Zhaohua Dai; Devendra M. Amatya; Ge Sun; Changsheng Li; Carl C. Trettin; Harbin Li
2009-01-01
Since hydrology is one of main factors controlling wetland functions, hydrologic models are useful for evaluating the effects of land use change on we land ecosystems. We evaluated two process-based hydrologic models with...
Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning
2015-04-01
Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.
Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie
2018-04-01
A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.
Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine
Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.
2009-01-01
This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key hydrologic variables within each climate-response region would be analyzed regularly to maintain up-to-date analyses of year-to-year variability, decadal variability, and longer term trends. Finally, one basin in each climate-response region would be identified for process-based hydrologic and ecological studies.
O. Fovet; L. Ruiz; M. Hrachowitz; M. Faucheux; C. Gascuel-Odoux
2015-01-01
While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is...
Eisenbies, Mark H.; Hughes, W. Brian
2000-01-01
Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.
Mark H. Eisenbies; W. Brian Hughes
2000-01-01
Hydrologic processes are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic produvtivity, biodiversity, and biogeochemical cycling....
The relation between periods’ identification and noises in hydrologic series data
NASA Astrophysics Data System (ADS)
Sang, Yan-Fang; Wang, Dong; Wu, Ji-Chun; Zhu, Qing-Ping; Wang, Ling
2009-04-01
SummaryIdentification of dominant periods is a typical and important issue in hydrologic series data analysis, since it is the basis of building effective stochastic models, understanding complex hydrologic processes, etc. However it is still a difficult task due to the influence of many interrelated factors, such as noises in hydrologic series data. In this paper, firstly the great influence of noises on periods' identification has been analyzed. Then, based on two conventional methods of hydrologic series analysis: wavelet analysis (WA) and maximum entropy spectral analysis (MESA), a new method of periods' identification of hydrologic series data, main series spectral analysis (MSSA), has been put forward, whose main idea is to identify periods of the main series on the basis of reducing hydrologic noises. Various methods (include fast Fourier transform (FFT), MESA and MSSA) have been applied to both synthetic series and observed hydrologic series. Results show that conventional methods (FFT and MESA) are not as good as expected due to the great influence of noises. However, this influence is not so strong while using the new method MSSA. In addition, by using the new de-noising method proposed in this paper, which is suitable for both normal noises and skew noises, the results are more reasonable, since noises separated from hydrologic series data generally follow skew probability distributions. In conclusion, based on comprehensive analyses, it can be stated that the proposed method MSSA could improve periods' identification by effectively reducing the influence of hydrologic noises.
Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?
NASA Astrophysics Data System (ADS)
Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.
2006-12-01
The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.
NASA Astrophysics Data System (ADS)
Huang, Pengnian; Li, Zhijia; Chen, Ji; Li, Qiaoling; Yao, Cheng
2016-11-01
To simulate the hydrological processes in semi-arid areas properly is still challenging. This study assesses the impact of different modeling strategies on simulating flood processes in semi-arid catchments. Four classic hydrological models, TOPMODEL, XINANJIANG (XAJ), SAC-SMA and TANK, were selected and applied to three semi-arid catchments in North China. Based on analysis and comparison of the simulation results of these classic models, four new flexible models were constructed and used to further investigate the suitability of various modeling strategies for semi-arid environments. Numerical experiments were also designed to examine the performances of the models. The results show that in semi-arid catchments a suitable model needs to include at least one nonlinear component to simulate the main process of surface runoff generation. If there are more than two nonlinear components in the hydrological model, they should be arranged in parallel, rather than in series. In addition, the results show that the parallel nonlinear components should be combined by multiplication rather than addition. Moreover, this study reveals that the key hydrological process over semi-arid catchments is the infiltration excess surface runoff, a non-linear component.
Han, Zhiwei; Tang, Changyuan; Wu, Pan; Zhang, Ruixue; Zhang, Chipeng
2014-01-01
The investigation of hydrological processes is very important for water resource development in karst basins. In order to understand these processes associated with complex hydrogeochemical evolution, a typical basin was chosen in Houzai, southwest China. The basin was hydrogeologically classified into three zones based on hydrogen and oxygen isotopes as well as the field surveys. Isotopic values were found to be enriched in zone 2 where paddy fields were prevailing with well-developed underground flow systems, and heavier than those in zone 1. Zone 3 was considered as the mixture of zones 1 and 2 with isotopic values falling in the range between the two zones. A conceptual hydrological model was thus proposed to reveal the probable hydrological cycle in the basin. In addition, major processes of long-term chemical weathering in the karstic basin were discussed, and reactions between water and carbonate rocks proved to be the main geochemical processes in karst aquifers.
Perspectives on climate change, mountain hydrology, and water resources in the Oregon Cascades, USA
A.W. Nolin
2012-01-01
From both social and environmental perspectives, water is the main connection between highland and lowland processes in mountain watersheds: Water flows downhill while human impacts flow uphill. For example, in the Oregon Cascades mountain range, geology, vegetation, and climate influence the hydrologic connections within watersheds. Geology determines which watersheds...
Hydrological and pollution processes in mining area of Fenhe River Basin in China.
Yang, Yonggang; Meng, Zhilong; Jiao, Wentao
2018-03-01
The hydrological and pollution processes are an important science problem for aquatic ecosystem. In this study, the samples of river water, reservoir water, shallow groundwater, deep groundwater, and precipitation in mining area are collected and analyzed. δD and δ 18 O are used to identify hydrological process. δ 15 N-NO 3 - and δ 18 O-NO 3 - are used to identify the sources and pollution process of NO 3 - . The results show that the various water bodies in Fenhe River Basin are slightly alkaline water. The ions in the water mainly come from rock weathering. The concentration of SO 4 2- is high due to the impact of coal mining activity. Deep groundwater is significantly less affected by evaporation and human activity, which is recharged by archaic groundwater. There are recharge and discharge between reservoir water, river water, soil water, and shallow groundwater. NO 3 - is the main N species in the study area, and forty-six percent of NO 3 - -N concentrations exceed the drinking water standard of China (NO 3 - -N ≤ 10 mg/L content). Nitrification is the main forming process of NO 3 - . Denitrification is also found in river water of some river branches. The sources of NO 3 - are mainly controlled by land use type along the riverbank. NO 3 - of river water in the upper reaches are come from nitrogen in precipitation and soil organic N. River water in the lower reaches is polluted by a mixture of soil organic N and fertilizers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aubert, Alice H; Thrun, Michael C; Breuer, Lutz; Ultsch, Alfred
2016-08-30
High-frequency, in-situ monitoring provides large environmental datasets. These datasets will likely bring new insights in landscape functioning and process scale understanding. However, tailoring data analysis methods is necessary. Here, we detach our analysis from the usual temporal analysis performed in hydrology to determine if it is possible to infer general rules regarding hydrochemistry from available large datasets. We combined a 2-year in-stream nitrate concentration time series (time resolution of 15 min) with concurrent hydrological, meteorological and soil moisture data. We removed the low-frequency variations through low-pass filtering, which suppressed seasonality. We then analyzed the high-frequency variability component using Pareto Density Estimation, which to our knowledge has not been applied to hydrology. The resulting distribution of nitrate concentrations revealed three normally distributed modes: low, medium and high. Studying the environmental conditions for each mode revealed the main control of nitrate concentration: the saturation state of the riparian zone. We found low nitrate concentrations under conditions of hydrological connectivity and dominant denitrifying biological processes, and we found high nitrate concentrations under hydrological recession conditions and dominant nitrifying biological processes. These results generalize our understanding of hydro-biogeochemical nitrate flux controls and bring useful information to the development of nitrogen process-based models at the landscape scale.
Toward a transport-based analysis of nutrient spiraling and uptake in streams
Runkel, Robert L.
2007-01-01
Nutrient addition experiments are designed to study the cycling of nutrients in stream ecosystems where hydrologic and nonhydrologic processes determine nutrient fate. Because of the importance of hydrologic processes in stream ecosystems, a conceptual model known as nutrient spiraling is frequently employed. A central part of the nutrient spiraling approach is the determination of uptake length (SW), the average distance traveled by dissolved nutrients in the water column before uptake. Although the nutrient spiraling concept has been an invaluable tool in stream ecology, the current practice of estimating uptake length from steady-state nutrient data using linear regression (called here the "SW approach") presents a number of limitations. These limitations are identified by comparing the exponential SW equation with analytical solutions of a stream solute transport model. This comparison indicates that (1) SW, is an aggregate measure of uptake that does not distinguish between main channel and storage zone processes, (2) SW, is an integrated measure of numerous hydrologie and nonhydrologic processes-this process integration may lead to difficulties in interpretation when comparing estimates of SW, and (3) estimates of uptake velocity and areal uptake rate (Vf and U) based on S W, are not independent of system hydrology. Given these findings, a transport-based approach to nutrient spiraling is presented for steady-state and time-series data sets. The transport-based approach for time-series data sets is suggested for future research on nutrient uptake as it provides a number of benefits, including the ability to (1) separately quantify main channel and storage zone uptake, (2) quantify specific hydrologic and nonhydrologic processes using various model parameters (process separation), (3) estimate uptake velocities and areal uptake rates that are independent of hydrologic effects, and (4) use short-term, non-plateau nutrient additions such that the effects of regeneration and mineralization are minimized. In summary, the transport-based, time-series approach provides a means of estimating traditional measures of nutrient uptake (SW, V?? U) while providing additional information on the location and magnitude of uptake (main channel versus storage zone). Application of the transport-based approach to time-series data from Green Creek, Antarctica, indicates that the bulk of nitrate uptake (???74% to 100%) occurred within the main channel where benthic uptake by algal mats is a likely process. Substantial uptake (???26%) also occurred in the storage zone of one reach, where uptake is attributed to the microbial community.
NASA Astrophysics Data System (ADS)
Angermann, Lisa; Jackisch, Conrad; Allroggen, Niklas; Sprenger, Matthias; Zehe, Erwin; Tronicke, Jens; Weiler, Markus; Blume, Theresa
2017-07-01
The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al.(2017).
Simulating hydrological processes of a typical small mountainous catchment in Tibetan Plateau
NASA Astrophysics Data System (ADS)
Xu, Y. P.; Bai, Z.; Fu, Q.; Pan, S.; Zhu, C.
2017-12-01
Water cycle of small watersheds with seasonal/permanent frozen soil and snow pack in Tibetan Plateau is seriously affected by climate change. The objective of this study is to find out how much and in what way the frozen soil and snow pack will influence the hydrology of small mountainous catchments in cold regions and how can the performance of simulation by a distributed hydrological model be improved. The Dong catchment, a small catchment located in Tibetan Plateau, is used as a case study. Two measurement stations are set up to collect basic meteorological and hydrological data for the modeling purpose. Annual and interannual variations of runoff indices are first analyzed based on historic data series. The sources of runoff in dry periods and wet periods are analyzed respectively. Then, a distributed hydrology soil vegetation model (DHSVM) is adopted to simulate the hydrological process of Dong catchment based on limited data set. Global sensitivity analysis is applied to help determine the important processes of the catchment. Based on sensitivity analysis results, the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) is finally added into the hydrological model to calibrate the hydrological model in a multi-objective way and analyze the performance of DHSVM model. The performance of simulation is evaluated with several evaluation indices. The final results show that frozen soil and snow pack do play an important role in hydrological processes in cold mountainous region, in particular in dry periods without precipitation, while in wet periods precipitation is often the main source of runoff. The results also show that although the DHSVM hydrological model has the potential to model the hydrology well in small mountainous catchments with very limited data in Tibetan Plateau, the simulation of hydrology in dry periods is not very satisfactory due to the model's insufficiency in simulating seasonal frozen soil.
NASA Astrophysics Data System (ADS)
Chen, Yaning; Li, Weihong; Fang, Gonghuan; Li, Zhi
2017-02-01
Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeling in glacierized catchments of central Asia, discussing the limitations of the available models and extrapolating these to future challenges and directions. After reviewing recent efforts, we conclude that the main sources of uncertainty in assessing the regional hydrological impacts of climate change are the unreliable and incomplete data sets and the lack of understanding of the hydrological regimes of glacierized catchments of central Asia. Runoff trends indicate a complex response to changes in climate. For future variation of water resources, it is essential to quantify the responses of hydrologic processes to both climate change and shrinking glaciers in glacierized catchments, and scientific focus should be on reducing uncertainties linked to these processes.
NASA Astrophysics Data System (ADS)
Lebedeva, L.; Semenova, O.
2013-12-01
Lack of detailed process-oriented observational data is often claimed as one of the major obstacle for further advance of hydrological process understanding and development of deterministic models that do not rely on calibration. New sources of hydrological information (satellites, radars etc.) have the perspectives for the future but can not completely replace conventional and experimental observations at the moment. Long-term data-rich research catchments remain valuable if not the only source of information for development, verification, regionalization and comparison of different hydrological and environmental models. There existed the set of more than 20 such basins that were operated according to single observational program from the 1930-1950th to 1990th in the former Soviet Union. Research basins, so called water-balance stations, covered all main climatic and landscape zones such as taiga, forest-steppe, steppe, desert, mountains and permafrost regions. Each station conducted broad range of standard, special and experimental hydrometeorological field studies including spatially distributed meteorological observations, soil and snow variable states, measurements of the groundwater levels, hydrochemistry, evapotranspiration, discharges in several, often nested, slope- and small-scale watersheds, etc. The data were accompanied by the descriptions of observational techniques and landscapes allowing linking natural conditions with dominant hydrological processes. Each station is representative for larger area and the results of local studies could be transferred to other basins in similar conditions. Till recently the data existed only in hard copies in Russian language therefore they are not enough explored yet. We are currently digitizing main part of the observational and supportive materials and make it available for any scientific purpose via website http://hydrograph-model.ru/. We propose to hydrological community to use the data for comprehensive intercomparison studies of our models and their modules to reject inadequate algorithms and advance our process understanding and modeling efforts in different environments.
Yang, Yuzhong; Wu, Qingbai; Hou, Yandong; Zhang, Zhongqiong; Zhan, Jing; Gao, Siru; Jin, Huijun
2017-12-15
Permafrost degradation on the Qinghai-Tibet Plateau (QTP) will substantially alter the surface runoff discharge and generation, which changes the recharge processes and influences the hydrological cycle on the QTP. Hydrological connections between different water bodies and the influence of thawing permafrost (ground ice) are not well understood on the QTP. This study applied water stable isotopic method to investigate the permafrost hydrological variabilities in Beiluhe Basin (BLB) on Central QTP. Isotopic variations of precipitation, river flow, thermokarst lake, and near-surface ground ice were identified to figure out the moisture source of them, and to elaborate the hydrological connections in permafrost region. Results suggested that isotopic seasonalities in precipitation is evident, it is showing more positive values in summer seasons, and negative values in winter seasons. Stable isotopes of river flow are mainly distributed in the range of precipitation which is indicative of important replenishment from precipitation. δ 18 O, δD of thermokarst lakes are more positive than precipitation, indicating of basin-scale evaporation of lake water. Comparison of δ I values in different water bodies shows that hydrology of thermokarst lakes was related to thawing of permafrost (ground ice) and precipitation. Near-surface ground ice in BLB exhibits different isotopic characteristics, and generates a special δD-δ 18 O relationship (freezing line): δD=5.81δ 18 O-23.02, which reflects typical freezing of liquid water. From isotopic analysis, it is inferred that near-surface ground ice was mainly recharged by precipitation and active layer water. Stable isotopic and conceptual model is suggestive of striking hydrological connections between precipitation, river flow, thermokarst lake, and ground ice under degrading permafrost. This research provides fundamental comprehensions into the hydrological processes in permafrost regions on QTP, which should be considered in investigating the influence of thawing permafrost on the hydrological cycle on QTP. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanz, Inés; Aguilar, Cristina; Millares, Agustín
2013-04-01
In the last fifty years, forest fires and changes in land use and management practices have had a significant influenceon the evolution of soil loss processes in the Mediterranean area. Forest fires have immediate effects in hydrological processes mainly due to sudden changes in soil properties and vegetation cover. After a fire there is an increase in runoff processes and peak flows and thus in the amount and composition of the sediments produced. Silting in dams downstream is often reported so the description of the post-fire hydrological processes is crucial in order to optimize decision making. This study analyzes a micro-watershed of 25 ha in the south of Spain that suffered a fire in October 2010 burning around a 2 km2 area. As the erosive processes in this area are directly related to concentrated overland flow, an indirect assessment of soil loss is presented in this work based on evaluating changes in runoff in Mediterranean post-fire situations. For this, the study is divided into two main parts. Firstly, changes in soil properties and vegetation cover are evaluated. Secondly, the effects of these changes in the hydrological and erosive dynamics are assessed.The watershed had been monitored in previous studies so soil properties and the vegetation cover before the fire took place were already characterized. Besides, the hydrological response was also available through an already calibrated and validated physically-based distributed hydrological model. For the evaluation of soil properties, field measurement campaigns were designed. Philip Dunne's tests for the determination of saturated hydraulic conductivity, as well as moisture content and bulk density measurements were carried out in both unaltered and burned soil samples. Changes in the vegetation cover fraction were assessed through desktop analysis of Landsat-TM5 platform satellite images as well as through visual inspection in the field campaigns. The analysis of the hydraulic conductivity revealed a reduction in post-fire values of near 90 % over those previous to the fire. Regarding the vegetation cover, the recovery of the burned covers, mainly herbaceous with some bushes, turned out to quick due to the wet character of the year. Nevertheless, an apparent decrease in the cover fraction and thus in the vegetation storage capacity was reported. These changes were incorporated into a new hydrological model configuration and compared to the response previous to the fire. The results point out the rainfall pattern to be a determinant factor in post-fire situation with an increase in modeled runoff of up to 350% and even more in dry years. These results have direct implications in soil erodibility changes in hillslopes as well as a considerable increase in bedload processes in Mediterranean alluvial rivers.
Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi
2018-04-01
Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.
Zhong, Jun; Li, Si-liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang
2017-01-01
To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system. PMID:28220859
NASA Astrophysics Data System (ADS)
Zhang, Zhicai; Chen, Xi; Wang, Jinli
2016-04-01
Karst hydrodynamic behaviour is complex because of special karst geology and geomorphology. The permeable multi-media consisting of soil, epikarst fractures and conduits has a key influence on karst hydrological processes. Spatial heterogeneity is high due to special landforms of vertical shafts, caves and sinkholes, which leads to a high dynamic variability of hydrological processes in space and time, and frequent exchange of surface water and groundwater. Underground water in different reach were sampled over the 1996-2001 in a karst catchment of Houzhai, with 81km2, located in Guizhou province of southwest China. Samples were analysed for water temperature, pH, conductivity and four solute concentrations. The monitoring sought to assess the combined utility of flow discharge and natural geochemical tracers in upscaling flow structure understanding in karst area. Based on previous researches and field investigation, the catchment characteristics were explored with the use of a GIS. Both flow discharge and solute concentrations exhibited clear seasonal patterns at every groundwater sampling sites. The variations of flow and chemistry are more dramatic in upstream site with less soil cover and more sinkholes development, which affect the hydrological pathways significantly. There was clear evidence that the differences in geology and soil were the main controls on hydrology and flow chemistry, which was spatially variable in different sites of underground channel. Conceptual flow structures in main hydrological response units for different area in the catchment were developed according to the variation of discharge and flow chemistry.
Adapting regional watershed management to climate change in Bavaria and Québec
NASA Astrophysics Data System (ADS)
Ludwig, Ralf; Muerth, Markus; Schmid, Josef; Jobst, Andreas; Caya, Daniel; Gauvin St-Denis, Blaise; Chaumont, Diane; Velazquez, Juan-Alberto; Turcotte, Richard; Ricard, Simon
2013-04-01
The international research project QBic3 (Quebec-Bavarian Collaboration on Climate Change) aims at investigating the potential impacts of climate change on the hydrology of regional scale catchments in Southern Quebec (Canada) and Bavaria (Germany). For this purpose, a hydro-meteorological modeling chain has been established, applying climatic forcing from both dynamical and statistical climate model data to an ensemble of hydrological models of varying complexity. The selection of input data, process descriptions and scenarios allows for the inter-comparison of the uncertainty ranges on selected runoff indicators; a methodology to display the relative importance of each source of uncertainty is developed and results for past runoff (1971-2000) and potential future changes (2041-2070) are obtained. Finally, the impact of hydrological changes on the operational management of dams, reservoirs and transfer systems is investigated and shown for the Bavarian case studies, namely the potential change in i) hydro-power production for the Upper Isar watershed and ii) low flow augmentation and water transfer rates at the Donau-Main transfer system in Central Franconia. Two overall findings will be presented and discussed in detail: a) the climate change response of selected hydrological indicators, especially those related to low flows, is strongly affected by the choice of the hydrological model. It can be shown that an assessment of the changes in the hydrological cycle is best represented by a complex physically based hydrological model, computationally less demanding models (usually simple, lumped and conceptual) can give a significant level of trust for selected indicators. b) the major differences in the projected climate forcing stemming from the ensemble of dynamic climate models (GCM/RCM) versus the statistical-stochastical WETTREG2010 approach. While the dynamic ensemble reveals a moderate modification of the hydrological processes in the investigated catchments, the WETTREG2010 driven runs show a severe detraction for all water operations, mainly related to a strong decline in projected precipitation in all seasons (except winter).
NASA Astrophysics Data System (ADS)
Li, Qiaoling; Ishidaira, Hiroshi
2012-01-01
SummaryThe biosphere and hydrosphere are intrinsically coupled. The scientific question is if there is a substantial change in one component such as vegetation cover, how will the other components such as transpiration and runoff generation respond, especially under climate change conditions? Stand-alone hydrological models have a detailed description of hydrological processes but do not sufficiently parameterize vegetation as a dynamic component. Dynamic global vegetation models (DGVMs) are able to simulate transient structural changes in major vegetation types but do not simulate runoff generation reliably. Therefore, both hydrological models and DGVMs have their limitations as well as advantages for addressing this question. In this study a biosphere hydrological model (LPJH) is developed by coupling a prominent DGVM (Lund-Postdam-Jena model referred to as LPJ) with a stand-alone hydrological model (HYMOD), with the objective of analyzing the role of vegetation in the hydrological processes at basin scale and evaluating the impact of vegetation change on the hydrological processes under climate change. The application and validation of the LPJH model to four basins representing a variety of climate and vegetation conditions shows that the performance of LPJH is much better than that of the original LPJ and is similar to that of stand-alone hydrological models for monthly and daily runoff simulation at the basin scale. It is argued that the LPJH model gives more reasonable hydrological simulation since it considers both the spatial variability of soil moisture and vegetation dynamics, which make the runoff generation mechanism more reliable. As an example, it is shown that changing atmospheric CO 2 content alone would result in runoff increases in humid basins and decreases in arid basins. Theses changes are mainly attributable to changes in transpiration driven by vegetation dynamics, which are not simulated in stand-alone hydrological models. Therefore LPJH potentially provides a powerful tool for simulating vegetation response to climate changes in the biosphere hydrological cycle.
Accelerating advances in continental domain hydrologic modeling
Archfield, Stacey A.; Clark, Martyn; Arheimer, Berit; Hay, Lauren E.; McMillan, Hilary; Kiang, Julie E.; Seibert, Jan; Hakala, Kirsti; Bock, Andrew R.; Wagener, Thorsten; Farmer, William H.; Andreassian, Vazken; Attinger, Sabine; Viglione, Alberto; Knight, Rodney; Markstrom, Steven; Over, Thomas M.
2015-01-01
In the past, hydrologic modeling of surface water resources has mainly focused on simulating the hydrologic cycle at local to regional catchment modeling domains. There now exists a level of maturity among the catchment, global water security, and land surface modeling communities such that these communities are converging toward continental domain hydrologic models. This commentary, written from a catchment hydrology community perspective, provides a review of progress in each community toward this achievement, identifies common challenges the communities face, and details immediate and specific areas in which these communities can mutually benefit one another from the convergence of their research perspectives. Those include: (1) creating new incentives and infrastructure to report and share model inputs, outputs, and parameters in data services and open access, machine-independent formats for model replication or reanalysis; (2) ensuring that hydrologic models have: sufficient complexity to represent the dominant physical processes and adequate representation of anthropogenic impacts on the terrestrial water cycle, a process-based approach to model parameter estimation, and appropriate parameterizations to represent large-scale fluxes and scaling behavior; (3) maintaining a balance between model complexity and data availability as well as uncertainties; and (4) quantifying and communicating significant advancements toward these modeling goals.
NASA Astrophysics Data System (ADS)
Camporese, M.; Bertoldi, G.; Bortoli, E.; Wohlfahrt, G.
2017-12-01
Integrated hydrologic surface-subsurface models (IHSSMs) are increasingly used as prediction tools to solve simultaneously states and fluxes in and between multiple terrestrial compartments (e.g., snow cover, surface water, groundwater), in an attempt to tackle environmental problems in a holistic approach. Two such models, CATHY and GEOtop, are used in this study to investigate their capabilities to reproduce hydrological processes in alpine grasslands. The two models differ significantly in the complexity of the representation of the surface energy balance and the solution of Richards equation for water flow in the variably saturated subsurface. The main goal of this research is to show how these differences in process representation can lead to different predictions of hydrologic states and fluxes, in the simulation of an experimental site located in the Venosta Valley (South Tyrol, Italy). Here, a large set of relevant hydrological data (e.g., evapotranspiration, soil moisture) has been collected, with ground and remote sensing observations. The area of interest is part of a Long-Term Ecological Research (LTER) site, a mountain steep, heterogeneous slope, where the predominant land use types are meadow, pasture, and forest. The comparison between data and model predictions, as well as between simulations with the two IHSSMs, contributes to advance our understanding of the tradeoffs between different complexities in modeĺs process representation, model accuracy, and the ability to explain observed hydrological dynamics in alpine environments.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Chen, Xiaohong
2015-10-01
Dam-induced hydrological alterations and related ecological problems have been arousing considerable concern from hydrologists, ecologists, and policy-makers. The East River basin in China is the major provider of water resources for mega-cities within the Pearl River Delta and meets 80% of annual water demand of Hong Kong. In this study, ecodeficit and ecosurplus were analyzed to determine the ecological impact of water impoundments. Also, Do and DHRAM were employed to evaluate the degree of alteration of hydrological regimes, and ERHIs were analyzed to evaluate the influence of hydrological alterations on ecological diversity. Results indicate that: (1) the magnitude and frequency of high flows decrease and those of low flows increase due to the regulation of reservoirs; (2) variations of annual ecosurplus are mainly the result of precipitation changes and the annual ecodeficit is significantly influenced by reservoirs. However, ecodeficit and ecosurplus in other seasons, particularly autumn and winter, are more influenced by reservoir regulation; (3) impacts of reservoirs on hydrological regimes and eco-flow regimes are different from one station to another due to different degrees of influence of reservoirs on hydrological processes at different stations. The longer the distance between a reservoir and a hydrological station is, the weaker the influence the water reservoir has on the hydrological processes; (4) ecodeficit and ecosurplus can be accepted in the evaluation of alterations of hydrological processes at annual and seasonal time scales. Results of Shannon Index indicate decreasing biological diversity after the construction of water reservoirs, implying negative impacts of water reservoirs on biological diversity of a river basin and this should arouse considerable human concerns. This study provides a theoretical background for water resources management with consideration of eco-flow variations due to reservoir regulation in other highly-regulated river basins of the globe.
Mountain Hydrology of the Semi-Arid Western U.S.: Research Needs, Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Bales, R.; Dozier, J.; Molotch, N.; Painter, T.; Rice, R.
2004-12-01
In the semi-arid Western U.S., water resources are being stressed by the combination of climate warming, changing land use, and population growth. Multiple consensus planning documents point to this region as perhaps the highest priority for new hydrologic understanding. Three main hydrologic issues illustrate research needs in the snow-driven hydrology of the region. First, despite the hydrologic importance of mountainous regions, the processes controlling their energy, water and biogeochemical fluxes are not well understood. Second, there exists a need to realize, at various spatial and temporal scales, the feedback systems between hydrological fluxes and biogeochemical and ecological processes. Third, the paucity of adequate observation networks in mountainous regions hampers improvements in understanding these processes. For example, we lack an adequate description of factors controlling the partitioning of snowmelt into runoff versus infiltration and evapotranspiration, and need strategies to accurately measure the variability of precipitation, snow cover and soil moisture. The amount of mountain-block and mountain-front recharge and how recharge patterns respond to climate variability are poorly known across the mountainous West. Moreover, hydrologic modelers and those measuring important hydrologic variables from remote sensing and distributed in situ sites have failed to bridge rifts between modeling needs and available measurements. Research and operational communities will benefit from data fusion/integration, improved measurement arrays, and rapid data access. For example, the hydrologic modeling community would advance if given new access to single rather than disparate sources of bundles of cutting-edge remote sensing retrievals of snow covered area and albedo, in situ measurements of snow water equivalent and precipitation, and spatio-temporal fields of variables that drive models. In addition, opportunities exist for the deployment of new technologies, taking advantage of research in spatially distributed sensor networks that can enhance data recovery and analysis.
