip rate of the Greenville Fault. The deflection had been caused by an abrupt nontectonic termination of unit u30, a relatively thick (0.15–0.35 m) silt that is more erosion resistant than the adjacent cohesionless sand and gravel. 

  19. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time-domain electromagnetic data

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela

    2015-12-01

    The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza fault system in the investigated section. We further hypothesize that the onset of the Piano di Pezza fault activity may date back to the Middle Pleistocene (˜0.5 Ma), so this is a quite young active normal fault if compared to other mature normal fault systems active since 2-3 Ma in this portion of the central Apennines.

  20. Afterslip-dominated surface rupture in the M6.0 South Napa Earthquake as constrained by structure-from-motion analysis and terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    DeLong, S. B.; Pickering, A.; Scharer, K. M.; Hudnut, K. W.; Lienkaemper, J. J.

    2014-12-01

    Near-fault surface deformation associated with the August 24, 2014 M6.0 South Napa earthquake included both coseismic and post-seismic slip. Initial synthesis of field observations and initial measurement and modeling of afterslip from traditional survey methods indicate that coseismic slip was minimal (<10 cm) within 8 km northward from the epicenter but post-seismic slip, in places, approached 40 cm. We collected reconnaissance photographs using professional-grade SLR cameras from a helicopter within 12 hours after the earthquake, and a more systematic collection of air photos the day after the earthquake. We also collected terrestrial laser scanner (TLS) data two days (on August 26) and twenty-two days (on September 22) after the earthquake along a 0.5 km length of the main fault trace, just south of State Highway 12. This study site is 6 km north of the southern end of the 15 km long surface rupture and 5 km south of the highest measured co-seismic slip. We used structure-from-motion (SfM) methods to mosaic, orthorectify, and generate dense point clouds from the photos. SfM data corroborates survey-based ground observations of limited (~5 cm or less) coseismic slip along the fault trace between CA State Highway 12 and Withers Road, on discontinuous left-stepping en echelon ruptures. By August 26, the surface rupture became nearly continuous, and cultural features extracted from the TLS point clouds indicate horizontal slip magnitudes between 15 and 27 cm, increasing northward. By September 22, slip magnitudes had increased to between 26 and 46 cm. The lower slip magnitudes are to the south at Withers Road, and the general trend is increased slip to the north, but there is more slip variability along the fault trace in the September 15 data. From August 26 to September 15, the west side of the fault trace uplifted between 0.5 and 5 cm relative to east side. Increased relief on the surface rupture itself indicated a slight compressional component of the deformation. These results confirm that post-event air photos can be useful for rapid 3D mapping, and that the unparalleled accuracy of TLS data can be used to quantify even very subtle deformation patterns in three dimensions and document changes through time.

  1. Fracture zone drilling through Atotsugawa fault in central Japan - geological and geophysical structure -

    NASA Astrophysics Data System (ADS)

    Omura, K.; Yamashita, F.; Yamada, R.; Matsuda, T.; Fukuyama, E.; Kubo, A.; Takai, K.; Ikeda, R.; Mizuochi, Y.

    2004-12-01

    Drilling is an effective method to investigate the structure and physical state in and around the active fault zone, such as, stress and strength distribution, geological structure and materials properties. In particular, the structure in the fault zone is important to understand where and how the stress accumulates during the earthquake cycle. In previous studies, we did integrate investigation on active faults in central Japan by drilling and geophysical prospecting. Those faults are estimated to be at different stage in the earthquake cycle, i.e., Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), the Neodani fault which appeared by the 1891 Nobi earth-quake (M=8.0), the Atera fault, of which some parts have seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), and Gofukuji Fault that is considered to have activated about 1200 years ago. Each faults showed characteristic features of fracture zone structure according to their geological and geophysical situations. In a present study, we did core recovery and down hole measurements at the Atotsugawa fault, central Japan, that is considered to have activated at 1858 Hida earthquake (M=7.0). The Atotsugawa fault is characterized by active seismicity along the fault. But, at the same time, the shallow region in the central segment of the fault seems to have low seismicity. The high seismicity segment and low seismicity segments may have different mechanical, physical and material properties. A 350m depth borehole was drilled vertically beside the surface trace of the fault in the low seismicity segment. Recovered cores were overall heavily fractured and altered rocks. In the cores, we observed many shear planes holding fault gouge. Logging data showed that the apparent resistance was about 100 - 600 ohm-m, density was about 2.0 - 2.5g/cm3, P wave velocity was approximately 3.0 - 4.0 km/sec, neutron porosity was 20 - 40 %. Results of physical logging show features of fault fracture zone that were the same as the fault fracture zones of other active faults that we have drilled previously. By the BHTV logging, we detected many fractures of which the strikes are not only parallel to the fault trace bur also oblique to the fault trace. The observations of cores and logging data indicate that the borehole passed in the fracture zone down to the bottom, and that the fracture zone has complicate internal structure including foliation not parallel to the fault trace. The core samples are significant for further investigation on material properties in the fracture zone. And we need data of geophysical prospecting to infer the deeper structure of the fracture zone.

  2. Fault-Sensitivity and Wear-Out Analysis of VLSI Systems.

    DTIC Science & Technology

    1995-06-01

    DESCRIPTION MIXED-MODE HIERARCIAIFAULT DESCRIPTION FAULT SIMULATION TYPE OF FAULT TRANSIENT/STUCK-AT LOCATION/TIME * _AUTOMATIC FAULT INJECTION TRACE...4219-4224, December 1985. [15] J. Sosnowski, "Evaluation of transient hazards in microprocessor controll - ers," Digest, FTCS-16, The Sixteenth

  3. Strike-parallel and strike-normal coordinate system around geometrically complicated rupture traces: use by NGA-West2 and further improvements

    USGS Publications Warehouse

    Spudich, Paul A.; Chiou, Brian

    2015-01-01

    We present a two-dimensional system of generalized coordinates for use with geometrically complex fault ruptures that are neither straight nor continuous. The coordinates are a generalization of the conventional strike-normal and strike-parallel coordinates of a single straight fault. The presented conventions and formulations are applicable to a single curved trace, as well as multiple traces representing the rupture of branching faults or noncontiguous faults. An early application of our generalized system is in the second round of the Next Generation of Ground-Motion Attenuation Model project for the Western United States (NGA-West2), where they were used in the characterization of the hanging-wall effects. We further improve the NGA-West2 strike-parallel formulation for multiple rupture traces with a more intuitive definition of the nominal strike direction. We also derive an analytical expression for the gradient of the generalized strike-normal coordinate. The direction of this gradient may be used as the strike-normal direction in the study of polarization effects on ground motions.

  4. Quaternary crustal deformation along a major branch of the San Andreas fault in central California

    USGS Publications Warehouse

    Weber, G.E.; Lajoie, K.R.; Wehmiller, J.F.

    1979-01-01

    Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore. At Half Moon Bay, right-lateral slip and N-S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace. Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5-3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka. The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200-400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr). Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976). ?? 1979.

  5. [Early warning for various internal faults of GIS based on ultraviolet spectroscopy].

    PubMed

    Zhao, Yu; Wang, Xian-pei; Hu, Hong-hong; Dai, Dang-dang; Long, Jia-chuan; Tian, Meng; Zhu, Guo-wei; Huang, Yun-guang

    2015-02-01

    As the basis of accurate diagnosis, fault early-warning of gas insulation switchgear (GIS) focuses on the time-effectiveness and the applicability. It would be significant to research the method of unified early-warning for partial discharge (PD) and overheated faults in GIS. In the present paper, SO2 is proposed as the common and typical by-product. The unified monitoring could be achieved through ultraviolet spectroscopy (UV) detection of SO2. The derivative method and Savitzky-Golay filtering are employed for baseline correction and smoothing. The wavelength range of 290-310 nm is selected for quantitative detection of SO2. Through UV method, the spectral interference of SF6 and other complex by-products, e.g., SOF2 and SOF2, can be avoided and the features of trace SO2 in GIS can be extracted. The detection system is featured by compacted structure, low maintenance and satisfactory suitability in filed surveillance. By conducting SF6 decomposition experiments, including two types of PD faults and the overheated faults between 200-400 degrees C, the feasibility of proposed UV method has been verified. Fourier transform infrared spectroscopy and gas chromatography methods can be used for subsequent fault diagnosis. The different decomposition features in two kinds of faults are confirmed and the diagnosis strategy has been briefly analyzed. The main by-products under PD are SOF2 and SO2F2. The generated SO2 is significantly less than SOF2. More carbonous by-products will be generated when PD involves epoxy. By contrast, when the material of heater is stainless steel, SF6 decomposes at about 300 "C and the main by-products in overheated faults are SO2 and SO2F2. When heated over 350 degrees C, SO2 is generated much faster. SOz content stably increases when the GIS fault lasts. The faults types could be preliminarily identified based on the generation features of SO2.

  6. Can diligent and extensive mapping of faults provide reliable estimates of the expected maximum earthquakes at these faults? No. (Invited)

    NASA Astrophysics Data System (ADS)

    Bird, P.

    2010-12-01

    The hope expressed in the title question above can be contradicted in 5 ways, listed below. To summarize, an earthquake rupture can be larger than anticipated either because the fault system has not been fully mapped, or because the rupture is not limited to the pre-existing fault network. 1. Geologic mapping of faults is always incomplete due to four limitations: (a) Map-scale limitation: Faults below a certain (scale-dependent) apparent offset are omitted; (b) Field-time limitation: The most obvious fault(s) get(s) the most attention; (c) Outcrop limitation: You can't map what you can't see; and (d) Lithologic-contrast limitation: Intra-formation faults can be tough to map, so they are often assumed to be minor and omitted. If mapping is incomplete, fault traces may be longer and/or better-connected than we realize. 2. Fault trace “lengths” are unreliable guides to maximum magnitude. Fault networks have multiply-branching, quasi-fractal shapes, so fault “length” may be meaningless. Naming conventions for main strands are unclear, and rarely reviewed. Gaps due to Quaternary alluvial cover may not reflect deeper seismogenic structure. Mapped kinks and other “segment boundary asperities” may be only shallow structures. Also, some recent earthquakes have jumped and linked “separate” faults (Landers, California 1992; Denali, Alaska, 2002) [Wesnousky, 2006; Black, 2008]. 3. Distributed faulting (“eventually occurring everywhere”) is predicted by several simple theories: (a) Viscoelastic stress redistribution in plate/microplate interiors concentrates deviatoric stress upward until they fail by faulting; (b) Unstable triple-junctions (e.g., between 3 strike-slip faults) in 2-D plate theory require new faults to form; and (c) Faults which appear to end (on a geologic map) imply distributed permanent deformation. This means that all fault networks evolve and that even a perfect fault map would be incomplete for future ruptures. 4. A recent attempt [Bird, 2009, JGR] to model neotectonics of the active fault network in the western United States found that only 2/3 of Pacific-North America relative motion in California occurs by slip on faults included in seismic hazard models by the 2007 Working Group on California Earthquake Probabilities [2008; USGS OFR 2007-1437]. (Whether the missing distributed permanent deformation is seismogenic has not yet been determined.) 5. Even outside of broad orogens, dangerous intraplate faulting is evident in catalogs: (a) About 3% of shallow earthquakes in the Global CMT catalog are Intraplate [Bird et al., 2010, SRL]; (b) Intraplate earthquakes have higher stress-drops by about a factor-of-two [Kanamori & Anderson, 1975, BSSA; Allmann & Shearer, 2009, JGR]; (c) The corner magnitude of intraplate earthquakes is >7.6, and unconstrained from above, on the moment magnitude scale [Bird & Kagan, 2004, BSSA]. For some intraplate earthquakes, the causitive fault is mapped only (if at all) by its aftershocks.

  7. The susitna glacier thrust fault: Characteristics of surface ruptures on the fault that initiated the 2002 denali fault earthquake

    USGS Publications Warehouse

    Crone, A.J.; Personius, S.F.; Craw, P.A.; Haeussler, P.J.; Staft, L.A.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake sequence initiated on the newly discovered Susitna Glacier thrust fault and caused 48 km of surface rupture. Rupture of the Susitna Glacier fault generated scarps on ice of the Susitna and West Fork glaciers and on tundra and surficial deposits along the southern front of the central Alaska Range. Based on detailed mapping, 27 topographic profiles, and field observations, we document the characteristics and slip distribution of the 2002 ruptures and describe evidence of pre-2002 ruptures on the fault. The 2002 surface faulting produced structures that range from simple folds on a single trace to complex thrust-fault ruptures and pressure ridges on multiple, sinuous strands. The deformation zone is locally more than 1 km wide. We measured a maximum vertical displacement of 5.4 m on the south-directed main thrust. North-directed backthrusts have more than 4 m of surface offset. We measured a well-constrained near-surface fault dip of about 19?? at one site, which is considerably less than seismologically determined values of 35??-48??. Surface-rupture data yield an estimated magnitude of Mw 7.3 for the fault, which is similar to the seismological value of Mw 7.2. Comparison of field and seismological data suggest that the Susitna Glacier fault is part of a large positive flower structure associated with northwest-directed transpressive deformation on the Denali fault. Prehistoric scarps are evidence of previous rupture of the Sustina Glacier fault, but additional work is needed to determine if past failures of the Susitna Glacier fault have consistently induced rupture of the Denali fault.

  8. Probing the frontal deformation zone of the Chihshang Fault with boreholes and high-resolution electrical resistivity imaging methods: A case study at the Dapo site in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Ping-Yu; Huang, Wen-Jeng; Chen, Chien-Chih; Hsu, Han-lun; Yen, I.-Chin; Ho, Gong-Ruei; Lee, Jian-Cheng; Lu, Shih-Ting; Chen, Po-Tsun

    2018-06-01

    Not only direct fault ruptures but also later mass movement may result in complicated frontal deformation of the faults. Consequently, the deformation front or the contacts between the unconsolidated materials from the hanging wall and footwall of the thrust fault may indicate the toe of the mass movement instead of the actual fault zone. In this study, we used a combination of surface electrical resistivity imaging methods and borehole records in order to investigate the geometries of the structures in the frontal deformation zone of the Chihshang Fault at the Dapo elementary school. From the cores, we observed three different geological components at the Dapo site: the conductive Lichi mélange of the hanging wall, the colluvial gravels and the underlying fluvial-gravel layer at the footwall. The resistivity images from two parallel survey lines reveal that the position where the fault trace was thought to be is actually the toe of the slumping body's surface ruptures consisting of materials from the Lichi mélange. On the basis of the resistivity images, we also found that the actual fault plane is located on the southeastern side of the resistivity survey line near the hilltop. As a result, we conclude that mass movement induced by the inter-seismic creeping, not direct faulting, is the main factor affecting the frontal deformation zone of the Chihshang fault at the Dapo site.

  9. Superficial simplicity of the 2010 El Mayorg-Cucapah earthquake of Baja California in Mexico

    USGS Publications Warehouse

    Wei, S.; Fielding, E.; Leprince, S.; Sladen, A.; Avouac, J.-P.; Helmberger, D.; Hauksson, E.; Chu, R.; Simons, M.; Hudnut, K.; Herring, T.; Briggs, R.

    2011-01-01

    The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures1-6. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the Mw 7.2 2010 El Mayorg-Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130 ??E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  10. Seismic Evidence of A Widely Distributed West Napa Fault Zone, Hendry Winery, Napa, California

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R.; Chan, J. H.; Criley, C.

    2015-12-01

    Following the 24 August 2014 Mw 6.0 South Napa earthquake, surface rupture was mapped along the West Napa Fault Zone (WNFZ) for a distance of ~ 14 km and locally within zones up to ~ 2 km wide. Near the northern end of the surface rupture, however, several strands coalesced to form a narrow, ~100-m-wide zone of surface rupture. To determine the location, width, and shallow (upper few hundred meters) geometry of the fault zone, we acquired an active-source seismic survey across the northern surface rupture in February 2015. We acquired both P- and S-wave data, from which we developed reflection images and tomographic images of Vp, Vs, Vp/Vs, and Poisson's ratio of the upper 100 m. We also used small explosive charges within surface ruptures located ~600 m north of our seismic array to record fault-zone guided waves. Our data indicate that at the latitude of the Hendry Winery, the WNFZ is characterized by at least five fault traces that are spaced 60 to 200 m apart. Zones of low-Vs, low-Vp/Vs, and disrupted reflectors highlight the fault traces on the tomography and reflection images. On peak-ground-velocity (PGV) plots, the most pronounced high-amplitude guided-wave seismic energy coincides precisely with the mapped surface ruptures, and the guided waves also show discrete high PGV zones associated with unmapped fault traces east of the surface ruptures. Although the surface ruptures of the WNFZ were observed only over a 100-m-wide zone at the Hendry Winery, our data indicate that the fault zone is at least 400 m wide, which is probably a minimum width given the 400-m length of our seismic profile. Slip on the WNFZ is generally considered to be low relative to most other Bay Area faults, but we suggest that the West Napa Fault is a zone of widely distributed shear, and to fully account for the total slip on the WNFZ, slip on all traces of this wide fault zone must be considered.

  11. Preliminary Results from the North Anatolian Fault Passive Seismic Experiment: Seismicity and Anisotropy

    NASA Astrophysics Data System (ADS)

    Biryol, C. B.; Ozacar, A.; Beck, S. L.; Zandt, G.

    2006-12-01

    The North Anatolian Fault (NAF) is one of the world's largest continental strike-slip faults. Despite much geological work at the surface, the deep structure of the NAF is relatively unknown. The North Anatolian Fault Passive Seismic Experiment is mainly focused on the lithospheric structure of this newly coalescing continental transform plate boundary. In the summer of 2005, we deployed 5 broadband seismic stations near the fault to gain more insight on the background seismicity, and in June 2006 we deployed 34 additional broadband stations along multiple transects crossing the main strand of the NAF and its splays. In the region, local seismicity is not limited to a narrow band near the NAF but distributed widely suggesting widespread continental deformation especially in the southern block. We relocated two of the largest events (M>4) that occurred close to our stations. Both events are 40-50km south of the NAF in the upper crust (6-9 km) along a normal fault with a strike-slip component that previously ruptured during the June 6, 2000 Orta-Cankiri earthquake (M=6.0). Preliminary analysis of SKS splitting for 4 stations deployed in 2005 indicates seismic anisotropy with delay times exceeding 1 sec. The fast polarization directions for these stations are primarily in NE-SW orientation, which remains uniform across the NAF. This direction is at a high angle to the surface trace of the fault and crustal velocity field, suggesting decoupling of lithosphere and mantle flow. Our SKS splitting observations are also similar to that observed from GSN station ANTO in central Turkey and stations across the Anatolian Plateau in eastern Turkey indicating relatively uniform mantle anisotropy throughout the region.

  12. Long-term changes to river regimes prior to late Holocene coseismic faulting, Canterbury, New Zealand

    NASA Astrophysics Data System (ADS)

    Campbell, Jocelyn K.; Nicol, Andrew; Howard, Matthew E.

    2003-09-01

    Two sites are described from range front faults along the foothills of the Southern Alps of New Zealand, where apparently a period of 200-300 years of accelerated river incision preceded late Holocene coseismic ruptures, each probably in excess of M w 7.5. They relate to separate fault segments and seismic events on a transpressive system associated with fault-driven folding, but both show similar evidence of off-plane aseismic deformation during the downcutting phase. The incision history is documented by the ages, relative elevations and profiles of degradation terraces. The surface dating is largely based on the weathering rind technique of McSaveney (McSaveney, M.J., 1992. A Manual for Weathering-rind Dating of Grey Sandstones of the Torlesse Supergroup, New Zealand. 92/4, Institute of Geological and Nuclear Sciences), supported by some consistent radiocarbon ages. On the Porters Pass Fault, drainage from Red Lakes has incised up to 12 m into late Pleistocene recessional outwash, but the oldest degradation terrace surface T I is dated at only 690±50 years BP. The upper terraces T I and T II converge uniformly downstream right across the fault trace, but by T III the terrace has a reversed gradient upstream. T II and T III break into multiple small terraces on the hanging wall only, close to the fault trace. Continued backtilting during incision caused T IV to diverge downstream relative to the older surfaces. Coseismic faulting displaced T V and all the older terraces by a metre high reverse scarp and an uncertain right lateral component. This event cannot be younger than a nearby ca. 500 year old rock avalanche covering the trace. The second site in the middle reaches of the Waipara River valley involves the interaction of four faults associated with the Doctors Anticline. The main river and tributaries have incised steeply into a 2000 year old mid-Holocene, broad, degradation surface downcutting as much as 55 m. Beginning approximately 600 years ago accelerating incision eventually attained rates in excess of 100 mm/year in those reaches closely associated with the Doctors Anticline and related thrust and transfer faults. All four faults ruptured, either synchronously or sequentially, between 250 and 400 years ago when the river was close to 8 m above its present bed. Better cross-method checks on dating would eliminate some uncertainties, but the apparent similarities suggest a pattern of precursor events initiated by a period of base level drop extending for several kilometres across the structure, presumably in response to general uplift. Over time, deformation is concentrated close to the fault zone causing tilting of degradation terraces, and demonstrably in the Waipara case at least, coseismic rupture is preceded by marked acceleration of the downcutting rate. Overall base level drop is an order of magnitude greater than the throw on the eventual fault scarp. The Ostler Fault (Van Dissen et al., 1993) demonstrates that current deformation is taking place on similar thrust-fault driven folding in the Southern Alps. Regular re-levelling since 1966 has shown uplift rates of 1.0-1.5 mm/year at the crest of a 1-2 km half wave length anticline, but this case also illustrates the general problem of interpreting the significance of rates derived from geophysical monitoring relative to the long term seismic cycle. If the geomorphic signals described can be shown to hold for other examples, then criteria for targeting faults approaching the end of the seismic cycle in some tectonic settings may be possible.

  13. Complex faulting associated with the 22 December 2003 Mw 6.5 San Simeon California, earthquake, aftershocks and postseismic surface deformation

    USGS Publications Warehouse

    McLaren, Marcia K.; Hardebeck, Jeanne L.; Van Der Elst, Nicholas; Unruh, Jeffrey R.; Bawden, Gerald W.; Blair, James Luke

    2008-01-01

    We use data from two seismic networks and satellite interferometric synthetic aperture radar (InSAR) imagery to characterize the 22 December 2003 Mw 6.5 San Simeon earthquake sequence. Absolute locations for the mainshock and nearly 10,000 aftershocks were determined using a new three-dimensional (3D) seismic velocity model; relative locations were obtained using double difference. The mainshock location found using the 3D velocity model is 35.704° N, 121.096° W at a depth of 9.7±0.7 km. The aftershocks concentrate at the northwest and southeast parts of the aftershock zone, between the mapped traces of the Oceanic and Nacimiento fault zones. The northwest end of the mainshock rupture, as defined by the aftershocks, projects from the mainshock hypocenter to the surface a few kilometers west of the mapped trace of the Oceanic fault, near the Santa Lucia Range front and the >5 mm postseismic InSAR imagery contour. The Oceanic fault in this area, as mapped by Hall (1991), is therefore probably a second-order synthetic thrust or reverse fault that splays upward from the main seismogenic fault at depth. The southeast end of the rupture projects closer to the mapped Oceanic fault trace, suggesting much of the slip was along this fault, or at a minimum is accommodating much of the postseismic deformation. InSAR imagery shows ∼72 mm of postseismic uplift in the vicinity of maximum coseismic slip in the central section of the rupture, and ∼48 and ∼45 mm at the northwest and southeast end of the aftershock zone, respectively. From these observations, we model a ∼30-km-long northwest-trending northeast-dipping mainshock rupture surface—called the mainthrust—which is likely the Oceanic fault at depth, a ∼10-km-long southwest-dipping backthrust parallel to the mainthrust near the hypocenter, several smaller southwest-dipping structures in the southeast, and perhaps additional northeast-dipping or subvertical structures southeast of the mainshock plane. Discontinuous backthrust features opposite the mainthrust in the southeast part of the aftershock zone may offset the relic Nacimiento fault zone at depth. The InSAR data image surface deformation associated with both aseismic slip and aftershock production on the mainthrust and the backthrusts at the northwest and southeast ends of the aftershock zone. The well-defined mainthrust at the latitude of the epicenter and antithetic backthrust illuminated by the aftershock zone indicate uplift of the Santa Lucia Range as a popup block; aftershocks in the southeast part of the zone also indicate a popup block, but it is less well defined. The absence of backthrust features in the central part of the zone suggests range-front uplift by fault-propagation folding, or backthrusts in the central part were not activated during the mainshock.

  14. Characterization of frictional melting processes in subduction zone faults by trace element and isotope analyses

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Ujiie, K.

    2017-12-01

    Pseudotachylytes found in exhumed accretionary complexes, which are considered to be formed originally at seismogenic depths, are of great importance for elucidating frictional melting and concomitant dynamic weakening of the fault during earthquake in subduction zones. However, fluid-rich environment of the subduction zone faults tends to cause extensive alteration of the pseudotachylyte glass matrix in later stages, and thus it has been controversial that pseudotachylytes are rarely formed or rarely preserved. Chemical analysis of the fault rocks, especially on fluid-immobile trace elements and isotopes, can be a useful means to identify and quantify the frictional melting occurred in subduction zone faults. In this paper, we report major and trace element and Sr isotope compositions for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., J. Struct. Geol. 2007). Samples were collected from a rock chip along the microstructure using a micro-drilling technique, and then analyzed by ICP-MS and TIMS. Major element compositions of the dark veins showed a clear shift from the host rock composition toward the illite composition. The dark veins, either unaltered or completely altered, were also characterized by extreme enrichment in some of the trace elements such as Ti, Zr, Nb and Th. These results are consistent with disequilibrium melting of the fault zone. Model calculations revealed that the compositions of the dark veins can be produced by total melting of clay-rich matrix in the source rock, leaving plagioclase and quartz grains almost unmolten. The calculations also showed that the dark veins are far more enriched in melt component than that expected from the source rock compositions, suggesting migration and concentration of frictional melt during the earthquake faulting. Furthermore, Sr isotope data of the dark veins implied the occurrence of frictional melting in multiple stages. These results demonstrate that trace element and isotope analyses are useful not only to detect preexistence of pseudotachylytes but also to evaluate the frictional melting in subduction zone faults quantitatively.

  15. Fault structure and mechanics of the Hayward Fault, California from double-difference earthquake locations

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.

    2002-01-01

    The relationship between small-magnitude seismicity and large-scale crustal faulting along the Hayward Fault, California, is investigated using a double-difference (DD) earthquake location algorithm. We used the DD method to determine high-resolution hypocenter locations of the seismicity that occurred between 1967 and 1998. The DD technique incorporates catalog travel time data and relative P and S wave arrival time measurements from waveform cross correlation to solve for the hypocentral separation between events. The relocated seismicity reveals a narrow, near-vertical fault zone at most locations. This zone follows the Hayward Fault along its northern half and then diverges from it to the east near San Leandro, forming the Mission trend. The relocated seismicity is consistent with the idea that slip from the Calaveras Fault is transferred over the Mission trend onto the northern Hayward Fault. The Mission trend is not clearly associated with any mapped active fault as it continues to the south and joins the Calaveras Fault at Calaveras Reservoir. In some locations, discrete structures adjacent to the main trace are seen, features that were previously hidden in the uncertainty of the network locations. The fine structure of the seismicity suggest that the fault surface on the northern Hayward Fault is curved or that the events occur on several substructures. Near San Leandro, where the more westerly striking trend of the Mission seismicity intersects with the surface trace of the (aseismic) southern Hayward Fault, the seismicity remains diffuse after relocation, with strong variation in focal mechanisms between adjacent events indicating a highly fractured zone of deformation. The seismicity is highly organized in space, especially on the northern Hayward Fault, where it forms horizontal, slip-parallel streaks of hypocenters of only a few tens of meters width, bounded by areas almost absent of seismic activity. During the interval from 1984 to 1998, when digital waveforms are available, we find that fewer than 6.5% of the earthquakes can be classified as repeating earthquakes, events that rupture the same fault patch more than one time. These most commonly are located in the shallow creeping part of the fault, or within the streaks at greater depth. The slow repeat rate of 2-3 times within the 15-year observation period for events with magnitudes around M = 1.5 is indicative of a low slip rate or a high stress drop. The absence of microearthquakes over large, contiguous areas of the northern Hayward Fault plane in the depth interval from ???5 to 10 km and the concentrations of seismicity at these depths suggest that the aseismic regions are either locked or retarded and are storing strain energy for release in future large-magnitude earthquakes.

  16. Using focal mechanism solutions to correlate earthquakes with faults in the Lake Tahoe-Truckee area, California and Nevada, and to help design LiDAR surveys for active-fault reconnaissance

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Lindsay, R. D.

    2011-12-01

    Geomorphic analysis of hillshade images produced from aerial LiDAR data has been successful in identifying youthful fault traces. For example, the recently discovered Polaris fault just northwest of Lake Tahoe, California/Nevada, was recognized using LiDAR data that had been acquired by local government to assist land-use planning. Subsequent trenching by consultants under contract to the US Army Corps of Engineers has demonstrated Holocene displacement. The Polaris fault is inferred to be capable of generating a magnitude 6.4-6.9 earthquake, based on its apparent length and offset characteristics (Hunter and others, 2011, BSSA 101[3], 1162-1181). Dingler and others (2009, GSA Bull 121[7/8], 1089-1107) describe paleoseismic or geomorphic evidence for late Neogene displacement along other faults in the area, including the West Tahoe-Dollar Point, Stateline-North Tahoe, and Incline Village faults. We have used the seismo-lineament analysis method (SLAM; Cronin and others, 2008, Env Eng Geol 14[3], 199-219) to establish a tentative spatial correlation between each of the previously mentioned faults, as well as with segments of the Dog Valley fault system, and one or more earthquake(s). The ~18 earthquakes we have tentatively correlated with faults in the Tahoe-Truckee area occurred between 1966 and 2008, with magnitudes between 3 and ~6. Given the focal mechanism solution for a well-located shallow-focus earthquake, the nodal planes can be projected to Earth's surface as represented by a DEM, plus-or-minus the vertical and horizontal uncertainty in the focal location, to yield two seismo-lineament swaths. The trace of the fault that generated the earthquake is likely to be found within one of the two swaths [1] if the fault surface is emergent, and [2] if the fault surface is approximately planar in the vicinity of the focus. Seismo-lineaments from several of the earthquakes studied overlap in a manner that suggests they are associated with the same fault. The surface trace of both the Polaris fault and the Dog Valley fault system are within composite swaths defined by overlapping seismo-lineaments. Composite seismo-lineaments indicate that multiple historic earthquakes might be associated with a fault. This apparently successful correlation of earthquakes with faults in an area where geologic mapping is good suggests another use for SLAM in areas where fault mapping is incomplete, inadequate or made particularly difficult because of vegetative cover. If no previously mapped fault exists along a composite swath generated using well constrained focal mechanism solutions, the swath might be used to guide the design of a LiDAR survey in support of reconnaissance for the causative fault. The acquisition and geomorphic analysis of LiDAR data along a compound seismo-lineament swath might reveal geomorphic evidence of a previously unrecognized fault trace that is worthy of additional field study.

  17. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

    USGS Publications Warehouse

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,

    2011-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  18. Fault reactivation: The Picuris-Pecos fault system of north-central New Mexico

    NASA Astrophysics Data System (ADS)

    McDonald, David Wilson

    The PPFS is a N-trending fault system extending over 80 km in the Sangre de Cristo Mountains of northern New Mexico. Precambrian basement rocks are offset 37 km in a right-lateral sense; however, this offset includes dextral strike-slip (Precambrian), mostly normal dip-slip (Pennsylvanian), mostly reverse dip-slip (Early Laramide), limited strike-slip (Late Laramide) and mostly normal dip-slip (Cenozoic). The PPFS is broken into at least 3 segments by the NE-trending Embudo fault and by several Laramide age NW-trending tear faults. These segments are (from N to S): the Taos, the Picuris, and the Pecos segments. On the east side of the Picuris segment in the Picuris Mountains, the Oligocene-Miocene age Miranda graben developed and represents a complex extension zone south of the Embudo fault. Regional analysis of remotely sensed data and geologic maps indicate that lineaments subparallel to the trace of the PPFS are longer and less frequent than lineaments that trend orthogonal to the PPFS. Significant cross cutting faults and subtle changes in fault trends in each segment are clear in the lineament data. Detailed mapping in the eastern Picuris Mountains showed that the favorably oriented Picuris segment was not reactivated in the Tertiary development of the Rio Grande rift. Segmentation of the PPFS and post-Laramide annealing of the Picuris segment are interpreted to have resulted in the development of the subparallel La Serna fault. The Picuris segment of the PPFS is offset by several E-ESE trending faults. These faults are Late Cenozoic in age and interpreted to be related to the uplift of the Picuris Mountains and the continuing sinistral motion on the Embudo fault. Differential subsidence within the Miranda graben caused the development of several synthetic and orthogonal faults between the bounding La Serna and Miranda faults. Analysis of over 10,000 outcrop scale brittle structures reveals a strong correlation between faults and fracture systems. The dominant trends are NNE to NNW related to the PPF, NE related to the Embudo fault, and ENE to ESE and NW related to Laramide and younger tectonic events. Recent faults are characterized by a significant increase in fracture density near the fault while ancient faults show a lesser increase. The results from this study suggest that in regions where sigma1 is vertical and sigma2 ≈ sigma 3, fractures orthogonal to the main faults are as likely as fractures parallel to the main faults.

  19. The use of a GIS for the identification of geologic structures in the region of Santa María Amajac, Hidalgo, Mexico

    NASA Astrophysics Data System (ADS)

    Casas, José C. Escamilla; Muñetón, Gustavo Murillo; Piñán-Llamas, Aránzazu; López, Salvador Cruz

    2008-05-01

    A prominent semicircular structure bounded by circular normal faults and a northeast-southwest trending, active normal fault are the main structures identified in Santa Maria Amajac, south central Hidalgo, Mexico, in the Trans Mexican Volcanic Belt. Fieldwork, assisted by a Geographic Information System helped to refine the traces of the identified geologic structures. The field evidences supports our hypothesis that the lacustrine deposits in the area are associated with the evolution of a possible volcanic collapse caldera. Our results are the base for a geological risk map and will shed light on the understanding of the mechanisms that governed the evolution of the suspect collapse caldera.

  20. Fault zone identification in the eastern part of the Persian Gulf based on combined seismic attributes

    NASA Astrophysics Data System (ADS)

    Mirkamali, M. S.; Keshavarz FK, N.; Bakhtiari, M. R.

    2013-02-01

    Faults, as main pathways for fluids, play a critical role in creating regions of high porosity and permeability, in cutting cap rock and in the migration of hydrocarbons into the reservoir. Therefore, accurate identification of fault zones is very important in maximizing production from petroleum traps. Image processing and modern visualization techniques are provided for better mapping of objects of interest. In this study, the application of fault mapping in the identification of fault zones within the Mishan and Aghajari formations above the Guri base unconformity surface in the eastern part of Persian Gulf is investigated. Seismic single- and multi-trace attribute analyses are employed separately to determine faults in a vertical section, but different kinds of geological objects cannot be identified using individual attributes only. A mapping model is utilized to improve the identification of the faults, giving more accurate results. This method is based on combinations of all individual relevant attributes using a neural network system to create combined attributes, which gives an optimal view of the object of interest. Firstly, a set of relevant attributes were separately calculated on the vertical section. Then, at interpreted positions, some example training locations were manually selected in each fault and non-fault class by an interpreter. A neural network was trained on combinations of the attributes extracted at the example training locations to generate an optimized fault cube. Finally, the results of the fault and nonfault probability cube were estimated, which the neural network applied to the entire data set. The fault probability cube was obtained with higher mapping accuracy and greater contrast, and with fewer disturbances in comparison with individual attributes. The computed results of this study can support better understanding of the data, providing fault zone mapping with reliable results.

  1. Towards a Fault-based SHA in the Southern Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Baize, Stéphane; Reicherter, Klaus; Thomas, Jessica; Chartier, Thomas; Cushing, Edward Marc

    2016-04-01

    A brief overview at a seismic map of the Upper Rhine Graben area (say between Strasbourg and Basel) reveals that the region is seismically active. The area has been hit recently by shallow and moderate quakes but, historically, strong quakes damaged and devastated populated zones. Several authors previously suggested, through preliminary geomorphological and geophysical studies, that active faults could be traced along the eastern margin of the graben. Thus, fault-based PSHA (probabilistic seismic hazard assessment) studies should be developed. Nevertheless, most of the input data in fault-based PSHA models are highly uncertain, based upon sparse or hypothetical data. Geophysical and geological data document the presence of post-Tertiary westward dipping faults in the area. However, our first investigations suggest that the available surface fault map do not provide a reliable document of Quaternary fault traces. Slip rate values that can be currently used in fault-PSHA models are based on regional stratigraphic data, but these include neither detailed datings nor clear base surface contours. Several hints on fault activity do exist and we have now relevant tools and techniques to figure out the activity of the faults of concern. Our preliminary analyses suggest that the LiDAR topography can adequately image the fault segments and, thanks to detailed geomorphological analysis, these data allow tracking cumulative fault offsets. Because the fault models can therefore be considered highly uncertain, our coming project for the next 3 years is to acquire and analyze these accurate topographical data, to trace the active faults and to determine slip rates through relevant features dating. Eventually, we plan to find a key site to perform a paleoseismological trench because this approach has been proved to be worth in the Graben, both to the North (Wörms and Strasbourg) and to the South (Basel). This would be done in order to definitely prove whether the faults ruptured the ground surface during the Quaternary, and in order to determine key fault parameters such as magnitude and age of large events.

  2. Using high-resolution multibeam bathymetry to identify seafloor surface rupture along the Palos Verdes fault complex in offshore Southern California

    USGS Publications Warehouse

    Marlow, M. S.; Gardner, J.V.; Normark, W.R.

    2000-01-01

    Recently acquired high-resolution multibeam bathymetric data reveal several linear traces that are the surficial expressions of seafloor rupture of Holocene faults on the upper continental slope southeast of the Palos Verdes Peninsula. High-resolution multichannel and boomer seismic-reflection profiles show that these linear ruptures are the surficial expressions of Holocene faults with vertical to steep dips. The most prominent fault on the multibeam bathymetry is about 10 km to the west of the mapped trace of the Palos Verdes fault and extends for at least 14 km between the shelf edge and the base of the continental slope. This fault is informally called the Avalon Knoll fault for the nearby geographic feature of that name. Seismic-reflection profiles show that the Avalon Knoll fault is part of a northwest-trending complex of faults and anticlinal uplifts that are evident as scarps and bathymetric highs on the multibeam bathymetry. This fault complex may extend onshore and contribute to the missing balance of Quaternary uplift determined for the Palos Verdes Hills and not accounted for by vertical uplift along the onshore Palos Verdes fault. We investigate the extent of the newly located offshore Avalon Knoll fault and use this mapped fault length to estimate likely minimum magnitudes for events along this fault.

  3. The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia

    NASA Astrophysics Data System (ADS)

    Velandia, Francisco; Acosta, Jorge; Terraza, Roberto; Villegas, Henry

    2005-04-01

    Riedel, synthetic and antithetic type faults, principal displacement zones (PDZ), pull-apart basins (such as lazy-S shaped releasing bend, extensive and rhomboidal shaped and releasing sidestep basins) and minor folds located oblique to the main trace of the Algeciras Fault System (AFS) are interpreted from Landsat TM 5 images and geological mapping. These tectonic features are affecting Quaternary deposits and are related to major historical earthquakes and recent registered seismic events, indicating neotectonic activity of the structure. The AFS is classified as a right lateral wrench complex structure, with an important vertical component in which sedimentary cover and basement rocks are involved. In addition, the system represents a simple shear caused by the oblique convergence between the Nazca Plate and the northern Andes. The transpressive boundary in SW Colombia was previously located along the Eastern Frontal Fault System. However, this paper shows that the AFS constitutes the actual boundary of the current transpressive regime along the Northern Andes, which begins at the Gulf of Guayaquil in Ecuador and continues into Colombia and Venezuela.

  4. Neotectonic interpretations and PS-InSAR monitoring of crustal deformations in the Fujian area of China

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Xu, Shiyang; Fan, Hailong

    2017-05-01

    A neotectonic structural interpretation was conducted in the Fujian Province, west of the Taiwan Strait, by using computer image processing and 3D visualizations to enhance linear structural traces. The major faults in this area can be grouped into two conjugate shear fracture zones, with one trending to the northeast and the other trending to the northwest. PS-InSAR technology uses stable permanent target scatterer points to determine deformation rates and can effectively reduce the influence of spatiotemporal decorrelations and atmospheric anomalies that affect conventional D-InSAR techniques and prevent the formation of interference fringes. This study focuses on the fault zones located in the Quanzhou area of Fujian Province, where the 1604 M7.5-8.0 historic earthquake occurred. In total, 22 scenes of ERS SAR data from 1996 to 1999 were processed using PS-InSAR methods. The results show that the line of sight direction displacement rate of the main fault in the study area is 3-5 mm/yr, which indicates that the faults in this area are still active and subject to earthquake risk.

  5. High-resolution Geophysical Constraints on Fault Structure and Morphology in the Catalina Basin, Southern California Inner Continental Borderland

    NASA Astrophysics Data System (ADS)

    Walton, M. A. L.; Roland, E. C.; Brothers, D. S.; Kluesner, J.; Maier, K. L.; Conrad, J. E.; Hart, P. E.; Balster-Gee, A. F.

    2016-12-01

    Southern California's Inner Continental Borderland, offshore of Los Angeles and San Diego, contains a complex arrangement of basins, ridges, and active faults that present seismic hazards to the region. In 2014 and 2016, the U.S. Geological Survey and University of Washington collected new geophysical data throughout the Catalina Basin (CB), including multibeam bathymetry, Chirp sub-bottom profiles, and more than 2000 line-km of high-resolution multi-channel seismic reflection profiles. These data provide the first detailed imaging of the San Clemente and Catalina faults, which border the CB. We now have improved constraints on the seabed morphology, fault structure, and deformation history along significant length of the San Clemente and Catalina fault systems, as well as insights into sediment deposition and basin development in the CB since the late Miocene. New multibeam data image the Catalina Fault as a continuous linear seafloor feature along the base of Catalina Island, and subsurface imaging indicates dominantly strike-slip motion. We also image the San Clemente Fault as a straight lineament along the seafloor downslope of San Clemente Island; the fault offsets several gullies and ridges, suggesting recent strike-slip motion. In the northwest region of the CB, the San Clemente Fault's main trace splits into several transpressional splays, as indicated by a series of uplifted, fault-bounded blocks. Growth strata throughout the CB suggest that oblique transform motion along the Catalina and San Clemente faults has affected regional sedimentation patterns and depocenters over time, providing a fundamental control on sediment distribution within the CB. Buried folds, faults, and unconformities within basin strata, including a prominent surface that is likely late Miocene based on regional geology, indicate multiple episodes of deformation throughout the CB's history.

  6. Tectonic evolution of the outer Izu-Bonin-Mariana fore arc system: initial results from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Kurz, W.; Ferre, E. C.; Robertson, A. H. F.; Avery, A. J.; Kutterolf, S.

    2015-12-01

    During International Ocean Discovery Program (IODP) Expedition 352, a section through the volcanic stratigraphy of the outer fore arc of the Izu-Bonin-Mariana (IBM) system was drilled to trace magmatism, tectonics, and crustal accretion associated with subduction initiation. Structures within drill cores, borehole and site survey seismic data indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Extension generated asymmetric sediment basins such as half-grabens at sites 352-U1439 and 352-U1442 on the upper trench slope. Along their eastern margins the basins are bounded by west-dipping normal faults. Deformation was localized along multiple sets of faults, accompanied by syn-tectonic pelagic and volcaniclastic sedimentation. The lowermost sedimentary units were tilted eastward by ~20°. Tilted beds were covered by sub-horizontal beds. Biostratigraphic constraints reveal a minimum age of the oldest sediments at ~ 35 Ma; timing of the sedimentary unconformities is between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441 on the outer fore arc strike-slip faults are bounding sediment basins. Sediments were not significantly affected by tectonic tilting. Biostratigraphy gives a minimum age of the basement-cover contact between ~29.5 and 32 Ma. The post-magmatic structures reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along subhorizontal fault zones, steep slickensides and shear fractures. These were either re-activated as or cut by normal-faults and strike-slip faults. Extension was also accommodated by steep to subvertical mineralized veins and extensional fractures. Faults at sites 352-U1440 and 352-U1441 show mainly strike-slip kinematics. Sediments overlying the igneous basement(maximum Late Eocene to Recent age), document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  7. The San Andreas fault in the San Francisco Bay region, California: Structure and kinematics of a Young plate boundary

    USGS Publications Warehouse

    Jachens, R.C.; Zoback, M.L.

    1999-01-01

    Recently acquired high-resolution aeromagnetic data delineate offset and/or truncated magnetic rock bodies of the Franciscan Complex that define the location and structure of, and total offset across, the San Andreas fault in the San Francisco Bay region. Two distinctive magnetic anomalies caused by ultramafic rocks and metabasalts east of, and truncated at, the San Andreas fault have clear counterparts west of the fault that indicate a total right-lateral offset of only 22 km on the Peninsula segment, the active strand that ruptured in 1906. The location of the Peninsula segment is well defined magnetically on the northern peninsula where it goes offshore, and can be traced along strike an additional ~6 km to the northwest. Just offshore from Lake Merced, the inferred fault trace steps right (northeast) 3 km onto a nearly parallel strand that can be traced magnetically northwest more than 20 km as the linear northeast edge of a magnetic block bounded by the San Andreas fault, the Pilarcitos fault, and the San Gregorio-Hosgri fault zone. This right-stepping strand, the Golden Gate segment, joins the eastern mapped trace of the San Andreas fault at Bolinas Lagoon and projects back onshore to the southeast near Lake Merced. Inversion of detailed gravity data on the San Francisco Peninsula reveals a 3 km wide basin situated between the two strands of the San Andreas fault, floored by Franciscan basement and filled with Plio-Quaternary sedimentary deposits of the Merced and Colma formations. The basin, ~1 km deep at the coast, narrows and becomes thinner to the southeast along the fault over a distance of ~12 km. The length, width, and location of the basin between the two strands are consistent with a pull-apart basin formed behind the right step in the right-lateral strike-slip San Andreas fault system and currently moving southeast with the North American plate. Slight nonparallelism of the two strands bounding the basin (implying a small component of convergence with continued strike-slip movement) may explain the progressive narrowing of the basin to the southeast and the puzzling recent uplift of the Merced Formation in a predominantly extensional (pull-apart basin) setting. The 1906 San Francisco earthquake may have nucleated within the step-over region, and the step-over places a strand of the San Andreas fault 3 km closer to downtown San Francisco than previously thought.

  8. Microseismicity Studies in Northern Baja California: General Results.

    NASA Astrophysics Data System (ADS)

    Frez, J.; Acosta, J.; Gonzalez, J.; Nava, F.; Suarez, F.

    2005-12-01

    Between 1997 and 2003, we installed local seismological networks in northern Baja California with digital, three-component, Reftek instruments, and with 100-125 Hz sampling. Each local network had from 15 to 40 stations over an area approximately of 50 x 50 km2. Surveys have been carried out for the Mexicali seismic zone and the Ojos Negros region (1997), the San Miguel fault system (1998), the Pacific coast between Tijuana and Ensenada (1999), the Agua Blanca and Vallecito fault systems (2001), the Sierra Juarez fault system (2002), and other smaller areas (2001 and 2003). These detailed microseismicity surveys are complemented with seismograms and arrival times from regional networks (RESNOM and SCSN). Selected locations presented here have errors (formal errors from HYPO71) less than 1 km. Phase reading errors are estimated at less than or about 0.03 s. Most of the activity is located between mapped fault traces, along alignments which do not follow the fault traces, and where tectonic alignments intersect. The results suggests an orthogonal pattern at various scales. Depth distributions generally have two maxima, one secondary maximum, at about 5 km; the other, located at 12-17 km. The Agua Blanca fault is essentially inactive for earthquakes with ML > 1.7. Most focal mechanisms are strike-slip with a minor normal component; the others are dominantly normal; the resulting pattern indicates a regional extensional regime for all the regions with an average NS azimuth for the P-axes. Fracture directions, obtained from directivity measurements, show orthogonal directions, one of which approximately coincides with the azimuth of mapped fault traces. These results indicate that the Pacific-North American interplate motion is not being entirely accommodated by the NW trending faults, but rather is creating a complex system of conjugate faults.

  9. A seismic refraction and reflection study across the central San Jacinto Basin, Southern California

    USGS Publications Warehouse

    Lee, T.-C.; Biehler, S.; Park, S.K.; Stephenson, W.J.

    1996-01-01

    The San Jacinto Basin is a northwest-trending, pullapart basin in the San Jacinto fault zone of the San Andreas fault system in southern California. About 24 km long and 2 to 4 km wide, the basin sits on a graben bounded by two strands of the San Jacinto fault zone: the Claremont Fault on the northeast and the Casa Loma Fault on the southwest. We present a case study of shallow structure (less than 1 km) in the central basin. A 2.75-km refraction line running from the northeast to southwest across the regional structural trend reveals a groundwater barrier (Offset I). Another line, bent southward and continued for 1.65-km, shows a crystalline basement offset (Offset III) near an inferred trace of the Casa Loma Fault. Although a basement refractor was not observed along the 2.75-km line, a mismatch between the estimate of its minimum depth and the basement depth determined for the 1.65-km line suggests that an offset in the basement (greater than 260 m) exists around the junction of the two refraction lines (Offset II). By revealing more faults and subtle sedimentary structures, the reflection stack sections confirm the two refraction offsets as faults. Offsets I and III each separate sediments of contrasting structures and, in addition. Offset III disrupts an unconformity. However, the sense and amount of the offset across Offset III contradict what may be expected across the Casa Loma Fault, which has its basinward basement down-thrown to about 2.5 km in the better defined southeastern part of the graben. The Casa Loma Fault trace has been mislinked in the existing geological maps and the trace should be remapped to Offset II where the reflector disruptions spread over a 400-m wide zone. Our Offset III is an unnamed, concealed fault.

  10. Agent Based Fault Tolerance for the Mobile Environment

    NASA Astrophysics Data System (ADS)

    Park, Taesoon

    This paper presents a fault-tolerance scheme based on mobile agents for the reliable mobile computing systems. Mobility of the agent is suitable to trace the mobile hosts and the intelligence of the agent makes it efficient to support the fault tolerance services. This paper presents two approaches to implement the mobile agent based fault tolerant service and their performances are evaluated and compared with other fault-tolerant schemes.

  11. High-resolution multi-channel seismic images of the Queen Charlotte Fault system offshore southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Brothers, D. S.; Kluesner, J.; Balster-Gee, A.; Ten Brink, U. S.; Andrews, B. D.; Haeussler, P. J.; Watt, J. T.; Dartnell, P.; East, A. E.

    2016-12-01

    We present high-resolution multi-channel seismic (MCS) images of fault structure and sedimentary stratigraphy along the southeastern Alaska margin, where the northern Queen Charlotte Fault (QCF) cuts the shelf-edge and slope. The QCF is a dominantly strike slip system that forms the boundary between the Pacific (PA) and North American (NA) plates offshore western Canada and southeastern Alaska. The data were collected using a 64 channel, 200 m digital streamer and a 0.75-3 kJ sparker source aboard the R/V Norseman in August 2016. The survey was designed to cross a seafloor fault trace recently imaged by multibeam sonar (see adjacent poster by Brothers et al.) and to extend the subsurface information landward and seaward from the fault. Analysis of these MCS and multibeam data focus on addressing key questions that have significant implications for the kinematic and geodynamic history of the fault, including: Is the imaged surface fault in multibeam sonar the only recently-active fault trace? What is the shallow fault zone width and structure, is the internal structure of the recently-discovered pull-apart basin a dynamically developing structure? How does sediment thickness vary along the margin and how does this variation affect the fault expression? Can previous glacial sequences be identified in the stratigraphy?

  12. Distribution of Subsurface Flexure zone caused by Uemachi Fault, Japan and its activity

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Inoue, N.; Takemura, K.; Ito, H.; Mitamura, M.

    2012-12-01

    In Osaka, Uemachi Fault is one of the famous active faults. It across the center of Osaka and lies in N-S direction mainly and is more than 40 km in length. The faults bound sedimentary basins, where thick sedimentary deposits of the Pliocene-Quaternary Osaka Group have accumulated. The deposits consist primarily of sand and marine and non-marine clay, and the clay layers are key markers for the interpretation of glacial and interglacial cycles. In this study, we estimate the width of the flexure zone using a geotechnical borehole database. GI database collects more than 40,000 boreholes and includes both geological information and soil properties around Osaka by the Geo-database Information Committee of Kansai Area. Our results indicate that the deformation associated with the flexure zone is distributed primarily along the splay fault (NE-SW) and not along the main fault, suggesting that the splay fault might be the primary fault at present. We first examined the borehole data along the seismic reflection line and then considered the surrounding area. An Upper Pleistocene marine clay (Ma12) is a good indicator of the flexure zone. We constructed many cross sections in and around the fault zone and classified the deformation form into three categories around the flexure zone. The results of this study allowed us to map the distribution of folding in a zone in the west of the Osaka area. Folding can be classified into three types: (1) Ma12 folding, (2) Ma12 folding that does not continue toward the hanging wall, and (3) folding or displacement of old marine clay. These folding zone trends are N-W strike however these trace are serpentine. These folding zone information are not in worth to estimate the source fault, however these zone will be more serious damaged when the earthquake occurred. Our result agrees well with the average displacement speed of about 0.4 m/ka that was derived by the Headquarters for Earthquake Research Promotion of the Ministry of Education, Culture, Sports, Science and Technology.

  13. Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements

    USGS Publications Warehouse

    Ching, K.-E.; Rau, R.-J.; Zeng, Y.

    2007-01-01

    A coseismic source model of the 2003 Mw 6.8 Chengkung, Taiwan, earthquake was well determined with 213 GPS stations, providing a unique opportunity to study the characteristics of coseismic displacements of a high-angle buried reverse fault. Horizontal coseismic displacements show fault-normal shortening across the fault trace. Displacements on the hanging wall reveal fault-parallel and fault-normal lengthening. The largest horizontal and vertical GPS displacements reached 153 and 302 mm, respectively, in the middle part of the network. Fault geometry and slip distribution were determined by inverting GPS data using a three-dimensional (3-D) layered-elastic dislocation model. The slip is mainly concentrated within a 44 ?? 14 km slip patch centered at 15 km depth with peak amplitude of 126.6 cm. Results from 3-D forward-elastic model tests indicate that the dome-shaped folding on the hanging wall is reproduced with fault dips greater than 40??. Compared with the rupture area and average slip from slow slip earthquakes and a compilation of finite source models of 18 earthquakes, the Chengkung earthquake generated a larger rupture area and a lower stress drop, suggesting lower than average friction. Hence the Chengkung earthquake seems to be a transitional example between regular and slow slip earthquakes. The coseismic source model of this event indicates that the Chihshang fault is divided into a creeping segment in the north and the locked segment in the south. An average recurrence interval of 50 years for a magnitude 6.8 earthquake was estimated for the southern fault segment. Copyright 2007 by the American Geophysical Union.

  14. Vertical and lateral fluid flow related to a large growth fault, South Eugene Island Block 330 field, offshore Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Losh, S.; Eglinton, L.; Schoell, M.

    1999-02-01

    Data from sediments in and near a large growth fault adjacent to the giant South Eugene Island Block 330 field, offshore Louisiana, indicate that the fault has acted as a conduit for fluids whose flux has varied in space and time. Core and cuttings samples from two wells that penetrated the same fault about 300 m apart show markedly different thermal histories and evidence for mass flux. Sediments within and adjacent to the fault zone in the US Department of Energy-Pennzoil Pathfinder well at about 2200 m SSTVD (subsea true vertical depth) showed little paleothermal or geochemical evidence for through-goingmore » fluid flow. The sediments were characterized by low vitrinite reflectances (R{sub {omicron}}), averaging 0.3% R{sub {omicron}}, moderate to high {delta}{sup 18}O and {delta}{sup 13}C values, and little difference in major or trace element composition between deformed and undeformed sediments. In contrast, faulted sediments from the A6ST well, which intersects the A fault at 1993 m SSTVD, show evidence for a paleothermal anomaly (0.55% R{sub {omicron}}) and depleted {delta}{sup 18}O and {delta}{sup 13}C values. Overall, indicators of mass and heat flux indicate the main growth fault zone in South Eugene Island Block 330 has acted as a conduit for ascending fluids, although the cumulative fluxes vary along strike. This conclusion is corroborated by oil and gas distribution in downthrown sands in Blocks 330 and 331, which identify the fault system in northwestern Block 330 as a major feeder.« less

  15. Shallow fluid pressure transients caused by seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Fleischmann, Karl Henry

    1993-10-01

    Clastic dikes, induced by paleo-seismic slip along the Jonesboro Fault, can be used to estimate the magnitude of shallow fluid pressure transients. Fractures show evidence of two phases of seismically induced dilation by escaping fluids. Initial dilation and propagation through brittle rocks was caused by expulsion of trapped reducing fluids from beneath a clay cap. Second phase fluids were thixotropic clays which flowed vertically from clay beds upwards into the main fracture. Using the differential dilation and fracture trace lengths, the fluid pressure pulse is estimated to have ranged from 0.312-0.49 MPa, which is approximately equal to the vertical load during deformation. Field observations in adjacent rocks record evidence of large-magnitude seismic events, which are consistent with the large nature of the fluid pressure fluctuation.

  16. Coseismic surface displacements from optical and SAR image offset tracking, fault modeling and geomorphological analysis of the Sept. 24th, 2013 M7.7 Balochistan earthquake

    NASA Astrophysics Data System (ADS)

    Harrington, Jonathan; Wang, Teng; Feng, Guangcai; Akoglu, Ahmet; Jónsson, Sigurjón; Motagh, Mahdi

    2014-05-01

    The M 7.7 earthquake in the Balochistan province of Pakistan on September 24th, 2013 took place along a subsidiary fault in the transition area between the Makran accretionary prism and the Chaman transform fault. This tectonics of the Indian and Arabian plate collisions with Eurasia produce primarily oblique left-lateral strike slip in this region. In this work, measurements of displacement and mapping of the rupture trace are achieved through image correlation of Landsat 8 images and SAR offset tracking of TerraSAR-X data. Horizontal displacements from both methods and derived vertical displacements are used to constrain a fault rupture model for the earthquake. Preliminary results show a surprisingly uniform slip distribution with maximum displacement near the surface. The total fault rupture length is ~210 km, with up to 9 m of left-lateral strike-slip and 3 m of reverse faulting. Additionally, mapping of the rupture trace is made use of for geomorphological observations relating to slip rates and identification of transpressional and transtensional features. Our results indicate a mostly smooth rupture trace, with the presence of two restraining steps, a releasing bend and a 3 km long sliver where the surface rupture jumped from the foot of the range-front into the alluvial fans at their base. A small block at one of the restraining steps shows intermediate displacement in both data sets. At the southern end of the rupture we observe that displacement from the earthquake cuts across a fold-and-thrust belt of the Makran accretionary prism. Preliminary results show a minimum of 12 km of repeated section of the accretionary wedge, and within the southern repeated section we find an offset of 600 m between two parallel ridges across the rupture trace. We relate these observations to conceptual models of fault segmentation and growth.

  17. Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California

    USGS Publications Warehouse

    Li, Y.-G.; Ellsworth, W.L.; Thurber, C.H.; Malin, P.E.; Aki, K.

    1997-01-01

    Fault-zone guided waves were successfully excited by near-surface explosions in the San Andreas fault zone both at Parkfield and Cienega Valley, central California. The guided waves were observed on linear, three-component seismic arrays deployed across the fault trace. These waves were not excited by explosions located outside the fault zone. The amplitude spectra of guided waves show a maximum peak at 2 Hz at Parkfield and 3 Hz at Cienega Valley. The guided wave amplitude decays sharply with observation distance from the fault trace. The explosion-excited fault-zone guided waves are similar to those generated by earthquakes at Parkfield but have lower frequencies and travel more slowly. These observations suggest that the fault-zone wave guide has lower seismic velocities as it approaches the surface at Parkfield. We have modeled the waveforms as S waves trapped in a low-velocity wave guide sandwiched between high-velocity wall rocks, resulting in Love-type fault-zone guided waves. While the results are nonunique, the Parkfield data are adequately fit by a shallow wave guide 170 m wide with an S velocity 0.85 km/sec and an apparent Q ??? 30 to 40. At Cienega Valley, the fault-zone wave guide appears to be about 120 m wide with an S velocity 0.7 km/sec and a Q ??? 30.

  18. Mechanisms for landscape evolution: Correlations between topography, lithology, erosion, and rock uplift in the central Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Walsh, L. S.; Martin, A. J.; Ojha, T. P.; Fedenczuk, T.

    2009-12-01

    To investigate feedbacks between tectonics and erosion in the Himalaya-Tibet orogen we compare high resolution digital topography with detailed geologic maps of the Modi Khola valley in central Nepal. We examine the influence of lithologic contacts and structures on river steepness and concavity. The trace of the Bhanuwa fault, a large normal fault in Greater Himalayan rocks, coincides with the steepest location on the river profile where river steepness (ksn) reaches 884 m0.9. Transitions in ksn also occur at 1) the Romi fault, another normal fault, 2) within the Kuncha formation, 3) within Greater Himalayan rocks at the Formation I - Formation II boundary, and 4) between quartzite- and phyllite-rich parts of the Fagfog Formation. We assess mechanisms for ksn transitions on the Modi Khola by examining the influence of precipitation variability, glacial and landslide dams, tributary junctions, changes in lithology, and rock uplift on the topography. Although changes in lithology and/or landslide dams potentially explain all ksn extrema and transitions, these changes in river steepness consistently occur at normal faults suggesting possible recent motion on some of them. In detail, the Main Central thrust appears not to be the location of a major steepness change. Correlations of ksn with normal faults and lithologic contacts exhibit an important component of the landscape evolution process occurring in central Nepal and potentially other mountain belts.

  19. Seismic reflection-based evidence of a transfer zone between the Wagner and Consag basins: implications for defining the structural geometry of the northern Gulf of California

    NASA Astrophysics Data System (ADS)

    González-Escobar, Mario; Suárez-Vidal, Francisco; Hernández-Pérez, José Antonio; Martín-Barajas, Arturo

    2010-12-01

    This study examines the structural characteristics of the northern Gulf of California by processing and interpreting ca. 415 km of two-dimensional multi-channel seismic reflection lines (data property of Petróleos Mexicanos PEMEX) collected in the vicinity of the border between the Wagner and Consag basins. The two basins appear to be a link between the Delfín Superior Basin to the south, and the Cerro Prieto Basin to the north in the Mexicali-Imperial Valley along the Pacific-North America plate boundary. The seismic data are consistent with existing knowledge of four main structures (master faults) in the region, i.e., the Percebo, Santa María, Consag Sur, and Wagner Sur faults. The Wagner and Consag basins are delimited to the east by the Wagner Sur Fault, and to the west by the Consag Sur Fault. The Percebo Fault borders the western margin of the modern Wagner Basin depocenter, and is oriented N10°W, dipping (on average) ˜40° to the northeast. The trace of the Santa María Fault located in the Wagner Basin strikes N19°W, dipping ˜40° to the west. The Consag Sur Fault is oriented N14°W, and dips ˜42° to the east over a distance of 21 km. To the east of the study area, the Wagner Sur Fault almost parallels the Consag Sur Fault over a distance of ˜86 km, and is oriented N10°W with an average dip of 59° to the east. Moreover, the data provide new evidence that the Wagner Fault is discontinuous between the two basins, and that its structure is more complex than previously reported. A structural high separates the northern Consag Basin from the southern Wagner Basin, comprising several secondary faults oriented NE oblique to the main faults of N-S direction. These could represent a zone of accommodation, or transfer zone, where extension could be transferred from the Wagner to the Consag Basin, or vice versa. This area shows no acoustic basement and/or intrusive body, which is consistent with existing gravimetric and magnetic data for the region.

  20. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    NASA Astrophysics Data System (ADS)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  1. The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.

    2011-12-01

    Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain faults in Taiwan. By accomplishing active fault parameters table in Taiwan, we would apply it in time-dependent earthquake hazard assessment. The result can also give engineers a reference for design. Furthermore, it can be applied in the seismic hazard map to mitigate disasters.

  2. Transpressional deformation style and AMS fabrics adjacent to the southernmost segment of the San Andreas fault, Durmid Hill, CA

    NASA Astrophysics Data System (ADS)

    French, M.; Wojtal, S. F.; Housen, B.

    2006-12-01

    In the Salton Trough, the trace of the San Andreas Fault (SAF) ends where it intersects the NNW-trending Brawley seismic zone at Durmid Hill (DH). The topographic relief of DH is a product of faulting and folding of Pleistocene Borrego Formation strata (Babcock, 1974). Burgmann's (1991) detailed mapping and analysis of the western part of DH showed that the folds and faults accommodate transpression. Key to Burgmann's work was the recognition that the ~2m thick Bishop Ash, a prominent marker horizon, has been elongated parallel to the hinges of folds and boudinaged. We are mapping in detail the eastern portion of DH, nearer to the trace of the SAF. Folds in the eastern part of DH are tighter and thrust faulting is more prominent, consistent with greater shortening magnitude oblique to the SAF. Boudinage of the ash layer again indicates elongation parallel to fold hinges and subparallel to the SAF. The Bishop Ash locally is <1m thick along fold limbs in eastern DH, suggesting that significant continuous deformation accompanied the development of map-scale features. We measured anisotropy of magnetic susceptibility (AMS) fabrics in the Bishop Ash in order to assess continuous deformation in the Ash at DH. Because the Bishop Ash at DH is altered, consisting mainly of silica glass and clay minerals, samples from DH have significantly lower magnetic susceptibilities than Bishop Ash samples from elsewhere in the Salton Trough. With such low susceptibilities, there is significant scatter in the orientation of magnetic foliation and lineation in our samples. Still, in some Bishop samples within 1 km of the SAF, magnetic foliation is consistent with fold-related flattening. Magnetic lineation in these samples is consistently sub-parallel to fold hinges, parallel to the elongation direction inferred from boudinage. Even close to the trace of the SAF, this correlation breaks down in map-scale zones where fold hinge lines change attitude, fold shapes change, and the distribution and orientations of fractures and veins changes. These zones of structural complication separate broader regions of more uniform deformation patterns. Together, the geometry of structures and AMS fabrics suggest that deformation in eastern DH occurs by the distortion and reorientation of more or less coherent blocks separated by narrow zones where structural elements change orientation.

  3. Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, Shui-Beih; Kuo, Long-Chen

    2001-04-01

    The NNE-striking Longitudinal Valley Fault (LVF) in eastern Taiwan is an extremely active high-angle thrust fault. It bounds the Coastal Range and the Longitudinal Valley, which is considered a collision boundary between the Philippine Sea and the Eurasian plates. Repeated GPS data in the Longitudinal Valley area from 1992 to 1999 are utilized to study the spatial variation of crustal motion along the LVF. With respect to Penghu in the Chinese continental margin, velocities for stations on the western side of the LVF (Longitudinal Valley and eastern Central Range) are 18-35 mm/yr in directions 283-311°, whereas those on the eastern side of the LVF, the Coastal Range, are 28-68 mm/yr in directions 303-324°. A major discontinuity of about 30 mm/yr on the rate of crustal motion across the Longitudinal Valley is attributed to the aseismic slip along the LVF as revealed by trilateration data previously. To the south of Fengping, the block motions of the Coastal Range are 31-40 mm/yr in 317-330° relative to the Central Range, while the near-fault motions are 13-33 mm/yr in 309-336°. Various partitions on the left-lateral strike-slip and convergent components along the LVF are found. In the southern Longitudinal Valley crustal motion is mainly accommodated on the LVF and the Luyeh Fault. In contrast, those in the central and northern Longitudinal Valley are partly taken up on the faults to the east of the LVF or result in the elastic deformation of the Coastal Range. The crustal motion in the northern Longitudinal Valley area is likely to be distributed in the several NE-striking thrusts in a horsetail pattern and obliquely cut the northern Coastal Range, with a small portion of fault-slips along the LVF. Data from dense-deployed GPS networks across the LVF can be employed to give better estimates of near-fault motions and delineate the surface traces of the LVF. Repeated GPS and leveling data from two stations on both ends of the Yuli Bridge that are 575 m apart clearly indicate that the surface trace of the LVF passes beneath the bridge with oblique horizontal motion of 23 mm/yr in 306° and uplift rate of 24 mm/yr.

  4. Statistical mechanics and scaling of fault populations with increasing strain in the Corinth Rift

    NASA Astrophysics Data System (ADS)

    Michas, Georgios; Vallianatos, Filippos; Sammonds, Peter

    2015-12-01

    Scaling properties of fracture/fault systems are studied in order to characterize the mechanical properties of rocks and to provide insight into the mechanisms that govern fault growth. A comprehensive image of the fault network in the Corinth Rift, Greece, obtained through numerous field studies and marine geophysical surveys, allows for the first time such a study over the entire area of the Rift. We compile a detailed fault map of the area and analyze the scaling properties of fault trace-lengths by using a statistical mechanics model, derived in the framework of generalized statistical mechanics and associated maximum entropy principle. By using this framework, a range of asymptotic power-law to exponential-like distributions are derived that can well describe the observed scaling patterns of fault trace-lengths in the Rift. Systematic variations and in particular a transition from asymptotic power-law to exponential-like scaling are observed to be a function of increasing strain in distinct strain regimes in the Rift, providing quantitative evidence for such crustal processes in a single tectonic setting. These results indicate the organization of the fault system as a function of brittle strain in the Earth's crust and suggest there are different mechanisms for fault growth in the distinct parts of the Rift. In addition, other factors such as fault interactions and the thickness of the brittle layer affect how the fault system evolves in time. The results suggest that regional strain, fault interactions and the boundary condition of the brittle layer may control fault growth and the fault network evolution in the Corinth Rift.

  5. Evaluation of frictional melting on the basis of trace element analyses of fault rocks

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Ujiie, K.

    2016-12-01

    Pseudotachylytes (solidified frictional melts produced during seismic slip) found in exhumed accretionary complexes are considered to have formed originally at seismogenic depths, and help our understanding of the dynamics of earthquake faulting in subduction zones. The frictional melting should affect rock chemistry. Actually, major element compositions of unaltered pseudotachylyte matrix in the Shimanto accretionary complex are reported to be similar to that of illite, implying disequilibrium melting in the slip zone (Ujiie et al., 2007). Bulk-rock trace element analyses of the pseudotachylyte-bearing fault rocks also revealed their shift to the clay-mineral-like compositions (Honda et al., 2011). Toward better understanding of the frictional melting using chemical means, we carried out detailed major and trace element analyses for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., 2007). About one milligram each of samples was collected from a rock chip along the microstructure by using the PC-controlled micro-drilling apparatus, and then analyzed by ICP-MS. Host rocks showed a series of compositional trends controlled by mixing of detrital sedimentary components. Unaltered part of the pseudotachylyte vein, on the other hand, showed striking enrichment of fluid-immobile trace elements, consistent with selective melting of fine-grained, clay-rich matrix of the fault rock. Importantly, completely altered parts of the dark veins exhibit essentially the same characteristics as the unaltered part, indicating that the trace element composition of the pseudotachylyte is well preserved even after considerable alteration in the later stages. These results demonstrate that trace element and structural analyses are useful to detect preexistence of pseudotachylytes resulting from selective frictional melting of clay minerals. It has been controversial that pseudotachylytes are rarely formed or rarely preserved. Trace element analyses on clay-rich localized slipping zones shed light on this topic. References: Ujiie et al. (2007) J. Struct. Geol. 29, 599-613; Honda et al. (2011) GRL 38, L06310.

  6. Maine Pseudotachylyte Localities and the Role of Host Rock Anisotropy in Fault Zone Development and Frictional Melting

    NASA Astrophysics Data System (ADS)

    Swanson, M. T.

    2004-12-01

    Three brittle strike-slip fault localities in coastal Maine have developed pseudotachylyte fault veins, injection veins and other reservoir structures in a variety of host rocks where the pre-existing layering can serve as a controlling fabric for brittle strike-slip reactivation. Host rocks with a poorly-oriented planar anisotropy at high angles to the shear direction will favor the development of R-shears in initial en echelon arrays as seen in the Two Lights and Richmond Island Fault Zones of Cape Elizabeth that cut gently-dipping phyllitic quartzites. These en echelon R-shears grow to through-going faults with the development of P-shear linkages across the dominantly contractional stepovers in the initial arrays. Pseudotachylyte on these faults is very localized, typically up to 1-2 mm in thickness and is restricted to through-going fault segments, P-shear linkages and some sidewall ripouts. Overall melt production is limited by the complex geometry of the multi-fault array. Host rocks with a favorably-oriented planar anisotropy for reactivation in brittle shear, however, preferentially develop a multitude of longer, non-coplanar layer-parallel fault segments. Pseudotachylyte in the newly-discovered Harbor Island Fault Zone in Muscongus Bay is developed within vertical bedding on regional upright folds with over 50 individual layer-parallel single-slip fault veins, some of which can be traced for over 40 meters along strike. Many faults show clear crosscuts of pre-existing quartz veins that indicate a range of coseismic displacements of 0.23-0.53 meters yielding fault vein widths of a few mm and dilatant reservoirs up to 2 cm thick. Both vertical and rare horizontal lateral injection veins can be found in the adjoining wall rock up to 0.7 cm thick and 80 cm in length. The structure of these faults is simple with minor development of splay faults, sidewall ripouts and strike-slip duplexes. The prominent vertical flow layering within the mylonite gneisses of Gerrish Island serves as host to the complex Fort Foster Brittle Zone where it localizes brittle fault slip and contributes to a maximum area of contact between the sliding surfaces which, in turn, yields fault vein thicknesses of 1-2 mm and locally up to 2 cm. The reactivation of this planar anisotropy in brittle shear produces long overlapping geometries that develop linking structures in both extensional and contractional stepovers may reflect the development of sidewall ripouts due to adhesive wear. The prominent development of closely-spaced individual single-slip fault veins suggests frictional welding as an effective strain hardening mechanism for repeated stick-slip.

  7. On- and off-fault deformation associated with the September 2013 Mw7.7 Balochistan earthquake: implications for geologic slip rate measurements

    USGS Publications Warehouse

    Gold, Ryan D.; Reitman, Nadine G.; Briggs, Richard; Barnhart, William; Hayes, Gavin; Wilson, Earl M.

    2015-01-01

    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~ 200 km-long stretch of the Hoshab fault in southern Pakistan and produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. We remotely measured surface deformation associated with this event using high-resolution (0.5 m) pre- and post-event satellite optical imagery. We document left lateral, near-field, on-fault offsets (10 m from fault) using 309 laterally offset piercing points, such as streams, terrace risers, and roads. Peak near-field displacement is 13.6 + 2.5/− 3.4 m. We characterize off-fault deformation by measuring medium- (< 350 m from fault) and far-field (> 350 m from fault) displacement using manual (259 measurements) and automated image cross-correlation methods, respectively. Off-fault peak lateral displacement values are ~ 15 m and exceed on-fault displacement magnitudes for ~ 85% of the rupture length. Our observations suggest that for this rupture, coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, nearly 100% of total surface displacement occurs within a few hundred meters of the primary fault trace. Furthermore, off-fault displacement accounts for, on average, 28% of the total displacement but exhibits a highly heterogeneous along-strike pattern. The best agreement between near-field and far-field displacements generally corresponds to the narrowest fault zone widths. Our analysis demonstrates significant and heterogeneous mismatches between on- and off-fault coseismic deformation, and we conclude that this phenomenon should be considered in hazard models based on geologically determined on-fault slip rates.

  8. On- and off-fault deformation associated with the September 2013 Mw 7.7 Balochistan earthquake: Implications for geologic slip rate measurements

    NASA Astrophysics Data System (ADS)

    Gold, Ryan D.; Reitman, Nadine G.; Briggs, Richard W.; Barnhart, William D.; Hayes, Gavin P.; Wilson, Earl

    2015-10-01

    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~ 200 km-long stretch of the Hoshab fault in southern Pakistan and produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. We remotely measured surface deformation associated with this event using high-resolution (0.5 m) pre- and post-event satellite optical imagery. We document left lateral, near-field, on-fault offsets (10 m from fault) using 309 laterally offset piercing points, such as streams, terrace risers, and roads. Peak near-field displacement is 13.6 + 2.5/- 3.4 m. We characterize off-fault deformation by measuring medium- (< 350 m from fault) and far-field (> 350 m from fault) displacement using manual (259 measurements) and automated image cross-correlation methods, respectively. Off-fault peak lateral displacement values are ~ 15 m and exceed on-fault displacement magnitudes for ~ 85% of the rupture length. Our observations suggest that for this rupture, coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, nearly 100% of total surface displacement occurs within a few hundred meters of the primary fault trace. Furthermore, off-fault displacement accounts for, on average, 28% of the total displacement but exhibits a highly heterogeneous along-strike pattern. The best agreement between near-field and far-field displacements generally corresponds to the narrowest fault zone widths. Our analysis demonstrates significant and heterogeneous mismatches between on- and off-fault coseismic deformation, and we conclude that this phenomenon should be considered in hazard models based on geologically determined on-fault slip rates.

  9. Structural lineaments of Gaspe from ERTS imagery

    NASA Technical Reports Server (NTRS)

    Steffensen, R.

    1973-01-01

    A test study was conducted to assess the value of ERTS images for mapping geologic features of the Gaspe Peninsula, Quebec. The specific objectives of the study were: 1) to ascertain the best procedure to follow in order to obtain valuable geologic data as a result of interpretation; and 2) to indicate in which way these data could relate to mineral exploration. Of the four spectral bands of the Multispectral scanner, the band from 700 to 800 nanometers, which seems to possess the best informational content for geologic study, was selected for analysis. The original ERTS image at a scale of 1:3,700,000 was enlarged about 15 times and reproduced on film. Geologically meaningful lines, called structural lineaments, were outlined and classified according to five categories: morpho-lithologic boundaries, morpho-lithologic lineaments, fault traces, fracture zones and undefined lineaments. Comparison with the geologic map of Gaspe shows that morpho-lithologic boundaries correspond to contacts between regional stratigraphic units. Morpholithologic lineaments follow bedding trends, whereas fracture traces appear as sets of parallel lineaments, intersecting at high angles the previous category of lineaments. Fault traces mark more precisely the location of faults already mapped and spot the presence of presumable faults, not indicated on the geologic map.

  10. 222Radon Concentration Measurements biased to Cerro Prieto Fault for Verify its Continuity to the Northwest of the Mexicali Valley.

    NASA Astrophysics Data System (ADS)

    Lazaro-Mancilla, O.; Lopez, D. L.; Reyes-Lopez, J. A.; Carreón-Diazconti, C.; Ramirez-Hernandez, J.

    2009-05-01

    The need to know the exact location in the field of the fault traces in Mexicali has been an important affair due that the topography in this valley is almost flat and fault traces are hidden by plow zone, for this reason, the southern and northern ends of the San Jacinto and Cerro Prieto fault zones, respectively, are not well defined beneath the thick sequence of late Holocene Lake Cahuilla deposits. The purpose of this study was to verify if Cerro Prieto fault is the continuation to the southeast of the San Jacinto Fault proposed by Hogan in 2002 who based his analysis on pre-agriculture geomorphy, relocation and analysis of regional microseismicity, and trench exposures from a paleoseismic site in Laguna Xochimilco, Mexicali. In this study, four radon (222Rn) profiles were carried out in the Mexicali Valley, first, to the SW-NE of Cerro Prieto Volcano, second, to the W-E along the highway Libramiento San Luis Río Colorado-Tecate, third, to the W-E of Laguna Xochimilco and fourth, to the W-E of the Colonia Progreso. The Radon results allow us to identify in the Cerro Prieto profile four regions where the values exceed 100 picocuries per liter (pCi/L), these regions can be associated to fault traces, one of them associated to the Cerro Prieto Fault (200 pCi/L) and other related with Michoacán de Ocampo Fault (450 pCi/L). The profile Libramiento San Luis Río Colorado-Tecate, show three regions above 100 pCi/L, two of them related to the same faults. In spite of the results of the Laguna Xochimilco, site used by Hogan (2002), the profile permit us observe three regions above the 100 pCi/L, but we can associate only one of the regions above this level to the Michoacán de Ocampo Fault, but none region to the Cerro Prieto Fault. Finally in spite of the Colonia Progreso is the shortest profile with only five stations, it shows one region with a value of 270 pCi/L that we can correlate with the Cerro Prieto Fault. The results of this study allow us to think in the possibility that the Michoacán de Ocampo Fault is the Continuation to the South of the San Jacinto Fault, not the Cerro Prieto Fault.

  11. Surface deformation associated with the 2013 Mw7.7 Balochistan earthquake: Geologic slip rates may significantly underestimate strain release

    NASA Astrophysics Data System (ADS)

    Gold, Ryan; Reitman, Nadine; Briggs, Richard; Barnhart, William; Hayes, Gavin

    2015-04-01

    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the 60° ± 15° northwest-dipping Hoshab fault in southern Pakistan. The earthquake is notable because it produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. Surface displacements and geodetic and teleseismic inversions indicate that peak slip occurred within the upper 0-3 km of the crust. To explore along-strike and fault-perpendicular surface deformation patterns, we remotely mapped the surface trace of the rupture and measured its surface deformation using high-resolution (0.5 m) pre- and post-event satellite imagery. Post-event images were collected 7-114 days following the earthquake, so our analysis captures the sum of both the coseismic and post-seismic (e.g., after slip) deformation. We document peak left-lateral offset of ~15 m using 289 near-field (±10 m from fault) laterally offset piercing points, such as streams, terrace risers, and roads. We characterize off-fault deformation by measuring the medium- (±200 m from fault) and far-field (±10 km from fault) displacement using manual (242 measurements) and automated image cross-correlation methods. Off-fault peak lateral displacement values (medium- and far-field) are ~16 m and commonly exceed the on-fault displacement magnitudes. Our observations suggest that coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, the majority of surface displacement is within 100 m of the primary fault trace and is most localized on sections of the rupture exhibiting narrow (<5 m) zones of observable surface deformation. Furthermore, the near-field displacement measurements account for, on average, only 73% of the total coseismic displacement field and the pattern is highly heterogeneous. This analysis highlights the importance of identifying paleoseismic field study sites (e.g. trenches) that span fault sections with narrow deformation zones in order to capture the full deformation field. Our results imply that hazard analyses based on geologically-determined fault slip rates (e.g., near-field) should consider the significant and heterogeneous mismatch we document between on- and off-fault coseismic deformation.

  12. An overview of results from the CO2SINK 3D baseline seismic survey at Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Giese, R.; Cosma, C.; Kazemeini, H.; Juhojuntti, N.; Lüth, S.; Norden, B.; Förster, A.; Yordkayhun, S.