Debates—Hypothesis testing in hydrology: Pursuing certainty versus pursuing uberty
NASA Astrophysics Data System (ADS)
Baker, Victor R.
2017-03-01
Modern hydrology places nearly all its emphasis on science-as-knowledge, the hypotheses of which are increasingly expressed as physical models, whose predictions are tested by correspondence to quantitative data sets. Though arguably appropriate for applications of theory to engineering and applied science, the associated emphases on truth and degrees of certainty are not optimal for the productive and creative processes that facilitate the fundamental advancement of science as a process of discovery. The latter requires an investigative approach, where the goal is uberty, a kind of fruitfulness of inquiry, in which the abductive mode of inference adds to the much more commonly acknowledged modes of deduction and induction. The resulting world-directed approach to hydrology provides a valuable complement to the prevailing hypothesis- (theory-) directed paradigm.
77 FR 18841 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... resolution process. SRPs are independent panels of experts in hydrology, hydraulics, and other pertinent....gov/water/flood/comaps.html City of Greenville City Hall, 206 South Main Street, Greenville, SC 29602...
[Baseflow separation methods in hydrological process research: a review].
Xu, Lei-Lei; Liu, Jing-Lin; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui
2011-11-01
Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently. In recent years, hydrological modeling, digital filtering, and isotopic method are the main methods used for baseflow separation.
NASA Astrophysics Data System (ADS)
Yang, J.; Zammit, C.; McMillan, H. K.
2016-12-01
As in most countries worldwide, water management in lowland areas is a big concern for New Zealand due to its economic importance for water related human activities. As a result, the estimation of available water resources in these areas (e.g., for irrigation and water supply purpose) is crucial and often requires an understanding of complex hydrological processes, which are often characterized by strong interactions between surface water and groundwater (usually expressed as losing and gaining rivers). These processes are often represented and simulated using integrated physically based hydrological models. However models with physically based groundwater modules typically require large amount of non-readily available geologic and aquifer information and are computationally intensive. Instead, this paper presents a conceptual groundwater model that is fully integrated into New Zealand's national hydrological model TopNet based on TopModel concepts (Beven, 1992). Within this conceptual framework, the integrated model can simulate not only surface processes, but also groundwater processes and surface water-groundwater interaction processes (including groundwater flow, river-groundwater interaction, and groundwater interaction with external watersheds). The developed model was applied to two New Zealand catchments with different hydro-geological and climate characteristics (Pareora catchment in the Canterbury Plains and Grey catchment on the West Coast). Previous studies have documented strong interactions between the river and groundwater, based on the analysis of a large number of concurrent flow measurements and associated information along the river main stem. Application of the integrated hydrological model indicates flow simulation (compared to the original hydrological model conceptualisation) during low flow conditions are significantly improved and further insights on local river dynamics are gained. Due to its conceptual characteristics and low level of data requirement, the integrated model could be used at local and national scales to improve the simulation of hydrological processes in non-topographically driven areas (where groundwater processes are important), and to assess impact of climate change on the integrated hydrological cycle in these areas.
NASA Astrophysics Data System (ADS)
Abitew, T. A.; van Griensven, A.; Bauwens, W.
2015-12-01
Evapotranspiration is the main process in hydrology (on average around 60%), though has not received as much attention in the evaluation and calibration of hydrological models. In this study, Remote Sensing (RS) derived Evapotranspiration (ET) is used to improve the spatially distributed processes of ET of SWAT model application in the upper Mara basin (Kenya) and the Blue Nile basin (Ethiopia). The RS derived ET data is obtained from recently compiled global datasets (continuously monthly data at 1 km resolution from MOD16NBI,SSEBop,ALEXI,CMRSET models) and from regionally applied Energy Balance Models (for several cloud free days). The RS-RT data is used in different forms: Method 1) to evaluate spatially distributed evapotransiration model resultsMethod 2) to calibrate the evotranspiration processes in hydrological modelMethod 3) to bias-correct the evapotranpiration in hydrological model during simulation after changing the SWAT codesAn inter-comparison of the RS-ET products shows that at present there is a significant bias, but at the same time an agreement on the spatial variability of ET. The ensemble mean of different ET products seems the most realistic estimation and was further used in this study.The results show that:Method 1) the spatially mapped evapotranspiration of hydrological models shows clear differences when compared to RS derived evapotranspiration (low correlations). Especially evapotranspiration in forested areas is strongly underestimated compared to other land covers.Method 2) Calibration allows to improve the correlations between the RS and hydrological model results to some extent.Method 3) Bias-corrections are efficient in producing (sesonal or annual) evapotranspiration maps from hydrological models which are very similar to the patterns obtained from RS data.Though the bias-correction is very efficient, it is advised to improve the model results by better representing the ET processes by improved plant/crop computations, improved agricultural management practices or by providing improved meteorological data.
NASA Astrophysics Data System (ADS)
Crossley, D. J.; Borsa, A. A.; Murphy, T.
2017-12-01
We continue the analysis of superconducting gravimeter (SG) and GPS data at Apache Point Observatory (APO) as part of the astrophysical effort to reduce LLR errors to the mm level. With 8 years of data accumulated, the main impediment to getting benefit from the SG data is the assessment of the hydrology signal that arises mainly from the attraction of local water masses close to the site. Traditional SG processing attempts to remove as much signal as possible from the loading and attraction contributions, but we are limited at APO because here is no hydrology ground truth. Nevertheless, we produce a gravity residual that corresponds to some extent with the rather noisy vertical GPS data from Plate Boundary Site PB07 close to Sunspot observatory 2 km from APO. The main goal of this paper, apart from updating the gravity and GPS correction using recent models, is to construct simulated SG and GPS time series from the synthetic source functions - ground uplift, hydrology attraction and loading - and to perform an inversion to see what can be recovered of the vertical ground motion. The simulation will also include a first look at the effect of this synthetic local data on the current Planetary Ephemeris Program solution for the lunar distance.
NASA Astrophysics Data System (ADS)
Gustafsson, David; Pimentel, Rafael; Fabry, Pierre; Bercher, Nicolas; Roca, Mónica; Garcia-Mondejar, Albert; Fernandes, Joana; Lázaro, Clara; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme
2017-04-01
This communication is about the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) project, with a focus on the components dealing with assimilation of satellite altimetry data into hydrological models. The SHAPE research and development project started in September 2015, within the Scientific Exploitation of Operational Missions (SEOM) programme of the European Space Agency. The objectives of the project are to further develop and assess recent improvement in altimetry data, processing algorithms and methods for assimilation in hydrological models, with the overarching goal to support improved scientific use of altimetry data and improved inland water information. The objective is also to take scientific steps towards a future Inland Water dedicated processor on the Sentinel-3 ground segment. The study focuses on three main variables of interest in hydrology: river stage, river discharge and lake level. The improved altimetry data from the project is used to estimate river stage, river discharge and lake level information in a data assimilation framework using the hydrological dynamic and semi-distributed model HYPE (Hydrological Predictions for the Environment). This model has been developed by SMHI and includes data assimilation module based on the Ensemble Kalman filter method. The method will be developed and assessed for a number of case studies with available in situ reference data and satellite altimetry data based on mainly the CryoSat-2 mission on which the new processor will be run; Results will be presented from case studies on the Amazon and Danube rivers and Lake Vänern (Sweden). The production of alti-hydro products (water level time series) are improved thanks to the use of water masks. This eases the geo-selection of the CryoSat-2 altimetric measurements since there are acquired from a geodetic orbit and are thus spread along the river course in space and and time. The specific processing of data from this geodetic orbit space-time pattern will be discussed as well as the subsequent possible strategies for data assimilation into models (and eventually highlight a generalized approach toward multi-mission data processing). Notably, in case of data assimilation along the course of rivers, the river slope might be estimated and compensated for, in order to produce local water level "pseudo time series" at arbitrary locations, and specifically at model's inlets.
NASA Astrophysics Data System (ADS)
Bassam, S.; Ren, J.
2017-12-01
Predicting future water availability in watersheds is very important for proper water resources management, especially in semi-arid regions with scarce water resources. Hydrological models have been considered as powerful tools in predicting future hydrological conditions in watershed systems in the past two decades. Streamflow and evapotranspiration are the two important components in watershed water balance estimation as the former is the most commonly-used indicator of the overall water budget estimation, and the latter is the second biggest component of water budget (biggest outflow from the system). One of the main concerns in watershed scale hydrological modeling is the uncertainties associated with model prediction, which could arise from errors in model parameters and input meteorological data, or errors in model representation of the physics of hydrological processes. Understanding and quantifying these uncertainties are vital to water resources managers for proper decision making based on model predictions. In this study, we evaluated the impacts of different climate change scenarios on the future stream discharge and evapotranspiration, and their associated uncertainties, throughout a large semi-arid basin using a stochastically-calibrated, physically-based, semi-distributed hydrological model. The results of this study could provide valuable insights in applying hydrological models in large scale watersheds, understanding the associated sensitivity and uncertainties in model parameters, and estimating the corresponding impacts on interested hydrological process variables under different climate change scenarios.
NASA Astrophysics Data System (ADS)
Schaaf, Wolfgang; Gerwin, Werner; Hinz, Christoph; Zaplata, Markus
2016-04-01
Landscapes and ecosystems are complex systems with many feedback mechanisms acting between the various abiotic and biotic components. The knowledge about these interacting processes is mainly derived from mature ecosystems. The initial development of ecosystem complexity may involve state transitions following catastrophic shifts, disturbances or transgression of thresholds. The Chicken Creek catchment was constructed in 2005 in the mining area of Lusatia/Germany to study processes and feedback mechanisms during ecosystem evolution. The hillslope-shaped 6 ha site has defined boundary conditions and well-documented inner structures. The dominating substrate above the underlying clay layer is Pleistocene sandy material representing mainly the lower C horizon of the former landscape. Since 2005, the unrestricted, unmanaged development of the catchment was intensively monitored. During the ten years since then, we observed characteristic state transitions in catchment functioning driven by feedbacks between original substrate properties, surface structures, soil development and vegetation succession. Whereas surface runoff induced by surface crusting and infiltration dominated catchment hydrology in the first years, the impact of vegetation on hydrological pathways and groundwater levels became more and more evident during the last years. Discharge from the catchment changed from episodic events driven by precipitation and surface runoff to groundwater driven. This general picture is overlain by spatial patterns and single episodic events of external drivers. The scientific value of the Chicken Creek site with known boundary conditions and structure information could help in disentangling general feedback mechanisms between hydrologic, pedogenic, biological and geomorphological processes as well as a in gaining a more integrative view of succession and its drivers during the transition from initial, less complex systems to more mature ecosystems. Long-term time series of data are a key for a better understanding of these processes and the effects on ecosystem resilience and self-organization.
NASA Astrophysics Data System (ADS)
Domínguez-Villar, David; Cukrov, Neven; Krklec, Kristina
2018-06-01
Although temperature is a nonconservative tracer, it often provides useful information to understand hydrological processes. This study explores the potential of temperature to characterize the hydrological dynamics of a submarine spring and its coastal karst aquifer in Krka Estuary (Croatia). The estuary is well stratified and its water column has a clear thermocline. A network of loggers was designed to monitor the temperature along vertical profiles in the estuary and the coastal aquifer, taking advantage of an anchialine cave that enabled access to the subterranean estuary. The location of the thermocline in the groundwater, which defines the upper boundary of the saline intrusion, depends on (1) the recharge of the aquifer via infiltration of precipitation, (2) the evolution of the thermocline in the estuary, and (3) the tidal oscillations. The sources of water flowing though the anchialine cave were identified: brackish water from the estuary above the thermocline, saline water from the estuary below the thermocline, and freshwater from infiltrated precipitation. A conceptual model is described that characterizes the hydrological dynamics of this coastal aquifer and its interactions with the estuary. Thus, at least for some hydrological settings, temperature is a valid tracer to characterize the main hydrological processes. The measurement of temperature is inexpensive compared to other (conservative) tracers. Therefore, for those hydrological settings that have water masses with distinct temperatures, the use of temperature as a tracer to establish conceptual models of the hydrological dynamics is encouraged.
NASA Astrophysics Data System (ADS)
Setegn, Shimelis
2017-04-01
Sustainable development integrates economic development, social development, and environmental protection. Land and Water resources are under severe pressure from increasing populations, fast development, deforestation, intensification of agriculture and the degrading environment in many part of the world. The demand for adequate and safe supplies of water is becoming crucial especially in the overpopulated urban centers of the Caribbean islands. Moreover, population growth coupled with environmental degradation and possible adverse impacts of land use and climate change are major factors limiting freshwater resource availability. The main objective of this study is to develop a hydrological model and analyze the spatiotemporal variability of hydrological processes in the Caribbean islands of Puerto Rico and Jamaica. Physically based eco-hydrological model was developed and calibrated in the Rio Grande Manati and Wag water watershed. Spatial distribution of annual hydrological processes, water balance components for wet and dry years, and annual hydrological water balance of the watershed are discussed. The impact of land use and climate change are addressed in the watersheds. Appropriate nature based adaptation strategies were evaluated. The study will present a good understanding of advantages and disadvantages of nature-based solutions for adapting climate change, hydro-meteorological risks and other extreme hydrological events.
NASA Astrophysics Data System (ADS)
Wang, Y.; Yang, H.; Yang, D.; Gao, B.; Qin, Y.
2017-12-01
The Tibetan Plateau is more sensitive to the global climate change than other areas due to its special geography. Previous studies have shown that, besides the changes of temperature and precipitation, the changes in the cryosphere such as glacier and frozen ground also have important and far-reaching effects on the ecological and hydrological processes in the basin. In order to reliably predict the future runoff changing trend in the future, it's important to estimate the responses of cryosphere to the future climate change, as well as its impacts on the hydrological processes. Based on typical future climate scenarios (under emission scenario RCP4.5) from five general circulation models (GCMs) and one regional climate model (RCM), as well as a distributed eco-hydrological model (GBEHM), this study analyzes the possible future climate change (from 2011 to 2060) and its impacts on cryospheric and hydrological processes in upper Heihe River Basin, a typical cold mountain region located in the Northeast Tibetan Plateau. The results suggest that air temperature is expected to rise in the future by approximately 0.32 °C/10a, and precipitation is expected to rise slightly by about 3 mm/10a. Under the rising air temperature, the maximum frozen depth of seasonally frozen ground will decrease by about 4.1 cm/10a and the active layer depth of the frozen ground will increase by about 6.2 cm/10a. The runoff is expected to reduce by approximately 6 mm/10a and the evapotranspiration is expected to increase by approximately 9 mm/10a. These changes in hydrological processes are mainly caused by the air temperature rise. The impacts of air temperature change on the hydrological processes are mainly due to the changes of frozen ground. The thickening of active layer of the frozen ground increases the soil storage capacity, leading to the decrease of runoff and increase of evapotranspiration. Results show that, when the active layer depth increase by 1 cm, the runoff will decrease by about 1 2 mm and the evapotranspiration will increase by about 0.7 2 mm. Additionally, the changes from permafrost to seasonal frozen ground increase the groundwater infiltration, which also leads to the decrease of surface runoff.
NASA Astrophysics Data System (ADS)
Nardi, F.; Grimaldi, S.; Petroselli, A.
2012-12-01
Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.
Streamflow variation of forest covered catchments
NASA Astrophysics Data System (ADS)
Gribovszki, Z.; Kalicz, P.; Kucsara, M.
2003-04-01
Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).
Application of bayesian networks to real-time flood risk estimation
NASA Astrophysics Data System (ADS)
Garrote, L.; Molina, M.; Blasco, G.
2003-04-01
This paper presents the application of a computational paradigm taken from the field of artificial intelligence - the bayesian network - to model the behaviour of hydrologic basins during floods. The final goal of this research is to develop representation techniques for hydrologic simulation models in order to define, develop and validate a mechanism, supported by a software environment, oriented to build decision models for the prediction and management of river floods in real time. The emphasis is placed on providing decision makers with tools to incorporate their knowledge of basin behaviour, usually formulated in terms of rainfall-runoff models, in the process of real-time decision making during floods. A rainfall-runoff model is only a step in the process of decision making. If a reliable rainfall forecast is available and the rainfall-runoff model is well calibrated, decisions can be based mainly on model results. However, in most practical situations, uncertainties in rainfall forecasts or model performance have to be incorporated in the decision process. The computation paradigm adopted for the simulation of hydrologic processes is the bayesian network. A bayesian network is a directed acyclic graph that represents causal influences between linked variables. Under this representation, uncertain qualitative variables are related through causal relations quantified with conditional probabilities. The solution algorithm allows the computation of the expected probability distribution of unknown variables conditioned to the observations. An approach to represent hydrologic processes by bayesian networks with temporal and spatial extensions is presented in this paper, together with a methodology for the development of bayesian models using results produced by deterministic hydrologic simulation models
NASA Astrophysics Data System (ADS)
Wang, Y.; Fu, D., Sr.
2016-12-01
The hydrological response to Land Use/Land Cover Changes (LUCC) is the most active field in the international hydrological science research, and it is also a particular concern in the process of Chinese urban construction and renewal, many studies have shown that large-scale land use change is an important factor leading to the regional climate and hydrological cycle changes. Therefore, International Geosphere-Biosphere Program (IGBP) and International Human Dimensions Programme on Global Environmental Change (IHDP), World Climate Research Program (WCRP) and International Programme of Biodiversity Science (DIVERSITAS) program take land use change as one core program. The change of regional vegetation ecosystem caused by land use change, in turn, has a very significant impact on the regional hydrological cycle. Currently the influence of hydrological processes attributed correlated with land-use type were not fully considered in urban LUCC, the hydrological effect on urban-scale LUCC has just started. Since 2015, Chinese government began to implement "Sponge City" construction, however, the sponge city construction often takes the water resources management as the target, and mainly focuses on the rational allocation of urban water resources in conjunction with ignoring the response of LUCC on the water system. The hydrological response on LUCC need to use the scenario design method to quantitatively analyze the influence degree of the hydrological change on LUCC. According to the control rate of the runoff volume and land information, the coverage rate of sponge facilities determined before planning, such as bioretention, permeable pavement and greening roof, are adjusted and then are checked on the basis of storage volume, the coverage rate of the sponge facilities that can accommodate the total runoff volume are put forward. This research addresses the hydrological response changes on the land use before and after the use of LID using the scenario design method and identifies the sponge facilities with the aid of XPDrainage software on the southern area of Fangshan National Geopark in Nanjing city, China. A technical method to evaluate the influence of land use change on hydrological process and its response during the sponge city construction process is preliminarily discussed.
NASA Astrophysics Data System (ADS)
Koutsoyiannis, Demetris; Blöschl, Günter; Bárdossy, András; Cudennec, Christophe; Hughes, Denis; Montanari, Alberto; Neuweiler, Insa; Savenije, Hubert
2016-06-01
Editors from several journals in the field of hydrology met during the Assembly of the International Association of Hydrological Sciences-IAHS (within the Assembly of the International Union of Geodesy and Geophysics-IUGG) in Prague in June 2015. This event was a follow-up of a similar meeting in July 2013 in Gothenburg (as reported by Blöschl et al. (2014)). In these meetings the group of editors reviewed the current status of the journals and the publication process, and shared thoughts on future strategies. Journals were represented in the meeting through their editors, as shown in the list of authors. The main points on fostering innovation and improving impact assessment in journal publications in hydrology are communicated in this joint editorial published in journals that participated in the meeting.
NASA Astrophysics Data System (ADS)
Koutsoyiannis, Demetris; Blöschl, Günter; Bárdossy, András.; Cudennec, Christophe; Hughes, Denis; Montanari, Alberto; Neuweiler, Insa; Savenije, Hubert
2016-04-01
Editors of several journals in the field of hydrology met during the Assembly of the International Association of Hydrological Sciences—IAHS (within the Assembly of the International Union of Geodesy and Geophysics—IUGG) in Prague in June 2015. This event was a follow-up of a similar meeting held in July 2013 in Gothenburg (as reported by Blöschl et al. [2014]). These meetings enable the group of editors to review the current status of the journals and the publication process, and share thoughts on future strategies. Journals were represented in the 2015 meeting through their editors, as shown in the list of authors. The main points on fostering innovation and improving impact assessment in journal publications in hydrology are communicated in this joint editorial published in the above journals.
The HYPE Open Source Community
NASA Astrophysics Data System (ADS)
Strömbäck, Lena; Arheimer, Berit; Pers, Charlotta; Isberg, Kristina
2013-04-01
The Hydrological Predictions for the Environment (HYPE) model is a dynamic, semi-distributed, process-based, integrated catchment model (Lindström et al., 2010). It uses well-known hydrological and nutrient transport concepts and can be applied for both small and large scale assessments of water resources and status. In the model, the landscape is divided into classes according to soil type, vegetation and altitude. The soil representation is stratified and can be divided in up to three layers. Water and substances are routed through the same flow paths and storages (snow, soil, groundwater, streams, rivers, lakes) considering turn-over and transformation on the way towards the sea. In Sweden, the model is used by water authorities to fulfil the Water Framework Directive and the Marine Strategy Framework Directive. It is used for characterization, forecasts, and scenario analyses. Model data can be downloaded for free from three different HYPE applications: Europe (www.smhi.se/e-hype), Baltic Sea basin (www.smhi.se/balt-hype), and Sweden (vattenweb.smhi.se) The HYPE OSC (hype.sourceforge.net) is an open source initiative under the Lesser GNU Public License taken by SMHI to strengthen international collaboration in hydrological modelling and hydrological data production. The hypothesis is that more brains and more testing will result in better models and better code. The code is transparent and can be changed and learnt from. New versions of the main code will be delivered frequently. The main objective of the HYPE OSC is to provide public access to a state-of-the-art operational hydrological model and to encourage hydrologic expertise from different parts of the world to contribute to model improvement. HYPE OSC is open to everyone interested in hydrology, hydrological modelling and code development - e.g. scientists, authorities, and consultancies. The HYPE Open Source Community was initiated in November 2011 by a kick-off and workshop with 50 eager participants from twelve different countries. In beginning of 2013 we will release a new version of the code featuring new and better modularization, corresponding to hydrological processes which will make the code easier to understand and further develop. During 2013 we also plan a new workshop and HYPE course for everyone interested in the community. Lindström, G., Pers, C.P., Rosberg, R., Strömqvist, J., Arheimer, B. 2010. Development and test of the HYPE (Hydrological Predictions for the Environment) model - A water quality model for different spatial scales. Hydrology Research 41.3-4:295-319
Maina, Joseph; de Moel, Hans; Vermaat, Jan E; Bruggemann, J Henrich; Guillaume, Mireille M M; Grove, Craig A; Madin, Joshua S; Mertz-Kraus, Regina; Zinke, Jens
2012-10-01
Understanding the linkages between coastal watersheds and adjacent coral reefs is expected to lead to better coral reef conservation strategies. Our study aims to examine the main predictors of environmental proxies recorded in near shore corals and therefore how linked near shore reefs are to the catchment physical processes. To achieve these, we developed models to simulate hydrology of two watersheds in Madagascar. We examined relationships between environmental proxies derived from massive Porites spp. coral cores (spectral luminescence and barium/calcium ratios), and corresponding time-series (1950-2006) data of hydrology, climate, land use and human population growth. Results suggest regional differences in the main environmental drivers of reef sedimentation: on annual time-scales, precipitation, river flow and sediment load explained the variability in coral proxies of river discharge for the northeast region, while El Niño-Southern Oscillation (ENSO) and temperature (air and sea surface) were the best predictors in the southwest region. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Srivastava, S.
2015-12-01
Gravity Recovery and Climate Experiment (GRACE) data are widely used for the hydrological studies for large scale basins (≥100,000 sq km). GRACE data (Stokes Coefficients or Equivalent Water Height) used for hydrological studies are not direct observations but result from high level processing of raw data from the GRACE mission. Different partner agencies like CSR, GFZ and JPL implement their own methodology and their processing methods are independent from each other. The primary source of errors in GRACE data are due to measurement and modeling errors and the processing strategy of these agencies. Because of different processing methods, the final data from all the partner agencies are inconsistent with each other at some epoch. GRACE data provide spatio-temporal variations in Earth's gravity which is mainly attributed to the seasonal fluctuations in water level on Earth surfaces and subsurface. During the quantification of error/uncertainties, several high positive and negative peaks were observed which do not correspond to any hydrological processes but may emanate from a combination of primary error sources, or some other geophysical processes (e.g. Earthquakes, landslide, etc.) resulting in redistribution of earth's mass. Such peaks can be considered as outliers for hydrological studies. In this work, an algorithm has been designed to extract outliers from the GRACE data for Indo-Gangetic plain, which considers the seasonal variations and the trend in data. Different outlier detection methods have been used such as Z-score, modified Z-score and adjusted boxplot. For verification, assimilated hydrological (GLDAS) and hydro-meteorological data are used as the reference. The results have shown that the consistency amongst all data sets improved significantly after the removal of outliers.
NASA Astrophysics Data System (ADS)
Chang, Yong; Wu, Jichun; Jiang, Guanghui; Kang, Zhiqiang
2017-05-01
Conceptual models often suffer from the over-parameterization problem due to limited available data for the calibration. This leads to the problem of parameter nonuniqueness and equifinality, which may bring much uncertainty of the simulation result. How to find out the appropriate model structure supported by the available data to simulate the catchment is still a big challenge in the hydrological research. In this paper, we adopt a multi-model framework to identify the dominant hydrological process and appropriate model structure of a karst spring, located in Guilin city, China. For this catchment, the spring discharge is the only available data for the model calibration. This framework starts with a relative complex conceptual model according to the perception of the catchment and then this complex is simplified into several different models by gradually removing the model component. The multi-objective approach is used to compare the performance of these different models and the regional sensitivity analysis (RSA) is used to investigate the parameter identifiability. The results show this karst spring is mainly controlled by two different hydrological processes and one of the processes is threshold-driven which is consistent with the fieldwork investigation. However, the appropriate model structure to simulate the discharge of this spring is much simpler than the actual aquifer structure and hydrological processes understanding from the fieldwork investigation. A simple linear reservoir with two different outlets is enough to simulate this spring discharge. The detail runoff process in the catchment is not needed in the conceptual model to simulate the spring discharge. More complex model should need more other additional data to avoid serious deterioration of model predictions.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Tachikawa, Y.; Shiiba, M.; Yorozu, K.; Kim, S.
2012-04-01
Data assimilation methods have received increased attention to accomplish uncertainty assessment and enhancement of forecasting capability in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modeling software are based on a deterministic approach. In this study, we developed a hydrological modeling framework for sequential data assimilation, so called MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modeling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. Sequential data assimilation based on the particle filters is available for any hydrologic models based on MPI-OHyMoS considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for short-term streamflow forecasting of several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and remotely-sensed rainfall data such as X-band or C-band radar is estimated and mitigated in the sequential data assimilation.
Physical and hydrological properties of the soil after Pine harvesting in Maule, Chile
NASA Astrophysics Data System (ADS)
Fernández Raga, María; Fuentes Espoz, Juan Pablo
2014-05-01
The south of Chile has been under great pressure for about 150 years, with the replacement of native forests by agricultural crops and subsequently by plantations with fast-growing exotic species. Historically, it was considered that these plantations have stopped the degradation process of the ground. However, the restoration of the soil system can be considered as very limited or even null because of three reasons: the rotations of these artificial forest systems are too short (just 25 years ), the chosen areas are already degraded land, and after the harvesting it is common to get fire to clean. The objective of this research was to evaluate current forest management practices of these forest systems to make them more sustainable, mainly studying the effect of harvesting and waste management planting some physical - hydrological properties of the soil. This research was done in "Las Brisas", a degraded soil characterized by different planting practices of forest species, which have been harvested and, after that, burnt for taking out the residual waste. The study tried to determine the variations in the water content of the soil after fire at different depths, obtaining moisture profiles that reflect the change in soil moisture while simulating rain occurs. temperature of the fire. Several samples were taken and divided into four different experiments of management practices: some of them were dry, others were burnt, others suffered both processes and the last no process at all. Some analysis were done to determine the behavior of the main hydrological properties (ie particle size distribution, aggregate stability , hydrophobicity , infiltration ). The information collected was analyzed by the hydrologic model Hydrus -2D, to fully assess the impact of the extraction of the forest from a highly sensitive system erosive phenomena. The information obtained will be published.
Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa
2016-08-15
Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative effects on fish populations and assemblages. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Holzmann, Hubert; Massmann, Carolina
2015-04-01
A plenty of hydrological model types have been developed during the past decades. Most of them used a fixed design to describe the variable hydrological processes assuming to be representative for the whole range of spatial and temporal scales. This assumption is questionable as it is evident, that the runoff formation process is driven by dominant processes which can vary among different basins. Furthermore the model application and the interpretation of results is limited by data availability to identify the particular sub-processes, since most models were calibrated and validated only with discharge data. Therefore it can be hypothesized, that simpler model designs, focusing only on the dominant processes, can achieve comparable results with the benefit of less parameters. In the current contribution a modular model concept will be introduced, which allows the integration and neglection of hydrological sub-processes depending on the catchment characteristics and data availability. Key elements of the process modules refer to (1) storage effects (interception, soil), (2) transfer processes (routing), (3) threshold processes (percolation, saturation overland flow) and (4) split processes (rainfall excess). Based on hydro-meteorological observations in an experimental catchment in the Slovak region of the Carpathian mountains a comparison of several model realizations with different degrees of complexity will be discussed. A special focus is given on model parameter sensitivity estimated by Markov Chain Monte Carlo approach. Furthermore the identification of dominant processes by means of Sobol's method is introduced. It could be shown that a flexible model design - and even the simple concept - can reach comparable and equivalent performance than the standard model type (HBV-type). The main benefit of the modular concept is the individual adaptation of the model structure with respect to data and process availability and the option for parsimonious model design.
Dogrul, Emin C.; Schmid, Wolfgang; Hanson, Randall T.; Kadir, Tariq; Chung, Francis
2016-01-01
Effective modeling of conjunctive use of surface and subsurface water resources requires simulation of land use-based root zone and surface flow processes as well as groundwater flows, streamflows, and their interactions. Recently, two computer models developed for this purpose, the Integrated Water Flow Model (IWFM) from the California Department of Water Resources and the MODFLOW with Farm Process (MF-FMP) from the US Geological Survey, have been applied to complex basins such as the Central Valley of California. As both IWFM and MFFMP are publicly available for download and can be applied to other basins, there is a need to objectively compare the main approaches and features used in both models. This paper compares the concepts, as well as the method and simulation features of each hydrologic model pertaining to groundwater, surface water, and landscape processes. The comparison is focused on the integrated simulation of water demand and supply, water use, and the flow between coupled hydrologic processes. The differences in the capabilities and features of these two models could affect the outcome and types of water resource problems that can be simulated.
ERM model analysis for adaptation to hydrological model errors
NASA Astrophysics Data System (ADS)
Baymani-Nezhad, M.; Han, D.
2018-05-01
Hydrological conditions are changed continuously and these phenomenons generate errors on flood forecasting models and will lead to get unrealistic results. Therefore, to overcome these difficulties, a concept called model updating is proposed in hydrological studies. Real-time model updating is one of the challenging processes in hydrological sciences and has not been entirely solved due to lack of knowledge about the future state of the catchment under study. Basically, in terms of flood forecasting process, errors propagated from the rainfall-runoff model are enumerated as the main source of uncertainty in the forecasting model. Hence, to dominate the exciting errors, several methods have been proposed by researchers to update the rainfall-runoff models such as parameter updating, model state updating, and correction on input data. The current study focuses on investigations about the ability of rainfall-runoff model parameters to cope with three types of existing errors, timing, shape and volume as the common errors in hydrological modelling. The new lumped model, the ERM model, has been selected for this study to evaluate its parameters for its use in model updating to cope with the stated errors. Investigation about ten events proves that the ERM model parameters can be updated to cope with the errors without the need to recalibrate the model.
What role for social sciences in socio-hydrology? Results from an online survey among hydrologists
NASA Astrophysics Data System (ADS)
Seidl, Roman; Barthel, Roland; Stauffacher, Michael
2015-04-01
The necessity of a more integrated approach in hydrological research has been highlighted by the IAHS scientific decade 2013-2022 "Panta Rhei", dedicated to foster multi-disciplinary research activities on changes in hydrology and society (Montanari, Young et al. 2013). On a similar note, the concept of Socio-Hydrology (Sivapalan, Savenije et al. 2012) suggests a much deeper involvement of hydrologists in socio-economic questions. Despite this general consensus, it remains unclear how such interdisciplinary approaches should be carried out and, in particular, which roles hydrological sciences (HS) and social sciences and the humanities (SSH) should assume. In order to evaluate the opinion of HS on the mutual contributions of HS and SSH to the process of integration, an online survey was prepared by the authors and announced through the newsletters of the International Association of Hydrogeologists (IAH) and the International Association of Hydrological Sciences (IAHS). Two sets of questions offered a choice of potential contributions to interdisciplinary processes of HS and SSH respectively. A third group of questions asked for the status of integration of HS and SSH and if improvements are needed. Finally, participants were asked to rank different options to foster or improve cooperation between natural and social scientists. 141 questionnaires could be used for further analysis. As expected the background of most participants is hydrology, but many also mention more than one discipline. Most participants have their main place of work in Europe. The answers were analysed using Factor and Cluster analysis to reveal potential patterns in the data. The main results from the survey can be summarized like this: The majority of respondents agrees that SSH is not well integrated into hydrological research as yet and most participants see a need for better cooperation. Expectations from hydrologists who should do what in integrative work, reveal that some roles are perceived similarly for both SSH and HS: Facilitate resource management, Exchange knowledge, Communicate the results, Reflect about the normative aspects, Secure public acceptance. However, hydrologists assume it is clearly more the role of SSH to study socio-economic aspects and the impact of human decisions on the environment, for instance. Higher status and acknowledgment by other colleagues does not seem to be a major incentive for integrative work, ranking lowest of all offered statements. However, the statement Hydrologists themselves should consider and integrate socio-economic aspects in their own work, was rated most often as most preferable. One can speculate that hydrologists (at least many in our sample) would like to learn from SSH but then apply that knowledge themselves; that is, "integrate" social science tasks into their field, or rather into a new discipline, socio-hydrology but not collaborate at eye-level with social scientists. We conclude that researchers interested in the integration of disciplines should explicitly specify how they would like to achieve this, what mutual expectations they have. In the case of the Panta Rhei initiative or Social Hydrology, this seems neither evident nor explicitly done. References: Montanari, A., et al. (2013). ""Panta Rhei -- Everything Flows": Change in hydrology and society -- The IAHS Scientific Decade 2013-2022." Hydrological Sciences Journal: 1-20. Sivapalan, M., et al. (2012). "Socio-hydrology: A new science of people and water." Hydrological Processes 26(8): 1270-1276.
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Habib, E. H.; Deshotel, M.; Merck, M. F.; Lall, U.; Farnham, D. J.
2016-12-01
Traditional approaches to undergraduate hydrology and water resource education are textbook based, adopt unit processes and rely on idealized examples of specific applications, rather than examining the contextual relations in the processes and the dynamics connecting climate and ecosystems. The overarching goal of this project is to address the needed paradigm shift in undergraduate education of engineering hydrology and water resources education to reflect parallel advances in hydrologic research and technology, mainly in the areas of new observational settings, data and modeling resources and web-based technologies. This study presents efforts to develop a set of learning modules that are case-based, data and simulation driven and delivered via a web user interface. The modules are based on real-world case studies from three regional hydrologic settings: Coastal Louisiana, Utah Rocky Mountains and Florida Everglades. These three systems provide unique learning opportunities on topics such as: regional-scale budget analysis, hydrologic effects of human and natural changes, flashflood protection, climate-hydrology teleconnections and water resource management scenarios. The technical design and contents of the modules aim to support students' ability for transforming their learning outcomes and skills to hydrologic systems other than those used by the specific activity. To promote active learning, the modules take students through a set of highly engaging learning activities that are based on analysis of hydrologic data and model simulations. The modules include user support in the form of feedback and self-assessment mechanisms that are integrated within the online modules. Module effectiveness is assessed through an improvement-focused evaluation model using a mixed-method research approach guiding collection and analysis of evaluation data. Both qualitative and quantitative data are collected through student learning data, product analysis, and staff interviews. The presentation shares with the audience lessons learned from the development and implementation of the modules, students' feedback, guidelines on design and content attributes that support active learning in hydrology, and challenges encountered during the class implementation and evaluation of the modules.
OpenFLUID: an open-source software environment for modelling fluxes in landscapes
NASA Astrophysics Data System (ADS)
Fabre, Jean-Christophe; Rabotin, Michaël; Crevoisier, David; Libres, Aline; Dagès, Cécile; Moussa, Roger; Lagacherie, Philippe; Raclot, Damien; Voltz, Marc
2013-04-01
Integrative landscape functioning has become a common concept in environmental management. Landscapes are complex systems where many processes interact in time and space. In agro-ecosystems, these processes are mainly physical processes, including hydrological-processes, biological processes and human activities. Modelling such systems requires an interdisciplinary approach, coupling models coming from different disciplines, developed by different teams. In order to support collaborative works, involving many models coupled in time and space for integrative simulations, an open software modelling platform is a relevant answer. OpenFLUID is an open source software platform for modelling landscape functioning, mainly focused on spatial fluxes. It provides an advanced object-oriented architecture allowing to i) couple models developed de novo or from existing source code, and which are dynamically plugged to the platform, ii) represent landscapes as hierarchical graphs, taking into account multi-scale, spatial heterogeneities and landscape objects connectivity, iii) run and explore simulations in many ways : using the OpenFLUID software interfaces for users (command line interface, graphical user interface), or using external applications such as GNU R through the provided ROpenFLUID package. OpenFLUID is developed in C++ and relies on open source libraries only (Boost, libXML2, GLib/GTK, OGR/GDAL, …). For modelers and developers, OpenFLUID provides a dedicated environment for model development, which is based on an open source toolchain, including the Eclipse editor, the GCC compiler and the CMake build system. OpenFLUID is distributed under the GPLv3 open source license, with a special exception allowing to plug existing models licensed under any license. It is clearly in the spirit of sharing knowledge and favouring collaboration in a community of modelers. OpenFLUID has been involved in many research applications, such as modelling of hydrological network transfer, diagnosis and prediction of water quality taking into account human activities, study of the effect of spatial organization on hydrological fluxes, modelling of surface-subsurface water exchanges, … At LISAH research unit, OpenFLUID is the supporting development platform of the MHYDAS model, which is a distributed model for agrosystems (Moussa et al., 2002, Hydrological Processes, 16, 393-412). OpenFLUID web site : http://www.openfluid-project.org
NASA Astrophysics Data System (ADS)
Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.
2017-12-01
Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.
The dynamics of human-water systems: comparing observations and simulations
NASA Astrophysics Data System (ADS)
Di Baldassarre, G.; Ciullo, A.; Castellarin, A.; Viglione, A.
2016-12-01
Real-word data of human-flood interactions are compared to the results of stylized socio-hydrological models. These models build on numerous examples from different parts of the world and consider two main prototypes of floodplain systems. Green systems, whereby societies cope with flood risk via non-structural measures, e.g. resettling out of floodplain areas ("living with floods" approach); and Technological systems, whereby societies cope with flood risk by also via structural measures, e.g. building levees ("fighting floods" approach). The floodplain systems of the Tiber River in Rome and the Ganges-Brahmaputra-Meghna Rivers in Bangladesh systems are used as case studies. The comparison of simulations and observations shows the potential of socio-hydrological models in capturing the dynamics of risk emerging from the interactions and feedbacks between social and hydrological processes, such as learning and forgetting effects. It is then discussed how the proposed approach can contribute to a better understanding of flood risk changes and therefore support the process of disaster risk reduction.
NASA Astrophysics Data System (ADS)
García-Arias, Alicia; Ruiz-Pérez, Guiomar; Francés, Félix
2017-04-01
Vegetation plays a main role in the water balance of most hydrological systems. However, in the past it has been barely considered the effect of the interception and evapotranspiration for hydrological modelling purposes. During the last years many authors have recognised and supported ecohydrological approaches instead of traditional strategies. This contribution is aimed to demonstrate the pivotal role of the vegetation in ecohydrological models and that a better understanding of the hydrological systems can be achieved by considering the appropriate processes related to plants. The study is performed in two scales: the plot scale and the reach scale. At plot scale, only zonal vegetation was considered while at reach scale both zonal and riparian were taken into account. In order to assure the main role of the water on the vegetation development, semiarid environments have been selected for the case studies. Results show an increase of the capabilities to predict plant behaviour and water balance when interception and evapotranspiration are taken into account in the soil water balance
Simulating the influence of groundwater table fluctuation on vapor intrusion
NASA Astrophysics Data System (ADS)
Huo, J.
2017-12-01
The migration of volatile chemicals from groundwater to an overlying building is a commonly existing phenomenon around the world. Due to the distinction of hydrologic conditions among vapor intrusion sites, it is necessary to consider the effect of dominant hydrologic factors in order to obtain a precise site evaluation and a health risk assessment during the screening process. This study mainly discusses the impact of groundwater table fluctuation and other hydrological factors including porosity, permeability and soil moisture on the vapor intrusion transport. A two-dimensional model is configured to inject different typical volatile organic contaminants from EPA's Vapor Intrusion Database. Through quantifying the contaminant vapor concentration attenuation factors under the effect of groundwater table fluctuation, this study provides suggestions for indoor air sample and vapor intrusion assessment.
Effects of the human activities on the water level process of the Poyang Lake
NASA Astrophysics Data System (ADS)
Zhao, Jun-kai; Chen, Li; Yang, Yun-xian
2017-12-01
The hydrological cycles in basin is profoundly affected by human activities. Yangtze River is a world class river with complex river-lake relations in the middle reaches. As the Three Gorges Reservoir (TGR) and other controlled reservoirs in the main stream and tributaries have been put into operation, the water regimes of the main stream in the middle reaches and Poyang Lake have been changed by water impounding and sediments trapping, clean water discharged from reservoirs, accelerating the evolution of the relationship of river and lake. After entering the 21st century, autumn droughts become more serious in Poyang Lake basin; the relationship between river and lake becomes tense. In light of the hydrological data in Poyang Lake since 2000s, this article made quantitative analyses of the influences of the human activities on the variation of the Poyang Lake level by authors. The results indicate that the main stream of Yangtze River, particularly the regulation of Three Gorges Reservoir, exerts a profound influence on the variation process of the Poyang Lake level. The regulation influence of the Upper Reach of the Yangtze River’s Reservoir Group (URYRRG) could spread to Tangyin area in the middle of the lake in October.
Inter-model variability in hydrological extremes projections for Amazonian sub-basins
NASA Astrophysics Data System (ADS)
Andres Rodriguez, Daniel; Garofolo, Lucas; Lázaro de Siqueira Júnior, José; Samprogna Mohor, Guilherme; Tomasella, Javier
2014-05-01
Irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process drive uncertainties in Climate Change projections. Such uncertainties affect the impact studies, mainly when associated to extreme events, and difficult the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. The use of different climate model's projections allows to aboard uncertainties issues allowing the use of multiple runs to explore a wide range of potential impacts and its implications for potential vulnerabilities. Statistical approaches for analyses of extreme values are usually based on stationarity assumptions. However, nonstationarity is relevant at the time scales considered for extreme value analyses and could have great implications in dynamic complex systems, mainly under climate change transformations. Because this, it is required to consider the nonstationarity in the statistical distribution parameters. We carried out a study of the dispersion in hydrological extremes projections using climate change projections from several climate models to feed the Distributed Hydrological Model of the National Institute for Spatial Research, MHD-INPE, applied in Amazonian sub-basins. This model is a large-scale hydrological model that uses a TopModel approach to solve runoff generation processes at the grid-cell scale. MHD-INPE model was calibrated for 1970-1990 using observed meteorological data and comparing observed and simulated discharges by using several performance coeficients. Hydrological Model integrations were performed for present historical time (1970-1990) and for future period (2010-2100). Because climate models simulate the variability of the climate system in statistical terms rather than reproduce the historical behavior of climate variables, the performances of the model's runs during the historical period, when feed with climate model data, were tested using descriptors of the Flow Duration Curves. The analyses of projected extreme values were carried out considering the nonstationarity of the GEV distribution parameters and compared with extremes events in present time. Results show inter-model variability in a broad dispersion on projected extreme's values. Such dispersion implies different degrees of socio-economic impacts associated to extreme hydrological events. Despite the no existence of one optimum result, this variability allows the analyses of adaptation strategies and its potential vulnerabilities.
NASA Astrophysics Data System (ADS)
Yang, Fei; Zhang, Gan-Lin; Yang, Jin-Ling; Li, De-Cheng; Zhao, Yu-Guo; Liu, Feng; Yang, Ren-Min; Yang, Fan
2014-11-01
Soil water retention influences many soil properties and soil hydrological processes. The alpine meadows and steppes of the Qilian Mountains on the northeast border of the Qinghai-Tibetan Plateau form the source area of the Heihe River, the second largest inland river in China. The soils of this area therefore have a large effect on water movement and storage of the entire watershed. In order to understand the controlling factors of soil water retention and how they affect regional eco-hydrological processes in an alpine grassland, thirty-five pedogenic horizons in fourteen soil profiles along two facing hillslopes in typical watersheds of this area were selected for study. Results show that the extensively-accumulated soil organic matter plays a dominant role in controlling soil water retention in this alpine environment. We distinguished two mechanisms of this control. First, at high matric potentials soil organic matter affected soil water retention mainly through altering soil structural parameters and thereby soil bulk density. Second, at low matric potentials the water adsorbing capacity of soil organic matter directly affected water retention. To investigate the hydrological functions of soils at larger scales, soil water retention was compared by three generalized pedogenic horizons. Among these soil horizons, the mattic A horizon, a diagnostic surface horizon of Chinese Soil Taxonomy defined specially for alpine meadow soils, had the greatest soil water retention over the entire range of measured matric potentials. Hillslopes with soils having these horizons are expected to have low surface runoff. This study promotes the understanding of the critical role of alpine soils, especially the vegetated surface soils in controlling the eco-hydrological processes in source regions of the Heihe River watershed.
Integrated hydrologic and hydrodynamic modeling to assess water exchange in a data-scarce reservoir
NASA Astrophysics Data System (ADS)
Wu, Binbin; Wang, Guoqiang; Wang, Zhonggen; Liu, Changming; Ma, Jianming
2017-12-01
Integrated hydrologic and hydrodynamic modeling is useful in evaluating hydrodynamic characteristics (e.g. water exchange processes) in data-scarce water bodies, however, most studies lack verification of the hydrologic model. Here, water exchange (represented by water age) was investigated through integrated hydrologic and hydrodynamic modeling of the Hongfeng Reservoir, a poorly gauged reservoir in southwest China. The performance of the hydrologic model and parameter replacement among sub-basins with hydrological similarity was verified by historical data. Results showed that hydrological similarity based on the hierarchical cluster analysis and topographic index probability density distribution was reliable with satisfactory performance of parameter replacement. The hydrodynamic model was verified using daily water levels and water temperatures from 2009 and 2010. The water exchange processes in the Hongfeng Reservoir are very complex with temporal, vertical, and spatial variations. The temporal water age was primarily controlled by the variable inflow and outflow, and the maximum and minimum ages for the site near the dam were 406.10 d (15th June) and 90.74 d (3rd August), respectively, in 2010. Distinct vertical differences in water age showed that surface flow, interflow, and underflow appeared alternately, depending on the season and water depth. The worst water exchange situation was found in the central areas of the North Lake with the highest water ages in the bottom on both 15th June and 3rd August, in 2010. Comparison of the spatial water ages revealed that the more favorable hydraulic conditions on 3rd August mainly improved the water exchange in the dam areas and most areas of the South Lake, but had little effect on the bottom layers of the other deepest areas in the South and North Lakes. The presented framework can be applied in other data-scarce waterbodies worldwide to provide better understanding of water exchange processes.
Hydrologic processes governing near surface saturation of alpine wetlands in the Canadian Rockies
NASA Astrophysics Data System (ADS)
Westbrook, C.; Mercer, J.
2016-12-01
Alpine wetlands are vital for habitat, biodiversity, carbon cycling and water storage, but little is known about their hydrologic condition. Climate trends toward smaller mountain snowpacks that melt earlier are thought to pose a threat to the continued provision of alpine wetland ecological functions, and their existence, as it is believed they derive their water mainly from snowmelt. Our objective was to determine the hydrologic processes governing near surface saturation in alpine wetlands. We monitored the water table dynamics of three alpine wetlands in contrasting hydrogeomorphic landscape positions for two summers in Banff National Park, Canada. We concurrently monitored water balance components, and analyzed soil properties and source water geochemistry. Despite very different snow conditions between the two study years, water tables remained near the surface and relatively stable in both years, indicating wetlands are more hydrologically buffered from snowpack variations than expected. We did not find convincing evidence of hydrogeomorphic position influencing wetland water table dynamics. Instead, peat thickness seemed to be critical in regulating water table as the wetland with the thickest peat soil (>1 m) maintained water tables closest to the ground surface for the longest period of time. Thicker peat deposits may develop under convergent hydrologic flow path conditions. Our results indicate that alpine wetlands are more resilient to shifting environmental conditions than previously reported.
NASA Astrophysics Data System (ADS)
Abdo Yassin, Fuad; Wheater, Howard; Razavi, Saman; Sapriza, Gonzalo; Davison, Bruce; Pietroniro, Alain
2015-04-01
The credible identification of vertical and horizontal hydrological components and their associated parameters is very challenging (if not impossible) by only constraining the model to streamflow data, especially in regions where the vertical processes significantly dominate the horizontal processes. The prairie areas of the Saskatchewan River basin, a major water system in Canada, demonstrate such behavior, where the hydrologic connectivity and vertical fluxes are mainly controlled by the amount of surface and sub-surface water storages. In this study, we develop a framework for distributed hydrologic model identification and calibration that jointly constrains the model response (i.e., streamflows) as well as a set of model state variables (i.e., water storages) to observations. This framework is set up in the form of multi-objective optimization, where multiple performance criteria are defined and used to simultaneously evaluate the fidelity of the model to streamflow observations and observed (estimated) changes of water storage in the gridded landscape over daily and monthly time scales. The time series of estimated changes in total water storage (including soil, canopy, snow and pond storages) used in this study were derived from an experimental study enhanced by the information obtained from the GRACE satellite. We test this framework on the calibration of a Land Surface Scheme-Hydrology model, called MESH (Modélisation Environmentale Communautaire - Surface and Hydrology), for the Saskatchewan River basin. Pareto Archived Dynamically Dimensioned Search (PA-DDS) is used as the multi-objective optimization engine. The significance of using the developed framework is demonstrated in comparison with the results obtained through a conventional calibration approach to streamflow observations. The approach of incorporating water storage data into the model identification process can more potentially constrain the posterior parameter space, more comprehensively evaluate the model fidelity, and yield more credible predictions.
Hydrogeomorphic processes drive riparian vegetation establishment, growth, and longevity. The stage of vegetation development (e.g. age, composition, height, density) affects its degree of functionality with respect to hydrology, nutrient cycling, and terrestrial and aquatic hab...
Introducing hydrological information in rainfall intensity-duration thresholds
NASA Astrophysics Data System (ADS)
Greco, Roberto; Bogaard, Thom
2016-04-01
Regional landslide hazard assessment is mainly based on empirically derived precipitation-intensity-duration (PID) thresholds. Generally, two features of rainfall events are plotted to discriminate between observed occurrence and absence of occurrence of mass movements. Hereafter, a separation line is drawn in logarithmic space. Although successfully applied in many case studies, such PID thresholds suffer from many false positives as well as limited physical process insight. One of the main limitations is indeed that they do not include any information about the hydrological processes occurring along the slopes, so that the triggering is only related to rainfall characteristics. In order to introduce such an hydrological information in the definition of rainfall thresholds for shallow landslide triggering assessment, in this study the introduction of non-dimensional rainfall characteristics is proposed. In particular, rain storm depth, intensity and duration are divided by a characteristic infiltration depth, a characteristic infiltration rate and a characteristic duration, respectively. These latter variables depend on the hydraulic properties and on the moisture state of the soil cover at the beginning of the precipitation. The proposed variables are applied to the case of a slope covered with shallow pyroclastic deposits in Cervinara (southern Italy), for which experimental data of hourly rainfall and soil suction were available. Rainfall thresholds defined with the proposed non-dimensional variables perform significantly better than those defined with dimensional variables, either in the intensity-duration plane or in the depth-duration plane.
Comparison of Sequential and Variational Data Assimilation
NASA Astrophysics Data System (ADS)
Alvarado Montero, Rodolfo; Schwanenberg, Dirk; Weerts, Albrecht
2017-04-01
Data assimilation is a valuable tool to improve model state estimates by combining measured observations with model simulations. It has recently gained significant attention due to its potential in using remote sensing products to improve operational hydrological forecasts and for reanalysis purposes. This has been supported by the application of sequential techniques such as the Ensemble Kalman Filter which require no additional features within the modeling process, i.e. it can use arbitrary black-box models. Alternatively, variational techniques rely on optimization algorithms to minimize a pre-defined objective function. This function describes the trade-off between the amount of noise introduced into the system and the mismatch between simulated and observed variables. While sequential techniques have been commonly applied to hydrological processes, variational techniques are seldom used. In our believe, this is mainly attributed to the required computation of first order sensitivities by algorithmic differentiation techniques and related model enhancements, but also to lack of comparison between both techniques. We contribute to filling this gap and present the results from the assimilation of streamflow data in two basins located in Germany and Canada. The assimilation introduces noise to precipitation and temperature to produce better initial estimates of an HBV model. The results are computed for a hindcast period and assessed using lead time performance metrics. The study concludes with a discussion of the main features of each technique and their advantages/disadvantages in hydrological applications.
NASA Astrophysics Data System (ADS)
Elag, M.; Goodall, J. L.
2013-12-01
Hydrologic modeling often requires the re-use and integration of models from different disciplines to simulate complex environmental systems. Component-based modeling introduces a flexible approach for integrating physical-based processes across disciplinary boundaries. Several hydrologic-related modeling communities have adopted the component-based approach for simulating complex physical systems by integrating model components across disciplinary boundaries in a workflow. However, it is not always straightforward to create these interdisciplinary models due to the lack of sufficient knowledge about a hydrologic process. This shortcoming is a result of using informal methods for organizing and sharing information about a hydrologic process. A knowledge-based ontology provides such standards and is considered the ideal approach for overcoming this challenge. The aims of this research are to present the methodology used in analyzing the basic hydrologic domain in order to identify hydrologic processes, the ontology itself, and how the proposed ontology is integrated with the Water Resources Component (WRC) ontology. The proposed ontology standardizes the definitions of a hydrologic process, the relationships between hydrologic processes, and their associated scientific equations. The objective of the proposed Hydrologic Process (HP) Ontology is to advance the idea of creating a unified knowledge framework for components' metadata by introducing a domain-level ontology for hydrologic processes. The HP ontology is a step toward an explicit and robust domain knowledge framework that can be evolved through the contribution of domain users. Analysis of the hydrologic domain is accomplished using the Formal Concept Approach (FCA), in which the infiltration process, an important hydrologic process, is examined. Two infiltration methods, the Green-Ampt and Philip's methods, were used to demonstrate the implementation of information in the HP ontology. Furthermore, a SPARQL service is provided for semantic-based querying of the ontology.
Operational flash flood forecasting platform based on grid technology
NASA Astrophysics Data System (ADS)
Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.
2009-04-01
Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.
Drought propagation and its relation with catchment biophysical characteristics
NASA Astrophysics Data System (ADS)
Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.
2016-12-01
Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical properties, and climatic conditions is done for all the catchments. Data mining techniques are applied to identify the main exogenous and endogenous factors determining drought characteristics and propagation.
NASA Astrophysics Data System (ADS)
Hernández-López, Mario R.; Romero-Cuéllar, Jonathan; Camilo Múnera-Estrada, Juan; Coccia, Gabriele; Francés, Félix
2017-04-01
It is noticeably important to emphasize the role of uncertainty particularly when the model forecasts are used to support decision-making and water management. This research compares two approaches for the evaluation of the predictive uncertainty in hydrological modeling. First approach is the Bayesian Joint Inference of hydrological and error models. Second approach is carried out through the Model Conditional Processor using the Truncated Normal Distribution in the transformed space. This comparison is focused on the predictive distribution reliability. The case study is applied to two basins included in the Model Parameter Estimation Experiment (MOPEX). These two basins, which have different hydrological complexity, are the French Broad River (North Carolina) and the Guadalupe River (Texas). The results indicate that generally, both approaches are able to provide similar predictive performances. However, the differences between them can arise in basins with complex hydrology (e.g. ephemeral basins). This is because obtained results with Bayesian Joint Inference are strongly dependent on the suitability of the hypothesized error model. Similarly, the results in the case of the Model Conditional Processor are mainly influenced by the selected model of tails or even by the selected full probability distribution model of the data in the real space, and by the definition of the Truncated Normal Distribution in the transformed space. In summary, the different hypotheses that the modeler choose on each of the two approaches are the main cause of the different results. This research also explores a proper combination of both methodologies which could be useful to achieve less biased hydrological parameter estimation. For this approach, firstly the predictive distribution is obtained through the Model Conditional Processor. Secondly, this predictive distribution is used to derive the corresponding additive error model which is employed for the hydrological parameter estimation with the Bayesian Joint Inference methodology.