    2009-04-01

    A 3D seismic survey was acquired at the CO2SINK project site over the Ketzin anticline in the fall of 2005. Main objectives of the survey were (1) to verify earlier geological interpretations of the structure based on vintage 2D seismic and borehole data, (2) to provide, if possible, an understanding of the structural geometry for flow pathways within the reservoir, (3) a baseline for later evaluation of the time evolution of rock properties as CO2 is injected into the reservoir, and (4) detailed sub-surface images near the injection borehole for planning of the drilling operations. Overlapping templates with 5 receiver lines containing 48 active channels in each template were used for the acquisition. In each template, 200 nominal source points were activated using an accelerated weight drop, giving a nominal fold of 25. Due to logistics, the number of actual source points in each template varied. In spite of the relatively low fold and the simple source used, data quality is generally good with the uppermost 1000 m being well imaged. Data processing results clearly show a fault system across the top of the Ketzin anticline that is termed the Central Graben Fault Zone (CGFZ). The fault zone consists of west-southwest-east-northeast- to east-west-trending normal faults bounding a 600-800 m wide graben. Within the Jurassic section, discrete faults are well developed, and the main graben-bounding faults have throws of up to 30 m. At shallower levels, the fault system appears to disappear in the Tertiary Rupelian clay. The main bounding faults of the CGFZ can be traced downwards to the top of the Weser Formation and possibly to the Stuttgart level, the target formation for CO2 injection. No faults were imaged near the injection site on the southern limb of the anticline. Remnant gas, cushion and residual gas from a previous natural gas storage facility at the site, is present near the top of the anticline in the depth interval of about 250-400 m and has a clear seismic signature. In addition to the standard processing and interpretation applied, attribute analysis, detailed shallow reflection seismic processing, tomographic inversion of first arrival times, and initial seismic modeling of the CO2 response have been performed. Attribute analysis of the target horizon using the continuous wavelet transform indicates that the injection site penetrates the target reservoir near the edge of a north-northwest-south-southeast striking channel.

  13. The stress heat-flow paradox and thermal results from Cajon Pass

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1988-01-01

    Conventional friction models predict a substantial thermal anomaly associated with active traces of strike-slip faults, but no such anomaly is observed from over 100 heat-flow determinations along 1000 km of the San Andreas fault. The Cajon Pass well is being drilled to bring deep heat-flow and stress data to bear on this paradox. Preliminary stress results from Cajon Pass and a new interpretation of regional data by Mark D. Zoback and colleagues suggests that the maximum compressive stress near the fault is almost normal to the trace, and hence the resolved shear stress is low and the fault, weak. The heat-flow data show large variability with depth, probably from three-dimensional structure, and an overall decrease from over 90 mW/m2 in the upper kilometer to less than 80 mW/m2 in the lower 300 m with no evidence of advective heat transfer. -from Authors

  14. Learning Faults Detection by AIS Techniques in CSCL Environments

    ERIC Educational Resources Information Center

    Zedadra, Amina; Lafifi, Yacine

    2015-01-01

    By the increase of e-learning platforms, huge data sets are made from different kinds of the collected traces. These traces differ from one learner to another according to their characteristics (learning styles, preferences, performed actions, etc.). Learners' traces are very heterogeneous and voluminous, so their treatments and exploitations are…

  15. A preliminary study on surface ground deformation near shallow foundation induced by strike-slip faulting

    NASA Astrophysics Data System (ADS)

    Wong, Pei-Syuan; Lin, Ming-Lang

    2016-04-01

    According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation (W). Compared to the investigation in field, rupture of the Greendale Fault, produced a 30-km-long, 300-m-wide zone of ground-surface rupture and deformation (W), involving 5.29 m maximum horizontal , 1.45 m maximum vertical (Dv, max) and 2.59 m average net displacement. Meanwhile, en echelon R shears and cracks were recorded in some region. Besides, the 400-m depth of deep sedimentation (Ds) in the Christchurch City area. Greendale Fault showed close ratio Dv/Ds and W/Ds compared to the experimental case (in the same order), which indicated the wide zone of ground-surface rupture and deformation may be normalized with the vertical displacement (Dv). The foundation located above the basement-fault trace had obvious horizontal displacements and counter-clockwise rotation with increasing displacement. Horizontal displacements and rotation decreased with deeper depth of soil. The deeper embedded foundation caused more rotation. Besides, the soil near the foundation is confined and pressed when it rotates. Key words: strike-slip fault, shallow foundation, ground deformation

  16. Map of normal faults and extensional folds in the Tendoy Mountains and Beaverhead Range, Southwest Montana and eastern Idaho

    USGS Publications Warehouse

    Janecke, S.U.; Blankenau, J.J.; VanDenburg, C.J.; VanGosen, B.S.

    2001-01-01

    Compilation of a 1:100,000-scale map of normal faults and extensional folds in southwest Montana and adjacent Idaho reveals a complex history of normal faulting that spanned at least the last 50 m.y. and involved six or more generations of normal faults. The map is based on both published and unpublished mapping and shows normal faults and extensional folds between the valley of the Red Rock River of southwest Montana and the Lemhi and Birch Creek valleys of eastern Idaho between latitudes 45°05' N. and 44°15' N. in the Tendoy and Beaverhead Mountains. Some of the unpublished mapping has been compiled in Lonn and others (2000). Many traces of the normal faults parallel the generally northwest to north-northwest structural grain of the preexisting Sevier fold and thrust belt and dip west-southwest, but northeastand east-striking normal faults are also prominent. Northeaststriking normal faults are subparallel to the traces of southeast-directed thrusts that shortened the foreland during the Laramide orogeny. It is unlikely that the northeast-striking normal faults reactivated fabrics in the underlying Precambrian basement, as has been documented elsewhere in southwestern Montana (Schmidt and others, 1984), because exposures of basement rocks in the map area exhibit north-northwest- to northwest-striking deformational fabrics (Lowell, 1965; M’Gonigle, 1993, 1994; M’Gonigle and Hait, 1997; M’Gonigle and others, 1991). The largest normal faults in the area are southwest-dipping normal faults that locally reactivate thrust faults (fig. 1). Normal faulting began before middle Eocene Challis volcanism and continues today. The extension direction flipped by about 90° four times.

  17. Estimation of the tectonic slip-rate from Quaternary lacustrine facies within the intraplate Albacete province (SE of Spain)

    USGS Publications Warehouse

    Rodriguez-Pascua, M. A.; Bischoff, J.; Garduno-Monroy, Victor H.; Pérez-López, R.; Giner-Robles, J.L.; Israde-Alcántara, I.; Calvo, J.P.; Williams, Ross W.

    2009-01-01

    The Quaternary lacustrine basin of Cordovilla (CB) represents one of the most active tectonic areas of the Prebetic Zone (Albacete, SE of Spain). The Quaternary sedimentary deposits of this basin are mainly endoreic lacustrine carbonate and alluvial deposits, developed in a semi-arid climate (Pleistocene-present). The basin is a NW-SE-elongated graben bounded by a major right-lateral oblique-fault, the Pozohondo Fault. This fault trends NW-SE, with an approximate trace of 55 km, and is composed of various segments which are identified by fault scarps. In order to establish the slip-rate of the most active segment of the Pozohondo Fault, called the Cordovilla segment, we carried out a detailed study of the affected Quaternary lacustrine deposits. We found that the lacustrine facies could be related to episodic moderate paleoearthquakes. The slip-rate is calculated to be 0.05 and 0.09 mm/yr, using radiometric dating for the vertical offsets of the lacustrine facies. A trenching study at the northern part of the Cordovilla segment revealed two events caused by paleoearthquakes, with the most recent expressed as an oblique-fault off-setting a poorly-developed soil. The magnitude of the last event was greater than 6, using various empirical relationships for the fault displacement and the surface-length rupture. We estimate episodic activity across the Cordovilla segment, to be characterized by moderate-sized paleoearthquakes (M6), which is in agreement with the tectonic context of an intraplate zone of the Iberian plate. ?? 2009 Elsevier B.V.

  18. Digital release of the Alaska Quaternary fault and fold database

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Burns, P.; Combellick, R. A.; Weakland, J. R.

    2011-12-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a Quaternary fault and fold database for Alaska in conformance with standards defined by the U.S. Geological Survey for the National Quaternary fault and fold database. Alaska is the most seismically active region of the United States, however little information exists on the location, style of deformation, and slip rates of Quaternary faults. Thus, to provide an accurate, user-friendly, reference-based fault inventory to the public, we are producing a digital GIS shapefile of Quaternary fault traces and compiling summary information on each fault. Here, we present relevant information pertaining to the digital GIS shape file and online access and availability of the Alaska database. This database will be useful for engineering geologic studies, geologic, geodetic, and seismic research, and policy planning. The data will also contribute to the fault source database being constructed by the Global Earthquake Model (GEM), Faulted Earth project, which is developing tools to better assess earthquake risk. We derived the initial list of Quaternary active structures from The Neotectonic Map of Alaska (Plafker et al., 1994) and supplemented it with more recent data where available. Due to the limited level of knowledge on Quaternary faults in Alaska, pre-Quaternary fault traces from the Plafker map are shown as a layer in our digital database so users may view a more accurate distribution of mapped faults and to suggest the possibility that some older traces may be active yet un-studied. The database will be updated as new information is developed. We selected each fault by reviewing the literature and georegistered the faults from 1:250,000-scale paper maps contained in 1970's vintage and earlier bedrock maps. However, paper map scales range from 1:20,000 to 1:500,000. Fault parameters in our GIS fault attribute tables include fault name, age, slip rate, slip sense, dip direction, fault line type (i.e., well constrained, moderately constrained, or inferred), and mapped scale. Each fault is assigned a three-integer CODE, based upon age, slip rate, and how well the fault is located. This CODE dictates the line-type for the GIS files. To host the database, we are developing an interactive web-map application with ArcGIS for Server and the ArcGIS API for JavaScript from Environmental Systems Research Institute, Inc. (Esri). The web-map application will present the database through a visible scale range with each fault displayed at the resolution of the original map. Application functionality includes: search by name or location, identification of fault by manual selection, and choice of base map. Base map options include topographic, satellite imagery, and digital elevation maps available from ArcGIS on-line. We anticipate that the database will be publically accessible from a portal embedded on the DGGS website by the end of 2011.

  19. Persistent fine-scale fault structures control rupture development in Parkfield, CA.

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2016-12-01

    We investigate the fine-scale geometry and structure of the San Andreas Fault (SAF) near Parkfield, CA, and their role in the development of the 1966 and 2004 M6 earthquakes. Both events broke the fault mainly unilaterally with similar length ( 30 km) but in opposite directions. Seismic slip occurred in a narrow zone between 5 and 10 km depth, as outlined by the concentration of aftershocks along the edge of the slip area. Across fault distribution of the 2004 aftershocks show a rapid decrease of event density away from the fault core. The damage zone is narrower in the Parkfield section (few 100 meters) than in the creeping section ( 1 km). We observe a similar but broader distribution during the interseismic periods. This implies that stress accumulates in a volume around the fault during interseismic periods, whereas coseismic deformation is more localized on the mature SAF. Large aftershocks are concentrated at both rupture tips, characterized by strong heterogeneities in the fault structure at the surface and at depth: i) in the south near Gold Hill-Cholame, a large releasing bend (>25°) separates the Parkfield section from the southern section of the SAF; ii) in the north at Middle Mountain, the surface fault trace goes through an ancient restraining step-over connecting the Parkfield and creeping sections. Fine-scale analysis of the 2004 aftershocks reveals a change in the fault dip and local variations of the fault strike (up to 25°) beneath Middle Mountain, in good agreement with focal mechanisms, which show oblique normal and reverse faulting. We observe these variations during the interseismic periods before and after the 2004 event, suggesting that the structural heterogeneities persisted through at least two earthquake cycles. These heterogeneities act as barriers to rupture propagation of moderate size earthquakes at Parkfield, but also as stress concentrations where rupture initiates.

  20. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California (Mw 7.1) from airborne laser swath mapping

    USGS Publications Warehouse

    Hudnutt, K.W.; Borsa, A.; Glennie, C.; Minster, J.-B.

    2002-01-01

    In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors.

  1. Insights into the relationship between surface and subsurface activity from mechanical modeling of the 1992 Landers M7.3 earthquake

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; Pollard, D. D.

    2009-12-01

    Multi-fault, strike-slip earthquakes have proved difficult to incorporate into seismic hazard analyses due to the difficulty of determining the probability of these ruptures, despite collection of extensive data associated with such events. Modeling the mechanical behavior of these complex ruptures contributes to a better understanding of their occurrence by elucidating the relationship between surface and subsurface earthquake activity along transform faults. This insight is especially important for hazard mitigation, as multi-fault systems can produce earthquakes larger than those associated with any one fault involved. We present a linear elastic, quasi-static model of the southern portion of the 28 June 1992 Landers earthquake built in the boundary element software program Poly3D. This event did not rupture the extent of any one previously mapped fault, but trended 80km N and NW across segments of five sub-parallel, N-S and NW-SE striking faults. At M7.3, the earthquake was larger than the potential earthquakes associated with the individual faults that ruptured. The model extends from the Johnson Valley Fault, across the Landers-Kickapoo Fault, to the Homestead Valley Fault, using data associated with a six-week time period following the mainshock. It honors the complex surface deformation associated with this earthquake, which was well exposed in the desert environment and mapped extensively in the field and from aerial photos in the days immediately following the earthquake. Thus, the model incorporates the non-linearity and segmentation of the main rupture traces, the irregularity of fault slip distributions, and the associated secondary structures such as strike-slip splays and thrust faults. Interferometric Synthetic Aperture Radar (InSAR) images of the Landers event provided the first satellite images of ground deformation caused by a single seismic event and provide constraints on off-fault surface displacement in this six-week period. Insight is gained by comparing the density, magnitudes and focal plane orientations of relocated aftershocks for this time frame with the magnitude and orientation of planes of maximum Coulomb shear stress around the fault planes at depth.

  2. Structural modeling of the Zagros fold-and-thrust belt (Iraq) combining field work and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Reif, D.; Grasemann, B.; Faber, R.; Lockhart, D.

    2009-04-01

    The Zagros fold-and-thrust belt is known for its spectacular fold trains, which have formed in detached Phanerozoic sedimentary cover rocks above a shortened crystalline Precambrian basement. Orogeny evolved through the Late Cretaceous to Miocene collision between the Arabian and Eurasian plate, during which the Neotethys oceanic basin was closed. Still active deformation shortening in the order of 2-2.5 cm/yr is partitioned in S-SW directed folding and thrusting of the Zagros fold-and-thrust belt and NW-SE to N-S trending dextral strike slip faults. The sub-cylindrical doubly-plunging fold trains with wavelengths of 5 - 10 km host more than half of the world's hydrocarbon reserves in mostly anticlinal traps. In this work we investigate the three dimensional structure of the Zagros fold-and-thrust belt in the Kurdistan region of Iraq. The mapped region is situated NE from the city of Erbil and comprises mainly Cretaceous to Cenozoic folded sediments consisting of mainly limestones, dolomites, sandstones, siltstones, claystones and conglomerates. Although the overall security situation in Kurdistan is much better than in the rest of Iraq, structural field mapping was restricted to sections along the main roads perpendicular to the strike of the fold trains, mainly because of the contamination of the area with landmines and unexploded ordnance, a problem that dates back to the end of World War Two. Landmines were also used by the central government in the 1960s and 1970s in order to subdue Kurdish groups. During the 1980-1988 Iran-Iraq War, the north was mined again. In order to extend the structural measurements statistically over the investigated area resulting in a three-dimensional model of the fold trains, we used the Fault Trace module of the WinGeol software (www.terramath.com). This package allows the interactive mapping and visualization of the spatial orientations (i.e. dip and strike) of geological finite planar structures (e.g. faults, lithological contacts) from digital elevation models. The minimum vegetation cover in the investigated area allows an accurate picking of geological planes from the digital elevation model, which has been draped with LANDSAT and ASTER satellite images in order to enhance the contrast of lithological contacts. Geological planes of finite extent are interpolated in the Fault Trace module by virtual planes, which can be translated and rotated in any spatial direction. Comparison of measured data from the field with interpolated spatial orientations from the remote sensing data demonstrate that the calculated dip and strike values can be reproduced within the measurements error of a geological field compass.

  3. Using Near Surface P and S Wave Velocities and Seismic Reflection Images to Detect the Westerly Extension of the Active Meishan Fault in Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Putriani, E.; Huang, W. H.; Shih, R. C.

    2017-12-01

    The Southwestern Taiwan has higher potential seismic risks among the island. In 1906 the Meishan earthquake of magnitude 7.1 caused very severe damages. The associated Meishan fault was believed extended from Meishan westerly to Hsingang area for 23 km long; however, only the eastern part of the fault could be traces on the surface. The western part of the Meishan fault was simply proposed from the observed lineation of sand blow from the middle of the fault, the Minhsiung area westerly to the Hsingang area. The purpose of this paper is hope to prove the extension of this fault by using near surface P wave and S wave velocities and the seismic reflection images acquired across the suspicious fault location. Totally, we have conducted 20 seismic velocity survey lines, which were deployed in six areas with and without liquefaction observed, and 2 seismic reflection lines. The P and S wave velocities variations were used to analyze depth of the water table, the elastic modulus, soil porosity and the safety factor for soil liquefaction assessment. Preliminary result of the seismic velocity distribution was effective within 17 m deep from surface and showed no particular difference at the sites of liquefaction observed or no liquefaction. The results could indicate that the sand blow observed in 1906 were not site dependent, but more likely related to activity of the Meishan fault. In order to detect the detailed fault trace, the seismic reflection images will be combined for interpreting the buried Meishan fault in the final result.

  4. Fault Diagnostics and Prognostics for Large Segmented SRMs

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry; Osipov, Viatcheslav V.; Smelyanskiy, Vadim N.; Timucin, Dogan A.; Uckun, Serdar; Hayashida, Ben; Watson, Michael; McMillin, Joshua; Shook, David; Johnson, Mont; hide

    2009-01-01

    We report progress in development of the fault diagnostic and prognostic (FD&P) system for large segmented solid rocket motors (SRMs). The model includes the following main components: (i) 1D dynamical model of internal ballistics of SRMs; (ii) surface regression model for the propellant taking into account erosive burning; (iii) model of the propellant geometry; (iv) model of the nozzle ablation; (v) model of a hole burning through in the SRM steel case. The model is verified by comparison of the spatially resolved time traces of the flow parameters obtained in simulations with the results of the simulations obtained using high-fidelity 2D FLUENT model (developed by the third party). To develop FD&P system of a case breach fault for a large segmented rocket we notice [1] that the stationary zero-dimensional approximation for the nozzle stagnation pressure is surprisingly accurate even when stagnation pressure varies significantly in time during burning tail-off. This was also found to be true for the case breach fault [2]. These results allow us to use the FD&P developed in our earlier research [3]-[6] by substituting head stagnation pressure with nozzle stagnation pressure. The axial corrections to the value of the side thrust due to the mass addition are taken into account by solving a system of ODEs in spatial dimension.

  5. The south San Fernando Valley fault, Los Angeles California: Myth or reality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slosson, J.E.; Phipps, M.B.; Werner, S.L.

    1993-04-01

    Based on related geomorphic and hydrogeologic evidence, the authors have identified the probable existence of a fault system and related Riedel faults along the southerly side of the San Fernando Valley (SFV), Los Angeles, CA. This fault system, which appears to be aligned along a series of pressure ridges, artesian springs and warm water wells, is termed the South SFV Fault for the purpose of this study. The trace of this fault is believed to roughly follow the southern extent of the SFV near the northern base of the east-west trending Santa Monica Mountains. The SFV is a fault-affected synclinalmore » structure bounded on the north, east, and west by well-recognized and documented fault systems. The southern boundary of the SFV is defined by the complexly faulted anticlinal structure of the bordering Santa Monica Mountains. This presentation will suggest that the southern boundary of the SFV (syncline) is controlled by faulting similar to the fault-controlled north, east, and west boundaries. The authors believe that the trace of the fault system in the southeastern portion of the SFV has been somewhat modified and concealed by the erosion and deposition of coarse grained sediments derived from the vast granitic-metamorphic complex of the San Gabriel Mountains to the north, the major watershed, and in part by sediment derived from similar rock type to the east and southeast. The western half of the SFV has been largely filled with fine grained sediments derived from erosion of the surrounding sedimentary uplands. Further modification has occurred due to urbanization of the area. With reference to the fault-affected boundaries on the west, north, and east sides of the SFV, these structures are all considered youthfall and capable of producing earthquakes as the SFF did in 1971. The south-bounding fault may fall within a similar category. Accordingly, the authors believe that the proposed South SFV Fault has been a tectonic feature since the Pliocene epoch.« less

  6. Surface effects of faulting and deformation resulting from magma accumulation at the Hengill triple junction, SW Iceland, 1994 1998

    NASA Astrophysics Data System (ADS)

    Clifton, Amy E.; Sigmundsson, Freysteinn; Feigl, Kurt L.; Guðmundsson, Gunnar; Árnadóttir, Thóra

    2002-06-01

    The Hengill triple junction, SW Iceland, is subjected to both tectonic extension and shear, causing seismicity related to strike-slip and normal faulting. Between 1994 and 1998, the area experienced episodic swarms of enhanced seismicity culminating in a ML=5.1 earthquake on June 4, 1998 and a ML=5 earthquake on November 13, 1998. Geodetic measurements, using Global Positioning System (GPS), leveling and Synthetic Aperture Radar Interferometry (InSAR) detected maximum uplift of 2 cm/yr and expansion between the Hrómundartindur and Grensdalur volcanic systems. A number of faults in the area generated meter-scale surface breaks. Geographic Information System (GIS) software has been used to integrate structural, field and geophysical data to determine how the crust failed, and to evaluate how much of the recent activity focused on zones of pre-existing weaknesses in the crust. Field data show that most surface effects can be attributed to the June 4, 1998 earthquake and have occurred along or adjacent to old faults. Surface effects consist of open gashes in soil, shattering of lava flows, rockfall along scarps and within old fractures, loosened push-up structures and landslides. Seismicity in 1994-1998 was distributed asymmetrically about the center of uplift, with larger events migrating toward the main fault of the June 4, 1998 earthquake. Surface effects are most extensive in the area of greatest structural complexity, where N- and E-trending structures related to the transform boundary intersect NE-trending structures related to the rift zone. InSAR, GPS, and field observations have been used in an attempt to constrain slip along the trace of the fault that failed on June 4, 1998. Geophysical and field data are consistent with an interpretation of distributed slip along a segmented right-lateral strike-slip fault, with slip decreasing southward along the fault plane. We suggest a right step or right bend between fault segments to explain local deformation near the fault.

  7. Preferred-rupture propagation to the hangingwall of the shallow part of the out-of-sequence thrust: Ishido Fault in Boso Peninsula, central Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Fukuyama, M.; Ujiie, K.; Hirose, T.; Hamada, Y.; Kitamura, M.; Kamiya, N.

    2016-12-01

    Although earthquake ruptures in shallow portion of plate boundary have recently been identified (e.g. Tohoku, Nankai, etc.), their mechanisms why the shallow portion of plate boundary composed mainly of clay minerals can accumulate strain and make seismic slip are under controversial. An ancient out-of-sequence thrust which divided the early and late Miocene accretionary complexes in the Boso Peninsula, central Japan records rupture propagation to the shallow portion of accretionary prism (< 2 km). The fault core is composed of black-colored thin (<1 mm) pseudotachylite and fluidized fault gouge. The former is characterized by homogeneous glassy matrix including fragments of quartz/feldspar, submicron-sized Fe-rich spherules, and vesicles. Based on the mineralogy of the host rock and EDS analyses of matrices, origin of the pseudotachylite was apparently frictional melting of smectite containing Fe. Fe-rich spherules formed by rapid cooling of pseudotachylite. On the other hand, overturned fault-related drag fold developed in the footwall, within about 30 m. Although some Riedel sheared normal faults developed in the overturned footwall, no other brittle deformations were identified. These occurrences imply coexistence of low- and high-speed slips along the same thrust fault. The whole-rock major and trace elemental analyses using XRF and ICP-MS show that mudstone in the hangingwall has similar chemical composition to those of pseudotachylite and fluidized fault gouge with REE enriched patterns, whereas the footwall has different chemical characteristics with relatively flat REE pattern and low LOI. Therefore, the protolith of pseudotachylite and fluidized fault gouge is mudstone in the hangingwall. These data imply that rupture propagation preferably occurred in the hangingwall along the fault zone. The footwall was also deformed apparently during slow-slip deformation leading to formation of the overturn, whereas only the hangingwall, just side of the fault zone, slipped under high-speed shear.

  8. Aftershock source properties of events following the 2013 Craig Earthquake: new evidence for structural heterogeneity on the northern Queen Charlotte Fault

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; Walton, M. A. L.; Ruppert, N. A.; Gulick, S. P. S.; Christeson, G. L.; Haeussler, P. J.

    2014-12-01

    In January 2013, a Mw 7.5 earthquake ruptured a segment of the Queen Charlotte Fault offshore the town of Craig in southeast Alaska. The region of the fault that slipped during the Craig earthquake is adjacent to and possibly overlapping with the northern extent of the 1949 M 8.1 Queen Charlotte earthquake rupture (Canada's largest recorded earthquake), and is just south of the rupture area of the 1972 M 7.6 earthquake near Sitka, Alaska. Here we present aftershock locations and focal mechanisms for events that occurred four months following the mainshock using data recorded on an Ocean Bottom Seismometer (OBS) array that was deployed offshore of Prince of Wales Island. This array consisted of 9 short period instruments surrounding the fault segment, and recorded hundreds of aftershocks during the months of April and May, 2013. In addition to highlighting the primary mainshock rupture plane, aftershocks also appear to be occurring along secondary fault structures adjacent to the main fault trace, illuminating complicated structure, particularly toward the northern extent of the Craig rupture. Focal mechanisms for the larger events recorded during the OBS deployment show both near-vertical strike slip motion consistent with the mainshock mechanism, as well as events with varying strike and a component of normal faulting. Although fault structure along this northern segment of the QCF appears to be considerably simpler than to the south, where a higher degree of oblique convergence leads to sub-parallel compressional deformation structures, secondary faulting structures apparent in legacy seismic reflection data near the Craig rupture may be consistent with the observed seismicity patterns. In combination, these data may help to characterize structural heterogeneity along the northern segment of the Queen Charlotte Fault that contributes to rupture segmentation during large strike slip events.

  9. Seismo-Lineament Analysis Method (SLAM) Applied to the South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Worrell, V. E.; Cronin, V. S.

    2014-12-01

    We used the seismo-lineament analysis method (SLAM; http://bearspace.baylor.edu/Vince_Cronin/www/SLAM/) to "predict" the location of the fault that produced the M 6.0 South Napa earthquake of 24 August 2014, using hypocenter and focal mechanism data from NCEDC (http://www.ncedc.org/ncedc/catalog-search.html) and a digital elevation model from the USGS National Elevation Dataset (http://viewer.nationalmap.gov/viewer/). The ground-surface trace of the causative fault (i.e., the Browns Valley strand of the West Napa fault zone; Bryant, 2000, 1982) and virtually all of the ground-rupture sites reported by the USGS and California Geological Survey (http://www.eqclearinghouse.org/2014-08-24-south-napa/) were located within the north-striking seismo-lineament. We also used moment tensors published online by the USGS and GCMT (http://comcat.cr.usgs.gov/earthquakes/eventpage/nc72282711#scientific_moment-tensor) as inputs to SLAM and found that their northwest-striking seismo-lineaments correlated spatially with the causative fault. We concluded that SLAM could have been used as soon as these mechanism solutions were available to help direct the search for the trace of the causative fault and possible rupture-related damage. We then considered whether the seismogenic fault could have been identified using SLAM prior to the 24 August event, based on the focal mechanisms of smaller prior earthquakes reported by the NCEDC or ISC (http://www.isc.ac.uk). Seismo-lineaments from three M~3.5 events from 1990 and 2012, located in the Vallejo-Crockett area, correlate spatially with the Napa County Airport strand of the West Napa fault and extend along strike toward the Browns Valley strand (Bryant, 2000, 1982). Hence, we might have used focal mechanisms from smaller earthquakes to establish that the West Napa fault is likely seismogenic prior to the South Napa earthquake. Early recognition that a fault with a mapped ground-surface trace is seismogenic, based on smaller earthquakes, can facilitate appropriate preparatory work to minimize damage during a larger-magnitude event.

  10. Kinematic vicissitudes and the spatial distribution of the alteration zone related to the Byobuyama fault, central Japan. (Implication; Influence of another faults.)

    NASA Astrophysics Data System (ADS)

    Katori, T.; Kobayashi, K.

    2015-12-01

    The central Japan is one of the most concentrated area of active faults (Quaternary fault). These are roughly classified into two orthogonally-oriented fault sets of NE-SW and NW-SE strikes. The study area is located in Gifu prefecture, central Japan. In there, the basement rocks are composed mainly of Triassic-Jurassic accretionary prism (Mino belt), Cretaceous Nohi Rhyolite and Cretaceous granitic rocks. Miocene Mizunami G. and Pliocene-Pleistocene Toki Sand and Gravel F. unconformably cover the basement rocks. The Byobuyama fault, 32 km in length, is NE-SW strike and displaces perpendicularly the Toki Sand and Gravel F. by 500 m. The northeastern terminal of the fault has contact with the southern terminal of the Atera fault of NW-SE strike and offset their displacements each other. It is clear that the activity of the Byobuyama fault plays a role of the development of the complicated fault geometry system in the central Japan. In this study, we performed a broad-based investigation along the Byobuyama fault and collected samples. Actually, we observed 400 faults and analyzed 200 fault rocks. Based on these results, we obtained the following new opinion. 1. The Byobuyama fault has experienced following activities that can be divided to 3 stages at least under different stress field. 1) Movement with the sinisterly sense (preserved in cataclasite zone). 2) Dextral movement (preserved in fault gouge zone). 3) Reverse fault movement (due to the aggressive rise of mountains). In addition, the change from Stage 2 to Stage 3 is a continuous. 2. There is a relationship between the distance from the trace of the Byobuyama fault and the combination of alteration minerals included in the fault rocks. 3. In the central part of the Byobuyama fault (CPBF), fault plane trend and combination of alteration minerals shows specific features. The continuous change is considered to mean the presence of factors that interfere with the dextral movement of the Byobuyama fault. What is considered as one of the factors is the effect of the fault zone adjacent, especially the Atera fault. CPBF is located just southeast extension of the Akou fault, NW-SE strike. We think that this extension reaches up to CPBF. Based on the above, we make a presentation about interaction of two faults from the point of view of kinematic vicissitudes and alteration process.

  11. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances < ˜ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution function) and define the zone where the likelihood of having surface ruptures is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary (the highest level of SM, i.e. Level 3 SM according to Italian guidelines). In the absence of such a very detailed study (basic SM, i.e. Level 1 SM of Italian guidelines) a width of ˜ 840 m (90 % probability from "simple thrust" database of distributed ruptures, excluding B-M, F-S and Sy fault ruptures) is suggested to be sufficiently precautionary. For more detailed SM, where the fault is carefully mapped, one must consider that the highest SFRH is concentrated in a narrow zone, ˜ 60 m in width, that should be considered as a fault avoidance zone (more than one-third of the distributed ruptures are expected to occur within this zone). The fault rupture hazard zones should be asymmetric compared to the trace of the principal fault. The average footwall to hanging wall ratio (FW : HW) is close to 1 : 2 in all analysed cases. These criteria are applicable to "simple thrust" faults, without considering possible B-M or F-S fault ruptures due to large-scale folding, and without considering sympathetic slip on distant faults. Areas potentially susceptible to B-M or F-S fault ruptures should have their own zones of fault rupture hazard that can be defined by detailed knowledge of the structural setting of the area (shape, wavelength, tightness and lithology of the thrust-related large-scale folds) and by geomorphic evidence of past secondary faulting. Distant active faults, potentially susceptible to sympathetic triggering, should be zoned as separate principal faults. The entire database of distributed ruptures (including B-M, F-S and Sy fault ruptures) can be useful in poorly known areas, in order to assess the extent of the area within which potential sources of fault displacement hazard can be present. The results from this study and the database made available in the Supplement can be used for improving the attenuation relationships for distributed faulting, with possible applications in probabilistic studies of fault displacement hazard.

  12. Continuation, south of Oaxaca City (southern Mexico) of the Oaxaca-Juarez terrane boundary and of the Oaxaca Fault. Based in MT, gravity and magnetic studies

    NASA Astrophysics Data System (ADS)

    Campos-Enriquez, J. O.; Corbo, F.; Arzate-Flores, J.; Belmonte-Jimenez, S.; Arango-Galván, C.

    2010-12-01

    The Oaxaca Fault represents Tertiary extensional reactivation of the Juarez shear zone constituting the boundary-suture between the Oaxaca and Juarez terranes (southern Mexico). South of Oaxaca City, the fault trace disappears and there are not clear evidences for its southward continuation at depth. The crust in southern México has been studied through seismic refraction, and seismological and magnetotelluric (MT) studies. The refraction studies did not image the Oaxaca Fault. However, previous regional MT studies suggest that the Oaxaca-Juarez terrane boundary lies to the east of the Zaachila and Mitla sub-basins, which implies sinistral displacement along the Donaji Fault. Campos-Enriquez et al. (2009) established the shallow structure of the Oaxaca-Juarez terrane boundary based in detailed gravity and magnetic studies. This study enabled: 1) to establish the shallow structure of the composite depression comprising three N-S sub-basins: the northern Etla and southern Zaachila sub-basins separated by the Atzompa sub-basin. According to the Oaxaca-Juarez terrane boundary is displaced sinistrally ca. 20 km along the E-W Donají Fault, which defines the northern boundary of the Zaachila sub-basin. At the same time,, the Oaxaca Fault may either continue unbroken southwards along the western margin of a horst in the Zaachila sub-basin or be offset along with the terrane boundary. This model implies that originally the suture was continuous south of the Donaji Fault. A constraint for the accreation of the Oaxaca and Juarez terranes. Thirty MT soundings were done in the area of the Central Valleys, Oaxaca City (southern Mexico). In particular we wanted to image the possible southward continuation of the Oaxaca Fault. 22 Mt sounding are located along two NE-SW profiles to the northern and to the south of the City of Oaxaca. To the north of Oaxaca City, the electrical resistivity distribution obtained show a clear discontinuity across the superficial trace of the Oaxaca Fault that can be associated to the contact between the Oaxaca and Juarez terranes. The most conspicuous conductive feature is associated with the Juarez terrane, while the resistivity high observed to the SW of the northern profile is associated with the Oaxaca terrane. South of Oaxaca City (on the southern profile), the Oaxaca Fault is still observed but here it does not reach deep crustal levels. But contrastingly, a conspicuous resistivity low is observed dipping to the east and affecting crust at deep levels, that is being interpreted as the suture of the above mentioned terranes. Also the suture between the Oaxaca and Acatlan complexes (i.e., between the Oaxaca and Mixteco terranes) are also observed on the MT images. As a main result we have that the Oaxacan Complex continues eastward across the Oaxaca-Juarez terrane boundary

  13. Preliminary Investigation and Surficial Mapping of the Faults North and South of Blacktail Butte, Teton County, Wyoming

    NASA Astrophysics Data System (ADS)

    Wittke, S.

    2016-12-01

    The Wyoming State Geological Survey has focused on surficial mapping and examination of the location and offset of faults north and south of Blacktail Butte in eastern Jackson Hole, Wyoming. The fault strands south of Blacktail Butte are classified as Late Quaternary, the faults north of the butte are considered Class B structures by the USGS. Little to no detailed studies, including paleoseismic investigations or fault scarp morphology, have been conducted on these fault strands. The acquisition of LiDAR for the Grand Teton National Park and recent aerial photographs provided data necessary for revised mapping and geomorphic interpretation of fault-related features north and south of Blacktail Butte. New fault traces and geomorphic features were identified in the LiDAR data which had not been previously mapped. Mapped fault traces are intermittent, forming a 1.5 km-long graben that extends south from Blacktail Butte and crosses a loess-mantle late-Pleistocene terrace generated from the Pinedale glaciation. Other lineaments were identified that continued for another 0.5 km to the south. With very little vertical offset across the system and comparatively short fault strands, the faults may represent secondary features related to movement on another unidentified fault within the basin. The secondary faults north of Blacktail Butte were mapped based on geomorphic features and through LiDAR-based spatial analysis. The fault scarps are relatively short and are present on alluvial fan and/or terrace deposits related to the Pinedale glaciation or on undated Holocene deposits. The scarps have little net vertical offset, suggesting they could also be secondary features related to movement from another unidentified fault within the basin. Improved understanding of these fault strands is significant because of the vicinity to populated areas within Jackson Hole and the possible relevance to the Teton Fault system. To our knowledge, these fault strands have not been proposed as antithetic to the Teton fault. The faults are located on the eastern edge of the valley, approximately 8-16 km from the Teton fault, and based on their orientation and sense of slip, the Teton fault may be the unidentified fault within the basin. Detailed paleoseismic surveys, including fault trenching, may shed light on the question in the future.

  14. Earthquake Rupture Forecast of M>= 6 for the Corinth Rift System

    NASA Astrophysics Data System (ADS)

    Scotti, O.; Boiselet, A.; Lyon-Caen, H.; Albini, P.; Bernard, P.; Briole, P.; Ford, M.; Lambotte, S.; Matrullo, E.; Rovida, A.; Satriano, C.

    2014-12-01

    Fourteen years of multidisciplinary observations and data collection in the Western Corinth Rift (WCR) near-fault observatory have been recently synthesized (Boiselet, Ph.D. 2014) for the purpose of providing earthquake rupture forecasts (ERF) of M>=6 in WCR. The main contribution of this work consisted in paving the road towards the development of a "community-based" fault model reflecting the level of knowledge gathered thus far by the WCR working group. The most relevant available data used for this exercise are: - onshore/offshore fault traces, based on geological and high-resolution seismics, revealing a complex network of E-W striking, ~10 km long fault segments; microseismicity recorded by a dense network ( > 60000 events; 1.5=5 19th century events and a few paleoseismological investigations, allowing to consider time-dependent ERF. B-value estimates are found to be catalogue-dependent (WCR, homogenized NOA+Thessaloniki, SHARE), which may call for a potential break in scaling relationship. Furthermore, observed discrepancies between seismicity rates assumed for the modeled faults and those expected from GPS deformation rates call for the presence of aseismic deformation. Uncertainty in the ERF resulting from the lack of precise knowledge concerning both, fault geometries and seismic slip rates, is quantified through a logic tree exploration. Median and precentile predictions are then compared to ERF assuming a uniform seismicity rate in the WCR region. The issues raised by this work will be discussed in the light of seismic hazard assessment.

  15. Numerical investigation on the implications of spring temperature and discharge rate with respect to the geothermal background in a fault zone

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenjiao; Xu, Tianfu; Mariethoz, Gregoire

    2018-04-01

    Geothermal springs are some of the most obvious indicators of the existence of high-temperature geothermal resources in the subsurface. However, geothermal springs can also occur in areas of low average subsurface temperatures, which makes it difficult to assess exploitable zones. To address this problem, this study quantitatively analyzes the conditions associated with the formation of geothermal springs in fault zones, and numerically investigates the implications that outflow temperature and discharge rate from geothermal springs have on the geothermal background in the subsurface. It is concluded that the temperature of geothermal springs in fault zones is mainly controlled by the recharge rate from the country rock and the hydraulic conductivity in the fault damage zone. Importantly, the topography of the fault trace on the land surface plays an important role in determining the thermal temperature. In fault zones with a permeability higher than 1 mD and a lateral recharge rate from the country rock higher than 1 m3/day, convection plays a dominant role in the heat transport rather than thermal conduction. The geothermal springs do not necessarily occur in the place having an abnormal geothermal background (with the temperature at certain depth exceeding the temperature inferred by the global average continental geothermal gradient of 30 °C/km). Assuming a constant temperature (90 °C here, to represent a normal geothermal background in the subsurface at a depth of 3,000 m), the conditions required for the occurrence of geothermal springs were quantitatively determined.

  16. Melt fracturing and healing: A mechanism for degassing and origin of silicic obsidian

    USGS Publications Warehouse

    Cabrera, A.; Weinberg, R.F.; Wright, H.M.N.; Zlotnik, S.; Cas, Ray A.F.

    2011-01-01

    We present water content transects across a healed fault in pyroclastic obsidian from Lami pumice cone, Lipari, Italy, using synchrotron Fourier transform infrared spectroscopy. Results indicate that rhyolite melt degassed through the fault surface. Transects define a trough of low water content coincident with the fault trace, surrounded on either side by high-water-content plateaus. Plateaus indicate that obsidian on either side of the fault equilibrated at different pressure-temperature (P-T) conditions before being juxtaposed. The curves into the troughs indicate disequilibrium and water loss through diffusion. If we assume constant T, melt equilibrated at pressures differing by 0.74 MPa before juxtaposition, and the fault acted as a low-P permeable path for H2O that diffused from the glass within time scales of 10 and 30 min. Assuming constant P instead, melt on either side could have equilibrated at temperatures differing by as much as 100 ??C, before being brought together. Water content on the fault trace is particularly sensitive to post-healing diffusion. Its preserved value indicates either higher temperature or lower pressure than the surroundings, indicative of shear heating and dynamic decompression. Our results reveal that water contents of obsidian on either side of the faults equilibrated under different P-T conditions and were out of equilibrium with each other when they were juxtaposed due to faulting immediately before the system was quenched. Degassing due to faulting could be linked to cyclical seismic activity and general degassing during silicic volcanic activity, and could be an efficient mechanism of producing low-water-content obsidian. ?? 2011 Geological Society of America.

  17. Ridge-transform interaction and seismic behavior within the Tjörnes Fracture Zone, N-Iceland

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Magnusdottir, S.; Einarsson, P.; Gudmundsson, G.; Detrick, R. S.; Driscoll, N. W.

    2013-12-01

    High-resolution multibeam bathymetry and chirp profiling data have provided a new perspective on the structure and neotectonics of the onland-offshore Húsavík-Flatey Fault System (HFF) within the Tjörnes Fracture Zone (TFZ), N-Iceland. The TFZ comprises a broad right lateral transform zone made up of three major N-S striking extensional basins and three WNW-striking seismic lineaments, the dextral HFF, the Grímsey Oblique Rift Zone (GRZ) and the Dalvík Fault System (DF). The HFF connects the North Iceland Rift Zone (NIRZ) with the Eyjafjardaráll extensional basin (EB), the magma starved southern extension of the Kolbeinsey Ridge (KR) whereas the GRZ constitutes the offshore extension of the NIRZ with the KR. The HFF has an overall trend of N65°W and can be traced 75-80 km from its eastern junction with the NIRZ, across the Skjálfandi Bay and into the Eyjafjardaráll basin. Four pull-apart basins characterize the HFF, the largest at its intersection with the EB. En echelon arrays of conjugate strike-slip faults intersect the main HFF at angles of N20°-30°W and N20°E. Some can be traced onto land where they exhibit complicated flower patterns. Within the Skjálfandi Bay, the HFF is divided into two main branches, separated by a 70 m high N-S aligned push-up ridge and several smaller, sub-parallel WNW-trending faults. Individual fault strands have vertical displacement from 0-15 m. Large earthquakes occurred along the HFF in 1755, 1867, 1872 and 1884, the GRZ in 1884-1885 and 1910 and on the DF in 1838, 1934 and 1963. Some were destructive. A dextral transform offshore N-Iceland was initially based on diffuse earthquake epicenters and the M7, 1963 Skagafjördur earthquake. Data from the analog Iceland seismic network, established in the early 1970s, showed the TFZ microseismicity to be too diffuse to be associated with a simple oceanic transform fault. Recent seismicity within the TFZ consists of frequent earthquake swarms, lasting days or weeks with a maximum earthquake magnitude exceeding 5. Fault mechanisms reveal both normal faulting and strike-slip movements. The seismic data indicate that the HFF is flanked by bookshelf faulting both within the DF and the region between the HFF and GRZ, sometimes referred to as the Tjörnes microplate. Lateral dike propagation during the 1974-1989 Krafla rifting episode, within the NIRZ, activated adjacent transform zones, triggering the M 6.2 strike-slip Kópasker earthquake of January 13, 1976, at the junction of the NIRZ with the GRZ at the initiation and largest of the rifting events. During the propagation of the second largest rifting event, January 1978, the northward propagation along the Krafla fissure swarm was temporarily halted at the junction of the NIRZ with the HFF during which earthquakes began to propagate along the HFF, followed by continued northward propagation. Although transform motion within the TFZ is currently taken up by two parallel systems the Tjörnes microplate will merge with the North American plate as continued northward propagation of the divergent plate boundary gradually deactivates the HFF.

  18. The Bear River Fault Zone, Wyoming and Utah: Complex Ruptures on a Young Normal Fault

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.; Haproff, P.; Beukelman, G.; Erickson, B.

    2012-12-01

    The Bear River fault zone (BRFZ), a set of normal fault scarps located in the Rocky Mountains at the eastern margin of Basin and Range extension, is a rare example of a nascent surface-rupturing fault. Paleoseismic investigations (West, 1994; this study) indicate that the entire neotectonic history of the BRFZ may consist of two large surface-faulting events in the late Holocene. We have estimated a maximum per-event vertical displacement of 6-6.5 m at the south end of the fault where it abuts the north flank of the east-west-trending Uinta Mountains. However, large hanging-wall depressions resulting from back rotation, which front scarps that locally exceed 15 m in height, are prevalent along the main trace, obscuring the net displacement and its along-strike distribution. The modest length (~35 km) of the BRFZ indicates ruptures with a large displacement-to-length ratio, which implies earthquakes with a high static stress drop. The BRFZ is one of several immature (low cumulative displacement) normal faults in the Rocky Mountain region that appear to produce high-stress drop earthquakes. West (1992) interpreted the BRFZ as an extensionally reactivated ramp of the late Cretaceous-early Tertiary Hogsback thrust. LiDAR data on the southern section of the fault and Google Earth imagery show that these young ruptures are more extensive than currently mapped, with newly identified large (>10m) antithetic scarps and footwall graben. The scarps of the BRFZ extend across a 2.5-5.0 km-wide zone, making this the widest and most complex Holocene surface rupture in the Intermountain West. The broad distribution of Late Holocene scarps is consistent with reactivation of shallow bedrock structures but the overall geometry of the BRFZ at depth and its extent into the seismogenic zone are uncertain.

  19. Nearshore geophysical investigation of the underwater trace of the Enriquillo-Plantain Garden Fault following the 12 January 2010 Haiti earthquake

    NASA Astrophysics Data System (ADS)

    Johnson, H. E.; Hornbach, M.; Cormier, M.; McHugh, C. M.; Gulick, S. P.; Braudy, N.; Davis, M.; Dieudonne, N.; Diebold, J. B.; Douilly, R.; Mishkin, K.; Seeber, L.; Sorlien, C. C.; Steckler, M. S.; Symithe, S. J.; Templeton, J.

    2010-12-01

    In response to the January 12, 2010 earthquake in Haiti, we investigated offshore structures where aftershocks, lateral spreading, and a small tsunami suggested a coseismic underwater rupture. One aspect of that expedition involved mapping the trace of the Enriquillo-Plantain Garden fault (EPGF) very close to shore, in water as shallow as 2 m. For this, we deployed from the ship a small inflatable boat mounted with a sidescan sonar and a chirp subbottom profiler. These nearshore surveys focused on Grand Goave Bay and Petit Goave Bay, two areas 40-60 km west of Port-au-Prince where the EPGF briefly extends offshore. In Grand Goave Bay, the combination of shipboard multibeam bathymetric data and nearshore geophysical data highlights a series of en-echelon ridges striking about EW, sub-parallel to the expected fault trend. These rise 50-80 m above the surrounding seafloor and some slumps occur on their steep flanks. Although the sidescan imagery does not capture any well-defined seafloor offset or mole tracks that could be attributed to a 2010 earthquake rupture, the chirp profiles document faults that clearly affect the upper 20 m of sediments. The chirp also imaged an EW-striking ridge that appears to be fault-bounded on its north flank and is located about 1 km north of the onshore trace of the EPGF, suggesting that this fault system affects a relatively broad zone. In Petit Goave Bay, a series of textured, sub-circular mounds rising ~5 m above the sedimented bottom most likely indicate bioherms. These align roughly EW at the base of a 20-30 m-high ridge and may be forming at cold seeps associated with an active fault strand, as reported for other offshore transform fault systems. Lateral spreading and slumps fringe the southern shoreline of that bay. Based on the sharp resolution of the sidescan imagery over the slumps, detailing individual fissures and angular blocks, we interpret these to have been triggered by the 2010 earthquake, and that they therefore are likely to have enhanced tsunamigenesis in the area, as addressed in Hornbach et al. (Nature Geoscience, Accepted Sept. 2010).

  20. Geophysical surveys of the Queen Charlotte Fault plate boundary off SE Alaska: Preliminary results

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.; Brothers, D. S.; Andrews, B. D.; Kluesner, J.; Haeussler, P. J.; Miller, N. C.; Watt, J. T.; Dartnell, P.; East, A. E.

    2016-12-01

    Recent multibeam sonar and high-resolution seismic surveys covering the northern 400-km-long segment of Queen Charlotte Fault off SE Alaska, indicate that the entire 50 mm/yr right-lateral Pacific-North America plate motion is currently accommodated by a single fault trace. The trace is remarkably straight rarely interrupted by step-overs, and is often <100 m wide. It runs along the shelf edge dropping into the slope only in the southern end of the mapped area. The straight and narrow surficial fault expression and its location with respect to the shelf may be due to high sedimentation rate during the collapse of the SE Alaska ice cap 17,000 yr ago, which obliterated the previous surficial deformation. Gravity data suggests that the fault may separate the 15-20 Ma oceanic crust of the Pacific plate from continental forearc and arc terrains of a former subduction zone. This unusual setting for a transform plate boundary might have resulted from the northward passage of the thick crust of the Yakutat Terrane during the Late Cenozoic. A step-over at the mouth of Chatham Strait has formed a 20-km-long 1.6-km-wide pull-apart basin composed of 3 sub-basins. Internal basin stratigraphy indicates possible southward migration of the step-over with time. Slight outward curving of the southern strand may suggest the presence of a deeper barrier there, which could have terminated the northward super-shear rupture of the 2013 M7.5 Craig Earthquake. Whether this possible barrier is related to the intersection of the Aja Fracture Zone with the plate boundary is unclear. No other surficial impediments to rupture were observed along the 315 km trace between this fault step-over and a 20° bend near Icy Point, where the fault extends onshore and becomes highly transpressional. An enigmatic oval depression, 1.5-2 km wide and 500 m deep, south of the step-over and a possible mud volcano north of the step-over, may attest to possible vigorous gas and fluid upwelling along the fault zone.

  1. Geophysical Characterization of Groundwater-Fault Dynamics at San Andreas Oasis

    NASA Astrophysics Data System (ADS)

    Faherty, D.; Polet, J.; Osborn, S. G.

    2017-12-01

    The San Andreas Oasis has historically provided a reliable source of fresh water near the northeast margin of the Salton Sea, although since the recent completion of the Coachella Canal Lining Project and persistent drought in California, surface water at the site has begun to disappear. This may be an effect of the canal lining, however, the controls on groundwater are complicated by the presence of the Hidden Springs Fault (HSF), a northeast dipping normal fault that trends near the San Andreas Oasis. Its surface expression is apparent as a lineation against which all plant growth terminates, suggesting that it may form a partial barrier to subsurface groundwater flow. Numerous environmental studies have detailed the chemical evolution of waters resources at San Andreas Spring, although there remains a knowledge gap on the HSF and its relation to groundwater at the site. To better constrain flow paths and characterize groundwater-fault interactions, we have employed resistivity surveys near the surface trace of the HSF to generate profiles of lateral and depth-dependent variations in resistivity. The survey design is comprised of lines installed in Wenner Arrays, using an IRIS Syscal Kid, with 24 electrodes, at a maximum electrode spacing of 5 meters. In addition, we have gathered constraints on the geometry of the HSF using a combination of ground-based magnetic and gravity profiles, conducted with a GEM walking Proton Precession magnetometer and a Lacoste & Romberg gravimeter. Seventeen gravity measurements were acquired across the surface trace of the fault. Preliminary resistivity results depict a shallow conductor localized at the oasis and discontinuous across the HSF. Magnetic data reveal a large contrast in subsurface magnetic susceptibility that appears coincident with the surface trace and trend of the HSF, while gravity data suggests a shallow, relatively high density anomaly centered near the oasis. These data also hint at a second, previously undocumented fault bounding the opposite margin of the oasis and trending subparallel to the HSF. We thus speculate that the Hidden Springs Fault and this possible secondary fault act as partial barriers to lateral subsurface flow and form a structural wedge, localizing groundwater beneath the oasis.

  2. Crustal dynamics studies in China

    NASA Technical Reports Server (NTRS)

    Wu, F. T.

    1985-01-01

    Geodynamics of Mainland China and Taiwan are discussed. The following research was performed: (1) the tectonics along the Tanlu fault in eastern China; (2) tectonics in the Taiwan Strait behind the collision zone in Taiwan; and (3) analysis of faulting in the vicinity of the Altyn Tagn fault. It is found that the existence of the fault is traced back to at least Jurassic with the deposition of conglomerate sandstones in the troungh along the present Tanlu fault branches in the Shantung Province. Taiwan is the product of collision between the Phillipine plate and the Asian plate and Taiwan came into being because of a former island arc.

  3. Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M 6.0 Parkfield earthquake

    USGS Publications Warehouse

    Li, Y.-G.; Chen, P.; Cochran, E.S.; Vidale, J.E.; Burdette, T.

    2006-01-01

    We deployed a dense linear array of 45 seismometers across and along the San Andreas fault near Parkfield a week after the M 6.0 Parkfield earthquake on 28 September 2004 to record fault-zone seismic waves generated by aftershocks and explosions. Seismic stations and explosions were co-sited with our previous experiment conducted in 2002. The data from repeated shots detonated in the fall of 2002 and 3 months after the 2004 M 6.0 mainshock show ???1.0%-1.5% decreases in seismic-wave velocity within an ???200-m-wide zone along the fault strike and smaller changes (0.2%-0.5%) beyond this zone, most likely due to the coseismic damage of rocks during dynamic rupture in the 2004 M 6.0 earthquake. The width of the damage zone characterized by larger velocity changes is consistent with the low-velocity waveguide model on the San Andreas fault, near Parkfield, that we derived from fault-zone trapped waves (Li et al., 2004). The damage zone is not symmetric but extends farther on the southwest side of the main fault trace. Waveform cross-correlations for repeated aftershocks in 21 clusters, with a total of ???130 events, located at different depths and distances from the array site show ???0.7%-1.1% increases in S-wave velocity within the fault zone in 3 months starting a week after the earthquake. The velocity recovery indicates that the damaged rock has been healing and regaining the strength through rigidity recovery with time, most likely . due to the closure of cracks opened during the mainshock. We estimate that the net decrease in seismic velocities within the fault zone was at least ???2.5%, caused by the 2004 M 6.0 Parkfield earthquake. The healing rate was largest in the earlier stage of the postmainshock healing process. The magnitude of fault healing varies along the rupture zone, being slightly larger for the healing beneath Middle Mountain, correlating well with an area of large mapped slip. The fault healing is most prominent at depths above ???7 km.

  4. Chapter E. The Loma Prieta, California, Earthquake of October 17, 1989 - Geologic Setting and Crustal Structure

    USGS Publications Warehouse

    Wells, Ray E.

    2004-01-01

    Although some scientists considered the Ms=7.1 Loma Prieta, Calif., earthquake of 1989 to be an anticipated event, some aspects of the earthquake were surprising. It occurred 17 km beneath the Santa Cruz Mountains along a left-stepping restraining bend in the San Andreas fault system. Rupture on the southwest-dipping fault plane consisted of subequal amounts of right-lateral and reverse motion but did not reach the surface. In the area of maximum uplift, severe shaking and numerous ground cracks occurred along Summit Road and Skyland Ridge, several kilometers south of the main trace of the San Andreas fault. The relatively deep focus of the earthquake, the distribution of ground failure, the absence of throughgoing surface rupture on the San Andreas fault, and the large component of uplift raised several questions about the relation of the 1989 Loma Prieta earthquake to the San Andreas fault: Did the earthquake actually occur on the San Andreas fault? Where exactly is the San Andreas fault in the heavily forested Santa Cruz Mountains, and how does the fault relate to ground ruptures that occurred there in 1989 and 1906? What is the geometry of the San Andreas fault system at depth, and how does it relate to the major crustal blocks identified by geologic mapping? Subsequent geophysical and geologic investigations of crustal structure in the Loma Prieta region have addressed these and other questions about the relation of the earthquake to geologic structures observed in the southern Santa Cruz Mountains. The diverse papers in this chapter cover several topics: geologic mapping of the region, potential- field and electromagnetic modeling of crustal structure, and the velocity structure of the crust and mantle in and below the source region for the earthquake. Although these papers were mostly completed between 1992 and 1997, they provide critical documentation of the crustal structure of the Loma Prieta region. Together, they present a remarkably coherent, three-dimensional picture of the earthquake source region--a geologically complex volume of crust with a long history of both right-lateral faulting and fault-normal compression, thrusting, and uplift.

  5. Low footwall accelerations and variable surface rupture behavior on the Fort Sage Mountains fault, northeast California

    USGS Publications Warehouse

    Briggs, Richard W.; Wesnousky, Steven G.; Brune, James N.; Purvance, Matthew D.; Mahan, Shannon

    2013-01-01

    The Fort Sage Mountains fault zone is a normal fault in the Walker Lane of the western Basin and Range that produced a small surface rupture (L 5.6 earthquake in 1950. We investigate the paleoseismic history of the Fort Sage fault and find evidence for two paleoearthquakes with surface displacements much larger than those observed in 1950. Rupture of the Fort Sage fault ∼5.6  ka resulted in surface displacements of at least 0.8–1.5 m, implying earthquake moment magnitudes (Mw) of 6.7–7.1. An older rupture at ∼20.5  ka displaced the ground at least 1.5 m, implying an earthquake of Mw 6.8–7.1. A field of precariously balanced rocks (PBRs) is located less than 1 km from the surface‐rupture trace of this Holocene‐active normal fault. Ground‐motion prediction equations (GMPEs) predict peak ground accelerations (PGAs) of 0.2–0.3g for the 1950 rupture and 0.3–0.5g for the ∼5.6  ka paleoearthquake one kilometer from the fault‐surface trace, yet field tests indicate that the Fort Sage PBRs will be toppled by PGAs between 0.1–0.3g. We discuss the paleoseismic history of the Fort Sage fault in the context of the nearby PBRs, GMPEs, and probabilistic seismic hazard maps for extensional regimes. If the Fort Sage PBRs are older than the mid‐Holocene rupture on the Fort Sage fault zone, this implies that current GMPEs may overestimate near‐fault footwall ground motions at this site.

  6. Fault distribution in the Precambrian basement of South Norway

    NASA Astrophysics Data System (ADS)

    Gabrielsen, Roy H.; Nystuen, Johan Petter; Olesen, Odleiv

    2018-03-01

    Mapping of the structural pattern by remote sensing methods (Landsat, SPOT, aerial photography, potential field data) and field study of selected structural elements shows that the cratonic basement of South Norway is strongly affected by a regular lineament pattern that encompasses fault swarms of different orientation, age, style, attitude and frequency. Albeit counting numerous fault and fracture populations, the faults are not evenly distributed and N-S to NNE-SSW/NNW-SSE and NE-SE/ENE-WSW-systems are spatially dominant. N-S to NNW-SSE structures can be traced underneath the Caledonian nappes to the Western Gneiss Region in western and central South Norway, emphasizing their ancient roots. Dyke swarms of different ages are found within most of these zones. Also, the Østfold, Oslo-Trondheim and the Mandal-Molde lineament zones coincide with trends of Sveconorwegian post-collision granites. We conclude that the N-S-trend includes the most ancient structural elements, and that the trend can be traced back to the Proterozoic (Svecofennian and Sveconorwegian) orogenic events. Some of the faults may have been active in Neoproterozoic times as marginal faults of rift basins at the western margin of Baltica. Remnants of such fault activity have survived in the cores of many of the faults belonging to this system. The ancient systems of lineaments were passively overridden by the Caledonian fold-and-thrust system and remained mostly, but note entirely inactive throughout the Sub-Cambrian peneplanation and the Caledonian orogenic collapse in the Silurian-Devonian. The system was reactivated in extension from Carboniferous times, particularly in the Permian with the formation of the Oslo Rift and parts of it remain active to the Present, albeit by decreasing extension and fault activity.

  7. Proximity of the Seismogenic Dog Valley Fault to Stampede and Prosser Creek Dams Near Truckee, California

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Strasser, M. P.

    2017-12-01

    The M 6.0 Truckee earthquake of 12 September 1966 caused a variety of surface effects observed over a large area, but the rupture plane of the causative fault did not displace the ground surface. The fault that generated the earthquake was named the Dog Valley fault [DVF], and its ground trace was assumed to be within a zone of subparallel drainage lineaments. The plunge and trend of the dip vector for the best fault-plane solution is 80° 134° with 0° rake, corresponding to a steep NE striking left-lateral strike-slip fault (Tsai and Aki, 1970). The Stampede Dam was completed along the trend of the Dog Valley fault in 1970, just four years after the Truckee earthquake, and impounds almost a quarter-million acre-feet of water. Failure of Stampede Dam would compromise Boca Dam downstream and pose a catastrophic threat to people along the Truckee River floodplain to Reno and beyond. Two 30 m long trenches excavated across a suspected DVF trend by the US Bureau of Reclamation in the 1980s did not find evidence of faulting (Hawkins et al., 1986). The surface trace of the DVF has remained unknown. We used the Seismo-Lineament Analysis Method [SLAM] augmented with a total least squares analysis of the focal locations of known or suspected aftershocks, along with focal mechanism data from well located events since 1966, to constrain the search for the DVF ground trace. Geomorphic analysis of recently collected aerial lidar data along this composite seismo-lineament has lead to a preliminary interpretation that the DVF might extend from the Prosser Creek Reservoir near 39.396°N 120.168°W through or immediately adjacent to the Stampede Dam structure. A second compound geomorphic lineament is sub-parallel to this line 1.6 km to the northwest, and might represent another strand of the DVF. As noted by Hawkins et al. (1986), human modification of the land surface complicates structural-geomorphic analysis. Fieldwork in 2016 took advantage of drought conditions to examine the exposed shoreface of Stampede Reservoir near the dam, and exposures of steeply dipping strike-slip faults were found.

  8. Middle Miocene paleotemperature anomalies within the Franciscan Complex of northern California: Thermo-tectonic responses near the Mendocino triple junction

    USGS Publications Warehouse

    Underwood, M.B.; Shelton, K.L.; McLaughlin, R.J.; Laughland, M.M.; Solomon, R.M.

    1999-01-01

    This study documents three localities in the Franciscan accretionary complex of northern California, now adjacent to the San Andreas fault, that were overprinted thermally between 13.9 and 12.2 Ma: Point Delgada-Shelter Cove (King Range terrane); Bolinas Ridge (San Bruno Mountain terrane); and Mount San Bruno (San Bruno Mountain terrane). Vein assemblages of quartz, carbonate, sulfide minerals, and adularia were precipitated locally in highly fractured wall rock. Vitrinite reflectance (Rm) values and illite crystallinity decrease away from the zones of metalliferous veins, where peak wall-rock temperatures, as determined from Rm, were as high as 315??C. The ??18O values of quartz and calcite indicate that two separate types of fluid contributed to vein precipitation. Higher ??18O fluids produced widespread quartz and calcite veins that are typical of the regional paleothermal regime. The widespread veins are by-products of heat conduction and diffuse fluid flow during zeolite and prehnite-pumpellyite-grade metamorphism, and we interpret their paleofluids to have evolved through dehydration reactions and/or extensive isotopic exchange with accreted Franciscan rocks. Lower ??18O fluids, in contrast, evolved from relatively high temperature exchange between seawater (or meteoric water) and basaltic and/or sedimentary host rocks; focused flow of those fluids resulted in local deposition of the metalliferous veins. Heat sources for the three paleothermal anomalies remain uncertain and may have been unrelated to one another. Higher temperature metalliferous fluids in the King Range terrane could have advected either from a site of ridge-trench interaction north of the Mendocino fracture zone or from a "slabless window" in the wake of the northward migrating Mendocino triple junction. A separate paradox involves the amount of Quaternary offset of Franciscan basement rocks near Shelter Cove by on-land faults that some regard as the main active trace of the San Andreas plate boundary. Contouring of vitrinite reflectance values to the north of an area affected by A.D. 1906 surface rupture indicates that the maximum dextral offset within the interior of the King Range terrane is only 2.5 km. If this fault extends inland, and if it has been accommodating most of the strike-slip component of San Andreas offset at a rate of 3-4 cm/yr, then its activity began only 83-62 ka. This interpretation would also mean that a longer term trace of the San Andreas fault must be nearby, either offshore or along the northeast boundary of the King Range terrane. An offshore fault trace would be consistent with peak heating of King Range strata north of the Mendocino triple junction. Conversely, shifting the fault to the east would be compatible with a slabless window heat source and long-distance northward translation of the King Range terrane after peak heating.

  9. Earthquake geology of Kashmir Basin and its implications for future large earthquakes

    NASA Astrophysics Data System (ADS)

    Shah, A. A.

    2013-09-01

    Two major traces of active thrust faults were identified in the Kashmir Basin (KB) using satellite images and by mapping active geomorphic features. The ~N130°E strike of the mapped thrust faults is consistent with the regional ~NE-SW convergence along the Indian-Eurasian collision zone. The ~NE dipping thrust faults have uplifted the young alluvial fan surfaces at the SW side of the KB. This created a major tectono-geomorphic boundary along the entire strike length of the KB that is characterised by (1) a low relief with sediment-filled sluggish streams to the SE and (2) an uplifted region, with actively flowing streams to the SW. The overall tectono-geomorphic expression suggests that recent activity along these faults has tilted the entire Kashmir valley towards NE. Further, the Mw 7.6 earthquake, which struck Northern Pakistan and Kashmir on 8 October 2005, also suggests a similar strike and NE dipping fault plane, which could indicate that the KB fault is continuous over a distance of ~210 km and connects on the west with the Balakot Bagh fault. However, the geomorphic and the structural evidences of such a structure are not very apparent on the north-west, which thus suggest that it is not a contiguous structure with the Balakot Bagh fault. Therefore, it is more likely that the KB fault is an independent thrust, a possible ramp on the Main Himalayan Thrust, which has uplifting the SW portion of the KB and drowning everything to the NE (e.g. Madden et al. 2011). Furthermore, it seems very likely that the KB fault could be a right stepping segment of the Balakot Bagh fault, similar to Riasi Thrust, as proposed by Thakur et al. (2010). The earthquake magnitude is measured by estimating the fault rupture parameters (e.g. Wells and Coppersmith in Bull Seismol Soc Am 84:974-1002, 1994). Therefore, the total strike length of the mapped KB fault is ~120 km and by assuming a dip of 29° (Avouac et al. in Earth Planet Sci Lett 249:514-528, 2006) and a down-dip limit of 20 km, a Mw of 7.6 is possible on this fault.

  10. Resolving the fault systems with the magnetotelluric method in the western Ilan plain of NE Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, P. Y.; Chen, C. S.

    2017-12-01

    In the study we attempt to use the magnetotelluric (MT) surveys to delineate the basement topography of the western part of the Ilan plain. The triangular plain is located on the extension part of the Okinawa Trough, and is thought to be a subsidence basin bounded by the Hsueshan Range in the north and the Central Range in the south. The basement of the basin is composed of Tertiary metamorphic rocks such as argillites and slates. The recent extension of the Okinawa Trough started from approximately 0.1 Ma and involved ENE- and WSW-trending normal faults that may extended into the Ilan plain area. However, high sedimentation rates as well as the frequent human activities have resulted in unconsolidated sediments with a thickness of over 100 meters, and caused the difficulties in observing the surface traces of the active faults in the area. Hence we deployed about 70 MT stations across the southwestern tip of the triangular plain. We also tried to resolve the subsurface faults the relief variations of the basement with the inverted resistivity images, since the saturated sediments are relatively conductive and the consolidated rocks are resistive. With the inverted MT images, we found that there are a series of N-S trending horsts and grabens in addition to the ENE-WSW normal fault systems. The ENE-WSW trending faults are dipping mainly toward the north in our study area in the western tip of the Ilan plain. The preliminary results suggest that a younger N-S trending normal fault system may modify the relief of the basement in the recent stage after the activation of the ENE-WSW normal faults. The findings of the MT resistivity images provide new information to further review the tectonic explanations of the region in the future.

  11. Two-dimensional seismic image of the San Andreas Fault in the Northern Gabilan Range, central California: Evidence for fluids in the fault zone

    USGS Publications Warehouse

    Thurber, C.; Roecker, S.; Ellsworth, W.; Chen, Y.; Lutter, W.; Sessions, R.

    1997-01-01

    A joint inversion for two-dimensional P-wave velocity (Vp), P-to-S velocity ratio (Vp/Vs), and earthquake locations along the San Andreas fault (SAF) in central California reveals a complex relationship among seismicity, fault zone structure, and the surface fault trace. A zone of low Vp and high Vp/Vs lies beneath the SAF surface trace (SAFST), extending to a depth of about 6 km. Most of the seismic activity along the SAF occurs at depths of 3 to 7 km in a southwest-dipping zone that roughly intersects the SAFST, and lies near the southwest edge of the low Vp and high Vp/Vs zones. Tests indicate that models in which this seismic zone is significantly closer to vertical can be confidently rejected. A second high Vp/Vs zone extends to the northeast, apparently dipping beneath the Diablo Range. Another zone of seismicity underlies the northeast portion of this Vp/Vs high. The high Vp/Vs zones cut across areas of very different Vp values, indicating that the high Vp/Vs values are due to the presence of fluids, not just lithology. The close association between the zones of high Vp/Vs and seismicity suggests a direct involvement of fluids in the faulting process. Copyright 1997 by the American Geophysical Union.

  12. Crustal strain near the Big Bend of the San Andreas Fault: Analysis of the Los Padres-Tehachapi Trilateration Networks, California

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Lisowski, Michael; Zoback, Mark D.

    1990-02-01

    In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30° from N40°W, close to that predicted by plate motion for a transform boundary, to N73°W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38±0.01 μrad/yr at N63°W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19±0.01 μrad/yr at N44°W. The strain rate does not drop off rapidly away from the fault, and thus the area is fit by either a broad shear zone below the SAF or a single fault with a relatively deep locking depth. The fit to the line length data is poor for locking depth d less than 25 km. For d of 25 km a buried slip rate of 30 ± 6 mm/yr is estimated. We also estimated buried slip for models that included the Garlock and Big Pine faults, in addition to the SAF. Slip rates on other faults are poorly constrained by the Los Padres-Tehachapi network. The best fitting Garlock fault model had computed left-lateral slip rate of 11±2 mm/yr below 10 km. Buried left-lateral slip of 15±6 mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. We investigated the location of the SAF and found that a vertical fault below the surface trace fits the data much better than either a dipping fault or a fault zone located south of the surface trace.

  13. Looking for Off-Fault Deformation and Measuring Strain Accumulation During the Past 70 years on a Portion of the Locked San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Vadman, M.; Bemis, S. P.

    2017-12-01

    Even at high tectonic rates, detection of possible off-fault plastic/aseismic deformation and variability in far-field strain accumulation requires high spatial resolution data and likely decades of measurements. Due to the influence that variability in interseismic deformation could have on the timing, size, and location of future earthquakes and the calculation of modern geodetic estimates of strain, we attempt to use historical aerial photographs to constrain deformation through time across a locked fault. Modern photo-based 3D reconstruction techniques facilitate the creation of dense point clouds from historical aerial photograph collections. We use these tools to generate a time series of high-resolution point clouds that span 10-20 km across the Carrizo Plain segment of the San Andreas fault. We chose this location due to the high tectonic rates along the San Andreas fault and lack of vegetation, which may obscure tectonic signals. We use ground control points collected with differential GPS to establish scale and georeference the aerial photograph-derived point clouds. With a locked fault assumption, point clouds can be co-registered (to one another and/or the 1.7 km wide B4 airborne lidar dataset) along the fault trace to calculate relative displacements away from the fault. We use CloudCompare to compute 3D surface displacements, which reflect the interseismic strain accumulation that occurred in the time interval between photo collections. As expected, we do not observe clear surface displacements along the primary fault trace in our comparisons of the B4 lidar data against the aerial photograph-derived point clouds. However, there may be small scale variations within the lidar swath area that represent near-fault plastic deformation. With large-scale historical photographs available for the Carrizo Plain extending back to at least the 1940s, we can potentially sample nearly half the interseismic period since the last major earthquake on this portion of this fault (1857). Where sufficient aerial photograph coverage is available, this approach has the potential to illuminate complex fault zone processes for this and other major strike-slip faults.

  14. Characterization of intrabasin faulting and deformation for earthquake hazards in southern Utah Valley, Utah, from high-resolution seismic imaging

    USGS Publications Warehouse

    Stephenson, William J.; Odum, Jack K.; Williams, Robert A.; McBride, John H.; Tomlinson, Iris

    2012-01-01

    We conducted active and passive seismic imaging investigations along a 5.6-km-long, east–west transect ending at the mapped trace of the Wasatch fault in southern Utah Valley. Using two-dimensional (2D) P-wave seismic reflection data, we imaged basin deformation and faulting to a depth of 1.4 km and developed a detailed interval velocity model for prestack depth migration and 2D ground-motion simulations. Passive-source microtremor data acquired at two sites along the seismic reflection transect resolve S-wave velocities of approximately 200 m/s at the surface to about 900 m/s at 160 m depth and confirm a substantial thickening of low-velocity material westward into the valley. From the P-wave reflection profile, we interpret shallow (100–600 m) bedrock deformation extending from the surface trace of the Wasatch fault to roughly 1.5 km west into the valley. The bedrock deformation is caused by multiple interpreted fault splays displacing fault blocks downward to the west of the range front. Further west in the valley, the P-wave data reveal subhorizontal horizons from approximately 90 to 900 m depth that vary in thickness and whose dip increases with depth eastward toward the Wasatch fault. Another inferred fault about 4 km west of the mapped Wasatch fault displaces horizons within the valley to as shallow as 100 m depth. The overall deformational pattern imaged in our data is consistent with the Wasatch fault migrating eastward through time and with the abandonment of earlier synextensional faults, as part of the evolution of an inferred 20-km-wide half-graben structure within Utah Valley. Finite-difference 2D modeling suggests the imaged subsurface basin geometry can cause fourfold variation in peak ground velocity over distances of 300 m.

  15. Using recurrence plot analysis for software execution interpretation and fault detection

    NASA Astrophysics Data System (ADS)

    Mosdorf, M.

    2015-09-01

    This paper shows a method targeted at software execution interpretation and fault detection using recurrence plot analysis. In in the proposed approach recurrence plot analysis is applied to software execution trace that contains executed assembly instructions. Results of this analysis are subject to further processing with PCA (Principal Component Analysis) method that simplifies number coefficients used for software execution classification. This method was used for the analysis of five algorithms: Bubble Sort, Quick Sort, Median Filter, FIR, SHA-1. Results show that some of the collected traces could be easily assigned to particular algorithms (logs from Bubble Sort and FIR algorithms) while others are more difficult to distinguish.

  16. Geometry and structure of the pull-apart basins developed along the western South American-Scotia plate boundary (SW Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Esteban, F. D.; Tassone, A.; Isola, J. I.; Lodolo, E.; Menichetti, M.

    2018-04-01

    The South American-Scotia plate boundary is a left-lateral fault system which runs roughly E-W for more than 3000 km across the SW Atlantic Ocean and the Tierra del Fuego Island, reaching to the west the southern Chile Trench. Analyses of a large dataset of single- and multi-channel seismic reflection profiles acquired offshore has allowed to map the trace of the plate boundary from Tierra del Fuego to the Malvinas Trough, a tectonic depression located in the eastern part of the fault system, and to reconstruct the shape and geometry of the basins formed along the principal displacement zone of the fault system. Three main Neogene pull-apart basins that range from 70 to 100 km in length, and from 12 to 22 km in width, have been identified along this segment of the plate boundary. These basins have elongated shapes with their major axes parallel to the ENE-WSW direction of the fault zone. The sedimentary architecture and the infill geometry of the basins suggest that they represent mostly strike-slip dominated transtension basins which propagated from E to W. The basins imaged by seismic data show in some cases geometrical and structural features linked to the possible reactivation of previous wedge-top basins and inherited structures pertaining to the external front of the Magallanes fold-and-thrust compression belt, along which the South American-Scotia fault system has been superimposed. It is suggested that the sequence of the elongated basins occur symmetrically to a thorough going strike-slip fault, in a left-stepping geometrical arrangement, in a manner similar to those basins seen in other transcurrent environments.

  17. Triple Junction Reorganizations: A Mechanism for the Initiation of the Great Pacific Fractures Zones

    NASA Astrophysics Data System (ADS)

    Pockalny, R. A.; Larson, R. L.; Grindlay, N. R.

    2001-12-01

    There are two general explanations for the initiation of oceanic transform faults that eventually evolve into fracture zones: transforms inherited from continental break-up and transforms acquired in response to a change in plate motions. These models are sufficient to explain the fracture zones in oceans formed by continental break-up. However, neither model accounts for the initiation of the large-offset, great Pacific fracture zones that characterized the Pacific-Farallon plate boundary prior to 25 Ma. Primarily, these models are unable to explain why the initial age of these fracture zones becomes progressively younger from the Mendocino fracture zone (\\~{ } 160 Ma) southward down to the Resolution FZ (\\~{ }84 Ma). We propose a new transform initiation mechanism for the great Pacific fracture zones, which is intimately tied to tectonic processes at triple junctions and directly related to the growth of the Pacific Plate. Recently acquired multibeam bathymetry and marine geophysics data collected along Pandora's Escarpment in the southwestern Pacific have identified the escarpment as the trace of the Pacific-Farallon-Phoenix triple junction on the Pacific Plate. Regional changes in the trend of the triple junction trace between 84-121 Ma roughly coincide with the initiation of the Marquesas, Austral and Resolution fracture zones. Bathymetry and backscatter data from the projected intersections of these fracture zones with the triple junction trace identify several anomalous structures that suggest tectonic reorganizations of the triple junction. We believe this reorganization created the initial transform fault(s) that ultimately became the large-offset, great Pacific fracture zones. Several possible mechanisms for initiating the transform faults are explored including microplate formation, ridge-tip propagation, and spontaneous transform fault formation.

  18. Delineation of Rupture Propagation of Large Earthquakes Using Source-Scanning Algorithm: A Control Study

    NASA Astrophysics Data System (ADS)

    Kao, H.; Shan, S.

    2004-12-01

    Determination of the rupture propagation of large earthquakes is important and of wide interest to the seismological research community. The conventional inversion method determines the distribution of slip at a grid of subfaults whose orientations are predefined. As a result, difference choices of fault geometry and dimensions often result in different solutions. In this study, we try to reconstruct the rupture history of an earthquake using the newly developed Source-Scanning Algorithm (SSA) without imposing any a priori constraints on the fault's orientation and dimension. The SSA identifies the distribution of seismic sources in two steps. First, it calculates the theoretical arrival times from all grid points inside the model space to all seismic stations by assuming an origin time. Then, the absolute amplitudes of the observed waveforms at the predicted arrival times are added to give the "brightness" of each time-space pair, and the brightest spots mark the locations of sources. The propagation of the rupture is depicted by the migration of the brightest spots throughout a prescribed time window. A series of experiments are conducted to test the resolution of the SSA inversion. Contrary to the conventional wisdom that seismometers should be placed as close as possible to the fault trace to give the best resolution in delineating rupture details, we found that the best results are obtained if the seismograms are recorded at a distance about half of the total rupture length away from the fault trace. This is especially true when the rupture duration is longer than ~10 s. A possible explanation is that the geometric spreading effects for waveforms from different segments of the rupture are about the same if the stations are sufficiently away from the fault trace, thus giving a uniform resolution to the entire rupture history.

  19. Fluid-rock interaction recorded in fault rocks of the Nobeoka Thrust, fossilized megasplay fault in an ancient accretionary complex

    NASA Astrophysics Data System (ADS)

    Hasegawa, R.; Yamaguchi, A.; Fukuchi, R.; Kitamura, Y.; Kimura, G.; Hamada, Y.; Ashi, J.; Ishikawa, T.

    2017-12-01

    The relationship between faulting and fluid behavior has been in debate. In this study, we clarify the fluid-rock interaction in the Nobeoka Thrust by major/trace element composition analysis using the boring core of the Nobeoka Thrust, an exhumed analogue of an ancient megasplay fault in Shimanto accretionary complex, southwest Japan. The hanging wall and the footwall of the Nobeoka Thrust show difference in lithology and metamorphic grade, and their maximum burial temperature is estimated from vitrinite reflectance analysis to be 320 330°C and 250 270°C, respectively (Kondo et al., 2005). The fault zone was formed in a fluid-rich condition, as evidenced by warm fluid migration suggested by fluid inclusion analysis (Kondo et al., 2005), implosion brecciation accompanied by carbonate precipitation followed by formation of pseudotachylyte (Okamoto et al., 2006), ankerite veins coseismically formed under reducing conditions (Yamaguchi et al., 2011), and quartz veins recording stress rotation in seismic cycles (Otsubo et al., 2016). In this study, first we analyzed the major/trace element composition across the principal slip zone (PSZ) of the Nobeoka Thrust by using fragments of borehole cores penetrated through the Nobeoka Thrust. Many elements fluctuated just above the PSZ, whereas K increase and Na, Si decrease suggesting illitization of plagioclase, as well as positive anomalies in Li and Cs were found within the PSZ. For more detail understanding, we observed polished slabs and thin sections of the PSZ. Although grain size reduction of deformed clast and weak development of foliation were observed entirely in the PSZ by macroscopic observation, remarkable development of composite planar fabric nor evidence of friction melting were absent. In this presentation, we show the result of major/trace element composition corresponding to the internal structure of PSZ, and discuss fluid-rock interaction and its impact to megasplay fault activity in subduction zones.

  20. Paleoseismic study of the Cathedral Rapids fault in the northern Alaska Range near Tok, Alaska

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Carver, G. A.

    2010-12-01

    The Cathedral Rapids fault extends ~40 km between the Tok and Robertson River valleys and is the easternmost fault in a series of active south-dipping imbricate thrust faults which bound the northern flank of the Alaska Range. Collectively, these faults accommodate a component of convergence transferred north of the Denali fault and related to the westward (counterclockwise) rotation of the Wrangell Block driven by relative Pacific/North American plate motion along the eastern Aleutian subduction zone and Fairweather fault system. To the west, the system has been defined as the Northern Foothills Fold and Thrust Belt (NFFTB), a 50-km-wide zone of east-west trending thrust faults that displace Quaternary deposits and have accommodated ~3 mm/yr of shortening since latest Pliocene time (Bemis, 2004). Over the last several years, the eastward extension of the NFFTB between Delta Junction and the Canadian border has been studied by the Alaska Division of Geological & Geophysical Surveys to better characterize faults that may affect engineering design of the proposed Alaska-Canada natural gas pipeline and other infrastructure. We summarize herein reconnaissance field observations along the western part of the Cathedral Rapids fault. The western part of the Cathedral Rapids fault extends 21 km from Sheep Creek to Moon Lake and is characterized by three roughly parallel sinuous traces that offset glacial deposits of the Illinoian to early Wisconsinan Delta glaciations and the late Wisconsinan Donnelly glaciation, as well as, Holocene alluvial deposits. The northern trace of the fault is characterized by an oversteepened, beveled, ~2.5-m-high scarp that obliquely cuts a Holocene alluvial fan and projects into the rangefront. Previous paleoseismic studies along the eastern part of the Cathedral Rapids fault and Dot “T” Johnson fault indicate multiple latest Pleistocene and Holocene earthquakes associated with anticlinal folding and thrust faulting (Carver et al., 2010). Combined with this previous work, our paleoseismic assessment of the western Cathedral Rapids fault, including trenching in fall 2010, may contribute to increasing the understanding of the style and timing of deformation for faults bounding the northern flank of the Alaska Range. These data may also provide insight into the eastern extent of the NFFTB and its role in accommodating regional shortening.