NASA Astrophysics Data System (ADS)
Zema, Demetrio Antonio; Cataldo, Maria Francesca; Denisi, Pietro; Martino, Domenico; de Vente, Joris; Boix-Fayos, Carolina
2016-04-01
Many watersheds in the Mediterranean are subject to land use changes and hydrological control works that can have important effects on their hydrological and geomorphological response. In such contexts, a better understanding of the hydrological processes and their linkage to the geomorphic evolutionary trends would help territory planners and other stakeholders to face off soil and water body degradation, optimising efficiency and cheapness of planned interventions. This study focuses on a catchment in SE Spain, Upper Taibilla (320 km2, Segura basin), which suffered an important greening-up process with increase of forest cover, decrease of agriculture activities and installation of hydrological control works during the second half of XX century. The objective was to characterize the changes in the hydrological response of the catchment in relation to the changes in their drainage area. Firstly, the actual hydrological response to precipitation was analysed at aggregated (i.e. monthly, seasonal and annual) scale, using 15 years of the most recent runoff observations collected at the outlet of Upper Taibilla river (specifically at the inlet of Taibilla reservoir). Based on the actual distribution of soil land use and texture, the studied sub-basins were discretised by a GIS software in a system of homogenous hydrological units, in order to identify the most critical areas producing surface runoff. This actual aptitude to produce runoff was compared to the sub-basin hydrological response of 1930-1940s (that is before reforestation works and check-dam installation), in order to analyse the eventual presence of evolutionary trends in basin hydrology and the whole efficiency of these works in mitigating runoff impacts. Furthermore, considering that computer prediction models are important tools for planning land use changes and other management works in basins, the applicability of two hydrological models for predicting surface runoff in the studied sub-basins was evaluated. To this aim, the continuous simulation AnnAGNPS and HEC-HMS models were applied at aggregated and event scales respectively. Their reliability in predicting surface runoff was measured by quantitative indexes (e.g. coefficient of determination and efficiency, main statistics, summary and difference measures), using the available hydrological databases. The models were then calibrated by adjusting the initial Curve Number values (the empiric parameter to which the model is very sensitive), which allowed the improvement of their runoff prediction capacity. Finally, the calibrated AnnAGNPS model was applied in Upper Taibilla under different land use scenarios, in order to derive indications and criteria for future decisions of watershed management. On the whole, the study investigated on how management and land use change are effective on the hydrological response of watersheds and needs to be explored for watershed management purposes.
Application of remote sensing to hydrological problems and floods
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.
1983-01-01
The main applications of remote sensors to hydrology are identified as well as the principal spectral bands and their advantages and disadvantages. Some examples of LANDSAT data applications to flooding-risk evaluation are cited. Because hydrology studies the amount of moisture and water involved in each phase of hydrological cycle, remote sensing must be emphasized as a technique for hydrological data acquisition.
NASA Astrophysics Data System (ADS)
Labbas, Mériem; Braud, Isabelle; Branger, Flora; Kralisch, Sven
2013-04-01
Growing urbanization and related anthropogenic processes have a high potential to influence hydrological process dynamics. Typical consequences are an increase of surface imperviousness and modifications of water flow paths due to artificial channels and barriers (combined and separated system, sewer overflow device, roads, ditches, etc.). Periurban catchments, at the edge of large cities, are especially affected by fast anthropogenic modifications. They usually consist of a combination of natural areas, rural areas with dispersed settlements and urban areas mostly covered by built zones and spots of natural surfaces. In the context of the European Water Framework Directive (2000) and the Floods Directive (2007), integrated and sustainable solutions are needed to reduce flooding risks and river pollution at the scale of urban conglomerations or whole catchments. Their thorough management requires models able to assess the vulnerability of the territory and to compare the impact of different rainwater management options and planning issues. To address this question, we propose a methodology based on a multi-scale distributed hydrological modelling approach. It aims at quantifying the impact of ongoing urbanization and stormwater management on the long-term hydrological cycle in medium-sized periurban watershed. This method focuses on the understanding and formalization of dominant periurban hydrological processes from small scales (few ha to few km2) to larger scales (few hundred km2). The main objectives are to 1) simulate both urban and rural hydrological processes and 2) test the effects of different long-term land use and water management scenarios. The method relies on several tools and data: a distributed hydrological model adapted to the characteristics of periurban areas, land use and land cover maps from different dates (past, present, future) and information about rainwater management collected from local authorities. For the application of the method, the medium-scaled catchment of Yzeron (France) is chosen. It is subjected to a fast progression of urbanization since the eighties and has been monitored for a long time period. The fully-distributed hydrological model J2000, available through the JAMS modelling framework, was found appropriate to simulate the water balance of the Yzeron catchment at a daily time step. However, it was not designed especially for periurban areas, so its structure and parameters are under adaptation. Firstly, as hydrological responses in urban areas are quicker than in rural areas, a sub-daily time step is necessary to improve the simulation of periurban hydrological processes. Therefore, J2000 was adapted to be run at a hourly time step. Secondly, in order to better take into account rainwater management, an explicit representation of sewer networks is implemented in the J2000 model whose periurban version is called J2000P. It receives urban rainwater coming from impervious surfaces connected to a combined sewer system and delivers this water to the treatment plant or directly to the river in case of sewer overflow device outflows. We will present the impact of these modifications on the simulated hydrological regime.
NASA Astrophysics Data System (ADS)
Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael
2016-04-01
It is known that a good evaluation and prediction of surface water pollution is mainly limited by the monitoring strategy and the capability of the hydrological water quality model to reproduce the internal processes. To this end, a compromise sampling frequency, which can reflect the dynamical behaviour of leached nutrient fluxes responding to changes in land use, agriculture practices and point sources, and appropriate process-based water quality model are required. The objective of this study was to test the identification of hydrological water quality model parameters (nitrogen and phosphorus) under two different monitoring strategies: (1) regular grab-sampling approach and (2) regular grab-sampling with additional monitoring during the hydrological events using automatic samplers. First, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was successfully calibrated (1994-1998) for discharge (NSE = 0.86), nitrate-N (lowest NSE for nitrate-N load = 0.69), particulate phosphorus and soluble phosphorus in the Selke catchment (463 km2, central Germany) for the period 1994-1998 using regular grab-sampling approach (biweekly to monthly for nitrogen and phosphorus concentrations). Second, the model was successfully validated during the period 1999-2010 for discharge, nitrate-N, particulate-phosphorus and soluble-phosphorus (lowest NSE for soluble phosphorus load = 0.54). Results, showed that when additional sampling during the events with random grab-sampling approach was used (period 2011-2013), the hydrological model could reproduce only the nitrate-N and soluble phosphorus concentrations reasonably well. However, when additional sampling during the hydrological events was considered, the HYPE model could not represent the measured particulate phosphorus. This reflects the importance of suspended sediment during the hydrological events increasing the concentrations of particulate phosphorus. The HYPE model could reproduce the total phosphorus during the period 2011-2013 only when the sediment transport-related model parameters was re-identified again considering the automatic sampling during the high-flow conditions.
NASA Astrophysics Data System (ADS)
Haberlandt, U.; Gerten, D.; Schaphoff, S.; Lucht, W.
Dynamic global vegetation models are developed with the main purpose to describe the spatio-temporal dynamics of vegetation at the global scale. Increasing concern about climate change impacts has put the focus of recent applications on the sim- ulation of the global carbon cycle. Water is a prime driver of biogeochemical and biophysical processes, thus an appropriate representation of the water cycle is crucial for their proper simulation. However, these models usually lack thorough validation of the water balance they produce. Here we present a hydrological validation of the current version of the LPJ (Lund- Potsdam-Jena) model, a dynamic global vegetation model operating at daily time steps. Long-term simulated runoff and evapotranspiration are compared to literature values, results from three global hydrological models, and discharge observations from various macroscale river basins. It was found that the seasonal and spatial patterns of the LPJ-simulated average values correspond well both with the measurements and the results from the stand-alone hy- drological models. However, a general underestimation of runoff occurs, which may be attributable to the low input dynamics of precipitation (equal distribution within a month), to the simulated vegetation pattern (potential vegetation without anthro- pogenic influence), and to some generalizations of the hydrological components in LPJ. Future research will focus on a better representation of the temporal variability of climate forcing, improved description of hydrological processes, and on the consider- ation of anthropogenic land use.
Characterising the hydrological regime of an ungauged temporary river system: a case study.
D'Ambrosio, Ersilia; De Girolamo, Anna Maria; Barca, Emanuele; Ielpo, Pierina; Rulli, Maria Cristina
2017-06-01
Temporary streams are characterised by specific hydrological regimes, which influence ecosystem processes, groundwater and surface water interactions, sediment regime, nutrient delivery, water quality and ecological status. This paper presents a methodology to characterise and classify the regime of a temporary river in Southern Italy based on hydrological indicators (HIs) computed with long-term daily flow records. By using a principal component analysis (PCA), a set of non-redundant indices were identified describing the main characteristics of the hydrological regime in the study area. The indicators identified were the annual maximum 30- and 90-day mean (DH4 and DH5), the number of zero flow days (DL6), flow permanence (MF) and the 6-month seasonal predictability of dry periods (SD6). A methodology was also tested to estimate selected HIs in ungauged river reaches. Watershed characteristics such as catchment area, gauging station elevation, mean watershed slope, mean annual rainfall, land use, soil hydraulic conductivity and available water content were derived for each site. Selected indicators were then linked to the catchment characteristics using a regression analysis. Finally, MF and SD6 were used to classify the river reaches on the basis of their degree of intermittency. The methodology presented in this paper constitutes a useful tool for ecologists and water resource managers in the Water Framework Directive implementation process, which requires a characterisation of the hydrological regime and a 'river type' classification for all water bodies.
NASA Astrophysics Data System (ADS)
Ma, Kai; Huang, Xiaorong; Guo, Biying; Wang, Yanqiu; Gao, Linyun
2018-06-01
Land use changes alter the hydrological characteristics of the land surface, and have significant impacts on hydrological cycle and water balance, the analysis of complex effects on natural systems has become one of the main concerns. In this study, we generated the land use conversion matrixes using ArcGIS and selected several landscape indexes (contagion index, CONTAG, Shannon's diversity index, SHDI, etc.) to evaluate the impact of land use/cover changes on hydrological process in the upper reaches of Minjiang River. We also used a statistical regression model which was established based on hydrology and precipitation data during the period of 1959-2008 to simulate the impacts of different land use conditions on rainfall and runoff in different periods. Our results showed that the simulated annual mean flow from 1985 to 1995 and 1995 to 2008 are 9.19 and 1.04 m3 s-1 lower than the measured values, respectively, which implied that the ecological protection measures should be strengthened in the study area. Our study could provide a scientific basis for water resource management and proper land use planning of upper reaches of Minjiang River.
Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco
2014-01-01
Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917
Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco
2014-01-01
Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.
Abdi, Reza; Yasi, Mehdi
2015-01-01
The assessment of environmental flows in rivers is of vital importance for preserving riverine ecosystem processes. This paper addresses the evaluation of environmental flow requirements in three reaches along a typical perennial river (the Zab transboundary river, in north-west Iran), using different hydraulic, hydrological and ecological methods. The main objective of this study came from the construction of three dams and inter-basin transfer of water from the Zab River to the Urmia Lake. Eight hydrological methods (i.e. Tennant, Tessman, flow duration curve analysis, range of variability approach, Smakhtin, flow duration curve shifting, desktop reserve and 7Q2&10 (7-day low flow with a 2- and 10-year return period)); two hydraulic methods (slope value and maximum curvature); and two habitat simulation methods (hydraulic-ecologic, and Q Equation based on water quality indices) were used. Ecological needs of the riverine key species (mainly Barbus capito fish), river geometries, natural flow regime and the environmental status of river management were the main indices for determining the minimum flow requirements. The results indicate that the order of 35%, 17% and 18% of the mean annual flow are to be maintained for the upper, middle and downstream river reaches, respectively. The allocated monthly flow rates in the three Dams steering program are not sufficient to preserve the Zab River life.
NASA Astrophysics Data System (ADS)
Han, Jianqiao; Zhang, Wei; Yuan, Jing; Fan, Yongyang
2018-03-01
Elucidating the influence of dams on fluvial processes can benefit river protection and basin management. Based on hydrological and topographical data, we analyzed channel evolution in anabranching reaches under changing hydrological regimes influenced by the Three Gorges Dam. The main conclusions are as follows: 1) the channels of specific anabranching reaches were defined as flood trend channels or low-flow trend channels according to the distribution of their flow characteristics. The anabranching reaches were classified as T1 or T2. The former is characterized by the correspondence between the flood trend and branch channels, and the latter is characterized by the correspondence between the flood trend and main channels; 2) on the basis of the new classification, the discrepant patterns of channel evolution seen in anabranching reaches were unified into a pattern that showed flood trend channels shrinking and low-flow trend channels expanding; 3) flood abatement and the increased duration of moderate flow discharges are the main factors that affect channel adjustments in anabranching reaches after dam construction; and 4) in the next few decades, the pattern of channel evolution will remain the same as that of the Three Gorges Dam operation. That is, the morphology will fully adapt to a flow with a low coefficient of variation. Our results are of interest in the management of the Yangtze River and other rivers influenced by dams.
Evaluation of Macroinvertebrate Data Based on Autoecological Information
NASA Astrophysics Data System (ADS)
Juhász, I.
2016-12-01
Various data (biological, chemical, hydrological and morphological) have been gathered within the frame of the monitoring of the Water Framework Directive from 2007 in Hungary. This data only used a status assessment of certain water bodies in Hungary. The macroinvertebrates indicate many environmental factors well; therefore, they are very useful in detecting changes in the status of an environment. The main aim in this research was to investigate changes in environmental variables and decide how these variables cause big changes in the macroinvertebrate fauna. The macroinvertebrate data was processed using the ASTERICS 4.0.4 program. The program calculated some important metrics (i.e., microhabitat distributions, longitudinal zonation, functional feeding guilds, etc.). These metrics were compared with the chemical and hydrological data. The main conclusion is that if we have enough of a frequency and quality of macroinvertebrate data, we can understand changes in the environment of an ecosystem.
NASA Astrophysics Data System (ADS)
Van Hoy, D.; Mahmood, T. H.; Jeannotte, T.; Todhunter, P. E.
2017-12-01
The recent shift in hydroclimatic conditions in the Northern Great Plains (NGP) has led to an increase in precipitation, rainfall rate, and wetland connectivity over the last few decades. These changes yield an integrated response resulting in high mean annual streamflow and subsequent flooding in many NGP basins such as the terminal Devils Lake Basin (DLB). In this study, we investigate the impacts of recent climatic wetting on distributed hydrologic responses such as snow processes and streamflow using a field-tested and physically-based cold region hydrologic model (CRHM). CHRM is designed for cold prairie regions and has modules to simulate major processes such as blowing snow transport, sublimation, interception, frozen soil infiltration, snowmelt and subsequent streamflow generation. Our modeling focuses on a tributary basin of the DLB known as the Mauvais Coulee Basin (MCB). Since there were no snow observations in the MCB, we conducted a detailed snow survey at distributed locations estimating snow depth, density, and snow water equivalent (SWE) using a prairie snow tube four times during winter of 2016-17. The MCB model was evaluated against distributed snow observations and streamflow measured at the basin outlet (USGS) for the year 2016-2017. Preliminary results indicate that the simulated SWEs at distributed locations and streamflow (NSE ≈ 0.70) are in good agreement with observations. The simulated SWE maps exhibit large spatiotemporal variation during 2016-17 winter due to spatial variability in precipitation, snow redistribution from stubble field to wooded areas, and snow accumulations in small depressions across the subbasins. The main source of snow appears to be the hills and ridges of the eastern and western edges of the basin, while the main sink is the large flat central valleys. The model will be used to examine the effect of recent changes to precipitation and temperature on snow processes and subsequent streamflow for 2004-2017 season. We will also investigate the hydrologic sensitivity to precipitation and temperature changes by altering input temperature and precipitation. Finally, our findings will point toward future process-based studies and simulated hydrologic responses that can be used to prepare flood hazard maps for cities around Devils Lake.
NASA Astrophysics Data System (ADS)
Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael
2014-05-01
Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global search and Bayesian inference schemes.
[Review on HSPF model for simulation of hydrology and water quality processes].
Li, Zhao-fu; Liu, Hong-Yu; Li, Yan
2012-07-01
Hydrological Simulation Program-FORTRAN (HSPF), written in FORTRAN, is one ol the best semi-distributed hydrology and water quality models, which was first developed based on the Stanford Watershed Model. Many studies on HSPF model application were conducted. It can represent the contributions of sediment, nutrients, pesticides, conservatives and fecal coliforms from agricultural areas, continuously simulate water quantity and quality processes, as well as the effects of climate change and land use change on water quantity and quality. HSPF consists of three basic application components: PERLND (Pervious Land Segment) IMPLND (Impervious Land Segment), and RCHRES (free-flowing reach or mixed reservoirs). In general, HSPF has extensive application in the modeling of hydrology or water quality processes and the analysis of climate change and land use change. However, it has limited use in China. The main problems with HSPF include: (1) some algorithms and procedures still need to revise, (2) due to the high standard for input data, the accuracy of the model is limited by spatial and attribute data, (3) the model is only applicable for the simulation of well-mixed rivers, reservoirs and one-dimensional water bodies, it must be integrated with other models to solve more complex problems. At present, studies on HSPF model development are still undergoing, such as revision of model platform, extension of model function, method development for model calibration, and analysis of parameter sensitivity. With the accumulation of basic data and imorovement of data sharing, the HSPF model will be applied more extensively in China.
Hydrologic processes influencing meadow ecosystems [chapter 4
Mark L. Lord; David G. Jewett; Jerry R. Miller; Dru Germanoski; Jeanne C. Chambers
2011-01-01
The hydrologic regime exerts primary control on riparian meadow complexes and is strongly influenced by past and present geomorphic processes; biotic processes; and, in some cases, anthropogenic activities. Thus, it is essential to understand not only the hydrologic processes that operate within meadow complexes but also the interactions of meadow hydrology with other...
Water ecosystem service function assessment based on eco-hydrological process in Luanhe Basin,China
NASA Astrophysics Data System (ADS)
Zhang, C.; Hao, C.; Qin, T.; Wang, G.; Weng, B.
2012-12-01
At present, ecological water are mainly occupied by a rapid development of social economic and population explosion, which seriously threat the ecological security and water security in watershed and regional scale. Due to the lack of a unified standard of measuring the benefit of water resource, social economic and ecosystem, the water allocation can't take place in social economic and ecosystem. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. Throughout the researches of water ecosystem service, a clear identification of the connection of water ecosystem service function has not been established, and eco-economic approach can't meet the practical requirement of water allocation. Based on "nature-artificiality" dual water cycle theory and eco-hydrological process, this paper proposes a connection and indicator system of water ecosystem service function. In approach, this paper establishes an integrated assessment approach through prototype observation technology, numerical simulation, physical simulation and modern geographic information technology. The core content is to couple an eco-hydrological model, which involves the key processes of distributed hydrological model (WEP), ecological model (CLM-DGVM), in terms of eco-hydrological process. This paper systematically evaluates the eco-hydrological process and evolution of Luanhe Basin in terms of precipitation, ET, runoff, groundwater, ecosystem's scale, form and distribution. According to the results of eco-hydrological process, this paper assesses the direct and derived service function. The result indicates that the general service function of 2010 has minor increase than 2007, however the general function of two years are in common level; Compare with different region, the upstream, middle stream and downstream indicates "worse", "common" and "good" level respectively. The first three derived functions are leisure, offer products and industrial water use. In the end, this paper investigates the evolution of water ecosystem service function under rising temperatures and elevated CO2 concentration scenarios in Luanhe Basin through eco-hydrological model. The results elaborate that the water ecosystem service functions would decline when temperature rising, and warming to 1.5 degree is the mutation point of sharp drop; Increased CO2 concentration scenario will improve the direct service function in the whole Basin; under the overlying scenario, different region shows different results, the direct service function will increased in upstream and middle stream, direct service function will drop in downstream. A comprehensive analysis indicates that the rising temperature is the major driven of water ecosystem service function in Luanhe Basin.
NASA Astrophysics Data System (ADS)
Gance, J.; Sailhac, P.; Malet, J.; Supper, R.; Jochum, B.; Ottowitz, D.; Grandjean, G.
2013-12-01
Movements of water in the topsoil (infiltration, run-off and evaporation) influence changes in slope stability which is the main controlling factor of landslide triggering (e.g. van Asch et al., 1999). Among the petrophysical parameters that can provide time-lapse sections of the topsoil, we consider the electrical conductivity for its sensitivity to soil water contents. Based on recent works which showed the possibility of monitoring the hydrological response of a clay-shale slope to a controlled rainfall experiment (Travelletti et al., 2012), we installed a permanent electrical monitoring experiment at the Super-Sauze landslide for long-term monitoring (one year) of natural meteorological events. We used the GEOMON4D resistivimeter, developed by the Austrian Geological Survey (Vienna, Austria) for experiments needing high rate of data acquisition, records of full signal samples for noise detection, remote controlled management and automatic data transfer (Supper et al., 2002, 2003 & 2004). The electrode positions varying with time, we installed two terrestrial optical cameras to characterize the changes in dipole geometry. Several hydrological sensors were installed along the profile to measure soil temperature, water temperature and conductivity, ground water level and soil humidity in the vadose zone. The main challenge is the processing of ca. 4.2 million of electrical resistivity data. In this difficult context, the potential factors influencing electrical resistivity with time without modification of soil saturation are the relative changes in the dipole geometry (linked to the displacement of the electrodes), changes in soil and water temperature, change in material porosity due to compaction/dilatation caused by the landslide movement. Therefore, before any inversion of data, we verify the presence of possible 3D effects, and assess the measurement accuracy and uncertainty. An apparent resistivity variation threshold, from which a modification of the saturation can be attributed, is determined. From those first results, we first investigate changes in the apparent resistivity. Responses to different hydrological processes (such as soil freezing/thawing, snow melting, high intensity rainfall, debris flow events) occurring during the monitoring period are detectable on the inversed resistivities over short periods. For example The results of the study highlight the difficulty to monitor hydrological changes on a clay-shale landslide, and will permit to improve such future device. Although a quantitative interpretation of the apparent resistivity is impossible, typical responses are clearly detectable and allows a first qualitative interpretation of hydrological changes in the landslide
NASA Astrophysics Data System (ADS)
Knoben, Wouter; Woods, Ross; Freer, Jim
2016-04-01
Conceptual hydrologic models consist of a certain arrangement of spatial and temporal dynamics consisting of stores, fluxes and transformation functions, depending on the modeller's choices and intended use. They have the advantages of being computationally efficient, being relatively easy model structures to reconfigure and having relatively low input data demands. This makes them well-suited for large-scale and large-sample hydrology, where appropriately representing the dominant hydrologic functions of a catchment is a main concern. Given these requirements, the number of parameters in the model cannot be too high, to avoid equifinality and identifiability issues. This limits the number and level of complexity of dominant hydrologic processes the model can represent. Specific purposes and places thus require a specific model and this has led to an abundance of conceptual hydrologic models. No structured overview of these models exists and there is no clear method to select appropriate model structures for different catchments. This study is a first step towards creating an overview of the elements that make up conceptual models, which may later assist a modeller in finding an appropriate model structure for a given catchment. To this end, this study brings together over 30 past and present conceptual models. The reviewed model structures are simply different configurations of three basic model elements (stores, fluxes and transformation functions), depending on the hydrologic processes the models are intended to represent. Differences also exist in the inner workings of the stores, fluxes and transformations, i.e. the mathematical formulations that describe each model element's intended behaviour. We investigate the hypothesis that different model structures can produce similar behavioural simulations. This can clarify the overview of model elements by grouping elements which are similar, which can improve model structure selection.
Designing for knowledge: bridging socio-hydrological monitoring and beyond
NASA Astrophysics Data System (ADS)
Mao, F.; Clark, J.; Buytaert, W.; Ochoa-Tocachi, B. F.; Hannah, D. M.
2016-12-01
Many methods and applications have been developed to research socio-hydrological systems, such as participatory monitoring, environmental big data processing and sensor network data transmission. However, these data-centred activities are insufficient to guarantee successful knowledge co-generation, decision making or governance. This research suggests a shift of attentions in designing socio-hydrological monitoring tools, from designing for data to designing for knowledge (DfK). Compared to the former strategy, DfK has at least three features as follows. (1) Why monitor? DfK demands the data produced by the newly introduced monitoring application to have potentials to generate socio-hydrological knowledge that supports decision making or management. It means that when designing a monitoring tool, we should not only answer how to collect data, but also questions such as how to best use the collected data in the form of knowledge. (2) What is the role of monitoring? DfK admits that the socio-hydrological data and knowledge generated by monitoring is just one of many kinds to support decision making and management. It means that the importance of monitoring and scientific evidence should not be overestimated, and knowledge cogeneration and synthesis should be considered in advance in the monitoring design process. (3) Who participate? DfK implies a wider engagement of stakeholders, which is not restricted between volunteers as data collectors and providers, and scientist and researcher communities as main data users. It requires a broader consideration of users, including not only data collectors, processors and interpreters, but also local and indigenous knowledge providers, and decision makers who use the knowledge and data. In summary, this research proposes a knowledge-centred strategy in designing participatory socio-hydrological monitoring tools, in order to make monitoring more useful and effective.
Analysis on flood generation processes by means of a continuous simulation model
NASA Astrophysics Data System (ADS)
Fiorentino, M.; Gioia, A.; Iacobellis, V.; Manfreda, S.
2006-03-01
In the present research, we exploited a continuous hydrological simulation to investigate on key variables responsible of flood peak formation. With this purpose, a distributed hydrological model (DREAM) is used in cascade with a rainfall generator (IRP-Iterated Random Pulse) to simulate a large number of extreme events providing insight into the main controls of flood generation mechanisms. Investigated variables are those used in theoretically derived probability distribution of floods based on the concept of partial contributing area (e.g. Iacobellis and Fiorentino, 2000). The continuous simulation model is used to investigate on the hydrological losses occurring during extreme events, the variability of the source area contributing to the flood peak and its lag-time. Results suggest interesting simplification for the theoretical probability distribution of floods according to the different climatic and geomorfologic environments. The study is applied to two basins located in Southern Italy with different climatic characteristics.
Field evaluations of a forestry version of DRAINMOD-NII model
S. Tian; M. A. Youssef; R.W. Skaggs; D.M. Amatya; G.M. Chescheir
2010-01-01
This study evaluated the performance of the newly developed forestry version of DRAINMOD-NII model using a long term (21-year) data set collected from an artificially drained loblolly pine (Pinus taeda L.) plantation in eastern North Carolina, U.S.A. The model simulates the main hydrological and biogeochemical processes in drained forested lands. The...
Snow multivariable data assimilation for hydrological predictions in Alpine sites
NASA Astrophysics Data System (ADS)
Piazzi, Gaia; Thirel, Guillaume; Campo, Lorenzo; Gabellani, Simone; Stevenin, Hervè
2017-04-01
Snowpack dynamics (snow accumulation and ablation) strongly impacts on hydrological processes in Alpine areas. During the winter season the presence of snow cover (snow accumulation) reduces the drainage in the basin with a resulting lower watershed time of concentration in case of possible rainfall events. Moreover, the release of the significant water volume stored in winter (snowmelt) considerably contributes to the total discharge during the melting period. Therefore when modeling hydrological processes in snow-dominated catchments the quality of predictions deeply depends on how the model succeeds in catching snowpack dynamics. The integration of a hydrological model with a snow module allows improving predictions of river discharges. Besides the well-known modeling limitations (uncertainty in parameterizations; possible errors affecting both meteorological forcing data and initial conditions; approximations in boundary conditions), there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine several independent snow-related data sources (model simulations, ground-based measurements and remote sensed observations) in order to obtain the most likely estimate of snowpack state. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model strengthened by a multivariable DA framework for hydrological purposes. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of a DA scheme enables to assimilate simultaneously ground-based observations of different snow-related variables (snow depth, snow density, surface temperature and albedo). SMASH performances are evaluated by using observed data supplied by meteorological stations located in three experimental Alpine sites: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). A comparison analysis between the resulting performaces of Particle Filter and Ensemble Kalman Filter schemes is shown.
NASA Astrophysics Data System (ADS)
Bormann, H.; Diekkrüger, B.
2003-04-01
A conceptual model is presented to simulate the water fluxes of regional catchments in Benin (West Africa). The model is applied in the framework of the IMPETUS project (an integrated approach to the efficient management of scarce water resources in West Africa) which aims to assess the effects of environmental and anthropogenic changes on the regional hydrological processes and on the water availability in Benin. In order to assess the effects of decreasing precipitation and increasing human activities on the hydrological processes in the upper Ouémé valley, a scenario analysis is performed to predict possible changes. Therefore a regional hydrological model is proposed which reproduces the recent hydrological processes, and which is able to consider the changes of landscape properties.The study presented aims to check the validity of the conceptual and lumped model under the conditions of the subhumid tree savannah and therefore analyses the importance of possible sources of uncertainty. Main focus is set on the uncertainties caused by input data, model parameters and model structure. As the model simulates the water fluxes at the catchment outlet of the Térou river (3133 km2) in a sufficient quality, first results of a scenario analysis are presented. Changes of interest are the expected future decrease in amount and temporal structure of the precipitation (e.g. minus X percent precipitation during the whole season versus minus X percent precipitation in the end of the rainy season, alternatively), the decrease in soil water storage capacity which is caused by erosion, and the increasing consumption of ground water for drinking water and agricultural purposes. Resuming from the results obtained, the perspectives of lumped and conceptual models are discussed with special regard to available management options of this kind of models. Advantages and disadvantages compared to alternative model approaches (process based, physics based) are discussed.