  1. Using Magnetics and Topography to Model Fault Splays of the Hilton Creek Fault System within the Long Valley Caldera

    NASA Astrophysics Data System (ADS)

    De Cristofaro, J. L.; Polet, J.

    2017-12-01

    The Hilton Creek Fault (HCF) is a range-bounding extensional fault that forms the eastern escarpment of California's Sierra Nevada mountain range, near the town of Mammoth Lakes. The fault is well mapped along its main trace to the south of the Long Valley Caldera (LVC), but the location and nature of its northern terminus is poorly constrained. The fault terminates as a series of left-stepping splays within the LVC, an area of active volcanism that most notably erupted 760 ka, and currently experiences continuous geothermal activity and sporadic earthquake swarms. The timing of the most recent motion on these fault splays is debated, as is the threat posed by this section of the Hilton Creek Fault. The Third Uniform California Earthquake Rupture Forecast (UCERF3) model depicts the HCF as a single strand projecting up to 12km into the LVC. However, Bailey (1989) and Hill and Montgomery-Brown (2015) have argued against this model, suggesting that extensional faulting within the Caldera has been accommodated by the ongoing volcanic uplift and thus the intracaldera section of the HCF has not experienced motion since 760ka.We intend to map the intracaldera fault splays and model their subsurface characteristics to better assess their rupture history and potential. This will be accomplished using high-resolution topography and subsurface geophysical methods, including ground-based magnetics. Preliminary work was performed using high-precision Nikon Nivo 5.C total stations to generate elevation profiles and a backpack mounted GEM GS-19 proton precession magnetometer. The initial results reveal a correlation between magnetic anomalies and topography. East-West topographic profiles show terrace-like steps, sub-meter in height, which correlate to changes in the magnetic data. Continued study of the magnetic data using Oasis Montaj 3D modeling software is planned. Additionally, we intend to prepare a high-resolution terrain model using structure-from-motion techniques derived from imagery acquired by an unmanned aerial vehicle and ground control points measured with realtime kinematic GPS receivers. This terrain model will be combined with subsurface geophysical data to form a comprehensive model of the subsurface.

  2. Systematic Underestimation of Earthquake Magnitudes from Large Intracontinental Reverse Faults: Historical Ruptures Break Across Segment Boundaries

    NASA Technical Reports Server (NTRS)

    Rubin, C. M.

    1996-01-01

    Because most large-magnitude earthquakes along reverse faults have such irregular and complicated rupture patterns, reverse-fault segments defined on the basis of geometry alone may not be very useful for estimating sizes of future seismic sources. Most modern large ruptures of historical earthquakes generated by intracontinental reverse faults have involved geometrically complex rupture patterns. Ruptures across surficial discontinuities and complexities such as stepovers and cross-faults are common. Specifically, segment boundaries defined on the basis of discontinuities in surficial fault traces, pronounced changes in the geomorphology along strike, or the intersection of active faults commonly have not proven to be major impediments to rupture. Assuming that the seismic rupture will initiate and terminate at adjacent major geometric irregularities will commonly lead to underestimation of magnitudes of future large earthquakes.

  3. Following the Cantabrian (Ventaniella) fault into the Bay of Biscay: a deeply incised canyon, a change of trend, and 20002 km of unstable continental slope

    NASA Astrophysics Data System (ADS)

    Fernandez Viejo, G.; Lopez-Fernandez, C.; Dominguez-Cuesta, M.

    2012-12-01

    The Cantabrian fault, known traditionally with the local name of Ventaniella fault is a long-lived rectilinear feature that runs in a NW-SE direction for more than 200 km across northwest Spain. Its origins are linked to the end of the Variscan orogeny, but its important role took place during the extensional processes of the Mesozoic that led Iberia to become a microplate separated from Europe and Africa. With the initiation of the alpine orogeny Iberia converges with Europe pushed from the south by Africa, and the Ventaniella fault acted as a dextral strike slip fault with an important reverse component. It has a relatively low topographic expression, although its NE block is slightly uplifted with respect to the SW one. Traditionally it has been mapped offshore following the trace of the Aviles canyon, a deeply incised canyon 7 miles from the coast, oblique to the E-W coast trend and which descents from 160 m in the continental shelf , down to 4750 m in the abyssal plain of the Bay of Biscay . All this incision occurs along just 50 km length of the narrow continental shelf in this area, making the Aviles canyon one of the steepest in the Atlantic. Through seismic reflection lines across the continental shelf and slope, a bathymetric model up to date and a 3D geological model the fault has been mapped into the sea integrating the seismicity associated to its SW block and the newest geological mapping on land. At the same time, what is observed in the northwest prolongation and termination of the fault against the oceanic crust of the abyssal plain is a continental slope that is full of mass-wasting processes along more than 80 km length, showing gravitational and submarine slide processes in an area that roughly occupies 2000 km 2 and involves a volume of unstable mass estimated in more than 1000 km3 . One of the biggest displaced masses made the Aviles canyon change its trend to N-S in an almost 90° bend close to the middle slope. Although the displaced masses are big, it does not seem to pose an immediate hazard, as they all show a short run-out distance and, being the actual seismicity of low grade, it is not enough to trigger the fall of the unstable slope. The Ventaniella fault runs in the continental shelf and slope in NW-SE direction, but it also has been deduced with the new data a secondary fault trace slightly more W-E, interpreted as a termination in horsetail of the main strike-slip feature. Both structures seem to be responsible for the seismicity and the mass wasting processes observed along this strip of the Cantabrian margin.

  4. Kinematics of shallow backthrusts in the Seattle fault zone, Washington State

    USGS Publications Warehouse

    Pratt, Thomas L.; Troost, K.G.; Odum, Jackson K.; Stephenson, William J.

    2015-01-01

    Near-surface thrust fault splays and antithetic backthrusts at the tips of major thrust fault systems can distribute slip across multiple shallow fault strands, complicating earthquake hazard analyses based on studies of surface faulting. The shallow expression of the fault strands forming the Seattle fault zone of Washington State shows the structural relationships and interactions between such fault strands. Paleoseismic studies document an ∼7000 yr history of earthquakes on multiple faults within the Seattle fault zone, with some backthrusts inferred to rupture in small (M ∼5.5–6.0) earthquakes at times other than during earthquakes on the main thrust faults. We interpret seismic-reflection profiles to show three main thrust faults, one of which is a blind thrust fault directly beneath downtown Seattle, and four small backthrusts within the Seattle fault zone. We then model fault slip, constrained by shallow deformation, to show that the Seattle fault forms a fault propagation fold rather than the alternatively proposed roof thrust system. Fault slip modeling shows that back-thrust ruptures driven by moderate (M ∼6.5–6.7) earthquakes on the main thrust faults are consistent with the paleoseismic data. The results indicate that paleoseismic data from the back-thrust ruptures reveal the times of moderate earthquakes on the main fault system, rather than indicating smaller (M ∼5.5–6.0) earthquakes involving only the backthrusts. Estimates of cumulative shortening during known Seattle fault zone earthquakes support the inference that the Seattle fault has been the major seismic hazard in the northern Cascadia forearc in the late Holocene.

  5. Detailed surveys of the transform margin morphology in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E.; Paull, C. K.; Caress, D. W.; Thomas, H.; Gwiazda, R.; Herguera, J.; McGann, M. L.; Edwards, B. D.; Hinojosa, A.; Mejia Mercado, B.; Sanchez, A.; Conlin, D.; Thompson, D.

    2012-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) conducted detailed surveys of the seafloor morphology at nine representative sections of the North American - Pacific Plate boundary on the floor of the Gulf of California during a two-ship expedition in March and April 2012. One of the objectives of this program was to better understand how the fault is manifested on the seafloor and whether any secondary deformation adjacent to the fault can be observed. An autonomous underwater vehicle (AUV) provided detailed bathymetry of the seafloor, and a remotely operated vehicle (ROV) allowed ground-truth observations and sampling of the surveyed area. The AUV surveys provide high-resolution multibeam bathymetry with a vertical precision of 0.15 m, horizontal resolution of 1.0 and 2-10 kHz CHIRP seismic reflection profiles. Each of the surveys covered ~ 14 km2 areas and were spread out over 400 m, between water depths of 350 and 2800 m and separated by three seafloor spreading centers. The bathymetry shows the morphology of these fault zones in unprecedented detail. The maps allowed the active fault trace to be located so that it could be inspected and the seafloor sampled during ROV dives. The bathymetry from a representative survey on the southern side of the Guaymas Basin shows an obvious NW-SE lineation, only a few meters wide, formed by distinct scarps and/or troughs on the seafloor, and inferred to be the trace of the active fault. CHIRP profiles show offsets in reflecting horizons extend to the modern seafloor, further supporting the concept that these lineations are the trace of the active fault. This survey is unique in that an extensive section of the seafloor and near subsurface contains a wave-like fabric that only occurs on the North American side of the fault, with crests that run ~ E-W, characteristically ~ 3 m in amplitude and ~ 100 in wavelength. Ultimately, whether this fabric is a result of a depositional process or structural deformation associated with the regional tectonics is unclear. However, this was the only morphology observed that suggests secondary deformation.

  6. [X-ray diffraction and infrared spectrum analysis of fault gouge in Wenchuan seismic belt].

    PubMed

    Wang, Zheng-Yang; Cao, Jian-Jin; Luo, Song-Ying; Liao, Yi-Peng

    2014-05-01

    Wenchuan earthquake produced a series of co-seismic surface ruptures in Leigu and Zhaojiagou, and we collected samples of co-seismic fault gouge in the surface ruptures as well as the old gouge in the fault of Nanba. Testing The new and old fault gouge was tested with X-ray diffraction and infrared absorption spectra, and its characteristics such as mineral compositions, clay mineral contents and combinations were comprehensively analyzed. The results display obvious differences between the new and old fault gouge, showing that the old fault gouge is mainly composed of wall rock debris or milled powders, while the main components of new fault gouge are clay minerals. The assemblage of clay minerals composition shows that the environment of the fault activity was mainly warm and humid, and the clay minerals were mainly transformed by low temperature and low pressure dynamic metamorphism. And this also partly indicates that the latest way of the fault activity in this area may be a creeping. However the previous researches on the fault gouge of Wenchuan earthquake fault zone are mainly focused on its mechanical properties as well as its texture and structure, the research in this paper is to determine the physical and chemical environment of fault activity through the mineral compositions and clay mineral contents in the fault gouge characteristics, and this research has important scientific significance to the researches on the evolution of the fault environment and the activity mechanism of the earthquake.

  7. Palinspastic reconstruction of southeastern California and southwestern Arizona for the middle Miocene

    NASA Technical Reports Server (NTRS)

    Richard, Stephen M.

    1992-01-01

    A paleogeographic reconstruction of southeastern California and southwestern Arizona at 10 Ma was made based on available geologic and geophysical data. Clockwise rotation of 39 deg was reconstructed in the eastern Transverse Ranges, consistent with paleomagnetic data from late Miocene volcanic rocks, and with slip estimates for left-lateral faults within the eastern Transverse Ranges and NW-trending right lateral faults in the Mojave Desert. This domain of rotated rocks is bounded by the Pinto Mountain fault on the north. In the absence of evidence for rotation of the San Bernardino Mountains or for significant right slip faults within the San Bernardino Mountains, the model requires that the late Miocene Pinto Mountain fault become a thrust fault gaining displacement to the west. The Squaw Peak thrust system of Meisling and Weldon may be a western continuation of this fault system. The Sheep Hole fault bounds the rotating domain on the east. East of this fault an array of NW-trending right slip faults and south-trending extensional transfer zones has produced a basin and range physiography while accumulating up to 14 km of right slip. This maximum is significantly less than the 37.5 km of right slip required in this region by a recent reconstruction of the central Mojave Desert. Geologic relations along the southern boundary of the rotating domain are poorly known, but this boundary is interpreted to involve a series of curved strike slip faults and non-coaxial extension, bounded on the southeast by the Mammoth Wash and related faults in the eastern Chocolate Mountains. Available constraints on timing suggest that Quaternary movement on the Pinto Mountain and nearby faults is unrelated to the rotation of the eastern Transverse Ranges, and was preceded by a hiatus during part of Pliocene time which followed the deformation producing the rotation. The reconstructed Clemens Well fault in the Orocopia Mountains, proposed as a major early Miocene strand of the San Andreas fault, projects eastward towards Arizona, where early Miocene rocks and structures are continuous across its trace. The model predicts a 14 deg clockwise rotation and 55 km extension along the present trace of the San Andreas fault during late Miocene and early Pliocene time. Palinspastic reconstructions of the San Andreas system based on this proposed reconstruction may be significantly modified from current models.

  8. New insights into the tectonic evolution of the Boconó Fault, Mérida Andes, Venezuela

    NASA Astrophysics Data System (ADS)

    Backé, G.

    2006-12-01

    The Boconó fault is a major right-lateral strike-slip fault that cuts along strike the Mérida Andes in Venezuela. The uplift of this mountain range started in the Miocene as a consequence of the relative oblique convergence between two lithospheric units named the Maracaibo block to the northwest and the Guyana shield to the southeast. Deformation in the Mérida Andes is partitioned between a strike-slip component along the Boconó fault and shortening perpendicular to the belt. Distinctive features define the Boconó fault: it is shifted southward relative to the chain axis and it does not have a continuous and linear trace but is composed of several fault segments of different orientations striking N35°E to N65°E. Quaternary fault strike-slip motion has been evidenced by various independent studies. However, onset of the strike-slip motion, fault offset and geometry at depth remains a matter of debate. Our work, based on morphostructural analyses of satellite and digital elevation model imagery, provides new data on both the geometry and the tectonic evolution of this major structure. We argue that the Boconó fault affects only the upper crust and connects at depth to a décollement. Consequently, it can not be considered as a plate boundary. The Boconó fault does however form the boundary between two different tectonic areas in the central part of the Mérida Andes as revealed by the earthquake focal mechanisms. South of the Boconó fault, the focal mechanisms are mainly compressional and reverse oblique-slip in agreement with NW SE shortening in the foothills. North of the Boconó fault, extensional and strike-slip deformation dominates. Microtectonic measurements collected in the central part of the Boconó fault are characterized by polyphased tectonics. The dextral shearing along the fault is superimposed to reverse oblique-slip to reverse motion, showing that initiation of transcurrent movement is more likely to have occurred after a certain amount of shortening. The present day strain partitioning along the Mérida Andes seems to be younger than the rise of the chain and coeval with the initiation of right-lateral shearing along the Boconó fault, which would have then initiated in the Pliocene. The Mérida Andes can be therefore considered as a case study of the kinematic evolution of a major strike-slip fault.

  9. Neotectonic Investigation of the southern Rodgers Creek fault, Sonoma County, California

    NASA Astrophysics Data System (ADS)

    Randolph, C. E.; Caskey, J.

    2001-12-01

    The 60-km-long Rodgers Creek fault (RCF) between San Pablo Bay and Santa Rosa strikes approximately N35W, and is characterized by a late Holocene right-lateral slip rate of 6.4-10.4 mm/yr. Recent field studies along the southern section of the fault have resulted in: 1) new insight concerning the structural relations across the fault and the long-term slip budget on the system of faults that make up the East Bay fault system; 2) a new annotated map documenting details of the tectonic geomorphology of the fault zone; 3) and new paleoseismic data. Structural relations found west of the RCF indicate that previously mapped thrust klippen of Donnell Ranch Volcanic's (DRV)(Ar/Ar 9-10 Ma), were emplaced over the Petaluma formation (Ar/Ar 8.52 Ma) along east-vergent thrust faults, rather than along west-vergent thrusts that splay from the RCF as previously proposed. This implies that: 1) the allochthonous DRV which have been correlated to volcanic rocks in the Berkeley Hills (Ar/Ar 9-10 Ma) must have orginated from west of the Tolay fault; and 2) much of the 45 km of northward translation of the DRV from the Berkeley Hills was accomplished along the Hayward-Tolay-Petaluma Valley system of faults, and not the RCF. Long-term offset along the RCF can be more reasonably estimated by matching similar aged Sonoma volcanic rocks (Ar/Ar 3-8 Ma) across the fault which suggests only about 10-15 km of net right-lateral translation across the fault. This estimate is more consistent with independently derived offsets across the RCF using paleogeographic reconstructions of the Roblar Tuff as well as Pliocene sedimentary units (Sarna-Wojcicki, 1992; Mclaughlin, 1996) An annotated strip map compiled from 1:6000 scale aerial photos for the southern 25 km of the fault has resulted in unprecedented new details on the surficial and bedrock deposits, and tectonic geomorphology along the fault. The new maps together with GPR surveys provided the basis for a site specific paleoseimic investigation. We recently opened a 50-meter-long exploratory trench located 2 km northwest of Wildcat Mountain, in Sonoma County. The trench exposed two main traces of the fault that bound a 7-meter-wide sag pond. Stratigraphic and structural relations have provided evidence for multiple faulting events, the youngest of which may have ruptured to the ground surface. Information pertaining to the timing and chronology of events recorded in the trench exposure is pending the results of laboratory analysis of radiocarbon samples.

  10. Imaging the Alpine Fault to depths of more than 2 km - Initial results from the 2011 WhataDUSIE seismic reflection profile, Whataroa Valley, New Zealand

    NASA Astrophysics Data System (ADS)

    Kovacs, A.; Gorman, A. R.; Buske, S.; Schmitt, D. R.; Eccles, J. D.; Toy, V. G.; Sutherland, R.; Townend, J.; Norris, R.; Pooley, B.; Cooper, J.; Bruce, C.; Smillie, M.; Bain, S.; Hellwig, O.; Hlousek, F.; Hellmich, J.; Riedel, M.; Schijns, H. M.

    2011-12-01

    The Alpine Fault is a major plate-bounding fault that is thought to fail in large earthquakes (Mw~7.9) every 200-400 years and to have last ruptured in AD 1717. It is the principal geological structure accommodating transpressional motion between the Australian and Pacific plates on the South Island, with a long-term horizontal motion over the last 1-2 million years of 21-27 mm/yr. Determining the Alpine Fault zone structure at depths of several kilometres beneath the Earth's surface is crucial for understanding not only what conditions govern earthquake rupture but also how ongoing faulting produces mountain ranges such as the Southern Alps. The valley of the Whataroa River, in the central sector of the Alpine Fault, provides rare access to the SE (hanging wall) side of the fault for the purpose of a seismic survey. During January and February 2011, a ~5-km-long seismic reflection line was collected that aimed to image the Alpine Fault at depth. The acquisition was undertaken with the use of 21 Geode seismographs and two Seistronix seismographs with a total capacity of 552 channels. Geophone spacing varied from 4 m in the north (close to the surface trace of the fault) to 8 m in the south (farther from the surface trace.) Sources were 400-g Pentex charges buried in 1.5-2.0 m deep holes of which ~100 were dug by an excavator and ~100 were dug by hand tools where heavy equipment could not access shot locations. Single shots had a nominal separation of 25 m at the north end of the line. At the south end of the line, shots were deployed in patterns of five with a nominal spacing of 125 m. Acquisition system requirements and surface morphology (meanders in the Whataroa River) required five separate acquisition systems. Timing of shots for these systems was accomplished with a radio-controlled firing system, GPS clocks linked to co-located Reftek seismographs, and overlapping traces between acquisition systems. Shot records have been merged and processed through to stacks using the GLOBE Claritas seismic processing package. Initial observations and interpretations of the data are presented. The hanging wall of the Alpine Fault beneath the Whataroa Valley contains at least two major units, a lower basement of Alpine Schist rocks overlain by a substantial layer of glacial sediments that are as much as 700 m thick in places. A sharp reflection marks the boundary between the two units. In places, the Alpine Fault is interpreted as a dipping reflection in the seismic data. The strength of the reflection varies, perhaps as a result of changes in the rocks of the footwall or changes in the geometry of the fault or fault zone.

  11. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1992-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  12. Attitude, movement history, and structure of cataclastic rocks of the Flemington Fault results of core drilling near Oldwick, New Jersey

    USGS Publications Warehouse

    Burton, W.C.; Ratcliffe, N.M.

    1985-01-01

    In the summer of 1983, two holes were drilled through the border fault of the Newark basin near Oldwick, New Jersey, in the Gladstone 7.5minute quadrangle. Figure 1A shows the location of the drill site in relation to regional geology and the major faults. The fault drilled in this study connects to the south with the Flemington fault, which trends southwestward across the Newark basin, as shown. To the north, the fault can be traced along the valley that extends towards Mendham, N. J., beyond the limits of exposed Mesozoic rocks, to connect with the Ramapo fault near Morristown N. J. (fig. 1A; Ratcliffe, 1980). For this reason, we use the name "Flemington" for the border fault in the region of the drill site. A detailed map (fig. 1B) shows the local geology along the border fault from Pottersville, N. J. southward to the axis of the Oldwick syncline.

  13. Using SLAM to Look For the Dog Valley Fault, Truckee Area, California

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Ashburn, J. A.; Sverdrup, K. A.

    2014-12-01

    The Truckee earthquake (9/12/1966, ML6.0) was a left-lateral event on a previously unrecognized NW-trending fault. The Prosser Creek and Boca Dams sustained damage, and the trace of the suspected causative fault passes near or through the site of the then-incomplete Stampede Dam. Another M6 earthquake occurred along the same general trend in 1948 with an epicenter in Dog Valley ~14 km to the NW of the 1966 epicenter. This trend is called the Dog Valley Fault (DVF), and its location on the ground surface is suggested by a prominent but broad zone of geomorphic lineaments near the cloud of aftershock epicenters determined for the 1966 event. Various ground effects of the 1966 event described by Kachadoorian et al. (1967) were located within this broad zone. The upper shoreface of reservoirs in the Truckee-Prosser-Martis basin are now exposed due to persistent drought. We have examined fault strands in a roadcut and exposed upper shoreface adjacent to the NE abutment of Stampede Dam. These are interpreted to be small-displacement splays associated with the DVF -- perhaps elements of the DVF damage zone. We have used the Seismo-Lineament Analysis Method (SLAM) to help us constrain the location of the DVF, based on earthquake focal mechanisms. Seismo-lineaments were computed, using recent revisions in the SLAM code (bearspace.baylor.edu/Vince_Cronin/www/SLAM/), for the 1966 main earthquake and for the better-recorded earthquakes of 7/3/1983 (M4) and 8/30/1992 (M3.2) that are inferred to have occurred along the DVF. Associated geomorphic analysis and some field reconnaissance identified a trend that might be associated with a fault, extending from the NW end of Prosser Creek Reservoir ~32° toward the Stampede Dam area. Triangle-strain analysis using horizontal velocities of local Plate Boundary Observatory GPS sites P146, P149, P150 and SLID indicates that the area rotates clockwise ~1-2°/Myr relative to the stable craton, as might be expected because the study area is within the Walker Lane transition zone between the Basin and Range and the Sierra Nevada-Great Valley Block. If the current seismogenic trace of the DVF is along the ~32° trend, perhaps the more prominent geomorphic lineaments traditionally associated with the DVF are inactive older features that are more strongly expressed on the landscape and that have rotated.

  14. Surface expression of intraplate postglacial faults in Sweden: from LiDAR data

    NASA Astrophysics Data System (ADS)

    Abduljabbar, Mawaheb; Ask, Maria; Bauer, Tobias; Lund, Björn; Smith, Colby; Mikko, Henrik; Munier, Raymond

    2016-04-01

    Large intraplate earthquakes, up to magnitude 8.0±0.3 (Lindblom et al. 2015) are inferred to have occurred in northern Fennoscandia at the end of, or just after the Weichselian deglaciation. More than a dozen large so-called postglacial faults (PGF) have been found in the region. The present-day microseismic activity is rather high in north Sweden, and there is a correlation between microseismicity and mapped PGF scarps: 71% of the observed earthquakes north of 66°N locate within 30 km to the southeast and 10 km to the northwest of PGFs (Lindblom et al., 2015). Surface expressions of PGFs in Sweden have mainly been mapped using aerial photogrammetry and trenching (e.g. Lagerbäck & Sundh 2008). Their detailed surface geometry may be investigated using the new high-resolution elevation model of Sweden (NNH) that has a vertical- and lateral resolution of 2 m and 0.25 m, respectively. With NNH data, known PGFs have been modified, and a number of new potential PGFs have been identified (Smith et al. 2014; Mikko et al. 2015). However, the detailed variation of their surface expression remains to be determined. Our main objective is to constrain the strike and surface offset (i.e., apparent vertical throw because of soil cover overlays the bedrock) across the PGF scarps. We anticipate using the results to constrain direction of fault motion and paleomagnitudes of PGFs, and in numerical analyzes to investigate the nature of PGFs. We have developed a methodology for analyzing PGF-geomorphology from LiDAR data using two main software platforms (Ask et al. 2015): (1) Move2015 by Midland Valley has been used for constructing 3D models of the surface traces of the PGFs to determine apparent vertical throw. The apparent hanging- and footwall cut off lines are digitized, and subsequent computation of coordinates is rather time efficient and provide continuous data of fault and soil geomorphology that can be statistically analyzed; and (2) ArcGIS 10.3 by Esri has mostly been used to derive the slope model for the study area. We successfully tested the methodology within a limited area of the Pärvie fault zone, which is the longest known PGF in the world (Ask et al. 2015). Here, we apply the methodology to PGFs in northern Sweden. Additionally, we are planning to analyse PGFs within a virtual reality environment utilizing the GeoVisionary software platform by Virtalis Ltd. in order to increase accuracy and efficiency and to decrease modelling uncertainties. References Ask et al. 2015. Geomorphology of intraplate postglacial faults in Sweden. AGU, Abstract #83167 Lindblom, et al., 2015. Microearthquakes illuminate the deep structure of the endglacial Pärvie fault, northern Sweden. doi: 10.1093/gji/ggv112 Lagerbäck & Sundh, 2008. Early Holocene faulting and paleoseismicity in northern Sweden. http://resource.sgu.se/produkter/c/c836-rapport.pdf Mikko, et al. 2015. LiDAR-derived inventory of post-glacial fault scarps in Sweden. doi:10.1080/11035897.2015.1036360 Smith, et al., 2014. Surficial geology indicates early Holocene faulting and seismicity, central Sweden. doi: 10.1007/s00531-014-1025-6

  15. The Derivation of Fault Volumetric Properties from 3D Trace Maps Using Outcrop Constrained Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Hodgetts, David; Seers, Thomas

    2015-04-01

    Fault systems are important structural elements within many petroleum reservoirs, acting as potential conduits, baffles or barriers to hydrocarbon migration. Large, seismic-scale faults often serve as reservoir bounding seals, forming structural traps which have proved to be prolific plays in many petroleum provinces. Though inconspicuous within most seismic datasets, smaller subsidiary faults, commonly within the damage zones of parent structures, may also play an important role. These smaller faults typically form narrow, tabular low permeability zones which serve to compartmentalize the reservoir, negatively impacting upon hydrocarbon recovery. Though considerable improvements have been made in the visualization field to reservoir-scale fault systems with the advent of 3D seismic surveys, the occlusion of smaller scale faults in such datasets is a source of significant uncertainty during prospect evaluation. The limited capacity of conventional subsurface datasets to probe the spatial distribution of these smaller scale faults has given rise to a large number of outcrop based studies, allowing their intensity, connectivity and size distributions to be explored in detail. Whilst these studies have yielded an improved theoretical understanding of the style and distribution of sub-seismic scale faults, the ability to transform observations from outcrop to quantities that are relatable to reservoir volumes remains elusive. These issues arise from the fact that outcrops essentially offer a pseudo-3D window into the rock volume, making the extrapolation of surficial fault properties such as areal density (fracture length per unit area: P21), to equivalent volumetric measures (i.e. fracture area per unit volume: P32) applicable to fracture modelling extremely challenging. Here, we demonstrate an approach which harnesses advances in the extraction of 3D trace maps from surface reconstructions using calibrated image sequences, in combination with a novel semi-deterministic, outcrop constrained discrete fracture network modeling code to derive volumetric fault intensity measures (fault area per unit volume / fault volume per unit volume). Producing per-vertex measures of volumetric intensity; our method captures the spatial variability in 3D fault density across a surveyed outcrop, enabling first order controls to be probed. We demonstrate our approach on pervasively faulted exposures of a Permian aged reservoir analogue from the Vale of Eden Basin, UK.

  16. Dislocation pileup as a representation of strain accumulation on a strike-slip fault

    USGS Publications Warehouse

    Savage, J.C.

    2006-01-01

    The conventional model of strain accumulation on a vertical transform fault is a discrete screw dislocation in an elastic half-space with the Burgers vector of the dislocation increasing at the rate of relative plate motion. It would be more realistic to replace that discrete dislocation by a dislocation distribution, presumably a pileup in which the individual dislocations are in equilibrium. The length of the pileup depends upon the applied stress and the amount of slip that has occurred at depth. I argue here that the dislocation pileup (the transition on the fault from no slip to slip at the full plate rate) occupies a substantial portion of the lithosphere thickness. A discrete dislocation at an adjustable depth can reproduce the surface deformation profile predicted by a pileup so closely that it will be difficult to distinguish between the two models. The locking depth (dislocation depth) of that discrete dislocation approximation is substantially (???30%) larger than that (depth to top of the pileup) in the pileup model. Thus, in inverting surface deformation data using the discrete dislocation model, the locking depth in the model should not be interpreted as the true locking depth. Although dislocation pileup models should provide a good explanation of the surface deformation near the fault trace, that explanation may not be adequate at greater distances from the fault trace because approximating the expected horizontally distributed deformation at subcrustal depths by uniform slip concentrated on the fault is not justified.

  17. Active faults system and related potential seismic events near Ulaanbaatar, capital of Mongolia.

    NASA Astrophysics Data System (ADS)

    Schlupp, Antoine; Ferry, Matthieu; Munkhuu, Ulziibat; Sodnomsambuu, Demberel; Al-Ashkar, Abeer

    2013-04-01

    The region of Ulaanbaatar lies several hundred kilometers from large known active faults that produced magnitude 6 to 8+ earthquakes during the last century. Beside the Hustai fault, which displays a clear morphological expression, no active fault was previously described less than 100 km from the city. In addition, no large historical (i.e. more recent than the 16th c.) earthquakes are known in this region. However, since 2005 a very dense seismic activity has developed over the Emeelt Township area, a mere 10 km from Ulaanbaatar. The activity is characterized by numerous low magnitude events (M<2.8), which are distributed linearly along several tens of kilometers where no active fault has been identified. This raises several questions: Is this seismicity associated to a -yet- unknown active fault? If so, are there other unknown active faults near Ulaanbaatar? Hence, we deployed a multi-disciplinary approach including morpho-tectonic, near-surface geophysical and paleoseismological investigations. We describe four large active faults west and south of Ulaanbaatar, three of them are newly discovered (Emeelt, Sharai, Avdar), one was previously known (Hustai) but without precise study on its seismic potential. The Emeelt seismicity can be mapped over 35 km along N150 and corresponds in the field to a smoothed, but clear, active fault morphology that can be mapped along a 10-km-long section. The fault dips at ~30° NE (GPR and surface morphology observations) and uplifts the eastern block. The age of the last surface rupture observed in trenches is about 10 ka (preliminary OSL dating). Considering a rupture length of 35 km, a full segment rupture would be comparable to the 1967 Mogod earthquake with a magnitude as large as Mw 7. It has to be considered today as a possible scenario for the seismic risk of Ulaanbaatar. The 90-km-long Hustai Range Fault System, oriented WSW-ENE and located about 10 km west of Ulaanbaatar, displays continuous microseismicity with five light to moderate (M 4 - 5.4) earthquakes over the last 40 years. The last surface-rupturing earthquake occurred about 1000 years ago (OSL dating). Alluvial fans affected by the fault suggest the rate of deformation (left lateral with normal component) along the main segment ranges from 0.3 to 0.4 mm/year for the last 120 000 years. Hence, the average recurrence interval for a full-segment M 7-7.5 is likely in the order of 10 ky. However, if the Hustai fault also releases strain during partial ruptures along its strongly segmented trace, a Mw 6.5 event may be expected anytime. However, only the main central fault segment has been investigated in terms of paleoseismicity. The Sharai and Avdar faults, oriented NNE-SSW, were mapped along ~50-km-long sections. Each of these faults was the site of earthquakes of magnitude 6 and more in the past as suggested by morphology and trench observations. Full-segment-ruptures could produce events as large as M 7.2. The precise relationship and interactions between these faults as well as associated earthquakes have to be clarified by collecting more data. They are the key of the seismic hazard and risk of Ulaanbaatar.

  18. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault

    USGS Publications Warehouse

    Shelly, David R.; Hardebeck, Jeanne L.

    2010-01-01

    We precisely locate 88 tremor families along the central San Andreas Fault using a 3D velocity model and numerous P and S wave arrival times estimated from seismogram stacks of up to 400 events per tremor family. Maximum tremor amplitudes vary along the fault by at least a factor of 7, with by far the strongest sources along a 25 km section of the fault southeast of Parkfield. We also identify many weaker tremor families, which have largely escaped prior detection. Together, these sources extend 150 km along the fault, beneath creeping, transitional, and locked sections of the upper crustal fault. Depths are mostly between 18 and 28 km, in the lower crust. Epicenters are concentrated within 3 km of the surface trace, implying a nearly vertical fault. A prominent gap in detectible activity is located directly beneath the region of maximum slip in the 2004 magnitude 6.0 Parkfield earthquake.

  19. Regional investigations of tectonic and igneous geology, Iran, Pakistan, and Turkey

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. An extension of the trace of the Chaman-Nushki fault was detected and delineated for 42 km, as was the Ornach-Nal fault for 170 km. Two structural intersections responsible for restricted movements in particular segments of the Chaman-Nushki fault were detected and interpreted. The newest and youngest fault named the Quetta-Mustung-Surab system was delineated for 580 km. The igneous complex of the Lasbela area was interpreted and differentiation was made between ultramafic complex, mafic complex, and basaltic lava flows. One oblong feature was also found which was interpreted as a porphyritic basalt plug.

  20. A model for the geomorphic development of normal-fault facets

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Hobley, D. E. J.; McCoy, S. W.

    2014-12-01

    Triangular facets are among the most striking landforms associated with normal faulting. The genesis of facets is of great interest both for the information facets contain about tectonic motion, and because the progressive emergence of facets makes them potential recorders of both geomorphic and tectonic history. In this report, we present observations of triangular facets in the western United States and in the Italian Central Apennines. Facets in these regions typically form quasi-planar surfaces that are aligned in series along and above the trace of an active fault. Some facet surfaces consist mainly of exposed bedrock, with a thin and highly discontinuous cover of loose regolith. Other facets are mantled by a several-decimeter-thick regolith cover. Over the course of its morphologic development, a facet slope segment may evolve from a steep (~60 degree) bedrock fault scarp, well above the angle of repose for soil, to a gentler (~20-40 degree) slope that can potentially sustain a coherent regolith cover. This evolutionary trajectory across the angle of repose renders nonlinear diffusion theory inapplicable. To formulate an alternative process-based theory for facet evolution, we use a particle-based approach that acknowledges the possibility for both short- and long-range sediment-grain motions, depending on the topography. The processes of rock weathering, grain entrainment, and grain motion are represented as stochastic state-pair transitions with specified transition rates. The model predicts that facet behavior can range smoothly along the spectrum from a weathering-limited mode to a transport-limited mode, depending on the ratio of fault-slip rate to bare-bedrock regolith production rate. The model also implies that facets formed along a fault with pinned tips should show systematic variation in slope angle that correlates with along-fault position and slip rate. Preliminary observations from central Italy and the eastern Basin and Range are consistent with this prediction.

  1. Slab rupture and delamination under the Betics and Rif constrained from receiver functions

    NASA Astrophysics Data System (ADS)

    Mancilla, Flor de Lis; Booth-Rea, Guillermo; Stich, Daniel; Pérez-Peña, José Vicente; Morales, José; Azañón, José Miguel; Martin, Rosa; Giaconia, Flavio

    2015-11-01

    We map the lithospheric structure under the westernmost Mediterranean convergent setting interpreting P-receiver functions obtained from a dense seismic network. No orogenic root occurs under the eastern and great part of the central Betics. However, the subducted South Iberian continental lithosphere is found beneath the western Betics where the Iberian Moho reaches depths of approximately 65 km, dipping gently towards the SE. Meanwhile, at the Rif, strong crustal and lithospheric thickness contrasts occur across the Nekor NW-SE sinistral fault that overlies the region of present slab tearing. East of the Nekor fault there is no orogenic root and the crust has been thinned to approximately 22 km, whilst to the west the crust reaches 55 km thickness and the Maghrebian continental lithosphere is attached to the lithospheric slab imaged by tomography under the Alboran basin. These data suggest that subduction rollback under the Alboran and Algerian basins, together with continental slab tearing or detachment producing edge delamination under the Betics and Rif have been the main tectonic mechanisms driving extension, magmatism and regional uplift in the westernmost Mediterranean since the Late Miocene until present. The surface expression of edge-delamination and slab tearing is marked by regional uplift, denudation of HP rocks in elongated core-complex type domes, late Miocene volcanism in the Eastern Betics and Rif, and by large NE-SW strike-slip transfer faults like the Alpujarras, Crevillente, Torcal or Nekor faults that accommodate strong gradients in crustal displacements. The Iberian slab is still attached to the oceanic slab imaged under the Alboran basin at the western Betics where intermediate depth seismicity, recent dextral strike-slip faulting and folding, could reflect slab tearing. Meanwhile, active faulting and differential GPS-measured displacements would mark slab tearing beneath the Rif coinciding with the trace of the sinistral Nekor fault.

  2. The 1999 Hector Mine Earthquake, Southern California: Vector Near-Field Displacements from ERS InSAR

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Sichoix, Lydie; Smith, Bridget

    2002-01-01

    Two components of fault slip are uniquely determined from two line-of-sight (LOS) radar interferograms by assuming that the fault-normal component of displacement is zero. We use this approach with ascending and descending interferograms from the ERS satellites to estimate surface slip along the Hector Mine earthquake rupture. The LOS displacement is determined by visually counting fringes to within 1 km of the outboard ruptures. These LOS estimates and uncertainties are then transformed into strike- and dip-slip estimates and uncertainties; the transformation is singular for a N-S oriented fault and optimal for an E-W oriented fault. In contrast to our previous strike-slip estimates, which were based only on a descending interferogram, we now find good agreement with the geological measurements, except at the ends of the rupture. The ascending interferogram reveals significant west-sidedown dip-slip (approximately 1.0 m) which reduces the strike-slip estimates by 1 to 2 m, especially along the northern half of the rupture. A spike in the strike-slip displacement of 6 m is observed in central part of the rupture. This large offset is confirmed by subpixel cross correlation of features in the before and after amplitude images. In addition to strike slip and dip slip, we identify uplift and subsidence along the fault, related to the restraining and releasing bends in the fault trace, respectively. Our main conclusion is that at least two look directions are required for accurate estimates of surface slip even along a pure strike-slip fault. Models and results based only on a single look direction could have major errors. Our new estimates of strike slip and dip slip along the rupture provide a boundary condition for dislocation modeling. A simple model, which has uniform slip to a depth of 12 km, shows good agreement with the observed ascending and descending interferograms.

  3. Structure and geomorphology of the "big bend" in the Hosgri-San Gregorio fault system, offshore of Big Sur, central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.; Kluesner, J. W.; Dartnell, P.

    2015-12-01

    The right-lateral Hosgri-San Gregorio fault system extends mainly offshore for about 400 km along the central California coast and is a major structure in the distributed transform margin of western North America. We recently mapped a poorly known 64-km-long section of the Hosgri fault offshore Big Sur between Ragged Point and Pfieffer Point using high-resolution bathymetry, tightly spaced single-channel seismic-reflection and coincident marine magnetic profiles, and reprocessed industry multichannel seismic-reflection data. Regionally, this part of the Hosgri-San Gregorio fault system has a markedly more westerly trend (by 10° to 15°) than parts farther north and south, and thus represents a transpressional "big bend." Through this "big bend," the fault zone is never more than 6 km from the shoreline and is a primary control on the dramatic coastal geomorphology that includes high coastal cliffs, a narrow (2- to 8-km-wide) continental shelf, a sharp shelfbreak, and a steep (as much as 17°) continental slope incised by submarine canyons and gullies. Depth-converted industry seismic data suggest that the Hosgri fault dips steeply to the northeast and forms the eastern boundary of the asymmetric (deeper to the east) Sur Basin. Structural relief on Franciscan basement across the Hosgri fault is about 2.8 km. Locally, we recognize five discrete "sections" of the Hosgri fault based on fault trend, shallow structure (e.g., disruption of young sediments), seafloor geomorphology, and coincidence with high-amplitude magnetic anomalies sourced by ultramafic rocks in the Franciscan Complex. From south to north, section lengths and trends are as follows: (1) 17 km, 312°; (2) 10 km, 322°; (3)13 km, 317°; (4) 3 km, 329°; (5) 21 km, 318°. Through these sections, the Hosgri surface trace includes several right steps that vary from a few hundred meters to about 1 km wide, none wide enough to provide a barrier to continuous earthquake rupture.

  4. Surface fault rupture during the Mw 7.8 Kaikoura earthquake, New Zealand, with specific comment on the Kekerengu Fault - one of the country's fastest slipping onland active faults

    NASA Astrophysics Data System (ADS)

    Van Dissen, Russ; Little, Tim

    2017-04-01

    The Mw 7.8 Kaikoura earthquake of 14 November, 2016 (NZDT) was a complex event. It involved ground-surface (or seafloor) fault rupture on at least a dozen onland or offshore faults, and subsurface rupture on a handful of additional faults. Most of the surface ruptures involved previously known (or suspected) active faults, as well as surface rupture on at least two hitherto unrecognised active faults. The southwest to northeast extent of surface fault rupture, as generalised by two straight-line segments, is approximately 180 km, though this is a minimum for the collective length of surface rupture due to multiple overlapping faults with various orientations. Surface rupture displacements on specific faults involved in the Kaikoura Earthquake span approximately two orders of magnitude. For example, maximum surface displacement on the Heaver's Creek Fault is cm- to dm-scale in size; whereas, maximum surface displacement on the nearby Kekerengu Fault is approximately 10-12 m (predominantly in a dextral sense). The Kekerengu Fault has a Late Pleistocene slip-rate rate of 20-26 mm/yr, and is possibly the second fastest slipping onland fault in New Zealand, behind the Alpine Fault. Located in the northeastern South Island of New Zealand, the Kekerengu Fault - along with the Hope Fault to the southwest and the Needles Fault offshore to the northeast - comprise the fastest slipping elements of the Pacific-Australian plate boundary in this part of the country. In January 2016 (about ten months prior to the Kaikoura earthquake) three paleo-earthquake investigation trenches were excavated across pronounced traces of the Kekerengu Fault at two locations. These were the first such trenches dug and evaluated across the fault. All three trenches displayed abundant evidence of past surface fault ruptures (three surface ruptures in the last approximately 1,200 years, four now including the 2016 rupture). An interesting aspect of the 2016 rupture is that two of the trenches received surface fault rupture, and are now dextrally offset by about 9 m, while the third trench did not have any 2016 surface rupture pass through it. In this instance, ground-surface rupture along this trace of the fault died out within tens of metres of the trench. Another salient aspect of the Kaikoura earthquake is that the determined (or estimated) recurrence intervals of the faults that ruptured the ground surface vary by an order of magnitude or more. This strongly implies that the ensemble of faults that ruptured with the Kekerengu Fault in the 2016 earthquake has not always been the same for past earthquakes. Possible reasons for this could include the state of stress at the time of a specific earthquake, the direction of rupture propagation, and whether or not rupture on one fault system cascades into rupture on another as is suspected to have happened in the Kaikoura earthquake.

  5. Subsurface signature of North Anatolian Fault Zone and its relation with old sutures: New insight from receiver function analysis.

    NASA Astrophysics Data System (ADS)

    Özacar, Arda A.; Abgarmi, Bizhan

    2017-04-01

    The North Anatolian Fault Zone (NAFZ) is an active continental transform plate boundary that accommodates the westward extrusion of the Anatolian plate. The central segment of NAFZ displays northward convex surface trace which coincides partly with the Paleo-Tethyan suture formed during the early Cenozoic. The depth extent and detailed structure of the actively deforming crust along the NAF is still under much debate and processes responsible from rapid uplift are enigmatic. In this study, over five thousand high quality P receiver functions are computed using teleseismic earthquakes recorded by permanent stations of national agencies and temporary North Anatolian Fault Passive Seismic experiment (2005-2008). In order to map the crustal thickness and Vp/Vs variations accurately, the study area is divided into grids with 20 km spacing and along each grid line Moho phase and its multiples are picked through constructed common conversion point (CCP) profiles. According to our results, nature of discontinuities and crustal thickness display sharp changes across the main strand of NAFZ supporting a lithospheric scale faulting that offsets Moho discontinuity. In the southern block, crust is relatively thin in the west ( 35 km) and becomes thicker gradually towards east ( 40 km). In contrast, the northern block displays a strong lateral change in crustal thickness reaching up to 10 km across a narrow roughly N-S oriented zone which is interpreted as the subsurface signature of the ambiguous boundary between Istanbul Block and Pontides located further west at the surface.

  6. 'Extra-regional' strike-slip fault systems in Chile and Alaska: the North Pacific Rim orogenic Stream vs. Beck's Buttress

    NASA Astrophysics Data System (ADS)

    Redfield, T. F.; Scholl, D. W.; Fitzgerald, P. G.

    2010-12-01

    The ~2000 km long Denali Fault System (DFS) of Alaska is an example of an extra-regional strike-slip fault system that terminates in a zone of widely-distributed deformation. The ~1200 km long Liquiñe-Ofqui Fault Zone (LOFZ) of Patagonia (southern Chile) is another. Both systems are active, having undergone large-magnitude seismic rupture is 2002 (DFS) and 2007 (LOFZ). Both systems appear to be long-lived: the DFS juxtaposes terranes that docked in at least early Tertiary time, whilst the central LOFZ appears to also record early Tertiary or Mesozoic deformation. Both fault systems comprise a relatively well-defined central zone where individual fault traces can be identified from topographic features or zones of deformed rock. In both cases the proximal and distal traces are much more diffuse tributary and distributary systems of individual, branching fault traces. However, since their inception the DFS and LOFZ have followed very different evolutionary paths. Copious Alaskan paleomagnetic data are consistent with vertical axis small block rotation, long-distance latitudinal translation, and a recently-postulated tectonic extrusion towards a distributary of subordinate faults that branch outward towards the Aleution subduction zone (the North Pacific Rim orogenic Stream; see Redfield et al., 2007). Paleomagnetic data from the LOFZ region are consistent with small block rotation but preclude statistically-significant latitudinal transport. Limited field data from the southernmost LOFZ suggest that high-angle normal and reverse faults dominate over oblique to strike-slip structures. Rather than the high-angle oblique 'slivering regime' of the southeasternmost DFS, the initiation of the LOFZ appears to occur across a 50 to 100 km wide zone of brittly-deformed granitic and gneissic rock characterized by bulk compression and vertical pathways of exhumation. In both cases, relative plate motions are consistent with the hypothetical style, and degree, of offset, leading us to speculate towards the role of obliquity of plate tectonic convergence for the along-strike evolution of extra-regional strike-slip systems. Highly-oblique initiation of the DFS encourages detachment of fault-bounded terranes and provides a driver that encourages a westward-fanning pattern of extrusion towards the free face of the Beringian margin. Plausibly, its less-oblique central segment promotes vertical pathway exhumation observed at (for example) Denali itself. A more orthogonal regime drives the entire LOFZ, precluding slivering at its initiation and promoting upstream buttressing (Beck et al., 1993). The convergent plate boundary setting opens a window through time and space on the evolution of large-magnitude fault-systems. Escape, or not to escape ~ what best answers the question ? Citations Redfield, T. F., Scholl, D. W., Fitzgerald, P. G., and Beck, M. E., & 2007. Escape tectonics and the extrusion of Alaska: past, present, and future. Geology. 35, 11, 1039-1042 Beck, M.E., Rojas, C. and Cembrano, J. (1993). “On the nature of buttressing in margin-parallel strike-fault systems.” Geology, Vol. 21, pp. 755-758.

  7. A footwall system of faults associated with a foreland thrust in Montana

    NASA Astrophysics Data System (ADS)

    Watkinson, A. J.

    1993-05-01

    Some recent structural geology models of faulting have promoted the idea of a rigid footwall behaviour or response under the main thrust fault, especially for fault ramps or fault-bend folds. However, a very well-exposed thrust fault in the Montana fold and thrust belt shows an intricate but well-ordered system of subsidiary minor faults in the footwall position with respect to the main thrust fault plane. Considerable shortening has occurred off the main fault in this footwall collapse zone and the distribution and style of the minor faults accord well with published patterns of aftershock foci associated with thrust faults. In detail, there appear to be geometrically self-similar fault systems from metre length down to a few centimetres. The smallest sets show both slip and dilation. The slickensides show essentially two-dimensional displacements, and three slip systems were operative—one parallel to the bedding, and two conjugate and symmetric about the bedding (acute angle of 45-50°). A reconstruction using physical analogue models suggests one possible model for the evolution and sequencing of slip of the thrust fault system.

  8. Neotectonic Geomorphology of the Owen Stanley Oblique-slip Fault System, Eastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Watson, L.; Mann, P.; Taylor, F.

    2003-12-01

    Previous GPS studies have shown that the Australia-Woodlark plate boundary bisects the Papuan Peninsula of Papua New Guinea and that interplate motion along the boundary varies from about 19 mm/yr of orthogonal opening in the area of the western Woodlark spreading center and D'Entrecasteaux Islands, to about 12 mm/yr of highly oblique opening in the central part of the peninsula, to about 10 mm/yr of transpressional motion on the western part of the peninsula. We have compiled a GIS database for the peninsula that includes a digital elevation model, geologic map, LANDSAT and radar imagery, and earthquake focal mechanisms. This combined data set demonstrates the regional importance of the 600-km-long Owen Stanley fault system (OSFS) in accommodating interplate motion and controlling the geomorphology and geologic exposures of the peninsula. The OSFS originated as a NE-dipping, reactivated Oligocene-Early Miocene age ophiolitic suture zone between an Australian continental margin and the Melanesian arc system. Pliocene to recent motion on the plate boundary has reactivated motion on the former NE-dipping thrust fault either as a NE-dipping normal fault in the eastern area or as a more vertical strike-slip fault in the western area. The broadly arcuate shape of the OSFS is probably an inherited feature from the original thrust fault. Faults in the eastern area (east of 148° E) exhibit characteristics expected for normal and oblique slip faults including: discontinuous fault traces bounding an upthrown highland block and a downthrown coastal plain or submarine block, transfer faults parallel to the opening direction, scarps facing to both the northeast and southwest, and spatial association with recent volcanism. Faults in the western area (west of 148° E) exibit characteristics expected for left-lateral strike-slip faults including: linear and continuous fault trace commonly confined to a deep, intermontane valley and sinistral offsets and deflections of rivers and streams by 0.5 to 1.2 km. The northern edge of the OSFS merges with the Ramu-Markham strike-slip fault near Lae. SW tilting of the footwall block (Papuan Peninsula) is responsible for the asymmetrical topographic profile of the peninsula and drowned topography along the southern coast of the peninsula.

  9. Detailed ground surface displacement and fault ruptures of the 2016 Kumamoto Earthquake revealed by SAR and GNSS data

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Yarai, H.; Morishita, Y.; Kawamoto, S.; Fujiwara, S.; Nakano, T.

    2016-12-01

    We report ground displacement associated with the 2016 Kumamoto Earthquake obtained by ALOS-2 SAR and GNSS data. For the SAR analyses, we applied InSAR, MAI, and pixel offset methods, which has successfully provided a 3D displacement field showing the widely- and locally-distributed deformation. The obtained displacement field shows clear displacement boundaries linearly along the Futagawa, the Hinagu, and the Denokuchi faults across which the sign of displacement component turns to be opposite, suggesting that the fault ruptures occurred there. Our fault model for the main shock suggests that the main rupture occurred on the Futagawa fault with a right-lateral motion including a slight normal fault motion. Due to the normal faulting movement, the northern side of the active fault subsides with approximately 2 m. The rupture on the Futagawa fault extends into the Aso caldera with slightly shifting the position northward. Of note, the fault plane oppositely dips toward southeast. It may be a conjugate fault against the main fault. In the western side of the Futagawa fault, the slip on the Hinagu fault, in which the Mj6.5 and Mj6.4 foreshocks occurred with a pure right-lateral motion, is also deeply involved with the main shock. This fault rupture released the amount of approximately 30 percent of the total seismic moment. The hypocenter is determined near the fault and its focal mechanism is consistent with the estimated slip motion of this fault plane, maybe suggesting that the rupture started at this fault and proceeded toward the Futagawa fault eastward. Acknowledgements: ALOS-2 data were provided from the Earthquake Working Group under a cooperative research contract with JAXA (Japan Aerospace Exploration Agency). The ownership of ALOS-2 data belongs to JAXA.

  10. Reply to comments by Ahmad et al. on: Shah, A. A., 2013. Earthquake geology of Kashmir Basin and its implications for future large earthquakes International Journal of Earth Sciences DOI:10.1007/s00531-013-0874-8 and on Shah, A. A., 2015. Kashmir Basin Fault and its tectonic significance in NW Himalaya, Jammu and Kashmir, India, International Journal of Earth Sciences DOI:10.1007/s00531-015-1183-1

    NASA Astrophysics Data System (ADS)

    Shah, A. A.

    2016-03-01

    Shah (Int J Earth Sci 102:1957-1966, 2013) mapped major unknown faults and fault segments in Kashmir basin using geomorphological techniques. The major trace of out-of-sequence thrust fault was named as Kashmir basin fault (KBF) because it runs through the middle of Kashmir basin, and the active movement on it has backtilted and uplifted most of the basin. Ahmad et al. (Int J Earth Sci, 2015) have disputed the existence of KBF and maintained that faults identified by Shah (Int J Earth Sci 102:1957-1966, 2013) were already mapped as inferred faults by earlier workers. The early works, however, show a major normal fault, or a minor out-of-sequence reverse fault, and none have shown a major thrust fault.

  11. Horizonal and Vertical Spatial Patterns of Radon and Other Soil-gases Across the El Pilar Fault Trace at Guaraphiche, Edo. Surce (Venezuela)

    NASA Astrophysics Data System (ADS)

    LaBrecque, J. J.

    2002-05-01

    Soil-gases (radon, thoron, carbon dioxide and hydrogen) were measured at 63-cm depths along a transect perpendicular to the rupture (fault trace) from the 1997 Caricao earthquake (Mw=6.9) at Guarapiche, state of Sucre (Venezuela). The transect was about 40 meters long with ten sampling points with the spacings was smaller near the rupture. The shapes of the horizontal spatial patterns for radon (Rn-222), thoron (Rn-220) and total radon (Rn-222+Rn-220) were similar; the gas concentrations increased from both ends of the transect toward the rupture where a dip (valley) occurred. Both carbon dioxide and hydrogen gases showed anomalous values at the same sampling points. Twin peaks (anomalies) had been previously reported and suggested that they were due to blockage in the rupture. We have also determined soil-gases from 25-cm to 155-cm depths near the rupture and at the ends of the transect. The results showed that the soil-gas concentrations were not only higher in the upper levels (less than 65-cm) near the fault trace but were similar or greater than the lower levels. Thus, producing the twin peaks when soil-gas sampling was performed at the 65-cm depth. When the sampling was performed at only 45-cm depth the dip over the rupture was much less and the patterns looked more like a broad doublet peak. In conclusion, one can clearly see that not only positive soil-gas anomalies can occur over a fault trace but also negative ones too. 1) This work was partially funded by a research contract from the Venezuelan National Science Foundation (CONICIT Proyecto S1-95000448). 2) Mailing Address: Centro de Quimica, 8424 NW 56th Street, Suite 00204,Miami, Fl 33166 (USA). E-mail jjlabrec@ivic.ve FAX: +58-212-504-1214

  12. Hydrogeochemical response of groundwater springs during central Italy earthquakes (24 August 2016 and 26-30 October 2016)

    NASA Astrophysics Data System (ADS)

    Archer, Claire; Binda, Gilberto; Terrana, Silvia; Gambillara, Roberto; Michetti, Alessandro; Noble, Paula; Petitta, Marco; Rosen, Michael; Pozzi, Andrea; Bellezza, Paolo; Brunamonte, Fabio

    2017-04-01

    Co-seismic hydrological and chemical response at groundwater springs following strong earthquakes is a significant concern in the Apennines, a region in central Italy characterized by regional karstic groundwater systems interacting with active normal faults capable of producing Mw 6.5 to 7.0 seismic events. These aquifers also provide water supply to major metropolitan areas in the region. On August 24, 2016, a Mw 6.0 earthquake hit Central Italy in the area where Latium joins Umbria, Marche and Abruzzi; this was immediately followed one hour later by a Mw 5.4 shock. The epicenter of the event was located at the segment boundary between the Mt. Vettore and Mt. Laga faults. On October 26, 2016 and on October 30, 2016, three other big shocks (Mw 5.5, Mw 6.0 and Mw 6.5) ruptured again the Vettore Fault and its NW extension. Immediately after Aug. 24, we sampled springs discharging different aquifers in the Rieti area, including the Peschiera spring, which feeds the aqueduct of Rome. Thermal springs connected with deep groundwater flowpaths were also sampled. These springs, sampled previously in 2014 and 2015, provide some pre-earthquake data. Moreover, we sampled 4 springs along the Mt. Vettore fault system: 3 small springs at Forca di Presta, close to the trace of the earthquake surface ruptures, and two in Castel Sant'Angelo sul Nera. The latter are feeding the Nera aqueduct and the Nerea S.p.A. mineral water plant, which also kindly allowed us to collect bottled water samples from the pre-seismic period. The aim of this study is to evaluate the strong earthquake sequence effects on the hydrochemistry and flow paths of groundwater from different aquifer settings based on analysis before and after seismic events. The comparison between the responses of springs ca. 40 km from the epicenter (Rieti basin) and the springs located near the epicenter (Castelsantangelo sul Nera and Forca di Presta) is especially significant for understanding the resilience of groundwater systems in an active tectonic zone because these springs are located near parallel active fault segments within the same extensional regime. The epicentral springs are subject to the direct effects of the shaking and coseismic fault displacement; the more distal ones to the tectonic displacement of large hydrogeologic structures, which affect the chemical composition and flow path even with late responses, lasting for weeks and months after the mainshocks. Temporal trend analysis, based on pre-earthquake and post-earthquake chemical-physical data, point out alteration of different parameters. For example, the lowering of different trace metals in all areas after the first earthquake. These changes could be due to fluctuations in redox equilibria related to degassing and/or interactions with deeper fluid flow. In the Rieti springs, the EC, alkalinity, and trace metals show small transient responses within 1-3 days following the main shocks, however δ2H vs. δ18O remain stable and plot with previous data, indicating no major change in recharge source. Analysis is ongoing and preliminary results will be presented here.

  13. Identification of the Polaris Fault using lidar and shallow geophysical methods

    USGS Publications Warehouse

    Hunter, Lewis E.; Powers, Michael H.; Burton, Bethany L.

    2017-01-01

    As part of the U.S. Army Corps of Engineers' (USACE) Dam Safety Assurance Program, Martis Creek Dam near Truckee, CA, is under evaluation for earthquake and seepage hazards. The investigations to date have included LiDAR (Light Detection and Ranging) and a wide range of geophysical surveys. The LiDAR data led to the discovery of an important and previously unknown fault tracing very near and possibly under Martis Creek Dam. The geophysical surveys of the dam foundation area confirm evidence of the fault in the area.

  14. Structural analysis of Nalagarh lobe, NW Himalaya: implication of thrusting across tectonic edge of NW limb of Nahan salient, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Bhakuni, S. S.; Philip, G.; Suresh, N.

    2017-07-01

    The Main Boundary Fault (MBF), convex towards southwest, forms the leading edge of the Nahan salient. Near the southern end of an oblique ramp, a lobe-shaped physiographic front, named in this work as Nalagarh lobe, has developed across NW limb of salient. The lobe has formed across the MBF that separates the hanging wall Lower Tertiary Dharmsala rocks from the footwall Upper Tertiary Siwalik rocks and overlying Quaternaries. In front of lobe, thrust fault splays (Splay-1 and Splay-2) and associated tectonic fabrics have developed within the Late Pleistocene fan deposit. Structural elements developed across the front of Nalagarh lobe are analysed with reference to evolution of lobe. An unweathered 15-m-high hanging wall or wedge top forms the uplifted and rejuvenated bedrock fault scarp of the MBF. Below the MBF, the fan deposit has underthrust along Splay-1. Later the Splay-2 formed within fan deposit near south of Splay-1. Geometry of the overturned limb of tight to isoclinal fault propagation fold, formed on Splay-2 plane, suggests that the fold formed by normal drag, produced by intermittent fault-slips along Splay-2. The displacement along Splay-2 offset the marker bed to 1 m by which some clasts rotated parallel to the traces of brittle axial planes of fold. The variable fold geometry and style of deformation are analysed along length of thrust splays for 5 km. It is revealed that the lobe is bounded by transverse thrust faults along its NW and SE margins. The geometry of salient and oblique ramp suggests that the transverse thrust faults and associated transverse folds formed by right-lateral displacement along the NW limb of the salient. Marking the northern margin of the intermontane piggyback basin of Pinjaur dun, the MBF is interpreted to be an out-of-sequence thrust that has brought up the Lower Tertiary Dharmsala rocks over the Late Pleistocene fan deposit. The geometry of lobe and its bounding transverse faults suggest that faults are intimately associated with the kinematics of the transition between the Nahan salient and Kangra recess. The transition is a transfer zone forming a long pre-Himalayan lineament across which the stratigraphic set of the Tethys and Lesser Himalaya is different. The study suggests that the lateral ramp on the Main Himalayan Thrust does not exist beneath the apex and also beneath the SE limb of the salient in the Sub-Himalayan region. This ramp should be present only beneath near end point of SW limb of the Nahan salient.

  15. Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: New insights from seismic data

    USGS Publications Warehouse

    Taylor, M.H.; Dillon, William P.; Pecher, I.A.

    2000-01-01

    The Blake Ridge Diapir is the southernmost of a line of salt diapirs along the Carolina trough. Diapirs cause faulting of the superjacent sediments, creating pathways for migration of fluids and gas to the seafloor. We analyzed reflection seismic data from the Blake Ridge Diapir, which is located in a region with known abundant gas hydrate occurrence. A striking feature in these data is a significant shallowing of the base of gas hydrate stability (BGHS) over the center of the diapir. The seafloor is warped up by about 100 m above the diapir, from about 2300 m to about 2200 m. The BGHS, as indicated by a bottom simulating reflection (BSR), is about 4.5 s off the flanks of the diapir, rising to about 4.15 s at the center. Above the diapir, a fault system appears to rise vertically from the BGHS to about 0.05 s below the seafloor (40-50 m); it then diverges into several steeply dipping faults that breach the seafloor and cover an area ~700 m in diameter. Other secondary faults diverge from the main fault or emerge directly from the BGHS near the crest of the diapir. Gas and other fluids may migrate upward through the faults. We performed complex trace analysis to compare the reflection strength and instantaneous frequency along individual reflections. A low-frequency anomaly over the center of the diapir indicates high seismic attenuation. This is interpreted to be caused by migration of fluids (probably methane) along fault pathways. The migration of gas (i.e. probably mainly methane) through the gas hydrate stability zone is not yet understood. We speculate that pore fluids in the faults may be too warm and too salty to form gas hydrate, even at depths where gas hydrate is stable away from the diapir. Alternatively, gas hydrates may seal the fault walls such that water supply is too low to transform all the gas into gas hydrates. The shallowing of the BSR may reflect increased heatflow above the diapir either caused by the high thermal conductivity of the underlying salt or by advective heat transport along with fluids. High pore water salinity shifts the gas hydrate stability to lower temperatures and may also play a significant role in BSR shallowing. We, therefore, investigated the possible effect of pore water salinity on shallowing of the BSR. We found that BSR shallowing may theoretically be entirely caused by increased salinity over the diapir, although geologically this would not be reasonable. This observation demonstrates the potential importance of pore water salinity for lateral variations of BSR depths, in particular, above salt structures: (C) 2000 Elsevier Science B.V.

  16. Near-surface structure of the Central Scandinavian Caledonides in northern Trøndelag, Norway, from correlation of seismic and MT profiles using gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Ebbing, J.; Goerigk, L.; Nasuti, A.; Roberts, D.; Korja, T. J.; Smirnov, M.

    2014-12-01

    The deep geology of northern Trøndelag is somewhat speculative as the Central Scandinavian Caledonides are intersected by the Møre-Trøndelag Fault Complex (MTFC) and only a few depth-penetrating geophysical profiles exist. Here, we correlate the mapped geological units and faults between a seismic-reflection profile and a MT profile. The seismic-reflection data were acquired in 5 segments over the period 1986-1990. The westernmost section of the seismic profile is dominated by a complex pattern of reflections and diffractions. This type of pattern is typical of polydeformed terranes with a mixture of contrasting felsic and mafic lithologies. The two steeply-dipping strands of the MTFC (Hitra-Snåsa and Verran faults) that transect the profile do not show any distinctive signature in the seismic data. The MT data were acquired in 2007 from the Swedish border to the Norwegian coast. The conductivity profile shows some distinct vertical changes as well as changes from the near-surface to shallow depths. The strands of the MTFC show especially a distinctive change in conductivity. The two profiles are almost parallel but separated by 100 km. To correlate the structures seen on both profiles, we have applied lineament analysis and 3D modelling of the gravity and magnetic field. The tilt derivative of the magnetic and isostatic gravity anomaly clearly allows us to identify and link the main geological boundaries between the profiles and to trace the strands of the MTFC from one profile to the other. This trend analysis indicates that at least the Verran Fault visibly modifies the pattern of seismic reflections. However, the main change in crustal lithology occurs farther to the west, almost at the coast where the Tarva Fault intersects the MT profile. This integrated analysis shows the benefit of combining gravity and magnetic interpretations with MT and seismic data to enable us to understand the near-surface geology and structure in more detail.

  17. Improved 3D seismic images of dynamic deformation in the Nankai Trough off Kumano

    NASA Astrophysics Data System (ADS)

    Shiraishi, K.; Moore, G. F.; Yamada, Y.; Kinoshita, M.; Sanada, Y.; Kimura, G.

    2016-12-01

    In order to improve the seismic reflection image of dynamic deformation and seismogenic faults in the Nankai trough, the 2006 Kumano 3D seismic dataset was reprocessed from the original field records by applying advanced technologies a decade after the data acquisition and initial processing. The 3D seismic survey revealed the geometry of megasplay fault system. However, there were still unclear regions in the accretionary prism beneath from Kumano basin to the outer ridge, because of sea floor multiple reflections and noise caused by the Kuroshio current. For the next stage of deep scientific drilling into the Nankai trough seismogenic zone, it is essential to know exactly the shape and depth of the megasplay, and fine structures around the drilling site. Three important improvements were achieved in data processing before imaging. First, full deghosting and optimized zero phasing techniques could recover broadband signals, especially in low frequency, by compensating for ghost effects at both source and receiver, and removing source bubbles. Second, the multiple reflections better attenuated by applying advanced techniques in combination, and the strong noise caused by the Kuroshio were attenuated carefully. Third, data regularization by means of the optimized 4D trace interpolation was effective both to mitigate non-uniform fold distribution and to improve data quality. Further imaging processes led to obvious improvement from previous results by applying PSTM with higher order correction of VTI anisotropy, and PSDM based on the velocity model built by reflection tomography with TTI anisotropy. Final reflection images show new geological aspects, such as clear steep dip faults around the "notch", and fine scale faults related to main thrusts in frontal thrust zone. The improved images will highly contribute to understanding the deformation process in the old accretionary prism and seismogenic features related to the megasplay faults.

  18. Pre-Earthquake Paleoseismic Trenching in 2014 Along a Mapped Trace of the West Napa Fault

    NASA Astrophysics Data System (ADS)

    Rubin, R. S.; Dawson, T. E.; Mareschal, M.

    2014-12-01

    Paleoseismic trenching in July 2014 across a previously mapped trace of the West Napa fault in eastern Alston Park (EAP) was undertaken with NEHRP funding as part of an effort to better characterize activity of the fault for regional seismic hazard assessments, and as part of an Alquist-Priolo Earthquake Fault Zoning (APEFZ) evaluation. The trench was excavated across a prominent escarpment that had been interpreted by others to represent evidence of Holocene fault activity, based on faults logged in an ~1-m-deep natural drainage exposure. Our trench was located ~3 m south of the drainage exposure and encompassed the interpreted fault zone, and beyond. The trench exposed the same surficial units as the natural exposure, as well as additional Pleistocene and older stratigraphy at depth. Escarpment parallel channeling was evident within deposits along the base of the slope. Faulting was not encountered, and is precluded by unbroken depositional contacts. Our preferred interpretation is that the escarpment in EAP is a result of fluvial and differential erosion, which is consistent with existence of channels along the base of the escarpment and a lack of faulting. The location of surface rupture of the South Napa Earthquake (SNE) of 8/24/14 occurred on fault strands south and west of this study and crosses Alston Park approximately 800 m west of our trench site, at its nearest point. Pre- and post-earthquake UAVSAR from NASA's JPL been useful in identifying major and minor ruptures of the SNE. Based on the imagery, a subtle lineament has been interpreted upslope from the trench. However, field observations along this feature yielded no visible surface deformation and the origin of this lineament is uncertain. The fault rupture pattern expressed by the SNE, as reflected by detailed field mapping and UAVSAR imagery, provides a unique opportunity to better understand the complex nature of the West Napa fault. Our study illustrates the value of subsurface investigations as part of fault characterization in order to accurately assess geomorphic features that may, or may not, be formed by tectonic processes. Selection of additional trench locations will be aided by soon-to-be-released post-earthquake LiDAR imagery and existing UAVSAR imagery, with the ultimate goal of preparing an accurate APEFZ in this area.

  19. SeaMARC II mapping of transform faults in the Cayman Trough, Caribbean Sea

    USGS Publications Warehouse

    Rosencrantz, Eric; Mann, Paul

    1992-01-01

    SeaMARC II maps of the southern wall of the Cayman Trough between Honduras and Jamaica show zones of continuous, well-defined fault lineaments adjacent and parallel to the wall, both to the east and west of the Cayman spreading axis. These lineaments mark the present, active traces of transform faults which intersect the southern end of the spreading axis at a triple junction. The Swan Islands transform fault to the west is dominated by two major lineaments that overlap with right-stepping sense across a large push-up ridge beneath the Swan Islands. The fault zone to the east of the axis, named the Walton fault, is more complex, containing multiple fault strands and a large pull-apart structure. The Walton fault links the spreading axis to Jamaican and Hispaniolan strike-slip faults, and it defines the southern boundary of a microplate composed of the eastern Cayman Trough and western Hispaniola. The presence of this microplate raises questions about the veracity of Caribbean plate velocities based primarily on Cayman Trough opening rates.

  20. Characterizing a large shear-zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform

    USGS Publications Warehouse

    Maercklin, N.; Bedrosian, P.A.; Haberland, C.; Ritter, O.; Ryberg, T.; Weber, M.; Weckmann, U.

    2005-01-01

    Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a ???10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1-4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others. Copyright 2005 by the American Geophysical Union.

  1. Occurrences of uranium at Clinton, Hunterdon County, New Jersey

    USGS Publications Warehouse

    McKeown, F.A.; Klemic, H.; Choquette, P.W.

    1954-01-01

    An occurrence of uranium at Clinton, Hunterdon County, N. J. was first brought to the attention of the U.S. Geological Survey when Mr. Thomas L. Eak of Avenel, N. J. submitted to the Survey a sample containing 0.068 percent uranium. Subsequent examinations of the area around Clinton indicated that detailed mapping and study were warranted. The uranium occurrences at Clinton are in or associated with fault zones in the Kittatinny limestone of Cambro-Ordovician age. The limestone generally light gray, thick bedded, and dolomitic; chert is common but not abundant. Regionally and locally, faults are the most significant structural features. The local faults at Clinton are the loci for most of the uranium. The largest fault can be traced for about 700 feet and is radioactive everywhere it crops out. Samples from this fault contain as much as 0.038 percent uranium; the average content is about 0.010 percent uranium. Uranium also occurs disseminated in two 4-inch layers of black feldspathic dolomite and in several zones of residual soil derived from the Kittatinny limestone. The black layers contain as much as 0.046 percent uranium and can be traced only about 20 feet along strike. They are cut by a small fault that is also radioactive. The radioactive soil zones are roughly elongated parallel to bedding. Soil from them contains up to 0.008 percent uranium. The uranium occurrences are best explained by a supergene origin. The sampling, mapping, and radioactivity testing of uranium occurrences at Clinton indicate they are too low grade to be of current economic interest.

  2. Tectonic Constraints on the Evolution of Geothermal Systems in the Central Andean Volcanic Zone (CAVZ)

    NASA Astrophysics Data System (ADS)

    Veloso, E. E.; Tardani, D.; Aron, F.; Elizalde, J. D.; Sanchez-Alfaro, P.; Godoy, B.

    2017-12-01

    South of 19°S, geothermal fields and Pliocene-to-Holocene volcanic centers of the Central Andean Volcanic Zone are spatially associated with distinct, large-scale fault systems disrupting the volcanic arc, which control the architecture and dynamics of the fluids reservoirs at shallow crustal levels. Based on an extensive compilation of structural, lithological and isotopic data, and satellite imagery band-ratio analyses, we produced detailed maps of 13 areas comprising 19 identified and/or potential geothermal fields, to examine if particular local-scale tectonic configurations are associated to fluids migrating from different crustal levels. We defined three main tectonic environments according to the specific, kilometer-scale structural arrangement and its spatial relation to the geothermal surface manifestations. T1, dominated by left-lateral, pure strike-slip motion on a NW-trending duplex-like geometry with geothermal fields located along the faults - in turn distributed into five major subparallel zones cutting across the orogenic belt between ca. 20° and 27°S. T2, dominated by shortening on a series of N-trending thrust faults and fault-propagated folds, cut and displaced by the above mentioned NW-trending faults, with geothermal fields hosted at fault intersections and at fold hinges. And T3, characterized by transtension accommodated by NW-to-WNW-trending left-lateral/normal faults, with hot-springs lying along the fault traces. Interestingly, each of the independently defined tectonic environments has distinctive helium (in fluids) and strontium (in lavas) isotopic signatures and estimated geothermal reservoir temperatures. T1 shows a large 4He contribution, low 87Sr/86Sr ratio and temperatures varying between ca. 220°-310°C; T3 low 4He and high 87Sr/86Sr ratio and temperature (260°-320°C); T2 isotopic values fall between T1 and T3, yet showing the lowest (130°-250°C) temperatures. We suggest that these particular isotopic signatures are due to a strong structural control on the hot reservoir location and meteoric water content, T3 allowing deeper hot fluid provenances and T1 more meteoric influx.

  3. Fault-Related Sanctuaries

    NASA Astrophysics Data System (ADS)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy). European Union of Geophysics Congress, Strasbourg, March 1999. Piccardi L., 2000: Active faulting at Delphi (Greece): seismotectonic remarks and a hypothesis for the geological environment of a myth. Geology, 28, 651-654. Piccardi L., 2001: Seismotectonic Origin of the Monster of Loch Ness. Earth System Processes, Joint Meeting of G.S.A. and G.S.L., Edinburgh, June 2001.

  4. Fluid Characteristics and Evolution of Chelungpu fault of Taiwan

    NASA Astrophysics Data System (ADS)

    Song, S. R.

    2017-12-01

    We analyzed geochemical characteristics, such as hydrogen and oxygen isotopes, and ionic concentrations, of fluid samples retrieved from various depth along boreholes of the Hole A and Hole B of Taiwan Chelungpu fault Drilling Project(TCDP) to trace the fluid sources. The results show that the source of fluid in the Hole B is mainly the tap water, while there are two probable sources in the Hole A owing to the abrupt shift of ionic concentrations at the depth of 200-300 m. The shallower fluid might be from the leakage above the depth of 300 m and is characteristic of lower ionic concentrations and the isotopic ratios are close to those of adjacent river water. However, the deeper fluid should be the thermal water from Kueichulin formation because of high ionic concentrations, especially HCO3-, and higher oxygen isotope, which suggests higher temperature and more isotope exchange. Two sources of fluid of the Hole A are representative of the fluid systems in the hanging wall and foot wall respectively. The characteristics of fluids in the Hole A imply that the fault zone serves as a barrier in the inter-seismic period, resulting in distinctly different fluid between the Hanging wall and the foot wall. The frequent occurrence and the distribution of calcite veins provide the evidence of the upwelling of HCO3-rich fluid of Kueichulin formation and indicate that the fault served as fluid conduit during faulting and allowed the fluid flow across the fault zone to precipitate calcite veins in fractures of the hanging wall. Thus, we can deduce the mechanism of local groundwater flow during different stages of fault development by evidences such as calcite veins distribution, regional groundwater geology, and fluids characteristics in boreholes of the Hole-A and Hole B. During inter-seismic period, groundwater flows below and above the fault zone are separated by the impermeable fault gouge layer. In co-seismic time, faulting breaks the gouge layer, providing openings that let the over-pressured thermal water which contained high concentration of bicarbonate ion to surge up. After co-seismic period, the gouge layer is sealed again, residual thermal water which contained high concentration of bicarbonate ion in the hanging wall gradually precipitated calcite in fractures and the closer precipitation took place, the more calcite veins.

  5. Repetition of large stress drop earthquakes on Wairarapa fault, New Zealand, revealed by LiDAR data

    NASA Astrophysics Data System (ADS)

    Delor, E.; Manighetti, I.; Garambois, S.; Beaupretre, S.; Vitard, C.

    2013-12-01

    We have acquired high-resolution LiDAR topographic data over most of the onland trace of the 120 km-long Wairarapa strike-slip fault, New Zealand. The Wairarapa fault broke in a large earthquake in 1855, and this historical earthquake is suggested to have produced up to 18 m of lateral slip at the ground surface. This would make this earthquake a remarkable event having produced a stress drop much higher than commonly observed on other earthquakes worldwide. The LiDAR data allowed us examining the ground surface morphology along the fault at < 50 cm resolution, including in the many places covered with vegetation. In doing so, we identified more than 900 alluvial features of various natures and sizes that are clearly laterally offset by the fault. We measured the about 670 clearest lateral offsets, along with their uncertainties. Most offsets are lower than 100 m. Each measurement was weighted by a quality factor that quantifies the confidence level in the correlation of the paired markers. Since the slips are expected to vary along the fault, we analyzed the measurements in short, 3-5 km-long fault segments. The PDF statistical analysis of the cumulative offsets per segment reveals that the alluvial morphology has well recorded, at every step along the fault, no more than a few (3-6), well distinct cumulative slips, all lower than 80 m. Plotted along the entire fault, the statistically defined cumulative slip values document four, fairly continuous slip profiles that we attribute to the four most recent large earthquakes on the Wairarapa fault. The four slip profiles have a roughly triangular and asymmetric envelope shape that is similar to the coseismic slip distributions described for most large earthquakes worldwide. The four slip profiles have their maximum slip at the same place, in the northeastern third of the fault trace. The maximum slips vary from one event to another in the range 7-15 m; the most recent 1855 earthquake produced a maximum coseismic slip of 15 × 2 m at the ground surface. Our results thus confirm that the Wairarapa fault breaks in remarkably large stress drop earthquakes. Those repeating large earthquakes share both similar (rupture length, slip-length distribution, location of maximum slip) and distinct (maximum slip amplitudes) characteristics. Furthermore, the seismic behavior of the Wairarapa fault is markedly different from that of nearby large strike-slip faults (Wellington, Hope). The reasons for those differences in rupture behavior might reside in the intrinsic properties of the broken faults, especially in their structural maturity.

  6. New Insight into the Role of Tectonics versus Gravitational Deformation in Development of Surface Ruptures along the Ragged Mountain Fault, Katalla, Alaska USA: Applications of High-Resolution Three-Dimensional Terrain Models

    NASA Astrophysics Data System (ADS)

    Heinlein, S. N.; Pavlis, T. L.; Bruhn, R. L.; McCalpin, J. P.

    2017-12-01

    This study evaluates a surface structure using 3D visualization of LiDAR and aerial photography then analyzes these datasets using structure mapping techniques. Results provide new insight into the role of tectonics versus gravitational deformation. The study area is located in southern Alaska in the western edge of the St. Elias Orogen where the Yakutat microplate is colliding into Alaska. Computer applications were used to produce 3D terrain models to create a kinematic assessment of the Ragged Mountain fault which trends along the length of the east flank of Ragged Mountain. The area contains geomorphic and structural features which are utilize to determine the type of displacement on the fault. Previous studies described the Ragged Mountain fault as a very shallow (8°), west-dipping thrust fault that reactivated in the Late Holocene by westward-directed gravity sliding and inferred at least 180 m of normal slip, in a direction opposite to the (relative) eastward thrust transport of the structure inferred from stratigraphic juxtaposition. More recently this gravity sliding hypothesis has been questioned and this study evaluates one of these alternative hypotheses; that uphill facing normal fault-scarps along the Ragged Mountain fault trace represent extension above a buried ramp in a thrust and is evaluated with a fault-parallel flow model of hanging-wall folding and extension. Profiles across the scarp trace were used to illustrate the curvature of the topographic surfaces adjacent to the scarps system and evaluate their origin. This simple kinematic model tests the hypothesis that extensional fault scarps at the surface are produced by flexure above a deeper ramp in a largely blind thrust system. The data in the context of this model implies that the extensional scarp structures previously examined represent a combination of erosionally modified features overprinted by flexural extension above a thrust system. Analyses of scarp heights along the structure are combined with the model to suggest a decrease in Holocene slip from south to north along the Ragged Mountain fault from 11.3 m to 0.2 m, respectively.

  7. Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Bürgmann, R.; Fattahi, H.; Nadeau, R. M.; Taira, T.; Johnson, C. W.; Johanson, I.

    2015-04-01

    The Hayward and Calaveras Faults, two strike-slip faults of the San Andreas System located in the East San Francisco Bay Area, are commonly considered independent structures for seismic hazard assessment. We use Interferometric Synthetic Aperture RADAR to show that surface creep on the Hayward Fault continues 15 km farther south than previously known, revealing new potential for rupture and damage south of Fremont. The extended trace of the Hayward Fault, also illuminated by shallow repeating micro-earthquakes, documents a surface connection with the Calaveras Fault. At depths greater than 3-5 km, repeating micro-earthquakes located 10 km north of the surface connection highlight the 3-D wedge geometry of the junction. Our new model of the Hayward and Calaveras Faults argues that they should be treated as a single system with potential for earthquake ruptures generating events with magnitudes greater than 7, posing a higher seismic hazard to the East San Francisco Bay Area than previously considered.

  8. Crustal Seismicity and Geomorphic Observations of the Chiripa-Haciendas Fault System: The Guanacaste Volcanic Arc Sliver of Western Costa Rica

    NASA Astrophysics Data System (ADS)

    Lewis, J. C.; Montero Pohly, W. K.; Araya, M. C.

    2017-12-01

    It has recently been shown that contemporary northwest motion of the Nicoya Peninsula of Costa Rica reflects a tectonic sliver that includes much of the upper-plate arc, referred to as the Guanacaste Volcanic Arc Sliver (GVAS). Here we characterize historical seismicity and geomorphic expressions of faults that define the northeastern margin of the GVAS. Several crustal earthquakes and their aftershocks provide constraints on the geometry and/or kinematics of the fault system. These include the Armenia earthquake of July 12, 2011, the Bijagua earthquake of January 27, 2002, the Tilarán earthquake of April 13, 1973 and two much older events. We summarize these earthquakes in the context of recent fault mapping and focal mechanism solutions, and suggest that most of the deformation can be explained by slip on steeply dipping NW-striking fault planes accommodating dextral slip. Streams that cross the major fault traces we have mapped also show deflections consistent with dextral slip. These include map-view apparent offsets of 6.5 km for the Haciendas River, 1.0 km for the Orosi River and 0.6 km for the Pizote River. Although preservation is poor, we document stream terrace risers that reveal truncations and/or offsets consistent with dextral slip. Additional constraints on the fault system are apparent as it is traced into Lake Nicaragua. Previous workers have shown that earthquake clusters accommodate a combination of dextral slip on NW-strike faults and sinistral slip NE-strike faults, the latter described as part of a system of bookshelf fault blocks. Whether the northeastern margin of the GVAS under Lake Nicaragua is a single fault strand or an array of bookshelf blocks remains an open question. An equally important gap in our understanding is the kinematic link of the fault system to the east where the GVAS originates. Our results set the stage for expanded studies that will be essential to understanding the relative contributions of Cocos Ridge collision and coupling between the North American plate and the Caribbean Plate in driving the sliver motion. They are also important in the context of natural hazards, both seismic ground accelerations and mass-wasting. This was made clear by the 1973 Tilarán earthquake, which included fatalities, and several damaging moderate-magnitude crustal earthquakes on 3 July 2016.

  9. The 2016 Mw7.0 Kumamoto, Japan earthquake: the rupture propagation under extensional stress

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shan, X.; Zhang, G.; Gong, W.

    2016-12-01

    On April 16, 2016, the Kumamoto city was hit by an Mw7.0 earthquake, the largest earthquake since 1900 in the central part of Kyushu Island in Japan. It is an event with two foreshocks and rather complex source faults and surface rupture scarps. The Mw7.0 Kumamoto earthquake and its foreshocks and aftershocks occurred on the Futagawa and Hinagu faults, which are previously mapped and formed the southwest portion of the median tectonic line on Kyushu Island. These faults are mainly controlled by extensional and right-lateral shear stress. In this study, we obtained the deformation filed of the Kumamoto earthquake using both of descending and ascending Sentinel-1A data. We then invert the fault slip distribution based on the displacements obtained by InSAR. A three-segment fault model is established by trial and error. We analyze the rupture propagation and the conclusions are listed as following: The Mw 7.0 earthquake is a right-lateral striking event with a slight normal component. Most of the slip distributed on the Futagawa fault segment, with a maximum slip of 4.9 m at 5 km depth below the surface. The energy released on this Futagawa fault segment is equivalent to an Mw6.9 event. The slip distribution on the Hinagu fault segment is also right-lateral, but with a maximum slip of 2 m. Compared to the southern two segments, the northern source fault segment has the steepest dipping segment, which is almost vertical, with a dip as high as 80°; The normal component of the Kumamoto event is controlled by extensional stress due to the tectonic background. The Beppu-Shimabara half graben is the largest extensional structure on Kyushu Island and its formation could strongly be affected by Philippine Sea slab (PHS) convergence and Okinawa Trough extension, so we argue the Kumamoto event maybe exhibits the concrete manifestation of Okinawa Trough extension to Kyushu Island; Continuous surface rupture trace is observed from InSAR coseismic deformation and field investigation, based on which we confirm that the Kumamoto event jumped a 1 km wide step over of the Kiyama fault and two 0.6km wide gaps. However, the mainshock do not jump a 1.7 km wide step over of the Futagawa fault, so its magnitude moment is constrained. In addition, both the Mw6.4 and Mw6.5 events could not go through a 2 km wide at the northeast termination of the Hinagu faults.

  10. Mixed-Mode Slip Behavior of the Altotiberina Low-Angle Normal Fault System (Northern Apennines, Italy) through High-Resolution Earthquake Locations and Repeating Events

    NASA Astrophysics Data System (ADS)

    Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Monachesi, Giancarlo

    2017-12-01

    We generated a 4.5-year-long (2010-2014) high-resolution earthquake catalogue, composed of 37,000 events with ML < 3.9 and MC = 0.5 completeness magnitude, to report on the seismic activity of the Altotiberina (ATF) low-angle normal fault system and to shed light on the mechanical behavior and seismic potential of this fault, which is capable of generating a M7 event. Seismicity defines the geometry of the fault system composed of the low-angle (15°-20°) ATF, extending for 50 km along strike and between 4 and 16 km at depth showing an 1.5 km thick fault zone made of multiple subparallel slipping planes, and a complex network of synthetic/antithetic higher-angle segments located in the ATF hanging wall (HW) that can be traced along strike for up to 35 km. Ninety percent of the recorded seismicity occurs along the high-angle HW faults during a series of minor, sometimes long-lasting (months) seismic sequences with multiple MW3+ mainshocks. Remaining earthquakes (ML < 2.4) are released instead along the low-angle ATF at a constant rate of 2.2 events per day. Within the ATF-related seismicity, we found 97 clusters of repeating earthquakes (RE), mostly consisting of doublets occurring during short interevent time (hours). RE are located within the geodetically recognized creeping portions of the ATF, around the main locked asperity. The rate of occurrence of RE seems quite synchronous with the ATF-HW seismic release, suggesting that creeping may guide the strain partitioning in the ATF system. The seismic moment released by the ATF seismicity accounts for 30% of the geodetic one, implying aseismic deformation. The ATF-seismicity pattern is thus consistent with a mixed-mode (seismic and aseismic) slip behavior.

  11. The Palos Verdes Fault offshore southern California: late Pleistocene to present tectonic geomorphology, seascape evolution and slip rate estimate based on AUV and ROV surveys

    USGS Publications Warehouse

    Brothers, Daniel S.; Conrad, James E.; Maier, Katherine L.; Paull, Charles K.; McGann, Mary L.; Caress, David W.

    2015-01-01

    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. To characterize the near-seafloor fault morphology, tectonic influences on continental slope sedimentary processes and late Pleistocene to present slip rate, a grid of high-resolution multibeam bathymetric data, and chirp subbottom profiles were acquired with an autonomous underwater vehicle (AUV) along the main trace of PVF in water depths between 250 and 600 m. Radiocarbon dates were obtained from vibracores collected using a remotely operated vehicle (ROV) and ship-based gravity cores. The PVF is expressed as a well-defined seafloor lineation marked by subtle along-strike bends. Right-stepping transtensional bends exert first-order control on sediment flow dynamics and the spatial distribution of Holocene depocenters; deformed strata within a small pull-apart basin record punctuated growth faulting associated with at least three Holocene surface ruptures. An upper (shallower) landslide scarp, a buried sedimentary mound, and a deeper scarp have been right-laterally offset across the PVF by 55 ± 5, 52 ± 4 , and 39 ± 8 m, respectively. The ages of the upper scarp and buried mound are approximately 31 ka; the age of the deeper scarp is bracketed to 17–24 ka. These three piercing points bracket the late Pleistocene to present slip rate to 1.3–2.8 mm/yr and provide a best estimate of 1.6–1.9 mm/yr. The deformation observed along the PVF is characteristic of strike-slip faulting and accounts for 20–30% of the total right-lateral slip budget accommodated offshore Southern California.

  12. Analog modeling and kinematic restoration of inverted hangingwall synclinal basins developed above syn-kinematic salt: Application to the Lusitanian and Parentis basins

    NASA Astrophysics Data System (ADS)

    Roma, Maria; Vidal-Royo, Oskar; McClay, Ken; Ferrer, Oriol; Muñoz, Josep Anton

    2017-04-01

    The formation of hagingwall syncline basins is basically constrained by the geometry of the basement-involved fault, but also by salt distribution . The formation of such basins is common around the Iberian Peninsula (e.g. Lusitanian, Parentis, Basque-Cantabian, Cameros and Organyà basins) where Upper Triassic (Keuper) salt governed their polyphasic Mesozoic extension and their subsequent Alpine inversion. In this scenario, a precise interpretation of the sub-salt faults geometry and a reconstruction of the initial salt thickness are key to understand the kinematic evolution of such basins. Using an experimental approach (sandbox models) and these Mesozoic basins as natural analogues, the aim of this work is to: 1) investigate the main parameters that controlled the formation and evolution of hagingwall syncline basins analyzing the role of syn-kinematic salt during extension and subsequent inversion; and 2) quantify the deformation and salt mobilization based on restoration of analog model cross sections. The experimental results demonstrate that premature welds are developed by salt deflation with consequent upward propagation of the basal fault in salt-bearing rift systems with a large amount of extension,. In contrast, thicker salt inhibits the upward fault propagation, which results into a further salt migration and development of a hagingwall syncline basins flanked by salt walls. The inherited extensional architecture as well as salt continuity dramatically controlled subsequent inversion. Shortening initially produced the folding and the uplift of the synclinal basins. Minor reverse faults form as a consequence of overtightening of welded diapir stems. However, no trace of reverse faulting is found around diapirs stems, as ductile unit is still available for extrusion, squeezing and accommodation of shortening. Restoration of the sandbox models has demonstrated that this is a powerful tool to unravel the complex structures in the models and this may similarly be applied to the seismic interpretation of the natural complex salt structures.

  13. Subsidence monitoring with geotechnical instruments in the Mexicali Valley, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Glowacka, E.; Sarychikhina, O.; Márquez Ramírez, V. H.; Robles, B.; Nava, F. A.; Farfán, F.; García Arthur, M. A.

    2015-11-01

    The Mexicali Valley (northwestern Mexico), situated in the southern part of the San Andreas fault system, is an area with high tectonic deformation, recent volcanism, and active seismicity. Since 1973, fluid extraction, from the 1500-3000 m depth range, at the Cerro Prieto Geothermal Field (CPGF), has influenced deformation in the Mexicali Valley area, accelerating the subsidence and causing slip along the traces of tectonic faults that limit the subsidence area. Detailed field mapping done since 1989 (González et al., 1998; Glowacka et al., 2005; Suárez-Vidal et al., 2008) in the vicinity of the CPGF shows that many subsidence induced fractures, fissures, collapse features, small grabens, and fresh scarps are related to the known tectonic faults. Subsidence and fault rupture are causing damage to infrastructure, such as roads, railroad tracks, irrigation channels, and agricultural fields. Since 1996, geotechnical instruments installed by CICESE (Centro de Investigación Ciéntifica y de Educación Superior de Ensenada, B.C.) have operated in the Mexicali Valley, for continuous recording of deformation phenomena. Instruments are installed over or very close to the affected faults. To date, the network includes four crackmeters and eight tiltmeters; all instruments have sampling intervals in the 1 to 20 min range. Instrumental records typically show continuous creep, episodic slip events related mainly to the subsidence process, and coseismic slip discontinuities (Glowacka et al., 1999, 2005, 2010; Sarychikhina et al., 2015). The area has also been monitored by levelling surveys every few years and, since the 1990's by studies based on DInSAR data (Carnec and Fabriol, 1999; Hansen, 2001; Sarychikhina et al., 2011). In this work we use data from levelling, DInSAR, and geotechnical instruments records to compare the subsidence caused by anthropogenic activity and/or seismicity with slip recorded by geotechnical instruments, in an attempt to obtain more information about the process of fault slip associated with subsidence.

  14. Cenozoic tectonic events at the border of the Paraná Basin, São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Fernandes, A. J.; Amaral, G.

    2002-03-01

    In the last decade, even in areas that had been considered tectonically stable, a great amount of Cenozoic, including the Quaternary period, structural data have been collected throughout Brazil. The main goal of this study is to describe the Cenozoic structures and tectonic evolution of an area that is located at the border of the Paraná Basin in the state of São Paulo. The research methods consisted of the analysis of: (1) brittle structure data, mainly conjugate fractures and fault slip data; (2) lineaments traced on air photos and TM Landsat and radar images; and (3) a second-order base surface map. The study area, during the Cenozoic, has been affected by five strike-slip tectonic events, which generated mainly strike-slip faults, and secondarily normal and reverse ones. The events were named, from the oldest to the youngest, E1-NE, E2-EW, E3-NW, E4-NS, and E5-NNE; and the maximum principal stresses σ1 strike approximately NE-SW, E-W, NW-SE, N-S, and NNE-SSW, respectively. Event E2-EW seems to have been contemporaneous with the deposition of the Rio Claro Formation, the most important Cenozoic deposit of probable Neogenic age, and also to have controlled the distribution of its deposits. Event E3-NW was the strongest one in the area, as is pointed out by structural data, and the maximum principal stress σ1 of event E5-NNE is partially concordant with the orientation of σH-max of well break-out data in the Paraná Basin, suggesting a Neotectonic activity for this event. Finally, discontinuities parallel and correlated to the directions of strike-slip faults of the Cenozoic events seem to have actively controlled the sculpturing of the relief in the study area.

  15. Audio-frequency magnetotelluric imaging of the Hijima fault, Yamasaki fault system, southwest Japan

    NASA Astrophysics Data System (ADS)

    Yamaguchi, S.; Ogawa, Y.; Fuji-Ta, K.; Ujihara, N.; Inokuchi, H.; Oshiman, N.

    2010-04-01

    An audio-frequency magnetotelluric (AMT) survey was undertaken at ten sites along a transect across the Hijima fault, a major segment of the Yamasaki fault system, Japan. The data were subjected to dimensionality analysis, following which two-dimensional inversions for the TE and TM modes were carried out. This model is characterized by (1) a clear resistivity boundary that coincides with the downward projection of the surface trace of the Hijima fault, (2) a resistive zone (>500 Ω m) that corresponds to Mesozoic sediment, and (3) shallow and deep two highly conductive zones (30-40 Ω m) along the fault. The shallow conductive zone is a common feature of the Yamasaki fault system, whereas the deep conductor is a newly discovered feature at depths of 800-1,800 m to the southwest of the fault. The conductor is truncated by the Hijima fault to the northeast, and its upper boundary is the resistive zone. Both conductors are interpreted to represent a combination of clay minerals and a fluid network within a fault-related fracture zone. In terms of the development of the fluid networks, the fault core of the Hijima fault and the highly resistive zone may play important roles as barriers to fluid flow on the northeast and upper sides of the conductive zones, respectively.

  16. Multi-Fault Rupture Scenarios in the Brawley Seismic Zone

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.

    2017-12-01

    Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger event. For that reason, we are investigating scenarios of a moderate rupture on a cross fault, and determining conditions under which the rupture will propagate onto the adjacent SSAF. Our investigation will provide fundamental insights that may help us interpret faulting behaviors in other areas, such as the complex Mw 7.8 2016 Kaikoura (New Zealand) earthquake.

  17. A test of the hypothesis that impact-induced fractures are preferred sites for later tectonic activity

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Duxbury, Elizabeth D.

    1987-01-01

    Impact cratering has been an important process in the solar system. The cratering event is generally accompanied by faulting in adjacent terrain. Impact-induced faults are nearly ubiquitous over large areas on the terrestrial planets. The suggestion is made that these fault systems, particularly those associated with the largest impact features are preferred sites for later deformation in response to lithospheric stresses generated by other processes. The evidence is a perceived clustering of orientations of tectonic features either radial or concentric to the crater or basin in question. An opportunity exists to test this suggestion more directly on Earth. The terrestrial continents contain more than 100 known or probable impact craters, with associated geological structures mapped to varying levels of detail. Prime facie evidence for reactivation of crater-induced faults would be the occurrence of earthquakes on these faults in response to the intraplate stress field. Either an alignment of epicenters with mapped fault traces or fault plane solutions indicating slip on a plane approximately coincident with that inferred for a crater-induced fault would be sufficient to demonstrate such an association.

  18. Preliminary atlas of active shallow tectonic deformation in the Puget Lowland, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth A.; Haugerud, Ralph A.; Sherrod, Brian L.; Weaver, Craig S.; Pratt, Thomas L.; Blakely, Richard J.

    2010-01-01

    This atlas presents an up-to-date map compilation of the geological and geophysical observations that underpin interpretations of active, surface-deforming faults in the Puget Lowland, Washington. Shallow lowland faults are mapped where observations of deformation from paleoseismic, seismic-reflection, and potential-field investigations converge. Together, results from these studies strengthen the identification and characterization of regional faults and show that as many as a dozen shallow faults have been active during the Holocene. The suite of maps presented in our atlas identifies sites that have evidence of deformation attributed to these shallow faults. For example, the paleoseismic-investigations map shows where coseismic surface rupture and deformation produced geomorphic scarps and deformed shorelines. Other maps compile results of seismic-reflection and potential-field studies that demonstrate evidence of deformation along suspected fault structures in the subsurface. Summary maps show the fault traces derived from, and draped over, the datasets presented in the preceding maps. Overall, the atlas provides map users with a visual overview of the observations and interpretations that support the existence of active, shallow faults beneath the densely populated Puget Lowland.

  19. Characterization of the Hosgri Fault Zone and adjacent structures in the offshore Santa Maria Basin, south-central California: Chapter CC of Evolution of sedimentary basins/onshore oil and gas investigations - Santa Maria province

    USGS Publications Warehouse

    Willingham, C. Richard; Rietman, Jan D.; Heck, Ronald G.; Lettis, William R.

    2013-01-01

    The Hosgri Fault Zone trends subparallel to the south-central California coast for 110 km from north of Point Estero to south of Purisima Point and forms the eastern margin of the present offshore Santa Maria Basin. Knowledge of the attributes of the Hosgri Fault Zone is important for petroleum development, seismic engineering, and environmental planning in the region. Because it lies offshore along its entire reach, our characterizations of the Hosgri Fault Zone and adjacent structures are primarily based on the analysis of over 10,000 km of common-depth-point marine seismic reflection data collected from a 5,000-km2 area of the central and eastern parts of the offshore Santa Maria Basin. We describe and illustrate the along-strike and downdip geometry of the Hosgri Fault Zone over its entire length and provide examples of interpreted seismic reflection records and a map of the structural trends of the fault zone and adjacent structures in the eastern offshore Santa Maria Basin. The seismic data are integrated with offshore well and seafloor geologic data to describe the age and seismic appearance of offshore geologic units and marker horizons. We develop a basin-wide seismic velocity model for depth conversions and map three major unconformities along the eastern offshore Santa Maria Basin. Accompanying plates include maps that are also presented as figures in the report. Appendix A provides microfossil data from selected wells and appendix B includes uninterpreted copies of the annotated seismic record sections illustrated in the chapter. Features of the Hosgri Fault Zone documented in this investigation are suggestive of both lateral and reverse slip. Characteristics indicative of lateral slip include (1) the linear to curvilinear character of the mapped trace of the fault zone, (2) changes in structural trend along and across the fault zone that diminish in magnitude toward the ends of the fault zone, (3) localized compressional and extensional structures characteristic of constraining and releasing bends and stepovers, (4) changes in the sense and magnitude of vertical separation along strike within the fault zone, and (5) changes in downdip geometry between the major traces and segments of the fault zone. Characteristics indicative of reverse slip include (1) reverse fault geometries that occur across major strands of the fault zone and (2) fault-bend folds and localized thrust faults that occur along the northern and southern reaches of the fault. Analyses of high-resolution, subbottom profiler and side-scan sonar records indicate localized Holocene activity along most of the extent of the fault zone. Collectively, these features are the basis of our characterization of the Hosgri Fault Zone as an active, 110-km-long, convergent right-oblique slip (transpressional) fault with identified northern and southern terminations. This interpretation is consistent with recently published analyses of onshore geologic data, regional tectonic kinematic models, and instrumental seismicity.

  20. A record of large earthquakes on the southern Hayward fault for the past 1800 years

    USGS Publications Warehouse

    Lienkaemper, J.J.; Williams, P.L.

    2007-01-01

    This is the second article presenting evidence of the occurrence and timing of paleoearthquakes on the southern Hayward fault as interpreted from trenches excavated within a sag pond at the Tyson's Lagoon site in Fremont, California. We use the information to estimate the mean value and aperiodicity of the fault's recurrence interval (RI): two fundamental parameters for estimation of regional seismic hazard. An earlier article documented the four most recent earthquakes, including the historic 1868 earthquake. In this article we present evidence for at least seven earlier paleoruptures since about A.D. 170. We document these events with evidence for ground rupture, such as the presence of blocky colluvium at the base of the main trace fault scarp, and by corroborating evidence such as simultaneous liquefaction or an increase in deformation immediately below event horizons. The mean RI is 170 ?? 82 yr (1??, standard deviation of the sample), aperiodicity is 0.48, and individual intervals may be expected to range from 30 to 370 yr (95.4% confidence). The mean RI is consistent with the recurrence model of the Working Group on California Earthquake Probabilities (2003) (mean, 161 yr; range, 99 yr [2.5%]; 283 yr [97.5%]). We note that the mean RI for the five most recent events may have been only 138 ?? 58 yr (1??). Hypothesis tests for the shorter RI do not demonstrate that any recent acceleration has occurred compared to the earlier period or the entire 1800-yr record, principally because of inherent uncertainties of the event ages.

  1. The mechanism of post-rift fault activities in Baiyun sag, Pearl River Mouth basin

    NASA Astrophysics Data System (ADS)

    Sun, Zhen; Xu, Ziying; Sun, Longtao; Pang, Xiong; Yan, Chengzhi; Li, Yuanping; Zhao, Zhongxian; Wang, Zhangwen; Zhang, Cuimei

    2014-08-01

    Post-rift fault activities were often observed in deepwater basins, which have great contributions to oil and gas migration and accumulation. The main causes for post-rift fault activities include tectonic events, mud or salt diapirs, and gravitational collapse. In the South China Sea continental margin, post-rift fault activities are widely distributed, especially in Baiyun sag, one of the largest deepwater sag with its main body located beneath present continental slope. During the post-rift stage, large population of faults kept active for a long time from 32 Ma (T70) till 5.5 Ma (T10). Seismic interpretation, fault analysis and analogue modeling experiments indicate that the post-rift fault activities in Baiyun sag between 32 Ma (T70) and 13.8 Ma (T30) was mainly controlled by gravity pointing to the Main Baiyun sag, which caused the faults extensive on the side facing Main Baiyun sag and the back side compressive. Around 32 Ma (T70), the breakup of the continental margin and the spreading of the South China Sea shed a combined effect of weak compression toward Baiyun sag. The gravity during post-rift stage might be caused by discrepant subsidence and sedimentation between strongly thinned sag center and wing areas. This is supported by positive relationship between sedimentation rate and fault growth index. After 13.8 Ma (T30), fault activity shows negative relationship with sedimentation rate. Compressive uplift and erosion in seismic profiles as well as negative tectonic subsiding rates suggest that the fault activity from 13.8 Ma (T30) to 5.5 Ma (T10) might be controlled by the subductive compression from the Philippine plate in the east.

  2. Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics

    USGS Publications Warehouse

    Spencer, J.E.

    2011-01-01

    Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.

  3. Evidence of a major fault zone along the California-Nevada state line 35 deg 30 min to 36 deg 30 min north latitude

    NASA Technical Reports Server (NTRS)

    Liggett, M. A.; Childs, J. F.

    1973-01-01

    The author has identified the following significant results. Geologic reconnaissance guided by analysis of ERTS-1 and Apollo-9 satellite imagery and intermediate scale photography from X-15 and U-2 aircraft has confirmed the presence of a major fault zone along the California-Nevada state line, between 35 deg 30 min and 36 deg 30 min north latitude. The name Pahrump Fault Zone has been suggested for this feature after the valley in which it is best exposed. Field reconnaissance has indicated the existence of previously unreported faults cutting bedrock along range fronts, and displacing Tertiary and Quaternary basin sediments. Gravity data support the interpretation of regional structural discontinuity along this zone. Individual fault traces within the Pahrump Fault Zone form generally left-stepping en echelon patterns. These fault patterns, the apparent offset of a Laramide age thrust fault, and possible drag folding along a major fault break suggest a component of right lateral displacement. The trend and postulated movement of the Pahrump Fault Zone are similar to the adjacent Las Vegas Shear Zone and Death Valley-Furnace Creek Faults, which are parts of a regional strike slip system in the southern Basin-Range Province.

  4. Constraints on upper plate deformation in the Nicaraguan subduction zone from earthquake relocation and directivity analysis

    NASA Astrophysics Data System (ADS)

    French, S. W.; Warren, L. M.; Fischer, K. M.; Abers, G. A.; Strauch, W.; Protti, J. M.; Gonzalez, V.

    2010-03-01

    In the Nicaraguan segment of the Central American subduction zone, bookshelf faulting has been proposed as the dominant style of Caribbean plate deformation in response to oblique subduction of the Cocos plate. A key element of this model is left-lateral motion on arc-normal strike-slip faults. On 3 August 2005, a Mw 6.3 earthquake and its extensive foreshock and aftershock sequence occurred near Ometepe Island in Lake Nicaragua. To determine the fault plane that ruptured in the main shock, we relocated main shock, foreshock, and aftershock hypocenters and analyzed main shock source directivity using waveforms from the TUCAN Broadband Seismic Experiment. The relocation analysis was carried out by applying the hypoDD double-difference method to P and S onset times and differential traveltimes for event pairs determined by waveform cross correlation. The relocated hypocenters define a roughly vertical plane of seismicity with an N60°E strike. This plane aligns with one of the two nodal planes of the main shock source mechanism. The directivity analysis was based on waveforms from 16 TUCAN stations and indicates that rupture on the N60°E striking main shock nodal plane provides the best fit to the data. The relocation and directivity analyses identify the N60°E vertical nodal plane as the main shock fault plane, consistent with the style of faulting required by the bookshelf model. Relocated hypocenters also define a second fault plane that lies to the south of the main shock fault plane with a strike of N350°E-N355°E. This fault plane became seismically active 5 h after the main shock, suggesting the influence of stresses transferred from the main shock fault plane. The August 2005 earthquake sequence was preceded by a small eruption of a nearby volcano, Concepción, on 28 July 2005. However, the local seismicity does not provide evidence for earthquake triggering of the eruption or eruption triggering of the main shock through crustal stress transfer.

  5. The characteristics of seismic activity during the 2016 Kumamoto Earthquake sequence

    NASA Astrophysics Data System (ADS)

    Yano, T. E.; Matsubara, M.

    2016-12-01

    We have relocated hypocenters (total number of hypocenters to be relocated within five independent regions; N= 37,136) during the 2016 Kumamoto Earthquake sequence applying the NIED Hi-net phase pick data and waveform cross-correlations to hypoDD (Waldhauser and Ellsworth, 2000), the double-difference method. The relocated seismicity clearly trace linearly to the background seismicity, such as the Hinagu, Futagawa, and Beppu-Haneyama fault zone, and Mt. Aso area, but also form a linear seismic activity at the previously quiet area including northern edge of the caldera of Mt. Aso (Aso caldera) and some areas within the Beppu-Haneyama fault zone. Two mainshocks of M6.5 on April 14th and M7.3 on April 16th occurred at the region where the Hinagu and Futagawa faults meet each other. Our results show that the seismicity forming a shape enough to identify a line along the Hinagu fault for about 20 km immediately after the M6.3 and continues after the M7.5 event. It also make enable to trace a line of seismicity along the Futagawa fault to the east (total of about 28 km), northern part of the Aso caldera, and Ohita region along the Beppu-Haneyama fault zone becomes active only after the M7.5 event. Not only seismicity following the known faults but also seismicity unconfirmed from background seismicity in previous relocation study between 2000 and 2012 (Yano, et al., 2016) appears during the Kumamoto Earthquake sequence. By comparing our high resolution relocated catalog in the Kumamoto region from previous study and this study enable us to identified interesting characteristics; (1) the quiet area making as a gap of seismicity between the northeast extension of the Futagawa fault zone and Mt. Aso region appears only after the M7.5 event, (2) the seismicity forming a vertical or high angle dip in Aso and Ohita regions are selectively activated, (3) the linear seismicity at previously unconfirmed regions where at the northern part of the Aso caldera and along the Beppu-Haneyama fault zone. We present these characteristics of seismicity during the Kumamoto Earthquake sequence in detail.

  6. Wetland losses related to fault movement and hydrocarbon production, southeastern Texas coast

    USGS Publications Warehouse

    White, William A.; Morton, Robert A.

    1997-01-01

    Time series analyses of surface fault activity and nearby hydrocarbon production from the southeastern Texas coast show a high correlation among volume of produced fluids, timing of fault activation, rates of subsidence, and rates of wetland loss. Greater subsidence on the downthrown sides of faults contributes to more frequent flooding and generally wetter conditions, which are commonly reflected by changes in plant communities {e.g., Spartina patens to Spartina alterniflora) or progressive transformation of emergent vegetation to open water. Since the 1930s and 1950s, approximately 5,000 hectares of marsh habitat has been lost as a result of subsidence associated with faulting. Marsh- es have expanded locally along faults where hydrophytic vegetation has spread into former upland areas. Fault traces are linear to curvilinear and are visible because elevation differences across faults alter soil hydrology and vegetation. Fault lengths range from 1 to 13.4 km and average 3.8 km. Seventy-five percent of the faults visible on recent aerial photographs are not visible on photographs taken in the 1930's, indicating relatively recent fault movement. At least 80% of the surface faults correlate with extrapolated subsurface faults; the correlation increases to more than 90% when certain assumptions are made to compensate for mismatches in direction of displacement. Coastal wetlands loss in Texas associated with hydrocarbon extraction will likely increase where production in mature fields is prolonged without fiuid reinjection.

  7. Comparative Simulations of 2D and 3D Mixed Convection Flow in a Faulted Basin: an Example from the Yarmouk Gorge, Israel and Jordan

    NASA Astrophysics Data System (ADS)

    Magri, F.; Inbar, N.; Raggad, M.; Möller, S.; Siebert, C.; Möller, P.; Kuehn, M.

    2014-12-01

    Lake Kinneret (Lake Tiberias or Sea of Galilee) is the most important freshwater reservoir in the Northern Jordan Valley. Simulations that couple fluid flow, heat and mass transport are built to understand the mechanisms responsible for the salinization of this important resource. Here the effects of permeability distribution on 2D and 3D convective patterns are compared. 2D simulations indicate that thermal brine in Haon and some springs in the Yamourk Gorge (YG) are the result of mixed convection, i.e. the interaction between the regional flow from the bordering heights and thermally-driven flow (Magri et al., 2014). Calibration of the calculated temperature profiles suggests that the faults in Haon and the YG provides paths for ascending hot waters, whereas the fault in the Golan recirculates water between 1 and 2 km depths. At higher depths, faults induce 2D layered convection in the surrounding units. The 2D assumption for a faulted basin can oversimplify the system, and the conclusions might not be fully correct. The 3D results also point to mixed convection as the main mechanism for the thermal anomalies. However, in 3D the convective structures are more complex allowing for longer flow paths and residence times. In the fault planes, hydrothermal convection develops in a finger regime enhancing inflow and outflow of heat in the system. Hot springs can form locally at the surface along the fault trace. By contrast, the layered cells extending from the faults into the surrounding sediments are preserved and are similar to those simulated in 2D. The results are consistent with the theory from Zhao et al. (2003), which predicts that 2D and 3D patterns have the same probability to develop given the permeability and temperature ranges encountered in geothermal fields. The 3D approach has to be preferred to the 2D in order to capture all patterns of convective flow, particularly in the case of planar high permeability regions such as faults. Magri, F., et al., 2014. Potential salinization mechanisms of drinking water due to large-scale flow of brines across faults in the Tiberias Basin. Geophysical Research Abstracts, Vol. 16, Abstract No: EGU2014-8236-1, Wien, AustriaZhao, C., et al., 2003. Convective instability of 3-D fluid-saturated geological fault zones heated from below. Geophysical Journal International, 155, 213-220

  8. Slip rate of the Húsavík-Flatey Fault, North Iceland, derived from GPS and InSAR Time Series

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Jonsson, S.

    2010-12-01

    The Húsavík-Flatey fault is one of mainly two parallel fault zones within the Tjörnes Fracture Zone (TFZ), North Iceland. The TFZ is a transform zone and a 120km-offset between two segments of the Mid-Atlantic Ridge, accommodating the 18.2mm/year spreading motion between the North American and the Eurasian Plate at this latitude (NUVEL 1A). Geodetic research mostly concentrates on a relatively short 20km onshore portion of the Húsavík-Flatey fault, as the rest of the whole transform zone, including the Grímsey lineament to the Northeast, is located offshore. The fact that a coastal town with 2300 inhabitants has been built directly at the fault surface trace increases the importance of studying this area. No major earthquake has occurred in the vicinity of the town since two M6.3 earthquakes took place in 1872. Hence, there is a compelling need to estimate the fault slip rate, slip deficit and finally, the seismic risk to which this town is exposed to, as the interseismic part of the current earthquake cycle may be drawing to a close. We use geodetic data, both continuous GPS and satellite radar interferograms (InSAR) to determine the interseismic deformation field around the on-land portion of the Húsavík-Flatey fault. The continuous GPS stations have been recording data since 2006 or longer at 14 sites within the TFZ. In addition, we use time-series analysis of ERS radar interferograms from 1992 to 2000 to derive interseismic velocities across the fault. We simulate the resulting deformation field with an interseismic back-slip model consisting of planar dislocations in an elastic half space and constrain the associated model parameters using a non-linear optimization approach. It has earlier been estimated that only 40% of the total motion is concentrated on the Húsavík-Flatey fault, while the larger 60% is taken up by the Grímsey lineament. This estimate however, was based on only three continuous GPS stations. Including more GPS data, we find that the partial motion on the Húsavík-Flatey fault is even less, closer to 30% and that the locking depth is relatively shallow. The exact parameter values, however, depend significantly on the modeling assumptions. Still, the results show that if moment has been accumulating on the Húsavík-Flatey fault at the current rate since 1872, then the total accumulated moment corresponds to an earthquake of magnitude just below 7.

  9. Kinematic evolution of the junction of the San Andreas, Garlock, and Big Pine faults, California

    USGS Publications Warehouse

    Bohannon, Robert G.; Howell, David G.

    1982-01-01

    If the San Andreas fault with about 300 km of right slip, the Carlock fault with about 60 km of left slip, and the Big Pine fault with about 15 km of left slip are considered to have been contemporaneously active, a space problem at their high-angle junctions becomes apparent. Large crustal masses converge in the area of the junctions as a result of the simultaneous large displacements on the faults. We present here a model in which an early straight north-northwest–trending San Andreas deforms to its present bent configuration in response to a westward displacement of crust north of the Garlock fault. During this deformation, the crust north of the Garlock in the vicinity of the junction undergoes north-south shortening, while the fault junction migrates along the trace of the San Andreas fault to the southeast relative to its original position. As a result of this migration, the Mojave area is displaced to the east relative to the original junction position. We suggest a similar history in mirror image for the Big Pine fault and the areas of crust adjacent to it.

  10. The 1959 MW 7.3 Hebgen Lake earthquake revisited: morphology and mechanics from lidar

    NASA Astrophysics Data System (ADS)

    Johnson, K. L.; Nissen, E.; Lajoie, L. J.

    2016-12-01

    This study demonstrates how we can glean new information by revisiting an early instrumental earthquake with high-resolution topography and modern thinking about the mechanics of surface rupturing. The 1959 MW 7.3 Hebgen Lake earthquake is among the largest and most deadly historic earthquakes within the conterminous United States outside of California, and one of the largest normal faulting earthquakes on record globally. The earthquake ruptured the subparallel Hebgen and Red Canyon faults within the slowly extending ( 3 mm/yr) Centennial Mountain Belt, and is one of the first to be field mapped in detail, modeled from global seismograms, and surveyed geodetically. Here, we augment these early studies with an investigation of the surface rupture in its current state. We use a 50 cm-resolution airborne lidar digital terrain model collected by the National Center for Airborne Laser Mapping (NCALM) in 2014 to document the fault scarp morphology, constrain its evolution, and speculate on the mechanical rupture properties. Using a dense set of scarp profiles, we add >400 displacement measurements to the 143 published data points from early field work, allowing more rigorous quantification of along-strike slip variability and strain gradients. Evidence of off-fault deformation is sparse along most of the scarp, though damage zone width increases where the earthquake ruptured closely spaced sedimentary contacts rather than unconsolidated Quaternary deposits. In a few places, we can identify composite scarps from which we estimate the number of earthquakes that have offset Holocene surfaces. We assess the scarp's degraded state, including some sites that were surveyed in 1980 and 2009 and others that have not been revisited since the initial investigation. Where the rupture crosses unconsolidated surfaces, we compute local sediment diffusion coefficients and analyze their variability along strike. Lastly, we model subsurface fault geometry by fitting dipping planes to its surface trace, testing our best-fit fault dips against those recovered in seismic analyses; this reaffirms that both main rupture strands correspond to primary faulting rather than induced landsliding.

  11. Developing sub 5-m LiDAR DEMs for forested sections of the Alpine and Hope faults, South Island, New Zealand: Implications for structural interpretations

    NASA Astrophysics Data System (ADS)

    Langridge, R. M.; Ries, W. F.; Farrier, T.; Barth, N. C.; Khajavi, N.; De Pascale, G. P.

    2014-07-01

    Kilometre-wide airborne light detection and ranging (LiDAR) surveys were collected along portions of the Alpine and Hope faults in New Zealand to assess the potential for generating sub 5-m bare earth digital elevation models (DEMs) from ground return data in areas of dense rainforest (bush) cover as an aid to mapping these faults. The 34-km long Franz-Whataroa LiDAR survey was flown along the densely-vegetated central-most portion of the transpressive Alpine Fault. Six closely spaced flight lines (200 m apart) yielded survey coverage with double overlap of swath collection, which was considered necessary due to the low density of ground returns (0.16 m-2 or a point every 6 m2) under mature West Coast podocarp-broadleaf rainforest. This average point spacing (˜2.5 m) allowed for the generation of a robust, high quality 3-m bare earth DEM. The DEM confirmed the zigzagged form of the surface trace of the Alpine Fault in this area, originally recognised by Norris and Cooper (1995, 1997) and highlights that the surface strike variations are more variant than previously mapped. The 29-km long Hurunui-Hope LiDAR survey was flown east of the Main Divide of the Southern Alps along the dextral-slip Hope Fault, where the terrain is characterised by lower rainfall and more open beech forest. Flight line spacings of ˜275 m were used to generate a DEM from the ground return data. The average ground return values under beech forest were 0.27 m-2 and yielded an estimated cell size suitable for a 2-m DEM. In both cases the LiDAR revealed unprecedented views of the surface geomorphology of these active faults. Lessons learned from our survey methodologies can be employed to plan cost-effective, high-gain airborne surveys to yield bare earth DEMs underneath vegetated terrain and multi-storeyed canopies from densely forested environments across New Zealand and worldwide.

  12. Orientation of three-component geophones in the San Andreas Fault observatory at depth Pilot Hole, Parkfield, California

    USGS Publications Warehouse

    Oye, V.; Ellsworth, W.L.

    2005-01-01

    To identify and constrain the target zone for the planned SAFOD Main Hole through the San Andreas Fault (SAF) near Parkfield, California, a 32-level three-component (3C) geophone string was installed in the Pilot Hole (PH) to monitor and improve the locations of nearby earthquakes. The orientation of the 3C geophones is essential for this purpose, because ray directions from sources may be determined directly from the 3D particle motion for both P and S waves. Due to the complex local velocity structure, rays traced from explosions and earthquakes to the PH show strong ray bending. Observed azimuths are obtained from P-wave polarization analysis, and ray tracing provides theoretical estimates of the incoming wave field. The differences between the theoretical and the observed angles define the calibration azimuths. To investigate the process of orientation with respect to the assumed velocity model, we compare calibration azimuths derived from both a homogeneous and 3D velocity model. Uncertainties in the relative orientation between the geophone levels were also estimated for a cluster of 36 earthquakes that was not used in the orientation process. The comparison between the homogeneous and the 3D velocity model shows that there are only minor changes in these relative orientations. In contrast, the absolute orientations, with respect to global North, were significantly improved by application of the 3D model. The average data residual decreased from 13?? to 7??, supporting the importance of an accurate velocity model. We explain the remaining residuals by methodological uncertainties and noise and with errors in the velocity model.

  13. Towards "realistic" fault zones in a 3D structure model of the Thuringian Basin, Germany

    NASA Astrophysics Data System (ADS)

    Kley, J.; Malz, A.; Donndorf, S.; Fischer, T.; Zehner, B.

    2012-04-01

    3D computer models of geological architecture are evolving into a standard tool for visualization and analysis. Such models typically comprise the bounding surfaces of stratigraphic layers and faults. Faults affect the continuity of aquifers and can themselves act as fluid conduits or barriers. This is one reason why a "realistic" representation of faults in 3D models is desirable. Still so, many existing models treat faults in a simplistic fashion, e.g. as vertical downward projections of fault traces observed at the surface. Besides being geologically and mechanically unreasonable, this also causes technical difficulties in the modelling workflow. Most natural faults are inclined and may change dips according to rock type or flatten into mechanically weak layers. Boreholes located close to a fault can therefore cross it at depth, resulting in stratigraphic control points allocated to the wrong block. Also, faults tend to split up into several branches, forming fault zones. Obtaining a more accurate representation of faults and fault zones is therefore challenging. We present work-in-progress from the Thuringian Basin in central Germany. The fault zone geometries are never fully constrained by data and must be extrapolated to depth. We use balancing of serial, parallel cross-sections to constrain subsurface extrapolations. The structure sections are checked for consistency by restoring them to an undeformed state. If this is possible without producing gaps or overlaps, the interpretation is considered valid (but not unique) for a single cross-section. Additional constraints are provided by comparison of adjacent cross-sections. Structures should change continuously from one section to another. Also, from the deformed and restored cross-sections we can measure the strain incurred during deformation. Strain should be compatible among the cross-sections: If at all, it should vary smoothly and systematically along a given fault zone. The stratigraphic contacts and faults in the resulting grid of parallel balanced sections are then interpolated into a gOcad model containing stratigraphic boundaries and faults as triangulated surfaces. The interpolation is also controlled by borehole data located off the sections and the surface traces of stratigraphic boundaries. We have written customized scripts to largely automatize this step, with particular attention to a seamless fit between stratigraphic surfaces and fault planes which share the same nodes and segments along their contacts. Additional attention was paid to the creation of a uniform triangulated grid with maximized angles. This ensures that uniform triangulated volumes can be created for further use in numerical flow modelling. An as yet unsolved problem is the implementation of the fault zones and their hydraulic properties in a large-scale model of the entire basin. Short-wavelength folds and subsidiary faults control which aquifers and seals are juxtaposed across the fault zones. It is impossible to include these structures in the regional model, but neglecting them would result in incorrect assessments of hydraulic links or barriers. We presently plan to test and calibrate the hydraulic properties of the fault zones in smaller, high-resolution models and then to implement geometrically simple "equivalent" fault zones with appropriate, variable transmissivities between specific aquifers.

  14. Structural character of the Ghost Dance fault, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Spengler, R.W.; Braun, C.A.; Linden, R.M.; Martin, L.G.; Ross-Brown, D. M.; Blackburn, R.L.

    1993-01-01

    Detailed structural mapping of an area that straddles the southern part of the Ghost Dance Fault has revealed the presence of several additional subparallel to anastomosing faults. These faults, mapped at a scale of 1:240, are: 1) dominantly north trending, 2) present on both the upthrown and downthrown sides of the surface trace of the Ghost Dance fault, 3) near-vertical features that commonly offset strata down to the west by 3 to 6 m (10 to 20 ft), and 4) commonly spaced 15 to 46 m (50 to 150 ft) apart. The zone also exhibits a structural fabric, containing an abundance of northwest-trending fractures. The width of the zone appears to be at least 213 m (700 ft) near the southernmost boundary of the study area but remains unknown near the northern extent of the study area, where the width of the study area is only 183 m (600 ft).

  15. Geologic structure in California: Three studies with ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1974-01-01

    Results are presented of three early applications of imagery from the NASA Earth Resources Technology Satellite to geologic studies in California. In the Coast Ranges near Monterey Bay, numerous linear drainage features possibly indicating unmapped fracture zones were mapped within one week after launch of the satellite. A similar study of the Sierra Nevada near Lake Tahoe revealed many drainage features probably formed along unmapped joint or faults in granitic rocks. The third study, in the Peninsular Ranges, confirmed existence of several major faults not shown on published maps. One of these, in the Sawtooth Range, crosses in Elsinore fault without lateral offset; associated Mid-Cretaceous structures have also been traced continuously across the fault without offset. It therefore appears that displacement along the Elsinore fault has been primarily of a dip-slip nature, at least in this area, despite evidence for lateral displacement elsewhere.

  16. The 7.9 Denali Fault, Alaska Earthquake of November 3, 2002: Aftershock Locations, Moment Tensors and Focal Mechanisms from the Regional Seismic Network Data

    NASA Astrophysics Data System (ADS)

    Ratchkovski, N. A.; Hansen, R. A.; Kore, K. R.

    2003-04-01

    The largest earthquake ever recorded on the Denali fault system (magnitude 7.9) struck central Alaska on November 3, 2002. It was preceded by a magnitude 6.7 earthquake on October 23. This earlier earthquake and its zone of aftershocks were located ~20 km to the west of the 7.9 quake. Aftershock locations and surface slip observations from the 7.9 quake indicate that the rupture was predominately unilateral in the eastward direction. The geologists mapped a ~300-km-long rupture and measured maximum offsets of 8.8 meters. The 7.9 event ruptured three different faults. The rupture began on the northeast trending Susitna Glacier Thrust fault, a splay fault south of the Denali fault. Then the rupture transferred to the Denali fault and propagated eastward for 220 km. At about 143W the rupture moved onto the adjacent southeast-trending Totschunda fault and propagated for another 55 km. The cumulative length of the 6.7 and 7.9 aftershock zones along the Denali and Totschunda faults is about 380 km. The earthquakes were recorded and processed by the Alaska Earthquake Information Center (AEIC). The AEIC acquires and processes data from the Alaska Seismic Network, consisting of over 350 seismograph stations. Nearly 40 of these sites are equipped with the broad-band sensors, some of which also have strong motion sensors. The rest of the stations are either 1 or 3-component short-period instruments. The data from these stations are collected, processed and archived at the AEIC. The AEIC staff installed a temporary seismic network of 6 instruments following the 6.7 earthquake and an additional 20 stations following the 7.9 earthquake. Prior to the 7.9 Denali Fault event, the AEIC was locating 35 to 50 events per day. After the event, the processing load increased to over 300 events per day during the first week following the event. In this presentation, we will present and interpret the aftershock location patterns, first motion focal mechanism solutions, and regional seismic moment tensors for the larger events. We used the double difference method to relocate aftershocks of both the 6.7 and 7.9 events. The relocated aftershocks indicate complex faulting along the rupture zone. The aftershocks are located not only along the main rupture zone, but also illuminate multiple splay faults north and south of the Denali fault. We calculated principal stress directions along the Denali fault both before and after the 7.9 event from the focal mechanisms. The stress orientations before and after the event are nearly identical. The maximum horizontal compressive stress is nearly normal to the trace of the Denali fault and rotates gradually from NW orientation at the western end of the rupture zone to NE orientation near the junction with the Totschunda fault.

  17. Recent deformation along the offshore Malibu Coast, Dume, and related faults west of Point Dume, southern California

    USGS Publications Warehouse

    Fisher, M.A.; Langenheim, V.E.; Sorlien, C.C.; Dartnell, P.; Sliter, R.W.; Cochrane, G.R.; Wong, F.L.

    2005-01-01

    Offshore faults west of Point Dume, southern California, are part of an important regional fault system that extends for about 206 km, from near the city of Los Angeles westward along the south flank of the Santa Monica Mountains and through the northern Channel Islands. This boundary fault system separates the western Transverse Ranges, on the north, from the California Continental Borderland, on the south. Previous research showed that the fault system includes many active fault strands; consequently, the entire system is considered a serious potential earthquake hazard to nearby Los Angeles. We present an integrated analysis of multichannel seismic- and high-resolution seismic-reflection data and multibeam-bathymetric information to focus on the central part of the fault system that lies west of Point Dume. We show that some of the main offshore faults have cumulative displacements of 3-5 km, and many faults are currently active because they deform the seafloor or very shallow sediment layers. The main offshore fault is the Dume fault, a large north-dipping reverse fault. In the eastern part of the study area, this fault offsets the seafloor, showing Holocene displacement. Onshore, the Malibu Coast fault dips steeply north, is active, and shows left-oblique slip. The probable offshore extension of this fault is a large fault that dips steeply in its upper part but flattens at depth. High-resolution seismic data show that this fault deforms shallow sediment making up the Hueneme fan complex, indicating Holocene activity. A structure near Sycamore knoll strikes transversely to the main faults and could be important to the analysis of the regional earthquake hazard because the structure might form a boundary between earthquake-rupture segments.

  18. Fault interaction and stresses along broad oceanic transform zone: Tjörnes Fracture Zone, north Iceland

    NASA Astrophysics Data System (ADS)

    Homberg, C.; Bergerat, F.; Angelier, J.; Garcia, S.

    2010-02-01

    Transform motion along oceanic transforms generally occurs along narrow faults zones. Another class of oceanic transforms exists where the plate boundary is quite large (˜100 km) and includes several subparallel faults. Using a 2-D numerical modeling, we simulate the slip distribution and the crustal stress field geometry within such broad oceanic transforms (BOTs). We examine the possible configurations and evolution of such BOTs, where the plate boundary includes one, two, or three faults. Our experiments show that at any time during the development of the plate boundary, the plate motion is not distributed along each of the plate boundary faults but mainly occurs along a single master fault. The finite width of a BOT results from slip transfer through time with locking of early faults, not from a permanent distribution of deformation over a wide area. Because of fault interaction, the stress field geometry within the BOTs is more complex than that along classical oceanic transforms and includes stress deflections close to but also away from the major faults. Application of this modeling to the 100 km wide Tjörnes Fracture Zone (TFZ) in North Iceland, a major BOT of the Mid-Atlantic Ridge that includes three main faults, suggests that the Dalvik Fault and the Husavik-Flatey Fault developed first, the Grismsey Fault being the latest active structure. Since initiation of the TFZ, the Husavik-Flatey Fault accommodated most of the plate motion and probably persists until now as the main plate structure.

  19. Clustering of GPS velocities in the Mojave Block, southeastern California

    USGS Publications Warehouse

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    We find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].

  20. Privacy-Assured Aggregation Protocol for Smart Metering: A Proactive Fault-Tolerant Approach [Proactive Fault-Tolerant Aggregation Protocol for Privacy-Assured Smart Metering

    DOE PAGES

    Won, Jongho; Ma, Chris Y. T.; Yau, David K. Y.; ...

    2016-06-01

    Smart meters are integral to demand response in emerging smart grids, by reporting the electricity consumption of users to serve application needs. But reporting real-time usage information for individual households raises privacy concerns. Existing techniques to guarantee differential privacy (DP) of smart meter users either are not fault tolerant or achieve (possibly partial) fault tolerance at high communication overheads. In this paper, we propose a fault-tolerant protocol for smart metering that can handle general communication failures while ensuring DP with significantly improved efficiency and lower errors compared with the state of the art. Our protocol handles fail-stop faults proactively bymore » using a novel design of future ciphertexts, and distributes trust among the smart meters by sharing secret keys among them. We prove the DP properties of our protocol and analyze its advantages in fault tolerance, accuracy, and communication efficiency relative to competing techniques. We illustrate our analysis by simulations driven by real-world traces of electricity consumption.« less

  1. Privacy-Assured Aggregation Protocol for Smart Metering: A Proactive Fault-Tolerant Approach [Proactive Fault-Tolerant Aggregation Protocol for Privacy-Assured Smart Metering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Won, Jongho; Ma, Chris Y. T.; Yau, David K. Y.

    Smart meters are integral to demand response in emerging smart grids, by reporting the electricity consumption of users to serve application needs. But reporting real-time usage information for individual households raises privacy concerns. Existing techniques to guarantee differential privacy (DP) of smart meter users either are not fault tolerant or achieve (possibly partial) fault tolerance at high communication overheads. In this paper, we propose a fault-tolerant protocol for smart metering that can handle general communication failures while ensuring DP with significantly improved efficiency and lower errors compared with the state of the art. Our protocol handles fail-stop faults proactively bymore » using a novel design of future ciphertexts, and distributes trust among the smart meters by sharing secret keys among them. We prove the DP properties of our protocol and analyze its advantages in fault tolerance, accuracy, and communication efficiency relative to competing techniques. We illustrate our analysis by simulations driven by real-world traces of electricity consumption.« less

  2. Late Miocene-Early Pliocene reactivation of the Main Boundary Thrust: Evidence from the seismites in southeastern Kumaun Himalaya, India

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Srivastava, Deepak C.; Shah, Jyoti

    2013-05-01

    Tectonic history of the Himalaya is punctuated by successive development of the faults that run along the boundaries between different lithotectonic terrains. The Main Boundary Fault, defining the southern limit of the Lesser Himalayan terrain, is tectonically most active. A review of published literature reveals that the nature and age of reactivation events on the Main Boundary Fault is one of the poorly understood aspects of the Himalayan orogen. By systematic outcrop mapping of the seismites, this study identifies a Late Miocene-Early Pliocene reactivation on the Main Boundary Thrust in southeast Kumaun Himalaya. Relatively friable and cohesionless Neogene sedimentary sequences host abundant soft-sediment deformation structures in the vicinity of the Main Boundary Thrust. Among a large variety of structures, deformed cross-beds, liquefaction pockets, slump folds, convolute laminations, sand dykes, mushroom structures, fluid escape structures, flame and load structures and synsedimentary faults are common. The morphological attributes, the structural association and the distribution pattern of the soft-sediment deformation structures with respect to the Main Boundary Fault strongly suggest their development by seismically triggered liquefaction and fluidization. Available magnetostratigraphic age data imply that the seismites were developed during a Late Miocene-Early Pliocene slip on the Main Boundary Thrust. The hypocenter of the main seismic event may lie on the Main Boundary Thrust or to the north of the study area on an unknown fault or the Basal Detachment Thrust.

  3. Late Quaternary activity of the Ecemiş Fault Zone, Turkey; implications from cosmogenic 36Cl dating of offset alluvial fans

    NASA Astrophysics Data System (ADS)

    Akif Sarıkaya, Mehmet; Yıldırım, Cengiz; Çiner, Attila

    2014-05-01

    The Ecemiş Fault Zone is the southernmost segment of the Central Anatolian Fault Zone. The tectonic trough of the fault zone defines the boundary between the Central and Eastern Taurides Ranges. The presence of faulted alluvial fans and colluvium within this trough provide favorable conditions to unravel the Late Quaternary slip-rate of the fault zone by cosmogenic surface exposure dating. In this context, we focused on the main strand of the fault zone and also on the Cevizlik Fault that delimits the mountain front of the Aladaǧlar, Eastern Taurides. Geomorphic mapping and topographic surveying indicate four different alluvial fan levels deposited along the main strand. Our topographic survey reveals 60±5 m horizontal and 18±2 m vertical displacement of the oldest fan surface (AF1) associated with the main strand of the fault zone. We dated the surface of the AF1 with 13 cosmogenic 36Cl samples. Our results indicate that the AF1 surface was abandoned maximum 105.3±1.5 ka ago. Accordingly, we propose 0.57±0.05 mm/yr horizontal and 0.17±0.02 mm/yr vertical mean slip-rates since 100 ka for the main strand. On the other hand, we measured 20±2 m vertical displacement on the colluvium along the Cevizlik Fault. The surface exposure age of the colluvium yielded 21.9±0.3 ka that translates to 0.91±0.09 mm/yr vertical slip-rate for the Cevizlik Fault. Our results reveal significant Quaternary deformation, and low strain rates might indicate very long earthquake recurrence intervals along the fault zone.

  4. Mars - A large highland volcanic province revealed by Viking images

    NASA Technical Reports Server (NTRS)

    Scott, D. H.; Tanaka, K. L.

    1982-01-01

    Many of the mountains in the rugged highland terrain of the Phaethontis and Thaumasia quadrangles are believed to be of volcanic origin. Those provisionally mapped as volcanoes have diagnostic characteristics such as lobate flow fronts around their bases, depressed central areas, or have massive, bulbous accumulations of material of no determinable origin other than volcanic. Most of the volcanoes are younger than materials forming the highlands but are older than early lava flows from Arsia Mons. Many are aligned along older fault and ridge systems that are transverse to the more recent and prominent faults transecting the region. The older faults are generally buried by plains lava flows but their traces are visible in several places in the highlands. These faults are relatively short in length.

  5. Near Surface Structure of the Frijoles Strand of the San Gregorio Fault, Point Año Nuevo, San Mateo County, California, from Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Catchings, R. D.; Rymer, M. J.; Goldman, M.; Weber, G. E.

    2012-12-01

    The San Gregorio Fault Zone (SGFZ) is one of the major faults of the San Andreas Fault (SAF) system in the San Francisco Bay region of California. The SGFZ is nearly 200 km long, trends subparallel to the SAF, and is located primarily offshore with two exceptions- between Point Año Nuevo and San Gregorio Beach and between Pillar Point and Moss Beach. It has a total width of 2 to 3 km and is comprised of seven known fault strands with Quaternary activity, five of which also demonstrate late Holocene activity. The fault is clearly a potential source of significant earthquakes and has been assigned a maximum likely magnitude of 7.3. To better understand the structure, geometry, and shallow-depth P-wave velocities associated with the SGFZ, we acquired a 585-m-long, high-resolution, combined seismic reflection and refraction profile across the Frijoles strand of the SGFZ at Point Año Nuevo State Park. Both P- and S-wave data were acquired, but here we present only the P-wave data. We used two 60-channel Geometrics RX60 seismographs and 120 40-Hz single-element geophones connected via cable to record Betsy Seisgun seismic sources (shots). Both shots and geophones were approximately co-located and spaced at 5-m intervals along the profile, with the shots offset laterally from the geophones by 1 m. We measured first-arrival refractions from all shots and geophones to develop a seismic refraction tomography velocity model of the upper 70 m. P-wave velocities range from about 600 m/s near the surface to more than 2400 m/s at 70 m depth. We used the refraction tomography image to infer the depth to the top of the groundwater table on the basis of the 1500 m/s velocity contour. The image suggests that the depth, along the profile, to the top of groundwater varies by about 18 m, with greater depth on the west side of the fault. At about 46 m depth, a 60- to 80-m-wide, low-velocity zone, which is consistent with faulting, is observed southwest of the Frijoles strand of the SGFZ. Projection of this low-velocity zone to the surface location of the Frijoles strand suggests a 45° southwest dip on the fault. We also stacked the seismic data to generate a reflection image of the subsurface along the profile. Our seismic reflection image also shows evidence of a southwest-dipping main trace, as well as a second fault located approximately 183 m west of the main Frijoles strand. It appears that there is a component of reverse motion in the upper 200 m. Due to the presence of offset reflectors near the top of the image, we infer that faulting extends to the near surface, but the age of the most recent ruptures cannot be determined without additional paleoseismic investigations. The width and complexity (including reverse motion) of the faults inferred in our seismic images suggests that rupture and strong shaking may occur over a relatively wide area during the next large-magnitude earthquake on the Frijoles strand of the SGFZ.

  6. Late Quaternary activity of the Grote Brogel fault, NE Belgium

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Deckers, Jef; Van Noten, Koen; Schiltz, Marco; Lecocq, Thomas

    2017-04-01

    The Grote Brogel fault (GBF) is a WNW-ESE striking normal fault that is part of the western border fault system of the Roer Valley Graben in NE Belgium. It is one of three faults branching NW-ward from the main border fault (Geleen fault) near Bree, but its orientation diverges 22° from the general NW-SE orientation of the graben, causing a wide left step. Unlike the Geleen fault, the surface expression of the GBF has not been investigated in detail so far. We studied the Quaternary activity of the GBF and its effects on the local hydrology based on a high-resolution LiDAR digital terrain model (DTM), and geophysical and geological surveying at two sites, combining Electrical Resistivity Tomography (ERT), Cone Penetration Tests (CPTs) and boreholes. The GBF defines the northern edge of the Campine Plateau, an elevated area covered by the late Early to Middle Pleistocene Main Terrace of the Meuse River. Cumulative vertical offset since deposition of this terrace has resulted in a distinct 10-km-long fault scarp, the height of which decreases from 11 m near Bree in the east to less than 5 m near Grote Brogel in the west. The along-strike evolution of offset suggests that the GBF does not define an individual rupture segment, but is likely contiguous with the Geleen fault. DTM analysis indicates that scarps are only preserved in a few isolated places, and that the surface trace is rather complex, consisting of a series of short, relatively straight sections with strikes varying between 255° and 310°, arranged in a generally left-stepping pattern. At both investigated sites, ERT profiles clearly demonstrate the presence of fault splays in the shallow subsurface (< 50 m) underneath the identified scarps evidenced by a sudden increase in depth and thickness of a high-resistivity unit on top of a lower-resistivity unit. Boreholes and CPTs allow correlating the high-resistivity unit with the medium to coarse gravel-bearing sands of the Meuse Group, and the lower-resistivity unit below with the finer sands of the Pliocene Mol Formation. From the ERT profiles, we estimate vertical offsets of the base of the Meuse deposits of 13 m at the eastern site, and 6 m in the west. These are only slightly larger than the topographic offsets, indicating that most of the offset post-dates deposition of the Meuse Group. Earlier fault activity is attested by a change in facies (and related resistivity values on the ERT-profiles) in the Mol Fm, but cannot be quantified. Water level measurements in the boreholes and CPT holes indicate that the GBF acts as a hydrologic boundary that prevents groundwater flow from the elevated footwall towards the hanging wall, resulting in hydraulic heads of up to 12.7 m. At both investigated sites, the hydraulic head correlates with the topographic offset. At the eastern site, the shallow groundwater table in the footwall has given rise to a wet zone that is indicated on soil moisture maps and is also expressed by darker tones on aerial maps. The extent of this wet zone appears largely influenced by a local stepover that we could image in pseudo-3D using a series of closely spaced ERT profiles.

  7. Automatic fault tracing of active faults in the Sutlej valley (NW-Himalayas, India)

    NASA Astrophysics Data System (ADS)

    Janda, C.; Faber, R.; Hager, C.; Grasemann, B.

    2003-04-01

    In the Sutlej Valley the Lesser Himalayan Crystalline Sequence (LHCS) is actively extruding between the Munsiari Thrust (MT) at the base, and the Karcham Normal Fault (KNF) at the top. The clear evidences for ongoing deformation are brittle faults in Holocene lake deposits, hot springs activity near the faults and dramatically younger cooling ages within the LHCS (Vannay and Grasemann, 2001). Because these brittle fault zones obviously influence the morphology in the field we developed a new method for automatically tracing the intersections of planar fault geometries with digital elevation models (Faber, 2002). Traditional mapping techniques use structure contours (i.e. lines or curves connecting points of equal elevation on a geological structure) in order to construct intersections of geological structures with topographic maps. However, even if the geological structure is approximated by a plane and therefore structure contours are equally spaced lines, this technique is rather time consuming and inaccurate, because errors are cumulative. Drawing structure contours by hand makes it also impossible to slightly change the azimuth and dip direction of the favoured plane without redrawing everything from the beginning on. However, small variations of the fault position which are easily possible by either inaccuracies of measurement in the field or small local variations in the trend and/or dip of the fault planes can have big effects on the intersection with topography. The developed method allows to interactively view intersections in a 2D and 3D mode. Unlimited numbers of planes can be moved separately in 3 dimensions (translation and rotation) and intersections with the topography probably following morphological features can be mapped. Besides the increase of efficiency this method underlines the shortcoming of classical lineament extraction ignoring the dip of planar structures. Using this method, areas of active faulting influencing the morphology, can be mapped near the MT and the KNF suggesting that the most active zones are restricted to the Sutlej Valley. Faber R., 2002: WinGeol - Software for Analyzing and Visualization of Geological data, Department of Geological Sciences, University of Vienna. Vannay, J.-C., Grasemann, B., 2001. Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol. Mag. 138 (3), 253-276.

  8. The Mw6.5 17 November 2015 Lefkada (Greece) Earthquake: Structural Interpretation by Means of the Aftershock Analysis

    NASA Astrophysics Data System (ADS)

    Papadimitriou, E.; Karakostas, V.; Mesimeri, M.; Chouliaras, G.; Kourouklas, Ch.

    2017-10-01

    The 2015 Mw6.5 Lefkada main shock occurred at the south western part of Lefkada Island (Greece), less than 2 years after the occurrence of a doublet along the western part of the nearby Kefalonia Island, Paliki peninsula (on 25/01/2014, with Mw6.1 and 03/02/2014 with Mw6.0) and 12 years after the 2003 Mw6.2 main shock that struck the northwestern part of Lefkada Island. The four failed dextral strike slip fault segments belong to the Kefalonia transform fault zone (KTFZ), the major active boundary that bounds from the west the area of central Ionian Islands, namely Lefkada and Kefalonia. It is associated with several known historical earthquakes and is considered the most hazardous area in the Greek territory. The KTFZ fault segments are characterized by high slip rates (of the order of tens of millimeters per year), with maximum earthquake magnitudes up to 6.7 for Lefkada and 7.2 for Kefalonia fault zone, respectively. The double difference location technique was employed for relocating the aftershocks revealing a seismogenic layer extending from 3 to 16 km depth and multiple activation on well-defined fault planes, with strikes that differ than the main rupture and dips either to east or to west. This implies that strain energy was not solely released on a main fault only, but on secondary and adjacent fault segments as well. The reliable definition of their geometry forms the basis for the structural interpretation of the local fault network. The aftershock spatial distribution indicates three main clusters of the seismic activity, along with activation of smaller faults to an extent of more than 50 km. A northeasterly striking cluster is observed to the north of the main shock epicenter, with a remarkable aftershock density. The central cluster is less dense than the previous one with an epicentral alignment in full accordance with the strike provided by the main shock centroid moment tensor solution, and is considered as the main rupture with a length of 17 km. The third cluster, encompassing a large number of aftershocks, is located in the offshore area between Lefkada and Kefalonia Islands with a NE-SW epicentral alignment, alike the first cluster. The northeast-southwest striking secondary faults positioned obliquely and in continuation of the main fault segment, reveal that the KTFZ is being deformed in a complex tectonic setting. The presence of faults with this geometry implies strain partitioning and sheds light to new components necessary to be taken into account in the seismic hazard assessment. Stress transfer models of the M ≥6.0 main shocks were investigated and the calculated static stress changes may well explain their sequential occurrence. Static stress changes due to the 2015 coseismic slip were also calculated with the main objective of exploring the aftershock occurrence pattern and it was found as the driving mechanism that triggered the vast majority of the off-fault aftershocks.

  9. High density of structurally controlled, shallow to deep water fluid seep indicators imaged offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.; McIntosh, Kirk D.; Gibson, James; Orange, Daniel; Ranero, Cesar R.; von Huene, Roland

    2013-03-01

    We used high-resolution mapping to document 161 sites of potential fluid seepage on the shelf and slope regions where no geophysical seep indicators had been reported. Identified potential seabed seepage sites show both high-backscatter anomalies and bathymetric expressions, such as pockmarks, mounds, and ridges. Almost all identified seabed features are associated with bright spots and flat spots beneath, as mapped within the 3-D seismic grid. We obtained EM122 multi-beam data using closely spaced receiver beams and 4-5 times overlapping multi-beam swaths, which greatly improved the sounding density and geologic resolvability of the data. At least one location shows an acoustic plume in the water column on a 3.5 kHz profile, and this plume is located along a fault trace and above surface and subsurface seepage indicators. Fluid indicators are largely associated with folds and faults within the sediment section, and many of the faults continue into and offset the reflective basement. A dense pattern of normal faults is seen on the outer shelf in the multi-beam bathymetry, backscatter, and 3-D seismic data, and the majority of fluid seepage indicators lie along mapped fault traces. Furthermore, linear mounds, ridges, and pockmark chains are found on the upper, middle, and lower slope regions. The arcuate shape of the shelf edge, projection of the Quepos Ridge, and high density of potential seep sites suggest that this area may be a zone of former seamount/ridge subduction. These results demonstrate a much greater potential seep density and distribution than previously reported across the Costa Rican margin.

  10. The Bootheel lineament, the 1811-1812 New Madrid earthquake sequence, and modern seismicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweig, E.S.; Ellis, M.A.

    1992-01-01

    Pedologic, geomorphic, and geochronologic data suggest that liquefaction occurred along the Bootheel lineament of Missouri and Arkansas during the 1811-1812 New Madrid earthquake sequence. The authors propose that the lineament may be the surface trace of a relatively young fault zone consisting of multiple strike-slip flower structures. These structures have been interpreted over a zone at least 5 km wide exhibiting deformed strata at least as young as a regional Eocene/Quaternary unconformity. In physical models, flower structures form in less rigid material in response to low finite displacement across a discrete strike-slip shear zone in a rigid basement. By analogy,more » the Bootheel lineament may represent the most recent attempt of a strike-slip fault zone of relatively low displacement to propagate through a weak cover. In addition, the Bootheel lineament extends between two well-established, seismically active strike-slip fault zones that current form a restraining step. Restraining steps along strike-slip fault zones are inherently unstable, and thus the Bootheel lineament may be acting to smooth the trace of the New Madrid seismic zone as displacement increases. The current seismic inactivity along the Bootheel lineament may be explained by sequential accommodation of complex strain in which the stress field is highly variable within the source volume. In other words, the current stress field may not represent that which operated during the 1811-1812 sequence. Alternatively, an earthquake on a fault associated with the bootheel lineament may have released sufficient strain energy to temporarily shut down activity.« less

  11. 3-D Spontaneous Rupture Simulations of the 2016 Kumamoto, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi

    2017-04-01

    We investigated the M7.3 Kumamoto, Japan, earthquake to illuminate why and how the rupture of the main shock propagated successfully by 3-D dynamic rupture simulations, assuming a complicated fault geometry estimated based on the distributions of aftershocks. The M7.3 main shock occurred along the Futagawa and Hinagu faults. A few days before, three M6-class foreshocks occurred. Their hypocenters were located along by the Hinagu and Futagawa faults and their focal mechanisms were similar to those of the main shock; therefore, an extensive stress shadow can have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of relocated aftershock hypocenters. Then, we evaluated static stress changes on the main shock fault plane due to the occurrence of the three foreshocks assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that the hypocenter of the main shock is located on the region with positive Coulomb failure stress change (ΔCFS) while ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the rupture propagating toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we conducted 3-D dynamic rupture simulations by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges to reproduce the rupture propagation of the main shock consistent with those revealed by seismic waveform analyses. We also demonstrated that the free surface encouraged the slip evolution of the main shock.

  12. Integrated geophysical investigations of Main Barton Springs, Austin, Texas, USA

    NASA Astrophysics Data System (ADS)

    Saribudak, By Mustafa; Hauwert, Nico M.

    2017-03-01

    Barton Springs is a major discharge site for the Barton Springs Segment of the Edwards Aquifer and is located in Zilker Park, Austin, Texas. Barton Springs actually consists of at least four springs. The Main Barton Springs discharges into the Barton Springs pool from the Barton Springs fault and several outlets along a fault, from a cave, several fissures, and gravel-filled solution cavities on the floor of the pool west of the fault. Surface geophysical surveys [resistivity imaging, induced polarization (IP), self-potential (SP), seismic refraction, and ground penetrating radar (GPR)] were performed across the Barton Springs fault and at the vicinity of the Main Barton Springs in south Zilker Park. The purpose of the surveys was two-fold: 1) locate the precise location of submerged conduits (caves, voids) carrying flow to Main Barton Springs; and 2) characterize the geophysical signatures of the fault crossing Barton Springs pool. Geophysical results indicate significant anomalies to the south of the Barton Springs pool. A majority of these anomalies indicate a fault-like pattern, in front of the south entrance to the swimming pool. In addition, resistivity and SP results, in particular, suggest the presence of a large conduit in the southern part of Barton Springs pool. The groundwater flow-path to the Main Barton Springs could follow the locations of those resistivity and SP anomalies along the newly discovered fault, instead of along the Barton Springs fault, as previously thought.

  13. A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Analysis of ERTS-1 MSS imagery over the sourthern Basin-Range Province of California, Nevada, and Arizona has led to recognition of regional tectonic control of volcanism, plutonism, mineralization, and fault patterns. This conclusion is the result of geologic reconnaissance of anomalies observed in ERTS-1 and Apollo-9 data, guided by intermediate scale U-2 photography, SLAR, and relevant geologic literature. In addition to regional tectonic studies, the ERTS-1 imagery provides a basis for detailed research of relatively small geologic features. Interpretation of ERTS-1 and Apollo-9 space imagery and intermediate scale X-15 and U-2 photography indicates the presence of a major fault zone along the California-Nevada state line, here named the Pahrump fault zone. Field mapping confirms previously unreported evidence of fault breaks in bedrock, along range fronts and in Quaternary alluvium and lake sediments. Regional gravity lows and fault traces within the Pahrump fault zone from a general left stepping en echelon pattern. The trend and postulated diplacement for this fault are similar to other major strike slip fault zones in the southern Basin-Range Province.

  14. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone

    USGS Publications Warehouse

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.

    2013-01-01

    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  15. 15 years of zooming in and zooming out: Developing a new single scale national active fault database of New Zealand

    NASA Astrophysics Data System (ADS)

    Ries, William; Langridge, Robert; Villamor, Pilar; Litchfield, Nicola; Van Dissen, Russ; Townsend, Dougal; Lee, Julie; Heron, David; Lukovic, Biljana

    2014-05-01

    In New Zealand, we are currently reconciling multiple digital coverages of mapped active faults into a national coverage at a single scale (1:250,000). This seems at first glance to be a relatively simple task. However, methods used to capture data, the scale of capture, and the initial purpose of the fault mapping, has produced datasets that have very different characteristics. The New Zealand digital active fault database (AFDB) was initially developed as a way of managing active fault locations and fault-related features within a computer-based spatial framework. The data contained within the AFDB comes from a wide range of studies, from plate tectonic (1:500,000) to cadastral (1:2,000) scale. The database was designed to allow capture of field observations and remotely sourced data without a loss in data resolution. This approach has worked well as a method for compiling a centralised database for fault information but not for providing a complete national coverage at a single scale. During the last 15 years other complementary projects have used and also contributed data to the AFDB, most notably the QMAP project (a national series of geological maps completed over 19 years that include coverage of active and inactive faults at 1:250,000). AFDB linework and attributes was incorporated into this series but simplification of linework and attributes has occurred to maintain map clarity at 1:250,000 scale. Also, during this period on-going mapping of active faults has improved upon these data. Other projects of note that have used data from the AFDB include the National Seismic Hazard Model of New Zealand and the Global Earthquake Model (GEM). The main goal of the current project has been to provide the best digital spatial representation of a fault trace at 1:250,000 scale and combine this with the most up to date attributes. In some areas this has required a simplification of very fine detailed data and in some cases new mapping to provide a complete coverage. Where datasets have conflicting line work and/or attributes, data was reviewed through consultation with authors or review of published research to ensure the most to date representation was maintained. The current project aims to provide a coverage that will be consistent between the AFDB and QMAP digital and provide a free download of these data on the AFDB website (http://data.gns.cri.nz/af/).

  16. A Generalised Fault Protection Structure Proposed for Uni-grounded Low-Voltage AC Microgrids

    NASA Astrophysics Data System (ADS)

    Bui, Duong Minh; Chen, Shi-Lin; Lien, Keng-Yu; Jiang, Jheng-Lun

    2016-04-01

    This paper presents three main configurations of uni-grounded low-voltage AC microgrids. Transient situations of a uni-grounded low-voltage (LV) AC microgrid (MG) are simulated through various fault tests and operation transition tests between grid-connected and islanded modes. Based on transient simulation results, available fault protection methods are proposed for main and back-up protection of a uni-grounded AC microgrid. In addition, concept of a generalised fault protection structure of uni-grounded LVAC MGs is mentioned in the paper. As a result, main contributions of the paper are: (i) definition of different uni-grounded LVAC MG configurations; (ii) analysing transient responses of a uni-grounded LVAC microgrid through line-to-line faults, line-to-ground faults, three-phase faults and a microgrid operation transition test, (iii) proposing available fault protection methods for uni-grounded microgrids, such as: non-directional or directional overcurrent protection, under/over voltage protection, differential current protection, voltage-restrained overcurrent protection, and other fault protection principles not based on phase currents and voltages (e.g. total harmonic distortion detection of currents and voltages, using sequence components of current and voltage, 3I0 or 3V0 components), and (iv) developing a generalised fault protection structure with six individual protection zones to be suitable for different uni-grounded AC MG configurations.

  17. Seismic Modeling of the Alasehir Graben, Western Turkey

    NASA Astrophysics Data System (ADS)

    Gozde Okut, Nigar; Demirbag, Emin

    2014-05-01

    The purpose of this study is to develop a depth model to make synthetic seismic reflection sections, such as stacked and migrated sections with different velocity models. The study area is east-west trending Alasehir graben which is one of the most prominent structure in the western Anatolia, proved to have geothermal energy potential by researchers and exploration companies. Geological formations were taken from Alaşehir-1 borehole drilled by Turkish Petroleum Corporation (Çiftçi, 2007) and seismic interval velocities were taken from check-shots in the same borehole (Kolenoǧlu-Demircioǧlu, 2009). The most important structure is the master graben bounding fault (MGBF) in the southern margin of the Alasehir graben. Another main structure is the northern bounding fault called the antithetic fault of the MGBF with high angle normal fault characteristic. MGBF is a crucial contact between sedimentary cover and the metamorphic basement. From basement to the surface, five different stratigraphic units constitute graben fill . All the sedimentary units thicknesses get thinner from the southern margin to the northern margin of the Alasehir graben displaying roll-over geometry. A commercial seismic data software was used during modeling. In the first step, a 2D velocity/depth model was defined. Ray tracing was carried out with diffraction option to produce the reflection travel times. The reflection coefficients were calculated and wavelet shaping was carried out by means of band-pass filtering. Finally synthetic stacked section of the Alasehir graben was obtained. Then, migrated sections were generated with different velocity models. From interval velocities, average and RMS velocities were calculated for the formation entires to test how the general features of the geological model may change against different seismic models after the migration. Post-stack time migration method was used. Pseudo-velocity analysis was applied at selected CDP locations. In theory, seismic migration moves events to their correct spatial locations and collapse energy from diffractions back to their scattering points. This features of migration can be distinguished in the migrated sections. When interval velocities used, all the diffractions are removed and fault planes can be seen clearly. When average velocities used, MGBF plane extends to greater depths. Additionally, slope angles and locations of antithetic faults in the northern margin of the graben changes. When RMS velocities used, a migrated section was obtained for which to make an interpretation was quite hard, especially for the main structures along the northern margin and reflections related to formations.

  18. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology, are mostly seen at the NE part of the study region. We observe several knick points along the longitudinal channel profiles that mostly fits to the surface trace of the OF. The existence of multiple knick points along the same channel profiles on the southwestern sections of the fault are interpreted to be the result of multiple parallel/sub-parallel branches of the OF in this region. The integrated preliminary results of all applied methods indicate the evidence of a stronger deformation at the northeastern part of the OF, in addition to the OB section. The deformation significantly diffuses to the southwest of the OB, where the main fault bifurcates into several branches. In order to explain the distribution of the deformation style along the OF, we suggest three hypotheses: (a) the OF is confined within a very narrow zone in its most northeastern parts, and the total strain is distributed at its southwestern section (especially to the southwest of the OB), (b) The high asymmetric values, calculated at the northeastern OF, are mainly affected by another major tectonic structure, the North Anatolian Shear Zone, at this region or (c) the combined effect of these two settings. Our further studies, which will include the analyzing the lithological properties of drainage basins, detailed fault mapping, and understanding the cumulative horizontal slip by constructing and comparing the pseudo-palaeotopography at both sides of the fault, are going to provide more detailed information on the activity and the style of deformation along the OF. This study is supported by TÜBİTAK project no. 114Y227. References -AFAD, 2013, Son 48 saatte 48 deprem (48 earthquakes at the last 48 hours) http://www.afad.gov.tr/TR/HaberDetay.aspx?IcerikID=1511&ID=12, Volume 2013. -Aktuǧ, B., Dikmen, Ü., Doǧru, A., and Özener, H., 2013, Seismicity and strain accumulation around Karliova Triple Junction (Turkey): Journal of Geodynamics, v. 67, no. 0, p. 21-29. -Şengör, A. M. C., Görür, N., Şaroǧlu, F., 1985, Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study in Biddle, K. T. & Christie-Blick, N., Strike-Slip Deformation, Basin Formation, and Sedimentation, Oklahoma: Society of Economic Paleontologists and Mineralogists Special Publication No. 37. p. 227-264.

  19. Using the Bongwana natural CO2 release to understand leakage processes and develop monitoring

    NASA Astrophysics Data System (ADS)

    Jones, David; Johnson, Gareth; Hicks, Nigel; Bond, Clare; Gilfillan, Stuart; Kremer, Yannick; Lister, Bob; Nkwane, Mzikayise; Maupa, Thulani; Munyangane, Portia; Robey, Kate; Saunders, Ian; Shipton, Zoe; Pearce, Jonathan; Haszeldine, Stuart

    2016-04-01

    Natural CO2 leakage along the Bongwana Fault in South Africa is being studied to help understand processes of CO2 leakage and develop monitoring protocols. The Bongwana Fault crops out over approximately 80 km in KwaZulu-Natal province, South Africa. In outcrop the fault is expressed as a broad fracture corridor in Dwyka Tillite, with fractures oriented approximately N-S. Natural emissions of CO2 occur at various points along the fault, manifest as travertine cones and terraces, bubbling in the rivers and as gas fluxes through soil. Exposed rock outcrop shows evidence for Fe-staining around fractures and is locally extensively kaolinitised. The gas has also been released through a shallow water well, and was exploited commercially in the past. Preliminary studies have been carried out to better document the surface emissions using near surface gas monitoring, understand the origin of the gas through major gas composition and stable and noble gas isotopes and improve understanding of the structural controls on gas leakage through mapping. In addition the impact of the leaking CO2 on local water sources (surface and ground) is being investigated, along with the seismic activity of the fault. The investigation will help to build technical capacity in South Africa and to develop monitoring techniques and plans for a future CO2 storage pilot there. Early results suggest that CO2 leakage is confined to a relatively small number of spatially-restricted locations along the weakly seismically active fault. Fracture permeability appears to be the main method by which the CO2 migrates to the surface. The bulk of the CO2 is of deep origin with a minor contribution from near surface biogenic processes as determined by major gas composition. Water chemistry, including pH, DO and TDS is notably different between CO2-rich and CO2-poor sites. Soil gas content and flux effectively delineates the fault trace in active leakage sites. The fault provides an effective testing ground for field-based monitoring with results to date indicating the methods and technologies tested successfully detect leaking CO2. Further work will investigate the source of the CO2 and attempt to quantify CO2 flux rates and detection thresholds.