Multivariate missing data in hydrology - Review and applications
NASA Astrophysics Data System (ADS)
Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.
2017-12-01
Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.
Trans-Himalayan water contributions to river discharge
NASA Astrophysics Data System (ADS)
Andermann, Christoff; Stieglitz, Thomas; Schuessler, Jan A.; Parajouli, Binod
2017-04-01
Hydrological processes in high mountains are not well understood. Groundwater is commonly considered to be of little importance in the mountain water balance, while direct runoff, snow and ice melt are thought to be the principal hydrological buffer. We present new insights into hydrological fluxes between major reservoirs in a trans-Himalayan catchment. The study area is the Kali Gandaki catchment, rising in the dry Tibetan interior, carving through the high Himalayas and draining the full width of the foothills to the Ganges foreland. The catchment has a well-defined monsoon climate, with pronounced annual wet and dry seasons and a clear separation of wind- and leeward regions. We have sampled the main river and its tributaries as well as several springs during the four hydrological seasons (winter, pre-monsoon, monsoon, post-monsoon). We have measured major element abundances as well as 222Rn in situ, as a tracer for groundwater contribution. These measurements are placed in a context of topographic analyses as well as continuous discharge and precipitation measurements. Furthermore, we have equipped two sites with continuous water samplers, sampling over > 4 monsoon seasons, allowing us to resolve the seasonal hydrological dynamic range on a very high temporal resolution. Chemical fluxes vary spatially over several orders of magnitude, showing a systematic downstream dilution trend for most major elements during all hydrological seasons. High initial concentrations derive from evaporite deposits in the uppermost part of the catchment, constituting a large scale, natural salt tracer experiment. The well-defined decline of solute concentrations along the main river, paired with constraints on the composition of lateral water inputs downstream allow the calculation of the spatial distribution of additional hydrological fluxes, by applying end member mixing modeling. Continuous river stage and bulk dissolved load (electrical conductivity) monitoring depict well-defined diurnal cycles in water temperature, stage level and water chemistry. These diurnal cycles have a profound impact on the chemical concentrations and need to be corrected for to estimate representative geochemical fluxes for the full river and end member mixing modeling. Radon and trace element data indicate that groundwater contributions are primarily associated with the main tectonic structures of the Himalayan range, but also concentrate on the steep southern mountain front, and that groundwater outflow from the Lesser Himalayas is limited during baseflow season. Over the seasons the chemical dilution signature across the Himalayan range is persistent. However, specific elements have temporally distinct dilution signatures highlighting the alternating contribution of different hydrological compartments over the annual hydrological cycle. Our analysis allows to decipher the hydrological contribution of different water reservoirs to the surface water discharge in rivers, along a major Himalayan stream. Our results highlight the volumetric importance of a high mountain deep-groundwater storage compartment across the Himalayan mountain belt and provides first order quantification of groundwater contribution to stream flow.
Hydromorphological processes of Dongting Lake in China between 1951 and 2014
NASA Astrophysics Data System (ADS)
Yu, Yawen; Mei, Xuefei; Dai, Zhijun; Gao, Jinjuan; Li, Jingbao; Wang, Jie; Lou, Yaying
2018-07-01
Under the impact of intensive anthropogenic activities and in the context of global climate change, the hydromorphological processes of most lakes around the world have changed dramatically. Here, based on hydrologic and topographic data, we analyzed secular variations in hydromorphological characteristics and their influencing factors at Dongting Lake, the second-largest freshwater lake in China. The entire time series (1951-2014) was divided into four subperiods based on the anthropogenic modifications of the Changjiang (Yangtze) River, including the construction of the Lower Jingjiang Cutoff Project and the operation of the Gezhou Dam (GD) and the Three Gorges Dam (TGD). The results indicated that there were obvious stepwise decreasing trends in the annual water discharge and suspended sediment discharge (SSD) from 1951 to 2014. Seasonal differences in water discharge and SSD over the recent 60 years exhibited a tendency of "less flooding during the flood season and more drying during the dry season". Meanwhile, the deposition-erosion budget of Dongting Lake shifted from a deposition rate of 120 × 106 t/yr from 1951 to 2003 to an erosion rate of 2 × 106 t/yr with the serious degradation of the Ouchi and Xiangjiang deltas after 2003. The hydrological processes of Dongting Lake are dominated by different anthropogenic activities at different stages. The Jingjiang Cutoff Project is the main driver of the decreases in water discharge and SSD from 1967 to 1980. The operation of the GD along the Changjiang River and other reservoirs, as well as land-use changes in the Dongting Lake basin, should be responsible for the hydrological variations from 1981 to 2003. The high sediment retention rate, geometric adjustment of the channel, and flow regulation induced by the operation of the TGD are the main drivers for the hydromorphological variations in Dongting Lake in 2004-2014.
NASA Astrophysics Data System (ADS)
Setegn, S. G.; Ortiz, J.; Melendez, J.; Barreto, M.; Torres-Perez, J. L.; Guild, L. S.
2015-12-01
There are limited studies in Puerto Rico that shows the water resources availability and variability with respect to changing climates and land use. The main goal of the HICE-PR (Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): the Río Loco Watershed (southwest coast PR) project which was funded by NASA is to evaluate the impacts of land use/land cover changes on the quality and extent of coastal and marine ecosystems (CMEs) in two priority watersheds in Puerto Rico (Manatí and Guánica).The main objective of this study is to set up a physically based spatially distributed hydrological model, Soil and Water Assessment Tool (SWAT) for the analysis of hydrological processes in the Rio Grande de Manati river basin. SWAT (soil and water assessment tool) is a spatially distributed watershed model developed to predict the impact of land management practices on water, sediment and agricultural chemical yields in large complex watersheds. For efficient use of distributed models for hydrological and scenario analysis, it is important that these models pass through a careful calibration and uncertainty analysis. The model was calibrated and validated using Sequential Uncertainty Fitting (SUFI-2) calibration and uncertainty analysis algorithms. The model evaluation statistics for streamflows prediction shows that there is a good agreement between the measured and simulated flows that was verified by coefficients of determination and Nash Sutcliffe efficiency greater than 0.5. Keywords: Hydrological Modeling; SWAT; SUFI-2; Rio Grande De Manati; Puerto Rico
NASA Astrophysics Data System (ADS)
Davis, J. M.; McDowell, W. H.; Campbell, J. E.; Hristov, A. N.
2010-12-01
Developing sustainable agricultural practices and policies requires an understanding of the hydrological and biological processes that control nutrient fluxes and how those processes are manifested in nutrient loading of surface water bodies. Groundwater and surface water from the UNH Organic Research Dairy, located in southeast New Hampshire, flow into the Lamprey River and then into the Great Bay, New Hampshire; both are experiencing increasing nutrient loads. The farm hosts approximately 80 Jersey cows (40 milking) and is located on relatively thin (<10m) glacial deposits that include sandy glacial till moraines, an ice-contact delta, and marine silt and clay overlying fractured calcareous quartzite. Recharge of precipitation is the dominant mode through which nutrients are introduced into the hydrologic system. Intensive meteorological, hydrological, and biogeochemical monitoring of a 35 hectare watershed that includes the main farm operation buildings and several pastures has been underway since June 2009. A three-dimensional transient unsaturated-saturated groundwater flow model was developed using LIDAR topography and detailed field mapping. The transient model was calibrated to observed water level and streamflow observations. Model results suggest that summer recharge rates vary considerably across the site and depth to the water table is the dominant control on the recharge flux. Areas having depth to water of 1-2 m experience the greatest recharge (up to 60% of precipitation). Areas with deeper water tables experience greater evapotranspiration from the vadose zone, and shallower water tables experience greater runoff. Water budget calculations suggest that the hydrologic fluxes occur predominately in the shallow groundwater, wetlands, and small surface streams draining the watershed. High dissolved nitrogen (N) concentrations (up to an average concentration of 35 mg N/L) are observed in groundwater immediately downgradient from the main farm operation and decrease more than an order of magnitude along the flowpaths. However, Nitrogen-15 concentrations do not change appreciably along flowpaths, suggesting that reductions in N concentrations are primarily due to dilution rather than denitrification. Our overall objective is to understand how farm hydrology and biogeochemistry are linked to farm management. Our understanding of biophysical feedbacks and functional links can be used to guide sustainable management actions, informing decisions about the timing and location of manure applications and other farm operations.
Prevention of adverse climate change impacts on water resources
NASA Astrophysics Data System (ADS)
Fosumpaur, P.
2003-04-01
The water resources design is generally based on the assumption of the stationary hydrological process and the reservoir storage is obviously evaluated in simulated flow series derived by the synthetic hydrology methods. Recently, results of numerous studies and major flood events have clearly proved that the variation of meteorological and hydrological parameters are beyond the bounds of the stationary process. These changes are related to the global climate change, which has been emphasised by the IPCC (International Panel of Climate Change) since the beginning of the 80s. Regional scenarios of the climate change are downscaled from the GCM and they are characterised by considerable variance. This uncertainty enters hydrological models of a catchment runoff which quantify impacts of the global climate change on the river flow regime. A number of studies have dealt with impacts of hydrological regime changes on water resources planning. They have shown that the variability of the reservoir storage-yield curve is seriously high. This study is aimed at the design of preventive actions based on the adaptation principle which is known from cybernetics. These prevention measures should be designed with respect to the proper identification of risks. Thus, the risk analysis should be considered. The main goals of the study are as follows: 1) Proposition of the strategic preventive actions which will be aimed to reassess particular reservoir functions with respect to actual and predicted conditions of the environment. This topic includes a potential reassessment of the capacity of particular reservoir storages. 2) Design of the system of real-time adaptive actions in the real reservoir operation to optimize the measure of the risk related to the extreme hydrological events as floods and hydrological droughts. This research has been supported by the grants No. 103/02/D049, No. 103/01/0201 and No. 103/02/0606 of the Grant Agency of the Czech Republic.
Coupling of Noah-MP and the High Resolution CI-WATER ADHydro Hydrological Model
NASA Astrophysics Data System (ADS)
Moreno, H. A.; Goncalves Pureza, L.; Ogden, F. L.; Steinke, R. C.
2014-12-01
ADHydro is a physics-based, high-resolution, distributed hydrological model suitable for simulating large watersheds in a massively parallel computing environment. It simulates important processes such as: rainfall and infiltration, snowfall and snowmelt in complex terrain, vegetation and evapotranspiration, soil heat flux and freezing, overland flow, channel flow, groundwater flow and water management. For the vegetation and evapotranspiration processes, ADHydro uses the validated community land surface model (LSM) Noah-MP. Noah-MP uses multiple options for key land-surface hydrology and was developed to facilitate climate predictions with physically based ensembles. This presentation discusses the lessons learned in coupling Noah-MP to ADHydro. Noah-MP is delivered with a main driver program and not as a library with a clear interface to be called from other codes. This required some investigation to determine the correct functions to call and the appropriate parameter values. ADHydro runs Noah-MP as a point process on each mesh element and provides initialization and forcing data for each element. Modeling data are acquired from various sources including the Soil Survey Geographic Database (SSURGO), the Weather Research and Forecasting (WRF) model, and internal ADHydro simulation states. Despite these challenges in coupling Noah-MP to ADHydro, the use of Noah-MP provides the benefits of a supported community code.
NASA Astrophysics Data System (ADS)
Xu, K.; Wu, C.; Hu, B.; Niu, J.
2017-12-01
Drought is one of the major natural hazards that can have devastating impacts on the regional environment, agriculture, and water resources. Previous studies have conducted the assessment of historic changes in meteorological drought over various regional scales but rarely considered hydrological drought due to limited hydrological observations. Here, we use a long-term (1960-2012) gridded hydro-meteorological data to present a comparative analysis of meteorological and hydrological drought in the Pearl River basin in southern China using the standardized precipitation index (SPI) and the standardized runoff index (SRI). The variation in SPI and SRI at four different timescales (1-, 3-, 6-, and 12-month) is investigated using the Mann-Kendall (M-K) method and continuous wavelet transform (CWT). The results indicate that the correlation between SPI and SRI is strong over the Pearl River basin and tends to be stronger at the longer timescale. Meanwhile, the periodic oscillation pattern of SPI becomes more consistent with that of SRI with the increased timescale. The SPI can be used as a substitute for SRI to represent the hydrological drought at the long-term scale. Overall there is a noticeably wetting trend mainly in the eastern parts and a significant drying trend mainly in the western regions and the downstream area of the Pearl River basin. The variability of meteorological drought is significant mainly in the eastern and western regions, while the variability of hydrological drought tends to be larger mainly in the western region. CWT analysis indicates a period of 0.75-7 years in both meteorological and hydrological droughts during the period 1960-2012 in the study region.
NASA Astrophysics Data System (ADS)
Devendran, A. A.; Lakshmanan, G.
2014-11-01
Data quality for GIS processing and analysis is becoming an increased concern due to the accelerated application of GIS technology for problem solving and decision making roles. Uncertainty in the geographic representation of the real world arises as these representations are incomplete. Identification of the sources of these uncertainties and the ways in which they operate in GIS based representations become crucial in any spatial data representation and geospatial analysis applied to any field of application. This paper reviews the articles on the various components of spatial data quality and various uncertainties inherent in them and special focus is paid to two fields of application such as Urban Simulation and Hydrological Modelling. Urban growth is a complicated process involving the spatio-temporal changes of all socio-economic and physical components at different scales. Cellular Automata (CA) model is one of the simulation models, which randomly selects potential cells for urbanisation and the transition rules evaluate the properties of the cell and its neighbour. Uncertainty arising from CA modelling is assessed mainly using sensitivity analysis including Monte Carlo simulation method. Likewise, the importance of hydrological uncertainty analysis has been emphasized in recent years and there is an urgent need to incorporate uncertainty estimation into water resources assessment procedures. The Soil and Water Assessment Tool (SWAT) is a continuous time watershed model to evaluate various impacts of land use management and climate on hydrology and water quality. Hydrological model uncertainties using SWAT model are dealt primarily by Generalized Likelihood Uncertainty Estimation (GLUE) method.
[Advance in researches on the effect of forest on hydrological process].
Zhang, Zhiqiang; Yu, Xinxiao; Zhao, Yutao; Qin, Yongsheng
2003-01-01
According to the effects of forest on hydrological process, forest hydrology can be divided into three related aspects: experimental research on the effects of forest changing on hydrological process quantity and water quality; mechanism study on the effects of forest changing on hydrological cycle, and establishing and exploitating physical-based distributed forest hydrological model for resource management and engineering construction. Orientation experiment research can not only support the first-hand data for forest hydrological model, but also make clear the precipitation-runoff mechanisms. Research on runoff mechanisms can be valuable for the exploitation and improvement of physical based hydrological models. Moreover, the model can also improve the experimental and runoff mechanism researches. A review of above three aspects are summarized in this paper.
The PCR-GLOBWB global hydrological reanalysis product
NASA Astrophysics Data System (ADS)
Bierkens, M. F.; Wanders, N.; Sutanudjaja, E.; Van Beek, L. P.
2013-12-01
Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal land surface hydrological reanalysis with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we used PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB is basically a leaky bucket type of water balance model with a process-based simulation of moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid distributions of elevation, land cover and soil saturation distribution. The model thus includes detailed schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. . By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrated the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow module, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields due to local topographic and orographic effects. Results show that the model parameters can be calibrated and forcing precipitation fields were successfully corrected. The calibrated model output was compared to the reference run of PCR-GLOBWB before calibration. Here we found significant improvement in simulation of the global terrestrial water cycle, specifically discharge simulation for major river basins in the world. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).
Hydrological modelling in forested systems | Science ...
This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.
NASA Astrophysics Data System (ADS)
Brandolini, P.; Cevasco, A.; Firpo, M.; Robbiano, A.; Sacchini, A.
2012-04-01
Over the past century the municipal area of Genoa has been affected by recurring flood events and several landslides that have caused severe damage to urbanized areas on both the coastal-fluvial plains and surrounding slopes, sometimes involving human casualties. The analysis of past events' annual distribution indicates that these phenomena have occurred with rising frequency in the last seventy years, following the main land use change due to the development of harbour, industrial, and residential areas, which has strongly impacted geomorphological processes. Consequently, in Genoa, civil protection activities are taking on an increasing importance for geo-hydrological risk mitigation. The current legislative framework assigns a key role in disaster prevention to municipalities, emergency plan development, as well as response action coordination in disaster situations. In view of the geomorphological and environmental complexity of the study area and referring to environmental laws, geo-hydrological risk mitigation strategies adopted by local administrators for civil protection purposes are presented as examples of current land/urban management related to geo-hydrological hazards. Adopted measures have proven to be effective on several levels (planning, management, structure, understanding, and publication) in different cases. Nevertheless, the last flooding event (4 November 2011) has shown that communication and public information concerning the perception of geo-hydrological hazard can be improved.
NASA Astrophysics Data System (ADS)
Arsenault, Richard; Poissant, Dominique; Brissette, François
2015-11-01
This paper evaluated the effects of parametric reduction of a hydrological model on five regionalization methods and 267 catchments in the province of Quebec, Canada. The Sobol' variance-based sensitivity analysis was used to rank the model parameters by their influence on the model results and sequential parameter fixing was performed. The reduction in parameter correlations improved parameter identifiability, however this improvement was found to be minimal and was not transposed in the regionalization mode. It was shown that 11 of the HSAMI models' 23 parameters could be fixed with little or no loss in regionalization skill. The main conclusions were that (1) the conceptual lumped models used in this study did not represent physical processes sufficiently well to warrant parameter reduction for physics-based regionalization methods for the Canadian basins examined and (2) catchment descriptors did not adequately represent the relevant hydrological processes, namely snow accumulation and melt.
Mackenzie River Delta morphological change based on Landsat time series
NASA Astrophysics Data System (ADS)
Vesakoski, Jenni-Mari; Alho, Petteri; Gustafsson, David; Arheimer, Berit; Isberg, Kristina
2015-04-01
Arctic rivers are sensitive and yet quite unexplored river systems to which the climate change will impact on. Research has not focused in detail on the fluvial geomorphology of the Arctic rivers mainly due to the remoteness and wideness of the watersheds, problems with data availability and difficult accessibility. Nowadays wide collaborative spatial databases in hydrology as well as extensive remote sensing datasets over the Arctic are available and they enable improved investigation of the Arctic watersheds. Thereby, it is also important to develop and improve methods that enable detecting the fluvio-morphological processes based on the available data. Furthermore, it is essential to reconstruct and improve the understanding of the past fluvial processes in order to better understand prevailing and future fluvial processes. In this study we sum up the fluvial geomorphological change in the Mackenzie River Delta during the last ~30 years. The Mackenzie River Delta (~13 000 km2) is situated in the North Western Territories, Canada where the Mackenzie River enters to the Beaufort Sea, Arctic Ocean near the city of Inuvik. Mackenzie River Delta is lake-rich, productive ecosystem and ecologically sensitive environment. Research objective is achieved through two sub-objectives: 1) Interpretation of the deltaic river channel planform change by applying Landsat time series. 2) Definition of the variables that have impacted the most on detected changes by applying statistics and long hydrological time series derived from Arctic-HYPE model (HYdrologic Predictions for Environment) developed by Swedish Meteorological and Hydrological Institute. According to our satellite interpretation, field observations and statistical analyses, notable spatio-temporal changes have occurred in the morphology of the river channel and delta during the past 30 years. For example, the channels have been developing in braiding and sinuosity. In addition, various linkages between the studied explanatory variables, such as land cover, precipitation, evaporation, discharge, snow mass and temperature, were found. The significance of this research is emphasised by the growing population, increasing tourism, and economic actions in the Arctic mainly due to the ongoing climate change and technological development.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Yao, S.; Zhou, S.; Liu, X.; Yan, X.; Lu, J.
2017-12-01
Sediment was the one result of river process, in alluvial rive, it can reflect the hydrodynamic characteristic, even the hydrology and climate. In the source region of the Yangtze River with few human activities, The Qumalai Reach of the Tongtianhe River was selected to research the distribution of sediments grain size along the depth. The vertical drilling tools were used to obtain 7 boreholes along the river cross section, and the sedimentary cores were made analysis of stratification and granularity. The results show: The sediments are dominated by sand and grail, the sediment transport capacity of river sources is strong; the grain size frequency distribution curve with 2 3 kurtosis, main peak is sharp, it is typical deposit sediment of the suspended load; The grain size coarsen from the stream terrace to the main channel, sediment transport capacity of main stream is bigger; There are several coarse and fine sediments layers in the sedimentary core of the terrace and flood plain, medium diameters of each layer are various from 0.4mm to 80mm, different layer with different grain size can reflect the different hydrodynamic characteristic of each historical period. This result can provide the original data and enlightenment to support the research for historical river process and hydrology so much as the climate change.
Mountain-Scale Coupled Processes (TH/THC/THM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides themore » necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The Mountain-Scale THM Model focuses on evaluating the changes in 3-D UZ flow fields arising out of thermal stress and rock deformation during and after the thermal periods.« less
Calibration process of highly parameterized semi-distributed hydrological model
NASA Astrophysics Data System (ADS)
Vidmar, Andrej; Brilly, Mitja
2017-04-01
Hydrological phenomena take place in the hydrological system, which is governed by nature, and are essentially stochastic. These phenomena are unique, non-recurring, and changeable across space and time. Since any river basin with its own natural characteristics and any hydrological event therein, are unique, this is a complex process that is not researched enough. Calibration is a procedure of determining the parameters of a model that are not known well enough. Input and output variables and mathematical model expressions are known, while only some parameters are unknown, which are determined by calibrating the model. The software used for hydrological modelling nowadays is equipped with sophisticated algorithms for calibration purposes without possibility to manage process by modeler. The results are not the best. We develop procedure for expert driven process of calibration. We use HBV-light-CLI hydrological model which has command line interface and coupling it with PEST. PEST is parameter estimation tool which is used widely in ground water modeling and can be used also on surface waters. Process of calibration managed by expert directly, and proportionally to the expert knowledge, affects the outcome of the inversion procedure and achieves better results than if the procedure had been left to the selected optimization algorithm. First step is to properly define spatial characteristic and structural design of semi-distributed model including all morphological and hydrological phenomena, like karstic area, alluvial area and forest area. This step includes and requires geological, meteorological, hydraulic and hydrological knowledge of modeler. Second step is to set initial parameter values at their preferred values based on expert knowledge. In this step we also define all parameter and observation groups. Peak data are essential in process of calibration if we are mainly interested in flood events. Each Sub Catchment in the model has own observations group. Third step is to set appropriate bounds to parameters in their range of realistic values. Fourth step is to use of singular value decomposition (SVD) ensures that PEST maintains numerical stability, regardless of how ill-posed is the inverse problem Fifth step is to run PWTADJ1. This creates a new PEST control file in which weights are adjusted such that the contribution made to the total objective function by each observation group is the same. This prevents the information content of any group from being invisible to the inversion process. Sixth step is to add Tikhonov regularization to the PEST control file by running the ADDREG1 utility (Doherty, J, 2013). In adding regularization to the PEST control file ADDREG1 automatically provides a prior information equation for each parameter in which the preferred value of that parameter is equated to its initial value. Last step is to run PEST. We run BeoPEST which a parallel version of PEST and can be run on multiple computers in parallel in same time on TCP communications and this speedup process of calibrations. The case study with results of calibration and validation of the model will be presented.
NASA Astrophysics Data System (ADS)
McNamara, J. P.; Semenova, O.; Restrepo, P. J.
2011-12-01
Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in terms of runoff and variable states of soil and snow over a simulation period 2000 - 2009. The parameters of the model were hand-adjusted based on rational sense, observational data and available understanding of underlying processes. For the first run some processes as riparian vegetation impact on runoff and streamflow/groundwater interaction were handled in a conceptual way. It was shown that the use of Hydrograph model which requires modest amount of parameter calibration may serve also as a quality control for observations. Based on the obtained parameters values and process understanding at the research watershed the model was applied to the larger scale watersheds located in similar environment - the Boise River at South Fork (1660 km2) and Twin Springs (2155 km2). The evaluation of the results of such upscaling will be presented.
Jump-Diffusion models and structural changes for asset forecasting in hydrology
NASA Astrophysics Data System (ADS)
Tranquille Temgoua, André Guy; Martel, Richard; Chang, Philippe J. J.; Rivera, Alfonso
2017-04-01
Impacts of climate change on surface water and groundwater are of concern in many regions of the world since water is an essential natural resource. Jump-Diffusion models are generally used in economics and other related fields but not in hydrology. The potential application could be made for hydrologic data series analysis and forecast. The present study uses Jump-Diffusion models by adding structural changes to detect fluctuations in hydrologic processes in relationship with climate change. The model implicitly assumes that modifications in rivers' flowrates can be divided into three categories: (a) normal changes due to irregular precipitation events especially in tropical regions causing major disturbance in hydrologic processes (this component is modelled by a discrete Brownian motion); (b) abnormal, sudden and non-persistent modifications in hydrologic proceedings are handled by Poisson processes; (c) the persistence of hydrologic fluctuations characterized by structural changes in hydrological data related to climate variability. The objective of this paper is to add structural changes in diffusion models with jumps, in order to capture the persistence of hydrologic fluctuations. Indirectly, the idea is to observe if there are structural changes of discharge/recharge over the study area, and to find an efficient and flexible model able of capturing a wide variety of hydrologic processes. Structural changes in hydrological data are estimated using the method of nonlinear discrete filters via Method of Simulated Moments (MSM). An application is given using sensitive parameters such as baseflow index and recession coefficient to capture discharge/recharge. Historical dataset are examined by the Volume Spread Analysis (VSA) to detect real time and random perturbations in hydrologic processes. The application of the method allows establishing more accurate hydrologic parameters. The impact of this study is perceptible in forecasting floods and groundwater recession. Keywords: hydrologic processes, Jump-Diffusion models, structural changes, forecast, climate change
NASA Astrophysics Data System (ADS)
Patnaik, S.; Biswal, B.; Sharma, V. C.
2017-12-01
River flow varies greatly in space and time, and the single biggest challenge for hydrologists and ecologists around the world is the fact that most rivers are either ungauged or poorly gauged. Although it is relatively easier to predict long-term average flow of a river using the `universal' zero-parameter Budyko model, lack of data hinders short-term flow prediction at ungauged locations using traditional hydrological models as they require observed flow data for model calibration. Flow prediction in ungauged basins thus requires a dynamic 'zero-parameter' hydrological model. One way to achieve this is to regionalize a dynamic hydrological model's parameters. However, a regionalization method based zero-parameter dynamic hydrological model is not `universal'. An alternative attempt was made recently to develop a zero-parameter dynamic model by defining an instantaneous dryness index as a function of antecedent rainfall and solar energy inputs with the help of a decay function and using the original Budyko function. The model was tested first in 63 US catchments and later in 50 Indian catchments. The median Nash-Sutcliffe efficiency (NSE) was found to be close to 0.4 in both the cases. Although improvements need to be incorporated in order to use the model for reliable prediction, the main aim of this study was to rather understand hydrological processes. The overall results here seem to suggest that the dynamic zero-parameter Budyko model is `universal.' In other words natural catchments around the world are strikingly similar to each other in the way they respond to hydrologic inputs; we thus need to focus more on utilizing catchment similarities in hydrological modelling instead of over parameterizing our models.
Zhang, Xing; Wang, Ke Lin; Fu, Zhi Yong; Chen, Hong Song; Zhang, Wei; Shi, Zhi Hua
2017-07-18
The traditional hydrology method, stable hydrogen and oxygen isotope technology, and rainfall simulation method were combined to investigate the hydrological function of small experimental plots (2 m×1.2 m) of contrasting architecture in Northwest Guangxi dolomite area. There were four typical catenary soils along the dolomite peak-cluster slope, which were the whole-sand, up-loam and down-sand, the whole loam, up-clay and down-sand soil types, respectively. All the experimental plots generated little amounts of overland runoff and had a high surface infiltration rate, ranging from 41 to 48 mm·h -1 , and the interflow and deep percolation were the dominant hydrological progress. The interflow was classified into interflow in soil clay A and C according to soil genetic layers. For interflow in soil clay A, matrix flow was generated from the whole-sand, up-loam and down-sand, up-clay and down-sand soil types, but preferential flow dominated in the whole-loam soil type. As for interflow in soil clay C, preferential flow dominated in the whole-loam, up-clay and down-sand, up-loam and down-sand soil types. The soils were shallow yet continuously distributed along the dolomite slope. The difference of hydrological characteristics in soil types with different architectures mainly existed in the runoff generation progress of each interface underground. It proved that the a 3-D perspective was needed to study the soil hydrological functions on dolomite slope of Northwest Guangxi, and a new way paying more attention on underground hydrological progress should be explored to fully reveal the near-surface hydrological processes on karst slope.