  20. Subsurface geometry of the San Andreas fault in southern California: Results from the Salton Seismic Imaging Project (SSIP) and strong ground motion expectations

    USGS Publications Warehouse

    Fuis, Gary S.; Bauer, Klaus; Goldman, Mark R.; Ryberg, Trond; Langenheim, Victoria; Scheirer, Daniel S.; Rymer, Michael J.; Stock, Joann M.; Hole, John A.; Catchings, Rufus D.; Graves, Robert; Aagaard, Brad T.

    2017-01-01

    The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3  km">∼2–3  km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60°">∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (T<1  s">T<1  s) shaking is increased locally by up to a factor of 2 on the hanging wall and is decreased locally by up to a factor of 2 on the footwall, compared to shaking calculated for a vertical fault.

  1. Tectonic Setting of NGHP-1 Site 17, Andaman Forearc

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.

    2008-12-01

    The National Gas Hydrate Program (NGHP) Expedition 1 was an 'IODP-like' coring and logging program to investigate gas hydrate occurrences along the margins of India. Although most sites were located along the east coast of India, Site NGHP-01-17 was located near 10° 45'N on the Andaman forearc approximately 50 km east of Little Andaman Island in a water depth of 1325 m. Seismic lines across the site show an anomalously deep bottom simulating reflector (BSR) at a depth of about 600 mbsf. Coring and logging results confirmed that the BSR does mark the base of the gas hydrate stability zone. The age of the sediments at the base of the hole was estimated as 12.3 Ma. The Andaman Sea is an extensional basin resulting from strain partitioning during oblique subduction at the Sunda trench. The site is located within the eastern portion of the Andaman-Nicobar outer arc accretionary ridge on a long sliver of crust between the Eastern Margin Fault and the Diligent Fault. They are both down-to-the-east normal faults that form the eastern edge of the accretionary prism. The West Andaman Fault (WAF), which forms the principal active plate boundary between the Sumatra Fault and the Andaman Spreading Center, is located about 45 km further east along the eastern side of Invisible Bank. The Eastern Margin Fault forms the eastern edge of the block containing Little Andaman Island and extends northward for at least 100 km along the eastern side of South Andaman Island where it appears to die out. It can be traced south to about 8° 20'N where it dies out east of Tarasa Island. The Diligent Fault extends south to about 9° N where it apparently merges with the WAF. It forms the eastern edge of the accretionary prism northward to at least to 13° N and most likely to the Mynamar shelf at 14° N. It probably continues on to join the Kabaw Fault, which marks the eastern boundary of the accretionary prism in Myanmar. Although there is a significant vertical offset across both faults near the NGDP-1-17 site, the Diligent Fault appears to have also experienced strike-slip faulting at some point, probably prior to formation of the Andaman Spreading Center at about 4 Ma. At that time the situation may have been similar to that now found between about 7° N and 4° N where the northern motion of the sliver plate is concentrated at two locations, a fault system along the landward margin of the accretionary prism and another system further landward that forms the main plate boundary.

  2. Folding associated with extensional faulting: Sheep Range detachment, southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guth, P.L.

    1985-01-01

    The Sheep Range detachment is a major Miocene extensional fault system of the Great Basin. Its major faults have a scoop shape, with straight, N-S traces extending 15-30 km and then abruptly turning to strike E-W. Tertiary deformation involved simultaneous normal faulting, sedimentation, landsliding, and strike-slip faulting. Folds occur in two settings: landslide blocks and drag along major faults. Folds occur in landslide blocks and beneath them. Most folds within landslide blocks are tight anticlines, with limbs dipping 40-60 degrees. Brecciation of the folds and landslide blocks suggests brittle deformation. Near Quijinump Canyon in the Sheep Range, at least threemore » landslide blocks (up to 500 by 1500 m) slid into a small Tertiary basin. Tertiary limestone beneath the Paleozoic blocks was isoclinally folded. Westward dips reveal drag folds along major normal faults, as regional dips are consistently to the east. The Chowderhead anticline is the largest drag fold, along an extensional fault that offsets Ordovician units 8 km. East-dipping Ordovician and Silurian rocks in the Desert Range form the hanging wall. East-dipping Cambrian and Ordovician units in the East Desert Range form the foot wall and east limb of the anticline. Caught along the fault plane, the anticline's west-dipping west limb contains mostly Cambrian units.« less

  3. Identifying buried segments of active faults in the northern Rio Grande Rift using aeromagnetic, LiDAR,and gravity data, south-central Colorado, USA

    USGS Publications Warehouse

    Grauch, V.J.S.; Ruleman, Chester A.

    2013-01-01

    Combined interpretation of aeromagnetic and LiDAR data builds on the strength of the aeromagnetic method to locate normal faults with significant offset under cover and the strength of LiDAR interpretation to identify the age and sense of motion of faults. Each data set helps resolve ambiguities in interpreting the other. In addition, gravity data can be used to infer the sense of motion for totally buried faults inferred solely from aeromagnetic data. Combined interpretation to identify active faults at the northern end of the San Luis Basin of the northern Rio Grande rift has confirmed general aspects of previous geologic mapping but has also provided significant improvements. The interpretation revises and extends mapped fault traces, confirms tectonic versus fluvial origins of steep stream banks, and gains additional information on the nature of active and potentially active partially and totally buried faults. Detailed morphology of surfaces mapped from the LiDAR data helps constrain ages of the faults that displace the deposits. The aeromagnetic data provide additional information about their extents in between discontinuous scarps and suggest that several totally buried, potentially active faults are present on both sides of the valley.

  4. Moment tensor inversion of recent local moderate sized Van Earthquakes: seismicity and active tectonics of the Van region : Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Suvarikli, M.; Ogutcu, Z.; Kekovali, K.; Ocal, M. F.; Gunes, Y.; Pinar, A.

    2013-12-01

    The study area of the present research, the Van Region is located at the norththern end of the collision zone between the Anatolia and Arabian plates. Therefore, the southeast border of the Anatolian plate collides with the Arabian plate along the Bitlis Suture Zone. This zone is formed by collision of Arabian and in large scale Eurasian plates at mid-Miocen age. This type of thrust generation as a result of compressional regime extends east-west. The largest recorded earthquakes have all taken place along Southern Turkey (e.g. Lice, 1971; Varto, 1966; Caldiran, 1976). On the 23th of October 2011, an earthquake shook the Van Lake, Eastern Turkey, following a seismic sequence of more than three months in an unprecedented episode for this region characterized by null or low seismicity. The October 23, 2011 Van-Ercis Earthquake (Mw=7.1) was the most devastating resulting in loss of life and destruction. In order to study the aftershocks' activity of this main event, we installed and kept a seismic network of 10 broad-band (BB) stations in the area for an interval of nearly fifteen months. We characterized the seismogenic structure of the zone by calculating a minimum 1-D local velocity model and obtaining precise hypocentre locations. We also calculated fault plane solutions for more than 200 moderate sized earthquakes based on first motion polarities and commonly Moment Tensor Inversion Methods. The seismogenic zone would be localized at aproximately 10 km depth. Generally, the distribution of the important moderate earthquakes and the aftershock distribution shows that the E-W and NE-SW oriented fault segments cause the earthquake activities. Aftershock events are located along the eastern border of Lake Van and mainly between 5 and 10 km depth and disposed in two alignments: a ~E-W-trending alignment that matches with the trace of the Van Trust fault Zone and a NE-trending which could correspond to an structure not previously seen. Selected focal mechanisms show a strong trust faulting which coincides with the nature of the Van fault. We were currently analysing an archive of over 5000 local events recorded by the KOERI seismic network of over 20 broadband stations between 2010 and 2013 in the whole Van Region. The Van Earthquake initiated and caused an increase in seismic activity of the region. Van Earthquake and its important aftershocks fault mechanism solutions show that the region is under compression and reverse faulting is a result of this regime which is effective on the active compressional tectonics of the region. This study was supported by Bogazici University Research Projects Commission under SRP/BAP project No. 6040.

  5. How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Brown, Dennis; Alvarez-Marron, Joaquina; Biete, Cristina; Kuo-Chen, Hao; Camanni, Giovanni; Ho, Chun-Wei

    2017-07-01

    Studies of mountain belts worldwide show that along-strike changes are common in their foreland fold-and-thrust belts. These are typically caused by processes related to fault reactivation and/or fault focusing along changes in sedimentary sequences. The study of active orogens, like Taiwan, can also provide insights into how these processes influence transient features such as seismicity and topography. In this paper, we trace regional-scale features from the Eurasian continental margin in the Taiwan Strait into the south central Taiwan fold-and-thrust belt. We then present newly mapped surface geology, P wave velocity maps and sections, seismicity, and topography data to test the hypothesis of whether or not these regional-scale features of the margin are contributing to along-strike changes in structural style, and the distribution of seismicity and topography in this part of the Taiwan fold-and-thrust belt. These data show that the most important along-strike change takes place at the eastward prolongation of the upper part of the margin necking zone, where there is a causal link between fault reactivation, involvement of basement in the thrusting, concentration of seismicity, and the formation of high topography. On the area correlated with the necking zone, the strike-slip reactivation of east northeast striking extensional faults is causing sigmoidal offset of structures and topography along two main zones. Here basement is not involved in the thrusting; there is weak focusing of seismicity and localized development of topography. We also show that there are important differences in structure, seismicity, and topography between the margin shelf and its necking zone.

  6. Long-term afterslip of the M6.0, 2004 Parkfield, California, earthquake—Implications for forecasting amount and duration of afterslip on other major creeping faults

    USGS Publications Warehouse

    Lienkaemper, James J.; McFarland, Forrest S.

    2017-01-01

    We present the longest record of surface afterslip on a continental strike‐slip fault for the 2004 M 6.0 Parkfield, California, earthquake, from which we can derive critical information about the duration and predictability of afterslip relevant to urban displacement hazard applications. Surface slip associated with this event occurred entirely postseismically along the interseismically creeping (0.6–1.5  cm/yr) main trace of the San Andreas fault. Using the first year of afterslip data, the program AFTER correctly predicted the cumulative surface afterslip (maximum ∼35  cm) eventually attained. By 1 yr postearthquake, observed afterslip had accumulated to only ∼74% of its modeled final value uf in units of length. The 6‐yr data suggested final slip would be reached everywhere by ∼6–12  yrs.Parkfield’s afterslip lasted much longer (∼6–12  yrs) than afterslip following a 2014 M 6.0 event in Napa, California, where no interseismic creep was known, and its afterslip neared completion (∼97% of uf) by 1 yr. The uncertainty in uf for the Napa event fell to ≤2  cm in only three months, versus in 2 yrs for the Parkfield event, mostly because duration of the power‐law stage of afterslip at Parkfield is much longer, ∼1000 (493–1666) days versus ∼100 (35–421) days for Napa. Because the urban Hayward fault near San Francisco, California, like the Parkfield section, exhibits interseismic creep in a similar geological regime, significant afterslip might last for up to a decade following an anticipated M≥6.7 earthquake, potentially delaying postearthquake recovery.

  7. Identification of natural fractures and in situ stress at Rantau Dedap geothermal field

    NASA Astrophysics Data System (ADS)

    Artyanto, Andika; Sapiie, Benyamin; Idham Abdullah, Chalid; Permana Sidik, Ridwan

    2017-12-01

    Rantau Dedap Area is a geothermal field which is located in Great Sumatra Fault (GSF). The fault and fracture are main factor in the permeability of the geothermal system. However, not all faults and fractures have capability of to flow the fluids. Borehole image log is depiction of the borehole conditions, it is used to identify the natural fractures and drilling induced fracture. Both of them are used to identify the direction of the fracture, direction of maximum horizontal stress (SHmax), and geomechanics parameters. The natural fractures are the results of responses to stress on a rock and permeability which controlling factor in research area. Breakouts is found in this field as a trace of drilling induced fracture due to in situ stress work. Natural fractures are strongly clustered with true strike trending which first, second, and third major direction are N170°E - N180°E (N-S), N60°E - N70°E (NE-SW), and N310°E - N320°E (NW-SE), while the dominant dip is 80° -90°. Based on borehole breakout analysis, maximum horizontal stress orientation is identified in N162°E - N204°E (N-S) and N242°E (NE-SW) direction. It’s constantly similar with regional stress which is affected by GSF. Several parameters have been identified and analyzed are SHmax, SHmin, and Sy. It can be concluded that Rantau Dedap Geothermal Field is affected by strike-slip regime. The determination of in situ stress and natural fractures are important to study the pattern of permeability which is related to the fault in reservoir of this field.

  8. A review on data-driven fault severity assessment in rolling bearings

    NASA Astrophysics Data System (ADS)

    Cerrada, Mariela; Sánchez, René-Vinicio; Li, Chuan; Pacheco, Fannia; Cabrera, Diego; Valente de Oliveira, José; Vásquez, Rafael E.

    2018-01-01

    Health condition monitoring of rotating machinery is a crucial task to guarantee reliability in industrial processes. In particular, bearings are mechanical components used in most rotating devices and they represent the main source of faults in such equipments; reason for which research activities on detecting and diagnosing their faults have increased. Fault detection aims at identifying whether the device is or not in a fault condition, and diagnosis is commonly oriented towards identifying the fault mode of the device, after detection. An important step after fault detection and diagnosis is the analysis of the magnitude or the degradation level of the fault, because this represents a support to the decision-making process in condition based-maintenance. However, no extensive works are devoted to analyse this problem, or some works tackle it from the fault diagnosis point of view. In a rough manner, fault severity is associated with the magnitude of the fault. In bearings, fault severity can be related to the physical size of fault or a general degradation of the component. Due to literature regarding the severity assessment of bearing damages is limited, this paper aims at discussing the recent methods and techniques used to achieve the fault severity evaluation in the main components of the rolling bearings, such as inner race, outer race, and ball. The review is mainly focused on data-driven approaches such as signal processing for extracting the proper fault signatures associated with the damage degradation, and learning approaches that are used to identify degradation patterns with regards to health conditions. Finally, new challenges are highlighted in order to develop new contributions in this field.

  9. On the motion od the Caribbean relative to South-America: New results from GPS geodesy 1999-2012

    NASA Astrophysics Data System (ADS)

    De La Rosa, R.; Marquez, J.; Bravo, M.; Madriz, Y.; Mencin, D.; Wesnousky, S. G.; Molnar, P. H.; Bilham, R.; Perez, O. J.

    2013-05-01

    Our previous (1994-2006) collaborative GPS studies in southern Caribbean and northern South-America (SA) show that along its southern boundary in north-central and northeastern Venezuela (Vzla) the Caribbean plate (CP) slips easterly at ~20 mm/a relative to SA, and that in northwestern South-America slip-partitioning takes place resulting in 12 mm/a of dextral motion across the Venezuelan Andes, ~6 mm/a of which occur along the main trace of the NE-trending Bocono fault, and the rest is taken up by SE-subduction of the CP beneath northwestern SA. A series of new velocity vectors obtained in the region from GPS geodesy in 1999-2012 and their corresponding elastic modelings shows that in north-central Vzla part (~3 mm/a) of the C-SA relative dextral shear is taken up by the east-trending continental La Victoria fault, which runs ~50 kms south of San Sebastian fault off-shore and is sub-parallel to it, the later taken up the rest of the motion. The velocity we find for Aruba Is (~20 mm/y due ~east) is consistent with the motion predicted by the Euler pole (61,9° N; 75,7 °W; ω = 0,229 °/Ma) we previously calculated to describe the C-SA relative plate motion. New velocity vectors obtained across the Venezuelan Andes are consistent with a modeled surface velocity due to 12 mm/a of dextral shear below a locking depth of 14 km on one or more vertical N50°E striking faults located within the 100-km wide Andean ranges. The Andes also show a horizontal convergence rate of 2 to 4 mm/a suggesting an uplift rate of ~1.7 mm/a if thrust motion takes place on shallowly dipping faults parallel to the Andes.

  10. Clustering of GPS velocities in the Mojave Block, southeastern California

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Simpson, R. W.

    2013-04-01

    find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager []. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. []. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].

  11. Aftershocks of the 2014 South Napa, California, Earthquake: Complex faulting on secondary faults

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Shelly, David R.

    2016-01-01

    We investigate the aftershock sequence of the 2014 MW6.0 South Napa, California, earthquake. Low-magnitude aftershocks missing from the network catalog are detected by applying a matched-filter approach to continuous seismic data, with the catalog earthquakes serving as the waveform templates. We measure precise differential arrival times between events, which we use for double-difference event relocation in a 3D seismic velocity model. Most aftershocks are deeper than the mainshock slip, and most occur west of the mapped surface rupture. While the mainshock coseismic and postseismic slip appears to have occurred on the near-vertical, strike-slip West Napa fault, many of the aftershocks occur in a complex zone of secondary faulting. Earthquake locations in the main aftershock zone, near the mainshock hypocenter, delineate multiple dipping secondary faults. Composite focal mechanisms indicate strike-slip and oblique-reverse faulting on the secondary features. The secondary faults were moved towards failure by Coulomb stress changes from the mainshock slip. Clusters of aftershocks north and south of the main aftershock zone exhibit vertical strike-slip faulting more consistent with the West Napa Fault. The northern aftershocks correspond to the area of largest mainshock coseismic slip, while the main aftershock zone is adjacent to the fault area that has primarily slipped postseismically. Unlike most creeping faults, the zone of postseismic slip does not appear to contain embedded stick-slip patches that would have produced on-fault aftershocks. The lack of stick-slip patches along this portion of the fault may contribute to the low productivity of the South Napa aftershock sequence.

  12. Detecting Blind Fault with Fractal and Roughness Factors from High Resolution LiDAR DEM at Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, Y. S.; Yu, T. T.

    2014-12-01

    There is no obvious fault scarp associated with blind fault. The traditional method of mapping this unrevealed geological structure is the cluster of seismicity. Neither the seismic event nor the completeness of cluster could be captured by network to chart the location of the entire possible active blind fault within short period of time. High resolution DEM gathered by LiDAR could denote actual terrain information despite the existence of plantation. 1-meter interval DEM of mountain region at Taiwan is utilized by fractal, entropy and roughness calculating with MATLAB code. By jointing these handing, the regions of non-sediment deposit are charted automatically. Possible blind fault associated with Chia-Sen earthquake at southern Taiwan is served as testing ground. GIS layer help in removing the difference from various geological formation, then multi-resolution fractal index is computed around the target region. The type of fault movement controls distribution of fractal index number. The scale of blind fault governs degree of change in fractal index. Landslide induced by rainfall and/or earthquake possesses larger degree of geomorphology alteration than blind fault; special treatment in removing these phenomena is required. Highly weathered condition at Taiwan should erase the possible trace remained upon DEM from the ruptured of blind fault while reoccurrence interval is higher than hundreds of years. This is one of the obstacle in finding possible blind fault at Taiwan.

  13. 3-D dynamic rupture simulations of the 2016 Kumamoto, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi; Kubo, Hisahiko

    2017-11-01

    Using 3-D dynamic rupture simulations, we investigated the 2016 Mw7.1 Kumamoto, Japan, earthquake to elucidate why and how the rupture of the main shock propagated successfully, assuming a complicated fault geometry estimated on the basis of the distributions of the aftershocks. The Mw7.1 main shock occurred along the Futagawa and Hinagu faults. Within 28 h before the main shock, three M6-class foreshocks occurred. Their hypocenters were located along the Hinagu and Futagawa faults, and their focal mechanisms were similar to that of the main shock. Therefore, an extensive stress shadow should have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of the relocated aftershock hypocenters. We then evaluated the static stress changes on the main shock fault plane that were due to the occurrence of the three foreshocks, assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that Coulomb failure stress change (ΔCFS) was positive just below the hypocenter of the main shock, while the ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the propagation of the rupture toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes caused by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we computed 3-D dynamic rupture by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges that could reproduce the characteristic features of the main shock rupture revealed by seismic waveform analyses. We also observed that the free surface encouraged the slip evolution of the main shock.[Figure not available: see fulltext.

  14. Semi-automated fault system extraction and displacement analysis of an excavated oyster reef using high-resolution laser scanned data

    NASA Astrophysics Data System (ADS)

    Molnár, Gábor; Székely, Balázs; Harzhauser, Mathias; Djuricic, Ana; Mandic, Oleg; Dorninger, Peter; Nothegger, Clemens; Exner, Ulrike; Pfeifer, Norbert

    2015-04-01

    In this contribution we present a semi-automated method for reconstructing the brittle deformation field of an excavated Miocene oyster reef, in Stetten, Korneuburg Basin, Lower Austria. Oyster shells up to 80 cm in size were scattered in a shallow estuarine bay forming a continuous and almost isochronous layer as a consequence of a catastrophic event in the Miocene. This shell bed was preserved by burial of several hundred meters of sandy to silty sediments. Later the layers were tilted westward, uplifted and erosion almost exhumed them. An excavation revealed a 27 by 17 meters area of the oyster covered layer. During the tectonic processes the sediment volume suffered brittle deformation. Faults mostly with some centimeter normal component and NW-SE striking affected the oyster covered volume, dissecting many shells and the surrounding matrix as well. Faults and displacements due to them can be traced along the site typically at several meters long, and as fossil oysters are broken and parts are displaced due to the faulting, along some faults it is possible to follow these displacements in 3D. In order to quantify these varying displacements and to map the undulating fault traces high-resolution scanning of the excavated and cleaned surface of the oyster bed has been carried out using a terrestrial laser scanner. The resulting point clouds have been co-georeferenced at mm accuracy and a 1mm resolution 3D point cloud of the surface has been created. As the faults are well-represented in the point cloud, this enables us to measure the dislocations of the dissected shell parts along the fault lines. We used a semi-automatic method to quantify these dislocations. First we manually digitized the fault lines in 2D as an initial model. In the next step we estimated the vertical (i.e. perpendicular to the layer) component of the dislocation along these fault lines comparing the elevations on two sides of the faults with moving averaging windows. To estimate the strike-slip dislocation component, the surface points of the dissected shells on both sides of the fault planes were compared and displacement vectors were derived. The exact orientation of the fault planes cannot be accurately extracted automatically, so the distinction between normal and reverse fault is difficult. This makes the third component of the dislocation to be estimated inaccurately. These derived dislocation values are regarded as components of the dislocation vectors and were transformed back to the real world spatial coordinate system. Interpolating these dislocation vectors along fault lines we calculated and visualized the deformation field along the whole surface of the oyster reef. Although this deformation field is only a 2D section of the real 3D deformation field, its elaboration reveals the spatial variability of the deformation according to sediment inhomogeneity. The project is supported by the Austrian Science Fund (FWF P 25883-N29).

  15. Stress rotations due to the M6.5 foreshock and M7.3 main shock in the 2016 Kumamoto, SW Japan, earthquake sequence

    NASA Astrophysics Data System (ADS)

    Yoshida, Keisuke; Hasegawa, Akira; Saito, Tatsuhiko; Asano, Youichi; Tanaka, Sachiko; Sawazaki, Kaoru; Urata, Yumi; Fukuyama, Eiichi

    2016-10-01

    A shallow M7.3 event with a M6.5 foreshock occurred along the Futagawa-Hinagu fault zone in Kyushu, SW Japan. We investigated the spatiotemporal variation of the stress orientations in and around the source area of this 2016 Kumamoto earthquake sequence by inverting 1218 focal mechanisms. The results show that the σ3 axis in the vicinity of the fault plane significantly rotated counterclockwise after the M6.5 foreshock and rotated clockwise after the M7.3 main shock in the Hinagu fault segment. This observation indicates that a significant portion of the shear stress was released both by the M6.5 foreshock and M7.3 main shock. It is estimated that the stress release by the M6.5 foreshock occurred in the shallower part of the Hinagu fault segment, which brought the stress concentration in its deeper part. This might have caused the M7.3 main shock rupture mainly along the deeper part of the Hinagu fault segment after 28 h.

  16. Active convergence between the Lesser and Greater Caucasus in Georgia: Constraints on the tectonic evolution of the Lesser-Greater Caucasus continental collision

    NASA Astrophysics Data System (ADS)

    Sokhadze, G.; Floyd, M.; Godoladze, T.; King, R.; Cowgill, E. S.; Javakhishvili, Z.; Hahubia, G.; Reilinger, R.

    2018-01-01

    We present and interpret newly determined site motions derived from GPS observations made from 2008 through 2016 in the Republic of Georgia, which constrain the rate and locus of active shortening in the Lesser-Greater Caucasus continental collision zone. Observation sites are located along two ∼160 km-long profiles crossing the Lesser-Greater Caucasus boundary zone: one crossing the Rioni Basin in western Georgia and the other crossing further east near the longitude of Tbilisi. Convergence across the Rioni Basin Profile occurs along the southern margin of the Greater Caucasus, near the surface trace of the north-dipping Main Caucasus Thrust Fault (MCTF) system, and is consistent with strain accumulation on the fault that generated the 1991 MW6.9 Racha earthquake. In contrast, convergence along the Tbilisi Profile occurs near Tbilisi and the northern boundary of the Lesser Caucasus (near the south-dipping Lesser Caucasus Thrust Fault), approximately 50-70 km south of the MCTF, which is inactive within the resolution of geodetic observations (< ± 0.5 mm/yr) at the location of the Tbilisi Profile. We suggest that the southward offset of convergence along strike of the range is related to the incipient collision of the Lesser-Greater Caucasus, and closing of the intervening Kura Basin, which is most advanced along this segment of the collision zone. The identification of active shortening near Tbilisi requires a reevaluation of seismic hazards in this area.

  17. Fault identification using multidisciplinary techniques at the Mars/Uranus Station antenna sites

    NASA Technical Reports Server (NTRS)

    Santo, D. S.; Schluter, M. B.; Shlemon, R. J.

    1992-01-01

    A fault investigation was performed at the Mars and Uranus antenna sites at the Goldstone Deep Space Communications Complex in the Mojave desert. The Mars/Uranus Station consists of two large-diameter reflector antennas used for communication and control of deep-space probes and other missions. The investigation included interpretation of Landsat thematic mapper scenes, side-looking airborne radar transparencies, and both color-infrared and black-and-white aerial photography. Four photolineaments suggestive of previously undocumented faults were identified. Three generally discrete morphostratigraphic alluvial-fan deposits were also recognized and dated using geomorphic and soil stratigraphic techniques. Fourteen trenches were excavated across the four lineaments; the trenches show that three of the photolineaments coincide with faults. The last displacement of two of the faults occurred between about 12,000 and 35,000 years ago. The third fault was judged to be older than 12,000 years before present (ybp), although uncertainty remains. None of the surface traces of the three faults crosses under existing antennas or structures; however, their potential activity necessitates appropriate seismic retrofit designs and loss-prevention measures to mitigate potential earthquake damage to facilities and structures.

  18. Major crustal fractures in the Baltic Shield

    NASA Technical Reports Server (NTRS)

    Tuominen, H. V. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Initial analysis of the bands for images 1039-09322, 1039-09315, and 1040-09371 provide a detailed picture of a zone extending 500 km north-northeast from the northern coast of the Gulf of Bothnia. Highways (on bands 0.5-0.6 and 0.6-0.7), rivers (bands 0.7-0.8, 0.8-1.1) and bare fell tops are visible. Schist belts, as known from ground surveys, can be discerned from areas occupied by their basement rocks or major plutons. A number of sharp lineaments, apparently faults, are visible. Some major fracture zones, up to 50 km wide, that form distinct lineaments in weather satellite pictures and belong to the main objects of this study, are rather indistinct in the images but can be traced.

  19. Relationships between the geometry of seismogenic faults and observed seismicty: a contribute from reflection seismic

    NASA Astrophysics Data System (ADS)

    Ciaccio, M. G.; Mirabella, F.; Stucchi, E.

    2003-04-01

    We analyze the seismogenic structures of the the Colfiorito area (central Italy), strucked by the 1997-98 relevant seismic sequence. This area has been used as a test site to investigate the possible interactions between earthquake seismology, reflection seismology and structural geology. Here we show the results obtained from the interpretation of the re-processed seismic reflection profile, acquired in the 80' for hydrocarbon exploration by ENI-Agip, crossing the epicentral area and the relationships between relating hypocentral locations and geological features derived from surface and from seismic data. The dense distribution of seismic stations connected to a temporary network installed after the occurrence of the first two large shocks (Mw=5.7 and Mw=6.0) provided high quality data showing earthquakes located at depth varying from 3 to 9 km and characterised by normal faulting mechanisms, with a NE-SW tension axis oriented about N55^o. The non conventional reprocessing sequence adopted was aimed to the early removal of the coherent and random noise and to the optimal definition of fault systems. The obtained profile shows an outstanding increase in the resolution of the geological structures with a better evidence of the faults and allows a much better correlation of surface geology features with the reflectors and the banning of parts of the profiles which run along the strike of the geological structures. The profile also shows a good image of the deep structure which has been interpreted as the depth image of the major fault of the Colfiorito fault system. A first attempt of projection of the earthquakes of the 1997-98 sequence shows a basic consistence with the inferred extensional structures at depth. The study also evidences that at least the upper part of the basement is involved in the thrust sheets, with a stepping and deepening of the basement from west to east from 5.5, to 9 km depth. The average dip at depth of the active faults is about 40^o fitting with the slip plane inferred from the focal mechanism of the main shocks and with the aftershocks distribution alignment in cross section of the aftershock sequence. At a depth of about 8 km, the trace of the active normal fault corresponds to the position of a Basement step, hence suggesting that the position of the Basement steps, generated by Miocene-Pliocene thrust tectonics, may have controlled the location of the subsequent normal faults.

  20. Paleoearthquakes at Frazier Mountain, California delimit extent and frequency of past San Andreas Fault ruptures along 1857 trace

    USGS Publications Warehouse

    Scharer, Katherine M.; Weldon, Ray; Streig, Ashley; Fumal, Thomas

    2014-01-01

    Large earthquakes are infrequent along a single fault, and therefore historic, well-characterized earthquakes exert a strong influence on fault behavior models. This is true of the 1857 Fort Tejon earthquake (estimated M7.7–7.9) on the southern San Andreas Fault (SSAF), but an outstanding question is whether the 330 km long rupture was typical. New paleoseismic data for six to seven ground-rupturing earthquakes on the Big Bend of the SSAF restrict the pattern of possible ruptures on the 1857 stretch of the fault. In conjunction with existing sites, we show that over the last ~650 years, at least 75% of the surface ruptures are shorter than the 1857 earthquake, with estimated rupture lengths of 100 to <300 km. These results suggest that the 1857 rupture was unusual, perhaps leading to the long open interval, and that a return to pre-1857 behavior would increase the rate of M7.3–M7.7 earthquakes.

  1. Delineation of The Sumatra Fault in The Central Part of West Sumatra based on Gravity Method

    NASA Astrophysics Data System (ADS)

    Saragih, R. D.; Brotopuspito, K. S.

    2018-04-01

    The Sumatra Fault System is elongated across the Sumatra Island, Indonesia, Southeast Asia including the central part of West Sumatra, Indonesia, Southeast Asia. The Sumatra Fault and subsurface structure on the Central Part of West Sumatra had been analyzed using gravity method. Bouguer anomaly data were obtained from GRDC (Geological Research and Development Centre) maps, Bandung, Indonesia (i.e. without terrain correction). In this study, terrain correction had been applied to these Bouguer data. Bouguer anomaly in a horizontal plane at 3000 meters high and equivalent depth of mass point 7000 meters were obtained using Dampney Method. Residual and regional anomalies were separated using upward continuation method at 8000 meters high. The result of the SVD on residual anomaly shows two negative anomalies on northwest – southeast. The zero miligal per meter square quantity coincides remarkably well with trace faults which is a part of the Sumatra Fault System. Two negative anomalies are located around the Sianok Segment and Sumani Segment.

  2. Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?

    USGS Publications Warehouse

    Shelly, D.R.; Ellsworth, W.L.; Ryberg, T.; Haberland, C.; Fuis, G.S.; Murphy, J.; Nadeau, R.M.; Burgmann, R.

    2009-01-01

    We examine a 24-hour period of active San Andreas Fault (SAF) tremor and show that this tremor is largely composed of repeated similar events. Utilizing this similarity, we locate the subset of the tremor with waveforms similar to an identified low frequency earthquake (LFE) "master template," located using P and S wave arrivals to be ???26 km deep. To compensate for low signal-to-noise, we estimate event-pair differential times at "clusters" of nearby stations rather than at single stations. We find that the locations form a near-linear structure in map view, striking parallel to the SAF and near the surface trace. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, likely reflecting shear slip, similar to subduction zone tremor. If so, the SAF may extend to the base of the crust, ???10 km below the deepest regular earthquakes on the fault. ?? 2009 by the American Geophysical Union.

  3. Structural character of the Ghost Dance Fault, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spengler, R.W.; Braun, C.A.; Linden, R.M.

    1993-12-31

    Detailed structural mapping of an area that straddles the southern part of the Ghost Dance Fault has revealed the presence of several additional subparallel to anastomosing faults. These faults, mapped at a scale of 1:240, are: (1) dominantly north-trending, (2) present on both the upthrown and downthrown sides of the surface trace of the Ghost Dance fault, (3) near-vertical features that commonly offset strata down to the west by 3 to 6 m (10 to 20 ft), and (4) commonly spaced 15 to 46 m (50 to 150 ft) apart. The zone also exhibits a structural fabric, containing an abundancemore » of northwest-trending fractures. The width of the zone appears to be at least 213 m (700 ft) near the southernmost boundary of the study area but remains unknown near the northern extent of the study area, where the width of the study area is only 183 m (600 ft).« less

  4. Structural analysis of three extensional detachment faults with data from the 2000 Space-Shuttle Radar Topography Mission

    USGS Publications Warehouse

    Spencer, J.E.

    2010-01-01

    The Space-Shuttle Radar Topography Mission provided geologists with a detailed digital elevation model of most of Earth's land surface. This new database is used here for structural analysis of grooved surfaces interpreted to be the exhumed footwalls of three active or recently active extensional detachment faults. Exhumed fault footwalls, each with an areal extent of one hundred to several hundred square kilometers, make up much of Dayman dome in eastern Papua New Guinea, the western Gurla Mandhata massif in the central Himalaya, and the northern Tokorondo Mountains in central Sulawesi, Indonesia. Footwall curvature in profile varies from planar to slightly convex upward at Gurla Mandhata to strongly convex upward at northwestern Dayman dome. Fault curvature decreases away from the trace of the bounding detachment fault in western Dayman dome and in the Tokorondo massif, suggesting footwall flattening (reduction in curvature) following exhumation. Grooves of highly variable wavelength and amplitude reveal extension direction, although structural processes of groove genesis may be diverse.

  5. Fault-controlled CO2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun; Han, Weon Shik; Watson, Z. T.; Graham, Jack P.; Kim, Kue-Young

    2014-10-01

    The study investigated a natural analogue for soil CO2 fluxes where CO2 has naturally leaked on the Colorado Plateau, East-Central Utah in order to identify various factors that control CO2 leakage and to understand regional-scale CO2 leakage processes in fault systems. The total 332 and 140 measurements of soil CO2 flux were made at 287 and 129 sites in the Little Grand Wash (LGW) and Salt Wash (SW) fault zones, respectively. Measurement sites for CO2 flux involved not only conspicuous CO2 degassing features (e.g., CO2-driven springs/geysers) but also linear features (e.g., joints/fractures and areas of diffusive leakage around a fault damage zone). CO2 flux anomalies were mostly observed along the fault traces. Specifically, CO2 flux anomalies were focused in the northern footwall of the both LGW and SW faults, supporting the existence of north-plunging anticlinal CO2 trap against south-dipping faults as well as higher probability of the north major fault traces as conduits. Anomalous CO2 fluxes also appeared in active travertines adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). These observations indicate that CO2 has escaped through those pathways and that CO2 leakage from these fault zones does not correspond to point source leakage. The magnitude of CO2 flux is progressively reduced from north (i.e. the LGW fault zone, ∼36,259 g m-2 d-1) to south (i.e. the SW fault zone, ∼1,428 g m-2 d-1) despite new inputs of CO2 and CO2-saturated brine to the northerly SW fault from depth. This discrepancy in CO2 flux is most likely resulting from the differences in fault zone architecture and associated permeability structure. CO2-rich fluids from the LGW fault zone may become depleted with respect to CO2 during lateral transport, resulting in an additional decrease in CO2 fluxes within the SW fault zone. In other words, CO2 and CO2-charged brine originating from the LGW fault zone could migrate southward over 10-20 km through a series of high-permeable aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, and White Rim Sandstones). These CO2-rich fluids could finally reach the southernmost Tumbleweed and Chaffin Ranch Geysers across the SW fault zone. The potential lateral transport of both CO2 and CO2-laden brine can be further supported by similar CO2/3He and 3He/4He ratios of gas and a systematic chemical evolution of water emitted from the regional springs and geysers, which suggest the same crustal origins of CO2 and CO2-rich brine for the region.

  6. Crustal velocity field near the big bend of California's San Andreas fault

    USGS Publications Warehouse

    Snay, R.A.; Cline, M.W.; Philipp, C.R.; Jackson, D.D.; Feng, Y.; Shen, Z.-K.; Lisowski, M.

    1996-01-01

    We use geodetic data spanning the 1920-1992 interval to estimate the horizontal velocity field near the big bend segment of California's San Andreas fault (SAF). More specifically, we estimate a horizontal velocity vector for each node of a two-dimensional grid that has a 15-min-by-15-min mesh and that extends between latitudes 34.0??N and 36.0??N and longitudes 117.5??W and 120.5??W. For this estimation process, we apply bilinear interpolation to transfer crustal deformation information from geodetic sites to the grid nodes. The data include over a half century of triangulation measurements, over two decades of repeated electronic distance measurements, a decade of repeated very long baseline interferometry measurements, and several years of Global Positioning System measurements. Magnitudes for our estimated velocity vectors have formal standard errors ranging from 0.7 to 6.8 mm/yr. Our derived velocity field shows that (1) relative motion associated with the SAF exceeds 30 mm/yr and is distributed on the Earth's surface across a band (> 100 km wide) that is roughly centered on this fault; (2) when velocities are expressed relative to a fixed North America plate, the motion within our primary study region has a mean orientation of N44??W ?? 2?? and the surface trace of the SAF is congruent in shape to nearby contours of constant speed yet this trace is oriented between 5?? and 10?? counterclockwise relative to these contours; and (3) large strain rates (shear rates > 150 nrad/yr and/or areal dilatation rates < -150 nstr/yr) exist near the Garlock fault, near the White Wolf fault, and in the Ventura basin.

  7. Petrogenesis of Early Cretaceous granitoids from southwest Zhejiang, NE South China Block and its geodynamic implication

    NASA Astrophysics Data System (ADS)

    Pan, Fa-Bin; Liu, Rong; Jin, Chong; Jia, Bao-Jian; He, Xiaobo; Gao, Zhong; Tao, Lu; Zhou, Xiao-Chun; Zhang, Li-Qi

    2018-05-01

    In situ zircon U-Pb ages, whole-rock major and trace elements, and Sr-Nd isotopic compositions of the Sucun, Yunfeng, and Jingning intrusions from southwest Zhejiang, NE South China Block, are presented to trace their petrogenesis and shed light on its lithosphere evolution. LA-ICP-MS U-Pb zircon dating shows that the Sucun quartz monzonite and Jingning monzogranite were emplaced at 135 Ma, and the Yunfeng quartz monzonite and Jingning granite were emplaced at 104 and 112 Ma, respectively. All these intrusions are metaluminous to weakly peraluminous and lie within high-K calc-alkaline to shoshonite series field (SiO2 = 66-76 wt%, A/CNK = 0.95-1.09, K2O/Na2O = 0.78-1.77). The Yunfeng quartz monzonite clearly have lower K2O and total REE contents, and higher CaO, Na2O, Al2O3, P2O5, MgO, and TiO2 contents, and relatively less enriched Sr-Nd isotopic compositions than those of the Sucun quartz monzonite, indicating that the Yunfeng quartz monzonite were derived from partial melting of a more juvenile lower crust sources compared with the magma source of the Sucun quartz monzonite. The Jingning monzogranite exhibit similar major elements covariations and Nd isotopic compositions, but higher Ba, Sr, and Eu contents and lower Rb, Th, and U contents than those of the Jingning granite. The geochemical features imply that the Jingning monzogranite and granite were fluid-present and fluid-absent anatexis products of the same Paleoproterozoic crustal source, respectively. Whole-rock Sr-Nd isotopic data imply that the estimated amounts of juvenile mantle-derived melts input into the mature crust show southeastward decreasing trend away from the Jiangshan-Shaoxing fault. We propose that roll-back and retreat of the Paleo-Pacific subducting plate might cause extensive asthenosphere mantle upwelling in East China, and the mantle-derived melts tend to rise through the regional main fault zones and preferentially modify the lithosphere nearby these faults.

  8. Lithospheric Structure of the Zagros and Alborz Mountain Belts (Iran) from Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Paul, A.; Hatzfeld, D.; Kaviani, A.; Tatar, M.

    2008-12-01

    We present a synthesis of the results of two dense temporary passive seismic experiments installed for a few months across Central Zagros for the first one, and from North-western Zagros to Alborz for the second one. On both transects, the receiver function analysis shows that the crust has an average thickness of ~ 43 km beneath the Zagros fold-and-thrust belt and the Iranian plateau. The crust is thicker in the back side of the Main Zagros Reverse Fault (MZRF), with a larger maximum Moho depth in Central Zagros (69 ± 2 km) than in North-western Zagros (56 ± 2 km). To reconcile Bouguer anomaly data and Moho depth profile of Central Zagros, we proposed that the thickening is related to overthrusting of the Arabian margin by Central Iran on the MZRF considered as a major thrust fault rooted at Moho depth. The better-quality receiver functions of NW Zagros display clear conversions on a low-velocity channel which cross-cuts the whole crust from the surface trace of the MZRF to the Moho on 250-km length. Waveform modeling shows that the crustal LVZ is ~ 10-km thick with a S-wave velocity 8-30 % smaller than the average crustal velocity. We interpret the low-velocity channel as the trace of the thrust fault and the suture between the Arabian and the Iranian lithospheres. We favour the hypothesis of the LVZ being due to sediments of the Arabian margin dragged to depth during the subduction of the Neotethyan Ocean. At upper mantle depth, we find shield-like shear-wave velocities in the Arabian upper-mantle, and lower velocities in the Iranian shallow mantle (50-150 km) which are likely due to higher temperature. The lack of a high-velocity anomaly in the mantle northeast of the MZRF suture suggests that the Neotethian oceanic lithosphere is now detached from the Arabian margin. The crust of the Alborz mountain range is not thickened in relation with its high elevations, but its upper mantle has low P-wave velocities.

  9. Procedural errors in air traffic control: effects of traffic density, expertise, and automation.

    PubMed

    Di Nocera, Francesco; Fabrizi, Roberto; Terenzi, Michela; Ferlazzo, Fabio

    2006-06-01

    Air traffic management requires operators to frequently shift between multiple tasks and/or goals with different levels of accomplishment. Procedural errors can occur when a controller accomplishes one of the tasks before the entire operation has been completed. The present study had two goals: first, to verify the occurrence of post-completion errors in air traffic control (ATC) tasks; and second, to assess effects on performance of medium term conflict detection (MTCD) tools. There were 18 military controllers who performed a simulated ATC task with and without automation support (MTCD vs. manual) in high and low air traffic density conditions. During the task, which consisted of managing several simulated flights in an enroute ATC scenario, a trace suddenly disappeared "after" the operator took the aircraft in charge, "during" the management of the trace, or "before" the pilot's first contact. In the manual condition, only the fault type "during" was found to be significantly different from the other two. On the contrary, when in the MTCD condition, the fault type "after" generated significantly less errors than the fault type "before." Additionally, automation was found to affect performance of junior controllers, whereas seniors' performance was not affected. Procedural errors can happen in ATC, but automation can mitigate this effect. Lack of benefits for the "before" fault type may be due to the fact that operators extend their reliance to a part of the task that is unsupported by the automated system.

  10. Fault Modeling of Extreme Scale Applications Using Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishnu, Abhinav; Dam, Hubertus van; Tallent, Nathan R.

    Faults are commonplace in large scale systems. These systems experience a variety of faults such as transient, permanent and intermittent. Multi-bit faults are typically not corrected by the hardware resulting in an error. Here, this paper attempts to answer an important question: Given a multi-bit fault in main memory, will it result in an application error — and hence a recovery algorithm should be invoked — or can it be safely ignored? We propose an application fault modeling methodology to answer this question. Given a fault signature (a set of attributes comprising of system and application state), we use machinemore » learning to create a model which predicts whether a multibit permanent/transient main memory fault will likely result in error. We present the design elements such as the fault injection methodology for covering important data structures, the application and system attributes which should be used for learning the model, the supervised learning algorithms (and potentially ensembles), and important metrics. Lastly, we use three applications — NWChem, LULESH and SVM — as examples for demonstrating the effectiveness of the proposed fault modeling methodology.« less

  11. Fault Modeling of Extreme Scale Applications Using Machine Learning

    DOE PAGES

    Vishnu, Abhinav; Dam, Hubertus van; Tallent, Nathan R.; ...

    2016-05-01

    Faults are commonplace in large scale systems. These systems experience a variety of faults such as transient, permanent and intermittent. Multi-bit faults are typically not corrected by the hardware resulting in an error. Here, this paper attempts to answer an important question: Given a multi-bit fault in main memory, will it result in an application error — and hence a recovery algorithm should be invoked — or can it be safely ignored? We propose an application fault modeling methodology to answer this question. Given a fault signature (a set of attributes comprising of system and application state), we use machinemore » learning to create a model which predicts whether a multibit permanent/transient main memory fault will likely result in error. We present the design elements such as the fault injection methodology for covering important data structures, the application and system attributes which should be used for learning the model, the supervised learning algorithms (and potentially ensembles), and important metrics. Lastly, we use three applications — NWChem, LULESH and SVM — as examples for demonstrating the effectiveness of the proposed fault modeling methodology.« less

  12. Modeling Crustal Deformation Due to the Landers, Hector Mine Earthquakes Using the SCEC Community Fault Model

    NASA Astrophysics Data System (ADS)

    Gable, C. W.; Fialko, Y.; Hager, B. H.; Plesch, A.; Williams, C. A.

    2006-12-01

    More realistic models of crustal deformation are possible due to advances in measurements and modeling capabilities. This study integrates various data to constrain a finite element model of stress and strain in the vicinity of the 1992 Landers earthquake and the 1999 Hector Mine earthquake. The geometry of the model is designed to incorporate the Southern California Earthquake Center (SCEC), Community Fault Model (CFM) to define fault geometry. The Hector Mine fault is represented by a single surface that follows the trace of the Hector Mine fault, is vertical and has variable depth. The fault associated with the Landers earthquake is a set of seven surfaces that capture the geometry of the splays and echelon offsets of the fault. A three dimensional finite element mesh of tetrahedral elements is built that closely maintains the geometry of these fault surfaces. The spatially variable coseismic slip on faults is prescribed based on an inversion of geodetic (Synthetic Aperture Radar and Global Positioning System) data. Time integration of stress and strain is modeled with the finite element code Pylith. As a first step the methodology of incorporating all these data is described. Results of the time history of the stress and strain transfer between 1992 and 1999 are analyzed as well as the time history of deformation from 1999 to the present.

  13. The wister mud pot lineament: Southeastward extension or abandoned strand of the San Andreas fault?

    USGS Publications Warehouse

    Lynch, D.K.; Hudnut, K.W.

    2008-01-01

    We present the results of a survey of mud pots in the Wister Unit of the Imperial Wildlife Area. Thirty-three mud pots, pot clusters, or related geothermal vents (hundreds of pots in all) were identified, and most were found to cluster along a northwest-trending line that is more or less coincident with the postulated Sand Hills fault. An extrapolation of the trace of the San Andreas fault southeastward from its accepted terminus north of Bombay Beach very nearly coincides with the mud pot lineament and may represent a surface manifestation of the San Andreas fault southeast of the Salton Sea. Additionally, a recent survey of vents near Mullet Island in the Salton Sea revealed eight areas along a northwest-striking line where gas was bubbling up through the water and in two cases hot mud and water were being violently ejected.

  14. Initiation of deformation of the Eastern California Shear Zone: Constraints from Garlock fault geometry and GPS observations

    USGS Publications Warehouse

    Gan, Weijun; Zhang, P.; Shen, Z.-K.; Prescott, W.H.; Svarc, J.L.

    2003-01-01

    We suggest a 2-stage deformation model for the Eastern California Shear Zone (ECSZ) to explain the geometry of the Garlock fault trace. We assume the Garlock fault was originally straight and then was gradually curved by right-lateral shear deformation across the ECSZ. In our 2-stage deformation model, the first stage involves uniform shear deformation across the eastern part of the shear zone, and the second stage involves uniform shear deformation across the entire shear zone. In addition to the current shape of the Garlock fault, our model incorporates constraints on contemporary deformation rates provided by GPS observations. We find that the best fitting age for initiation of shear in eastern part of the ECSZ is about 5.0 ?? 0.4 Ma, and that deformation of the western part started about 1.6 Myr later.

  15. Rupture evolution of the 2006 Java tsunami earthquake and the possible role of splay faults

    NASA Astrophysics Data System (ADS)

    Fan, Wenyuan; Bassett, Dan; Jiang, Junle; Shearer, Peter M.; Ji, Chen

    2017-11-01

    The 2006 Mw 7.8 Java earthquake was a tsunami earthquake, exhibiting frequency-dependent seismic radiation along strike. High-frequency global back-projection results suggest two distinct rupture stages. The first stage lasted ∼65 s with a rupture speed of ∼1.2 km/s, while the second stage lasted from ∼65 to 150 s with a rupture speed of ∼2.7 km/s. High-frequency radiators resolved with back-projection during the second stage spatially correlate with splay fault traces mapped from residual free-air gravity anomalies. These splay faults also colocate with a major tsunami source associated with the earthquake inferred from tsunami first-crest back-propagation simulation. These correlations suggest that the splay faults may have been reactivated during the Java earthquake, as has been proposed for other tsunamigenic earthquakes, such as the 1944 Mw 8.1 Tonankai earthquake in the Nankai Trough.

  16. Present-Day Strain Transfer Across the Yakutat Collision in SW Yukon - SE Alaska: The Death of the Southern Denali Fault?

    NASA Astrophysics Data System (ADS)

    Marechal, A.; Mazzotti, S.; Ritz, J. F.; Ferry, M. A.; Freymueller, J. T.

    2014-12-01

    In SW Yukon-SE Alaska, the present-day Pacific-North America relative motion is highly oblique to the main plate boundary, resulting in strong strain-partitioning tectonics that link the Aleutian subduction to the west to Queen Charlotte transform to the south. This transition region is also the site of present-day orogeny and accretion of the Yakutat Terrane to the Northern Cordillera. Multiple datasets (GPS, geomorphology, seismicity) are integrated to characterize and quantify strain patterns, with particular emphasis on strain partitioning between strike-slip and shortening deformation. New GPS data straddling the main faults (Denali, Totschunda, Fairweather) indicate that, south of the collision corner, 95% of the Pacific-North America strike-slip motion is accommodated on the plate-boundary Fairweather Fault, leaving near-zero motion on the Denali Fault only ~100 km inboard. In contrast, the fault-perpendicular component is strongly distributed between shortening offshore, in the orogen, and inland outward motion. In the region of highest convergence obliquity, GPS data show a diffuse indentor-like deformation, with strong along-strike variations of the main fault slip rates. Preliminary results of a regional geomorphology study give further information about the Denali Fault, where previous data suggest a velocity decrease from 8 mm/yr (Matmon et al.,2006) to 4 mm/yr (Seitz et al., 2010). A high resolution DEM processed from Pleiades satellite imagery highlights a significant vertical component on the Denali Fault and very little to no strike-slip movement in its southern part. Metric-scale displacements are measured along the "inactive" part of the fault showing recent vertical deformation since the Last Glacial Maximum (~20 kyrs ago). In contrast, significant dextral offsets on post-LGM structures are measured on the southern Totschunda Fault. Ongoing datation of geomorphological markers (Be10, OSL) will give us new slip-rate estimates along the southern part of the main transpressional faults (Denali, Totschunda). Our preliminary results suggest that, both south and north of the collision front, the lithospheric scale Denali Fault does not show any significant strike slip movement and that deformation is mostly accommodated along the Fairweather and Totschunda Faults.

  17. Late Quaternary Faulting in Southeastern Louisiana: A Natural Laboratory for Understanding Shallow Faulting in Deltaic Materials

    NASA Astrophysics Data System (ADS)

    Dawers, N. H.; McLindon, C.

    2017-12-01

    A synthesis of late Quaternary faults within the Mississippi River deltaic plain aims to provide a more accurate assessment of regional and local fault architecture, and interactions between faulting, sediment loading, salt withdrawal and compaction. This effort was initiated by the New Orleans Geological Society and has resulted in access to industry 3d seismic reflection data, as well as fault trace maps, and various types of well data and biostratigraphy. An unexpected outgrowth of this project is a hypothesis that gravity-driven normal faults in deltaic settings may be good candidates for shallow aseismic and slow-slip phenomena. The late Quaternary fault population is characterized by several large, highly segmented normal fault arrays: the Baton Rouge-Tepetate fault zone, the Lake Pontchartrain-Lake Borgne fault zone, the Golden Meadow fault zone (GMFZ), and a major counter-regional salt withdrawal structure (the Bay Marchand-Timbalier Bay-Caillou Island salt complex and West Delta fault zone) that lies just offshore of southeastern Louisiana. In comparison to the other, more northerly fault zones, the GMFZ is still significantly salt-involved. Salt structures segment the GMFZ with fault tips ending near or within salt, resulting in highly localized fault and compaction related subsidence separated by shallow salt structures, which are inherently buoyant and virtually incompressible. At least several segments within the GMFZ are characterized by marsh breaks that formed aseismically over timescales of days to months, such as near Adams Bay and Lake Enfermer. One well-documented surface rupture adjacent to a salt dome propagated over a 3 day period in 1943. We suggest that Louisiana's coastal faults make excellent analogues for deltaic faults in general, and propose that a series of positive feedbacks keep them active in the near surface. These include differential sediment loading and compaction, weak fault zone materials, high fluid pressure, low elastic stiffness in surrounding materials, and low confining pressure.

  18. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.

    1986-12-31

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). Thesemore » formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression.« less

  19. Evaluating Failure Mechanics of the Malpais Landslide, Eureka County, Nevada

    NASA Astrophysics Data System (ADS)

    Wilhite, C. P.; Carr, J. R.; Wallace, A. R.; Watters, R. J.

    2008-12-01

    The Malpais Landslide is located on the northeast end of the Shoshone Mountains in north-central Nevada. The 2.3 square kilometer slide originated near the crest of the Malpais Rim and flowed north into Whirlwind Valley. Given the proximity to Holocene faulting and active geothermal conditions, destabilizing forces include seismic activity, hydrothermal alteration, and changes in groundwater conditions. Approximately 3 km west of the slide is the Beowawe Geothermal Field, which is partially recharged along local faults and has altered geologic units throughout the slide area. The area contains two major normal faults (the approximately east striking Malpais Fault and the approximately north striking Dunphy Pass Fault) and numerous smaller faults. The most recent offset along the Malpais fault was approximately 7450 years B.P. (Wesnousky et al., 2005). The resulting scarp cannot be traced through the slide, therefore sliding occurred after that time (though previous sliding has not been ruled out). The stratigraphy in the slide area consists of a basal Paleozoic quartzite, unconformably overlain by Oligocene to Miocene conglomeratic to tuffaceous sediments with interbedded volcanic flows, capped by a sequence of mafic flow units. Except for the lowest sedimentary unit, Tts, all units dip approximately 25 degrees southeast. Tts was measured in outcrops east of the site and dips approximately 20 degrees north; since these outcrops could not be traced into the slide area, the dip of Tts at the slide is unknown. Point-load testing showed Tts to have a tensile strength of 3.12 MPa which is 55% weaker than the next weakest unit in the area. These factors, as well as Tts" semiconsolidated nature, suggest that Tts was the unit of failure. Further testing of the Malpais Landslide, as well as computer simulation, will be used to determine the cause of failure. This information and the examination of other nearby landslides may be helpful in assessing landslide risk in north-central Nevada and regions with similar characteristics. Reference: Wesnousky, S., Barron, A., Briggs, R., Caskey, S., Kumar, S., and Owen, L., 2005, Paleoseismic Transect Across the Northern Great Basin, Journal of Geophysical Research, v. 110.

  20. The mid-Miocene structural conversion within the NE Tibetan Plateau from new proof of the interaction between two conflicting fault systems in the western Qaidam Basin

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Wu, L.; Xiao, A.

    2016-12-01

    We present a detailed structural analysis on the fault geometry and Cenozoic development in the Dongping area, northwestern Qaidam Basin, based on the precise 3-D seismic interpretation, remote sensing images and seismic attribute analysis. Two conflicting fault systems distributed in different orientations ( EW-striking and NNW-striking) with opposing senses of shear are recognized and discussed, and the interaction between them provides new insights to the intracontinental deformation of the Qaidam Basin within the NE Tibetan Plateau. The EW-striking fault system constitutes the south part of the Altyn left-slip positive flower structure. Faulting on the EW-striking faults dominated the northwestern Qaidam since 40 Ma in respond to the inception of the Altyn Tagh fault system as a ductile shear zone, tilting the south slope of the Altyn Tagh. Whereas the NNW-striking fault system became the dominant structures since the mid-Miocene ( 15 Ma), induced by the large scale strike-slip of the Altyn Tagh fault which leads to the NE-SW directed compression of the Qaidam Basin. Thus it evidently implies a structural conversion taking place within the NE Tibetan Plateau since the mid-Miocece ( 15 Ma). Interestingly, the preexisting faults possibly restrained the development of the later period faults, while the latter tended to track and link to the former fault traces. Taken the large scale sinistral striking-slip East Kunlun fault system into account, the late Cenozoic intracontinental deformation in the Qaidam Basin showing the dextral transpressional attribute is suggested to be the consequence of the combined effect of its two border sinistral strike-slip faults, which furthermore favors a continuous and lateral-extrusion mechanism of the growth of the NE Tibetan Plateau.

  1. The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault

    NASA Astrophysics Data System (ADS)

    Avouac, Jean-Philippe; Ayoub, Francois; Wei, Shengji; Ampuero, Jean-Paul; Meng, Lingsen; Leprince, Sebastien; Jolivet, Romain; Duputel, Zacharie; Helmberger, Don

    2014-04-01

    We analyse the Mw 7.7 Balochistan earthquake of 09/24/2013 based on ground surface deformation measured from sub-pixel correlation of Landsat-8 images, combined with back-projection and finite source modeling of teleseismic waveforms. The earthquake nucleated south of the Chaman strike-slip fault and propagated southwestward along the Hoshab fault at the front of the Kech Band. The rupture was mostly unilateral, propagated at 3 km/s on average and produced a 200 km surface fault trace with purely strike-slip displacement peaking to 10 m and averaging around 6 m. The finite source model shows that slip was maximum near the surface. Although the Hoshab fault is dipping by 45° to the North, in accordance with its origin as a thrust fault within the Makran accretionary prism, slip was nearly purely strike-slip during that earthquake. Large seismic slip on such a non-optimally oriented fault was enhanced possibly due to the influence of the free surface on dynamic stresses or to particular properties of the fault zone allowing for strong dynamic weakening. Strike-slip faulting on thrust fault within the eastern Makran is interpreted as due to eastward extrusion of the accretionary prism as it bulges out over the Indian plate. Portions of the Makran megathrust, some thrust faults in the Kirthar range and strike-slip faults within the Chaman fault system have been brought closer to failure by this earthquake. Aftershocks cluster within the Chaman fault system north of the epicenter, opposite to the direction of rupture propagation. By contrast, few aftershocks were detected in the area of maximum moment release. In this example, aftershocks cannot be used to infer earthquake characteristics.

  2. Rupture complexity and the supershear transition on rough faults

    NASA Astrophysics Data System (ADS)

    Bruhat, Lucile; Fang, Zijun; Dunham, Eric M.

    2016-01-01

    Field investigations suggest that supershear earthquakes occur on geometrically simple, smooth fault segments. In contrast, dynamic rupture simulations show how heterogeneity of stress, strength, and fault geometry can trigger supershear transitions, as well as other complex rupture styles. Here we examine the Fang and Dunham (2013) ensemble of 2-D plane strain dynamic ruptures on fractally rough faults subject to strongly rate weakening friction laws to document the effect of fault roughness and prestress on rupture behavior. Roughness gives rise to extremely diverse rupture styles, such as rupture arrests, secondary slip pulses that rerupture previously slipped fault sections, and supershear transitions. Even when the prestress is below the Burridge-Andrews threshold for supershear on planar faults with uniform stress and strength conditions, supershear transitions are observed. A statistical analysis of the rupture velocity distribution reveals that supershear transients become increasingly likely at higher stress levels and on rougher faults. We examine individual ruptures and identify recurrent patterns for the supershear transition. While some transitions occur on fault segments that are favorably oriented in the background stress field, other transitions happen at the initiation of or after propagation through an unfavorable bend. We conclude that supershear transients are indeed favored by geometric complexity. In contrast, sustained supershear propagation is most common on segments that are locally smoother than average. Because rupture style is so sensitive to both background stress and small-scale details of the fault geometry, it seems unlikely that field maps of fault traces will provide reliable deterministic predictions of supershear propagation on specific fault segments.

  3. The Intersection between the Gloria Transform Fault and the Tore-Madeira Rise in the NE Atlantic: New Tectonic Insights from Analog Modeling Results

    NASA Astrophysics Data System (ADS)

    Rosas, F. M.; Tomas, R.; Duarte, J. C.; Schellart, W. P.; Terrinha, P.

    2014-12-01

    The intersection between the Gloria Fault (GF) and the Tore-Madeira rise (TMR) in NE Atlantic marks a transition from a discrete to a diffuse nature along a critical segment of the Eurasia/Africa plate boundary. To the West of such intersection, approximately since the Azores triple junction, this plate boundary is mostly characterized by a set of closely aligned and continuous strike-slip faults that make up the narrow active dextral transcurrent system of the GF (with high magnitude M>7 historical earthquakes). While intersecting the TMR the closely E-W trending trace of the GF system is slightly deflected (changing to WNW-ESE), and splays into several fault branches that often coincide with aligned (TMR related?) active volcanic plugs. The segment of the plate boundary between the TMR and the Gorringe Bank (further to the East) corresponds to a more complex (less discrete) tectonic configuration, within which the tectonic connection between the Gloria Fault and another major dextral transcurrent system (the so called SWIM system) occurs. This SWIM fault system has been described to extend even further to the East (almost until the Straits of Gibraltar) across the Gulf of Cadiz domain. In this domain the relative movement between the Eurasian and the African plates is thought to be accommodated through a diffuse manner, involving large scale strain partition between a dextral transcurrent fault-system (the SWIM system), and a set of active west-directed én-échelon major thrusts extending to the North along the SW Iberian margin. We present new analog modeling results, in which we employed different experimental settings to address (namely) the following main questions (as a first step to gain new insight on the tectonic evolution of the TRM-GF critical intersection area): Could the observed morphotectonic configuration of such intersection be simply caused by a bathymetric anomaly determined by a postulated thickened oceanic crust, or is it more compatible with a crustal rheological (viscous) anomaly, possibly related with the active volcanism in the intersection zone? What could cause the observed deflection and splaying of the GF in the intersection with the TMR? Is the GF cutting across the TMR, or is it ending against a morpho-rheological anomaly through waning lateral propagation?

  4. InSAR Analysis of the 2011 Hawthorne (Nevada) Earthquake Swarm: Implications of Earthquake Migration and Stress Transfer

    NASA Astrophysics Data System (ADS)

    Zha, X.; Dai, Z.; Lu, Z.

    2015-12-01

    The 2011 Hawthorne earthquake swarm occurred in the central Walker Lane zone, neighboring the border between California and Nevada. The swarm included an Mw 4.4 on April 13, Mw 4.6 on April 17, and Mw 3.9 on April 27. Due to the lack of the near-field seismic instrument, it is difficult to get the accurate source information from the seismic data for these moderate-magnitude events. ENVISAT InSAR observations captured the deformation mainly caused by three events during the 2011 Hawthorne earthquake swarm. The surface traces of three seismogenic sources could be identified according to the local topography and interferogram phase discontinuities. The epicenters could be determined using the interferograms and the relocated earthquake distribution. An apparent earthquake migration is revealed by InSAR observations and the earthquake distribution. Analysis and modeling of InSAR data show that three moderate magnitude earthquakes were produced by slip on three previously unrecognized faults in the central Walker Lane. Two seismogenic sources are northwest striking, right-lateral strike-slip faults with some thrust-slip components, and the other source is a northeast striking, thrust-slip fault with some strike-slip components. The former two faults are roughly parallel to each other, and almost perpendicular to the latter one. This special spatial correlation between three seismogenic faults and nature of seismogenic faults suggest the central Walker Lane has been undergoing southeast-northwest horizontal compressive deformation, consistent with the region crustal movement revealed by GPS measurement. The Coulomb failure stresses on the fault planes were calculated using the preferred slip model and the Coulomb 3.4 software package. For the Mw4.6 earthquake, the Coulomb stress change caused by the Mw4.4 event increased by ~0.1 bar. For the Mw3.9 event, the Coulomb stress change caused by the Mw4.6 earthquake increased by ~1.0 bar. This indicates that the preceding earthquake may trigger the subsequence one. Because no abnormal volcano activity was observed during the 2011 Hawthorne earthquake swarm, we can rule out the volcano activity to induce these events. However, the groundwater change and mining in the epicentral zone may contribute to the 2011 Hawthorne earthquake.

  5. Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    NASA Astrophysics Data System (ADS)

    Green, Robert G.; White, Robert S.; Greenfield, Tim

    2014-01-01

    Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.

  6. Landslides and the Fault Surface Ruptures during the 2008 Wengchuan Earthquake, Sichuan, China

    NASA Astrophysics Data System (ADS)

    Chigira, M.; Xiyong, Wu; Takashi, Inokuchi; Gonghui, Wang

    2009-04-01

    2008 Sichuan earthquake with a magnitude of Mw 7.9 induced numerous mass movements around the fault surface ruptures of which maximum separations we observed were 3.6 m vertical and 1.5 m horizontal (right lateral). In order to clarify the distribution of these landslides and to characterize them, we interpreted satellite images and made field investigation for 3 weeks by using these images. We used satellite ALOS images taken by the sensors AVNIR II with a resolution of 10 m and PRISM with a resolution of 2.5 m, both of which were taken on 4th in June. We also used satellite images of before and after the earthquake provided by Google Earth. The affected area was mountainous areas with elevations from 1000 m to 4500 m on the west of the Sichuan Basin. Ridges and valleys are generally trending NE parallel to the trends of the geologic structures, while large rivers, such as the Minjiang River, and the Fujiang River are flowing from the north or northwest to the south or southeast, crossing these trends. The NE-trending Longmenshan fault zone runs along the boundary between the mountains and the Sichuan basin (He and Tsukuda, 2003), of which Yinghsiuwan-Beichuan fault was the main fault that generated the 2008 earthquake (Xu, 2008). The basement rocks of the mountainous areas range from Precambrian to Cretaceous in age. They are basaltic rocks, granite, phyllite, dolostone, limestone, alternating beds of sandstone and shale, etc. (Geologic map of China). Landslide distribution areas were mainly of two types: One was the area along the fault that generated this earthquake, and another was along the steep slopes of inner valleys along the Minjian River. Landslides were concentrated on the hanging wall of the earthquake fault, which appeared for more than 180 km along the Longmenshan fault zone. The distribution area of landslides was wider around the middle and the southwest parts of the surface rupture trace and became narrower to the northeast. The directions of the landslides were controlled by the fault: Landslides moving normal to the fault ruptures were most prevailing probably due to the directivity of the seismic wave. The most common landslides were of carbonate rocks, which could be attributable to the decrease in shear strength because of its dissolution by subsurface water. Relatively shallow landslides were concentratedly induced on the slopes in the valley of the Mingjian River from Yinghsiuwa through Wengchan to Maoxian. These slopes seem to be the inner gorges (Kelsey, 1998), which are formed by the acceleration of erosion, leading to the destabilization of valley slopes (Chigira, 2006). The inner valleys are as steep as 35 to 40 degrees with about 500 m height. Largest landslide in the history occurred in the middle of the affected area. It was 1.3 km wide and 5 km long with an area of 7 million m2 and its volume may be 1 billion m3 from the images of the satellite ALOS. This landslide was preceded by gravitational deformation, which was represented by a ridge-top depression. More than 30 landslide dams were made; dams consisting of large carbonate rubbles apparently stable and dams consisting of weathered marlstone or phyllite less stable.

  7. The SCEC 3D Community Fault Model (CFM-v5): An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.

    2014-12-01

    Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from projecting near-surface data down-dip, or modeled from surface strain and potential field data alone.

  8. A Model of Subduction of a Mid-Paleozoic Oceanic Ridge - Transform Fault System along the Eastern North American Margin in the Northern Appalachians

    NASA Astrophysics Data System (ADS)

    Kuiper, Y. D.

    2016-12-01

    Crustal-scale dextral northeasterly trending ductile-brittle fault systems and increased igneous activity in mid-Paleozoic eastern New England and southern Maritime Canada are interpreted in terms of a subducted oceanic spreading ridge model. In the model, the fault systems form as a result of subduction of a spreading ridge-transform fault system, similar to the way the San Andreas fault system formed. Ridge subduction results in the formation of a sub-surface slab window, mantle upwelling, and increased associated magmatism in the overlying plate. The ridge-transform system existed in the Rheic Ocean, and was subducted below parts of Ganderia, Avalonia and Meguma in Maine, New Brunswick and Nova Scotia. The subduction zone jumped southeastward as a result of accretion of Avalonia. Where the ridge-transform system was subducted, plate motions changed from predominantly convergent between the northern Rheic Ocean and Laurentian plates to predominantly dextral between the southern Rheic Ocean and Laurentian plates. In the model, dextral fault systems include the Norumbega fault system between southwestern New Brunswick and southern Maine and New Hampshire, and the Kennebecasis, Belle Isle and Caledonia faults in southeastern New Brunswick. A latest Silurian transition from arc- to within-plate- magmatism in the Coastal Volcanic Belt in eastern Maine may suggest the onset of ridge subduction. Examples of increased latest Silurian to Devonian within-plate magmatism include the Cranberry Island volcanic series and coastal Maine magmatic province in Maine, and the South Mountain Batholith in Nova Scotia. Widespread Devonian to earliest Carboniferous granitic to intermediate plutons, beyond the Coastal Volcanic Belt towards southern Maine and central New Hampshire, may outline the shape of a subsurface slab window. The possibility of ridge-transform subduction in Newfoundland and in the southern Appalachians will be discussed. The northern Appalachians may be a unique location along the Eastern North American Margin and possibly on Earth, in that it may preserve the only known evidence for an ancient Mendocino-style triple junction and San Andreas-type fault.

  9. Paleoseismic evidence for late Holocene tectonic deformation along the Saddle mountain fault zone, Southeastern Olympic Peninsula, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth; Sherrod, Brian; Hughes, Jonathan F.; Kelsey, Harvey M.; Czajkowski, Jessica L.; Walsh, Timothy J.; Contreras, Trevor A.; Schermer, Elizabeth R.; Carson, Robert J.

    2015-01-01

    Trench and wetland coring studies show that northeast‐striking strands of the Saddle Mountain fault zone ruptured the ground about 1000 years ago, generating prominent scarps. Three conspicuous subparallel fault scarps can be traced for 15 km on Light Detection and Ranging (LiDAR) imagery, traversing the foothills of the southeast Olympic Mountains: the Saddle Mountain east fault, the Saddle Mountain west fault, and the newly identified Sund Creek fault. Uplift of the Saddle Mountain east fault scarp impounded stream flow, forming Price Lake and submerging an existing forest, thereby leaving drowned stumps still rooted in place. Stratigraphy mapped in two trenches, one across the Saddle Mountain east fault and the other across the Sund Creek fault, records one and two earthquakes, respectively, as faulting juxtaposed Miocene‐age bedrock against glacial and postglacial deposits. Although the stratigraphy demonstrates that reverse motion generated the scarps, slip indicators measured on fault surfaces suggest a component of left‐lateral slip. From trench exposures, we estimate the postglacial slip rate to be 0.2  mm/yr and between 0.7 and 3.2  mm/yr during the past 3000 years. Integrating radiocarbon data from this study with earlier Saddle Mountain fault studies into an OxCal Bayesian statistical chronology model constrains the most recent paleoearthquake age of rupture across all three Saddle Mountain faults to 1170–970 calibrated years (cal B.P.), which overlaps with the nearby Mw 7.5 1050–1020 cal B.P. Seattle fault earthquake. An earlier earthquake recorded in the Sund Creek trench exposure, dates to around 3500 cal B.P. The geometry of the Saddle Mountain faults and their near‐synchronous rupture to nearby faults 1000 years ago suggest that the Saddle Mountain fault zone forms a western boundary fault along which the fore‐arc blocks migrate northward in response to margin‐parallel shortening across the Puget Lowland.

  10. Role of the Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran)

    NASA Astrophysics Data System (ADS)

    Authemayou, Christine; Bellier, Olivier; Chardon, Dominique; Malekzade, Zaman; Abassi, Mohammad

    2005-04-01

    Field structural and SPOT image analyses document the kinematic framework enhancing transfer of strike-slip partitioned motion from along the backstop to the interior of the Zagros fold-and-thrust belt in a context of plate convergence slight obliquity. Transfer occurs by slip on the north-trending right-lateral Kazerun Fault System (KFS) that connects to the Main Recent Fault, a major northwest-trending dextral fault partitioning oblique convergence at the rear of the belt. The KFS formed by three fault zones ended by bent orogen-parallel thrusts allows slip from along the Main Recent Fault to become distributed by transfer to longitudinal thrusts and folds. To cite this article: C. Authemayou et al., C. R. Geoscience 337 (2005).

  11. Off-fault tip splay networks: a genetic and generic property of faults indicative of their long-term propagation, and a major component of off-fault damage

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Manighetti, I.; Gaudemer, Y.

    2015-12-01

    Faults grow over the long-term by accumulating displacement and lengthening, i.e., propagating laterally. We use fault maps and fault propagation evidences available in literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimeters to thousands of kilometers and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of parent fault length, slip mode, context, etc, tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (~30 and ~10 % of parent fault length, respectively), and a similar range of mean angles to parent fault (10-20°). Tip splays more commonly develop on one side only of the parent fault. We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. We suggest that they represent the most recent damage off-the parent fault, formed during the most recent phase of fault lengthening. The scaling relation between parent fault length and width of tip splay network implies that damage zones enlarge as parent fault length increases. Elastic properties of host rocks might thus be modified at large distances away from a fault, up to 10% of its length. During an earthquake, a significant fraction of coseismic slip and stress is dissipated into the permanent damage zone that surrounds the causative fault. We infer that coseismic dissipation might occur away from a rupture zone as far as a distance of 10% of the length of its causative fault. Coseismic deformations and stress transfers might thus be significant in broad regions about principal rupture traces. This work has been published in Comptes Rendus Geoscience under doi:10.1016/j.crte.2015.05.002 (http://www.sciencedirect.com/science/article/pii/S1631071315000528).

  12. The diffuse seismicity of the Sierra Nevada of Santa Marta, the Perijá Range, and south of the La Guajira peninsula, Colombia and Venezuela: Result of the convergence between Caribbean plate and the South American margin during the Late Neogene?

    NASA Astrophysics Data System (ADS)

    Chicangana, G.; Pedraza, P.; Mora-paez, H.; Ordonez Aristizabal, C. O.; Vargas-Jimenez, C. A.; Kammer, A.

    2012-12-01

    A diffuse low deep microseismicity located overall between the Guajira peninsula and the Sierra Nevada de Santa Marta (SNSM) was registered with the recent installation (2008 to Present) of three seismological stations in northeastern Colombia by the Colombian Seismological Network (RSNC), but mainly with the Uribia station in (the) central region of La Guajira peninsula, The microseismicity is characterized by a great population of events with 1.2 < Ml < 3.0. and few events of 3.0 < Ml < 4.0 that sporadically occur. The poor number of seismological stations in this region of Colombia impedes to locate the origin of the local seismicity; however, this seismic activity is associated to the tectonic activity of the Oca fault because with the GPS displacement analysis, neotectonics evidence found in faults traces associated to the Oca fault and the historical earthquake that affected the Colombian city of Santa Marta in 1834, lead us to conclude this. This is a big cortical fault that sets the limit between La Guajira peninsula and the SNSM. Its cortical characteristics were verified from geological data together with gravimetric and seismic exploration. The SNSM limits toward the southeast with the Cesar - Ranchería basin, and this basin in turn limits with the Perijá Range that is localized in the Colombia - Venezuela border. The SNSM, Cesar - Ranchería basin and Perijá Range limit toward the southwest with the Bucaramanga - Santa Marta fault (BSMF), the Oca fault toward the north, and Perijá - El Tigre fault toward the southeast defining a pyramidal orogenic complex. Using remote sensing images data with geological and regional geophysical information, we proposed that this orogenic complex was originated as a result of the Panama arc with the northwestern South America accretion. The final adjustment of the Caribbean plate (CP) between North America and South America during the Late Neogene produced the big cortical faults systems activation like Oca - Moron - El Pilar in Colombia and Venezuela toward the south of the Caribbean Plate (CP), and Motegua - Walton - Enriquillo - Plantain Garden toward the north of the CP. This situation was originated of a new subduction development of the Nazca - Cocos plates toward the south and the west of the Panama arc; when this happened, the evolution of the Present - day configuration of the Nazca plate and Galapagos Spreading Center started. From the Early Pliocene, the BSMF and the Oca fault were reactivated: the BSMF, with a left lateral movement, and the Oca fault with a right lateral movement. This last mobility produces the cortical diffuse seismicity that we are showing here.

  13. Space technology putting it in the educational perspective

    NASA Technical Reports Server (NTRS)

    Hankins, D. B.

    1975-01-01

    One of the precepts of the company was to provide educators with practical, innovative, and manageable audio-visual teaching aids in a wide spectrum of educational fields, but primarily geography, geology and social science. A pilot slide set was prepared, demonstrating primary areas along the entire length of the San Andreas Fault Zone in California and Mexico. This set utilized several NASA infrared research aircraft photos, to more clearly delineate fault traces. A decision was made to mount a massive program of repackaging NASA generated infrared aircraft imagery into topical teaching sets.

  14. Geologic and paleoseismic study of the Lavic Lake fault at Lavic Lake Playa, Mojave Desert, Southern California

    USGS Publications Warehouse

    Rymer, M.J.; Seitz, G.G.; Weaver, K.D.; Orgil, A.; Faneros, G.; Hamilton, J.C.; Goetz, C.

    2002-01-01

    Paleoseismic investigations of the Lavic Lake fault at Lavic Lake playa place constraints on the timing of a possible earlier earthquake along the 1999 Hector Mine rupture trace and reveal evidence of the timing of the penultimate earthquake on a strand of the Lavic Lake fault that did not rupture in 1999. Three of our four trenches, trenches A, B, and C, were excavated across the 1999 Hector Mine rupture; a fourth trench, D, was excavated across a vegetation lineament that had only minor slip at its southern end in 1999. Trenches A-C exposed strata that are broken only by the 1999 rupture; trench D exposed horizontal bedding that is locally warped and offset by faults. Stratigraphic evidence for the timing of an earlier earthquake along the 1999 rupture across Lavic Lake playa was not exposed. Thus, an earlier event, if there was one along that rupture trace, predates the lowest stratigraphic level exposed in our trenches. Radiocarbon dating of strata near the bottom of trenches constrains a possible earlier event to some time earlier than about 4950 B.C. Buried faults revealed in trench D are below a vegetation lineament at the ground surface. A depositional contact about 80 cm below the ground surface acts as the upward termination of fault breaks in trench D. Thus, this contact may be the event horizon for a surface-rupturing earthquake prior to 1999-the penultimate earthquake on the Lavic Lake fault. Radiocarbon ages of detrital charcoal samples from immediately below the event horizon indicate that the earthquake associated with the faulting occurred later than A.D. 260. An approximately 1300-year age difference between two samples at about the same stratigraphic level below the event horizon suggests the potential for a long residence time of detrital charcoal in the area. Coupled with a lack of bioturbation that could introduce young organic material into the stratigraphic section, the charcoal ages provide only a maximum bounding age; thus, the recognized event may be younger. There is abundant, subtle evidence for pre-1999 activity of the Lavic Lake fault in the playa area, even though the fault was not mapped near the playa prior to the Hector Mine earthquake. The most notable indicators for long-term presence of the fault are pronounced, persistent vegetation lineaments and uplifted basalt exposures. Primary and secondary slip occurred in 1999 on two southern vegetation lineaments, and minor slip locally formed on a northern lineament; trench exposures across the northern vegetation lineament revealed the post-A.D. 260 earthquake, and a geomorphic trough extends northward into alluvial fan deposits in line with this lineament. The presence of two basalt exposures in Lavic lake playa indicates the presence of persistent compressional steps and uplift along the fault. Fault-line scarps are additional geomorphic markers of repeated slip events in basalt exposures.

  15. Peculiar Active-Tectonic Landscape Within the Sanctuary of Zeus at Mt. Lykaion (Peloponnese, Greece)

    NASA Astrophysics Data System (ADS)

    Davis, G. H.

    2008-12-01

    The Sanctuary of Zeus (Mt. Lykaion) lies in the Peloponnese within the Pindos fold and thrust belt. It is the object of investigation of the Mt. Lykaion Excavation and Survey (http://lykaionexcavation.org/). Mt. Lykaion is a thrust klippe, on the summit of which is an upper sanctuary marked by an ash altar, temenos, and column bases. Earliest objects recovered from the ash altar go back to 3000 BCE, leading Dr. David Romano (University of Pennsylvania), a principal leader of the project, to conclude that worship of divinities on the summit is ancient. Detailed structural geological mapping reveals one dimension of the "power" of the site. Crisscrossing the upper sanctuary are scree bands that mark the traces of active normal faults, which are expressions of tectonic stretching of the Aegean region. The scree bands, composed of cinder-block-sized limestone blocks, range up to 10 m in outcrop breadth, 100 m in length, and 5 m in thickness. Though discontinuous, most of the scree bands lie precisely on the traces of through-going faults, which cut and displace the sedimentary formations of the Pindos group. Some cut the thrust fault, whose elliptical trace defines the Lykaion klippe. What makes the scree bands of this active-tectonic landscape "peculiar" is that there are no cliffs from which the scree descends. Rather, the bands of scree occur along flanks of smooth, rounded hillslopes and ridges. The scree bands coincide with modest steps in the topography, ranging from tens of centimeters to several tens of meters. The specific bedrock formation where the bands are best developed is an Upper Cretaceous limestone whose average platy-bedding thickness (approximately 20 cm) matches closely the average joint spacing. The limestone has little mechanical integrity. It cannot support itself as a scarp footwall and instead collapses into a pile of scree, whose upper-surface inclination conforms to a stable angle of repose. Evidence of the contemporary nature of this faulting includes a scree band that nearly completely covers stone structures built by shepherds. Though the scree bands conceal surface ruptures, it is expected that trenching will determine that the scree cover may have preserved beneath it some expressions of surface rupture, and perhaps fault surfaces themselves.