An eco-hydrological project on Turkey Creek watershed, South Carolina, U.S.A.
Devendra Amatya; Carl Trettin
2008-01-01
The low-gradient, forested wetland landscape of the southeastern United Statesâ Coastal Plain represents an important eco-hydrologic system, yet there is a very little information available on the regionâs ecological, hydrological and biogeochemical processes. Long-term hydrologic monitoring can provide the information needed to understand basic hydrologic processes...
The HYPE Open Source Community
NASA Astrophysics Data System (ADS)
Strömbäck, L.; Pers, C.; Isberg, K.; Nyström, K.; Arheimer, B.
2013-12-01
The Hydrological Predictions for the Environment (HYPE) model is a dynamic, semi-distributed, process-based, integrated catchment model. It uses well-known hydrological and nutrient transport concepts and can be applied for both small and large scale assessments of water resources and status. In the model, the landscape is divided into classes according to soil type, vegetation and altitude. The soil representation is stratified and can be divided in up to three layers. Water and substances are routed through the same flow paths and storages (snow, soil, groundwater, streams, rivers, lakes) considering turn-over and transformation on the way towards the sea. HYPE has been successfully used in many hydrological applications at SMHI. For Europe, we currently have three different models; The S-HYPE model for Sweden; The BALT-HYPE model for the Baltic Sea; and the E-HYPE model for the whole Europe. These models simulate hydrological conditions and nutrients for their respective areas and are used for characterization, forecasts, and scenario analyses. Model data can be downloaded from hypeweb.smhi.se. In addition, we provide models for the Arctic region, the Arab (Middle East and Northern Africa) region, India, the Niger River basin, the La Plata Basin. This demonstrates the applicability of the HYPE model for large scale modeling in different regions of the world. An important goal with our work is to make our data and tools available as open data and services. For this aim we created the HYPE Open Source Community (OSC) that makes the source code of HYPE available for anyone interested in further development of HYPE. The HYPE OSC (hype.sourceforge.net) is an open source initiative under the Lesser GNU Public License taken by SMHI to strengthen international collaboration in hydrological modeling and hydrological data production. The hypothesis is that more brains and more testing will result in better models and better code. The code is transparent and can be changed and learnt from. New versions of the main code are delivered frequently. HYPE OSC is open to everyone interested in hydrology, hydrological modeling and code development - e.g. scientists, authorities, and consultancies. By joining the HYPE OSC you get access a state-of-the-art operational hydrological model. The HYPE source code is designed to efficiently handle large scale modeling for forecast, hindcast and climate applications. The code is under constant development to improve the hydrological processes, efficiency and readability. In the beginning of 2013 we released a version with new and better modularization based on hydrological processes. This will make the code easier to understand and further develop for a new user. An important challenge in this process is to produce code that is easy for anyone to understand and work with, but still maintain the properties that make the code efficient enough for large scale applications. Input from the HYPE Open Source Community is an important source for future improvements of the HYPE model. Therefore, by joining the community you become an active part of the development, get access to the latest features and can influence future versions of the model.
HEPEX - achievements and challenges!
NASA Astrophysics Data System (ADS)
Pappenberger, Florian; Ramos, Maria-Helena; Thielen, Jutta; Wood, Andy; Wang, Qj; Duan, Qingyun; Collischonn, Walter; Verkade, Jan; Voisin, Nathalie; Wetterhall, Fredrik; Vuillaume, Jean-Francois Emmanuel; Lucatero Villasenor, Diana; Cloke, Hannah L.; Schaake, John; van Andel, Schalk-Jan
2014-05-01
HEPEX is an international initiative bringing together hydrologists, meteorologists, researchers and end-users to develop advanced probabilistic hydrological forecast techniques for improved flood, drought and water management. HEPEX was launched in 2004 as an independent, cooperative international scientific activity. During the first meeting, the overarching goal was defined as: "to develop and test procedures to produce reliable hydrological ensemble forecasts, and to demonstrate their utility in decision making related to the water, environmental and emergency management sectors." The applications of hydrological ensemble predictions span across large spatio-temporal scales, ranging from short-term and localized predictions to global climate change and regional modeling. Within the HEPEX community, information is shared through its blog (www.hepex.org), meetings, testbeds and intercompaison experiments, as well as project reportings. Key questions of HEPEX are: * What adaptations are required for meteorological ensemble systems to be coupled with hydrological ensemble systems? * How should the existing hydrological ensemble prediction systems be modified to account for all sources of uncertainty within a forecast? * What is the best way for the user community to take advantage of ensemble forecasts and to make better decisions based on them? This year HEPEX celebrates its 10th year anniversary and this poster will present a review of the main operational and research achievements and challenges prepared by Hepex contributors on data assimilation, post-processing of hydrologic predictions, forecast verification, communication and use of probabilistic forecasts in decision-making. Additionally, we will present the most recent activities implemented by Hepex and illustrate how everyone can join the community and participate to the development of new approaches in hydrologic ensemble prediction.
NASA Astrophysics Data System (ADS)
Yaeger, Mary A.; Housh, Mashor; Cai, Ximing; Sivapalan, Murugesu
2014-12-01
To better address the dynamic interactions between human and hydrologic systems, we develop an integrated modeling framework that employs a System of Systems optimization model to emulate human development decisions which are then incorporated into a watershed model to estimate the resulting hydrologic impacts. The two models are run interactively to simulate the coevolution of coupled human-nature systems, such that reciprocal feedbacks between hydrologic processes and human decisions (i.e., human impacts on critical low flows and hydrologic impacts on human decisions on land and water use) can be assessed. The framework is applied to a Midwestern U.S. agricultural watershed, in the context of proposed biofuels development. This operation is illustrated by projecting three possible future coevolution trajectories, two of which use dedicated biofuel crops to reduce annual watershed nitrate export while meeting ethanol production targets. Imposition of a primary external driver (biofuel mandate) combined with different secondary drivers (water quality targets) results in highly nonlinear and multiscale responses of both the human and hydrologic systems, including multiple tradeoffs, impacting the future coevolution of the system in complex, heterogeneous ways. The strength of the hydrologic response is sensitive to the magnitude of the secondary driver; 45% nitrate reduction target leads to noticeable impacts at the outlet, while a 30% reduction leads to noticeable impacts that are mainly local. The local responses are conditioned by previous human-hydrologic modifications and their spatial relationship to the new biofuel development, highlighting the importance of past coevolutionary history in predicting future trajectories of change.
Nichols, Wallace J.; Smath, J.A.; Adamik, J.T.
1983-01-01
Hydrologic data collected on the Great and Denbow Heaths, Maine, include precipitation, pan evaporation, air temperatures, streamflow, groundwater levels, and water quality constituents. These data were collected for a peat bog hydrology study conducted in cooperation with the Maine Geological Survey. The data network consisted of climate information from three rain gages, an evaporation pan, and two maximum-minimum thermometers; surface water information from two continuous gaging stations and 19 partial record sites; groundwater information from an observation well equipped with a continuous recorder and 106 piezometers; and water quality information from 13 wells and seven surface water sites. Water quality constituents include: field determinations of pH, specific conductance, and temperature, and laboratory determinations of common inorganic cations and anions, trace elements, and selected organic compounds. Methods used for the collection and analyses of data included standard Survey techniques modified for the unique hydrologic environment of the study area. (Author 's abstract)
What causes similarity in catchments?
NASA Astrophysics Data System (ADS)
Savenije, Hubert
2014-05-01
One of the biggest issues in hydrology is how to handle the heterogeneity of catchment properties at different scales. But is this really such a big issue? Is this problem not merely the consequence of how we conceptualise and how we model catchments? Is there not far more similarity than we observe. Maybe we are not looking at the right things or at the right scale to see the similarity. The identity of catchments is largely determined by: the landscape, the ecosystem living on the landscape, and the geology, in that order. Soils, which are often seen as a crucial aspect of hydrological behaviour, are far less important, as will be demonstrated. The main determinants of hydrological behaviour are: the landscape composition, the rooting depth and the phenology. These determinants are a consequence of landscape and ecosystem evolution, which, in turn, are the manifestations of entropy production. There are striking similarities between catchments. The different runoff processes from hillslopes are linked and similar in different environments (McDonnell, 2013). Wetlands behave similarly all over the world. The key is to classify landscapes and to link the ecosystems living on them to climate. The ecosystem then is the main controller of hydrological behaviour. Besides phenology, the rooting depth is key in determining runoff behaviour. Both are strongly linked to climate and much less to soil properties. An example is given of how rooting depth is determined by climate, and how rooting depth can be predicted without calibration, providing a strong constraints on the prediction of rainfall partitioning and catchment runoff.
Spatially Explicit Simulation of Mesotopographic Controls on Peatland Hydrology and Carbon Fluxes
NASA Astrophysics Data System (ADS)
Sonnentag, O.; Chen, J. M.; Roulet, N. T.
2006-12-01
A number of field carbon flux measurements, paleoecological records, and model simulations have acknowledged the importance of northern peatlands in terrestrial carbon cycling and methane emissions. An important parameter in peatlands that influences both net primary productivity, the net gain of carbon through photosynthesis, and decomposition under aerobic and anaerobic conditions, is the position of the water table. Biological and physical processes involved in peatland carbon dynamics and their hydrological controls operate at different spatial scales. The highly variable hydraulic characteristics of the peat profile and the overall shape of the peat body as defined by its surface topography at the mesoscale (104 m2) are of major importance for peatland water table dynamics. Common types of peatlands include bogs with a slightly domed centre. As a result of the convex profile, their water supply is restricted to atmospheric inputs, and water is mainly shed by shallow subsurface flow. From a modelling perspective the influence of mesotopographic controls on peatland hydrology and thus carbon balance requires that process-oriented models that examine the links between peatland hydrology, ecosystem functioning, and climate must incorporate some form of lateral subsurface flow consideration. Most hydrological and ecological modelling studies in complex terrain explicitly account for the topographic controls on lateral subsurface flow through digital elevation models. However, modelling studies in peatlands often employ simple empirical parameterizations of lateral subsurface flow, neglecting the influence of peatlands low relief mesoscale topography. Our objective is to explicitly simulate the mesotopographic controls on peatland hydrology and carbon fluxes using the Boreal Ecosystem Productivity Simulator (BEPS) adapted to northern peatlands. BEPS is a process-oriented ecosystem model in a remote sensing framework that takes into account peatlands multi-layer canopy through vertically stratified mapped leaf area index. Model outputs are validated against multi-year measurements taken at an eddy-covariance flux tower located within Mer Bleue bog, a typical raised bog near Ottawa, Ontario, Canada. Model results for seasonal water table dynamics and evapotranspiration at daily time steps in 2003 are in good agreement with measurements with R2=0.74 and R2=0.79, respectively, and indicate the suitability of our pursued approach.
NASA Astrophysics Data System (ADS)
Hernández, Mario R.; Francés, Félix
2015-04-01
One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the application of BJI with a GA error model outperforms the hydrological parameters robustness (diminishing the divergence model phenomenon) and improves the reliability of the streamflow predictive distribution, in respect of the results of a bad error model as SLS. Finally, the most likely prediction in a validation period, for both BJI+GA and SLS error models shows a similar performance.
NASA Astrophysics Data System (ADS)
Baroni, G.; Gräff, T.; Reinstorf, F.; Oswald, S. E.
2012-04-01
Nowadays uncertainty and sensitivity analysis are considered basic tools for the assessment of hydrological models and the evaluation of the most important sources of uncertainty. In this context, in the last decades several methods have been developed and applied in different hydrological conditions. However, in most of the cases, the studies have been done by investigating mainly the influence of the parameter uncertainty on the simulated outputs and few approaches tried to consider also other sources of uncertainty i.e. input and model structure. Moreover, several constrains arise when spatially distributed parameters are involved. To overcome these limitations a general probabilistic framework based on Monte Carlo simulations and the Sobol method has been proposed. In this study, the general probabilistic framework was applied at field scale using a 1D physical-based hydrological model (SWAP). Furthermore, the framework was extended at catchment scale in combination with a spatially distributed hydrological model (SHETRAN). The models are applied in two different experimental sites in Germany: a relatively flat cropped field close to Potsdam (Brandenburg) and a small mountainous catchment with agricultural land use (Schaefertal, Harz Mountains). For both cases, input and parameters are considered as major sources of uncertainty. Evaluation of the models was based on soil moisture detected at plot scale in different depths and, for the catchment site, also with daily discharge values. The study shows how the framework can take into account all the various sources of uncertainty i.e. input data, parameters (either in scalar or spatially distributed form) and model structures. The framework can be used in a loop in order to optimize further monitoring activities used to improve the performance of the model. In the particular applications, the results show how the sources of uncertainty are specific for each process considered. The influence of the input data as well as the presence of compensating errors become clear by the different processes simulated.
The End-to-end Demonstrator for improved decision making in the water sector in Europe (EDgE)
NASA Astrophysics Data System (ADS)
Wood, Eric; Wanders, Niko; Pan, Ming; Sheffield, Justin; Samaniego, Luis; Thober, Stephan; Kumar, Rohinni; Prudhomme, Christel; Houghton-Carr, Helen
2017-04-01
High-resolution simulations of water resources from hydrological models are vital to supporting important climate services. Apart from a high level of detail, both spatially and temporally, it is important to provide simulations that consistently cover a range of timescales, from historical reanalysis to seasonal forecast and future projections. In the new EDgE project commissioned by the ECMWF (C3S) we try to fulfill these requirements. EDgE is a proof-of-concept project which combines climate data and state-of-the-art hydrological modelling to demonstrate a water-oriented information system implemented through a web application. EDgE is working with key European stakeholders representative of private and public sectors to jointly develop and tailor approaches and techniques. With these tools, stakeholders are assisted in using improved climate information in decision-making, and supported in the development of climate change adaptation and mitigation policies. Here, we present the first results of the EDgE modelling chain, which is divided into three main processes: 1) pre-processing and downscaling; 2) hydrological modelling; 3) post-processing. Consistent downscaling and bias corrections for historical simulations, seasonal forecasts and climate projections ensure that the results across scales are robust. The daily temporal resolution and 5km spatial resolution ensure locally relevant simulations. With the use of four hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), uncertainty between models is properly addressed, while consistency is guaranteed by using identical input data for static land surface parameterizations. The forecast results are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs) that have been created in collaboration with the end-user community of the EDgE project. The final product of this project is composed of 15 years of seasonal forecast and 10 climate change projections, all combined with four hydrological models. These unique high-resolution climate information simulations in the EDgE project provide an unprecedented information system for decision-making over Europe.
Zhang, Wei; Li, Yong; Zhu, Bo; Zheng, Xunhua; Liu, Chunyan; Tang, Jialiang; Su, Fang; Zhang, Chong; Ju, Xiaotang; Deng, Jia
2018-03-01
Quantification of nitrogen losses and net greenhouse gas (GHG) emissions from catchments is essential for evaluating the sustainability of ecosystems. However, the hydrologic processes without lateral flows hinder the application of biogeochemical models to this challenging task. To solve this issue, we developed a coupled hydrological and biogeochemical model, Catchment Nutrients Management Model - DeNitrification-DeComposition Model (CNMM-DNDC), to include both vertical and lateral mass flows. By incorporating the core biogeochemical processes (including decomposition, nitrification, denitrification and fermentation) of the DNDC into the spatially distributed hydrologic framework of the CNMM, the simulation of lateral water flows and their influences on nitrogen transportation can be realized. The CNMM-DNDC was then calibrated and validated in a small subtropical catchment belonged to Yanting station with comprehensive field observations. Except for the calibration of water flows (surface runoff and leaching water) in 2005, stream discharges of water and nitrate in 2007, the model validations of soil temperature, soil moisture, crop yield, water flows in 2006 and associated nitrate loss, fluxes of methane, ammonia, nitric oxide and nitrous oxide, and stream discharges of water and nitrate in 2008 were statistically in good agreement with the observations. Meanwhile, our initial simulation of the catchment showed scientific predictions. For instance, it revealed the following: (i) dominant ammonia volatilization among the losses of nitrogenous gases (accounting for 11-21% of the applied annual fertilizer nitrogen in croplands); (ii) hotspots of nitrate leaching near the main stream; and (iii) a net GHG sink function of the catchment. These results implicate the model's promising capability of predicting ecosystem productivity, hydrologic nitrogen loads, losses of gaseous nitrogen and emissions of GHGs, which could be used to provide strategies for establishing sustainable catchments. In addition, the model's capability would be further proved by applying in other catchments with different backgrounds. Copyright © 2017. Published by Elsevier B.V.
A physically based catchment partitioning method for hydrological analysis
NASA Astrophysics Data System (ADS)
Menduni, Giovanni; Riboni, Vittoria
2000-07-01
We propose a partitioning method for the topographic surface, which is particularly suitable for hydrological distributed modelling and shallow-landslide distributed modelling. The model provides variable mesh size and appears to be a natural evolution of contour-based digital terrain models. The proposed method allows the drainage network to be derived from the contour lines. The single channels are calculated via a search for the steepest downslope lines. Then, for each network node, the contributing area is determined by means of a search for both steepest upslope and downslope lines. This leads to the basin being partitioned into physically based finite elements delimited by irregular polygons. In particular, the distributed computation of local geomorphological parameters (i.e. aspect, average slope and elevation, main stream length, concentration time, etc.) can be performed easily for each single element. The contributing area system, together with the information on the distribution of geomorphological parameters provide a useful tool for distributed hydrological modelling and simulation of environmental processes such as erosion, sediment transport and shallow landslides.
Using dry and wet year hydroclimatic extremes to guide future hydrologic projections
NASA Astrophysics Data System (ADS)
Oni, Stephen; Futter, Martyn; Ledesma, Jose; Teutschbein, Claudia; Buttle, Jim; Laudon, Hjalmar
2016-07-01
There are growing numbers of studies on climate change impacts on forest hydrology, but limited attempts have been made to use current hydroclimatic variabilities to constrain projections of future climatic conditions. Here we used historical wet and dry years as a proxy for expected future extreme conditions in a boreal catchment. We showed that runoff could be underestimated by at least 35 % when dry year parameterizations were used for wet year conditions. Uncertainty analysis showed that behavioural parameter sets from wet and dry years separated mainly on precipitation-related parameters and to a lesser extent on parameters related to landscape processes, while uncertainties inherent in climate models (as opposed to differences in calibration or performance metrics) appeared to drive the overall uncertainty in runoff projections under dry and wet hydroclimatic conditions. Hydrologic model calibration for climate impact studies could be based on years that closely approximate anticipated conditions to better constrain uncertainty in projecting extreme conditions in boreal and temperate regions.
Dam Dynamics in the Colonial Northeast and Chesapeake: Hydrologic Implications
NASA Astrophysics Data System (ADS)
Bain, D. J.; Salant, N. L.; Brandt, S. L.
2008-12-01
Recent work has highlighted the widespread presence of low-head dams for power generation during the 19th century. However, this work largely depends on census numbers tabulated in the mid-1800s, over 200 years after European activity began in North America. In order to compare the hydrologic implications of colonial era low-head dam construction with the impacts of other simultaneous processes (e.g., expatriation of the beaver or forest clearance), we have compiled historical data on mills to reconstruct the temporal and spatial dynamics of low-head dam construction in the colonial northeastern United States (i.e., Virginia to Maine). This reconstruction, combined with the results of related work on beaver pond dynamics and deforestation, provides several insights into the distribution and impacts of human impoundments during this period. While the resulting hydrologic changes are large, the addition of human dams to the system seems to be minimally offset and less important than changes arising from the expatriation of the beaver or the removal of trees during this early period. In addition, the spatial patterns of dam construction are complex, making prediction of hydrologic and associated responses more difficult to predict.
A process proof test for model concepts: Modelling the meso-scale
NASA Astrophysics Data System (ADS)
Hellebrand, Hugo; Müller, Christoph; Matgen, Patrick; Fenicia, Fabrizio; Savenije, Huub
In hydrological modelling the use of detailed soil data is sometimes troublesome, since often these data are hard to obtain and, if available at all, difficult to interpret and process in a way that makes them meaningful for the model at hand. Intuitively the understanding and mapping of dominant runoff processes in the soil show high potential for improving hydrological models. In this study a labour-intensive methodology to assess dominant runoff processes is simplified in such a way that detailed soil maps are no longer needed. Nonetheless, there is an ongoing debate on how to integrate this type of information in hydrological models. In this study, dominant runoff processes (DRP) are mapped for meso-scale basins using the permeability of the substratum, land use information and the slope in a GIS. During a field campaign the processes are validated and for each DRP assumptions are made concerning their water storage capacity. The latter is done by means of combining soil data obtained during the field campaign with soil data obtained from the literature. Second, several parsimoniously parameterized conceptual hydrological models are used that incorporate certain aspects of the DRP. The result of these models are compared with a benchmark model in which the soil is represented as only one lumped parameter to test the contribution of the DRP in hydrological models. The proposed methodology is tested for 15 meso-scale river basins located in Luxembourg. The main goal of this study is to investigate if integrating dominant runoff processes, which have high information content concerning soil characteristics, with hydrological models allows the improvement of simulation results models with a view to regionalization and predictions in ungauged basins. The regionalization procedure gave no clear results. The calibration procedure and the well-mixed discharge signal of the calibration basins are considered major causes for this and it made the deconvolution of discharge signals of meso-scale basins problematic. From the results it is also suggested that DRP could very well display some sort of uniqueness of place, which was not foreseen in the methods from which they were derived. Furthermore, a strong seasonal influence on model performance was observed, implying a seasonal dependence of the DRP. When comparing the performance between the DRP models and the benchmark model no real distinction was found. To improve the performance of the DRP models, which are used in this study and also for then use of conceptual models in general, there is a need for an improved identification of the mechanisms that cause the different dominant runoff processes at the meso-scale. To achieve this, more orthogonal data could be of use for a better conceptualization of the DRPs. Then, models concepts should be adapted accordingly.
NASA Astrophysics Data System (ADS)
Solomatine, Dimitri; Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon Hurtado, Juan Carlos
2017-04-01
Traditionally, static physical sensors are used to calibrate, validate or update water-system models by water authorities to reduce predictive uncertainty. However, the main problem is scarcity of data in both spatial and temporal domains due to costly maintenance and personnel. On the other hand, the use of low-cost sensor to measure hydrological variables in a more distributed and crowdsourced way is currently expanding and creating a fertile ground to the spread of citizen observatories activities and citizen science projects. Among different citizen sciences projects, the EU-funded projects WeSenseIt (www.wesenseit.eu) and GroundTruth (www.gt20.eu) aim at developing technologies and tools supporting creation of citizen observatories. A drawback of using crowdsourced observations is related to their intrinsic uncertainty and variable life span. Current flood forecasting applications limit the use of crowdsourced observations. Although some efforts to validate model results against these observations have been made, these are mainly done in a post-event analysis. Socio-hydroinformatics aims to integrate hydroinformatics tools and citizen observatories to achieve a dynamic and bidirectional feedbacks between coupled human-water systems. On the one hand, the main technical motivation of socio-hydroinformatics is to fill the gap in hydrological applications regarding the optimal use of crowdsourced observations not only in post-event analyses but in also in real time by their optimal assimilation. On the other hand, the social motivation is to bring citizens closer to decision-making processes and to understand how their participation in the model development process could improve models. In this study, different methods were developed and implemented to optimally design networks of dynamic sensors and assimilate crowdsourced observations, with varying spatial and temporal coverage, into hydrological and hydraulic models. This very first study of socio-hydroinformatics can be a potential application demonstrates that citizens not only play an active role in information capturing, evaluation and communication, but also help to improve models and thus increase flood resilience.
NASA Astrophysics Data System (ADS)
Paquet, E.
2015-12-01
The SCHADEX method aims at estimating the distribution of peak and daily discharges up to extreme quantiles. It couples a precipitation probabilistic model based on weather patterns, with a stochastic rainfall-runoff simulation process using a conceptual lumped model. It allows exploring an exhaustive set of hydrological conditions and watershed responses to intense rainfall events. Since 2006, it has been widely applied in France to about one hundred watersheds for dam spillway design, and also aboard (Norway, Canada and central Europe among others). However, its application to large watersheds (above 10 000 km²) faces some significant issues: spatial heterogeneity of rainfall and hydrological processes and flood peak damping due to hydraulic effects (flood plains, natural or man-made embankment) being the more important. This led to the development of an extreme flood simulation framework for large and heterogeneous watersheds, based on the SCHADEX method. Its main features are: Division of the large (or main) watershed into several smaller sub-watersheds, where the spatial homogeneity of the hydro-meteorological processes can reasonably be assumed, and where the hydraulic effects can be neglected. Identification of pilot watersheds where discharge data are available, thus where rainfall-runoff models can be calibrated. They will be parameters donors to non-gauged watersheds. Spatially coherent stochastic simulations for all the sub-watersheds at the daily time step. Identification of a selection of simulated events for a given return period (according to the distribution of runoff volumes at the scale of the main watershed). Generation of the complete hourly hydrographs at each of the sub-watersheds outlets. Routing to the main outlet with hydraulic 1D or 2D models. The presentation will be illustrated with the case-study of the Isère watershed (9981 km), a French snow-driven watershed. The main novelties of this method will be underlined, as well as its perspectives and future improvements.
J. Lu; Ge Sun; Devendra M. Amatya; S. V. Harder; Steve G. McNulty
2006-01-01
The hydrologic processes in wetland ecosystems are not well understood. There are also great concerns and uncertainties about the hydrologic response of wetlands to forest management and climate change. The objective of this study is to apply a hydrologic model to better understand the hydrologic processes of a low relief coastal forested watershed and its responses to...
Historical upscaling of the socio-hydrological cycle: Three cases from the Mediterranean Spain
NASA Astrophysics Data System (ADS)
Macian-Sorribes, Hector; Pulido-Velazquez, Manuel; Sanchis-Ibor, Carles
2015-04-01
Understanding the co-evolution between hydrological and socio-economic systems is vital to assess how anthropogenic and natural systems will evolve and interact in the future. Examining past socio-hydrological changes is therefore important to produce knowledge able to develop socio-hydrological models for predicting the future hydrology and society evolution patterns. As noticeable climate changes leading to higher water stress are expected in the Mediterranean Europe, socio-hydrological processes are likely to suffer considerable modifications in the XXI century, driving to potential conflicts as water demand increases while water resources fall. The goal of this contribution is to identify the hydro-social processes that have caused water conflicts, and how they have been solved in the Mediterranean Spain. The method is based in the analysis of historical documents, available since the Middle Ages. Once historical water conflicts (always well-documented) were located, a socio-hydrological "causal loop" is formulated, determining what caused that conflict, what factors or chain of factors were involved, and how it was addressed. Repeating that process for all the reported water conflicts allow us to gain insight into their driving forces, the socio-hydrological relationships linked to those, and the successful (and unsuccessful) strategies employed to address them. Three cases were selected from the Mediterranean Spain: the Mijares, the Turia and the Jucar river basins. All of them share similar documental sources (the Royal Archives, courts' archives, municipal archives and farmers' archives), similar climate and similar socio-economic backgrounds. Moreover, all of them are predicted to suffer similar climate change impacts. Irrigation is their major water demand. In these three rivers, during the last millennia, successive waterscapes have been constructed by different societies, in a prolonged process of institutional and environmental up-scaling, from the local level to the basin level, based on collaborative actions through multistakeholder partnerships and agreements. Irrigation development has played a major role in the evolutionary trend of the hydro-social cycle in the three basins, determining water demands and uses, and boosting institutional building. Following the main historical institutional milestones and examining the historical changes in water uses, remarkable differences can be found among the three cases, enhancing the high sensitivity of the hydrological processes with respect to socio-economic factors. Therefore, comparing them is adequate to find out those high-sensitive factors and the way they provoke the differences between the basins. The casual loop created a basin closure - basin reopening cycle. Basin closures were associated to increasing demands by population growth, irrigation and immigration, causing drought vulnerability. Basin reopenings corresponded to the building of regulation facilities (reservoirs, canals), the availability of new water sources (groundwater, regenerated water), or a change in the management strategies (conjunctive use). During basin closure, users fought during droughts but united to prevent new users' access to water. During reopenings, water use quickly increased, leading to basin closures. User conflicts were solved by user agreement in water sharing or by law requirement, establishing a new management policy. New-user conflicts were solved when the basin reopened again and those potential users gained access to water.