  16. Improved alignment of the Hengchun Fault (southern Taiwan) based on fieldwork, structure-from-motion, shallow drilling, and levelling data

    NASA Astrophysics Data System (ADS)

    Giletycz, Slawomir Jack; Chang, Chung-Pai; Lin, Andrew Tien-Shun; Ching, Kuo-En; Shyu, J. Bruce H.

    2017-11-01

    The fault systems of Taiwan have been repeatedly studied over many decades. Still, new surveys consistently bring fresh insights into their mechanisms, activity and geological characteristics. The neotectonic map of Taiwan is under constant development. Although the most active areas manifest at the on-land boundary of the Philippine Sea Plate and Eurasia (a suture zone known as the Longitudinal Valley), and at the southwestern area of the Western Foothills, the fault systems affect the entire island. The Hengchun Peninsula represents the most recently emerged part of the Taiwan orogen. This narrow 20-25 km peninsula appears relatively aseismic. However, at the western flank the peninsula manifests tectonic activity along the Hengchun Fault. In this study, we surveyed the tectonic characteristics of the Hengchun Fault. Based on fieldwork, four years of monitoring fault displacement in conjunction with levelling data, core analysis, UAV surveys and mapping, we have re-evaluated the fault mechanisms as well as the geological formations of the hanging and footwall. We surveyed features that allowed us to modify the existing model of the fault in two ways: 1) correcting the location of the fault line in the southern area of the peninsula by moving it westwards about 800 m; 2) defining the lithostratigraphy of the hanging and footwall of the fault. A bathymetric map of the southern area of the Hengchun Peninsula obtained from the Atomic Energy Council that extends the fault trace offshore to the south distinctively matches our proposed fault line. These insights, coupled with crust-scale tomographic data from across the Manila accretionary system, form the basis of our opinion that the Hengchun Fault may play a major role in the tectonic evolution of the southern part of the Taiwan orogen.

  17. Three-dimensional upper crustal velocity structure beneath San Francisco Peninsula, California

    USGS Publications Warehouse

    Parsons, T.; Zoback, M.L.

    1997-01-01

    This paper presents new seismic data from, and crustal models of the San Francisco Peninsula. In much of central California the San Andreas fault juxtaposes the Cretaceous granitic Salinian terrane on its west and the Late Mesozoic/Early Tertiary Franciscan Complex on its east. On San Francisco Peninsula, however, the present-day San Andreas fault is completely within a Franciscan terrane, and the Pilarcitos fault, located southwest of the San Andreas, marks the Salinian-Franciscan boundary. This circumstance has evoked two different explanations: either the Pilarcitos is a thrust fault that has pushed Franciscan rocks over Salinian rocks or the Pilarcitos is a transform fault that has accommodated significant right-lateral slip. In an effort to better resolve the subsurface structure of the peninsula faults, we established a temporary network of 31 seismographs arrayed across the San Andreas fault and the subparallel Pilarcitos fault at ???1-2 km spacings. These instruments were deployed during the first 6 months of 1995 and recorded local earthquakes, air gun sources set off in San Francisco Bay, and explosive sources. Travel times from these sources were used to augment earthquake arrival times recorded by the Northern California Seismic Network and were inverted for three-dimensional velocity structure. Results show lateral velocity changes at depth (???0.5-7 km) that correlate with downward vertical projections of the surface traces of the San Andreas and Pilarcitos faults. We thus interpret the faults as high-angle to vertical features (constrained to a 70??-110?? dip range). From this we conclude that the Pilarcitos fault is probably an important strike-slip fault that accommodated much of the right-lateral plate boundary strain on the peninsula prior to the initiation of the modern-day San Andreas fault in this region sometime after about 3.0 m.y. ago.

  18. "The Big One" in Taipei: Numerical Simulation Study of the Sanchiao Fault Earthquake Scenarios

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lee, S.; Ng, S.

    2012-12-01

    Sanchiao fault is a western boundary fault of the Taipei basin located in northern Taiwan, close to the densely populated Taipei metropolitan area. According to the report of Central Geological Survey, the terrestrial portion of the Sanchiao fault can be divided into north and south segments. The south segment is about 13 km and north segment is about 21 km. Recent study demonstrated that there are about 40 km of the fault trace that extended to the marine area offshore of northern Taiwan. Combined with the marine and terrestrial parts, the total fault length of Sanchiao fault could be nearly 70 kilometers. Based on the recipe proposed by IRIKURA and Miyake (2010), we estimate the Sanchiao fault has the potential to produce an earthquake with moment magnitude larger than Mw 7.2. The total area of fault rupture is about 1323 km2, asperity to the total fault plane is 22%, and the slips of the asperity and background are 2.8 m and 1.6 m respectively. Use the characteristic source model based on this assumption, the 3D spectral-element method simulation results indicate that Peak ground acceleration (PGA) is significantly stronger along the surface fault-rupture. The basin effects play an important role when wave propagates in the Taipei basin which cause seismic wave amplified and prolong the shaking for a very long time. It is worth noting that, when the rupture starts from the southern tip of the fault, i.e. the hypocenter locates in the basin, the impact of the Sanchiao fault earthquake to the Taipei metropolitan area will be the most serious. The strong shaking can cover the entire Taipei city, and even across the basin that extended to eastern-most part of northern Taiwan.

  19. Geological modeling of a fault zone in clay rocks at the Mont-Terri laboratory (Switzerland)

    NASA Astrophysics Data System (ADS)

    Kakurina, M.; Guglielmi, Y.; Nussbaum, C.; Valley, B.

    2016-12-01

    Clay-rich formations are considered to be a natural barrier for radionuclides or fluids (water, hydrocarbons, CO2) migration. However, little is known about the architecture of faults affecting clay formations because of their quick alteration at the Earth's surface. The Mont Terri Underground Research Laboratory provides exceptional conditions to investigate an un-weathered, perfectly exposed clay fault zone architecture and to conduct fault activation experiments that allow explore the conditions for stability of such clay faults. Here we show first results from a detailed geological model of the Mont Terri Main Fault architecture, using GoCad software, a detailed structural analysis of 6 fully cored and logged 30-to-50m long and 3-to-15m spaced boreholes crossing the fault zone. These high-definition geological data were acquired within the Fault Slip (FS) experiment project that consisted in fluid injections in different intervals within the fault using the SIMFIP probe to explore the conditions for the fault mechanical and seismic stability. The Mont Terri Main Fault "core" consists of a thrust zone about 0.8 to 3m wide that is bounded by two major fault planes. Between these planes, there is an assembly of distinct slickensided surfaces and various facies including scaly clays, fault gouge and fractured zones. Scaly clay including S-C bands and microfolds occurs in larger zones at top and bottom of the Mail Fault. A cm-thin layer of gouge, that is known to accommodate high strain parts, runs along the upper fault zone boundary. The non-scaly part mainly consists of undeformed rock block, bounded by slickensides. Such a complexity as well as the continuity of the two major surfaces are hard to correlate between the different boreholes even with the high density of geological data within the relatively small volume of the experiment. This may show that a poor strain localization occurred during faulting giving some perspectives about the potential for reactivation and leakage of faults affecting clay materials.

  20. Erosion controls transpressional wedge kinematics

    NASA Astrophysics Data System (ADS)

    Leever, K. A.; Oncken, O.

    2012-04-01

    High resolution digital image analysis of analogue tectonic models reveals that erosion strongly influences the kinematics of brittle transpressional wedges. In the basally-driven experimental setup with low-angle transpression (convergence angle of 20 degrees) and a homogeneous brittle rheology, a doubly vergent wedge develops above the linear basal velocity discontinuity. In the erosive case, the experiment is interrupted and the wedge topography fully removed at displacement increments of ~3/4 the model thickness. The experiments are observed by a stereo pair of high resolution CCD cameras and the incremental displacement field calculated by Digital Particle Image Velocimetry (DPIV). From this dataset, fault slip on individual fault segments - magnitude and angle on the horizontal plane relative to the fault trace - is extracted using the method of Leever et al. (2011). In the non-erosive case, after an initial stage of strain localization, the wedge experiences two transient stages of (1) oblique slip and (2) localized strain partitioning. In the second stage, the fault slip angle on the pro-shear(s) rotates by some 30 degrees from oblique to near-orthogonal. Kinematic steady state is attained in the third stage when a through-going central strike-slip zone develops above the basal velocity discontinuity. In this stage, strain is localized on two main faults (or fault zones) and fully partitioned between plate boundary-parallel displacement on the central strike-slip zone and near-orthogonal reverse faulting at the front (pro-side) of the wedge. The fault slip angle on newly formed pro-shears in this stage is stable at 60-65 degrees (see also Leever et al., 2011). In contrast, in the erosive case, slip remains more oblique on the pro-shears throughout the experiment and a separate central strike-slip zone does not form, i.e. strain partitioning does not fully develop. In addition, more faults are active simultaneously. Definition of stages is based on slip on the retro-side of the wedge. In the first stage, the slip angle on the retro-shear is 27 +/- 12 degrees. In a subsequent stage, slip on the retro-side is partitioned between strike-slip and oblique (~35 degrees) faulting. In the third stage, the slip angle on the retro side stabilizes at ~10 degrees. The pro-shears are characterized by very different kinematics. Two pro-shears tend to be active simultaneously, the extinction of the older fault shortly followed by the initiation of a new one in a forelandward breaking sequence. Throughout the experiment, the fault slip on the pro-shears is 40-60 degrees at their initiation, gradually decreasing to nearly strike-slip at the moment of fault extinction. This is a rotation of similar magnitude but in the reverse direction compared to the non-erosive case. The fault planes themselves do not rotate. Leever, K. A., R. H. Gabrielsen, D. Sokoutis, and E. Willingshofer (2011), The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis, Tectonics, 30(2), TC2013.

  1. Active fault characterization throughout the Caribbean and Central America for seismic hazard modeling

    NASA Astrophysics Data System (ADS)

    Styron, Richard; Pagani, Marco; Garcia, Julio

    2017-04-01

    The region encompassing Central America and the Caribbean is tectonically complex, defined by the Caribbean plate's interactions with the North American, South American and Cocos plates. Though active deformation over much of the region has received at least cursory investigation the past 50 years, the area is chronically understudied and lacks a modern, synoptic characterization. Regardless, the level of risk in the region - as dramatically demonstrated by the 2010 Haiti earthquake - remains high because of high-vulnerability buildings and dense urban areas home to over 100 million people, who are concentrated near plate boundaries and other major structures. As part of a broader program to study seismic hazard worldwide, the Global Earthquake Model Foundation is currently working to quantify seismic hazard in the region. To this end, we are compiling a database of active faults throughout the region that will be integrated into similar models as recently done in South America. Our initial compilation hosts about 180 fault traces in the region. The faults show a wide range of characteristics, reflecting the diverse styles of plate boundary and plate-margin deformation observed. Regional deformation ranges from highly localized faulting along well-defined strike-slip faults to broad zones of distributed normal or thrust faulting, and from readily-observable yet slowly-slipping structures to inferred faults with geodetically-measured slip rates >10 mm/yr but essentially no geomorphic expression. Furthermore, primary structures such as the Motagua-Polochic Fault Zone (the strike-slip plate boundary between the North American and Caribbean plates in Guatemala) display strong along-strike slip rate gradients, and many other structures are undersea for most or all of their length. A thorough assessment of seismic hazard in the region will require the integration of a range of datasets and techniques and a comprehensive characterization of epistemic uncertainties driving the overall variability of hazard and risk results. For this reason and in order to leverage from the knowledge available in the region, datasets and the hazard model will be developed in close collaboration with local experts coherently with GEM's principles of transparency and collaboration. For what pertains active faults in shallow crust, we are currently working on assigning slip rates to structures based on geologic and geodetic strain rates, though this will be challenging in areas of sparse constraints. An additional area of ongoing work is the delineation of 3D seismic sources from disjoint fault traces; we are currently evaluating methods for this. Though work in the region is challenging, we anticipate that our results will not only lead to more robust seismic hazard and risk estimates for the region, but may serve as a template for workflows in other zones of poor or inhomogeneous data.

  2. Seismic constraints on the architecture of the Newport-Inglewood/Rose Canyon fault: Implications for the length and magnitude of future earthquake ruptures

    NASA Astrophysics Data System (ADS)

    Sahakian, Valerie; Bormann, Jayne; Driscoll, Neal; Harding, Alistair; Kent, Graham; Wesnousky, Steve

    2017-03-01

    The Newport-Inglewood/Rose Canyon (NIRC) fault zone is an active strike-slip fault system within the Pacific-North American plate boundary in Southern California, located in close proximity to populated regions of San Diego, Orange, and Los Angeles counties. Prior to this study, the NIRC fault zone's continuity and geometry were not well constrained. Nested marine seismic reflection data with different vertical resolutions are employed to characterize the offshore fault architecture. Four main fault strands are identified offshore, separated by three main stepovers along strike, all of which are 2 km or less in width. Empirical studies of historical ruptures worldwide show that earthquakes have ruptured through stepovers with this offset. Models of Coulomb stress change along the fault zone are presented to examine the potential extent of future earthquake ruptures on the fault zone, which appear to be dependent on the location of rupture initiation and fault geometry at the stepovers. These modeling results show that the southernmost stepover between the La Jolla and Torrey Pines fault strands may act as an inhibitor to throughgoing rupture due to the stepover width and change in fault geometry across the stepover; however, these results still suggest that rupture along the entire fault zone is possible.

  3. A 'Propagating' Active Across-Arc Normal Fault Shows Rupture Process of the Basement: the Case of the Southwestern Ryukyu Arc

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Shinjo, R.; Nakamura, M.; Kubo, A.; Doi, A.; Tamanaha, S.

    2011-12-01

    Ryukyu Arc is located on the southwestern extension of Japanese Island-arc towards the east of Taiwan Island along the margin of the Asian continent off China. The island-arc forms an arcuate trench-arc-backarc system. A NW-ward subduction of the Philippine Sea Plate (PSP)at a rate of 6-8 cm/y relative to the Eurasian Plate (EP) causes frequent earthquakes. The PSP is subducting almost normally in the north-central area and more obliquely around the southwestern area. Behind the arc-trench system, the Okinawa Trough (OT) was formed by back-arc rifting, where active hydrothermal vent systems have been discovered. Several across-arc submarine faults are located in the central and southern Ryukyu Arc. The East Ishigaki Fault (EIF) is one of the across-arc normal faults located in the southwestern Ryukyu Arc, ranging by 44km and extending from SE to NW. This fault was surveyed by SEABAT8160 multibeam echo sounder and by ROV Hyper-Dolphin in 2005 and 2008. The result shows that the main fault consists of five fault segments. A branched segment from the main fault was also observed. The southernmost segment is most mature (oldest but still active) and the northernmost one is most nascent. This suggests the north-westward propagation of the fault rupture corresponding to the rifting of the southwestern OT and the southward retreat of the arc-trench system. Considering that the fault is segmented and in some part branched, propagation might take place episodically rather than continuously from SE to NW. The ROV survey also revealed the rupture process of the limestone basement along this fault from the nascent stage to the mature stage. Most of the rock samples collected from the basement outcrop were limestone blocks (or calcareous sedimentary rocks). Limestone basement was observed to the west on the hanging wall far away from the main fault scarp. Then fine-grained sand with ripple marks was observed towards the main scarp. Limestone basement was observed on the main scarp and on the footwall. These suggest that basically the both sides are composed of the same material, that the whole study area is characterised by Ryukyu limestone exposure and that the basement was split by the across-arc normal fault. Coarse-grained sand and gravels/rubbles were observed towards and on the trough of the fault. On the main scarp an outcrop of limestone basement was exposed and in some part it was broken into rubbles. These facts suggest that crash of the basement due to rupturing is taking place repeatedly on the scarp and the trough. The observed fine-grained sand on the hanging wall might be the final product by the process of the crash of the limestone basement.

  4. Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California

    USGS Publications Warehouse

    Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.

    2016-07-08

    High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at nearby sites. Multiple fault strands in the area of the 1906 surface rupture may account for variations in geologic slip rates calculated from several paleoseismic sites along the Peninsula segment of the San Andreas Fault.t.

  5. Structural Mapping Along the Central San Andreas Fault-zone Using Airborne Electromagnetics

    NASA Astrophysics Data System (ADS)

    Zamudio, K. D.; Bedrosian, P.; Ball, L. B.

    2017-12-01

    Investigations of active fault zones typically focus on either surface expressions or the associated seismogenic zones. However, the largely aseismic upper kilometer can hold significant insight into fault-zone architecture, strain partitioning, and fault-zone permeability. Geophysical imaging of the first kilometer provides a link between surface fault mapping and seismically-defined fault zones and is particularly important in geologically complex regions with limited surface exposure. Additionally, near surface imaging can provide insight into the impact of faulting on the hydrogeology of the critical zone. Airborne electromagnetic (AEM) methods offer a unique opportunity to collect a spatially-large, detailed dataset in a matter of days, and are used to constrain subsurface resistivity to depths of 500 meters or more. We present initial results from an AEM survey flown over a 60 kilometer long segment of the central San Andreas Fault (SAF). The survey is centered near Parkfield, California, the site of the SAFOD drillhole, which marks the transition between a creeping fault segment to the north and a locked zone to the south. Cross sections with a depth of investigation up to approximately 500 meters highlight the complex Tertiary and Mesozoic geology that is dismembered by the SAF system. Numerous fault-parallel structures are imaged across a more than 10 kilometer wide zone centered on the surface trace. Many of these features can be related to faults and folds within Plio-Miocene sedimentary rocks found on both sides of the fault. Northeast of the fault, rocks of the Mesozoic Franciscan and Great Valley complexes are extremely heterogeneous, with highly resistive volcanic rocks within a more conductive background. The upper 300 meters of a prominent fault-zone conductor, previously imaged to 1-3 kilometers depth by magnetotellurics, is restricted to a 20 kilometer long segment of the fault, but is up to 4 kilometers wide in places. Elevated fault-zone conductivity may be related to damage within the fault zone, Miocene marine shales, or some combination of the two.

  6. Examining Relay Ramp Evolution Through Paleo-shoreline Deformation Analysis, Warner Valley Fault, Oregon

    NASA Astrophysics Data System (ADS)

    Young, C. S.; Dawers, N. H.

    2017-12-01

    Fault growth is often accomplished by linking a series of en echelon faults through relay ramps. A relay ramp is the area between two overlapping fault segments that tilts and deforms as the faults accrue displacement. The structural evolution of breached normal fault relay ramps remains poorly understood because of the difficulty in defining how slip is partitioned between the most basinward fault (known as the outboard fault), the overlapping fault (inboard fault), and any ramp-breaching linking faults. Along the Warner Valley fault in south-central Oregon, two relay ramps displaying different fault linkage geometries are lined with a series of paleo-lacustrine shorelines that record a Pleistocene paleolake regression. The inner edges of these shorelines act as paleo-horizontal datums that have been deformed by fault activity, and are used to measure relative slip variations across the relay ramp bounding faults. By measuring the elevation changes using a 10m digital elevation model (DEM) of shoreline inner edges, we estimate the amount of slip partitioned between the inboard, outboard and ramp-breaching linking faults. In order to attribute shoreline deformation to fault activity we identify shoreline elevation anomalies, where deformation exceeds a ± 3.34 m window, which encompass our conservative estimates of natural variability in the shoreline geomorphology and the error associated with the data collection. Fault activity along the main length of the fault for each ramp-breaching style is concentrated near the intersection of the linking fault and the outboard portion of the main fault segment. However, fault activity along the outboard fault tip varies according to breaching style. At a footwall breach the entire outboard fault tip appears relatively inactive. At a mid-ramp breach the outboard fault tip remains relatively active because of the proximity of the linking fault to this fault tip.

  7. Seismotectonics and fault structure of the California Central Coast

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2010-01-01

    I present and interpret new earthquake relocations and focal mechanisms for the California Central Coast. The relocations improve upon catalog locations by using 3D seismic velocity models to account for lateral variations in structure and by using relative arrival times from waveform cross-correlation and double-difference methods to image seismicity features more sharply. Focal mechanisms are computed using ray tracing in the 3D velocity models. Seismicity alignments on the Hosgri fault confirm that it is vertical down to at least 12 km depth, and the focal mechanisms are consistent with right-lateral strike-slip motion on a vertical fault. A prominent, newly observed feature is an ~25 km long linear trend of seismicity running just offshore and parallel to the coastline in the region of Point Buchon, informally named the Shoreline fault. This seismicity trend is accompanied by a linear magnetic anomaly, and both the seismicity and the magnetic anomaly end where they obliquely meet the Hosgri fault. Focal mechanisms indicate that the Shoreline fault is a vertical strike-slip fault. Several seismicity lineations with vertical strike-slip mechanisms are observed in Estero Bay. Events greater than about 10 km depth in Estero Bay, however, exhibit reverse-faulting mechanisms, perhaps reflecting slip at the top of the remnant subducted slab. Strike-slip mechanisms are observed offshore along the Hosgri–San Simeon fault system and onshore along the West Huasna and Rinconada faults, while reverse mechanisms are generally confined to the region between these two systems. This suggests a model in which the reverse faulting is primarily due to restraining left-transfer of right-lateral slip.

  8. Deformation style and controlling geodynamic processes at the eastern Guadalquivir foreland basin (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.

    2017-06-01

    The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.

  9. Topographically driven groundwater flow and the San Andreas heat flow paradox revisited

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.; Hickman, S.

    2003-01-01

    Evidence for a weak San Andreas Fault includes (1) borehole heat flow measurements that show no evidence for a frictionally generated heat flow anomaly and (2) the inferred orientation of ??1 nearly perpendicular to the fault trace. Interpretations of the stress orientation data remain controversial, at least in close proximity to the fault, leading some researchers to hypothesize that the San Andreas Fault is, in fact, strong and that its thermal signature may be removed or redistributed by topographically driven groundwater flow in areas of rugged topography, such as typify the San Andreas Fault system. To evaluate this scenario, we use a steady state, two-dimensional model of coupled heat and fluid flow within cross sections oriented perpendicular to the fault and to the primary regional topography. Our results show that existing heat flow data near Parkfield, California, do not readily discriminate between the expected thermal signature of a strong fault and that of a weak fault. In contrast, for a wide range of groundwater flow scenarios in the Mojave Desert, models that include frictional heat generation along a strong fault are inconsistent with existing heat flow data, suggesting that the San Andreas Fault at this location is indeed weak. In both areas, comparison of modeling results and heat flow data suggest that advective redistribution of heat is minimal. The robust results for the Mojave region demonstrate that topographically driven groundwater flow, at least in two dimensions, is inadequate to obscure the frictionally generated heat flow anomaly from a strong fault. However, our results do not preclude the possibility of transient advective heat transport associated with earthquakes.

  10. Astypalaea Linea: A Large-Scale Strike-Slip Fault on Europa

    NASA Astrophysics Data System (ADS)

    Tufts, B. Randall; Greenberg, Richard; Hoppa, Gregory; Geissler, Paul

    1999-09-01

    Astypalaea Linea is an 810-km strike-slip fault, located near the south pole of Europa. In length, it rivals the San Andreas Fault in California, and it is the largest strike-slip fault yet known on Europa. The fault was discovered using Voyager 2 images, based upon the presence of familiar strike-slip features including linearity, pull-aparts, and possible braids, and upon the offset of multiple piercing points. Fault displacement is 42 km, right-lateral, in the southern and central parts and probably throughout. Pull-aparts present along the fault trace probably are gaps in the lithosphere bounded by vertical cracks, and which opened due to fault motion and filled with material from below. Crosscutting relationships suggest the fault to be of intermediate relative age. The fault may have initiated as a crack due to tension from combined diurnal tides and nonsynchronous rotation, according to the tectonic model of R. Greenberg et al. (1998a, Icarus135, 64-78). Under the influence of varying diurnal tides, strike-slip offset may have occurred through a process called “walking,” which depends upon an inelastic lithospheric response to displacement. Alternatively, fault displacement may have been driven by currents in the theorized Europan ocean, which may have created simple shear structures such as braids. The discovery of Astypalaea Linea extends the geographical range of lateral motion on Europa. Such motion requires the presence of a decoupling zone of ductile ice or liquid water, a sufficiently rigid lithosphere, and a mechanism to consume surface area.

  11. Development of the Global Earthquake Model’s neotectonic fault database

    USGS Publications Warehouse

    Christophersen, Annemarie; Litchfield, Nicola; Berryman, Kelvin; Thomas, Richard; Basili, Roberto; Wallace, Laura; Ries, William; Hayes, Gavin P.; Haller, Kathleen M.; Yoshioka, Toshikazu; Koehler, Richard D.; Clark, Dan; Wolfson-Schwehr, Monica; Boettcher, Margaret S.; Villamor, Pilar; Horspool, Nick; Ornthammarath, Teraphan; Zuñiga, Ramon; Langridge, Robert M.; Stirling, Mark W.; Goded, Tatiana; Costa, Carlos; Yeats, Robert

    2015-01-01

    The Global Earthquake Model (GEM) aims to develop uniform, openly available, standards, datasets and tools for worldwide seismic risk assessment through global collaboration, transparent communication and adapting state-of-the-art science. GEM Faulted Earth (GFE) is one of GEM’s global hazard module projects. This paper describes GFE’s development of a modern neotectonic fault database and a unique graphical interface for the compilation of new fault data. A key design principle is that of an electronic field notebook for capturing observations a geologist would make about a fault. The database is designed to accommodate abundant as well as sparse fault observations. It features two layers, one for capturing neotectonic faults and fold observations, and the other to calculate potential earthquake fault sources from the observations. In order to test the flexibility of the database structure and to start a global compilation, five preexisting databases have been uploaded to the first layer and two to the second. In addition, the GFE project has characterised the world’s approximately 55,000 km of subduction interfaces in a globally consistent manner as a basis for generating earthquake event sets for inclusion in earthquake hazard and risk modelling. Following the subduction interface fault schema and including the trace attributes of the GFE database schema, the 2500-km-long frontal thrust fault system of the Himalaya has also been characterised. We propose the database structure to be used widely, so that neotectonic fault data can make a more complete and beneficial contribution to seismic hazard and risk characterisation globally.

  12. ASTER Tibet

    NASA Image and Video Library

    2000-10-06

    The Kunlun fault is one of the gigantic strike-slip faults that bound the north side of Tibet. Left-lateral motion along the 1,500-kilometer (932-mile) length of the Kunlun has occurred uniformly for the last 40,000 years at a rate of 1.1 centimeter per year, creating a cumulative offset of more than 400 meters (1300 feet). In this image, two splays of the fault are clearly seen crossing from east to west. The northern fault juxtaposes sedimentary rocks of the mountains against alluvial fans. Its trace is also marked by lines of vegetation, which appear red in the image. The southern, younger fault cuts through the alluvium. A dark linear area in the center of the image is wet ground where groundwater has pounded against the fault. Measurements from the image of displacements of young streams that cross the fault show 15 to 75 meters (16 to 82 yards) of left-lateral offset. This image of Tibet covers an area 40 kilometers (25 miles) wide and 15 kilometers (10 miles) long in three bands of the reflected visible and infrared wavelength region. ASTER acquired the scene on July 20, 2000. The image is located at 35.8 degrees north latitude and 93.6 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02658

  13. Association of earthquakes and faults in the San Francisco Bay area using Bayesian inference

    USGS Publications Warehouse

    Wesson, R.L.; Bakun, W.H.; Perkins, D.M.

    2003-01-01

    Bayesian inference provides a method to use seismic intensity data or instrumental locations, together with geologic and seismologic data, to make quantitative estimates of the probabilities that specific past earthquakes are associated with specific faults. Probability density functions are constructed for the location of each earthquake, and these are combined with prior probabilities through Bayes' theorem to estimate the probability that an earthquake is associated with a specific fault. Results using this method are presented here for large, preinstrumental, historical earthquakes and for recent earthquakes with instrumental locations in the San Francisco Bay region. The probabilities for individual earthquakes can be summed to construct a probabilistic frequency-magnitude relationship for a fault segment. Other applications of the technique include the estimation of the probability of background earthquakes, that is, earthquakes not associated with known or considered faults, and the estimation of the fraction of the total seismic moment associated with earthquakes less than the characteristic magnitude. Results for the San Francisco Bay region suggest that potentially damaging earthquakes with magnitudes less than the characteristic magnitudes should be expected. Comparisons of earthquake locations and the surface traces of active faults as determined from geologic data show significant disparities, indicating that a complete understanding of the relationship between earthquakes and faults remains elusive.

  14. Geometric-kinematic characteristics of the main faults in the W-SW of the Lut Block (SE Iran)

    NASA Astrophysics Data System (ADS)

    Rashidi Boshrabadi, Ahmad; Khatib, Mohamad Mahdi; Raeesi, Mohamad; Mousavi, Seyed Morteza; Djamour, Yahya

    2018-03-01

    The area to the W-SW of the Lut Block in Iran has experienced numerous historical and recent destructive earthquakes. We examined a number of faults in this area that have high potential for generating destructive earthquakes. In this study a number of faults are introduced and named for the first time. These new faults are Takdar, Dehno, Suru, Hojat Abad, North Faryab, North Kahnoj, Heydarabad, Khatun Abad and South Faryab. For a group of previously known faults, their mechanism and geological offsets are investigated for the first time. This group of faults include East Nayband, West Nayband, Sardueiyeh, Dalfard, Khordum, South Jabal-e-Barez, and North Jabal-e-Barez. The N-S fault systems of Sabzevaran, Gowk, and Nayband induce slip on the E-W, NE-SW and NW-SE fault systems. The faulting patterns appear to preserve different stages of fault development. We investigated the distribution of active faults and the role that they play in accommodating tectonic strain in the SW-Lut. In the study area, the fault systems with en-echelon arrangement create structures such as restraining and releasing stepover, fault bend and pullapart basin. The main mechanism for fault growth in the region seems to be 'segment linkage of preexisting weaknesses' and also for a limited area through 'process zone'. Estimations are made for the likely magnitudes of separate or combined failure of the fault segments. Such magnitudes are used in hazard analysis of the region.

  15. Stress state reconstruction and tectonic evolution of the northern slope of the Baikit anteclise, Siberian Craton, based on 3D seismic data

    NASA Astrophysics Data System (ADS)

    Moskalenko, A. N.; Khudoley, A. K.; Khusnitdinov, R. R.

    2017-05-01

    In this work, we consider application of an original method for determining the indicators of the tectonic stress fields in the northern Baikit anteclise based on 3D seismic data for further reconstruction of the stress state parameters when analyzing structural maps of seismic horizons and corresponded faults. The stress state parameters are determined by the orientations of the main stress axes and shape of the stress ellipsoid. To calculate the stress state parameters from data on the spatial orientations of faults and slip vectors, we used the algorithms from quasiprimary stress computation methods and cataclastic analysis, implemented in the software products FaultKinWin and StressGeol, respectively. The results of this work show that kinematic characteristics of faults regularly change toward the top of succession and that the stress state parameters are characterized by different values of the Lode-Nadai coefficient. Faults are presented as strike-slip faults with normal or reverse component of displacement. Three stages of formation of the faults are revealed: (1) partial inversion of ancient normal faults, (2) the most intense stage with the predominance of thrust and strike-slip faults at north-northeast orientation of an axis of the main compression, and (3) strike-slip faults at the west-northwest orientation of an axis of the main compression. The second and third stages are pre-Vendian in age and correlate to tectonic events that took place during the evolution of the active southwestern margin of the Siberian Craton.

  16. Development of an On-board Failure Diagnostics and Prognostics System for Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.; Osipov, Vyatcheslav V.; Timucin, Dogan A.; Uckun, Serdar

    2009-01-01

    We develop a case breach model for the on-board fault diagnostics and prognostics system for subscale solid-rocket boosters (SRBs). The model development was motivated by recent ground firing tests, in which a deviation of measured time-traces from the predicted time-series was observed. A modified model takes into account the nozzle ablation, including the effect of roughness of the nozzle surface, the geometry of the fault, and erosion and burning of the walls of the hole in the metal case. The derived low-dimensional performance model (LDPM) of the fault can reproduce the observed time-series data very well. To verify the performance of the LDPM we build a FLUENT model of the case breach fault and demonstrate a good agreement between theoretical predictions based on the analytical solution of the model equations and the results of the FLUENT simulations. We then incorporate the derived LDPM into an inferential Bayesian framework and verify performance of the Bayesian algorithm for the diagnostics and prognostics of the case breach fault. It is shown that the obtained LDPM allows one to track parameters of the SRB during the flight in real time, to diagnose case breach fault, and to predict its values in the future. The application of the method to fault diagnostics and prognostics (FD&P) of other SRB faults modes is discussed.

  17. Fault zone structure and fluid-rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G.; Cortopassi, A.; Dinelli, E.; Mussi, M.; Barbieri, M.

    2010-09-01

    We studied the geometry, intensity of deformation and fluid-rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid-rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange-brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid-rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.

  18. Fault geometry and mechanics of marly carbonate multilayers: An integrated field and laboratory study from the Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giorgetti, C.; Collettini, C.; Scuderi, M. M.; Barchi, M. R.; Tesei, T.

    2016-12-01

    Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°-20°) and at high angles in clay-rich layers (θi = 45°-86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.

  19. The Somma Vesuvius stress field induced by regional tectonics: evidences from seismological and mesostructural data

    NASA Astrophysics Data System (ADS)

    Bianco, F.; Castellano, M.; Milano, G.; Ventura, G.; Vilardo, G.

    1998-06-01

    A detailed structural and geophysical study of the Somma-Vesuvius volcanic complex was carried out by integrating mesostructural measurements, focal mechanisms and shear-wave splitting analysis. Fault-slip and focal mechanism analysis indicate that the volcano is affected by NW-SE-, NE-SW-trending oblique-slip faults and by E-W-trending normal faults. Magma chamber(s) responsible for plinian/sub-plinian eruptions (i.e. A.D. 79 and 1631) formed inside the area bounded by E-W-trending normal faults. The post-1631 fissural eruptions (i.e. 1794 and 1861) occurred along the main oblique-slip fault segments. The movements of the Vesuvius faults are mainly related to the regional stress field. A local stress field superposed to the regional one is also present but evidences of magma or gravity induced stresses are lacking. The local stress field acts inside the caldera area being related to fault reactivation processes. The present-day Vesuvius seismic activity is due to both regional and local stress fields. Shear-wave splitting analysis reveals an anisotropic volume due to stress induced cracks NW-SE aligned by faulting processes. Since the depth extent of the anisotropic volume is at least 6 km b.s.l., we deduce the NW-SE-trending oblique-slip fault system represents the main discontinuity on which lies the volcano. This discontinuity is responsible for the morphological lowering of the edifice in its southwestern side.

  20. Geophysical modeling of the northern Appalachian Brompton-Cameron, Central Maine, and Avalon terranes under the New Jersey Coastal Plain

    USGS Publications Warehouse

    Maguire, T.J.; Sheridan, R.E.; Volkert, R.A.

    2004-01-01

    A regional terrane map of the New Jersey Coastal Plain basement was constructed using seismic, drilling, gravity and magnetic data. The Brompton-Cameron and Central Maine terranes were coalesced as one volcanic island arc terrane before obducting onto Laurentian, Grenville age, continental crust in the Taconian orogeny [Rankin, D.W., 1994. Continental margin of the eastern United States: past and present. In: Speed, R.C., (Ed.), Phanerozoic Evolution of North American Continent-Ocean Transitions. DNAG Continent-Ocean Transect Volume. Geological Society of America, Boulder, Colorado, pp. 129-218]. Volcanic island-arc rocks of the Avalon terrane are in contact with Central Maine terrane rocks in southern Connecticut where the latter are overthrust onto the Brompton-Cameron terrane, which is thrust over Laurentian basement. Similarities of these allochthonous island arc terranes (Brompton-Cameron, Central Maine, Avalon) in lithology, fauna and age suggest that they are faulted segments of the margin of one major late Precambrian to early Paleozoic, high latitude peri-Gondwana island arc designated as "Avalonia", which collided with Laurentia in the early to middle Paleozoic. The Brompton Cameron, Central Maine, and Avalon terranes are projected as the basement under the eastern New Jersey Coastal Plain based on drill core samples of metamorphic rocks of active margin/magmatic arc origin. A seismic reflection profile across the New York Bight traces the gentle dipping (approximately 20 degrees) Cameron's Line Taconian suture southeast beneath allochthonous Avalon and other terranes to a 4 sec TWTT depth (approximately 9 km) where the Avalonian rocks are over Laurentian crust. Gentle up-plunge (approximately 5 degrees) projections to the southwest bring the Laurentian Grenville age basement and the drift-stage early Paleozoic cover rocks to windows in Burlington Co. at approximately 1 km depth and Cape May Co. at approximately 2 km depths. The antiformal Shellburne Falls and Chester domes and Chain Lakes-Pelham dome-Bronson Hill structural trends, and the synformal Connecticut Valley-Gaspe structural trend can be traced southwest into the New Jersey Coastal Plain basement. A Mesozoic rift basin, the "Sandy Hook basin", and associated eastern boundary fault is identified, based upon gravity modeling, in the vicinity of Sandy Hook, New Jersey. The thickness of the rift-basin sedimentary rocks contained within the "Sandy Hook basin" is approximately 4.7 km, with the basin extending offshore to the east of the New Jersey coast. Gravity modeling indicates a deep rift basin and the magnetic data indicates a shallow magnetic basement caused by magnetic diabase sills and/or basalt flows contained within the rift-basin sedimentary rocks. The igneous sills and/or flows may be the eastward continuation of the Watchung and Palisades bodies. ?? 2004 Elsevier Ltd. All rights reserved.

  1. Main propulsion functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    A total of 48 operational flight instrumentation measurements were identified for use in performance monitoring and fault detection. The Operational Flight Instrumentation List contains all measurements identified for fault detection and annunciation. Some 16 controller data words were identified for use in fault detection and annunciation.

  2. Space shuttle main engine fault detection using neural networks

    NASA Technical Reports Server (NTRS)

    Bishop, Thomas; Greenwood, Dan; Shew, Kenneth; Stevenson, Fareed

    1991-01-01

    A method for on-line Space Shuttle Main Engine (SSME) anomaly detection and fault typing using a feedback neural network is described. The method involves the computation of features representing time-variance of SSME sensor parameters, using historical test case data. The network is trained, using backpropagation, to recognize a set of fault cases. The network is then able to diagnose new fault cases correctly. An essential element of the training technique is the inclusion of randomly generated data along with the real data, in order to span the entire input space of potential non-nominal data.

  3. Deformation associated with continental normal faults

    NASA Astrophysics Data System (ADS)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master normal fault illustrate how these secondary structures influence the deformation in ways that are similar to fault/fold geometry mapped in the western Grand Canyon. Specifically, synthetic faults amplify hanging wall bedding dips, antithetic faults reduce dips, and joints act to localize deformation. The distribution of aftershocks in the hanging wall of the Kozani-Grevena earthquake suggests that secondary structures may accommodate strains associated with slip on a master fault during postseismic deformation.

  4. Magnetic expression of the Transbrasiliano Lineament, Brazil

    NASA Astrophysics Data System (ADS)

    Vidotti, R. M.; Curto, J. B.; Fuck, R. A.; Dantas, E. L.; Roig, H. L.; Almeida, T.

    2011-12-01

    The Transbrasiliano lineament is a continental-sized discontinuity exposed between the Amazonian craton and the eastern portion of the South American Platform. It is over 3,000 km long, extending from northern Paraguay, across the Tocantins Province and the Phanerozoic Paraná and Parnaíba basins, down to the Ceará Atlantic coast. In the context of West Gondwana, this large continental structure extends to the African continent along the 4o30 lineament. Its NE-SW preferential trend is marked by strong magnetic anomalies at the crustal level and by low velocity zones of S waves within the mantle, suggesting lithosphere thinning. On the surface the Transbrasiliano lineament translates as aligned drainage and ridges in the continental relief, and is comprised of a set of N20-50E Late Neoproterozoic ductile right-lateral shear zones, brittlely reactivated during the Mesozoic. Different interpretations were forwarded along the years, suggesting that the lineament represents a mega-suture active during Gondwana Supercontinent amalgamation, in the Late Neoproterozoic and Early Paleozoic, or seeing the strike-slip ductile faults as the result of shearing related with post-collision stages of the Brasiliano orogeny. Fault reactivation is believed to have controlled graben formation, sediment accumulation and magmatism of the Jaibaras basin in NW Ceará, as well as the establishing of depocentres within the Paraná and Parnaíba basins, influencing also sedimentation at the Atlantic coast. Although a direct link with the lineament has not been established, nearby areas are the site of seismic activity, mainly in NW Ceará and close to the Goiás-Tocantins border in central Brazil. The lineament is covered by aeromagnetic surveys collected over decades. Qualitative interpretation of magnetic and remote sensing data shows that the Transbrasiliano lineament is comprised of a system of ductile shear zones, forming parallel sets of faults penetrating below the large Paraná and Parnaiba intracontinental syneclises with almost continuous traces. Main direction is N45E, connected with splays of E-W and N-S secondary lineaments. Magnetic lineaments developed dominantly along the borders of crustal/lithospheric blocks, determining their limits. Magnetic Euler deconvolution preliminary results indicates depths up to 5 km. The magnetic lineaments continue below the intracratonic Phanerozoic basins, where brittle fault zones characterize several tectonic reactivation events from the Cambrian up to the Cenozoic. These results stress the outstanding role of the Transbrasiliano lineament in the tectonic framework of the Brazilian continental crust/lithosphere and the relevance of its set of faults in the infilling and evolution of large intracontinental Phanerozoic syneclises.

  5. Controls, health assessment, and conditional monitoring for large, reusable, liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Cikanek, H. A., III

    1986-01-01

    Past and future progress in the performance of control systems for large, liquid rocket engines typified such as current state-of-the-art, the Shuttle Main Engine (SSME), is discussed. Details of the first decade of efforts, which culminates in the F-1 and J-2 Saturn engines control systems, are traced, noting problem modes and improvements which were implemented to realize the SSME. Future control system designs, to accommodate the requirements of operation of engines for a heavy lift launch vehicle, an orbital transfer vehicle and the aerospace plane, are summarized. Generic design upgrades needed include an expanded range of fault detection, maintenance as-needed instead of as-scheduled, reduced human involvement in engine operations, and increased control of internal engine states. Current NASA technology development programs aimed at meeting the future control system requirements are described.

  6. Fault creep and strain partitioning in Trinidad-Tobago: Geodetic measurements, models, and origin of creep

    NASA Astrophysics Data System (ADS)

    La Femina, P.; Weber, J. C.; Geirsson, H.; Latchman, J. L.; Robertson, R. E. A.; Higgins, M.; Miller, K.; Churches, C.; Shaw, K.

    2017-12-01

    We studied active faults in Trinidad and Tobago in the Caribbean-South American (CA-SA) transform plate boundary zone using episodic GPS (eGPS) data from 19 sites and continuous GPS (cGPS) data from 8 sites, then by modeling these data using a series of simple screw dislocation models. Our best-fit model for interseismic (interseimic = between major earthquakes) fault slip requires: 12-15 mm/yr of right-lateral movement and very shallow locking (0.2 ± 0.2 km; essentially creep) across the Central Range Fault (CRF); 3.4 +0.3/-0.2 mm/yr across the Soldado Fault in south Trinidad, and 3.5 +0.3/-0.2 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The upper-crustal faults in Trinidad show very little seismicity (1954-current from local network) and do not appear to have generated significant historic earthquakes. However, paleoseismic studies indicate that the CRF ruptured between 2710 and 500 yr. B.P. and thus it was recently capable of storing elastic strain. Together, these data suggest spatial and/or temporal fault segmentation on the CRF. The CRF marks a physical boundary between rocks associated with thermogenically generated petroleum and over-pressured fluids in south and central Trinidad, from rocks containing only biogenic gas to the north, and a long string of active mud volcanoes align with the trace of the Soldado Fault along Trinidad's south coast. Fluid (oil and gas) overpressure, as an alternative or in addition to weak mineral phases in the fault zone, may thus cause the CRF fault creep and the lack of seismicity that we observe.

  7. Active Faulting, Earthquakes and Geomorphological Changes from Archaeoseismic Data and High-Resolution Topography: Effects on the Urban Evolution of the Roman Town of Sybaris, Ionian Sea (Southern Italy).

    NASA Astrophysics Data System (ADS)

    Alfonsi, L.; Brunori, C. A.; Cinti, F. R.

    2014-12-01

    The Sybaris town was founded by the Greeks in 720 B.C and its life went on up to the late Roman time (VI-VII century A.D.). The town was located within the Sibari Plain near the Crati River mouth (Ionian northern Calabria, southern Italy). Sybaris occurs in area repeatedly affected by natural damaging phenomena, as frequent flooding, high local subsidence, marine storms, and earthquakes. The 2700 year long record of history of Sybaris stores the traces of these natural events and their influence on the human ancient environment through time. Among the natural disasters, we recognize two Roman age earthquakes striking the town. We isolate the damaging of these seismic events, set their time of occurrence, and map a shear zone crossing the site. These results were obtained through i) survey of coseismic features on the ruins, ii) geoarchaeological stratigraphy analysis, and TL and C14 dating, iii) analysis of high-resolution topographic data (1m pixel LiDAR DEM). The Sybaris town showed a persistent resilience to the earthquakes, and following their occurrences the site was not abandoned but underwent remodeling of the urban topography. The interaction of the different approaches reveals the presence of a previously unknown fault crossing the archeological site, the Sybaris fault. The high-resolution topography allows the characterization of subtle geomorphological features and hydrological anomalies, tracing the fault extension, whose Holocene activity is controlling the local morphology and the present Crati river course.

  8. Boundary element analysis of active mountain building and stress heterogeneity proximal to the 2015 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Thompson, T. B.; Meade, B. J.

    2015-12-01

    The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.

  9. Fault detection and isolation in motion monitoring system.

    PubMed

    Kim, Duk-Jin; Suk, Myoung Hoon; Prabhakaran, B

    2012-01-01

    Pervasive computing becomes very active research field these days. A watch that can trace human movement to record motion boundary as well as to study of finding social life pattern by one's localized visiting area. Pervasive computing also helps patient monitoring. A daily monitoring system helps longitudinal study of patient monitoring such as Alzheimer's and Parkinson's or obesity monitoring. Due to the nature of monitoring sensor (on-body wireless sensor), however, signal noise or faulty sensors errors can be present at any time. Many research works have addressed these problems any with a large amount of sensor deployment. In this paper, we present the faulty sensor detection and isolation using only two on-body sensors. We have been investigating three different types of sensor errors: the SHORT error, the CONSTANT error, and the NOISY SENSOR error (see more details on section V). Our experimental results show that the success rate of isolating faulty signals are an average of over 91.5% on fault type 1, over 92% on fault type 2, and over 99% on fault type 3 with the fault prior of 30% sensor errors.

  10. Using Performance Tools to Support Experiments in HPC Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, III, Thomas J; Boehm, Swen; Engelmann, Christian

    2014-01-01

    The high performance computing (HPC) community is working to address fault tolerance and resilience concerns for current and future large scale computing platforms. This is driving enhancements in the programming environ- ments, specifically research on enhancing message passing libraries to support fault tolerant computing capabilities. The community has also recognized that tools for resilience experimentation are greatly lacking. However, we argue that there are several parallels between performance tools and resilience tools . As such, we believe the rich set of HPC performance-focused tools can be extended (repurposed) to benefit the resilience community. In this paper, we describe the initialmore » motivation to leverage standard HPC per- formance analysis techniques to aid in developing diagnostic tools to assist fault tolerance experiments for HPC applications. These diagnosis procedures help to provide context for the system when the errors (failures) occurred. We describe our initial work in leveraging an MPI performance trace tool to assist in provid- ing global context during fault injection experiments. Such tools will assist the HPC resilience community as they extend existing and new application codes to support fault tolerances.« less

  11. Seismotectonics of the Loma Prieta, California, region determined from three-dimensional Vp, Vp/Vs, and seismicity

    USGS Publications Warehouse

    Eberhart-Phillips, D.; Michael, A.J.

    1998-01-01

    Three-dimensional Vp and Vp/Vs velocity models for the Loma Prieta region were developed from the inversion of local travel time data (21,925 P arrivals and 1,116 S arrivals) from earthquakes, refraction shots, and blasts recorded on 1700 stations from the Northern California Seismic Network and numerous portable seismograph deployments. The velocity and density models and microearthquake hypocenters reveal a complex structure that includes a San Andreas fault extending to the base of the seismogenic layer. A body with high Vp extends the length of the rupture and fills the 5 km wide volume between the Loma Prieta mainshock rupture and the San Andreas and Sargent faults. We suggest that this body controls both the pattern of background seismicity on the San Andreas and Sargent faults and the extent of rupture during the mainshock, thus explaining how the background seismicity outlined the along-strike and depth extent of the mainshock rupture on a different fault plane 5 km away. New aftershock focal mechanisms, based on three-dimensional ray tracing through the velocity model, support a heterogeneous postseismic stress field and can not resolve a uniform fault normal compression. The subvertical (or steeply dipping) San Andreas fault and the fault surfaces that ruptured in the 1989 Loma Prieta earthquake are both parts of the San Andreas fault zone and this section of the fault zone does not have a single type of characteristic event.

  12. Structural controls on geothermal circulation in Surprise Valley, California: A re-evaluation of the Lake City fault zone

    USGS Publications Warehouse

    Anne E. Egger,; Glen, Jonathan; McPhee, Darcy K.

    2014-01-01

    Faults and fractures play an important role in the circulation of geothermal fluids in the crust, and the nature of that role varies according to structural setting and state of stress. As a result, detailed geologic and geophysical mapping that relates thermal springs to known structural features is essential to modeling geothermal systems. Published maps of Surprise Valley in northeastern California suggest that the “Lake City fault” or “Lake City fault zone” is a significant structural feature, cutting obliquely across the basin and connecting thermal springs across the valley. Newly acquired geophysical data (audio-magnetotelluric, gravity, and magnetic), combined with existing geochemical and geological data, suggest otherwise. We examine potential field profiles and resistivity models that cross the mapped Lake City fault zone. While there are numerous geophysical anomalies that suggest subsurface structures, they mostly do not coincide with the mapped traces of the Lake City fault zone, nor do they show a consistent signature in gravity, magnetics, or resistivities that would suggest a through-going fault that would promote connectivity through lateral fluid flow. Instead of a single, continuous fault, we propose the presence of a deformation zone associated with the growth of the range-front Surprise Valley fault. The implication for geothermal circulation is that this is a zone of enhanced porosity but lacks length-wise connectivity that could conduct fluids across the valley. Thermal fluid circulation is most likely controlled primarily by interactions between N-S–trending normal faults.

  13. Evaluating the relationship between lateral slip and repeated fold deformation along a transtensive step-over on the San Andreas fault at the Frazier Mountain site

    NASA Astrophysics Data System (ADS)

    Weldon, R. J.; Streig, A. R.; Frazier Mountain SoSAFE Trenching Team

    2011-12-01

    Transtensive step-overs known as sags are among the most ubiquitous features of strike slip faults. These structures create closed depressions that collect sediment, are often wet and thus preserve organic material that can be used to date the thick and rapidly accumulating section. It is clear from historical ruptures that these depressions grow incrementally with each earthquake. We are developing methods to carefully document and separate individual folding events, and to relate the amount of sagging or folding to the amount of horizontal slip creating the sag, with the goal of generating slip per event chronologies. This will be useful as sags are often the best sites for preserving evidence of earthquake timing, and determining slip at these sites will eliminate the ambiguity inherent in tying earthquake age data from micro-stratigraphic sites to nearby undated sites with good micro-geomorphic slip evidence. We apply this approach to the Frazier Mountain site on the Southern San Andreas fault where we integrate trenching, cone penetrometer testing (CPT), surveying, photomosaicing, B4 LiDAR data and GIS techniques to make a detailed 3D map of subsurface geology, fault traces and related folds across the site. These data are used to generate structure contour and isopach maps for key stratigraphic units in order to evaluate fold deformation of paleo-ground surfaces across a transtensional step-over on the San Andreas fault. Approximately 20 trenches show the main active trace of the San Andreas fault right stepping ~30 m over ~100 m along strike producing two small synclinal sags that dramatically thicken the stratigraphic section. The northwest sag is about 50 m long, 5 m wide, and the southwest sag measures 20 m long and about 8 m wide. The Frazier Mountain site has yielded good earthquake chronologies, and relationships between fold deformation and surface fault rupture for the last 6 earthquakes. We observe that the degree of sagging in the synclines varies along strike for each feature, but that the ratio of fold deformation between earthquake horizons remains constant in both synclines. The penultimate earthquake, E2, produced a depression that was infilled by gravel which was subsequently folded in the most recent earthquake in 1857. Fine-grained alluvial units overlie the gravel and fill the 1857 depression such that the current surface is relatively horizontal. E2 has double the observed folding associated with the 1857 event in the core of the NW syncline. Earthquake E6 has double the amount of fold deformation observed across the E3 paleo-surface in both sags, and three times the deformation observed on the E2 surface in the NW sag. Ratios of fold deformation between events are E2 = 2*E1, E6 = 3*E2, and E6 = 2*E3. We plan to model the folding to quantitatively assess the lateral offset, but to date we have only been able to establish minimum offset values (Scharer, Gibson, Weldon, Streig, this meeting). Qualitatively, the realitive amounts of folding suggest all slip events are similar to 1857, which had ~5 meters slip at this site.

  14. Repeated fault rupture recorded by paleoenvironmental changes in a wetland sedimentary sequence ponded against the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Clark, K.; Berryman, K. R.; Cochran, U. A.; Bartholomew, T.; Turner, G. M.

    2010-12-01

    At Hokuri Creek, in south Westland, New Zealand, an 18 m thickness of Holocene sediments has accumulated against the upthrown side of the Alpine Fault. Recent fluvial incision has created numerous exposures of this sedimentary sequence. At a decimetre to metre scale there are two dominant types of sedimentary units: clastic-dominated, grey silt packages, and organic-dominated, light brown peaty-silt units. These units represent repeated alternations of the paleoenvironment due to fault rupture over the past 7000 years. We have located the event horizons within the sedimentary sequence, and identified evidence to support earthquake-driven paleoenvironmental change (rather than climatic variability), and developed a model of paleoenvironmental changes over a typical seismic cycle. To quantitatively characterise the sediments we use high resolution photography, x-ray imaging, magnetic-susceptibility and total carbon analysis. To understand the depositional environment we used diatom and pollen studies. The organic-rich units have very low magnetic susceptibility and density values, with high greyscale and high total carbon values. Diatoms indicate these units represent stable wetland environments with standing water and predominantly in-situ organic material deposition. The clastic-rich units are characterised by higher magnetic susceptibility and density values, with low greyscale and total carbon. The clastic-rich units represent environments of flowing water and deep pond settings that received predominantly catchment-derived silt and sand. The event horizon is located at the upper contact of the organic-rich horizons. The event horizon contact marks a drastic change in hydrologic regime as fault rupture changed the stream base level and there was a synchronous influx of clastic sediment as the catchment responded to earthquake shaking. During the interseismic period the flowing-water environment gradually stabilised and returned to an organic-rich wetland. Such cycles were repeated 18 times at Hokuri Creek. Evidence that fault rupture was responsible for the cyclical paleoenvironmental changes at Hokuri Creek include: the average time period for each organic- and clastic-rich couplet to be deposited approximately equals the long-term average Alpine Fault recurrence interval, and the most recent events recorded at Hokuri correlate to an earthquake dated in paleoseismic trenches 100 km along strike; fault rupture is the only mechanism that can create accommodation space for 18 m of sediment to accumulate, and the sedimentary units can be traced from the outcrop to the fault trace and show tectonic deformation. The record of 18 fault rupture events at Hokuri Creek is one of the longest records of surface ruptures on a major plate boundary fault. High-resolution dating and statistical treatment of the radiocarbon data (Biasi et al., this meeting) has resulted in major advances in understanding the long-term behaviour of the Alpine Fault (Berryman et al., this meeting).

  15. Calibration of PS09, PS10, and PS11 trans-Alaska pipeline system strong-motion instruments, with acceleration, velocity, and displacement records of the Denali fault earthquake, 03 November 2002

    USGS Publications Warehouse

    Evans, John R.; Jensen, E. Gray; Sell, Russell; Stephens, Christopher D.; Nyman, Douglas J.; Hamilton, Robert C.; Hager, William C.

    2006-01-01

    In September, 2003, the Alyeska Pipeline Service Company (APSC) and the U.S. Geological Survey (USGS) embarked on a joint effort to extract, test, and calibrate the accelerometers, amplifiers, and bandpass filters from the earthquake monitoring systems (EMS) at Pump Stations 09, 10, and 11 of the Trans-Alaska Pipeline System (TAPS). These were the three closest strong-motion seismographs to the Denali fault when it ruptured in the MW 7.9 earthquake of 03 November 2002 (22:12:41 UTC). The surface rupture is only 3.0 km from PS10 and 55.5 km from PS09 but PS11 is 124.2 km away from a small rupture splay and 126.9 km from the main trace. Here we briefly describe precision calibration results for all three instruments. Included with this report is a link to the seismograms reprocessed using these new calibrations: http://nsmp.wr.usgs.gov/data_sets/20021103_2212_taps.html Calibration information in this paper applies at the time of the Denali fault earthquake (03 November 2002), but not necessarily at other times because equipment at these stations is changed by APSC personnel at irregular intervals. In particular, the equipment at PS09, PS10, and PS11 was changed by our joint crew in September, 2003, so that we could perform these calibrations. The equipment stayed the same from at least the time of the earthquake until that retrieval, and these calibrations apply for that interval.

  16. Transverse tectonic structural elements across Himalayan mountain front, eastern Arunachal Himalaya, India: Implication of superposed landform development on analysis of neotectonics

    NASA Astrophysics Data System (ADS)

    Bhakuni, S. S.; Luirei, Khayingshing; Kothyari, Girish Ch.; Imsong, Watinaro

    2017-04-01

    Structural and morphotectonic signatures in conjunction with the geomorphic indices are synthesised to trace the role of transverse tectonic features in shaping the landforms developed along the frontal part of the eastern Arunachal sub-Himalaya. Mountain front sinuosity (Smf) index values close to one are indicative of the active nature of the mountain front all along the eastern Arunachal Himalaya, which can be directly attributed to the regional uplift along the Himalayan Frontal Thrust (HFT). However, the mountain front is significantly sinusoidal around junctions between HFT/MBT (Main Boundary Thrust) and active transverse faults. The high values of stream length gradient (SL) and stream steepness (Ks) indices together with field evidence of fault scarps, offset of terraces, and deflection of streams are markers of neotectonic uplift along the thrusts and transverse faults. This reactivation of transverse faults has given rise to extensional basins leading to widening of the river courses, providing favourable sites for deposition of recent sediments. Tectonic interactions of these transverse faults with the Himalayan longitudinal thrusts (MBT/HFT) have segmented the mountain front marked with varying sinuosity. The net result is that a variety of tectonic landforms recognized along the mountain front can be tracked to the complex interactions among the transverse and longitudinal tectonic elements. Some distinctive examples are: in the eastern extremity of NE Himalaya across the Dibang River valley, the NW-SE trending mountain front is attenuated by the active Mishmi Thrust that has thrust the Mishmi crystalline complex directly over the alluvium of the Brahmaputra plains. The junction of the folded HFT and Mishmi Thrust shows a zone of brecciated and pulverized rocks along which transverse axial planar fracture cleavages exhibit neotectonic activities in a transverse fault zone coinciding with the Dibang River course. Similarly, the transverse faults cut the mountain front along the Sesseri, Siluk, Siku, Siang, Mingo, Sileng, Dikari, and Simen rivers. At some such junctions, landforms associated with the active right-lateral strike-slip faults are superposed over the earlier landforms formed by transverse normal faults. In addition to linear transverse features, we see evidence that the fold-thrust belt of the frontal part of the Arunachal Himalaya has also been affected by the neotectonically active NW-SE trending major fold known as the Siang antiform that again is aligned transverse to the mountain front. The folding of the HFT and MBT along this antiform has reshaped the landscape developed between its two western and eastern limbs running N-S and NW-SE, respectively. The transverse faults are parallel to the already reported deep-seated transverse seismogenic strike-slip fault. Therefore, a single take home message is that any true manifestation of the neotectonics and seismic hazard assessment in the Himalayan region must take into account the role of transverse tectonics.

  17. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience

    NASA Astrophysics Data System (ADS)

    Pantosti, Daniela

    2017-04-01

    The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active normal faults mapped in the available geological literature is noteworthy. The field data collected suggest a complex coseismic surface faulting pattern along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays. The cumulative surface faulting length has been estimated in about 40 km. The maximum vertical offset is significant, locally exceeding 2 meters along the Mt. Vettore Fault, measured both along bedrock fault planes and free-faces affecting unconsolidated deposits. This enormous collaborative experience has a twofold relevance, on the one side allowed to document in high detail the earthquake ruptures before Winter would destroy them, on the other represent the first large European experience for coseismic effects survey that we should use a leading case to establish a coseismic effects European team to get ready to respond to future seismic crises at the European level.

  18. Rupture distribution of the 1977 western Argentina earthquake

    USGS Publications Warehouse

    Langer, C.J.; Hartzell, S.

    1996-01-01

    Teleseismic P and SH body waves are used in a finite-fault, waveform inversion for the rupture history of the 23 November 1977 western Argentina earthquake. This double event consists of a smaller foreshock (M0 = 5.3 ?? 1026 dyn-cm) followed about 20 s later by a larger main shock (M0 = 1.5 ?? 1027 dyn-cm). Our analysis indicates that these two events occurred on different fault segments: with the foreshock having a strike, dip, and average rake of 345??, 45??E, and 50??, and the main shock 10??, 45??E, and 80??, respectively. The foreshock initiated at a depth of 17 km and propagated updip and to the north. The main shock initiated at the southern end of the foreshock zone at a depth of 25 to 30 km, and propagated updip and unilaterally to the south. The north-south separation of the centroids of the moment release for the foreshock and main shock is about 60 km. The apparent triggering of the main shock by the foreshock is similar to other earthquakes that have involved the failure of multiple fault segments, such as the 1992 Landers, California, earthquake. Such occurrences argue against the use of individual, mapped, surface fault or fault-segment lengths in the determination of the size and frequency of future earthquakes.

  19. Association rule mining on grid monitoring data to detect error sources

    NASA Astrophysics Data System (ADS)

    Maier, Gerhild; Schiffers, Michael; Kranzlmueller, Dieter; Gaidioz, Benjamin

    2010-04-01

    Error handling is a crucial task in an infrastructure as complex as a grid. There are several monitoring tools put in place, which report failing grid jobs including exit codes. However, the exit codes do not always denote the actual fault, which caused the job failure. Human time and knowledge is required to manually trace back errors to the real fault underlying an error. We perform association rule mining on grid job monitoring data to automatically retrieve knowledge about the grid components' behavior by taking dependencies between grid job characteristics into account. Therewith, problematic grid components are located automatically and this information - expressed by association rules - is visualized in a web interface. This work achieves a decrease in time for fault recovery and yields an improvement of a grid's reliability.

  20. Active faulting at Delphi, Greece: Seismotectonic remarks and a hypothesis for the geologic environment of a myth

    NASA Astrophysics Data System (ADS)

    Piccardi, Luigi

    2000-07-01

    Historical data are fundamental to the understanding of the seismic history of an area. At the same time, knowledge of the active tectonic processes allows us to understand how earthquakes have been perceived by past cultures. Delphi is one of the principal archaeological sites of Greece, the main oracle of Apollo. It was by far the most venerated oracle of the Greek ancient world. According to tradition, the mantic proprieties of the oracle were obtained from an open chasm in the earth. Delphi is directly above one of the main antithetic active faults of the Gulf of Corinth Rift, which bounds Mount Parnassus to the south. The geometry of the fault and slip-parallel lineations on the main fault plane indicate normal movement, with minor right-lateral slip component. Combining tectonic data, archaeological evidence, historical sources, and a reexamination of myths, it appears that the Helice earthquake of 373 B.C. ruptured not only the master fault of the Gulf of Corinth Rift at Helice, but also the antithetic fault at Delphi, similarly to the Corinth earthquake of 1981. Moreover, the presence of an active fault directly below the temples of the oldest sanctuary suggests that the mythological oracular chasm might well have been an ancient tectonic surface rupture.

  1. The role of post-collisional strike-slip tectonics in the geological evolution of the late Neoproterozoic volcano-sedimentary Guaratubinha Basin, southern Brazil

    NASA Astrophysics Data System (ADS)

    Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.

    2017-12-01

    The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.

  2. Holocene tectonics and fault reactivation in the foothills of the north Cascade Mountains, Washington

    USGS Publications Warehouse

    Sherrod, Brian L.; Barnett, Elizabeth; Schermer, Elizabeth; Kelsey, Harvey M.; Hughes, Jonathan; Foit, Franklin F.; Weaver, Craig S.; Haugerud, Ralph; Hyatt, Tim

    2013-01-01

    We use LiDAR imagery to identify two fault scarps on latest Pleistocene glacial outwash deposits along the North Fork Nooksack River in Whatcom County, Washington (United States). Mapping and paleoseismic investigation of these previously unknown scarps provide constraints on the earthquake history and seismic hazard in the northern Puget Lowland. The Kendall scarp lies along the mapped trace of the Boulder Creek fault, a south-dipping Tertiary normal fault, and the Canyon Creek scarp lies in close proximity to the south-dipping Canyon Creek fault and the south-dipping Glacier Extensional fault. Both scarps are south-side-up, opposite the sense of displacement observed on the nearby bedrock faults. Trenches excavated across these scarps exposed folded and faulted late Quaternary glacial outwash, locally dated between ca. 12 and 13 ka, and Holocene buried soils and scarp colluvium. Reverse and oblique faulting of the soils and colluvial deposits indicates at least two late Holocene earthquakes, while folding of the glacial outwash prior to formation of the post-glacial soil suggests an earlier Holocene earthquake. Abrupt changes in bed thickness across faults in the Canyon Creek excavation suggest a lateral component of slip. Sediments in a wetland adjacent to the Kendall scarp record three pond-forming episodes during the Holocene—we infer that surface ruptures on the Boulder Creek fault during past earthquakes temporarily blocked the stream channel and created an ephemeral lake. The Boulder Creek and Canyon Creek faults formed in the early to mid-Tertiary as normal faults and likely lay dormant until reactivated as reverse faults in a new stress regime. The most recent earthquakes—each likely Mw > 6.3 and dating to ca. 8050–7250 calendar years B.P. (cal yr B.P.), 3190–2980 cal. yr B.P., and 910–740 cal. yr B.P.—demonstrate that reverse faulting in the northern Puget Lowland poses a hazard to urban areas between Seattle (Washington) and Vancouver, British Columbia (Canada).

  3. Kinematics of the eastern flank of the Beartooth Mountains, Montana and Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connel, P.

    1991-03-01

    Three miles west of Red Lodge, Montana, well data, gravity data, and surface data indicate the Beartooth fault is dipping at 25{degree} to 30{degree} southwest and is trending northwest-southeast. South of the Maurice tear fault, the Beartooth fault changes to a north-south trend. The intersection of these two trends forms the Red Lodge 'corner.' With the northeast vergence of the Beartooth fault, the eastern flank of the mountains presents an interpretational dilemma between horizontal compression and vertical uplift models. The interpretation of reverse right-oblique slip has been applied to the north-south-trending segment of the Beartooth fault. This necessitates a reinterpretationmore » of the left-lateral strike-slip motion of the Maurice tear fault to include a component of reverse oblique motion. The Bennett Creek flatiron represents an asymmetric syncline created as part of a back-limb fold by early stages of northeast movement. As northeast vergence continued, the north-south segment of the Beartooth fault cut this structure, leaving the southeast continuation of the structure buried in the basin or under the basement overhang. These potential hydrocarbon traps are targets for future exploration. As the Beartooth fault is traced further southward, displacement begins to die out as it nears Clarks Fork Canyon. The Beartooth fault appears to propagate into the Canyon Mouth Anticline as fault displacement diminishes toward the Bighorn basin. Compressional features seen at the crest of the Canyon Mouth Anticline seem to negate a vertical component of movement previously suggested at this southeast corner of the Beartooth Block.« less

  4. On- and off-fault coseismic surface deformation associated with the September 2013 M7.7 Balochistan, Pakistan earthquake measured from mapping and automated pixel correlation

    NASA Astrophysics Data System (ADS)

    Gold, R. D.; Reitman, N. G.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.

    2014-12-01

    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the Hoshab fault in southern Pakistan. We remotely measured the coseismic surface deformation field using high-resolution (0.5 m) pre- and post-event satellite imagery. We measured ~300 near-field (0-10 m from fault) laterally offset piercing points (streams, terrace risers, roads, etc.) and find peak left-lateral offsets of ~12-15 m. We characterized the far-field (0-10 km from fault) displacement field using manual (~250 measurements) and automated image cross-correlation methods (e.g., pixel tracking) and find peak displacement values of ~16 m, which commonly exceed the on-fault displacement magnitudes. Our preliminary observations suggest the following: (1) coseismic surface displacement typically increases with distance away from the surface trace of the fault (e.g., highest displacement values in the far field), (2) for certain locations along the fault rupture, as little as 50% of the coseismic displacement field occurred in the near-field; and (3) the magnitudes of individual displacements are inversely correlated to the width of the surface rupture zone (e.g., largest displacements where the fault zone is narrowest). This analysis highlights the importance of identifying field study sites spanning fault sections with narrow deformation zones in order to capture the entire deformation field. For regions of distributed deformation, these results would predict that geologic slip rate studies underestimate a fault's complete slip rate.

  5. Did the Malaysian Main Range record a weak hot Mega Shear?

    NASA Astrophysics Data System (ADS)

    Sautter, Benjamin; Pubellier, Manuel

    2015-04-01

    The Main Range of Peninsular Malaysia is a batholith that extends over more than 500km from Malacca in the South to the Thailand border in the North. It results from the subduction/accretion history of the western margin of Sunda Plate by Late Triassic times. We present a structural analysis based on geomorphology, field observations and geochronological data. While most of the basement fabrics are characterized by N-S structures such as granitic plutons, sutures, and folds, a prominent oblique deformation occurred by the End of the Mesozoics synchronous with a widespread thermal anomaly (eg Tioman, Stong, Gunung Jerai, Khanom, Krabi plutons). Morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), allow us to highlight 2 major groups of penetrative faults in the Central Range Batholith: early NW-SE (5km spaced faults some of which are identified as thrust faults) cross-cut and offset by NNE-SSW dextral normal faults. The regularly spaced NW-SE faults bend toward the flanks of the Batholith and tend to parallel both the Bentong Raub Suture Zone to the East and the strike slip Bok Bak Fault to the West, thus giving the overall fault network the aspect of a large C/S band. Hence, a ductile/brittle behavior can be proposed for the sigmoid faults in the core of the Batholith, whereas the NNE faults are clearly brittle, more linear and are found on the smaller outlying plutons. Radiogenic crystallization ages are homogenous at 190±20Ma (U-Pb Zircon, Tc>1000°C and K-Ar Muscovite, Tc350°C) whereas Zircon fission tracks(Tc=250°C) show specific spatial zoning of the data distribution with ages at 100±10Ma for the outlying plutons and ages at 70±10Ma for the Main Range. We propose a structural mechanism according to which the Main Range would be the ductile core of a Mega-Shear Zone exhumed via transpressive tectonics by the end of Mesozoic Times. A first stage between 100 and 70Ma (Upper Cretaceous) of dextral transpression affected Peninsular Malaysia at a lithospheric scale, accommodated by N-S faults (C planes) such as the Bentong Raub Suture Zone, the Bukit Tinggi fault and the Kledang Fault. This lead to the formation of NW-SE fractures in already exhumed peripheral plutons (< 250°C) and deep level (> 250°C) sigmoid faults (S planes) in the Main range. Later a brittle stage of exhumation occurred in the same system, after 70Ma, leading to NNE-SSW dextral Riedel type faults reactivating pluton flanks, and offsetting older faults as well as quartz dykes. The occurrence of such a structure could be linked to the subduction of the Wharton Ridge at the western margin of Sunda Plate. As a result, a collapse of this hot and thin crust occurred accommodated by LANF's reactivating the basement fabrics including intrusive edges and folds hinges.

  6. White Sands Missile Range Main Cantonment and NASA Area Faults, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Greg

    This is a zipped ArcGIS shapefile containing faults mapped for the Tularosa Basin geothermal play fairway analysis project. The faults were interpolated from gravity and seismic (NASA area) data, and from geomorphic features on aerial photography. Field work was also done for validation of faults which had surface expressions.

  7. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    NASA Astrophysics Data System (ADS)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic analysis is underway to give a fresh understanding of the tectonic evolution of this complex zone of faulting and plate interaction.

  8. 3-D Dynamic Rupture Simulations of the 2016 Kumamoto, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Fukuyama, E.; Urata, Y.; Yoshida, K.

    2016-12-01

    On April 16, 2016 at 01:25 (JST), an M7.3 main shock of the 2016 Kumamoto, Japan, earthquake sequence occurred along the Futagawa and Hinagu faults. A few days before, three M6-class foreshocks occurred: M6.5 on April 14 at 21:26, M5.8 on April 14 at 22:27, and M6.4 on April 15 at 00:03 (JST). The focal mechanisms of the first and third foreshocks were similar to those of the main shock; therefore, the extensive stress shadow should have been generated on the fault plane of the main shock. The purpose of this study is to illuminate why the rupture of the main shock propagated successfully under such stress conditions by 3-D dynamic rupture simulations, assuming the fault planes estimated by the distributions of aftershocks.First, we investigated time evolution of aftershock hypocenters relocated by the Double Difference method (Waldhauser & Ellsworth, 2000). The result showed that planar distribution of the hypocenters was formed after each M6 event. It allows us to estimate fault planes of the three foreshocks and the main shock.Then, we evaluated stress changes on the fault planes of the main shock due to the three foreshocks. We obtained the slip distributions of the foreshocks by using Eshelby (1957)'s solution, assuming elliptical cracks with constant stress drops on the estimated fault planes. The stress changes on the fault planes of the main shock were calculated by using Okada (1992)'s solution. The obtained stress change distribution showed that the hypocenter of the main shock existed on the region with positive ΔCFF while ΔCFF in the shallower regions than the hypocenter was negative. Therefore, the foreshocks could encourage the initiation of the main shock rupture and could hinder the rupture propagating toward the shallow region.Finally, we conducted 3-D dynamic rupture simulations (Hok and Fukuyama, 2011) of the main shock under the initial stresses, which were the sum of the stress changes by these foreshocks and the regional stress field estimated by Yoshida et al. (2016, submitted). We used slip-weakening law with uniform friction parameters. We conducted many simulations varying unknown parameters (the friction parameters and the values of the principal stresses), and we will discuss the conditions for the rupture propagation of the main shock and the effects of the foreshocks on the main shock.

  9. A multidisciplinary approach to characterize the geometry of active faults: the example of Mt. Massico, Southern Italy

    NASA Astrophysics Data System (ADS)

    Luiso, P.; Paoletti, V.; Nappi, R.; La Manna, M.; Cella, F.; Gaudiosi, G.; Fedi, M.; Iorio, M.

    2018-06-01

    We present the results of a multidisciplinary and multiscale study at Mt. Massico, Southern Italy. Mt. Massico is a carbonate horst located along the Campanian-Latial margin of the Tyrrhenian basin, bordered by two main NE-SW systems of faults, and by NW-SE and N-S trending faults. Our analysis deals with the modelling of the main NE-SW faults. These faults were capable during Plio-Pleistocene and are still active today, even though with scarce and low-energy seismicity (Mw maximum = 4.8). We inferred the pattern of the fault planes through a combined interpretation of 2-D hypocentral sections, a multiscale analysis of gravity field and geochemical data. This allowed us to characterize the geometry of these faults and infer their large depth extent. This region shows very striking gravimetric signatures, well-known Quaternary faults, moderate seismicity and a localized geothermal fluid rise. Thus, this analysis represents a valid case study for testing the effectiveness of a multidisciplinary approach, and employing it in areas with buried and/or silent faults of potential high hazard, such as in the Apennine chain.

  10. Shallow seismic structure of Kunlun fault zone in northern Tibetan Plateau, China: Implications for the 2001 M s8.1 Kunlun earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.

    2009-01-01

    The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  11. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California

    USGS Publications Warehouse

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.

    2004-01-01

    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed alternative tectonic models by evaluating (1) the cumulative effects of multiple deformational episodes that can produce complex, difficult-to-interpret fault geometries, patterns, and senses of displacement; (2) the difficult imaging of high-angle fault planes and horizontal fault separations on seismic reflection data; and (3) the effects of strain partitioning that yield coeval strike-slip faults and associated fold and thrust belts.

  12. The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)

    NASA Astrophysics Data System (ADS)

    Safaei, Homayon

    2009-08-01

    The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.

  13. Morphostructural characterization of the Charco basin and its surrounding areas in the Chihuahua segment of north Mexican Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Troiani, Francesco; Menichetti, Marco

    2014-05-01

    The Chihuahua Basin and Range (CBR) is the eastern branch of the northern Mexican Basin and Range Province that, from a morphostructural point of view, presently is one amongst the lesser-known zones of the southern portion of the North America Basin and Range Province. The study area covers an approximately 800 km2-wide portion of the CBR and encompasses the fault-bounded Charco basin and its surrounding areas. The bedrock of the area pertains to the large siliceous-igneous province of the Sierra Madre Occidental and consists of volcanoclastic rocks including Oligocene dacite, rhyolite, rhyolitic tuffs, and polimitic conglomerates. The region is characterized by a series of NW-SE oriented valleys delimited by tilted monoclinal blocks bounded by high angle, SW-dipping, normal faults. Abrupt changes in elevation, alternating between narrow faulted mountain chains and flat arid valleys or basins are the main morphological elements of the area. The valleys correspond to structural grabens filled with Plio-Pleistocene continental sediments. These grabens are about 10 km wide, while the extensional fault system extend over a distance of more than 15 km. The mountain ranges are in most cases continuous over distances that range from 10 to 70 km including different branches of the extensional and transfer faults. The morphogenesis is mainly erosive in character: erosional landforms (such as rocky scarps, ridges, strath-terraces, erosional pediment, reverse slopes, landslide scar zones, litho-structural flat surfaces) dominate the landscape. In contrast, Quaternary depositional landforms are mainly concentrated within the flat valleys or basins. The Quaternary deposits consist of wide alluvial fans extending to the foot of the main ridges, fluvial and debris-slope deposits. The morphostructural characterization of the area integrated different methodologies, including: i) geomorphological and structural field analyses; ii) remote sensing and geo-morphometric investigations based on aerial photos and Digital Elevation Models (a 28x28 m DEM and high-resolution LIDAR dataset in key sites), and iii) geophysical investigations (high resolution reflection seismic profiling combined with refraction seismic tomography). The main outputs of this research are as follows: i) the Charco basin master-faults and their conjugate extensional system were geometrically characterized and their main associated landforms mapped and described; ii) the morphostratigraphic correlations amongst both deformed and tectonically unaffected Quaternary deposits revealed that the Charco basin master fault has been inactive over the Holocene; iii) the main extensional fault system is associated with conjugate faults, oriented approximately SSW-NNE, that segmented the Charco basin master faults and favored the deposition of the most recent piedmont fans along the eastern margin of the basin; iv) the local morphostructures had played a dominant influence on the Quaternary evolution of both drainage network and relief landforms.

  14. The Pietra Grande thrust (Brenta Dolomites, Italy): looking for co-seismic indicators along a main fault in carbonate sequences

    NASA Astrophysics Data System (ADS)

    Viganò, Alfio; Tumiati, Simone; Martin, Silvana; Rigo, Manuel

    2013-04-01

    At present, pseudotachylytes (i.e. solidified frictional melts) are the only unambiguous geological record of seismic faulting. Even if pseudotachylytes are frequently observed along faults within crystalline rocks they are discovered along carbonate faults in very few cases only, suggesting that other chemico-physical processes than melting could occur (e.g. thermal decomposition). In order to investigate possible co-seismic indicators we study the Pietra Grande thrust, a carbonate fault in the Brenta Dolomites (Trentino, NE Italy), to analyse field structure, microtextures and composition of rocks from the principal slip plane, the fault core and the damage zone. The Pietra Grande thrust is developed within limestones and dolomitic limestones of Late Triassic-Early Jurassic age (Calcari di Zu and Monte Zugna Formations). The thrust, interpreted as a north-vergent décollement deeply connected with the major Cima Tosa thrust, is a sub-horizontal fault plane gently dipping to the North that mainly separates the massive Monte Zugna Fm. limestones (upper side) from the stratified Calcari di Zu Fm. limestones with intercalated marls (lower side). On the western face of the Pietra Grande klippe the thrust is continuously well-exposed for about 1 km. The main fault plane shows reddish infillings, which form veins with thicknesses between few millimetres to several decimetres. These red veins lie parallel to the thrust plane or in same cases inject lateral fractures and minor high-angle faults departing from the main fault plane. Veins have carbonate composition and show textures characterized by fine-grained reddish matrix with embedded carbonate clasts of different size (from few millimetres to centimetres). In some portions carbonate boulders (dimension of some decimetres) are embedded in the red matrix, while clast content generally significantly decreases at the vein borders (chilled margins). Red veins are typically associated with cohesive cataclasites and/or breccias of the fault zone. Host and fault rocks are locally folded, with fold axes having a rough E-W direction compatible with simultaneous thrust activation, suggesting deformation under brittle-ductile conditions. A late brittle deformation is testified by near-vertical fractures and strike-slip faults (WNW-directed) intersecting the whole thrust system. Field structure, microtextures, chemical and mineralogical compositions of host rocks, cataclasites and breccias are analysed. In particular, red veins are carefully compared with the very similar Grigne carbonate pseudotachylytes (Viganò et al. 2011, Terra Nova, vol. 23, pp.187-194), in order to evaluate if they could represent a certain geological record of seismic faulting of the Pietra Grande thrust.

  15. Micro-seismicity and seismotectonic study in Western Himalaya-Ladakh-Karakoram using local broadband seismic data

    NASA Astrophysics Data System (ADS)

    Kanna, Nagaraju; Gupta, Sandeep; Prakasam, K. S.