NASA Astrophysics Data System (ADS)
Gance, Julien; Sailhac, Pascal; Malet, Jean-Philippe; Supper, Robert; Jochum, Birgit; Ottowittz, David; Grandjean, Gilles
2014-05-01
Water infiltration, evaporation and runoff are responsible of changes in the topsoil water content and can influence slope stability which is very often the main controlling factor of landslide triggering. In this work, time-lapse monitoring of electrical conductivity is used to observe variations in soil water contents. Based on recent work which demonstrated the possibility of monitoring the hydrological response of a clayey slope to controlled rainfall experiments, we installed an electrical monitoring system at the Super-Sauze landslide for long-term observation. We used the GEOMON4D resistivimeter (developed by the Austrian Geological Surve) and specifically designed for experiments needing high rate of data acquisition, records of full signal samples for noise detection, remote controlled management and automatic data transfer. The electrode positions varying with time, we installed two cameras to control the position of the electrodes. Several hydrological sensors were also installed along the profile to measure soil temperature, groundwater temperature, groundwater level, groundwater conductivity and soil humidity. The challenge is the processing of 4.2 million of electrical resistivity data. In this difficult context, the possible factors controlling changes in resistivity values are the movement of the electrodes, the soil and water temperature, the change of porosity due to compaction and the soil degree of saturation. Therefore, before any inversion, the presence of possible 3D effects, and the measurement accuracy and uncertainty are assessed. A threshold in apparent resistivity change that could correspond to a change in soil saturation is determined. From those results, we investigate variations in the apparent resistivity. Responses to different hydrological processes (soil freezing/thawing, snow-melting, intense rainfall) occurring during the period of study are detected on resistivity values inversed on short periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan
2011-01-24
Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitancemore » of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of initial cell concentration and flow rate on U(VI) reduction.« less
NASA Astrophysics Data System (ADS)
Wi, S.; Freeman, S.; Brown, C.
2017-12-01
This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.
NASA Astrophysics Data System (ADS)
Rosolem, R.; Rahman, M.; Kollet, S. J.; Wagener, T.
2017-12-01
Understanding the impacts of land cover and climate changes on terrestrial hydrometeorology is important across a range of spatial and temporal scales. Earth System Models (ESMs) provide a robust platform for evaluating these impacts. However, current ESMs lack the representation of key hydrological processes (e.g., preferential water flow, and direct interactions with aquifers) in general. The typical "free drainage" conceptualization of land models can misrepresent the magnitude of those interactions, consequently affecting the exchange of energy and water at the surface as well as estimates of groundwater recharge. Recent studies show the benefits of explicitly simulating the interactions between subsurface and surface processes in similar models. However, such parameterizations are often computationally demanding resulting in limited application for large/global-scale studies. Here, we take a different approach in developing a novel parameterization for groundwater dynamics. Instead of directly adding another complex process to an established land model, we examine a set of comprehensive experimental scenarios using a very robust and establish three-dimensional hydrological model to develop a simpler parameterization that represents the aquifer to land surface interactions. The main goal of our developed parameterization is to simultaneously maximize the computational gain (i.e., "efficiency") while minimizing simulation errors in comparison to the full 3D model (i.e., "robustness") to allow for easy implementation in ESMs globally. Our study focuses primarily on understanding both the dynamics for groundwater recharge and discharge, respectively. Preliminary results show that our proposed approach significantly reduced the computational demand while model deviations from the full 3D model are considered to be small for these processes.
NASA Astrophysics Data System (ADS)
Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.
2017-12-01
Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological regime and the Lake Turkana level variability.
Coupled hydrologic and hydraulic modeling of Upper Niger River Basin
NASA Astrophysics Data System (ADS)
Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir
2017-04-01
The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river distributary) is fundamental for the correct representation of the flood wave attenuation in Niger main stem. Improvements could be made in terms of floods propagation across the basin -through parameters such as Manning's roughness and section depth and width-using the comparison with satellite altimetry data, for instance. Finally, such coupled hydrologic and hydrodynamic models prove to be an important tool for integrated evaluation of hydrological processes in such ungauged, large scale floodplain areas. Possible uses of the model involve the assessment of different scenarios of anthropic alteration, e.g., the effects of reservoirs implementation and climate and land use changes.
NASA Astrophysics Data System (ADS)
Hein, Thomas; Bondar-Kunze, Elisabeth; Preiner, Stefan; Reckendorfer, Walter; Tritthart, Michael; Weigelhofer, Gabriele; Welti, Nina
2014-05-01
Floodplain and riparian ecosystems provide multiple functions and services of importance for human well-being and are of strategic importance for different sectors at catchment scale. Especially floodplains in the vicinity of urban areas can be areas of conflicting interests ranging from different land use types, flood water retention, drinking water production and recreation to conservation of last remnants of former riverine landscape, as it is the case in floodplains in the Danube Nationalpark downstream Vienna. Many of these ecosystem functions and services are controlled by the exchange conditions between river main channel and floodplain systems, the hydrological connectivity. At the same time these systems have been highly altered and especially the connectivity has been severely impaired. Thus, far ranging effects of changes in hydrological connectivity at various levels can be expected in altered floodplain systems. The aim of this presentation is to explore the complex control of different ecosystem functions and associated services by different parameters of hydrological connectivity, ranging from nutrient, sediment and matter dynamics and biodiversity aspects. Increasing connectivity will be shown to impact microbial dynamics, sediment-water interactions, carbon dynamics and trophic conditions, thus affecting the fundamental functions of particular floodplain systems at various spatial and temporal scales. Based on these changes also the provision of ecosystem services of floodplains is affected. The results clearly show that hydrological connectivity needs to be considered in a sustainable management approach.
Water's Journey from Rain to Stream in perspective
NASA Astrophysics Data System (ADS)
Rodhe, Allan; Grip, Harald
2015-04-01
The International Hydrological Decade (IHD) 1965-1974, sponsored by UNESCO, initiated a research effort for coordinating the fragmented branches of hydrology and for understanding and quantifying the hydrologic cycle on various scales, from continents to small catchments. One important part of the Swedish IHD-program was to quantify the terms of the water budget, including detailed data on soil water and groundwater storage dynamics, of several medium sized to small. As an outcome of these studies and subsequent process oriented studies, a new view of the runoff process in forested till soils was developed in the 1970's, stressing the dominating role of groundwater in delivering water to the streams and the usefulness of subdividing catchments into recharge and discharge areas for groundwater for understanding the flowpaths of water. This view contrasted with the general view among the public, and also among professionals within the field and in text books, according to which overland flow is the main process for runoff. With this latter view it would, for instance, not be possible to understand stream water chemistry, which had become an important question in a time of growing environmental concern. In order to decrease the time lag between research results and practice, the Swedish Natural Science Research Council initiated a text book project for presenting the recent results of hydrologic research on stream flow generation applied to Swedish conditions, and in 1985 our book "Water's Journey from Rain to Stream" was published. Founded on the basic principles for water storage and flow in soils, the book gives a general picture of the water flow through the forested till landscape, with separate chapters for recharge and discharge areas. Chemical processes along the flowpaths of water are treated and the book concludes with a few applications to current issues. The book is written in Swedish and the target audience is those working professionally with water and university students. Guiding pedagogic ideas for the book were to present scientific findings on a strict physical basis, with few equations but with much emphasis on explanatory and attractive illustrations. What have we learnt during the 30 years that have passed since the book was published? Does the book's general picture of the water flow through the landscape agree with recent scientific findings? Main breakthroughs in the understanding of the flow processes based on field studies with advanced measurement techniques, tracer studies, remote sensing and flow and transport modelling will be commented.
Benchmarking observational uncertainties for hydrology (Invited)
NASA Astrophysics Data System (ADS)
McMillan, H. K.; Krueger, T.; Freer, J. E.; Westerberg, I.
2013-12-01
There is a pressing need for authoritative and concise information on the expected error distributions and magnitudes in hydrological data, to understand its information content. Many studies have discussed how to incorporate uncertainty information into model calibration and implementation, and shown how model results can be biased if uncertainty is not appropriately characterised. However, it is not always possible (for example due to financial or time constraints) to make detailed studies of uncertainty for every research study. Instead, we propose that the hydrological community could benefit greatly from sharing information on likely uncertainty characteristics and the main factors that control the resulting magnitude. In this presentation, we review the current knowledge of uncertainty for a number of key hydrological variables: rainfall, flow and water quality (suspended solids, nitrogen, phosphorus). We collated information on the specifics of the data measurement (data type, temporal and spatial resolution), error characteristics measured (e.g. standard error, confidence bounds) and error magnitude. Our results were primarily split by data type. Rainfall uncertainty was controlled most strongly by spatial scale, flow uncertainty was controlled by flow state (low, high) and gauging method. Water quality presented a more complex picture with many component errors. For all variables, it was easy to find examples where relative error magnitude exceeded 40%. We discuss some of the recent developments in hydrology which increase the need for guidance on typical error magnitudes, in particular when doing comparative/regionalisation and multi-objective analysis. Increased sharing of data, comparisons between multiple catchments, and storage in national/international databases can mean that data-users are far removed from data collection, but require good uncertainty information to reduce bias in comparisons or catchment regionalisation studies. Recently it has become more common for hydrologists to use multiple data types and sources within a single study. This may be driven by complex water management questions which integrate water quantity, quality and ecology; or by recognition of the value of auxiliary data to understand hydrological processes. We discuss briefly the impact of data uncertainty on the increasingly popular use of diagnostic signatures for hydrological process understanding and model development.
Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models
NASA Astrophysics Data System (ADS)
Jin, S. G.; Hassan, A. A.; Feng, G. P.
2012-12-01
The hydrological contribution to polar motion is a major challenge in explaining the observed geodetic residual of non-atmospheric and non-oceanic excitations since hydrological models have limited input of comprehensive global direct observations. Although global terrestrial water storage (TWS) estimated from the Gravity Recovery and Climate Experiment (GRACE) provides a new opportunity to study the hydrological excitation of polar motion, the GRACE gridded data are subject to the post-processing de-striping algorithm, spatial gridded mapping and filter smoothing effects as well as aliasing errors. In this paper, the hydrological contributions to polar motion are investigated and evaluated at seasonal and intra-seasonal time scales using the recovered degree-2 harmonic coefficients from all GRACE spherical harmonic coefficients and hydrological models data with the same filter smoothing and recovering methods, including the Global Land Data Assimilation Systems (GLDAS) model, Climate Prediction Center (CPC) model, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis products and European Center for Medium-Range Weather Forecasts (ECMWF) operational model (opECMWF). It is shown that GRACE is better in explaining the geodetic residual of non-atmospheric and non-oceanic polar motion excitations at the annual period, while the models give worse estimates with a larger phase shift or amplitude bias. At the semi-annual period, the GRACE estimates are also generally closer to the geodetic residual, but with some biases in phase or amplitude due mainly to some aliasing errors at near semi-annual period from geophysical models. For periods less than 1-year, the hydrological models and GRACE are generally worse in explaining the intraseasonal polar motion excitations.
Meadow degradation, hydrological processes and rangeland management in Tibet
NASA Astrophysics Data System (ADS)
He, Siyuan; Richards, Keith
2013-04-01
Alpine meadow dominated by species of Kobresia is widely distributed in the Tibetan Plateau. Kobresia pygmaea is often a main species and the meadow has evolved as a result of long-term trampling, being a main rangeland resource for livestock grazing. This alpine meadow also plays an important role in regulating the water and energy balance through land-atmosphere interaction, leaving an impact on local hydrological processes and beyond. Therefore, alpine meadow degradation is detrimental to both the health of the ecosystems, and to pastoralism. This research therefore studies the hydrological process with regard to degradation of Kobresia pygmaea meadow, tracing the possible causes, detecting the impacts on soil and biological properties, and further considering the herders' role in future rangeland management. The study area is around the Kema village of the Nagqu Prefecture in Northern Tibet, where human population depends on livestock grazing for livelihood. Main driving factors of alpine meadow degradation are climatic variations and human disturbance. The periodical change in local climate may be related to quasi-oscillatory atmospheric circulations in this monsoon dominated area and the climatic trends with extreme weather conditions can make the whole system hard to recover. Along with climatic variations, overgrazing is predominant with an exceeding of the carrying capacity by almost every household in this village. This is related to the change of rangeland management by the policies of privatisation of pasture and sedentarisation. The acceleration of degradation since the 1980s results in a series of distinct soil-vegetation combination classified in this research as the normal meadow, compact crust and bare soil. The species composition, soil physical and chemical properties and the vertical water movement along the soil-plant-atmosphere continuum are significantly different at the sites representing stages of degradation, revealed by multiple methods including field sampling and monitoring, model simulation and stable isotope analysis. The understanding of regional hydrological processes and water partitioning under different surface conditions is crucial to an integrated, interdisciplinary study with regard to sustainable use of rangeland resources. Therefore a further consideration of rangeland management under the current condition is proposed. Herders have witnessed some degradation processes and have noticed some climatic variations. However, they do not naturally link meadow degradation to climate change nor do they tend to blame overgrazing. There may be conflicts between scientific knowledge and indigenous experience when the local people are trying to keep their tradition during modernisation, imposed sometimes without thorough consideration. The dependency on weather conditions is turning to dependency on government subsidies when the rangeland management violates practical traditions and is lack of integrated measures to promote local economy. This case in Tibet shows that a sound knowledge of the ecological status of rangeland and an understanding of local people's perspective towards development should be considered together, so that holistic measures, with flexible implementation of policies, can be taken to realise long-term benefit, ecologically and socio-economically.
Salas, I; Herrera, C; Luque, J A; Delgado, J; Urrutia, J; Jordan, T
2016-11-15
The investigation assesses the influence of recent climatic events in the water resources and the aquifer dynamics in the Huasco watershed by means of the analysis of precipitation, streamflow and piezometric levels during the last 50years. These hydrological and hydrogeological parameters were evaluated by an exploratory geostatistical analysis (semivariogram) and a spectral analysis (periodogram). Specifically, the hydrological and hydrogeological data analyses are organized according to three sub-basins, the Del Carmen River (Section I), the El Tránsito River (Section II), and the Huasco River (Section III). Data ranges for rainfall are from 1961 to 2015, for streamflow from 1964 to 2015, and for groundwater levels from 1969 to 2014, available from Water Authority of Chile. The analyses allowed the identification of cycles in the hydrological and hydrogeological records. The study area is located in a transient climatic fringe where the convergence of several climatic systems can be identified in the hydrological and hydrogeological records. Results indicate that the nival areas and the small glaciers are especially important to the recharge processes in the Huasco watershed during the spring-summer snowmelting. Water reservoirs in the main aquifer (Section III) and in the Santa Juana dam are highly sensitive to ENSO oscillation climatic patterns. The main climatic events that control this record are the El Niño and La Niña events. In addition, the climatic influence of the westerlies and the SE extratropical moisture were also identified. Spectral analysis identified the presence of a 22.9-yearcycle in piezometric levels of the alluvial aquifer of the Huasco River. This cycle is consistent with the 22-year Hale solar cycle, suggesting the existence of a solar forcing controlling the ENSO oscillations. Moreover, semivariogram and spectral analysis identified a 10.65-yearcycle and a 9.2-yearcycle in groundwater, respectively, which were attributed to the strong mode of ENSO oscillations. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, S.; Ancell, B. C.; Huang, G. H.; Baetz, B. W.
2018-03-01
Data assimilation using the ensemble Kalman filter (EnKF) has been increasingly recognized as a promising tool for probabilistic hydrologic predictions. However, little effort has been made to conduct the pre- and post-processing of assimilation experiments, posing a significant challenge in achieving the best performance of hydrologic predictions. This paper presents a unified data assimilation framework for improving the robustness of hydrologic ensemble predictions. Statistical pre-processing of assimilation experiments is conducted through the factorial design and analysis to identify the best EnKF settings with maximized performance. After the data assimilation operation, statistical post-processing analysis is also performed through the factorial polynomial chaos expansion to efficiently address uncertainties in hydrologic predictions, as well as to explicitly reveal potential interactions among model parameters and their contributions to the predictive accuracy. In addition, the Gaussian anamorphosis is used to establish a seamless bridge between data assimilation and uncertainty quantification of hydrologic predictions. Both synthetic and real data assimilation experiments are carried out to demonstrate feasibility and applicability of the proposed methodology in the Guadalupe River basin, Texas. Results suggest that statistical pre- and post-processing of data assimilation experiments provide meaningful insights into the dynamic behavior of hydrologic systems and enhance robustness of hydrologic ensemble predictions.
Zhang Zhou; Ying Ouyang; Yide Li; Zhijun Qiu; Matt Moran
2017-01-01
Climate change over the past several decades has resulted in shifting rainfall pattern and modifying rain-fall intensity, which has exacerbated hydrological processes and added the uncertainty and instability tothese processes. This study ascertained impacts of potential future rainfall change on hydrological pro-cesses at the Jianfengling (JFL) tropical mountain...
Effects of forest structure on hydrological processes in China
NASA Astrophysics Data System (ADS)
Sun, Jiamei; Yu, Xinxiao; Wang, Henian; Jia, Guodong; Zhao, Yang; Tu, Zhihua; Deng, Wenping; Jia, Jianbo; Chen, Jungang
2018-06-01
There are serious concerns between forest and water quantity, Chinese extensive land area makes the relationship more complicated, thus, the effects of forest structure on hydrological processes in China were not fully comprehended. In this research, forest's hydrological functions, including rainfall partitioning, litter interception, evapotranspiration (ET), were analyzed in China. The results showed that throughfall was the largest proportion of gross precipitation with fraction between 69.3 ± 8.8% and 84.4 ± 5.6%. Then was canopy interception which varied from 14.6 ± 1.4% to 29.1 ± 3.3%. Throughfall was correlated with gross precipitation, canopy thickness and canopy density. Canopy interception was correlated with gross precipitation, LAI, canopy density, biomass, mixed degree, uniform angle index, aggregation index. Stemflow accounted for only 1.2 ± 0.32% of gross precipitation, with the greatest fraction of 2.1 ± 0.2% in XBH site and the least fraction of 0.3 ± 0.1% in DB site. Gross precipitation was the main factor in determining stemflow. DB site had the greatest litter interception (7.7 ± 0.8 mm) and HB site had the least (0.9 ± 0.3 mm). Litter interception had closer correlation with undecomposed litter mass (0.66) than total litter mass (0.46). Path-coefficient analysis showed that stand density, Shannon-Wiener index, litter mass, size ratio had greater impact on litter interception than other factors. ET was mainly influenced by precipitation, and it also correlated with LAI, canopy density and biomass. In north China, ET percentage (the ratio of ET and precipitation) was 82.7-109.5%, while it decreased to 63.1-88.5% in south China, ET demand in XBS site was larger than precipitation. ET percentage increased with increasing latitude and elevation, decreased with increasing temperature.
Design storm prediction and hydrologic modeling using a web-GIS approach on a free-software platform
NASA Astrophysics Data System (ADS)
Castrogiovanni, E. M.; La Loggia, G.; Noto, L. V.
2005-09-01
The aim of this work has been to implement a set of procedures useful to automatise the evaluation, the design storm prediction and the flood discharge associated with a selected risk level. For this purpose a Geographic Information System has been implemented using Grass 5.0. One of the main topics of such a system is a georeferenced database of the highest intensity rainfalls and their assigned duration recorded in Sicily. This database contains the main characteristics for more than 250 raingauges, as well as the values of intense rainfall events recorded by these raingauges. These data are managed through the combined use of the PostgreSQL and GRASS-GIS 5.0 databases. Some of the best-known probability distributions have been implemented within the Geographical Information System in order to determine the point and/or areal rain values once duration and return period have been defined. The system also includes a hydrological module necessary to compute the probable flow, for a selected risk level, at points chosen by the user. A peculiarity of the system is the possibility to querying the model using a web-interface. The assumption is that the rising needs of geographic information, and dealing with the rising importance of peoples participation in the decision process, requires new forms for the diffusion of territorial data. Furthermore, technicians as well as public administrators needs to get customized and specialist data to support planning, particularly in emergencies. In this perspective a Web-interface has been developed for the hydrologic system. The aim is to allow remote users to access a centralized database and processing-power to serve the needs of knowledge without complex hardware/software infrastructures.
NASA Astrophysics Data System (ADS)
Huning, L. S.; Margulis, S. A.
2014-12-01
Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated "off-the-shelf" watershed model in an introductory hydrology course, and 4) reduce the learning curve associated with analyzing meaningful real-world problems. The open-access MOD-WET and e-textbook have already been successfully incorporated within our undergraduate curriculum.
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-07-01
In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.
NASA Astrophysics Data System (ADS)
Wang, Weihua; Wu, Tonghua; Zhao, Lin; Li, Ren; Zhu, Xiaofan; Wang, Wanrui; Yang, Shuhua; Qin, Yanhui; Hao, Junmin
2018-05-01
Thawing permafrost on the Qinghai-Tibet Plateau (QTP) has great impacts on the local hydrological process by way of causing ground ice to thaw. Until now there is little knowledge on ground ice hydrology near permafrost table under a warming climate. This study applied stable tracers (isotopes and chloride) and hydrograph separation model to quantify the sources of ground ice near permafrost table in continuous permafrost regions of the central QTP. The results indicated that the ground ice near permafrost table was mainly supplied by active layer water and permafrost water, accounting for 58.9 to 87.0% and 13.0 to 41.1%, respectively, which implying that the active layer was the dominant source. The contribution rates from the active layer to the ground ice in alpine meadow (59 to 69%) was less than that in alpine steppe (70 to 87%). It showed well-developed hydrogeochemical depth gradients, presenting depleted isotopes and positive chemical gradients with depth within the soil layer. The effects of evaporation and freeze-out fractionation on the soil water and ground ice were evident. The results provide additional insights into ground ice sources and cycling near permafrost table in permafrost terrain, and would be helpful for improving process-based detailed hydrologic models under the occurring global warming.
NASA Astrophysics Data System (ADS)
Woods, J.; Laattoe, T.
2016-12-01
Complex hydrological environments present management challenges where surface water-groundwater interactions involve interlinked processes at multiple scales. One example is Australia's River Murray, which flows through a semi-arid landscape with highly saline groundwater. In this region, the floodplain ecology depends on freshwater provided from the main river channel, anabranches, and floodwaters. However, in the past century access to freshwater has been further limited due to river regulation, land clearance, and irrigation. A programme to improve ecosystem health at Pike Floodplain, South Australia, is evaluating management options such as environmental watering and groundwater pumping. Due to the complicated interdependencies between processes moving water and salt within the floodplain, a series of inter-linked models were developed to assist with management decisions. The models differ by hydrological domain, scale, and dimensionality. Together they simulate surface water, the unsaturated zone, and groundwater on regional, floodplain, and local scales. Outputs from regional models provide boundary conditions for floodplain models, which in turn provide inputs for the local scale models. The results are interpreted based on (i) ecohydrological requirements for key species of tree and fish, and (ii) impacts on river salinity for downstream users. When combined, the models provide an integrated and interdiscplinary understanding of the hydrology and management of saline floodplains.
Potential for Remotely Sensed Soil Moisture Data in Hydrologic Modeling
NASA Technical Reports Server (NTRS)
Engman, Edwin T.
1997-01-01
Many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture and portray the spatial heterogeneity of hydrologic processes and properties that one encounters in drainage basins. The hydrologic processes that may be detected include ground water recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential ET, and information about the hydrologic properties of soils and heterogeneity of hydrologic parameters. Microwave remote sensing has the potential to detect these signatures within a basin in the form of volumetric soil moisture measurements in the top few cm. These signatures should provide information on how and where to apply soil physical parameters in distributed and lumped parameter models and how to subdivide drainage basins into hydrologically similar sub-basins.
Hydrological Forecasting Practices in Brazil
NASA Astrophysics Data System (ADS)
Fan, Fernando; Paiva, Rodrigo; Collischonn, Walter; Ramos, Maria-Helena
2016-04-01
This work brings a review on current hydrological and flood forecasting practices in Brazil, including the main forecasts applications, the different kinds of techniques that are currently being employed and the institutions involved on forecasts generation. A brief overview of Brazil is provided, including aspects related to its geography, climate, hydrology and flood hazards. A general discussion about the Brazilian practices on hydrological short and medium range forecasting is presented. Detailed examples of some hydrological forecasting systems that are operational or in a research/pre-operational phase using the large scale hydrological model MGB-IPH are also presented. Finally, some suggestions are given about how the forecasting practices in Brazil can be understood nowadays, and what are the perspectives for the future.
Hydrological processes at the urban residential scale
Q. Xiao; E.G. McPherson; J.R. Simpson; S.L. Ustin
2007-01-01
In the face of increasing urbanization, there is growing interest in application of microscale hydrologic solutions to minimize storm runoff and conserve water at the source. In this study, a physically based numerical model was developed to understand hydrologic processes better at the urban residential scale and the interaction of these processes among different...
Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.
2015-01-01
Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function. PMID:26121466
Groenendyk, Derek G; Ferré, Ty P A; Thorp, Kelly R; Rice, Amy K
2015-01-01
Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth's surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function.
Soil Moisture: The Hydrologic Interface Between Surface and Ground Waters
NASA Technical Reports Server (NTRS)
Engman, Edwin T.
1997-01-01
A hypothesis is presented that many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture. The specific hydrologic processes that may be detected include groundwater recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential evapotranspiration (ET), and information about the hydrologic properties of soils. In basin and hillslope hydrology, soil moisture is the interface between surface and ground waters.
Development and Application of a Process-based River System Model at a Continental Scale
NASA Astrophysics Data System (ADS)
Kim, S. S. H.; Dutta, D.; Vaze, J.; Hughes, J. D.; Yang, A.; Teng, J.
2014-12-01
Existing global and continental scale river models, mainly designed for integrating with global climate model, are of very course spatial resolutions and they lack many important hydrological processes, such as overbank flow, irrigation diversion, groundwater seepage/recharge, which operate at a much finer resolution. Thus, these models are not suitable for producing streamflow forecast at fine spatial resolution and water accounts at sub-catchment levels, which are important for water resources planning and management at regional and national scale. A large-scale river system model has been developed and implemented for water accounting in Australia as part of the Water Information Research and Development Alliance between Australia's Bureau of Meteorology (BoM) and CSIRO. The model, developed using node-link architecture, includes all major hydrological processes, anthropogenic water utilisation and storage routing that influence the streamflow in both regulated and unregulated river systems. It includes an irrigation model to compute water diversion for irrigation use and associated fluxes and stores and a storage-based floodplain inundation model to compute overbank flow from river to floodplain and associated floodplain fluxes and stores. An auto-calibration tool has been built within the modelling system to automatically calibrate the model in large river systems using Shuffled Complex Evolution optimiser and user-defined objective functions. The auto-calibration tool makes the model computationally efficient and practical for large basin applications. The model has been implemented in several large basins in Australia including the Murray-Darling Basin, covering more than 2 million km2. The results of calibration and validation of the model shows highly satisfactory performance. The model has been operalisationalised in BoM for producing various fluxes and stores for national water accounting. This paper introduces this newly developed river system model describing the conceptual hydrological framework, methods used for representing different hydrological processes in the model and the results and evaluation of the model performance. The operational implementation of the model for water accounting is discussed.
Johnson, M.S.; Coon, W.F.; Mehta, V.K.; Steenhuis, T.S.; Brooks, E.S.; Boll, J.
2003-01-01
Differences in the simulation of hydrologic processes by watershed models directly affect the accuracy of results. Surface runoff generation can be simulated as either: (1) infiltration-excess (or Hortonian) overland flow, or (2) saturation-excess overland flow. This study compared the Hydrological Simulation Program - FORTRAN (HSPF) and the Soil Moisture Routing (SMR) models, each representing one of these mechanisms. These two models were applied to a 102 km2 watershed in the upper part of the Irondequoit Creek basin in central New York State over a seven-year simulation period. The models differed in both the complexity of simulating snowmelt and baseflow processes as well as the detail in which the geographic information was preserved by each model. Despite their differences in structure and representation of hydrologic processes, the two models simulated streamflow with almost equal accuracy. Since streamflow is an integral response and depends mainly on the watershed water balance, this was not unexpected. Model efficiency values for the seven-year simulation period were 0.67 and 0.65 for SMR and HSPF, respectively. HSPF simulated winter streamflow slightly better than SMR as a result of its complex snowmelt routine, whereas SMR simulated summer flows better than HSPF as a result of its runoff and baseflow processes. An important difference between model results was the ability to predict the spatial distribution of soil moisture content. HSPF aggregates soil moisture content, which is generally related to a specific pervious land unit across the entire watershed, whereas SMR predictions of moisture content distribution are geographically specific and matched field observations reasonably well. Important is that the saturated area was predicted well by SMR and confirmed the validity of using saturation-excess mechanisms for this hillslope dominated watershed. ?? 2003 Elsevier B.V. All rights reserved.
A "total parameter estimation" method in the varification of distributed hydrological models
NASA Astrophysics Data System (ADS)
Wang, M.; Qin, D.; Wang, H.
2011-12-01
Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in China. The application results demonstrate that this comprehensive testing method is very useful in the development of a distributed hydrological model and it provides a new way of thinking in hydrological sciences.