    2018-02-01

    We document the seismic activity and fault plane solutions (FPSs) in the Western Himalaya, Ladakh and Karakoram using data from 16 broadband seismographs operated during June 2002 to December 2003. We locate 206 earthquakes with a local magnitude in the range of 1.5 to 4.9 and calculate FPSs of 19 selected earthquakes based on moment tensor solutions. The earthquakes are distributed throughout the study region and indicate active tectonics in this region. The observed seismicity pattern is quite different than a well-defined pattern of seismicity, along the Main Central Thrust zone, in the eastern side of the study region (i.e., Kumaon-Garhwal Himalaya). In the Himalaya region, the earthquakes are distributed in the crust and upper mantle, whereas in the Ladakh-Karakoram area the earthquakes are mostly confined up to crustal depths. The fault plane solutions show a mixture of thrust, normal and strike-slip type mechanisms, which are well corroborated with the known faults/tectonics of the region. The normal fault earthquakes are observed along the Southern Tibet Detachment, Zanskar Shear Zone, Tso-Morari dome, and Kaurik-Chango fault; and suggest E-W extension tectonics in the Higher and Tethys Himalaya. The earthquakes of thrust mechanism with the left-lateral strike-slip component are seen along the Kistwar fault. The right-lateral strike-slip faulting with thrust component along the bending of the Main Boundary Thrust and Main Central Thrust shows the transpressional tectonics in this part of the Himalaya. The observed earthquakes with right-lateral strike-slip faulting indicate seismically active nature of the Karakoram fault.

  16. The role of E-W basement faults in the Mesozoic geodynamic evolution of the Gafsa and Chotts basins, south-central Tunisia

    NASA Astrophysics Data System (ADS)

    Amri, Dorra Tanfous; Dhahri, Ferid; Soussi, Mohamed; Gabtni, Hakim; Bédir, Mourad

    2017-10-01

    The Gafsa and Chotts intracratonic basins in south-central Tunisia are transitional zones between the Atlasic domain to the north and the Saharan platform to the south. The principal aim of this paper is to unravel the geodynamic evolution of these basins following an integrated approach including seismic, well log and gravity data. These data are used to highlight the tectonic control on the deposition of Jurassic and Lower Cretaceous series and to discuss the role of the main faults that controlled the basin architecture and Cretaceous-Tertiary inversion. The horizontal gravity gradient map of the study area highlights the pattern of discontinuities within the two basins and reveals the presence of deep E-W basement faults. Primary attention is given to the role played by the E-W faults system and that of the NW-SE Gafsa fault which was previously considered active since the Jurassic. Facies and thickness analyses based on new seismic interpretation and well data suggest that the E-W-oriented faults controlled the subsidence distribution especially during the Jurassic. The NW-SE faults seem to be key structures that controlled the basins paleogeography during Late Cretaceous-Cenozoic time. The upper Triassic evaporite bodies, which locally outline the main NW-SE Gafsa fault, are regarded as intrusive salt bodies rather than early diapiric extrusions as previously interpreted since they are rare and occurred only along main strike-slip faults. In addition, seismic lines show that Triassic rocks are deep and do not exhibit true diapiric features.

  17. Map showing thermal-alteration indicies in roadless areas and the Santa Lucia Wilderness in the Los Padres National Forest, Southwestern California

    USGS Publications Warehouse

    Frederiksen, N.O.

    1985-01-01

    South of the Santa Ynez fault, the TAI's of exposed rocks near the fault are mainly between 2+ and 3– (2+/3–) to 3 and are generally in the early stage of thermal maturity with respect to the possible generation of oil. North of the Santa Ynez fault, the exposed rocks have TAI's mostly of 2 to 2+ and are mainly immature or transitional from immature to mature. However, Jurassic(?) and Lower Cretaceous samples from the central San Rafael Mountains have distinctly higher TAI's, similar to those of rocks south of the Santa Ynez fault.

  18. Determination of Aseismic Creep or Strain Field on the Main Marmara Fault

    NASA Astrophysics Data System (ADS)

    Özbey, V.; Yavasoglu, H.; Masson, F.; Klein, E.; Alkan, M. N.; Alkan, R. M.

    2016-12-01

    Plate motion affecting the Earth's crust have occurred for millions of years. Determination of strain accumulation based on the plate motion is commonly monitored with GPS in recent years. The North Anatolian Fault (NAF) Zone, which is one of the fastest faults in the world, extends along all North Anatolia from Bingöl to Saros Gulf. Several destructive earthquakes occurred there, such as Izmit (in 1999, Mw=7.4) and Duzce (in 1999, Mw=7.2) in last century. The NAFZ is dividing into southern and northern branches to the east of Marmara region and the Northern branch (Main Marmara Fault-MMF) is crossing the Marmara Sea, starting in from the Gulf of Izmit - Adapazarı and reaching the Gulf of Saros. According to recent studies, the MMF is the largest unbroken part of the fault and is divided into segments (among which the Central Marmara-CM and Prince's Island-PI segments). The determination of the deformation accumulated on the MMF has become extremely important especially after the 1999 Izmit earthquake. Recent studies have demonstrated that the Prince's Island segment is fully locked. However, studies that are focused on the Central Marmara segment, that is located offshore Istanbul, a giant metropole that has more than 14 million population, do not conclude about the presence of a seismic gap, capable of generating a big earthquake. Therefore, in the scope of this study, a new GPS network will be established at short and long distance from the Main Marmara Fault, to densify the existing GPS network. several campaign measurements will be necessary to compute a velocity field. The velocity field will reveal the compression and variations of accumulation rate on the fault. Also, the amount of aseismic creep deep within the fault will be determined using Elastic Displacement Modeling method, allowing to conclude about the existence of a seismic gap on the Main Marmara Fault originated from aseismic deformation or not.

  19. A Solid-State Fault Current Limiting Device for VSC-HVDC Systems

    NASA Astrophysics Data System (ADS)

    Larruskain, D. Marene; Zamora, Inmaculada; Abarrategui, , Oihane; Iturregi, Araitz

    2013-08-01

    Faults in the DC circuit constitute one of the main limitations of voltage source converter VSC-HVDC systems, as the high fault currents can damage seriously the converters. In this article, a new design for a fault current limiter (FCL) is proposed, which is capable of limiting the fault current as well as interrupting it, isolating the DC grid. The operation of the proposed FCL is analysed and verified with the most usual faults that can occur in overhead lines.

  20. Is there a "blind" strike-slip fault at the southern end of the San Jacinto Fault system?

    NASA Astrophysics Data System (ADS)

    Tymofyeyeva, E.; Fialko, Y. A.

    2015-12-01

    We have studied the interseismic deformation at the southern end of the San Jacinto fault system using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data. To complement the continuous GPS measurements from the PBO network, we have conducted campaign-style GPS surveys of 19 benchmarks along Highway 78 in the years 2012, 2013, and 2014. We processed the campaign GPS data using GAMIT to obtain horizontal velocities. The data show high velocity gradients East of the surface trace of the Coyote Creek Fault. We also processed InSAR data from the ascending and descending tracks of the ENVISAT mission between the years 2003 and 2010. The InSAR data were corrected for atmospheric artifacts using an iterative common point stacking method. We combined average velocities from different look angles to isolate the fault-parallel velocity field, and used fault-parallel velocities to compute strain rate. We filtered the data over a range of wavelengths prior to numerical differentiation, to reduce the effects of noise and to investigate both shallow and deep sources of deformation. At spatial wavelengths less than 2km the strain rate data show prominent anomalies along the San Andreas and Superstition Hills faults, where shallow creep has been documented by previous studies. Similar anomalies are also observed along parts of the Coyote Creek Fault, San Felipe Fault, and an unmapped southern continuation of the Clark strand of the San Jacinto Fault. At wavelengths on the order of 20km, we observe elevated strain rates concentrated east of the Coyote Creek Fault. The long-wavelength strain anomaly east of the Coyote Creek Fault, and the localized shallow creep observed in the short-wavelength strain rate data over the same area suggest that there may be a "blind" segment of the Clark Fault that accommodates a significant portion of the deformation on the southern end of the San Jacinto Fault.

  1. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Eisses, A.; Kell, A. M.; Kent, G.; Driscoll, N. W.; Karlin, R. E.; Baskin, R. L.; Louie, J. N.; Smith, K. D.; Pullammanappallil, S.

    2011-12-01

    Preliminary slip rates measured across the East Pyramid Lake fault, or the Lake Range fault, help provide new estimates of extension across the Pyramid Lake basin. Multiple stratigraphic horizons spanning 48 ka were tracked throughout the lake, with layer offsets measured across all significant faults in the basin. A chronstratigraphic framework acquired from four sediment cores allows slip rates of the Lake Range and other faults to be calculated accurately. This region of the northern Walker Lake, strategically placed between the right-lateral strike-slip faults of Honey and Eagle Lakes to the north, and the normal fault bounded basins to the southwest (e.g., Tahoe, Carson), is critical in understanding the underlying structural complexity that is not only necessary for geothermal exploration, but also earthquake hazard assessment due to the proximity of the Reno-Sparks metropolitan area. In addition, our seismic CHIRP imaging with submeter resolution allows the construction of the first fault map of Pyramid Lake. The Lake Range fault can be obviously traced west of Anahoe Island extending north along the east end of the lake in numerous CHIRP lines. Initial drafts of the fault map reveal active transtension through a series of numerous, small, northwest striking, oblique-slip faults in the north end of the lake. A previously field mapped northwest striking fault near Sutcliff can be extended into the west end of Pyramid Lake. This fault map, along with the calculated slip rate of the Lake Range, and potentially multiple other faults, gives a clearer picture into understanding the geothermal potential, tectonic regime and earthquake hazards in the Pyramid Lake basin and the northern Walker Lane. These new results have also been merged with seismicity maps, along with focal mechanisms for the larger events to begin to extend our fault map in depth.

  2. SAR-revealed slip partitioning on a bending fault plane for the 2014 Northern Nagano earthquake at the northern Itoigawa-Shizuoka tectonic line

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu; Morishita, Yu; Yarai, Hiroshi

    2018-05-01

    By applying conventional cross-track synthetic aperture radar interferometry (InSAR) and multiple aperture InSAR techniques to ALOS-2 data acquired before and after the 2014 Northern Nagano, central Japan, earthquake, a three-dimensional ground displacement field has been successfully mapped. Crustal deformation is concentrated in and around the northern part of the Kamishiro Fault, which is the northernmost section of the Itoigawa-Shizuoka tectonic line. The full picture of the displacement field shows contraction in the northwest-southeast direction, but northeastward movement along the fault strike direction is prevalent in the northeast portion of the fault, which suggests that a strike-slip component is a significant part of the activity of this fault, in addition to a reverse faulting. Clear displacement discontinuities are recognized in the southern part of the source region, which falls just on the previously known Kamishiro Fault trace. We inverted the SAR and GNSS data to construct a slip distribution model; the preferred model of distributed slip on a two-plane fault surface shows a combination of reverse and left-lateral fault motions on a bending east-dipping fault surface with a dip of 30° in the shallow part and 50° in the deeper part. The hypocenter falls just on the estimated deeper fault plane where a left-lateral slip is inferred, whereas in the shallow part, a reverse slip is predominant, which causes surface ruptures on the ground. The slip partitioning may be accounted for by shear stress resulting from a reverse fault slip with left-lateral component at depth, for which a left-lateral slip is suppressed in the shallow part where the reverse slip is inferred. The slip distribution model with a bending fault surface, instead of a single fault plane, produces moment tensor solution with a non-double couple component, which is consistent with the seismically estimated mechanism.

  3. Cold seeps and splay faults on Nankai margin

    NASA Astrophysics Data System (ADS)

    Henry, P.; Ashi, J.; Tsunogai, U.; Toki, T.; Kuramoto, S.; Kinoshita, M.; Lallemant, S. J.

    2003-04-01

    Cold seeps (bacterial mats, specific fauna, authigenic carbonates) are common on the Nankai margin and considered as evidence for seepage of methane bearing fluids. Camera and submersible surveys performed over the years have shown that cold seeps are generally associated with active faults. One question is whether part of the fluids expelled originate from the seismogenic zone and migrate along splay faults to the seafloor. The localisation of most cold seeps on the hanging wall of major thrusts may, however, be interpreted in various ways: (a) footwall compaction and diffuse flow (b) fluid channelling along the fault zone at depths and diffuse flow near the seafloor (c) erosion and channelling along permeable strata. In 2002, new observations and sampling were performed with submersible and ROV (1) on major thrusts along the boundary between the Kumano forearc basin domain and the accretionary wedge domain, (2) on a fault affecting the forearc (Kodaiba fault), (3) on mud volcanoes in the Kumano basin. In area (1) tsunami and seismic inversions indicate that the targeted thrusts are in the slip zone of the To-Nankai 1944 earthquakes. In this area, the largest seep zone, continuous over at least 2 km, coincides with the termination of a thrust trace, indicating local fluid channelling along the edge of the fault zone. Kodaiba fault is part of another splay fault system, which has both thrusting and strike-slip components and terminates westward into an en-echelon fold system. Strong seepage activity with abundant carbonates was found on a fold at the fault termination. One mud volcano, rooted in one of the en-echelon fold, has exceptionally high seepage activity compared with the others and thick carbonate crusts. These observations suggest that fluid expulsion along fault zones is most active at fault terminations and may be enhanced during fault initiation. Preliminary geochemical results indicate signatures differ between seep sites and suggests that the two fault systems tap in different sources.

  4. Evolution of triangular topographic facets along active normal faults

    NASA Astrophysics Data System (ADS)

    Balogun, A.; Dawers, N. H.; Gasparini, N. M.; Giachetta, E.

    2011-12-01

    Triangular shaped facets, which are generally formed by the erosion of fault - bounded mountain ranges, are arguably one of the most prominent geomorphic features on active normal fault scarps. Some previous studies of triangular facet development have suggested that facet size and slope exhibit a strong linear dependency on fault slip rate, thus linking their growth directly to the kinematics of fault initiation and linkage. Other studies, however, generally conclude that there is no variation in triangular facet geometry (height and slope) with fault slip rate. The landscape of the northeastern Basin and Range Province of the western United States provides an opportunity for addressing this problem. This is due to the presence of well developed triangular facets along active normal faults, as well as spatial variations in fault scale and slip rate. In addition, the Holocene climatic record for this region suggests a dominant tectonic regime, as the faulted landscape shows little evidence of precipitation gradients associated with tectonic uplift. Using GIS-based analyses of USGS 30 m digital elevation data (DEMs) for east - central Idaho and southwestern Montana, we analyze triangular facet geometries along fault systems of varying number of constituent segments. This approach allows us to link these geometries with established patterns of along - strike slip rate variation. For this study, we consider major watersheds to include only catchments with upstream and downstream boundaries extending from the drainage divide to the mapped fault trace, respectively. In order to maintain consistency in the selection criteria for the analyzed triangular facets, only facets bounded on opposite sides by major watersheds were considered. Our preliminary observations reflect a general along - strike increase in the surface area, average slope, and relief of triangular facets from the tips of the fault towards the center. We attribute anomalies in the along - strike geometric measurements of the triangular facets to represent possible locations of fault segment linkage associated with normal fault evolution.

  5. Multiple geophysical observations indicate possible splay fault activation during the 2006 Java Tsunami earthquake

    NASA Astrophysics Data System (ADS)

    Fan, W.; Bassett, D.; Denolle, M.; Shearer, P. M.; Ji, C.; Jiang, J.

    2017-12-01

    The 2006 Mw 7.8 Java earthquake was a tsunami earthquake, exhibiting frequency-dependent seismic radiation along strike. High-frequency global back-projection results suggest two distinct rupture stages. The first stage lasted 65 s with a rupture speed of 1.2 km/s, while the second stage lasted from 65 to 150 s with a rupture speed of 2.7 km/s. In addition, P-wave high-frequency radiated energy and fall-off rates indicate a rupture transition at 60 s. High-frequency radiators resolved with back-projection during the second stage spatially correlate with splay fault traces mapped from residual free-air gravity anomalies. These splay faults also collocate with a major tsunami source associated with the earthquake inferred from tsunami first-crest back-propagation simulation. These correlations suggest that the splay faults may have been reactivated during the Java earthquake, as has been proposed for other tsunamigenic earthquakes, such as the 1944 Mw 8.1 Tonankai earthquake in the Nankai Trough.

  6. Surface faulting near Livermore, California, associated with the January 1980 earthquakes

    USGS Publications Warehouse

    Bonilla, Manuel G.; Lienkaemper, James J.; Tinsley, John C.

    1980-01-01

    The earthquakes of 24 January (Ms 5.8) 1980 north of Livermore, California, and 26 January (Ms 5.2), were accompanied by surface faulting in the Greenville fault zone and apparently in the Las Positas fault zone also. The surface faulting was discontinuous and of small displacement. The main rupture within the Greenville fault zone trended about N.38°W. It was at least 4.2 km long and may have extended southward to Interstate Highway 580, giving a possible length of 6.2 km; both of these lengths included more gaps than observed surface rupture. Maximum displacements measured by us were about 25 mm of right slip (including afterslip through 28 January); vertical components of as much as 50 mm were seen locally, but these included gravity effects of unknown amount. The main break within the Greenville fault zones is very close to a fault strand mapped by Herd (1977, and unpublished data). A subsidiary break within the Greenville fault zone was about 0.5 km. long, had a general trend of N.46°W., and lay 0.12 to 0.25 km east of the main break. It was characterized by extension of as much as 40 mm and right slip of as much as 20 mm. This break was no more than 25 m from a fault mapped by Herd (unpublished data). Another break within the Greenville fault zone lay about 0.3 km southwest of the projection of the main break and trended about N33°W. It was at least 0.3 km long and showed mostly extension, but at several places a right-lateral component (up to 5 mm) was seen. This break was 80 to 100 m from a strand of the Greenville fault mapped by Herd (1977). Extensional fractures within the Greenville fault zone on the frontage roads north and south of Interstate Highway 580 may be related to regional extension or other processes, but do not seem to have resulted from faulting of the usual kind. One exception in this group is a fracture at the east side of Livermore valley which showed progressive increase in right-lateral displacement in February and March, 1980, and is directly on the projection of a fault in the Greenville fault zone mapped by Herd (1977). A group of more than 20 extensional fractures in Laughlin Road 1 km north of Interstate 580 probably are related to small tectonic displacements on faults in the Greenville fault zone. They are adjacent and parallel to two faults mapped by Herd (1977), are diagonal to the road, and most of them developed between 25 and 29 January, a period that included the Ms 5.2 shock of 26 January. Observations at two locations indicate tectonic displacement on the Las Positas fault zone as mapped by Herd (1977). At Vasco Road a prominent break on a strand of the fault showed about 0.5 mm of left-lateral strike slip on 7 February. An alinement array across this and other fractures at the locality indicates about 6 mm of left-lateral displacement occurred between 21 February and 26 March. On Tesla Road several right-stepping fractures, one of which showed 1.5 mm of left-lateral strike slip, lie on or close tp previously mapped strands of the Las Positas fault zone. The evidence at these two localities indicates that tectonic surface displacement occurred along at least 1.1 km of the Las Positas fault zone.

  7. Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zhu, Y.; Chou, C.-L.; Zeng, R.; Zheng, B.

    2004-01-01

    Mineralogy, coal chemistry and 21 potentially hazardous trace elements (PHTEs) of 44 coal samples from the Qianxi Fault Depression Area (QFDA) in southwestern Guizhou province, China have been systematically studied. The major minerals in coals studied are quartz, kaolinite, illite, pyrite, calcite, smectite, marcasite and accessory minerals, including rutile, dolomite, siderite, gypsum, chlorite, melanterite, apatite, collophane and florencite. The SiO2 content shows a broad variation (0.8-30.7%). A high SiO2 content in Late Permian coals reflects their enrichment in quartz. The Al2O3 content varies from 0.8% to 13.4%, Fe2O3 from 0.2% to 14.6%, CaO from Al>K>Ti>Na>Mg>Ca>Fe>S. A comparison with World coal averages shows that the Late Permian coals in QFDA are highly enriched in As, Hg, F and U, and are slightly enriched in Mo, Se, Th, V and Zn. The Late Triassic coals in QFDA are highly enriched in As and Hg, and are slightly enriched in Mo, Th and U. The concentrations of As, Hg, Mo, Se, Tl and Zn in the QFDA coal are higher than other Guizhou coal and Liupanshui coal nearby. The QFDA is an area strongly affected by the low-temperature hydrothermal activity during its geologic history (Yanshanian Age, about 189 Ma). The coals in QFDA are enriched in volatile PHTEs, including As, Hg, Se, Sb, Mo, among others. The regions where the coals are enriched in As, Hg and F have been mapped. The regions of coals enriched in volatile PHTEs overlap with the regions of noble metal ore deposits. These coals are located in the cores of anticline and anticlinorium, which are connected with the profound faults through the normal faults. Coals are enriched in volatile PHTEs as a result of the low-temperature hydrothermal activity associated with tectonic faulting. ?? 2003 Elsevier B.V. All rights reserved.

  8. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  9. Structural features of the San Andreas fault at Tejon Pass, California

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Reches, Z.; Brune, J. N.

    2002-12-01

    We mapped a 2 km belt along the San Andreas fault (SAF) in the Tejon Pass area where road cuts provide fresh exposures of the fault zone and surrounding rocks. Our 1:2,000 structural mapping is focused on analysis of faulting processes and is complementary to regional mapping at 1:12,000 scale by Ramirez (M.Sc., UC Santa Barbara, 1984). The dominant rock units are the Hungry Valley Formation of Pliocene age (clastic sediments) exposed south of the SAF, and the Tejon Lookout granite (Cretaceous) and Neenach Volcanic Formation exposed north of it. Ramirez (1983) deduced ~220 km of post-Miocene lateral slip. The local trend of the SAF is about N60W and it includes at least three main, subparallel segments that form a 200 m wide zone. The traces of the segments are quasi-linear, discontinuous, and they are stepped with respect to each other, forming at least five small pull-aparts and sag ponds in the mapping area. The three segments were not active semi-contemporaneously and the southern segment is apparently the oldest. The largest pull-apart, 60-70 m wide, displays young (Quaternary?) silt and shale layers. We found two rock bodies that are suspected as fault-rocks. One is a 1-2 m thick sheet-like body that separates the Tejon Lookout granite from young (Recent?) clastic rocks. In the field, it appears as a gouge zone composed of poorly cemented, dark clay size grains; however, the microstructure of this rock does not reveal clear shear features. The second body is the 80-120 m wide zone of Tejon Lookout granite that extends for less than 1 km along the SAF in the mapped area. It is characterized by three structural features: (1) pulverization into friable, granular material by multitude of grain-crossing fractures; (2) abundance of dip-slip small faults that are gently dipping toward and away from the SAF; and (3) striking lack of evidence for shear parallel to the SAF. The relationships between these features and the large right-lateral shear along the SAF are puzzling. Our future work on these relations will include extensive microstructural analysis, determination of the depth of granite pulverization and the examination of several models that have been proposed to explain the enigmatic field features.

  10. Using marine magnetic survey data to identify a gold ore-controlling fault: a case study in Sanshandao fault, eastern China

    NASA Astrophysics Data System (ADS)

    Yan, Jiayong; Wang, Zhihui; Wang, Jinhui; Song, Jianhua

    2018-06-01

    The Jiaodong Peninsula has the greatest concentration of gold ore in China and is characterized by altered tectonite-type gold ore deposits. This type of gold deposit is mainly formed in fracture zones and is strictly controlled by faults. Three major ore-controlling faults occur in the Jiaodong Peninsula—the Jiaojia, Zhaoping and Sanshandao faults; the former two are located on land and the latter is located near Sanshandao and its adjacent offshore area. The discovery of the world’s largest marine gold deposit in northeastern Sanshandao indicates that the shallow offshore area has great potential for gold prospecting. However, as two ends of the Sanshandao fault extend to the Bohai Sea, conventional geological survey methods cannot determine the distribution of the fault and this is constraining the discovery of new gold deposits. To explore the southwestward extension of the Sanshandao fault, we performed a 1:25 000 scale marine magnetic survey in this region and obtained high-quality magnetic survey data covering 170 km2. Multi-scale edge detection and three-dimensional inversion of magnetic anomalies identify the characteristics of the southwestward extension of the Sanshandao fault and the three-dimensional distribution of the main lithologies, providing significant evidence for the deployment of marine gold deposit prospecting in the southern segment of the Sanshandao fault. Moreover, three other faults were identified in the study area and faults F2 and F4 are inferred as ore-controlling faults: there may exist other altered tectonite-type gold ore deposits along these two faults.

  11. Reevaluation of 1935 M 7.0 earthquake fault, Miaoli-Taichung Area, western Taiwan: a DEM and field study

    NASA Astrophysics Data System (ADS)

    Lin, Y. N.; Chen, Y.; Ota, Y.

    2003-12-01

    A large earthquake (M 7.0) took place in Miaoli area, western Taiwan on April 21st, 1935. Right to its south is the 1999 Chi-Chi earthquake fault, indicating it is not only tectonically but seismically active. As the previous study, the study area is located in the mature zone of a tectonic collision that occurred between Philippine sea Plate and Eurasia continental Plate. The associated surface ruptures of 1935 earthquake daylighted Tungtsichiao Fault, a tear fault trending NE in the south and Chihhu Fault, a back thrust trending N-S in the north, but no ruptures occurred in between. Strike-slip component was identified by the horizontal offset observed along Tungtsichiao Fault; however, there are still disputes on the reported field evidence. Our purposes are (1) to identify the structural behaviors of these two faults, (2) to find out what the seismogenic structure is, and (3) to reconstruct the regional geology by information given by this earthquake. By DEM interpretation and field survey, we can clearly recognize a lot of the 1935 associated features. In the west of Chihhu Fault, a series of N-S higher terraces can be identified with eastward tilted surfaces and nearly 200 m relative height. Another lower terrace is also believed being created during the 1935 earthquake, showing an east-facing scarp with a height of ca. 1.5~2 m. Outcrop investigation reveals that the late-Miocene bedrock has been easterly thrusted over the Holocene conglomerates, indicating a west-dipping fault plane. The Tungtsichiao Fault cuts through a lateritic terrace at Holi, which is supposed developed in Pleistocene. The fault scarp is only discernible in the northeastern ending. Other noticeable features are the fault related antiforms that line up along the surface rupture. There is no outcrop to show the fault geometry among bedrocks. We re-interpret the northern Chihhu Fault as the back thrust generated from a main subsurface detachment, which may be the actual seismogenic fault. Due to the bend geometry normally existing between ramp and detachment, stress accumulated and earthquake happened right on it. The fault tip of this main thrust may be blind on land or break out offshore, which explains why no surface ruptures related to the main thrust were found.

  12. Permeability of the San Andreas Fault Zone at Depth

    NASA Astrophysics Data System (ADS)

    Rathbun, A. P.; Song, I.; Saffer, D.

    2010-12-01

    Quantifying fault rock permeability is important toward understanding both the regional hydrologic behavior of fault zones, and poro-elastic processes that affect fault mechanics by mediating effective stress. These include long-term fault strength as well as dynamic processes that may occur during earthquake slip, including thermal pressurization and dilatancy hardening. Despite its importance, measurements of fault zone permeability for relevant natural materials are scarce, owing to the difficulty of coring through active fault zones seismogenic depths. Most existing measurements of fault zone permeability are from altered surface samples or from thinner, lower displacement faults than the SAF. Here, we report on permeability measurements conducted on gouge from the actively creeping Central Deformation Zone (CDZ) of the San Andreas Fault, sampled in the SAFOD borehole at a depth of ~2.7 km (Hole G, Run 4, sections 4,5). The matrix of the gouge in this interval is predominantly composed of particles <10 µm, with ~5 vol% clasts of serpentinite, very fine-grained sandstone, and siltstone. The 2.6 m-thick CDZ represents the main fault trace and hosts ~90% of the active slip on the SAF at this location, as documented by repeated casing deformation surveys. We measured permeability in two different configurations: (1) in a uniaxial pressure cell, in which a sample is placed into a rigid steel ring which imposes a zero lateral strain condition and subjected to axial load, and (2) in a standard triaxial system under isostatic stress conditions. In the uniaxial configuration, we obtained permeabilities at axial effective stresses up to 90 MPa, and in the triaxial system up to 10 MPa. All experiments were conducted on cylindrical subsamples of the SAFOD core 25 mm in diameter, with lengths ranging from 18mm to 40mm, oriented for flow approximately perpendicular to the fault. In uniaxial tests, permeability is determined by running constant rate of strain (CRS) tests up to 90 MPa axial stress. In these tests, axial stress is increased via a constant rate of displacement, and the excess pore pressure build up at the base of the sample is measured. Stress, pore pressure and strain are monitored to calculate coefficient of consolidation and volumetric compressibility in addition to permeability. In triaxial experiments, permeability is measured from by flow through tests under constant head boundary conditions. Permeability of the CDZ rapidly decreases to ~10-19 m2 by 20 MPa axial stress in our CRS tests. Over axial stresses from 20-85 MPa, permeability decreases log-linearly with effective stress from 8x10-20 m2 to 1x10-20 m2. Flow-through tests in the triaxial system under isostatic conditions yield permeabilities of 2.2x10-19 m2 and 1x10-20 m2 at 5 and 10 MPa, respectively. Our results are consistent with published geochemical data from SAFOD mud gas samples and inferred pore pressures during drilling [Zoback et al., 2010], which together suggest that the fault is a barrier to regional fluid flow. Our results indicate that the permeability of the fault core is sufficiently low to result in effectively undrained behavior during slip, thus allowing dynamic processes including thermal pressurization and dilatancy hardening to affect slip behavior.

  13. Research on gas within transformer oil based on photo-spectroscopy technology

    NASA Astrophysics Data System (ADS)

    Song, Gui-cai; Na, Yan-xiang; Zhang, Qi; Shi, Wen-zong

    2011-08-01

    Insulating oil is widely used in transformer and other large high-voltage electrical equipment.Its main functions are insulation, cooling and arc extinction. When the transformer runs, it may emit heat or discharge, which generate gas, micro water and trace metals in transformer oil. This will not only reduce the insulation capacity of insulating oil,and will greatly reduce the ability of its extinction, causing the transformers or other oil-filled electrical equipment appearing Internal latent malfunction, which would affect the operation of equipment. In this Paper, we simulate the transformer discharge effect to discharge in transformer oil. Then we use spectral theory and photo-spectroscopy technology to measure and analyse the oil sample, combining with IR absorption peaks of main fault characteristic gases, and qualitatively analyse CO, CO2, CH4, C2H6, C2H4, C2H2, H2 in gas mixture. The results show that the Fourier transform infrared spectroscopy can be very effective for analysing gases in transformer oil, which can quickly detect possible problems in the equipment.

  14. Paleoseismic evidence of characteristic slip on the Western segment of the North Anatolian fault, Turkey

    USGS Publications Warehouse

    Klinger, Yann; Sieh, K.; Altunel, E.; Akoglu, A.; Barka, A.; Dawson, Tim; Gonzalez, Tania; Meltzner, A.; Rockwell, Thomas

    2003-01-01

    We have conducted a paleoseismic investigation of serial fault rupture at one site along the 110-km rupture of the North Anatolian fault that produced the Mw 7.4 earthquake of 17 August 1999. The benefit of using a recent rupture to compare serial ruptures lies in the fact that the location, magnitude, and slip vector of the most recent event are all very well documented. We wished to determine whether or not the previous few ruptures of the fault were similar to the recent one. We chose a site at a step-over between two major strike-slip traces, where the principal fault is a normal fault. Our two excavations across the 1999 rupture reveal fluvial sands and gravels with two colluvial wedges related to previous earthquakes. Each wedge is about 0.8 m thick. Considering the processes of collapse and subsequent diffusion that are responsible for the formation of a colluvial wedge, we suggest that the two paleoscarps were similar in height to the 1999 scarp. This similarity supports the concept of characteristic slip, at least for this location along the fault. Accelerator mass spectrometry (AMS) radiocarbon dates of 16 charcoal samples are consistent with the interpretation that these two paleoscarps formed during large historical events in 1509 and 1719. If this is correct, the most recent three ruptures at the site have occurred at 210- and 280-year intervals.

  15. Stress Interactions Between the 1976 Magnitude 7.8 Tangshan Earthquake and Adjacent Fault Systems in Northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Lin, J.; Chen, Y. J.

    2004-12-01

    The 28 July 1976 ML = 7.8 Tangshan earthquake struck a highly populated metropolitan center in northern China and was one of the most devastating earthquakes in modern history. Its occurrence has significantly changed the Coulomb stresses on a complex network of strike-slip, normal, and thrust faults in the region, potentially heightened the odds of future earthquakes on some of these fault segments. We have conducted a detailed analysis of the 3D stress effects of the Tangshan earthquake on its neighboring faults, the relationship between stress transfer and aftershock locations, and the implications for future seismic hazard in the region. Available seismic and geodetic data, although limited, indicate that the Tangshan main shock sequence is composed of complex rupture on 2-3 fault segments. The dominant rupture mode is right-lateral strike-slip on two adjoining sub-segments that strike N5¡aE and N35¡aE, respectively. We calculated that the Tangshan main shock sequence has increased the Coulomb failure stress by more than 1 bar in the vicinity of the Lunanxian district to the east, where the largest aftershock (ML = 7.1) occurred 15 hours after the Tangshan main event. The second largest aftershock (ML = 6.8) occurred on the Ninghe fault to the southwest of the main rupture, in a transitional region between the calculated Coulomb stress increase and decrease. The majority of the ML > 5.0 aftershocks also occurred in areas of calculated Coulomb stress increase. Our analyses further indicate that the Coulomb stress on portions of other fault segments, including the Leting and Lulong fault to the east and Yejito fault to the north, may also have been increased. Thus it is critical to obtain estimates of earthquake repeat times on these and other tectonic faults and to acquire continuous GPS and space geodetic measurements. Investigation of stress interaction and earthquake triggering in northern China is not only highly societal relevant but also important for advancing our understanding of the fundamental characteristics of earthquakes in regions of diffuse continental deformation.

  16. Fault rock texture and porosity type in Triassic dolostones

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; Grieco, Donato; Bardi, Alessandro; Prosser, Giacomo

    2015-04-01

    Preliminary results of an ongoing project aimed at deciphering the micromechanics and porosity evolution associated to brittle deformation of Triassic dolostones are presented. Samples collected from high-angle, oblique-slip, 10's to 100's m-throw normal faults crosscutting Mesozoic carbonates of the Neo Tethys (Campanian-Lucanian Platform) are investigated by mean of field geological mapping, optical microscopy, SEM and image analyses. The goal is to characterize in detail composition, texture and porosity of cataclastic rocks in order to assess the structural architecture of dolomitic fault cores. Moreover, the present study addresses the time-space control exerted by several micro-mechanisms such as intragranular extensional fracturing, chipping and shear fracturing, which took place during grain rolling and crushing within the evolving faults, on type, amount, dimensions and distribution of micropores present within the cataclastic fault cores. Study samples are representative of well-exposed dolomitic fault cores of oblique-slip normal faults trending either NW-SE or NE-SW. The high-angle normal faults crosscut the Mesozoic carbonates of the Campanian-Lucanian Platform, which overrode the Lagonegro succession by mean of low-angle thrust faults. Fault throws are measured by considering the displaced thrust faults as key markers after large scale field mapping (1:10,000 scale) of the study areas. In the field, hand samples were selected according to their distance from main slip surfaces and, in some case, along secondary slip surfaces. Microscopy analysis of about 100 oriented fault rock samples shows that, mostly, the study cataclastic rocks are made up of dolomite and sparse, minute survivor silicate grains deriving from the Lagonegro succession. In order to quantitatively assess the main textural classes, a great attention is paid to the grain-matrix ratio, grain sphericity, grain roundness, and grain sorting. By employing an automatic box-counting technique, the fractal dimension of representative samples is also computed. Results of such a work shows that five main textural types are present: 1) fractured and fragmented dolomites; 2) protocataclasites characterized by intense intragranular extensional fracturing; 3) cataclasites due to a chipping-dominated mechanism; 4) cataclasites and ultracataclasites with pronounced shear fracturing; 5) cemented fault rocks, which localize along the main slip surfaces. The first four textural types are therefore indicative to the fault rock maturity within individual cataclastic fault cores. A negative correlation among grain-matrix ratio and grain sphericity, roundness and sorting is computed, which implies that ultracataclasites are made up of more spherical and rounded smaller grains relative to cataclasites and protocataclasites. Each textural type shows distinct D0-values (box-counting dimension). As expected, a good correlation between the D0-value and fault rock maturity is computed. Ongoing analysis of selected images obtained from representative samples of the five textural classes will shed lights on the relative role played by the aforementioned micro-mechanisms on the porosity evolution within the cataclastic fault cores.

  17. Late Proterozoic transpression on the Nabitah fault system-implications for the assembly of the Arabian Shield

    USGS Publications Warehouse

    Quick, J.E.

    1991-01-01

    The longest proposed suture zone in Saudi Arabia, the Nabitah suture, can be traced as a string of ophiolite complexes for 1200 km along the north-south axis of the Arabian Shield. Results of a field study in the north-central shield between 23?? and 26??N indicate that the Nabitah suture is indeed a major crustal discontinuity across which hundreds of kilometers of displacement may have occurred on north-south trending, subvertical faults of the Nabitah fault system. Although not a unique solution, many structures within and near these faults can be reconciled with transpression, i.e., convergent strike-slip, and syntectonic emplacement of calc-alkaline plutonic rocks. Transcurrent motion on the Nabitah fault system appears to have began prior to 710 Ma, was active circa 680 Ma, and terminated prior to significant left-lateral, strike slip on the Najd fault system, which began sometime after 650 Ma. Northwest-directed subduction in the eastern shield could have produced the observed association of calc-alkaline magmatism and left-lateral transpressive strike slip, and is consistent with interpretation of the Abt schist and sedimentary rocks of the Murdama group as relics of the associated accretionary wedge and fore-arc basin. ?? 1991.

  18. Ice Surface Morphology and Flow on Malaspina Glacier, Alaska: Implications for Regional Tectonics in the Saint Elias Orogen

    NASA Technical Reports Server (NTRS)

    Cotton, Michelle M.; Bruhn, Ronald L.; Sauber, Jeanne; Burgess, Evan; Forster, Richard R.

    2014-01-01

    The Saint Elias Mountains in southern Alaska are located at a structural syntaxis where the coastal thrust and fold belt of the Fairweather plate boundary intersects thrust faults and folds generated by collision of the Yakutat Terrane. The axial trace of this syntaxis extends southeastward out of the Saint Elias Mountains and beneath Malaspina Glacier where it is hidden from view and cannot be mapped using conventional methods. Here we examine the surface morphology and flow patterns of Malaspina Glacier to infer characteristics of the bedrock topography and organization of the syntaxis. Faults and folds beneath the eastern part of the glacier trend northwest and reflect dextral transpression near the terminus of the Fairweather fault system. Those beneath the western part of the glacier trend northeast and accommodate folding and thrust faulting during collision and accretion of the Yakutat Terrane. Mapping the location and geometry of the structural syntaxis provides important constraints on spatial variations in seismicity, fault kinematics, and crustal shortening beneath Malaspina Glacier, as well as the position of the collisional deformation front within the Yakutat Terrane. We also speculate that the geometrical complexity of intersecting faults within the syntaxis formed a barrier to rupture propagation during two regional Mw 8.1earthquakes in September 1899.

  19. Coseismic and Early Post-Seismic Slip Distributions of the 2012 Emilia (Northern Italy) Seismic Sequence: New Insights in the Faults Activation and Resulting Stress Changes on Adjacent Faults

    NASA Astrophysics Data System (ADS)

    Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.

    2015-12-01

    The 2012 Emilia sequence (main shocks Mw 6.1 May 20 and Mw 5.9 May 29) ruptured two thrust segments of a ~E-W trending fault system of the buried Ferrara Arc, along a portion of the compressional system of the Apennines that had remained silent during past centuries. Here we use the rupture geometry constrained by the aftershocks and new geodetic data (levelling, InSAR and GPS measurements) to estimate an improved coseismic slip distribution of the two main events. In addition, we use post-seismic displacements, described and analyzed here for the first time, to infer a brand new post-seismic slip distribution of the May 29 event in terms of afterslip on the same coseismic plane. In particular, in this study we use a catalog of precisely relocated aftershocks to explore the different proposed geometries of the proposed thrust segments that have been published so far and estimate the coseismic and post-seismic slip distributions of the ruptured planes responsible for the two main seismic events from a joint inversion of the geodetic data.Joint inversion results revealed that the two earthquakes ruptured two distinct planar thrust faults, characterized by single main coseismic patches located around the centre of the rupture planes, in agreement with the seismological and geological information pointing out the Ferrara and the Mirandola thrust faults, as the causative structures of the May 20 and May 29 main shocks respectively.The preferred post-seismic slip distribution related to the 29 May event, yielded to a main patch of afterslip (equivalent to a Mw 5.6 event) located westward and up-dip of the main coseismic patch, suggesting that afterslip was triggered at the edges of the coseismic asperity. We then use these co- and post-seismic slip distribution models to calculate the stress changes on adjacent fault.

  20. Reexamination of the subsurface fault structure in the vicinity of the 1989 moment-magnitude-6.9 Loma Prieta earthquake, central California, using steep-reflection, earthquake, and magnetic data

    USGS Publications Warehouse

    Zhang, Edward; Fuis, Gary S.; Catchings, Rufus D.; Scheirer, Daniel S.; Goldman, Mark; Bauer, Klaus

    2018-06-13

    We reexamine the geometry of the causative fault structure of the 1989 moment-magnitude-6.9 Loma Prieta earthquake in central California, using seismic-reflection, earthquake-hypocenter, and magnetic data. Our study is prompted by recent interpretations of a two-part dip of the San Andreas Fault (SAF) accompanied by a flower-like structure in the Coachella Valley, in southern California. Initially, the prevailing interpretation of fault geometry in the vicinity of the Loma Prieta earthquake was that the mainshock did not rupture the SAF, but rather a secondary fault within the SAF system, because network locations of aftershocks defined neither a vertical plane nor a fault plane that projected to the surface trace of the SAF. Subsequent waveform cross-correlation and double-difference relocations of Loma Prieta aftershocks appear to have clarified the fault geometry somewhat, with steeply dipping faults in the upper crust possibly connecting to the more moderately southwest-dipping mainshock rupture in the middle crust. Examination of steep-reflection data, extracted from a 1991 seismic-refraction profile through the Loma Prieta area, reveals three robust fault-like features that agree approximately in geometry with the clusters of upper-crustal relocated aftershocks. The subsurface geometry of the San Andreas, Sargent, and Berrocal Faults can be mapped using these features and the aftershock clusters. The San Andreas and Sargent Faults appear to dip northeastward in the uppermost crust and change dip continuously toward the southwest with depth. Previous models of gravity and magnetic data on profiles through the aftershock region also define a steeply dipping SAF, with an initial northeastward dip in the uppermost crust that changes with depth. At a depth 6 to 9 km, upper-crustal faults appear to project into the moderately southwest-dipping, planar mainshock rupture. The change to a planar dipping rupture at 6–9 km is similar to fault geometry seen in the Coachella Valley.

  1. Subaqueous tectonic geomorphology along a 400 km stretch of the Queen Charlotte-Fairweather Fault System, southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.; Kluesner, J.; Haeussler, P. J.; Watt, J. T.; Dartnell, P.; Miller, N. C.; Conrad, J. E.; East, A. E.; Maier, K. L.; Balster-Gee, A.; Ebuna, D. R.

    2016-12-01

    Seismic and geodetic monitoring of active fault systems does not typically extend beyond one seismic cycle, hence it is challenging to link the characteristics of individual earthquakes with long-term fault behavior. A compelling place to examine such linkages is the right-lateral Queen Charlotte-Fairweather Fault (QCFF), a 1200 km dextral strike-slip fault offshore southeastern Alaska and western British Columbia. The QCFF defines the North America-Pacific transform plate boundary and has experienced at least eight M>7 earthquakes in the last 130 years. During 2015-2016, the USGS conducted four high-resolution marine geophysical surveys (multibeam bathymetry, sparker multichannel seismic and Chirp) along a 400-km-long section of the QCFF from Icy Point to Noyes Canyon. The QCFF displays a nearly linear and continuous fault trace from Icy Point to the southern tip of Baranof Island, a distance of 315 km. Subtle changes in fault strike, particularly the 200 km section fault south of Sitka Sound, are associated with pull-apart basins and compressional pop-up structures. Bathymetric imagery provides stunning views of strike-slip fault morphology along the continental shelf-edge and slope, including linear fault valleys and knife-edge lateral offset of submarine canyons, gullies, and ridges. We also observe pervasive evidence for small-scale (<1 km^2) submarine landslides along the margin and propose that they were seismically triggered. The glacially scoured southern wall of the Yakobi Sea Valley, formed 17 ka, is offset 925±25 m by the QCFF, providing a late Pleistocene-present slip-rate estimate of approximately 54 mm/yr. This suggests nearly the entire plate boundary motion is localized to a single, relatively narrow fault zone. We also constructed and analyzed a catalog of lateral piercing points along the fault to better understand long-term fault behavior, particularly along segments that have generated large historical earthquakes.

  2. Observations of fault zone heterogeneity effects on stress alteration and slip nucleation during a fault reactivation experiment in the Mont Terri rock laboratory, Switzerland

    NASA Astrophysics Data System (ADS)

    Nussbaum, C.; Guglielmi, Y.

    2016-12-01

    The FS experiment at the Mont Terri underground research laboratory consists of a series of controlled field stimulation tests conducted in a fault zone intersecting a shale formation. The Main Fault is a secondary order reverse fault that formed during the creation of the Jura fold-and-thrust belt, associated to a large décollement. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite veins, scaly clay and clay gouge. We conducted fluid injection tests in 4 packed-off borehole intervals across the Main Fault using mHPP probes that allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. While pressurizing the intervals above injection pressures of 3.9 to 5.3 MPa, there is an irreversible change in the displacements magnitude and orientation associated to the hydraulic opening of natural shear planes oriented N59 to N69 and dipping 39 to 58°. Displacements of 0.01 mm to larger than 0.1 mm were captured, the highest value being observed at the interface between the low permeable fault core and the damage zone. Contrasted fault movements were observed, mainly dilatant in the fault core, highly dilatant-normal slip at the fault core-damage zone interface and low dilatant-strike-slip-reverse in the damage-to-intact zones. First using a slip-tendency approach based on Coulomb reactivation potential of fault planes, we computed a stress tensor orientation for each test. The input parameters are the measured displacement vectors above the hydraulic opening pressure and the detailed fault geometry of each intervals. All measurements from the damage zone can be explained by a stress tensor in strike-slip regime. Fault movements measured at the core-damage zone interface and within the fault core are in agreement with the same stress orientations but changed as normal faulting, explaining the significant dilatant movements. We then conducted dynamic hydromechanical simulations of the Coulomb stress variations on discrete fault planes, considering the injection pressure variations with time in the packed-off sections as the source parameters. Results suggest that the fault architecture and heterogeneity play an important role on the local stress variation at the core-damage zone interface, favouring slip activation below sigma 3.

  3. Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.

    2006-01-01

    The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.

  4. Geological process of the slow earthquakes -A hypothesis from an ancient plate boundary fault rock

    NASA Astrophysics Data System (ADS)

    Kitamura, Y.; Kimura, G.; Kawabata, K.

    2012-12-01

    We present an integrated model of the deformation along the subduction plate boundary from the trench to the seismogenic zone. Over years of field based research in the Shimanto Belt accretionary complex, southwest Japan, yielded breaking-through discoveries on plate boundary processes, for example, the first finding of pseudotachylyte in the accretionary prism (Ikesawa et al., 2003). Our aim here is to unveil the geological aspects of slow earthquakes and the related plate boundary processes. Studied tectonic mélanges in the Shimanto Belt are regarded as fossils of plate boundary fault zone in subduction zone. We traced material from different depths along subduction channel using samples from on-land outcrops and ocean drilling cores. As a result, a series of progressive deformation down to the down-dip limit of the seismogenic zone was revealed. Detailed geological survey and structural analyses enabled us to separate superimposed deformation events during subduction. Material involved in the plate boundary deformation is mainly an alternation of sand and mud. As they have different competency and are suffered by simple shear stress field, sandstones break apart in flowing mudstones. We distinguished several stages of these deformations in sandstones and recognized progress in the intensity of deformation with increment of underthrusting. It is also known that the studied Mugi mélange bears pseudotachylyte in its upper bounding fault. Our conclusion illustrates that the subduction channel around the depth of the seismogenic zone forms a thick plate boundary fault zone, where there is a clear segregation in deformation style: a fast and episodic slip at the upper boundary fault and a slow and continuous deformation within the zone. The former fast deformation corresponds to the plate boundary earthquakes and the latter to the slow earthquakes. We further examined numerically whether this plate boundary fault rock is capable of releasing seismic moment enough to fit the observed slow earthquakes. The shallow very low frequent earthquakes (VLFs) are chosen to be modeled and our estimation satisfies the natural data. We emphasize that the plate boundary is not a plane but a zone. Geological setting is a clue for differentiating slow and normal earthquakes. We propose to focus on the three-dimensional fault zone comprising numbers of microfaults as the source of slow earthquakes instead of planar plate boundary. Our results also make an impact on the study of seismic energy balance because we show a possibility to give an absolute value of them from geological approach, which could not have been achieved with seismology.

  5. Gravity and Magnetic Anomaly Interpretations and 2.5D Cross-Section Models over the Border Ranges Fault System and Aleutian Subduction Zone, Alaska

    NASA Astrophysics Data System (ADS)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G.; Jones, S.; Eslick, B. E.; Budhathoki, P.

    2011-12-01

    Quaternary glacial covers and lack of dense geophysical data on the Kenai Peninsula cause a location and geometry of the Border Ranges fault system (BRFS) within a recent forearc-accretionary boundary of Aleutian subduction zone in southern Alaska are unclear. Using new ~1,300 gravity collections within the Anchorage and Kenai Peninsula regions complied with prior 1997 gravity and aeromagnetic data help us better imaging these fault and the subduction structures. Cook Inlet forearc basin is corresponded by deep gravity anomaly lows; basin boundaries are characterized by a strong gravity gradient, where are considered to be traces of Border Ranges fault system on the east and Castle Mountain and Bruin Bay fault system on the west and northwest of the forearc basin respectively. Gravity anomaly highs over accreted rocks generally increase southeastward to the Aleutian trench, but show a gravity depression over the Kenai Mountains region. The lineament between gravity high and low in the same terrenes over the Kenai Peninsula is may be another evidence to determine the Southern Edge of the Yakutat Microplate (SEY) as inferred by Eberhart-Phillips et al. (2006). Our 2.5-D models illustrate the main fault of the BRFS dips steeply toward the west with a downslip displacement. Gravity and Magnetic anomaly highs, on the east of the BRFS, probably present a slice of the ultramafic complex emplaced by faults along the boundary of the forearc basin and accretionary wedge terranes. Another magnetic high beneath the basin in the southern forearc basin support a serpentiznied body inferred by Saltus et al. (2001), with a decreasing size toward the north. Regional density-gravity models show the Pacific subducting slab beneath the foreacre-arc teranes with a gentle and flatted dip where the subducting plate is located in north of SEY and dips more steeply where it is located on the south of SEY. The gravity depression over the accreted terrene can be explained by a density low slab beneath, which does not exist on the south. Results of 2.5-D density models will be used to guide the building of 3-D inversion models. Plausible interpretations of a modeling structure by implementing a 3-D model will be compared, and the most reasonable model will be used for structures representative of the BRFS including the subduction tectonics in southern Alaska.

  6. The 2015 April 25 Gorkha (Nepal) earthquake and its aftershocks: implications for lateral heterogeneity on the Main Himalayan Thrust

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Singh, Shashwat K.; Mitra, S.; Priestley, K. F.; Dayal, Shankar

    2017-02-01

    The 2015 Gorkha earthquake (Mw 7.8) occurred by thrust faulting on a ˜150 km long and ˜70 km wide, locked downdip segment of the Main Himalayan Thrust (MHT), causing the Himalaya to slip SSW over the Indian Plate, and was followed by major-to-moderate aftershocks. Back projection of teleseismic P-wave and inversion of teleseismic body waves provide constraints on the geometry and kinematics of the main-shock rupture and source mechanism of aftershocks. The main-shock initiated ˜80 km west of Katmandu, close to the locking line on the MHT and propagated eastwards along ˜117° azimuth for a duration of ˜70 s, with varying rupture velocity on a heterogeneous fault surface. The main-shock has been modelled using four subevents, propagating from west-to-east. The first subevent (0-20 s) ruptured at a velocity of ˜3.5 km s- 1 on a ˜6°N dipping flat segment of the MHT with thrust motion. The second subevent (20-35 s) ruptured a ˜18° W dipping lateral ramp on the MHT in oblique thrust motion. The rupture velocity dropped from 3.5 km s- 1 to 2.5 km s- 1, as a result of updip propagation of the rupture. The third subevent (35-50 s) ruptured a ˜7°N dipping, eastward flat segment of the MHT with thrust motion and resulted in the largest amplitude arrivals at teleseismic distances. The fourth subevent (50-70 s) occurred by left-lateral strike-slip motion on a steeply dipping transverse fault, at high angle to the MHT and arrested the eastward propagation of the main-shock rupture. Eastward stress build-up following the main-shock resulted in the largest aftershock (Mw 7.3), which occurred on the MHT, immediately east of the main-shock rupture. Source mechanisms of moderate aftershocks reveal stress adjustment at the edges of the main-shock fault, flexural faulting on top of the downgoing Indian Plate and extensional faulting in the hanging wall of the MHT.

  7. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada

    NASA Astrophysics Data System (ADS)

    Hammond, K. Jill; Evans, James P.

    2003-05-01

    We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as a localized conduit to hydrocarbon-bearing calcite veins. The results of this study show that fault-zone character may change dramatically over short, deposit- or reservoir-scale distances. The presence of damage zones may not be well correlated at the fine scale with geochemically defined regions of the fault, even though a gross spatial correlation may exist.

  8. Training for Skill in Fault Diagnosis

    ERIC Educational Resources Information Center

    Turner, J. D.

    1974-01-01

    The Knitting, Lace and Net Industry Training Board has developed a training innovation called fault diagnosis training. The entire training process concentrates on teaching based on the experiences of troubleshooters or any other employees whose main tasks involve fault diagnosis and rectification. (Author/DS)

  9. Character and Significance of Surface Rupture Near the Intersection of the Denali and Totschunda Faults, M7.9 Denali Fault Earthquake, Alaska, November 3, 2002

    NASA Astrophysics Data System (ADS)

    Wallace, W. K.; Sherrod, B. L.; Dawson, T. E.

    2002-12-01

    Preliminary observations suggest that right-lateral strike-slip on the Denali fault is transferred to the Totschunda fault via an extensional bend in the Little Tok River valley. Most of the surface rupture during the Denali fault earthquake was along an east- to east-southeast striking, gently curved segment of the Denali fault. However, in the Little Tok River valley, rupture transferred to the southeast-striking Totschunda fault and continued to the southeast for another 75 km. West of the Little Tok River valley, 5-7 m of right-lateral slip and up to 2 m of vertical offset occurred on the main strand of the Denali fault, but no apparent displacement occurred on the Denali fault east of the valley. Rupture west of the intersection also occurred on multiple discontinuous strands parallel to and south of the main strand of the Denali fault. In the Little Tok River valley, the northern part of the Totschunda fault system consists of multiple discontinuous southeast-striking strands that are connected locally by south-striking stepover faults. Faults of the northern Totschunda system display 0-2.5 m of right-lateral slip and 0-2.75 m of vertical offset, with the largest vertical offset on a dominantly extensional stepover fault. The strands of the Totschunda system converge southeastward to a single strand that had up to 2 m of slip. Complex and discontinuous faulting may reflect in part the immaturity of the northern Totschunda system, which is known to be younger and have much less total slip than the Denali. The Totschunda fault forms an extensional bend relative to the dominantly right-lateral Denali fault to the west. The fault geometry and displacements at the intersection suggest that slip on the Denali fault during the earthquake was accommodated largely by extension in the northern Totschunda fault system, allowing a significant decrease in strike-slip relative to the Denali fault. Strands to the southwest in the area of the bend may represent shortcut faults that have reduced the curvature at the intersection of the two fault systems.

  10. The Lewis thrust fault and related structures in the Disturbed Belt, northwestern Montana

    USGS Publications Warehouse

    Mudge, Melville Rhodes; Earhart, Robert L.

    1980-01-01

    The classical Lewis thrust fault in Glacier National Park has now been mapped 125 km south of the park to Steamboat Mountain, where the trace dies out in folded middle Paleozoic rocks. The known length of the fault is 452 km, extending northward from Steamboat Mountain to a point 225 km into Canada, where the fault also dies out in Paleozoic rocks. At the south end, the surface expression of the Lewis thrust begins in a shear zone in folded Mississippian rocks. To the north, the thrust progressively cuts downsection into Proterozoic Y (Belt) rocks near Glacier National Park. Displacement on the Lewis plate increases northward from approximately 3 km on an easterly trending hinge line at the West Fork of the Sun River to a postulated 65 km at the southern edge of the park, where the stratigraphic throw is about 6,500 m. Present data indicate the thrust formed during very late Paleocene to very early Eocene time. The Lewis thrust and related structures, the Hoadley thrust and the Continental Divide syncline, probably formed concurrently under the same stress field. The northern limit of the trace of the Hoadley thrust is within the lower portion of the Lewis plate, about 28 km north of where the Lewis thrust develops, and the Hoadley extends for at least 125 km to the south. Displacement of the Hoadley increases southward from about 1 km at the hinge line to an inferred 70 km near its known southern extent. If our inference is correct, the Hoadley is nearly the southern mirror image of the Lewis to the north. The Continental Divide syncline, a doubly plunging, broad, northerly trending open fold that is about 120 km long, is a major fold within the Lewis plate.

  11. Fault Scarp Detection Beneath Dense Vegetation Cover: Airborne Lidar Mapping of the Seattle Fault Zone, Bainbridge Island, Washington State

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Berghoff, Gregory S.

    2000-01-01

    The emergence of a commercial airborne laser mapping industry is paying major dividends in an assessment of earthquake hazards in the Puget Lowland of Washington State. Geophysical observations and historical seismicity indicate the presence of active upper-crustal faults in the Puget Lowland, placing the major population centers of Seattle and Tacoma at significant risk. However, until recently the surface trace of these faults had never been identified, neither on the ground nor from remote sensing, due to cover by the dense vegetation of the Pacific Northwest temperate rainforests and extremely thick Pleistocene glacial deposits. A pilot lidar mapping project of Bainbridge Island in the Puget Sound, contracted by the Kitsap Public Utility District (KPUD) and conducted by Airborne Laser Mapping in late 1996, spectacularly revealed geomorphic features associated with fault strands within the Seattle fault zone. The features include a previously unrecognized fault scarp, an uplifted marine wave-cut platform, and tilted sedimentary strata. The United States Geologic Survey (USGS) is now conducting trenching studies across the fault scarp to establish ages, displacements, and recurrence intervals of recent earthquakes on this active fault. The success of this pilot study has inspired the formation of a consortium of federal and local organizations to extend this work to a 2350 square kilometer (580,000 acre) region of the Puget Lowland, covering nearly the entire extent (approx. 85 km) of the Seattle fault. The consortium includes NASA, the USGS, and four local groups consisting of KPUD, Kitsap County, the City of Seattle, and the Puget Sound Regional Council (PSRC). The consortium has selected Terrapoint, a commercial lidar mapping vendor, to acquire the data.

  12. Potential earthquake faults offshore Southern California, from the eastern Santa Barbara Channel south to Dana Point

    USGS Publications Warehouse

    Fisher, M.A.; Sorlien, C.C.; Sliter, R.W.

    2009-01-01

    Urban areas in Southern California are at risk from major earthquakes, not only quakes generated by long-recognized onshore faults but also ones that occur along poorly understood offshore faults. We summarize recent research findings concerning these lesser known faults. Research by the U.S. Geological Survey during the past five years indicates that these faults from the eastern Santa Barbara Channel south to Dana Point pose a potential earthquake threat. Historical seismicity in this area indicates that, in general, offshore faults can unleash earthquakes having at least moderate (M 5-6) magnitude. Estimating the earthquake hazard in Southern California is complicated by strain partitioning and by inheritance of structures from early tectonic episodes. The three main episodes are Mesozoic through early Miocene subduction, early Miocene crustal extension coeval with rotation of the Western Transverse Ranges, and Pliocene and younger transpression related to plate-boundary motion along the San Andreas Fault. Additional complication in the analysis of earthquake hazards derives from the partitioning of tectonic strain into strike-slip and thrust components along separate but kinematically related faults. The eastern Santa Barbara Basin is deformed by large active reverse and thrust faults, and this area appears to be underlain regionally by the north-dipping Channel Islands thrust fault. These faults could produce moderate to strong earthquakes and destructive tsunamis. On the Malibu coast, earthquakes along offshore faults could have left-lateral-oblique focal mechanisms, and the Santa Monica Mountains thrust fault, which underlies the oblique faults, could give rise to large (M ??7) earthquakes. Offshore faults near Santa Monica Bay and the San Pedro shelf are likely to produce both strike-slip and thrust earthquakes along northwest-striking faults. In all areas, transverse structures, such as lateral ramps and tear faults, which crosscut the main faults, could segment earthquake rupture zones. ?? 2009 The Geological Society of America.

  13. Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide and moraine surfaces along the Ecemiş Fault Zone

    NASA Astrophysics Data System (ADS)

    Yildirim, Cengiz; Akif Sarikaya, Mehmet; Ciner, Attila

    2016-04-01

    Late Pleistocene activity of the Ecemiş Fault Zone is integrally tied to ongoing intraplate crustal deformation in the Central Anatolian Plateau. Here we document the vertical displacement, slip rate, extension rate, and geochronology of normal faults within a narrow strip along the main strand of the fault zone. The Kartal, Cevizlik and Lorut faults are normal faults that have evident surface expression within the strip. Terrestrial cosmogenic nuclide geochronology reveals that the Kartal Fault deformed a 104.2 ± 16.5 ka alluvial fan surface and the Cevizlik Fault deformed 21.9 ± 1.8 ka glacial moraine and talus fan surfaces. The Cevizlik Fault delimits mountain front of the Aladaglar and forms >1 km relief. Our topographic surveys indicate 13.1 ± 1.4 m surface breaking vertical displacements along Cevizlik Faults, respectively. Accordingly, we suggest a 0.60 ± 0.08 mm a-1 slip rate and 0.35 ± 0.05 mm a-1 extension rate for the last 21.9 ± 1.8 ka on the Cevizlik Fault. Taken together with other structural observations in the region, we believe that the Cevizlik, Kartal ve Lorut faults are an integral part of intraplate crustal deformation in Central Anatolia. They imply that intraplate structures such as the Ecemiş Fault Zone may change their mode through time; presently, the Ecemiş Fault Zone has been deformed predominantly by normal faults. The presence of steep preserved fault scarps along the Kartal, Cevizlik and Lorut faults point to surface breaking normal faulting away from the main strand and particularly signify that these structures need to be taken into account for regional seismic hazard assessments. This project is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Grant number: 112Y087).

  14. The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.

    NASA Astrophysics Data System (ADS)

    Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.

    2017-12-01

    The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault, possibly inherited from compressional tectonics. These earthquakes raise serious concerns on our understanding of fault segmentation and seismicity evolution during sequences of normal faulting earthquakes. Finally, the retrieved rupture history has important implications on seismic hazard assessment and on the maximum expected magnitude in a given tectonic area.

  15. Discovery of previously unrecognised local faults in London, UK, using detailed 3D geological modelling

    NASA Astrophysics Data System (ADS)

    Aldiss, Don; Haslam, Richard

    2013-04-01

    In parts of London, faulting introduces lateral heterogeneity to the local ground conditions, especially where construction works intercept the Palaeogene Lambeth Group. This brings difficulties to the compilation of a ground model that is fully consistent with the ground investigation data, and so to the design and construction of engineering works. However, because bedrock in the London area is rather uniform at outcrop, and is widely covered by Quaternary deposits, few faults are shown on the geological maps of the area. This paper discusses a successful resolution of this problem at a site in east central London, where tunnels for a new underground railway station are planned. A 3D geological model was used to provide an understanding of the local geological structure, in faulted Lambeth Group strata, that had not been possible by other commonly-used methods. This model includes seven previously unrecognised faults, with downthrows ranging from about 1 m to about 12 m. The model was constructed in the GSI3D geological modelling software using about 145 borehole records, including many legacy records, in an area of 850 m by 500 m. The basis of a GSI3D 3D geological model is a network of 2D cross-sections drawn by a geologist, generally connecting borehole positions (where the borehole records define the level of the geological units that are present), and outcrop and subcrop lines for those units (where shown by a geological map). When the lines tracing the base of each geological unit within the intersecting cross-sections are complete and mutually consistent, the software is used to generate TIN surfaces between those lines, so creating a 3D geological model. Even where a geological model is constructed as if no faults were present, changes in apparent dip between two data points within a single cross-section can indicate that a fault is present in that segment of the cross-section. If displacements of similar size with the same polarity are found in a series of adjacent cross-sections, the presence of a fault can be substantiated. If it is assumed that the fault is planar and vertical, then the pairs of constraining data points in each cross-section form a two-dimensional envelope within which the surface trace of the fault must lie. Generally, the broader the area of the model, the longer the envelope defined by the pairs of boreholes is, resulting in better constraint of the fault zone width and azimuth. Repetition or omission of the local stratigraphy in the constraining boreholes can demonstrate reverse or normal dip-slip motion. Even if this is not possible, borehole intercepts at the base of the youngest bedrock unit or at the top of the oldest bedrock unit can constrain the minimum angle of dip of the fault plane. Assessment of the maximum angle of dip requires intrusive investigation. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an NERC copyright. This license does not conflict with the regulations of the Crown Copyright.

  16. Did stress triggering cause the large off-fault aftershocks of the 25 March 1998 MW=8.1 Antarctic plate earthquake?

    USGS Publications Warehouse

    Toda, S.; Stein, R.S.

    2000-01-01

    The 1998 Antarctic plate earthquake produced clusters of aftershocks (MW ??? 6.4) up to 80 km from the fault rupture and up to 100 km beyond the end of the rupture. Because the mainshock occurred far from the nearest plate boundary and the nearest recorded earthquake, it is unusually isolated from the stress perturbations caused by other earthquakes, making it a good candidate for stress transfer analysis despite the absence of near-field observations. We tested whether the off-fault aftershocks lie in regions brought closer to Coulomb failure by the main rupture. We evaluated four published source models for the main rupture. In fourteen tests using different aftershocks sets and allowing the rupture sources to be shifted within their uncertainties, 6 were significant at ??? 99% confidence, 3 at > 95% confidence, and 5 were not significant (< 95% level). For the 9 successful tests, the stress at the site of the aftershocks was typically increased by 1-2 bars (0.1-0.2 MPa). Thus the Antarctic plate event, together with the 1992 MW=7.3 Landers and its MW=6.5 Big Bear aftershock 40 km from the main fault, supply evidence that small stress changes might indeed trigger large earthquakes far from the main fault rupture.

  17. Implications of diverse fault orientations imaged in relocated aftershocks of the Mount Lewis, ML 5.7, California, earthquake

    NASA Astrophysics Data System (ADS)

    Kilb, D.; Rubin, A. M.

    2002-11-01

    We use seismic waveform cross correlation to determine the relative positions of 2747 microearthquakes near Mount Lewis, California, that have waveforms recorded from 1984 to 1999. These earthquakes include the aftershock sequence of the 1986 ML5.7 Mount Lewis earthquake. Approximately 90% of these aftershocks are located beyond the tips of the approximately north striking main shock, defining an hourglass with the long axis aligned approximately with the main shock. Surprisingly, our relocation demonstrates that many of these aftershocks illuminate a series of near-vertical east-west faults that are ˜0.5-1 km long and separated by as little as ˜200 m. We propose that these structures result from the growth of a relatively young fault in which displacement across a right-lateral approximately north striking fault zone is accommodated by slip on secondary left-lateral approximately east striking faults. We derive the main shock-induced static Coulomb failure function (Δσf) on the dominant fault orientation in our study area using a three-dimensional (3-D) boundary element program. To bound viable friction coefficients, we measure the correlation between the rank ordering of relative amplitudes of Δσf and seismicity rate change. We find that likely friction coefficients are 0.2-0.6 and that the assumed main shock geometry introduces the largest uncertainties in the favored friction values. We obtain similar results from a visual correlation of calculated Δσf contours with the distribution of aftershocks. Viable rate-and-state constitutive parameters bound the observed relationship between magnitude of Δσf and seismicity rate change, and for our favored main shock model a maximum correlation is achieved when Δσf is computed with friction coefficients of 0.3-0.6. These values are below those previously cited for young faults.

  18. Complex spatiotemporal evolution of the 2008 Mw 4.9 Mogul earthquake swarm (Reno, Nevada): Interplay of fluid and faulting

    NASA Astrophysics Data System (ADS)

    Ruhl, C. J.; Abercrombie, R. E.; Smith, K. D.; Zaliapin, I.

    2016-11-01

    After approximately 2 months of swarm-like earthquakes in the Mogul neighborhood of west Reno, NV, seismicity rates and event magnitudes increased over several days culminating in an Mw 4.9 dextral strike-slip earthquake on 26 April 2008. Although very shallow, the Mw 4.9 main shock had a different sense of slip than locally mapped dip-slip surface faults. We relocate 7549 earthquakes, calculate 1082 focal mechanisms, and statistically cluster the relocated earthquake catalog to understand the character and interaction of active structures throughout the Mogul, NV earthquake sequence. Rapid temporary instrument deployment provides high-resolution coverage of microseismicity, enabling a detailed analysis of swarm behavior and faulting geometry. Relocations reveal an internally clustered sequence in which foreshocks evolved on multiple structures surrounding the eventual main shock rupture. The relocated seismicity defines a fault-fracture mesh and detailed fault structure from approximately 2-6 km depth on the previously unknown Mogul fault that may be an evolving incipient strike-slip fault zone. The seismicity volume expands before the main shock, consistent with pore pressure diffusion, and the aftershock volume is much larger than is typical for an Mw 4.9 earthquake. We group events into clusters using space-time-magnitude nearest-neighbor distances between events and develop a cluster criterion through randomization of the relocated catalog. Identified clusters are largely main shock-aftershock sequences, without evidence for migration, occurring within the diffuse background seismicity. The migration rate of the largest foreshock cluster and simultaneous background events is consistent with it having triggered, or having been triggered by, an aseismic slip event.

  19. Paleoseismic observations of an onshore transform boundary: The Magallanes-Fagnano fault, Tierra del Fuego, Argentina

    USGS Publications Warehouse

    Costa, C.H.; Smalley, R.; Schwartz, D.P.; Stenner, Heidi D.; Ellis, M.; Ahumada, E.A.; Velasco, M.S.

    2006-01-01

    We present preliminary information on the geomorphologic features and paleoseismic record associated with the ruptures of two Ms 7.8 earthquakes that struck Tierra del Fuego and the southernmost continental margin of South America on December 17, 1949. The fault scarp was surveyed in several places cast of Lago Fagnano and a trench across a secondary fault trace of the Magallanes-Fagnano fault was excavated at the Ri??o San Pablo. The observed deformation in a 9 kyr-old peat bog sequence suggests evidence for two, and possibly three pre-1949 paleoearthquakes is preserved in the stratigraphy. The scarp reaches heights up to 11 m in late Pleistocene-Holocence(?) deposits, but the vertical component of the 1949 events was always less than ???1 m. This observation also argues for the occurrence of previous events during the Quaternary. Along die part of the fault we investigated east of Lago Fagnano, the horizontal component of the 1949 rupture does not exceed 4 m and is likely lower than 0.4 m, which is consistent with the kinematics of a local releasing bend, or at the end of a strike-slip rupture zone. ?? 2006 Revista de la Asociacio??n Geolo??gica Argentina.

  20. Application of fault factor method to fault detection and diagnosis for space shuttle main engine

    NASA Astrophysics Data System (ADS)

    Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye

    2016-09-01

    This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.

  1. Simulation of fault performance of a diesel engine driven brushless alternator through PSPICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, S.S.Y.; Ananthakrishnan, P.; Hangari, V.U.

    1995-12-31

    Analysis of the fault performance of a brushless alternator with damper windings in the main alternator has been handled ab initio as a total modeling and simulation problem through proper application of Park`s equivalent circuit approach individually to the main exciter alternator units of the brushless alternator and the same has been implemented through PSPICE. The accuracy of the parameters used in the modeling and results obtained through PSPICE implementation are then evaluated for a specific 125 kVA brushless alternator in two stages as followed: first, by comparison of the predicted fault performance obtained from simulation of the 125 kVAmore » main alternator alone treated as a conventional alternator with the results obtained through the use of closed form analytical expressions available in the literature for fault currents and torques in such conventional alternators. Secondly, by comparison of some of the simulation results with those obtained experimentally on the brushless alternator itself. To enable proper calculation of derating factors to be used in the design of such brushless alternators, simulation results then include harmonic analysis of the steady state fault currents and torques. Throughout these studies, the brushless alternator is treated to be on no load at the instant of occurrence of fault.« less

  2. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  3. Traditional and innovative methods applied to a crystalline aquifer for characterizing fault zone hydrology at different scales

    NASA Astrophysics Data System (ADS)

    Bour, O.; Ruelleu, S.; Le Borgne, T.; Boudin, F.; Moreau, F.; Durand, S.; Longuevergne, L.

    2011-12-01

    Crystalline rocks aquifers are difficult to characterize since flow is mainly localized in few fractures or faults. In particular, the geometry of the main flow paths and the connections of the aquifer with the sub-surface are often poorly constrained. Here, we present results from different geophysical and hydraulic methods to quantify fault zone hydrology of a crystalline confined aquifer (Ploemeur, French Brittany). This outstandingly productive crystalline rock aquifer is exploited at a rate of about 10 6 m3 per year since 1991. The pumping site is located at the intersection of two main structures: the contact zone between granite roof and overlying micaschists, and a steeply dipping fault striking North 20°, with combined dextral strike-slip and normal components. Core samples and borehole optical imagery reveals that the contact zone at the granite roof consists of alternating deformed granitic sheets and enclaves of micaschists, pegmatite and aplite dykes, as well as quartz veins. Locally, this contact is marked by mylonites and pegmatite-bearing breccias that are often but not systematically associated with major borehole inflows. Other significant inflows are localized within single fractures independently of the lithologies encountered. At the borehole scale the structural and hydraulic properties of the aquifer are thus highly variable. At the site scale - typically a kilometer squared - the water levels are monitored in 22 boreholes, 100 meters deep in average. The connectivity of the main flow paths and the hydraulic properties are relatively well constrained and quantified thanks to cross-borehole flowmeter tests and traditional pumping tests. In complement, long-base tiltmeters monitoring and ground-surface leveling allows to monitor sub-surface deformation. It provides a quantification of the hydro-mechanical properties of the aquifer and better constraints about the geometry of the main fault zone. Surprisingly, the storage coefficient of the confined aquifer is relatively high, in agreement with ground-surface deformation measurements that suggest a relativity high compressibility of the fault zone. At larger scale, we show through a high-resolution gravimetric survey that the highly fractured contact between granite and micaschists, which constitutes the main path for groundwater flow, is a gently dipping structure. A 3D gravimetric model confirms also the presence of sub-vertical faults that may constitute important drains for the aquifer recharge. In addition, groundwater temperature monitoring allows to shows that the main water supply comes from a depth of at least 300 meters. Such a depth in a low relief region involves relatively deep groundwater circulation that can be achieved only thanks to major permeable fault zone. This field example shows the advantages and limitations of some traditional and innovative methods to characterize fault zone hydrology in crystalline bedrock aquifers.

  4. The 2012 Strike-slip Earthquake Sequence in Black Sea and its Link to the Caucasus Collision Zone

    NASA Astrophysics Data System (ADS)

    Tseng, T. L.; Hsu, C. H.; Legendre, C. P.; Jian, P. R.; Huang, B. S.; Karakhanian, A.; Chen, C. W.

    2016-12-01

    The Black Sea formed as a back-arc basin in Late Cretaceous to Paleogene with lots of extensional features. However, the Black Sea is now tectonically stable and absent of notable earthquakes except for the coastal region. In this study we invert regional waveforms of a new seismic array to constrain the focal mechanisms and depths of the 2012/12/23 earthquake sequence occurred in northeastern Black Sea basin that can provide unique estimates on the stress field in the region. The results show that the focal mechanisms for the main shock and 5 larger aftershocks are all strike-slip faulting and resembling with each other. The main rupture fall along the vertical dipping, NW-SE trending sinistral fault indicated by the lineation of most aftershocks. The fault strike and aftershock distribution are both consistent with the Shatsky Ridge, which is continental in nature but large normal faults was created by previous subsidence. The occurrence of 2012 earthquakes can be re-activated, as strike-slip, on one of the pre-existing normal fault cutting at depth nearly 20-30 km in the extended crust. Some of the aftershocks, including a larger one occurred 5 days later, are distributed toward NE direction 20 km away from main fault zone. Those events might be triggered by the main shock along a conjugate fault, which is surprisingly at the extension of proposed transform fault perpendicular to the rift axis of eastern Black Sea Basin. The focal mechanisms also indicate that the maximum compression in northeast Black Sea is at E-W direction, completely different from the N-S compression in the Caucasus and East Turkey controlled by Arabia-Eurasia collision. The origin of E-W maximum compression is probably the same as the secondary stress inferred from earthquakes in Racha region of the Greater Caucasus.

  5. Subsidence and Fault Displacement Along the Long Point Fault Derived from Continuous GPS Observations (2012-2017)

    NASA Astrophysics Data System (ADS)

    Tsibanos, V.; Wang, G.

    2017-12-01

    The Long Point Fault located in Houston Texas is a complex system of normal faults which causes significant damage to urban infrastructure on both private and public property. This case study focuses on the 20-km long fault using high accuracy continuously operating global positioning satellite (GPS) stations to delineate fault movement over five years (2012 - 2017). The Long Point Fault is the longest active fault in the greater Houston area that damages roads, buried pipes, concrete structures and buildings and creates a financial burden for the city of Houston and the residents who live in close vicinity to the fault trace. In order to monitor fault displacement along the surface 11 permanent and continuously operating GPS stations were installed 6 on the hanging wall and 5 on the footwall. This study is an overview of the GPS observations from 2013 to 2017. GPS positions were processed with both relative (double differencing) and absolute Precise Point Positioning (PPP) techniques. The PPP solutions that are referred to IGS08 reference frame were transformed to the Stable Houston Reference Frame (SHRF16). Our results show no considerable horizontal displacements across the fault, but do show uneven vertical displacement attributed to regional subsidence in the range of (5 - 10 mm/yr). This subsidence can be associated to compaction of silty clays in the Chicot and Evangeline aquifers whose water depths are approximately 50m and 80m below the land surface (bls). These levels are below the regional pre-consolidation head that is about 30 to 40m bls. Recent research indicates subsidence will continue to occur until the aquifer levels reach the pre-consolidation head. With further GPS observations both the Long Point Fault and regional land subsidence can be monitored providing important geological data to the Houston community.

  6. Early Tertiary transtension-related deformation and magmatism along the Tintina fault system, Alaska

    USGS Publications Warehouse

    Till, A.B.; Roeske, S.M.; Bradley, D.C.; Friedman, R.; Layer, P.W.

    2007-01-01

    Transtensional deformation was concentrated in a zone adjacent to the Tintina strike-slip fault system in Alaska during the early Tertiary. The deformation occurred along the Victoria Creek fault, the trace of the Tintina system that connects it with the Kaltag fault; together the Tintina and Kaltag fault systems girdle Alaska from east to west. Over an area of ???25 by 70 km between the Victoria Creek and Tozitna faults, bimodal volcanics erupted; lacustrine and fluvial rocks were deposited; plutons were emplaced and deformed; and metamorphic rocks cooled, all at about the same time. Plutonic and volcanic rocks in this zone yield U-Pb zircon ages of ca. 60 Ma; 40Ar/ 39Ar cooling ages from those plutons and adjacent metamorphic rocks are also ca. 60 Ma. Although early Tertiary magmatism occurred over a broad area in central Alaska, meta- morphism and ductile deformation accompanied that magmatism in this one zone only. Within the zone of deformation, pluton aureoles and metamorphic rocks display consistent NE-SW-stretching lineations parallel to the Victoria Creek fault, suggesting that deformation processes involved subhorizontal elongation of the package. The most deeply buried metamorphic rocks, kyanite-bearing metapelites, occur as lenses adjacent to the fault, which cuts the crust to the Moho (Beaudoin et al., 1997). Geochronologic data and field relationships suggest that the amount of early Tertiary exhumation was greatest adjacent to the Victoria Creek fault. The early Tertiary crustal-scale events that may have operated to produce transtension in this area are (1) increased heat flux and related bimodal within-plate magmatism, (2) movement on a releasing stepover within the Tintina fault system or on a regional scale involving both the Tintina and the Kobuk fault systems, and (3) oroclinal bending of the Tintina-Kaltag fault system with counterclockwise rotation of western Alaska. ?? 2007 The Geological Society of America. All rights reserved.

  7. Mapping fault-controlled volatile migration in equatorial layered deposits on Mars

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2006-12-01

    Research in terrestrial settings shows that clastic sedimentary deposits are productive host rocks for underground volatile reservoirs because of their high porosity and permeability. Within such reservoirs, faults play an important role in controlling pathways for volatile migration, because faults act as either barriers or conduits. Therefore faults are important volatile concentrators, which means that evidence of geochemical, hydrologic and biologic processes are commonly concentrated at these locations. Accordingly, faulted sedimentary deposits on Mars are plausible areas to search for evidence of past volatile activity and associated processes. Indeed, evidence for volatile migration through layered sedimentary deposits on Mars has been documented in detail by the Opportunity rover in Meridiani Planum. Thus evidence for past volatile- driven processes that could have occurred within the protective depths of these deposits may now exposed at the surface and more likely found around faults. Owing to the extensive distribution of layered deposits on Mars, a major challenge in looking for and investigating evidence of past volatile processes in these deposits is identifying and prioritizing study areas. Toward this end, this presentation details initial results of a multiyear project to develop quantitative maps of latent pathways for fault-controlled volatile migration through the layered sedimentary deposits on Mars. Available MOC and THEMIS imagery are used to map fault traces within equatorial layered deposits, with an emphasis on proposed regions for MSL landing sites. These fault maps define regions of interest for stereo imaging by HiRISE and identify areas to search for existing MOC stereo coverage. Stereo coverage of identified areas of interest allows for the construction of digital elevation models and ultimately extraction of fault plane and displacement vector orientations. These fault and displacement data will be fed through numerical modeling techniques that are developed for exploring terrestrial geologic reservoirs. This will yield maps of latent pathways for volatile migration through the faulted layered deposits and provide insight into the geologic history of volatiles on Mars.

  8. Latest Rate, Extent, and Temporal Evolution of Growth Faulting over Greater Houston Region Revealed by Multi- Band InSAR Time-Series Analysis

    NASA Astrophysics Data System (ADS)

    Qu, F.; Lu, Z.; Kim, J. W.

    2017-12-01

    Growth faults are common and continue to evolve throughout the unconsolidated sediments of Greater Houston (GH) region in Texas. Presence of faults can induce localized surface displacements, aggravate localized subsidence, and discontinue the integrity of ground water flow. Property damages due to fault creep have become more evident during the past few years over the GH area, portraying the necessity of further study of these faults. Interferometric synthetic aperture radar (InSAR) has been proven to be effective in mapping creep along and/or across faults. However, extracting a short wavelength, as well as small amplitude of the creep signal (about 10-20 mm/year) from long time span interferograms is extremely difficult, especially in agricultural or vegetated areas. This paper aims to map and monitor the latest rate, extent, and temporal evolution of faulting at a highest spatial density over GH region using an improved Multi-temporal InSAR (MTI) technique. The method, with maximized usable signal and correlation, has the ability to identify and monitor the active faults to provide an accurate and elaborate image of the faults. In this study, two neighboring ALOS tracks and Sentinel-1A datasets are used. Many zones of steep phase gradients and/or discontinuities have been recognized from the long term velocity maps by both ALOS (2007-2011) and Sentinei-1A (2015-2017) imagery. Not only those previously known faults position but also the new fault traces that have not been mapped by other techniques are imaged by our MTI technique. Fault damage and visible cracking of ground were evident at most locations through our field survey. The discovery of new fault activation, or faults moved from earlier locations is a part of the Big Barn Fault and Conroe fault system, trending from southwest to northeast between Hockley and Conroe. The location of area of subsidence over GH is also shrinking and migrating toward the northeast (Montgomery County) after 2000. The continuous mining of ground water from the Jasper aquifer formed a new water-level decline cones over Montgomery County, exactly reflects the intensity of new fault activity. The discovery of new fault activation, or faults moved from earlier locations appear to be related to excessive water exploitation from Montgomery County aquifers.

  9. Seismic valve as the main mechanism for sedimentary fluid entrapment within extensional basin: example of the Lodève Permian Basin (Hérault, South of France).

    NASA Astrophysics Data System (ADS)

    Laurent, D.; Lopez, M.; Chauvet, A.; Imbert, P.; Sauvage, A. C.; Martine, B.; Thomas, M.

    2014-12-01

    During syn-sedimentary burial in basin, interstitial fluids initially trapped within the sedimentary pile are easily moving under overpressure gradient. Indeed, they have a significant role on deformation during basin evolution, particularly on fault reactivation. The Lodève Permian Basin (Hérault, France) is an exhumed half graben with exceptional outcrop conditions providing access to barite-sulfides mineralized systems and hydrocarbon trapped into rollover faults of the basin. Architectural studies shows a cyclic infilling of fault zone and associated S0-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfide isotope geothermometer: (i) the first stage is characterized by an implosion breccia cemented by silicifications and barite during abrupt pressure drop within fault zone; (ii) the second stage consists in succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action, with reactivation planes formed by sulphide-rich micro-shearing structures showing normal movement; and (iii) the third stage is associated to the formation of dextral strike-slip pull-apart infilling by large barite crystals and contemporary hydrocarbons under suprahydrostatic pressure values. Microthermometry, sulfide and strontium isotopic compositions of the barite-sulfides veins indicate that all stages were formed by mixing between deep basinal fluids at 230°C, derived from cinerite dewatering, and formation water from overlying sedimentary cover channelized trough fault planes. We conclude to a polyphase history of fluid trapping during Permian synrift formation of the basin: (i) a first event, associated with the dextral strike-slip motion on faults, leads to a first sealing of the fault zone; (ii) periodic reactivations of fault planes and bedding-controlled shearing form the main mineralized ore bodies by the single action of fluid overpressure fluctuations, undergoing changes in local stress distribution and (iii) a final tectonic activation of fault linked to last basinal fluid and hydrocarbon migration during which shear stress restoration on fault plane is faster than fluid pressure build-up.

  10. Use of Fault Displacement Vector to Identify Future Zones of Seismicity: An Example from the Earthquakes of Nepal Himalayas.

    NASA Astrophysics Data System (ADS)

    Naim, F.; Mukherjee, M. K.

    2017-12-01

    Earthquakes occur due to fault slip in the subsurface. They can occur either as interplate or intraplate earthquakes. The region of study is the Nepal Himalayas that defines the boundary of Indian-Eurasian plate and houses the focus of the most devastating earthquakes. The aim of the study was to analyze all the earthquakes that occurred in the Nepal Himalayas upto May 12, 2015 earthquake in order to mark the regions still under stress and vulnerable for future earthquakes. Three different fault systems in the Nepal Himalayas define the tectonic set up of the area. They are: (1) Main Frontal Thrust(MFT), (2) Main Central Thrust(MCT) and (3) Main Boundary Thrust(MBT) that extend from NW to SE. Most of the earthquakes were observed to occur between the MBT and MCT. Since the thrust faults are dipping towards NE, the focus of most of the earthquakes lies on the MBT. The methodology includes estimating the dip of the fault by considering the depths of different earthquake events and their corresponding distance from the MBT. In order to carry out stress analysis on the fault, the beach ball diagrams associated with the different earthquakes were plotted on a map. Earthquakes in the NW and central region of the fault zone were associated with reverse fault slip while that on the South-Eastern part were associated with a strike slip component. The direction of net slip on the fault associated with the different earthquakes was known and from this a 3D slip diagram of the fault was constructed. The regions vulnerable for future earthquakes in the Nepal Himalaya were demarcated on the 3D slip diagram of the fault. Such zones were marked owing to the fact that the slips due to earthquakes cause the adjoining areas to come under immense stress and this stress is directly proportional to the amount of slip occuring on the fault. These vulnerable zones were in turn projected on the map to show their position and are predicted to contain the epicenter of the future earthquakes.

  11. Tectonic aspects of the guatemala earthquake of 4 february 1976.

    PubMed

    Plafker, G

    1976-09-24

    The locations of surface ruptures and the main shock epicenter indicate that the disastrous Guatemala earthquake of 4 February 1976 was tectonic in origin and generated mainly by slip on the Motagua fault, which has an arcuate roughly east-west trend across central Guatemala. Fault breakage was observed for 230 km. Displacement is predominantly horizontal and sinistral with a maximum measured offset of 340 cm and an average of about 100 cm. Secondary fault breaks trending roughly north-northeast to south-southwest have been found in a zone about 20 km long and 8 km wide extending from the western suburbs of Guatemala City to near Mixco, and similar faults with more subtle surface expression probably occur elsewhere in the Guatemalan Highlands. Displacements on the secondary faults are predominantly extensional and dip-slip, with as much as 15 cm vertical offset on a single fracture. The primary fault that broke during the earthquake involved roughly 10 percent of the length of the great transform fault system that defines the boundary between the Caribbean and North American plates. The observed sinistral displacement is striking confirmation of deductions regarding the late Cenozoic relative motion between these two crustal plates that were based largely on indirect geologic and geophysical evidence. The earthquake-related secondary faulting, together with the complex pattern of geologically young normal faults that occur in the Guatemalan Highlands and elsewhere in western Central America, suggest that the eastern wedge-shaped part of the Caribbean plate, roughly between the Motagua fault system and the volcanic arc, is being pulled apart in tension and left behind as the main mass of the plate moves relatively eastward. Because of their proximity to areas of high population density, shallow-focus earthquakes that originate on the Motagua fault system, on the system of predominantly extensional faults within the western part of the Caribbean plate, and in association with volcanism may pose a more serious seismic hazard than the more numerous (but generally more distant) earthquakes that are generated in the eastward-dipping subduction zone beneath Middle America.

  12. Cap rock efficiency of geothermal systems in fold-and-thrust belts: Evidence from paleo-thermal and structural analyses in Rosario de La Frontera geothermal area (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Maffucci, R.; Corrado, S.; Aldega, L.; Bigi, S.; Chiodi, A.; Di Paolo, L.; Giordano, G.; Invernizzi, C.

    2016-12-01

    Cap rock characterization of geothermal systems is often neglected despite fracturing may reduce its efficiency and favours fluid migration. We investigated the siliciclastic cap rock of Rosario de La Frontera geothermal system (NW Argentina) in order to assess its quality as a function of fracture patterns and related thermal alteration. Paleothermal investigations (XRD on fine-grained fraction of sediments, organic matter optical analysis and fluid inclusions on veins) and 1D thermal modelling allowed us to distinguish the thermal fingerprint associated to sedimentary burial from that related to fluid migration. The geothermal system is hosted in a Neogene N-S anticline dissected by high angle NNW- and ENE-striking faults. Its cap rock can be grouped into two quality categories: rocks acting as good insulators, deformed by NNW-SSE and E-W shear fractures, NNE-SSW gypsum- and N-S-striking calcite-filled veins that developed during the initial stage of anticline growth. Maximum paleo-temperatures (< 60 °C) were experienced during deposition to folding phases. rocks acting as bad insulators, deformed by NNW-SSE fault planes and NNW- and WNW-striking sets of fractures associated to late transpressive kinematics. Maximum paleo-temperatures higher than about 115 °C are linked to fluid migration from the reservoir to surface (with a reservoir top at maximum depths of 2.5 km) along fault damage zones. This multi-method approach turned out to be particularly useful to trace the main pathways of hot fluids and can be applied in blind geothermal systems where either subsurface data are scarce or surface thermal anomalies are lacking.

  13. Tectonic fabric of northern North Fiji and Lau basins from GLORIA sidescan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiffin, D.L.; Clarke, J.E.H.; Johnson, D.

    1990-06-01

    GLORIA mosaics, Seabeam, and seismic data over parts of the backarc New Hebrides arc, northwest and central North Fiji basin, Fiji Fracture Zone north of Fiji, Peggy Ridge, northeast Lau basin, northern Tonga arc, northwestern Tonga Trench, and Western Samoa reveal a complex tectonic framework for the region. Two triple junctions and several rifts are clearly delineated by outcrops and ridges of neovolcanic rocks. Backarc troughs in the New Hebrides Arc are commonly floored by volcanic rocks with little sediment cover. The locus of major faults are well defined in places by volcanic ridges and scarps. On the Fiji Fracturemore » Zone north of Fiji, scarps indicate the trace, but west of Fiji it disappears for about 100 km, becoming well pronounced again near the central North Fiji basin triple junction. At Peggy Ridge a very extensive area of sheet-like volcanics indicates activity extends northeast from Peggy Ridge toward the western extension of the Tonga Trench passing west of Niuafo'ou Island, possibly marking a fault-to-trench transition. East of Niuafo'ou Island, backarc spreading close to the Tofua Arc is seen at a nascent triple junction, its northern arm approaching close to the western Tonga Trench. Long linear fault scarps in the trench result from bending of the crust. Only a few areas, including the seafloor north of Samoa, are mainly sediment covered. Two known hydrothermal deposits near the two triple junctions have been imaged, but other mapped areas of extensive neo-volcanics in the vicinity of propagators and pull-apart basins suggest sites for further investigation. The prevalence of ridge propagators and extensional basins suggests their significant role in the development of the region.« less

  14. Timing of terrane accretion in eastern and east-central Maine

    NASA Astrophysics Data System (ADS)

    Ludman, Allan

    1986-05-01

    The Norumbega fault zone is often cited as a post-Acadian suture between exotic blocks, even though stratigraphic, structural, and metamorphic data indicate that there is little offset of the Silurian-Devonian strata that the zone cuts in eastern Maine. Similarly, the Kingman fault zone has been shown by gravity and geochemical studies to separate distinct crustal blocks, whereas mapping shows that it lies entirely within a Silurian turbidite package. These conflicts are resolved if the two fault zones represent boundaries between Ordovician or older crustal blocks that had accreted to form a composite terrane prior to deposition of the cover sequences. The faults now mapped within these younger rocks formed by reactivation of the pre-Silurian boundaries during late Acadian time; movement continued until the late Carboniferous. Most of the accretionary history of Maine had thus ended before the Silurian. A complex composite terrane may have formed during Cambrian-Ordovician time that (1) interacted with cratonic North America during the Taconian orogeny and (2) became the “basement” upon which the Silurian and Lower Devonian strata of eastern Maine were deposited.

  15. Recent Glaciers on Mars: Description and Solar System Perspective

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2001-11-01

    Active or recently active ice deposits occur on Mars at middle and high latitudes in fretted terrain, around massifs in highlands east of Hellas and in southern Argyre, on crater walls in the highlands, and in the south polar cap. Most mid-latitude icy flows are debris covered, apparently stagnant, and eroded by partial sublimation. Others are scarred by fresh crevasses and gullies, thus suggesting recent deformation and surface melting. Erosional features include a variety of small-scale relief elements due mainly to sublimation, but sublimation has not obliterated evidence of flow. Similar to terrestrial glaciers in many respects, there are also notable differences, especially in the nature of accumulation. Deformation of the south polar cap is indicated by folding, boudinage, strike-slip or normal faulting, forebulge tectonics near scarps, and thrust faulting. The north polar cap locally also exhibits flow indicators. The south cap's glacial features suggest interbedding of two or more types of ice of differing volatility and rheology, plus a locally deforming surficial dry-ice cap overlying the other materials. Major ice types may include two (or more) of the following, in order of highest to lowest mechanical strength: CO2 clathrate hydrate, water ice, water ice containing traces of liquid-soluble salts, water ice containing traces of solid-soluble acids, and CO2 ice; dust is another variable. Within our Solar System, the closest geomorphic analog to icy Martian flows are Earth's alpine glaciers, rock glaciers, and continental ice sheets, though key differences are apparent. If made dominantly of water ice, important and recent climatic shifts seem to be implicated. Ice-flow landforms also occur on some outer planet satellites; among them are Io, Europa, Enceladus, Ariel, and Triton. Volatile flows on these bodies may involve diverse materials, such as sulfur, water ice, hydrated salts, ammonia-water ices, and nitrogen ice. Most of these would not be suitable materials on Mars. This work was funded by grants from the NASA Mars Data Analysis Program.

  16. The SPARDIG project - Transforming analogue sparker records from the Norwegian continental shelf into SEG-Y format, first results

    NASA Astrophysics Data System (ADS)

    Schaming, Marc; Rise, Leif; Chand, Shyam; Reidulv, Bøe; Terje Osmundsen, Per; Redfield, Tim

    2017-04-01

    A large number of sparker lines were acquired on the Norwegian continental shelf during the years 1970-1982, by IKU (Sintef Petroleum Research). The responsibility of the analogue seismic database was transferred to NGU in 1998; this included storage of the physical data (original paper rolls and half-scale film copies) and the digital navigation database. The data (from 60°N to 71°30N) were in the early eighties subdivided in 6 data packages, and offered for sale to oil companies as half scale folded paper copies (25 cm width). Navigation applied was mainly Decca Main Chain. The 2014-2016 SPARDIG project (Chand et al., 2016) was supported by NGU, AkerBP (Det Norske), Lundin Norway and the Seabed Project. In the project, IPGS has transformed 374 rolls of analogue sparker lines in 17 different surveys into SEG-Y format. The total length of converted survey lines is 31 261 kilometers. Rolls were scanned at 600 dpi and converted into SEG-Y using the SeisTrans (Caldera software) application (Miles et al., 2007). SeisTrans uses interactive, iterative and repeatable steps in a dedicated graphics window. A first step allows definition of axes and scales, then record time lines (horizontal TWT times and navigation time lines down the record) are picked and removed, and traces are defined. At this step, control tools are available to ensure the quality of the traces. After that, navigation information extracted and interpolated from excel files are added to trace headers. A continuous QC process allows production of SEG-Y files directly readable by interpretation software. The SEG-Y data will be delivered to the Norwegian Discos National Repository (https://portal.diskos.cgg.com/whereoil-data/) but access will be restricted to participants until 1st April 2019. IKU sparker lines have higher resolution than conventional 2D lines, but the penetration is limited. The data sets are complementary to each other. In 2D seismic lines, it is often difficult to delineate units in the upper part of the records. Some lines show no details of the Quaternary stratigraphy, especially when the Quaternary overburden is thin, and in that case the sparker lines are of inestimable value. Off mid Norway, the SEG-Y transformed sparker lines were interpreted together with 2D seismic lines, and an updated geological map was made for the coastal area. We were able to classify the basement-sediment contact as fault related or stratigraphic. Several new faults were mapped based on detailed bathymetry and seismic data. Exposures of weathered basement at the seafloor and juxtaposition of basement and sediments across inherited faults were observed for several kilometers along strike. These relationships provide important links to the deeper structure and stratigraphy of the Mid-Norwegian margin. The SPARDIG project secured a national treasure for future investigations. This type of high-resolution regional grid will probably never be collected again in Norway. References Chand et al. 2016 - Transforming analogue sparker records from the Norwegian continental shelf into SEG-Y format. Technical report, Spardig project, 2016.038, http://www.ngu.no/upload/Publikasjoner/Rapporter/2016/2016_038.pdf. Miles et al., 2007 - Resurrecting vintage paper seismic records. Mar Geophys Res 28, 319-329, DOI:10.1007/s11001-007-9034-5.

  17. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    USGS Publications Warehouse

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  18. The complex architecture of the 2009 MW 6.1 L'Aquila normal fault system (Central Italy) as imaged by 64,000 high-resolution aftershock locations

    NASA Astrophysics Data System (ADS)

    Valoroso, L.; Chiaraluce, L.; Di Stefano, R.; Piccinini, D.; Schaff, D. P.; Waldhauser, F.

    2011-12-01

    On April 6th 2009, a MW 6.1 normal faulting earthquake struck the axial area of the Abruzzo region in Central Italy. We present high-precision hypocenter locations of an extraordinary dataset composed by 64,000 earthquakes recorded at a very dense seismic network of 60 stations operating for 9 months after the main event. Events span in magnitude (ML) between -0.9 to 5.9, reaching a completeness magnitude of 0.7. The dataset has been processed by integrating an accurate automatic picking procedure together with cross-correlation and double-difference relative location methods. The combined use of these procedures results in earthquake relative location uncertainties in the range of a few meters to tens of meters, comparable/lower than the spatial dimension of the earthquakes themselves). This data set allows us to image the complex inner geometry of individual faults from the kilometre to meter scale. The aftershock distribution illuminates the anatomy of the en-echelon fault system composed of two major faults. The mainshock breaks the entire upper crust from 10 km depth to the surface along a 14-km long normal fault. A second segment, located north of the normal fault and activated by two Mw>5 events, shows a striking listric geometry completely blind. We focus on the analysis of about 300 clusters of co-located events to characterize the mechanical behavior of the different portions of the fault system. The number of events in each cluster ranges from 4 to 24 events and they exhibit strongly correlated seismograms at common stations. They mostly occur where secondary structures join the main fault planes and along unfavorably oriented segments. Moreover, larger clusters nucleate on secondary faults located in the overlapping area between the two main segments, where the rate of earthquake production is very high with a long-lasting seismic decay.

  19. Fracture structures of active Nojima fault, Japan, revealed by borehole televiewer imaging

    NASA Astrophysics Data System (ADS)

    Nishiwaki, T.; Lin, A.

    2017-12-01

    Most large intraplate earthquakes occur as slip on mature active faults, any investigation of the seismic faulting process and assessment of seismic hazards require an understanding of the nature of active fault damage zones as seismogenic source. In this study, we focus on the fracture structures of the Nojima Fault (NF) that triggered the 1995 Kobe Mw 7.2 earthquake using ultrasonic borehole televiewer (BHTV) images from a borehole wall. The borehole used in this study was drilled throughout the NF at 1000 m in depth by a science project of Drilling into Fault Damage Zone(DFDZ) in 2016 (Lin, 2016; Miyawaki et al., 2016). In the depth of <230 m of the borehole, the rocks are composed of weak consolidated sandstone and conglomerate of the Plio-Pleistocene Osaka-Group and mudstone and sandstone of the Miocene Kobe Group. The basement rock in the depth of >230 m consist of pre-Neogene granitic rock. Based on the observations of cores and analysis of the BHTV images, the main fault plane was identified at a depth of 529.3 m with a 15 cm thick fault gouge zone and a damage zone of 100 m wide developed in the both sides of the main fault plane. Analysis of the BHTV images shows that the fractures are concentrated in two groups: N45°E (Group-1), parallel to the general trend of the NF, and another strikes N70°E (Group-2), oblique to the fault with an angle of 20°. It is well known that Riedel shear structures are common within strike-slip fault zones. Previous studies show that the NF is a right-lateral strike-slip fault with a minor thrust component, and that the fault damage zone is characterized by Riedel shear structures dominated by Y shears (main faults), R shears and P foliations (Lin, 2001). We interpret that the fractures of Group (1) correspond to Y Riedel fault shears, and those of Group (2) are R shears. Such Riedel shear structures indicate that the NF is a right-lateral strike-slip fault which is activated under a regional stress field oriented to the direction close to east-west, coincident with that inferred from geophysical observations (Tsukahara et al., 2001), seismic inversion results (Katao, 1997) and geological structures (Lin, 2001).Katao et al., 1997. J. Phys. Earth, 45, 105.Lin, 2016. AGU, Fall Meeting.Lin, 2001. J. Struc. Geo., 23, 1167.Miyawaki and Uchida, 2016. AGU, Fall Meeting.Tsukahara et al., 2001. Isl. Arc, 10, 261.

  20. High-frequency spectral falloff of earthquakes, fractal dimension of complex rupture, b value, and the scaling of strength on faults

    USGS Publications Warehouse

    Frankel, A.

    1991-01-01

    The high-frequency falloff ??-y of earthquake displacement spectra and the b value of aftershock sequences are attributed to the character of spatially varying strength along fault zones. I assume that the high frequency energy of a main shock is produced by a self-similar distribution of subevents, where the number of subevents with radii greater than R is proportional to R-D, D being the fractal dimension. In the model, an earthquake is composed of a hierarchical set of smaller earthquakes. The static stress drop is parameterized to be proportional to R??, and strength is assumed to be proportional to static stress drop. I find that a distribution of subevents with D = 2 and stress drop independent of seismic moment (?? = 0) produces a main shock with an ??-2 falloff, if the subevent areas fill the rupture area of the main shock. By equating subevents to "islands' of high stress of a random, self-similar stress field on a fault, I relate D to the scaling of strength on a fault, such that D = 2 - ??. Thus D = 2 corresponds to constant stress drop scaling (?? = 0) and scale-invariant fault strength. A self-similar model of aftershock rupture zones on a fault is used to determine the relationship between the b value, the size distribution of aftershock rupture zones, and the scaling of strength on a fault. -from Author

  1. The offshore Palos Verdes fault zone near San Pedro, Southern California

    USGS Publications Warehouse

    Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.

    2004-01-01

    High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault zone, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault zone changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault zone includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault zone locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault zone as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault zone is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.

  2. Inherited discontinuities and fault kinematics of a multiphase, non-colinear extensional setting: Subsurface observations from the South Flank of the Golfo San Jorge basin, Patagonia

    NASA Astrophysics Data System (ADS)

    Paredes, José Matildo; Aguiar, Mariana; Ansa, Andrés; Giordano, Sergio; Ledesma, Mario; Tejada, Silvia

    2018-01-01

    We use three-dimensional (3D) seismic reflection data to analyze the structural style, fault kinematics and growth fault mechanisms of non-colinear normal fault systems in the South Flank of the Golfo San Jorge basin, central Patagonia. Pre-existing structural fabrics in the basement of the South Flank show NW-SE and NE-SW oriented faults. They control the location and geometry of wedge-shaped half grabens from the "main synrift phase" infilled with Middle Jurassic volcanic-volcaniclastic rocks and lacustrine units of Late Jurassic to Early Cretaceous age. The NE-striking, basement-involved normal faults resulted in the rapid establishment of fault lenght, followed by gradual increasing in displacement, and minor reactivation during subsequent extensional phases; NW-striking normal faults are characterized by fault segments that propagated laterally during the "main rifting phase", being subsequently reactivated during succesive extensional phases. The Aptian-Campanian Chubut Group is a continental succession up to 4 km thick associated to the "second rifting stage", characterized by propagation and linkage of W-E to WNW-ESE fault segments that increase their lenght and displacement in several extensional phases, recognized by detailed measurement of current throw distribution of selected seismic horizons along fault surfaces. Strain is distributed in an array of sub-parallel normal faults oriented normal to the extension direction. A Late Cretaceous-Paleogene (pre-late Eocene) extensional event is characterized by high-angle, NNW-SSE to NNE-SSW grabens coeval with intraplate alkali basaltic volcanism, evidencing clockwise rotation of the stress field following a ∼W-E extension direction. We demonstrate differences in growth fault mechanisms of non-colinear fault populations, and highlight the importance of follow a systematic approach to the analysis of fault geometry and throw distribution in a fault network, in order to understand temporal-spatial variations in the coeval topography, potential structural traps, and distribution of oil-bearing sandstone reservoirs.

  3. Sedimentary and tectonic evolution of Plio Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy)

    NASA Astrophysics Data System (ADS)

    Cavinato, Gian Paolo; Carusi, Claudio; Dall'Asta, Massimo; Miccadei, Enrico; Piacentini, Tommaso

    2002-04-01

    The Fucino Basin was the greatest lake of the central Italy, which was completely drained at the end of 19th century. The basin is an intramontane half-graben filled by Plio-Quaternary alluvial and lacustrine deposits located in the central part of the Apennines chain, which was formed in Upper Pliocene and in Quaternary time by the extensional tectonic activity. The analysis of the geological surface data allows the definition of several stratigraphic units grouped in Lower Units and Upper Units. The Lower Units (Upper Pliocene) are exposed along the northern and north-eastern basin margins. They consist of open to marginal lacustrine deposits, breccia deposits and fluvial deposits. The Upper Units (Lower Pliocene-Holocene) consist of interbedded marginal lacustrine deposits and fluvial deposits; thick coarse-grained fan-delta deposits are interfingered at the foot of the main relief with fluvial-lacustrine deposits. Most of the thickness of the lacustrine sequences (more than 1000-m thick) is buried below the central part of the Fucino Plain. The basin is bounded by E-W, WSW-ENE and NW-SE fault systems: Velino-Magnola Fault (E-W) and Tremonti-Celano-Aielli Fault (WSW-ENE) and S. Potito-Celano Fault (NW-SE) in the north; the Trasacco Fault, the Pescina-Celano Fault and the Serrone Fault (NW-SE) in the south-east. The geometry and kinematic indicators of these faults indicate normal or oblique movements. The study of industrial seismic profiles across the Fucino Basin gives a clear picture of the subsurface basin geometry; the basin shows triangular-shaped basin-fill geometry, with the maximum deposits thickness toward the main east boundary fault zones that dip south-westward (Serrone Fault, Trasacco Fault, Pescina-Celano Fault). On the basis of geological surface data, borehole stratigraphy and seismic data analysis, it is possible to recognize and to correlate sedimentary and seismic facies. The bottom of the basin is well recognized in the seismic lines available from the good and continuous signals of the top of Meso-Cenozoic carbonate rocks. The shape of sedimentary bodies indicates that the filling of the basin was mainly controlled by normal slip along the NW-SE boundary faults. In fact, the continental deposits are frequently in on-lap contact over the carbonate substratum; several disconformable contacts occurred during the sedimentary evolution of the basin. The main faults (with antithetic and synthetic fault planes) displace the whole sedimentary sequence up to the surface indicating a recent faults' activity (1915 Avezzano earthquake, Ms=7.0). The stratigraphic and tectonic setting of the Fucino Basin and neighboring areas indicates that the extensional tectonic events have had an important role in driving the structural-sedimentary evolution of the Plio-Quaternary deposits. The geometry of the depositional bodies, of the fault planes and their relationships indicate that the Fucino Basin was formed as a half-graben type structure during Plio-Quaternary extensional events. Some internal complexities are probably related to the fold-and-thrust structures of the Apenninic orogeny formed in Messinian time, in this area, and to a different activity timing of the E-W and WSW-ENE fault systems and the NW-SE fault systems. We believe, based on the similarity of the surface characteristics, that the structural setting of the Fucino Basin can be extrapolated to the other great intramontane basins in Central Italy (e.g. Rieti, L'Aquila, Sulmona, Sora, Isernia basins).

  4. Extensional tectonics during the igneous emplacement of the mafic-ultramafic rocks of the Barberton greenstone belt

    NASA Technical Reports Server (NTRS)

    Dewit, M. J.

    1986-01-01

    The simatic rocks (Onverwacht Group) of the Barberton greenstone belt are part of the Jamestown ophiolite complex. This ophiolite, together with its thick sedimentary cover occupies a complex thrust belt. Field studies have identified two types of early faults which are entirely confined to the simatic rocks and are deformed by the later thrusts and associated folds. The first type of fault (F1a) is regional and always occurs in the simatic rocks along and parallel to the lower contacts of the ophiolite-related cherts (Middle Marker and equivalent layers). These fault zones have previously been referred to both as flaser-banded gneisses and as weathering horizons. In general the zones range between 1-30m in thickness. Displacements along these zones are difficult to estimate, but may be in the order of 1-100 km. The structures indicate that the faults formed close to horizontal, during extensional shear and were therefore low angle normal faults. F1a zones overlap in age with the formation of the ophiolite complex. The second type of faults (F1b) are vertical brittle-ductile shear zones, which crosscut the complex at variable angles and cannot always be traced from plutonic to overlying extrusive (pillowed) simatic rocks. F1b zones are also apparently of penecontemporaneous origin with the intrusive-extrusive igneous processs. F1b zones may either represent transform fault-type activity or represent root zones (steepened extensions) of F1a zones. Both fault types indicate extensive deformation in the rocks of the greenstone belt prior to compressional overthrust tectonics.

  5. Evidence for a high slip rate of the Calico fault in the Eastern California Shear Zone

    NASA Astrophysics Data System (ADS)

    Xie, S.; Wetmore, P. H.; Owen, L. A.; Gallant, E.; Dixon, T. H.

    2016-12-01

    Fault slip rates provide important constraint on seismic hazard assessments. Geologic and geodetic estimates of slip rates across the Eastern California Shear Zone (ECSZ) reveal a discrepancy between the two data sets. Most studies attempting to reconcile the discrepancy have focused on off-fault deformation and the technique limitation of short-term geodetic measurements, while there is less concern about the relatively small number of cited geologic slip rates. The Calico fault is central fault in the Mojave Desert portion of the ECSZ, where published geologic slip rates are between 1 and 2 mm/yr. We determine new geologic slip rates of the Calico fault by dating two offset alluvial fans near the town of Newberry Springs, California. Correlation of the offset fans was based on geomorphic and soil development characteristics. Offset magnitudes are based on high-resolution topography and orthoimagery, and by cropping and matching the alluvial fans along the fault trace. Surface displacements of the two offset fans are 80 m and 1120 m. Surface exposure ages of alluvial fan samples are dated using the production of 10Be terrestrial cosmogenic nuclide (TCN). The fan with an 80 m offset produced an age of 40 ka, yielding a slip rate of 2 mm/yr, consistent with previous studies. The fan with displacement of 1120 m produced an age of 290 ka, yielding a slip rate of 4 mm/yr, indicating that the Calico fault likely had a much higher slip rate early and has decreased more recently.

  6. InSAR Evidence for an active shallow thrust fault beneath the city of Spokane Washington, USA

    USGS Publications Warehouse

    Wicks, Charles W.; Weaver, Craig S.; Bodin, Paul; Sherrod, Brian

    2013-01-01

    In 2001, a nearly five month long sequence of shallow, mostly small magnitude earthquakes occurred beneath the city of Spokane, a city with a population of about 200,000, in the state of Washington. During most of the sequence, the earthquakes were not well located because seismic instrumentation was sparse. Despite poor-quality locations, the earthquake hypocenters were likely very shallow, because residents near the city center both heard and felt many of the earthquakes. The combination of poor earthquake locations and a lack of known surface faults with recent movement make assessing the seismic hazards related to the earthquake swarm difficult. However, the potential for destruction from a shallow moderate-sized earthquake is high, for example Christchurch New Zealand in 2011, so assessing the hazard potential of a seismic structure involved in the Spokane earthquake sequence is important. Using interferometric synthetic aperture radar (InSAR) data from the European Space Agency ERS2 and ENVISAT satellites and the Canadian Space Agency RADARSAT-1, satellite we are able to show that slip on a shallow previously unknown thrust fault, which we name the Spokane Fault, is the source of the earthquake sequence. The part of the Spokane Fault that slipped during the 2001 earthquake sequence underlies the north part of the city, and slip on the fault was concentrated between ~0.3 and 2 km depth. Projecting the buried fault plane to the surface gives a possible surface trace for the Spokane Fault that strikes northeast from the city center into north Spokane.

  7. Geometry, slip distribution, and kinematics of surface rupture on the Sakarya fault segment during the 17 August 1999 İzmit, Turkey, earthquake

    USGS Publications Warehouse

    Langridge, R.M.; Stenner, Heidi D.; Fumal, T.E.; Christofferson, S.A.; Rockwell, T.K.; Hartleb, R.D.; Bachhuber, J.; Barka, A.A.

    2002-01-01

    The Mw 7.4 17 August 1999 İzmit earthquake ruptured five major fault segments of the dextral North Anatolian Fault Zone. The 26-km-long, N86°W-trending Sakarya fault segment (SFS) extends from the Sapanca releasing step-over in the west to near the town of Akyazi in the east. The SFS emerges from Lake Sapanca as two distinct fault traces that rejoin to traverse the Adapazari Plain to Akyazi. Offsets were measured across 88 cultural and natural features that cross the fault, such as roads, cornfield rows, rows of trees, walls, rails, field margins, ditches, vehicle ruts, a dike, and ground cracks. The maximum displacement observed for the İzmit earthquake (∼5.1 m) was encountered on this segment. Dextral displacement for the SFS rises from less than 1 m at Lake Sapanca to greater than 5 m near Arifiye, only 3 km away. Average slip decreases uniformly to the east from Arifiye until the fault steps left from Sagir to Kazanci to the N75°W, 6-km-long Akyazi strand, where slip drops to less than 1 m. The Akyazi strand passes eastward into the Akyazi Bend, which consists of a high-angle bend (18°-29°) between the Sakarya and Karadere fault segments, a 6-km gap in surface rupture, and high aftershock energy release. Complex structural geometries exist between the İzmit, Düzce, and 1967 Mudurnu fault segments that have arrested surface ruptures on timescales ranging from 30 sec to 88 days to 32 yr. The largest of these step-overs may have acted as a rupture segmentation boundary in previous earthquake cycles.

  8. Developing a Hayward Fault Greenbelt in Fremont, California

    NASA Astrophysics Data System (ADS)

    Blueford, J. R.

    2007-12-01

    The Math Science Nucleus, an educational non-profit, in cooperation with the City of Fremont and U.S. Geological Survey has concluded that outdoor and indoor exhibits highlighting the Hayward Fault is a spectacular and educational way of illustrating the power of earthquakes. Several projects are emerging that use the Hayward fault to illustrate to the public and school groups that faults mold the landscape upon which they live. One area that is already developed, Tule Ponds at Tyson Lagoon, is owned by Alameda County Flood Control and Conservation District and managed by the Math Science Nucleus. This 17 acre site illustrates two traces of the Hayward fault (active and inactive), whose sediments record over 4000 years of activity. Another project is selecting an area in Fremont that a permanent trench or outside earthquake exhibit can be created that people can see seismic stratigraphic features of the Hayward Fault. This would be part of a 3 mile Earthquake Greenbelt area from Tyson Lagoon to the proposed Irvington BART Station. Informational kiosks or markers and a "yellow brick road" of earthquake facts could allow visitors to take an exciting and educational tour of the Hayward Fault's surface features in Fremont. Visitors would visually see the effects of fault movement and the tours would include preparedness information. As these plans emerge, an indoor permanent exhibits is being developed at the Children's Natural History Museum in Fremont. This exhibit will be a model of the Earthquake Greenbelt. It will also allow people to see a scale model of how the Hayward Fault unearthed the Pleistocene fossil bed (Irvingtonian) as well as created traps for underground aquifers as well as surface sag ponds.

  9. Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data

    USGS Publications Warehouse

    Schmidt, D.A.; Burgmann, R.; Nadeau, R.M.; d'Alessio, M.

    2005-01-01

    We solve for the slip rate distribution on the Hayward fault by performing a least squares inversion,of geodetic and seismic data sets. Our analysis focuses on the northern 60 km of the fault. Interferometric synthetic aperture radar (InSAR) data from 13 independent ERS interferograms are stacked to obtain range change rates from 1992 to 2000. Horizontal surface displacement rates at 141 bench marks are measured using GPS from 1994 to 2003. Surface creep observations and estimates of deep slip rates determined from characteristic repeating earthquake sequences are also incorporated in the inversion. The fault is discretized into 283 triangular dislocation elements that approximate the nonplanar attributes of the fault surface. South of the city of Hayward, a steeply, east dipping fault geometry accommodates the divergence of the surface trace and the microseismicity at depth. The inferred slip rate distribution is consistent with a fault that creeps aseismically at a rate of ???5 mm/yr to a depth of 4-6 km. The interferometric synthetic aperture radar (InSAR) data require an aseismic slip rate that approaches the geologic slip rate on the northernmost fault segment beneath Point Pinole, although the InSAR data might be complicated by a small dip-slip component at this location. A low slip rate patch of <1 mm/yr is inferred beneath San Leandro consistent with the source location of the 1868 earthquake. We calculate that the entire fault is accumulating a slip rate deficit equivalent to a Mw = 6.77 ?? 0.05 per century. However, this estimate of potential coseismic moment represents an upper bound because we do not know how much of the accumulated strain will be released through aseismic processes such as afterslip. Copyright 2005 by the American Geophysical Union.

  10. Active geodynamics of the Caucasus/Caspian region educed from GPS, and seismic Observations

    NASA Astrophysics Data System (ADS)

    Gadirov (Kadirov), Fakhraddin; Floyd, Michael; Reilinger, Robert; Alizadeh, Akif; Guliyev, Ibrahim; Mammadov, Samir; Safarov, Rafig

    2017-04-01

    The geodynamic and earthquake activity in the Caucasus/Caspian region is due to the ongoing collision of the Arabian plate with Eurasia. The Caucasus and Caspian Sea are historically among the most seismically active regions on earth. These earthquakes have caused thousands of deaths and great economic distress. Future earthquakes in the Caucasus and Caspian Sea must be considered and planned for in order to limit their impact on the people, ecology, and infrastructure of the region. Within this plate tectonics context, we examine deformation of the Caucasus region and show that most crustal shortening in the collision zone is accommodated by the Greater Caucasus Fold-and-Thrust Belt (GCFTB) along the southern edge of the Greater Caucasus Mountains. The eastern GCFTB appears to bifurcate west of Baku, with one branch following the accurate geometry of the Greater Caucasus, turning towards the south and traversing the Neftchala Peninsula. A second branch may extend directly into the Caspian Sea south of Baku, likely connecting to the Central Caspian Seismic Zone. We model deformation in terms of a locked thrust fault that coincides in general with the main surface trace of the GCFTB. We consider two end-member models, each of which tests the likelihood of one or other of the branches being the dominant cause of observed deformation. Our models indicate that strain is actively accumulating on the fault along the 200 km segment of the fault west of Baku (approximately between longitudes 47-49°E). Parts of this segment of the fault broke in major earthquakes historically (1191, 1859, 1902) suggesting that significant future earthquakes (M 6-7) are likely on the central and western segment of the fault. We observe a similar deformation pattern across the eastern end of the GCFTB along a profile crossing the Kura Depression and Greater Caucasus Mountains in the vicinity of Baku. Along this eastern segment, a branch of the fault changes from a NW-SE striking thrust to an N-S oriented strike-slip fault. The similar deformation pattern along the eastern and central GCFTB segments raises the possibility that major earthquakes may also occur in eastern Azerbaijan. However, the eastern segment of the GCFTB has no record of large historic earthquakes, and is characterized by thick, highly saturated and over-pressured sediments within the Kura Depression and adjacent Caspian Basin that may inhibit elastic strain accumulation in favour of fault creep, and/or distributed faulting and folding. Thus, while our analyses suggest that large earthquakes are likely in central and western Azerbaijan, it is still uncertain whether significant earthquakes are also likely along the eastern segment, and on which structure. Ongoing and future focused studies of active deformation promise to shed further light on the tectonics and earthquake hazards in this highly populated and developed part of Azerbaijan.

  11. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    NASA Technical Reports Server (NTRS)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  12. Holocene surface-rupturing earthquakes along the Yadong Cross Structure (Himalaya)

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Roth, T.; Jean-Francois, R.; Cattin, R.

    2017-12-01

    The Himalayan Arc accommodates 2 cm/yr of shortening from the India-Eurasia collision, mostly along the Main Himalayan Thust. Perpendicularly to the main structures, regional cross structures formed by en échelon grabens and half-grabens mark Quaternary extension from central Tibet to the Himalayas. The Yadong-Gulu Rift system is the most striking one with a total length of 500 km. Its southernmost segment -the 100-km-long Yadong half-graben- entrenches through the Himalayas and forms a 500-to-1500-m-deep asymmetric basin. The average basin surface elevation of 4500 m contrasts with high reliefs of the Jomolhari range that reach 7326 m. They are separated by the N15 Yadong normal fault (also called Jomolhari Fault System, JFS) that forms spectacular triangular facets and affects glacial landforms. Though observed as early as the 1980s, offset moraines were never studied in detail in terms of measured displacement or age determination. Recent efforts from paleoclimate studies yielded a high-resolution framework to identify the various stages of Holocene glacial advances and associated moraine formation. These landforms display specific geomorphometric features recognized regionally (ELA, rugosity, crest freshness) that allow correlating across the various glacial valleys within the Yadong Rift and across similar settings in western Bhutan and eastern Nepal. This serves as a robust basis to place our moraine sequence within the Holocene paleoclimatic record and propose formation ages. By combining satellite images from Sentinel-2 (10 m, visible and NIR), Pléiades (0.5 m, visible) and a Pléiades-derived tri-stereo photogrammetric DEM (1 m), we map the fault trace and affected landforms in details and extract topographic profiles to measure vertical offsets. Paleoclimatic age constraints yield age-vs-displacement measurements along the whole 100-km-long JFS and define a chronology of Holocene deformation events. Within the limits of our observations, we conclude that the last surface-rupturing earthquake likely occurred between 3 and 8 ka BP and produced an average surface displacement of 2 m. According to scaling relationships, the associated earthquake would have reached Mw 7.2. In addition, cumulative deformation suggests an average vertical slip rate of 1 mm/yr for the Holocene.

  13. Magnetic behaviors of cataclasites within Wenchuan earthquake fault zone in heating experiments

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Li, H.; Sun, Z.; Chou, Y. M.; Cao, Y., Jr.; Huan, W.; Ye, X.; He, X.

    2017-12-01

    Previous rock magnetism of fault rocks were used to trace the frictional heating temperature, however, few studies are focus on different temperatures effect of rock magnetic properties. To investigate rock magnetic response to different temperature, we conducted heating experiments on cataclasites from the Wenchuan earthquake Fault Scientific Drilling borehole 2 (WFSD-2) cores. Samples of cataclasites were obtained using an electric drill with a 1 cm-diameter drill pipe from 580.65 m-depth. Experiments were performed by a Thermal-optical measurement system under argon atmosphere and elevated temperatures. Both microstructural observations and powder X-ray diffraction analyses show that feldspar and quartz start to melt at 1100 ° and 1300 ° respectively. Magnetic susceptibility values of samples after heating are higher than that before heating. Samples after heating at 700 and 1750 ° have the highest values of magnetic susceptibility. Rock magnetic measurements show that the main ferromagnetic minerals within samples heated below 1100 ° (400, 700, 900 and 1100 °) are magnetite, which is new-formed by transformation of paramagnetic minerals. The χferri results show that the quantity of magnetite is bigger at sample heated by 700° experiment than by 400, 900 and 1100° experiments. Based on the FORC diagrams, we consider that magnetite grains are getting finer from 400 to 900°, and growing coarser when heated from 900 to 1100 °. SEM-EDX results indicate that the pure iron are formed in higher temperature (1300, 1500 and 1750 °), which present as framboids with size <10 μm. Rock magnetic measurements imply pure iron is the main ferromagnetic materials in these heated samples. The amount and size of iron framboids increase with increasing temperature. Therefore, we conclude that the paramagnetic minerals are decomposed into fine magnetite, then to coarse-grained magnetite, finally to pure iron at super high temperature. New-formed magnetite contributes to the higher magnetic susceptibility values of samples when heated at 400, 700, 900 and 1100°, while the neoformed pure iron is responsible to the higher magnetic susceptibility values of samples when heated at 1300, 1500 and 1750°.

  14. A review of recently active faults in Taiwan

    USGS Publications Warehouse

    Bonilla, Manuel G.

    1975-01-01

    Six faults associated with five large earthquakes produced surface displacements ranging from 1 to 3 m in the period 1906 through 1951. Four of the ruptures occurred in the western coastal plain and foothills, and two occurred in the Longitudinal Valley of eastern Taiwan. Maps are included showing the locations and dimensions of the displacements. The published geological literature probably would not lead one to infer the existence of a fault along most of the 1906 rupture, except for descriptions of the rupture itself. Over most of its length the 1935 rupture on the Chihhu fault is parallel to but more than 0.5 km from nearby faults shown on geologic maps published in 1969 and 1971; only about 1.5 km of its 15 km length coincides with a mapped fault. The coastal plain part of the Tuntzuchio fault which ruptured in 1935 is apparently not revealed by landforms, and only suggested by other data. Part of the 1946 Hsinhua faulting coincides with a fault identified in the subsurface by seismic work but surface indications of the fault are obscure. The 1951 Meilun faulting occurred along a conspicuous pre-1951 scarp and the 1951 Yuli faulting occurred near or in line with pre-1951 scarps. More than 40 faults which, according to the published literature, have had Pleistocene or later movement are shown on a small-scale map. Most of these faults are in the densely-populated western part of Taiwan. The map and text calls attention to faults that may be active and therefore may be significant in planning important structures. Equivocal evidence suggestive of fault creep was found on the Yuli fault and the Hsinhua fault. Fault creep was not found at several places examined along the 1906 fault trace. Tectonic uplift has occurred in Taiwan in the last 10,000 years and application of eustatic sea level curves to published radiocarbon dates shows that the minimum rate of uplift is considerably different in different parts of the island. Incomplete data indicate that the rate is high near Hualien, where an uplift of at least 0.6 m and probably more than 1 m occurred in the 1951 earthquake, and near and south of the 1946 faulting. Sudden uplifts can have serious consequences for installations near the shore. Investigation of this process, study of recently active faults, and continuing study of seismicity are necessary parts of a practical earthquake-hazard reduction program.

  15. Syn-extensional emplacement of the 1. 42 Ga Sandia Granite, N. M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlstrom, K.E.; Kirby, E.; Andronicos, C.

    1993-02-01

    The 1.42 Ga Sandia pluton is one of a suite of Middle Proterozoic granitoid intrusions exposed in northern New Mexico. It crops out over 420 km[sup 2] in the Sandia Mountains, just east of Albuquerque. Recent structural work indicates that the pluton was emplaced syntectonically with respect to a transtensional ductile shear zone on its southeastern side. The shear zone is 1-2 km wide, dips 60[degree] NW under the pluton, and is thus inferred to be a deformed base or lower side of the pluton. From NW to SE, a transect across the zone consists of (1) essentially undeformed, locallymore » flow-foliated Sandia pluton (megacrystic monzogranite); (2) mylonitic, augen orthogneiss that is clearly sheared Sandia pluton; its matrix is depleted in quartz and K-feldspar and enriched in biotite relative to the undeformed pluton; (3) Cibola granite - a 1 km wide zone of fine to coarse grained, equigranular, leucocratic granite; (4) the Tijeras Fault - a Phanerozoic brittle fault; (5) the Tijeras Greenstone - unsheared amphibolite and interlayered pelitic schist and quartzite. Field and microstructural relationships indicate that pluton crystallization was synchronous with shear zone movements. Shear zone movement is interpreted to have punctuated segregation of evolved melts during fractional crystallization of the magma. Geochemical data show linear trends in major and trace elements, with compositional gaps between the main pluton and leucocratic phases. Strain studies suggest that the biotite-rich mylonitic augen orthogneiss records significant volume loss in the matrix. Melts presumably were drawn down pressure gradients into the active shear zone after the main unit was 50--70% crystallized. Further work is required to constrain whether extension was related to regional deformation or only to pluton emplacement.« less

  16. Geochemistry of mineral waters and associated gases of the Sakhalin Island (Far East of Russia)

    NASA Astrophysics Data System (ADS)

    Chelnokov, George A.; Bragin, Ivan V.; Kharitonova, Natalia A.

    2018-04-01

    Isotopic and chemical data on the mineral water, mud volcanoes fluid and associated gases from the biggest Russian island Sakhalin, together with previous stable isotope data (d18O, dD, 13C), allow elucidation of their origin and general evolution. The water fluid circulation is mainly related to marine environment inducing three distinct types: Na-HCO3-Cl alkali carbonate groundwaters, Na-Cl-HCO3 highly evolved saline and Na-Cl mature groundwaters, indicating different evolution. Chemical evolution of groundwater on Sakhalin Island demonstrated cation exchange and salinization as dominant evolutionary pathways. Isotopic composition of groundwaters varies from meteoric to metamorphic waters. These metamorphic waters consist of water hydration from the clay and seawater are traced in fluids of Yuzhno-Sakhalin mud volcano despite modification by mixing with meteoric waters and water-rock interaction processes. Fault systems that define the areas of highly mineralized water circulation appear to play a major role in the CO2 migration to the surface and CH4 generation. The δ13C(CO2) values have pointed that gas phase in high-pCO2 waters mostly consists of mantle-derived CO2. The carbon isotope signature of methane δ13C(CH4) and δD(CH4) indicates its distinct origin which is specified by tectonics. Methane manifestation in the south of the Sakhalin Island is mainly related to thermogenic reservoirs as they are more often dislocate by tectonics, and crossed by active and permeable faults. The sources of biogenous methane in the north of Sakhalin Island is related to younger and shallower reservoirs, and less affected by tectonic processes. The determinations of 222Rn have allowed observing that maximal radon flux is associated with high pCO2 waters.

  17. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    USGS Publications Warehouse

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  18. Forensic Luminol Blood Test for Preventing Cross-contamination in Dentistry: An Evaluation of a Dental School Clinic.

    PubMed

    Bortoluzzi, Marcelo Carlos; Cadore, Peterson; Gallon, Andrea; Imanishi, Soraia Almeida Watanabe

    2014-10-01

    More than 200 different diseases may be transmitted from exposure to blood in the dental setting. The aim of this study is to identify possible faults in the crosscontamination chain control in a dental school clinic searching for traces of blood in the clinical contact surfaces (CCS) through forensic luminol blood test. Traces of invisible blood where randomly searched in CCS of one dental school clinic. Forty eight surfaces areas in the CCS were tested and the presence of invisible and remnant blood was identified in 28 (58.3%) items. We suggest that the luminol method is suitable for identifying contamination with invisible blood traces and this method may be a useful tool to prevent cross-contamination in the dental care setting.

  19. A Non-linear Geodetic Data Inversion Using ABIC for Slip Distribution on a Fault With an Unknown dip Angle

    NASA Astrophysics Data System (ADS)

    Fukahata, Y.; Wright, T. J.

    2006-12-01

    We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.

  20. Structure of the eastern Seattle fault zone, Washington state: New insights from seismic reflection data

    USGS Publications Warehouse

    Liberty, L.M.; Pratt, T.L.

    2008-01-01

    We identify and characterize the active Seattle fault zone (SFZ) east of Lake Washington with newly acquired seismic reflection data. Our results focus on structures observed in the upper 1 km below the cities of Bellevue, Sammamish, Newcastle, and Fall City, Washington. The SFZ appears as a broad zone of faulting and folding at the southern boundary of the Seattle basin and north edge of the Seattle uplift. We interpret the Seattle fault as a thrust fault that accommodates north-south shortening by forming a fault-propagation fold with a forelimb breakthrough. The blind tip of the main fault forms a synclinal growth fold (deformation front) that extends at least 8 km east of Vasa Park (west side of Lake Sammamish) and defines the south edge of the Seattle basin. South of the deformation front is the forelimb break-through fault, which was exposed in a trench at Vasa Park. The Newcastle Hills anticline, a broad anticline forming the north part of the Seattle uplift east of Lake Washington, is interpreted to lie between the main blind strand of the Seattle fault and a backthrust. Our profiles, on the northern limb of this anticline, consistently image north-dipping strata. A structural model for the SFZ east of Lake Washington is consistent with about 8 km of slip on the upper part of the Seattle fault, but the amount of motion is only loosely constrained.

  1. Regional Characteristics of Stress State of Main Seismic Active Faults in Mid-Northern Part of Sichuan-Yunnan Block

    NASA Astrophysics Data System (ADS)

    Weiwei, W.; Yaling, W.

    2017-12-01

    We restore the seismic source spectrums of 1012 earthquakes(2.0 ≤ ML ≤ 5.0) in the mid-northern part of Sichuan-Yunnan seismic block(26 ° N-33 ° N, 99 ° E-104 ° E),then calculate the source parameters.Based on the regional seismic tectonic background, the distribution of active faults and seismicity, the study area is divided into four statistical units (Z1 Jinshajiang and Litang fault zone, Z2 Xianshuihe fault zone, Z3 Anninghe-Zemuhe fault zone, Z4 Lijiang-Xiaojinhe fault zone). Seismic source stress drop results show the following, (1)The stress at the end of the Jinshajiang fault is low, strong earthquake activity rare.Stress-strain loading deceases gradually from northwest to southeast along Litang fault, the northwest section which is relatively locked is more likely to accumulate strain than southeast section. (2)Stress drop of Z2 is divided by Kangding, the southern section is low and northern section is high. Southern section (Kangding-Shimian) is difficult to accumulate higher strain in the short term, but in northern section (Garzê-Kangding), moderate and strong earthquakes have not filled the gaps of seismic moment release, there is still a high stress accumulation in partial section. (3)High stress-drop events were concentrated on Z3, strain accumulation of this unit is strong, and stress level is the highest, earthquake risk is high. (4)On Z4, stress drop characteristics of different magnitude earthquakes are not the same, which is related to complex tectonic setting, the specific reasons still need to be discussed deeply.The study also show that, (1)Stress drops display a systematic change with different faults and locations, high stress-drop events occurs mostly on the fault intersection area. Faults without locking condition and mainly creep, are mainly characterized by low stress drop. (2)Contrasting to what is commonly thought that "strike-slip faults are not easy to accumulate stress ", Z2 and Z3 all exhibit high stress levels, which may be due to that the magnitude and intensity of medium-strong earthquakes are not enough to release the accumulated energy. On the other hand, when the tectonic unit blocking fault movement and its contribution to accumulation of stress play a key role, the earthquake of same magnitude will release higher stress drop.

  2. Evolving transpressional strain fields along the San Andreas fault in southern California: implications for fault branching, fault dip segmentation and strain partitioning

    NASA Astrophysics Data System (ADS)

    Bergh, Steffen; Sylvester, Arthur; Damte, Alula; Indrevær, Kjetil

    2014-05-01

    The San Andreas fault in southern California records only few large-magnitude earthquakes in historic time, and the recent activity is confined primarily on irregular and discontinuous strike-slip and thrust fault strands at shallow depths of ~5-20 km. Despite this fact, slip along the San Andreas fault is calculated to c. 35 mm/yr based on c.160 km total right lateral displacement for the southern segment of the fault in the last c. 8 Ma. Field observations also reveal complex fault strands and multiple events of deformation. The presently diffuse high-magnitude crustal movements may be explained by the deformation being largely distributed along more gently dipping reverse faults in fold-thrust belts, in contrast to regions to the north where deformation is less partitioned and localized to narrow strike-slip fault zones. In the Mecca Hills of the Salton trough transpressional deformation of an uplifted segment of the San Andreas fault in the last ca. 4.0 My is expressed by very complex fault-oblique and fault-parallel (en echelon) folding, and zones of uplift (fold-thrust belts), basement-involved reverse and strike-slip faults and accompanying multiple and pervasive cataclasis and conjugate fracturing of Miocene to Pleistocene sedimentary strata. Our structural analysis of the Mecca Hills addresses the kinematic nature of the San Andreas fault and mechanisms of uplift and strain-stress distribution along bent fault strands. The San Andreas fault and subsidiary faults define a wide spectrum of kinematic styles, from steep localized strike-slip faults, to moderate dipping faults related to oblique en echelon folds, and gently dipping faults distributed in fold-thrust belt domains. Therefore, the San Andreas fault is not a through-going, steep strike-slip crustal structure, which is commonly the basis for crustal modeling and earthquake rupture models. The fault trace was steep initially, but was later multiphase deformed/modified by oblique en echelon folding, renewed strike-slip movements and contractile fold-thrust belt structures. Notably, the strike-slip movements on the San Andreas fault were transformed outward into the surrounding rocks as oblique-reverse faults to link up with the subsidiary Skeleton Canyon fault in the Mecca Hills. Instead of a classic flower structure model for this transpressional uplift, the San Andreas fault strands were segmented into domains that record; (i) early strike-slip motion, (ii) later oblique shortening with distributed deformation (en echelon fold domains), followed by (iii) localized fault-parallel deformation (strike-slip) and (iv) superposed out-of-sequence faulting and fault-normal, partitioned deformation (fold-thrust belt domains). These results contribute well to the question if spatial and temporal fold-fault branching and migration patterns evolving along non-vertical strike-slip fault segments can play a role in the localization of earthquakes along the San Andreas fault.

  3. An architecture for the development of real-time fault diagnosis systems using model-based reasoning

    NASA Technical Reports Server (NTRS)

    Hall, Gardiner A.; Schuetzle, James; Lavallee, David; Gupta, Uday

    1992-01-01

    Presented here is an architecture for implementing real-time telemetry based diagnostic systems using model-based reasoning. First, we describe Paragon, a knowledge acquisition tool for offline entry and validation of physical system models. Paragon provides domain experts with a structured editing capability to capture the physical component's structure, behavior, and causal relationships. We next describe the architecture of the run time diagnostic system. The diagnostic system, written entirely in Ada, uses the behavioral model developed offline by Paragon to simulate expected component states as reflected in the telemetry stream. The diagnostic algorithm traces causal relationships contained within the model to isolate system faults. Since the diagnostic process relies exclusively on the behavioral model and is implemented without the use of heuristic rules, it can be used to isolate unpredicted faults in a wide variety of systems. Finally, we discuss the implementation of a prototype system constructed using this technique for diagnosing faults in a science instrument. The prototype demonstrates the use of model-based reasoning to develop maintainable systems with greater diagnostic capabilities at a lower cost.

  4. Magnitude and Surface Rupture Length of Prehistoric Upper Crustal Earthquakes in the Puget Lowland, Washington State

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.; Styron, R. H.

    2016-12-01

    Paleoseismic studies documented prehistoric earthquakes after the last glaciation ended 15 ka on 13 upper-crustal fault zones in the Cascadia fore arc. These fault zones are a consequence of north-directed fore arc block migration manifesting as a series of bedrock uplifts and intervening structural basins in the southern Salish Sea lowland between Vancouver, B.C. to the north and Olympia, WA to the south, and bounded on the east and west by the Cascade Mountains and Olympic Mountains, respectively. Our dataset uses published information and includes 27 earthquakes tabulated from observations of postglacial deformation at 63 sites. Stratigraphic offsets along faults consist of two types of measurements: 1) vertical separation of strata along faults observed in fault scarp excavations, and 2) estimates from coastal uplift and subsidence. We used probabilistic methods to estimate past rupture magnitudes and surface rupture length (SRL), applying empirical observations from modern earthquakes and point measurements from paleoseismic sites (Biasi and Weldon, 2006). Estimates of paleoearthquake magnitude ranged between M 6.5 and M 7.5. SRL estimates varied between 20 and 90 km. Paleoearthquakes on the Seattle fault zone and Saddle Mountain West fault about 1100 years ago were outliers in our analysis. Large offsets observed for these two earthquakes implies a M 7.8 and 200 km SRL, given the average observed ratio of slip/SRL in modern earthquakes. The actual mapped traces of these faults are less than 200km, implying these earthquakes had an unusually high static stress drop or, in the case of the Seattle fault, splay faults may have accentuated uplift in the hanging wall. Refined calculations incorporating fault area may change these magnitude and SRL estimates. Biasi, G.P., and Weldon, R.J., 2006, Estimating Surface Rupture Length and Magnitude of Paleoearthquakes from Point Measurements of Rupture Displacement: B. Seismol. Soc. Am., 96, 1612-1623.

  5. Seismic Reflectivity of the Crust in the Northern Salton Trough

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Fuis, G. S.; Goldman, M.; Persaud, P.; Ryberg, T.; Langenheim, V. E.; Scheirer, D. S.; Rymer, M. J.; Hole, J. A.; Stock, J. M.; Catchings, R.

    2015-12-01

    The Salton Trough in southern California is a tectonically active pull-apart basin that was formed by migrating step-overs between strike-slip faults, of which the San Andreas Fault (SAF) and the Imperial Fault are the current, northernmost examples. The Salton Seismic Imaging Project (SSIP) was undertaken to improve our knowledge of fault geometry and seismic velocities within the sedimentary basins and underlying crystalline crust around the SAF. Such data are useful as input for modeling scenarios of strong ground shaking in the surrounding high-population areas. We used pre-stack depth migration of line segments from shot gathers in several seismic profiles that were acquired in the northern part of the SSIP study area (Lines 4 - 7). Our migration approach can be considered as an infinite-frequency approximation of the Fresnel volume pre-stack depth migration method. We use line segments instead of the original waveform data. We demonstrate the method using synthetic data and analyze real data from Lines 4 - 7 to illustrate the relationship between distinct phases in the time domain and their resulting image at depth. We show both normal-moveout reflections from sub-horizontal interfaces and reverse-moveout reflections from steep interfaces, such as faults. Migrated images of dipping faults, such as the SAF and the Pinto Mountain Fault, are presented in this way. The SAF is imaged along Line 4, through the Mecca Hills, as a number of steeply dipping fault segments that collectively form a flower structure, above 5 km depth, that sole into a moderately NE-dipping fault below that depth. The individual migrated reflection packages correlate with mapped surface fault traces in the Mecca Hills. A similar geometry is seen on Line 6, from Palm Springs through Yucca Valley, where fault splays sole or project into a moderately dipping SAF below 10-km depth. We also show and discuss the reflectivity pattern of the middle and lower crust for Lines 4 - 7.

  6. Using InSAR time series to identify geologic hazards associated with the Hayward and Calaveras faults along the South Bay Aqueduct

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Burgmann, R.; Hoirup, D. F., Jr.; Hawkins, B.

    2016-12-01

    We evaluated Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data using InSAR time series analysis and documented ground movement along the Calaveras and Hayward faults near the South Bay Aqueduct (SBA). Images from seven different UAVSAR flight lines at 7m x 7m resolution were used for the study. A total of 132 acquisitions (between 12 and 51 per line) were acquired between 2009 and 2015. Each of the seven lines observed only part of the aqueduct, but all segments of the aqueduct were imaged in more than one line with some segments in up to four lines. This provided between one and three imaging geometries for every fault location along the aqueduct. The SBA transports water from the Sacramento-San Joaquin Delta (Delta) to communities east and south of San Francisco Bay through a combination of open canals, tunnels, and pipelines. From its starting point immediately west of the Delta at Bethany Reservoir, the SBA extends westward, crossing multiple faults, including Calaveras and Hayward faults. The aqueduct continues south, largely following the Hayward fault to its terminus east of San Jose. The SBA and associated infrastructure are at risk from landslides and from movement along any of these faults, with the landslides often spatially associated with the faults. We report linear rates of surface movement averaged across the six-year time period, and identify locations experiencing significant movement along the Calaveras and Hayward faults. Aseismic displacement is quantified and mapped for the two faults, including multiple traces of the Calaveras fault extending north and south of where it crosses the SBA. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the California Dept. of Water Resources and with the National Aeronautics and Space Administration.

  7. Aftershock patterns and main shock faulting

    USGS Publications Warehouse

    Mendoza, C.; Hartzell, S.H.

    1988-01-01

    We have compared aftershock patterns following several moderate to large earthquakes with the corresponding distributions of coseismic slip obtained from previous analyses of the recorded strong ground motion and teleseismic waveforms. Our results are consistent with a hypothesis of aftershock occurrence that requires a secondary redistribution of stress following primary failure on the earthquake fault. Aftershocks followng earthquakes examined in this study occur mostly outside of or near the edges of the source areas indicated by the patterns of main shock slip. The spatial distribution of aftershocks reflects either a continuation of slip in the outer regions of the areas of maximum coseismic displacement or the activation of subsidiary faults within the volume surrounding the boundaries of main shock rupture. -from Authors

  8. Research on vibration signal analysis and extraction method of gear local fault

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Wang, D.; Ma, J. F.; Shao, W.

    2018-02-01

    Gear is the main connection parts and power transmission parts in the mechanical equipment. If the fault occurs, it directly affects the running state of the whole machine and even endangers the personal safety. So it has important theoretical significance and practical value to study on the extraction of the gear fault signal and fault diagnosis of the gear. In this paper, the gear local fault as the research object, set up the vibration model of gear fault vibration mechanism, derive the vibration mechanism of the gear local fault and analyzes the similarities and differences of the vibration signal between the gear non fault and the gears local faults. In the MATLAB environment, the wavelet transform algorithm is used to denoise the fault signal. Hilbert transform is used to demodulate the fault vibration signal. The results show that the method can denoise the strong noise mechanical vibration signal and extract the local fault feature information from the fault vibration signal..

  9. Cortical origin of the 2007 Mw = 6.2 Aysén earthquake: surface rupture evidence and paleoseismological assessment

    NASA Astrophysics Data System (ADS)

    Villalobos, A.

    2015-12-01

    On 2007 April 21, a Mw = 6.2 earthquake hit the Aysén region, an area of low seismicity in southern Chile. This event corresponds to the main shock of a sequence of earthquakes that were felt from January 10, with a small earthquake of magnitude ML <3, to February 2008 as recurrent aftershocks. This area is characterized by the presence of the Liquiñe-Ofqui Fault System (LOFS), which corresponds to neotectonic feature and the main seismotectonic southern Chile. In this research we use improved sub-aqueous paleoseismological techniques with geomorphological evidence to constrain the seismogenic source of this event as cortical origin. It is established that the Punta Cola Fault, a dextral-reverse structure which exhibits in seismic profiles a complex fault zone with distinguished positive flower geometry, is responsible for the main shock. This fault caused vertical offsets that reached the seafloor generating fault scarps in a mass movement deposit triggered by the same earthquake. Following this idea, a model of surface rupture is proposed for this structure. Further evidence that this cortical phenomenon is not an isolated event in time is presented by paleoseismological trench-like mappings in sub-bottom profiles.

  10. Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockli, Daniel

    Geothermal plays in extensional and transtensional tectonic environments have long been a major target in the exploration of geothermal resources and the Dixie Valley area has served as a classic natural laboratory for this type of geothermal plays. In recent years, the interactions between normal faults and strike-slip faults, acting either as strain relay zones have attracted significant interest in geothermal exploration as they commonly result in fault-controlled dilational corners with enhanced fracture permeability and thus have the potential to host blind geothermal prospects. Structural ambiguity, complications in fault linkage, etc. often make the selection for geothermal exploration drilling targetsmore » complicated and risky. Though simplistic, the three main ingredients of a viable utility-grade geothermal resource are heat, fluids, and permeability. Our new geological mapping and fault kinematic analysis derived a structural model suggest a two-stage structural evolution with (a) middle Miocene N -S trending normal faults (faults cutting across the modern range), - and tiling Olio-Miocene volcanic and sedimentary sequences (similar in style to East Range and S Stillwater Range). NE-trending range-front normal faulting initiated during the Pliocene and are both truncating N-S trending normal faults and reactivating some former normal faults in a right-lateral fashion. Thus the two main fundamental differences to previous structural models are (1) N-S trending faults are pre-existing middle Miocene normal faults and (2) these faults are reactivated in a right-later fashion (NOT left-lateral) and kinematically linked to the younger NE-trending range-bounding normal faults (Pliocene in age). More importantly, this study provides the first constraints on transient fluid flow through the novel application of apatite (U-Th)/He (AHe) and 4He/ 3He thermochronometry in the geothermally active Dixie Valley area in Nevada.« less

  11. Seismic swarms and diffuse fracturing within Triassic evaporites fed by deep degassing along the low-angle Alto Tiberina normal fault (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Piana Agostinetti, Nicola; Giacomuzzi, Genny; Chiarabba, Claudio

    2017-01-01

    We present high-resolution elastic models and relocated seismicity of a very active segment of the Apennines normal faulting system, computed via transdimensional local earthquake tomography (trans-D LET). Trans-D LET, a fully nonlinear approach to seismic tomography, robustly constrains high-velocity anomalies and inversions of P wave velocity, i.e., decreases of VP with depth, without introducing bias due to, e.g., a starting model, and giving the possibility to investigate the relation between fault structure, seismicity, and fluids. Changes in seismicity rate and recurring seismic swarms are frequent in the Apennines extensional belt. Deep fluids, upwelling from the delaminating continental lithosphere, are thought to be responsible for seismicity clustering in the upper crust and lubrication of normal faults during swarms and large earthquakes. We focus on the tectonic role played by the Alto Tiberina low-angle normal fault (ATF), finding displacements across the fault consistent with long-term accommodation of deformation. Our results show that recent seismic swarms affecting the area occur within a 3 km thick, high VP/VS, densely cracked, and overpressurized evaporitic layer, composed of dolostones and anhydrites. A persistent low VP, low VP/VS volume, present on top of and along the ATF low-angle detachment, traces the location of mantle-derived CO2, the upward flux of which contributes to cracking within the evaporitic layer.

  12. Criteria for Seismic Splay Fault Activation During Subduction Earthquakes

    NASA Astrophysics Data System (ADS)

    Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.

    2008-12-01

    As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying material, so we build on previous work by incorporating the effect of strength contrasts between the basal and splay faults. The relative weakness of the basal fault is often attributed to high pore pressures, which lowers the effective normal stress and brings the basal fault closer to failure. We vary the initial stress state, while maintaining a constant principal stress orientation, to see how the closeness to failure affects the branching behavior for a variety of branch step-up angles.

  13. Sources, Fluxes, and Effects of Fluids in the Alpine Fault Zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Menzies, C. D.; Teagle, D. A. H.; Niedermann, S.; Cox, S.; Craw, D.; Zimmer, M.; Cooper, M. J.; Erzinger, J.

    2015-12-01

    Historic ruptures on some plate boundary faults occur episodically. Fluids play a key role in modifying the chemical and physical properties of fault zones, which may prime them for repeated rupture by the generation of high pore fluid pressures. Modelling of fluid loss rates from fault zones has led to estimates of fluid fluxes required to maintain overpressure (Faulkner and Rutter, 2001), but fluid sources and fluxes, and permeability evolution in fault zones remain poorly constrained. High mountains in orogenic belts can drive meteoric water to the middle crust, and metamorphic water is generated during rock dehydration. Additionally, fluids from the mantle are transported into the crust when fluid pathways are created by tectonism or volcanism. Here we use geochemical tracers to determine fluid flow budgets for meteoric, metamorphic and mantle fluids at a major compressional tectonic plate boundary. The Alpine Fault marks the transpressional Pacific-Australian plate boundary through South Island of New Zealand, it has historically produced large earthquakes (Mw ~8) and is late in its 329±68 year seismic cycle, having last ruptured in 1717. We present strontium isotope ratios of hot springs and hydrothermal minerals that trace fluid flow paths in and around the Alpine Fault to illustrate that the fluid flow regime is restricted by low cross-fault permeability. Fluid-rock interaction limits cross-fault fluid flow by the precipitating clays and calcite that infill pore spaces and fractures in the Alpine Fault alteration zone. In contrast, helium isotopes ratios measured in hot springs near to the fault (0.15-0.81 RA) indicate the fault acts as a conduit for mantle fluids from below. Mantle fluid fluxes are similar to the San Andreas Fault (<1x10-5 m3m-2/yr) and insufficient to promote fault weakening. The metamorphic fluid flux is of similar magnitude to the mantle flux. The dominant fluid throughout the seismogenic zone is meteoric in origin (secondary mineral δDH2O = -45 to -87 ‰), but fluid channelling into the fault zone is required to maintain high pore fluid pressure that would promote fault weakening. Our results show that meteoric waters are primarily responsible for modifying fault zone permeability and for maintaining high pore fluid pressures that may assist episodic earthquake rupture.

  14. Broadband Rupture Process of the 2001 Kunlun Fault (Mw 7.8) Earthquake

    NASA Astrophysics Data System (ADS)

    Antolik, M.; Abercrombie, R.; Ekstrom, G.

    2003-04-01

    We model the source process of the 14 November, 2001 Kunlun fault earthquake using broadband body waves from the Global Digital Seismographic Network (P, SH) and both point-source and distributed slip techniques. The point-source mechanism technique is a non-linear iterative inversion that solves for focal mechanism, moment rate function, depth, and rupture directivity. The P waves reveal a complex rupture process for the first 30 s, with smooth unilateral rupture toward the east along the Kunlun fault accounting for the remainder of the 120 s long rupture. The obtained focal mechanism for the main portion of the rupture is (strike=96o, dip=83o, rake=-8o) which is consistent with both the Harvard CMT solution and observations of the surface rupture. The seismic moment is 5.29×1020 Nm and the average rupture velocity is ˜3.5 km/s. However, the initial portion of the P waves cannot be fit at all with this mechanism. A strong pulse visible in the first 20 s can only be matched with an oblique-slip subevent (MW ˜ 6.8-7.0) involving a substantial normal faulting component, but the nodal planes of this mechanism are not well constrained. The first-motion polarities of the P waves clearly require a strike mechanism with a similar orientation as the Kunlun fault. Field observations of the surface rupture (Xu et al., SRL, 73, No. 6) reveal a small 26 km-long strike-slip rupture at the far western end (90.5o E) with a 45-km long gap and extensional step-over between this rupture and the main Kunlun fault rupture. We hypothesize that the initial fault break occurred on this segment, with release of the normal faulting energy as a continuous rupture through the extensional step, enabling transfer of the slip to the main Kunlun fault. This process is similar to that which occurred during the 2002 Denali fault (MW 7.9) earthquake sequence except that 11 days elapsed between the October 23 (M_W 6.7) foreshock and the initial break of the Denali earthquake along a thrust fault.

  15. Assessment of the geodynamical setting around the main active faults at Aswan area, Egypt

    NASA Astrophysics Data System (ADS)

    Ali, Radwan; Hosny, Ahmed; Kotb, Ahmed; Khalil, Ahmed; Azza, Abed; Rayan, Ali

    2013-04-01

    The proper evaluation of crustal deformations in the Aswan region especially around the main active faults is crucial due to the existence of one major artificial structure: the Aswan High Dam. This construction created one of the major artificial lakes: Lake Nasser. The Aswan area is considered as an active seismic area in Egypt since many recent and historical felted earthquakes occurred such as the impressive earthquake occurred on November 14, 1981 at Kalabsha fault with a local magnitude ML=5.7. Lately, on 26 December 2011, a moderate earthquake with a local magnitude Ml=4.1 occurred at Kalabsha area too. The main target of this study is to evaluate the active geological structures that can potentially affect the Aswan High Dam and that are being monitored in detail. For implementing this objective, two different geophysical tools (magnetic, seismic) in addition to the Global Positioning System (GPS) have been utilized. Detailed land magnetic survey was carried out for the total component of geomagnetic field using two proton magnetometers. The obtained magnetic results reveal that there are three major faults parallel {F1 (Kalabsha), F2 (Seiyal) and F3} affecting the area. The most dominant magnetic trend strikes those faults in the WNW-ESE direction. The seismicity and fault plain solutions of the 26 December 2011 earthquake and its two aftershocks have been investigated. The source mechanisms of those events delineate two nodal plains. The trending ENE-WSW to E-W is consistent with the direction of Kalabsha fault and its extension towards east for the events located over it. The trending NNW-SSE to N-S is consistent with the N-S fault trending. The movement along the ENE-WSW plain is right lateral, but it is left lateral along the NNW-SSE plain. Based on the estimated relative motions using GPS, dextral strike-slip motion at the Kalabsha and Seiyal fault systems is clearly identified by changing in the velocity gradient between south and north stations. However, at the area between Kalabha and Seiyal faults, the movement has been changed in a different direction which is consistent with the other set of faults (N-S).

  16. Incremental Holocene slip rates from the Hope fault at Hossack Station, Marlborough fault zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hatem, A. E.; Dolan, J. F.; Langridge, R.; Zinke, R. W.; McGuire, C. P.; Rhodes, E. J.; Van Dissen, R. J.

    2015-12-01

    The Marlborough fault system, which links the Alpine fault with the Hikurangi subduction zone within the complex Australian-Pacific plate boundary zone, partitions strain between the Wairau, Awatere, Clarence and Hope faults. Previous best estimates of dextral strike-slip along the Hope fault are ≤ ~23 mm/yr± 4 mm/year. Those rates, however, are poorly constrained and could be improved using better age determinations in conjunction with measurements of fault offsets using high-resolution imagery. In this study, we use airborne lidar- and field-based mapping together with the subsurface geometry of offset channels at the Hossack site 12 km ESE of Hanmer Springs to more precisely determine stream offsets that were previously identified by McMorran (1991). Specifically, we measured fault offsets of ~10m, ~75 m, and ~195m. Together with 65 radiocarbon ages on charcoal, peat, and wood and 25 pending post-IR50-IRSL225 luminescence ages from the channel deposits, these offsets yield three different fault slip rates for the early Holocene, the late Holocene, and the past ca. 500-1,000 years. Using the large number of age determinations, we document in detail the timing of initiation and abandonment of each channel, enhancing the geomorphic interpretation at the Hossack site as channels deform over many earthquake cycles. Our preliminary incremental slip rate results from the Hossack site may indicate temporally variable strain release along the Hope fault. This study is part of a broader effort aimed at determining incremental slip rates and paleo-earthquake ages and displacements from all four main Marlborough faults. Collectively, these data will allow us to determine how the four main Marlborough faults have work together during Holocene-late Pleistocene to accommodate plate-boundary deformation in time and space.

  17. Source parameters of the 2016 Menyuan earthquake in the northeastern Tibetan Plateau determined from regional seismic waveforms and InSAR measurements

    NASA Astrophysics Data System (ADS)

    Liu, Yunhua; Zhang, Guohong; Zhang, Yingfeng; Shan, Xinjian

    2018-06-01

    On January 21st, 2016, a Ms 6.4 earthquake hit Menyuan County, Qinghai province, China. The nearest known fault is the Leng Long Ling (LLL) fault which is located approximately 7 km north of the epicenter. This fault has mainly shown sinistral strike-slip movement since the late Quaternary Period. However, the focal mechanism indicates that it is a thrust earthquake, which is different from the well-known strike-slip feature of the LLL fault. In this study, we determined the focal mechanism and primary nodal plane through multi-step inversions in the frequency and time domain by using the broadband regional seismic waveforms recorded by the China Digital Seismic Network (CDSN). Our results show that the rupture duration was short, within 0-2 s after the earthquake, and the rupture expanded upwards along the fault plane. Based on these fault parameters, we then solve for variable slip distribution on the fault plane using the InSAR data. We applied a three-segment fault model to simulate the arc-shaped structure of the northern LLL fault, and obtained a detailed slip distribution on the fault plane. The inversion results show that the maximum slip is 0.43 m, and the average slip angle is 78.8°, with a magnitude of Mw 6.0 and a focal depth of 9.38 km. With the geological structure and the inversion results taken into consideration, it can be suggested that this earthquake was caused by the arc-shaped secondary fault located at the north side of the LLL fault. The secondary fault, together with the LLL fault, forms a normal flower structure. The main LLL fault extends almost vertically into the base rock and the rocks between the two faults form a bulging fault block. Therefore, we infer that this earthquake is the manifestation of a neotectonics movement, in which the bulging fault block is lifted further up under the compresso-shear action caused by the Tibetan Plateau pushing towards the northwest direction.

  18. Rayleigh Wave Phase Velocities in Alaska from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Pepin, K. S.; Li, A.; Yao, Y.

    2016-12-01

    We have analyzed ambient noise data recorded at 136 broadband stations from the USArray Transportable Array and other permanent seismic networks in Alaska and westernmost Canada. Daily cross-correlations are obtained using vertical component seismograms and are stacked to form a single trace for each station pair. Rayleigh wave signals are extracted from the stacked traces and are used to calculate phase velocities in the Alaska region. Preliminary phase velocity maps show similar trends to those from previous studies, but also yield new anomalies given the wider geographical range provided by the Transportable Array. At short periods (6-12s), a high velocity anomaly is observed directly northeast of the Fairweather-Queen Charlotte fault, and a high velocity trend appears in the eastern Yukon terrane between the Denali and Tintina fault, probably reflecting mafic igneous crustal rocks. Significantly slow anomalies are present at the Prince William Sound, Cook Inlet, and the basins in southwestern and central Alaska, indicating sediment effects. The slow anomalies gradually shift to southeastern and south-central Alaska with increasing period (up to 40s), corresponding to the Wrangell volcano belt and the volcano arc near Cook Inlet. A broad high-velocity zone is also observed in central Alaska to the north of the Denali fault at long periods (30-40s). The Yakutat terrane is characterized as a high-velocity anomaly from period 14s to 25s but not imaged at longer periods due to poor resolution.

  19. Coseismic and Postseismic Deformation Following the 2011 Mw 9.0 Tohoku Earthquake and its Mw 7.9 Aftershock: Searching for Fault-localized Relaxation of Coseismic Stress Increments

    NASA Astrophysics Data System (ADS)

    Wang, F.; Bevis, M. G.; Blewitt, G.; Gomez, D.

    2017-12-01

    We study the postseismic transient displacements following the 2011 Mw 9.0 Tohoku earthquake using the Nevada Geodetic Laboratory's daily and 5-minute interval PPP solutions for 1,272 continuous GPS stations in Japan, with particular emphasis on the early transient displacements of these stations. One significant complication is the Mw 7.9 aftershock that occurred just 29.3 minutes after the main shock, since the coseismic (and postseismic) displacements driven by the aftershock are superimposed on the postseismic transients driven by the main shock. We address the question of whether or not the stresses induced by the Mw 9.0 main shock were relaxed by any major faults within Japan. The notion is that significant stress relaxation which is localized on a fault system should be manifested in the spatial pattern of the postseismic transient displacement field in the vicinity of that system. This would provide a basis for distinguishing between faults that engage in stick-slip behavior and those that creep instead. The distinction is important in that it has implications for the seismic risk associated with upper plate faulting. We will make the case that we do detect localized fault creeping in response to the coseismic stress field produced by the Mw 9 event.

  20. Space-time evolution of cataclasis in carbonate fault zones

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco; Grieco, Donato Stefano; Agosta, Fabrizio; Prosser, Giacomo

    2018-05-01

    The present contribution focuses on the micro-mechanisms associated to cataclasis of both calcite- and dolomite-rich fault rocks. This work combines field and laboratory data of carbonate fault cores currently exposed in central and southern Italy. By first deciphering the main fault rock textures, their spatial distribution, crosscutting relationships and multi-scale dimensional properties, the relative timing of Intragranular Extensional Fracturing (IEF), chipping, and localized shear is inferred. IEF was predominant within already fractured carbonates, forming coarse and angular rock fragments, and likely lasted for a longer period within the dolomitic fault rocks. Chipping occurred in both lithologies, and was activated by grain rolling forming minute, sub-rounded survivor grains embedded in a powder-like carbonate matrix. The largest fault zones, which crosscut either limestones or dolostones, were subjected to localized shear and, eventually, to flash temperature increase which caused thermal decomposition of calcite within narrow (cm-thick) slip zones. Results are organized in a synoptic panel including the main dimensional properties of survivor grains. Finally, a conceptual model of the time-dependent evolution of cataclastic deformation in carbonate rocks is proposed.

Top