A question driven socio-hydrological modeling process
NASA Astrophysics Data System (ADS)
Garcia, M.; Portney, K.; Islam, S.
2016-01-01
Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies. This distinction between the two policies was not apparent using a traditional noncoupled model.
Five Guidelines for Selecting Hydrological Signatures
NASA Astrophysics Data System (ADS)
McMillan, H. K.; Westerberg, I.; Branger, F.
2017-12-01
Hydrological signatures are index values derived from observed or modeled series of hydrological data such as rainfall, flow or soil moisture. They are designed to extract relevant information about hydrological behavior, such as to identify dominant processes, and to determine the strength, speed and spatiotemporal variability of the rainfall-runoff response. Hydrological signatures play an important role in model evaluation. They allow us to test whether particular model structures or parameter sets accurately reproduce the runoff generation processes within the watershed of interest. Most modeling studies use a selection of different signatures to capture different aspects of the catchment response, for example evaluating overall flow distribution as well as high and low flow extremes and flow timing. Such studies often choose their own set of signatures, or may borrow subsets of signatures used in multiple other works. The link between signature values and hydrological processes is not always straightforward, leading to uncertainty and variability in hydrologists' signature choices. In this presentation, we aim to encourage a more rigorous approach to hydrological signature selection, which considers the ability of signatures to represent hydrological behavior and underlying processes for the catchment and application in question. To this end, we propose a set of guidelines for selecting hydrological signatures. We describe five criteria that any hydrological signature should conform to: Identifiability, Robustness, Consistency, Representativeness, and Discriminatory Power. We describe an example of the design process for a signature, assessing possible signature designs against the guidelines above. Due to their ubiquity, we chose a signature related to the Flow Duration Curve, selecting the FDC mid-section slope as a proposed signature to quantify catchment overall behavior and flashiness. We demonstrate how assessment against each guideline could be used to compare or choose between alternative signature definitions. We believe that reaching a consensus on selection criteria for hydrological signatures will assist modelers to choose between competing signatures, facilitate comparison between hydrological studies, and help hydrologists to fully evaluate their models.
Multi-catchment rainfall-runoff simulation for extreme flood estimation
NASA Astrophysics Data System (ADS)
Paquet, Emmanuel
2017-04-01
The SCHADEX method (Paquet et al., 2013) is a reference method in France for the estimation of extreme flood for dam design. The method is based on a semi-continuous rainfall-runoff simulation process: hundreds of different rainy events, randomly drawn up to extreme values, are simulated independently in the hydrological conditions of each day when a rainy event has been actually observed. This allows generating an exhaustive set of crossings between precipitation and soil saturation hazards, and to build a complete distribution of flood discharges up to extreme quantiles. The hydrological model used within SCHADEX, the MORDOR model (Garçon, 1996), is a lumped model, which implies that hydrological processes, e.g. rainfall and soil saturation, are supposed to be homogeneous throughout the catchment. Snow processes are nevertheless represented in relation with altitude. This hypothesis of homogeneity is questionable especially as the size of the catchment increases, or in areas of highly contrasted climatology (like mountainous areas). Conversely, modeling the catchment with a fully distributed approach would cause different problems, in particular distributing the rainfall-runoff model parameters trough space, and within the SCHADEX stochastic framework, generating extreme rain fields with credible spatio-temporal features. An intermediate solution is presented here. It provides a better representation of the hydro-climatic diversity of the studied catchment (especially regarding flood processes) while keeping the SCHADEX simulation framework. It consists in dividing the catchment in several, more homogeneous sub-catchments. Rainfall-runoff models are parameterized individually for each of them, using local discharge data if available. A first SCHADEX simulation is done at the global scale, which allows assigning a probability to each simulated event, mainly based on the global areal rainfall drawn for the event (see Paquet el al., 2013 for details). Then the rainfall of each event is distributed through the different sub-catchments using the spatial patterns calculated in the SPAZM precipitation reanalysis (Gottardi et al., 2012) for comparable situations of the 1948-2005 period. Corresponding runoffs are calculated with the hydrological models and aggregated to compute the discharge at the outlet of the main catchment. A complete distribution of flood discharges is finally computed. This method is illustrated with the example of the Durance at Serre-Ponçon catchment (south of French Alps, 3600 km2) which has been divided in four sub-catchements. The proposed approach is compared with the "classical" SCHADEX approach applied on the whole catchment. References: Garçon, R. (1996). Prévision opérationnelle des apports de la Durance à Serre-Ponçon à l'aide du modèle MORDOR. Bilan de l'année 1994-1995. La Houille Blanche, (5), 71-76. Gottardi, F., Obled, C., Gailhard, J., & Paquet, E. (2012). Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains. Journal of Hydrology, 432, 154-167. Paquet, E., Garavaglia, F., Garçon, R., & Gailhard, J. (2013). The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 495, 23-37.
Management of the water balance and quality in mining areas
NASA Astrophysics Data System (ADS)
Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani
2015-04-01
Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to systematically integrate all water balance components (groundwater, surface water, infiltration, precipitation, mine water facilities and operations etc.) into overall dynamic mine site considerations. After coupling the surface and ground water models (e.g. Feflow and WSFS) with each other, they are compared with Goldsim. The third objective is to integrate the monitoring and modelling tools into the mine management system and process control. The modelling and predictive process control can prevent flood situations, ensure water adequacy, and enable the controlled mine water treatment. The project will develop a constantly updated management system for water balance including both natural waters and process waters.
USDA-ARS?s Scientific Manuscript database
The impact of climate and land use changes on hydrologic processes at the watershed scale is needed by land managers and policy makers to properly assess potential adaptation strategies. While numerous studies have been conducted on hydrologic processes in the Midwest, only a few have analyzed the l...
USDA-ARS?s Scientific Manuscript database
Frozen soil prevails in cold regions and exerts significant influence on the hydrological cycle. In the context of climate warming, the spatial and temporal dynamics of frozen soil and hydrological processes also will change. How these changes inter-relate is a key challenge in studies of hydrologic...
NASA Astrophysics Data System (ADS)
Videla Giering, Y. A., III; McPhee, J. P.; Pomeroy, J. W.
2017-12-01
Improved understanding of cryosphere processes in the Subtropical Andes is essencial to secure water supply in Central Chile. An ongoing challenge is to identify the main controls on snow accumulation and ablation at multiple scales. In this study, we use the Cold Regions hydrological model (CRHM) to simulate the evolution of seasonal snow cover in the basin of the Estero Morales between the period 2000-2016. The model was forced with radiation, temperature, humidity, wind and precipitation data obtained from downscaled Era-Interim outputs. The basin was disaggregated spatially through representative hydrological processes and and geomorphological into HRU's. 22% of snow in the basin is subject to reallocation by topographic effects, while net short wave radiation would explain major changes in snowmelt. 80% of summer runoff comes from glacial melting, while temperature and soil properties are key factors controlling infiltration and contribution to the runoff at all times of the year. The model results indicate that 78.2% of precipitation corresponds to snow while 21.8% to rain. The flow rates of snowmelting are the main component in the water balance, accounting for approximately 62.8% of the total rainfall. It is important to point out that during the total period of modeling (2010-2016), it was noted that the 23.08% of the total annual flow corresponds to glacial melting, however for the period 2010 - 2015 this percentage increases to 45.3%, in spite of this were not observed variations in the volume of subsurface and groundwater flow. This suggests first: that systems such as analyzed in this article, have a great importance because they are fragile in terms of response and the ground due to its topographic features (such as slope and conductivity) is not able to store large percentages of resources until the end of the summer season; and second, to understand that mountain systems with presence of glaciers, naturally are regulated compared to sudden changes in temperatures and precipitation, investing the sources of contributions as needed. Overall, these results enabled better understanding of the hydrological cycle of the snow in the central Andes Key words: Water Storage, CRHM, Snowpack, topography effects, resdistribution.
Parallel computing method for simulating hydrological processesof large rivers under climate change
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, Y.
2016-12-01
Climate change is one of the proverbial global environmental problems in the world.Climate change has altered the watershed hydrological processes in time and space distribution, especially in worldlarge rivers.Watershed hydrological process simulation based on physically based distributed hydrological model can could have better results compared with the lumped models.However, watershed hydrological process simulation includes large amount of calculations, especially in large rivers, thus needing huge computing resources that may not be steadily available for the researchers or at high expense, this seriously restricted the research and application. To solve this problem, the current parallel method are mostly parallel computing in space and time dimensions.They calculate the natural features orderly thatbased on distributed hydrological model by grid (unit, a basin) from upstream to downstream.This articleproposes ahigh-performancecomputing method of hydrological process simulation with high speedratio and parallel efficiency.It combinedthe runoff characteristics of time and space of distributed hydrological model withthe methods adopting distributed data storage, memory database, distributed computing, parallel computing based on computing power unit.The method has strong adaptability and extensibility,which means it canmake full use of the computing and storage resources under the condition of limited computing resources, and the computing efficiency can be improved linearly with the increase of computing resources .This method can satisfy the parallel computing requirements ofhydrological process simulation in small, medium and large rivers.
Large-scale controls on potential respiration and denitrification in riverine floodplains
Welti, Nina; Bondar-Kunze, Elisabeth; Singer, Gabriel; Tritthart, Michael; Zechmeister-Boltenstern, Sophie; Hein, Thomas; Pinay, Gilles
2012-01-01
Restoration measures of deteriorated river ecosystems generally aim at increasing the spatial heterogeneity and connectivity of these systems in order to increase biodiversity and ecosystem stability. While this is believed to benefit overall ecological integrity, consequences of such restoration projects on biogeochemical processes per se (i.e. ecosystem functioning) in fluvial systems are rarely considered. We address these issues by evaluating the characteristics of surface water connection between side arms and the main river channel in a former braided river section and the role and degree of connectivity (i.e. duration of surface water connection) on the sediment biogeochemistry. We hypothesized that potential respiration and denitrification would be controlled by the degree of hydrological connectivity, which was increased after floodplain restoration. We measured potential microbial respiration (SIR) and denitrification (DEA) and compared a degraded floodplain section of the Danube River with a reconnected and restored floodplain in the same river section. Re-establishing surface water connection altered the controls on sediment microbial respiration and denitrification ultimately impacting potential microbial activities. Meta-variables were created to characterize the effects of hydrology, morphology, and the available carbon and nutrient pools on potential microbial processing. Mantel statistics and path analysis were performed and demonstrate a hierarchy where the effects of hydrology on the available substrates and microbial processing are mediated by the morphology of the floodplain. In addition, these processes are highest in the least connected sites. Surface water connection, mediated by morphology regulates the potential denitrification rate and the ratio of N2O to N2 emissions, demonstrating the effects of restoration in floodplain systems. PMID:23565037
One hundred years of return period: Strengths and limitations
NASA Astrophysics Data System (ADS)
Volpi, E.; Fiori, A.; Grimaldi, S.; Lombardo, F.; Koutsoyiannis, D.
2015-10-01
One hundred years from its original definition by Fuller, the probabilistic concept of return period is widely used in hydrology as well as in other disciplines of geosciences to give an indication on critical event rareness. This concept gains its popularity, especially in engineering practice for design and risk assessment, due to its ease of use and understanding; however, return period relies on some basic assumptions that should be satisfied for a correct application of this statistical tool. Indeed, conventional frequency analysis in hydrology is performed by assuming as necessary conditions that extreme events arise from a stationary distribution and are independent of one another. The main objective of this paper is to investigate the properties of return period when the independence condition is omitted; hence, we explore how the different definitions of return period available in literature affect results of frequency analysis for processes correlated in time. We demonstrate that, for stationary processes, the independence condition is not necessary in order to apply the classical equation of return period (i.e., the inverse of exceedance probability). On the other hand, we show that the time-correlation structure of hydrological processes modifies the shape of the distribution function of which the return period represents the first moment. This implies that, in the context of time-dependent processes, the return period might not represent an exhaustive measure of the probability of failure, and that its blind application could lead to misleading results. To overcome this problem, we introduce the concept of Equivalent Return Period, which controls the probability of failure still preserving the virtue of effectively communicating the event rareness.
NASA Astrophysics Data System (ADS)
O'Brien, R. J.; Deakin, J.; Misstear, B.; Gill, L.; Flynn, R. M.
2012-12-01
An appreciation of the quantity of streamflow derived from the main hydrological groundwater and surface water pathways transporting diffuse pollutants is critical when addressing a wide range of water resource management issues. The Pathways Project, funded by the Irish EPA, is developing a Catchment Management Tool (CMT) as an aid to water resource decision makers. The pollutants investigated by the CMT include phosphorus, nitrogen, sediments, pesticides and pathogens. An important first step in this process is to provide reliable estimates of the slower responding groundwater pathways in conjunction with the quicker overland and interflow pathways. Four watersheds are being investigated, with continuous rainfall, discharge, temperature and conductivity data being collected at gauging points within each of the watersheds. These datasets are being used to populate the semi-distributed, lumped flow model, NAM and also the distributed, finite difference model, MODFLOW. One of the main challenges is to achieve credible separations of the hydrograph into the main pathways in relatively small catchments (sometimes less than 5km2) with short response times. To assist the numerical modelling, physical separation techniques have been used to constrain the separations within probable limits. Physical techniques include: Master Recession Analysis; a modified Lyne and Hollick one-parameter digital separation; an approach developed in Ireland involving the application of recharge coefficients to hydrologically effective rainfall estimates; and finally using the NAM and MODFLOW models themselves as means of investigating separations. The contribution from each of the pathways, combined with an understanding of the attenuation of the contaminants along those pathways, will inform the CMT. This understanding will lay the foundation for linking the parameters of the NAM model to watershed descriptors such as slope, drainage density, watershed area, soil type, etc., in order to predict the response of a watershed to rainfall. This is an important deliverable of this research and will be fundamental for initial investigations in ungauged watersheds. This approach to quantifying hydrological pathways will therefore have wider applicability across Ireland and in hydrological settings elsewhere internationally. The research is being carried out for the Environmental Protection Agency by a consortium involving Queen's University Belfast, University College Dublin and Trinity College Dublin. Pathway separations in a karst watershed. Observed discharge (Black) with separated pathways: quick diffuse flow (Blue); slow diffuse flow (Green); interflow (Light Blue) and overland flow (Red).
NASA Astrophysics Data System (ADS)
Neris, Jonay; Doerr, Stefan
2014-05-01
Water repellency, a key parameter in the hydrological and ecological behaviour of ecosystems, is one of the main soil properties affected by wildfire through its impact on organic matter (Shakesby and Doerr, 2006). This study examines the link between post-fire organic matter quantity and composition, soil water repellency and related hydrological properties in order to (i) examine the influence of different organic matter pools on soil hydrological properties and (ii) to explore the use of these links as a proxy for soil hydrological impacts of fire. Soil samples from five fire-affected burned and unburned control sites in Andisols terrain in Tenerife, previously studied for water repellency and hydrology-related properties (Neris et al., 2013), were selected and thermogravimetric analysis (TG) carried out to evaluate fire impacts on their organic matter composition. A decrease in the organic matter quantity as well as in the relative amount of the labile organic matter pool and an increase in the recalcitrant and/or refractory pool depending was observed in the burned soils. TG data, using 10 ºC temperature range steps, allowed reasonable prediction of soil properties evaluated, with R2 ranging from 0.4 to 0.8. The labile pool showed a broad and positive influence on most soil properties evaluated, whereas the refractory pool and the dehydration range affected the surface water holding capacity and water repellency. These results, in conjunction with the simplicity of the TG analysis suggest that, following a calibration step to link TG data to the site-specific post-fire soil properties, this method may be a useful tool for rapid and cost-effective soil hydrological response evaluation after the fire. References Neris, J., Tejedor, M., Fuentes, J., Jiménez, C., 2013. Infiltration, runoff and soil loss in Andisols affected by forest fire (Canary Islands, Spain). Hydrological Processes 27(19), 2814-2824. Shakesby, R.A., Doerr, S.H., 2006. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews 74(3-4), 269-307.
NASA Astrophysics Data System (ADS)
Li, Y.; Chang, J.; Luo, L.
2017-12-01
It is of great importance for water resources management to model the truly hydrological process under changing environment, especially under significant changes of underlying surfaces like the Wei River Bain (WRB) where the subsurface hydrology is highly influenced by human activities, and to systematically investigate the interactions among LULC change, streamflow variation and changes in runoff generation process. Therefore, we proposed the idea of evolving parameters in hydrological model (SWAT) to reflect the changes in physical environment with different LULC conditions. Then with these evolving parameters, the spatiotemporal impacts of LULC changes on streamflow were quantified, and qualitative analysis was conducted to further explore how LULC changes affect the streamflow from the perspective of runoff generation mechanism. Results indicate the following: 1) evolving parameter calibration is not only effective but necessary to ensure the validity of the model when dealing with significant changes in underlying surfaces due to human activities. 2) compared to the baseline period, the streamflow in wet seasons increased in the 1990s but decreased in the 2000s. While at yearly and dry seasonal scales, the streamflow decreased in both two decades; 3) the expansion of cropland is the major contributor to the reduction of surface water component, thus causing the decline in streamflow at yearly and dry seasonal scales. While compared to the 1990s, the expansions of woodland in the middle stream and grassland in the downstream are the main stressors that increased the soil water component, thus leading to the more decline of the streamflow in the 2000s.
NASA Astrophysics Data System (ADS)
Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.
2017-07-01
Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.
Calibration of a distributed hydrologic model for six European catchments using remote sensing data
NASA Astrophysics Data System (ADS)
Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.
2017-12-01
While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.
Xie, Ping; Zhao, Jiang Yan; Wu, Zi Yi; Sang, Yan Fang; Chen, Jie; Li, Bin Bin; Gu, Hai Ting
2018-04-01
The analysis of inconsistent hydrological series is one of the major problems that should be solved for engineering hydrological calculation in changing environment. In this study, the diffe-rences of non-consistency and non-stationarity were analyzed from the perspective of composition of hydrological series. The inconsistent hydrological phenomena were generalized into hydrological processes with inheritance, variability and evolution characteristics or regulations. Furthermore, the hydrological genes were identified following the theory of biological genes, while their inheritance bases and variability bases were determined based on composition of hydrological series under diffe-rent time scales. To identify and test the components of hydrological genes, we constructed a diagnosis system of hydrological genes. With the P-3 distribution as an example, we described the process of construction and expression of the moment genes to illustrate the inheritance, variability and evolution principles of hydrological genes. With the annual minimum 1-month runoff series of Yunjinghong station in Lancangjiang River basin as an example, we verified the feasibility and practicability of hydrological gene theory for the calculation of inconsistent hydrological frequency. The results showed that the method could be used to reveal the evolution of inconsistent hydrological series. Therefore, it provided a new research pathway for engineering hydrological calculation in changing environment and an essential reference for the assessment of water security.
FY 1999 Laboratory Directed Research and Development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
PJ Hughes
2000-06-13
A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.
NASA Astrophysics Data System (ADS)
Kuras, P. K.; Weiler, M.; Alila, Y.; Spittlehouse, D.; Winkler, R.
2006-12-01
Hydrologic models have been increasingly used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models, however, are also plagued by uncertainty stemming from a limited understanding of hydrological processes in forested catchments and parameter equifinality is a common concern. This has created the necessity to improve our understanding of how hydrological systems work, through the development of hydrological measures, analyses and models that address the question: are we getting the right answers for the right reasons? Hence, physically-based, spatially-distributed hydrologic models should be validated with high-quality experimental data describing multiple concurrent internal catchment processes under a range of hydrologic regimes. The distributed hydrology soil vegetation model (DHSVM) frequently used in forest management applications is an example of a process-based model used to address the aforementioned circumstances, and this study takes a novel approach at collectively examining the ability of a pre-calibrated model application to realistically simulate outlet flows along with the spatial-temporal variation of internal catchment processes including: continuous groundwater dynamics at 9 locations, stream and road network flow at 67 locations for six individual days throughout the freshet, and pre-melt season snow distribution. Model efficiency was improved over prior evaluations due to continuous efforts in improving the quality of meteorological data in the watershed. Road and stream network flows were very well simulated for a range of hydrological conditions, and the spatial distribution of the pre-melt season snowpack was in general agreement with observed values. The model was effective in simulating the spatial variability of subsurface flow generation, except at locations where strong stream-groundwater interactions existed, as the model is not capable of simulating such processes and subsurface flows always drain to the stream network. The model has proven overall to be quite capable in realistically simulating internal catchment processes in the watershed, which creates more confidence in future model applications exploring the effects of various forest management scenarios on the watershed's hydrological processes.
NASA Astrophysics Data System (ADS)
Zeng, R. Q.; Meng, X. M.; Zhang, F. Y.; Wang, S. Y.; Cui, Z. J.; Zhang, M. S.; Zhang, Y.; Chen, G.
2016-10-01
From the perspective of engineering geology, loess has long been considered as a homogeneous and porous material. It is commonly believed that water penetrates loess via pores and in some cases causing mass movements. However, several researchers have expressed doubts about this mechanism as a cause of slope failures in loess, and moreover the actual hydrological processes operating in loess deposits and their effect on slope failures have not been fully investigated. Here we present the results of an electrical resistivity survey of the Heifangtai loess terrace in northwestern China, designed to characterize the hydrological processes in loess slopes and their relationship with slope failures. The Heifangtai loess terrace is located on the fourth terrace of the Yellow River and consists of 57-m-thickness of aeolian loess. 2D and 3D electrical resistivity tomography (ERT) was used to monitor the movement of ground water before and after irrigation and rainfall events and the evolution of a sink hole in the toe of the landslide deposits. Our main findings are as follows: (1) Based on the 2D ERT results, the depth of infiltration into the thick unsaturated loess is not more than 5 m in the profile at the top of the landslide. (2) Electrical resistivity decreased as a result of water infiltration through sinkholes, and this process can increase the soil water content and induce soil liquefaction which can eventually result in land sliding. (3) Landslide deposits block the groundwater drainage channels through the loess, which results in the concentration of water in the toe of the landslide. Consequently, groundwater together with rainfall, triggers the failure of sinkholes or cracks, which may induce a continuing process of new slope failures at the sites of past landslide.
NASA Astrophysics Data System (ADS)
Borga, Marco; Francois, Baptiste; Creutin, Jean-Dominique; Hingray, Benoit; Zoccatelli, Davide; Tardivo, Gianmarco
2015-04-01
In many parts of the world, integration of small hydropower and solar/wind energy sources along river systems is examined as a way to meet pressing renewable energy targets. Depending on the space and time scales considered, hydrometeorological variability may synchronize or desynchronize solar/wind, runoff and the demand opening the possibility to use their complementarity to smooth the intermittency of each individual energy source. Rivers also provide important ecosystem services, including the provision of high quality downstream water supply and the maintenance of in-stream habitats. With future supply and demand of water resources both impacted by environmental change, a good understanding of the potential for the integration among hydropower and solar/wind energy sources in often sparsely gauged catchments is important. In such cases, where complex data-demanding models may be inappropriate, there is a need for simple conceptual modelling approaches that can still capture the main features of runoff generation and artificial regulation processes. In this work we focus on run-of-the-river and solar-power interaction assessment. In order to catch the three key cycles of the load fluctuation - daily, weekly and seasonal, the time step used in the study is the hourly resolution. We examine the performance of a conceptual hydrological model which includes facilities to model dam regulation and diversions and hydrological modules to account for the effect of glaciarised catchments. The model is applied to catchments of the heavily regulated Upper Adige river system (6900 km2), Eastern Italian Alps, which has a long history of hydropower generation. The model is used to characterize and predict the natural flow regime, assess the regulation impacts, and simulate co-fluctuations between run-of- the-river and solar power. The results demonstrates that the simple, conceptual modelling approach developed here can capture the main hydrological and regulation processes well at the three key cycles of the load fluctuations. A specific focus is dedicated on how the results can be communicated to stakeholders in order to provide a basis for discussing the development of new adaptive management strategies.
NASA Astrophysics Data System (ADS)
Vansteenkiste, Thomas; Tavakoli, Mohsen; Ntegeka, Victor; De Smedt, Florimond; Batelaan, Okke; Pereira, Fernando; Willems, Patrick
2014-11-01
The objective of this paper is to investigate the effects of hydrological model structure and calibration on climate change impact results in hydrology. The uncertainty in the hydrological impact results is assessed by the relative change in runoff volumes and peak and low flow extremes from historical and future climate conditions. The effect of the hydrological model structure is examined through the use of five hydrological models with different spatial resolutions and process descriptions. These were applied to a medium sized catchment in Belgium. The models vary from the lumped conceptual NAM, PDM and VHM models over the intermediate detailed and distributed WetSpa model to the fully distributed MIKE SHE model. The latter model accounts for the 3D groundwater processes and interacts bi-directionally with a full hydrodynamic MIKE 11 river model. After careful and manual calibration of these models, accounting for the accuracy of the peak and low flow extremes and runoff subflows, and the changes in these extremes for changing rainfall conditions, the five models respond in a similar way to the climate scenarios over Belgium. Future projections on peak flows are highly uncertain with expected increases as well as decreases depending on the climate scenario. The projections on future low flows are more uniform; low flows decrease (up to 60%) for all models and for all climate scenarios. However, the uncertainties in the impact projections are high, mainly in the dry season. With respect to the model structural uncertainty, the PDM model simulates significantly higher runoff peak flows under future wet scenarios, which is explained by its specific model structure. For the low flow extremes, the MIKE SHE model projects significantly lower low flows in dry scenario conditions in comparison to the other models, probably due to its large difference in process descriptions for the groundwater component, the groundwater-river interactions. The effect of the model calibration was tested by comparing the manual calibration approach with automatic calibrations of the VHM model based on different objective functions. The calibration approach did not significantly alter the model results for peak flow, but the low flow projections were again highly influenced. Model choice as well as calibration strategy hence have a critical impact on low flows, more than on peak flows. These results highlight the high uncertainty in low flow modelling, especially in a climate change context.
Understanding the Amazon Hydrology for Sustainable Hydropower Development
NASA Astrophysics Data System (ADS)
Pokhrel, Y. N.; Chaudhari, S. N.
2017-12-01
Construction of 147 new hydropower dams, many of which are large, has been proposed in the Amazon river basin, despite the continuous stacking of negative impacts from the existing ones. These dams are continued to be built in a way that disrupts river ecology, causes large-scale deforestation, and negatively affects both the food systems nearby and downstream communities. In this study, we explore the impacts of the existing and proposed hydropower dams on the hydrological fluxes across the Amazonian Basin by incorporating human impact modules in an extensively validated regional hydrological model called LEAF-Hydro-Flood (LHF). We conduct two simulations, one in offline mode, forced by observed meteorological data for the historical period of 2000-2016 and the other in a coupled mode using the Weather Research and Forecasting (WRF) regional climate model. We mainly analyze terrestrial water storage and streamflow changes during the period of dam operations with and without human impacts. It is certain that the Amazon will undergo some major hydrological changes such as decrease in streamflow downstream in the coming decades caused due to these proposed dams. This study helps us understand and represent processes in a predictable manner, and provides the ability to evaluate future scenarios with dams and other major human influences while considering climate change in the basin. It also provides important insights on how to redesign the hydropower systems to make them truly renewable in terms of energy production, hydrology and ecology.
NASA Astrophysics Data System (ADS)
Gregory, A. E.; Benedict, K. K.; Zhang, S.; Savickas, J.
2017-12-01
Large scale, high severity wildfires in forests have become increasingly prevalent in the western United States due to fire exclusion. Although past work has focused on the immediate consequences of wildfire (ie. runoff magnitude and debris flow), little has been done to understand the post wildfire hydrologic consequences of vegetation regrowth. Furthermore, vegetation is often characterized by static parameterizations within hydrological models. In order to understand the temporal relationship between hydrologic processes and revegetation, we modularized and partially automated the hydrologic modeling process to increase connectivity between remotely sensed data, the Virtual Watershed Platform (a data management resource, called the VWP), input meteorological data, and the Precipitation-Runoff Modeling System (PRMS). This process was used to run simulations in the Valles Caldera of NM, an area impacted by the 2011 Las Conchas Fire, in PRMS before and after the Las Conchas to evaluate hydrologic process changes. The modeling environment addressed some of the existing challenges faced by hydrological modelers. At present, modelers are somewhat limited in their ability to push the boundaries of hydrologic understanding. Specific issues faced by modelers include limited computational resources to model processes at large spatial and temporal scales, data storage capacity and accessibility from the modeling platform, computational and time contraints for experimental modeling, and the skills to integrate modeling software in ways that have not been explored. By taking an interdisciplinary approach, we were able to address some of these challenges by leveraging the skills of hydrologic, data, and computer scientists; and the technical capabilities provided by a combination of on-demand/high-performance computing, distributed data, and cloud services. The hydrologic modeling process was modularized to include options for distributing meteorological data, parameter space experimentation, data format transformation, looping, validation of models and containerization for enabling new analytic scenarios. The user interacts with the modules through Jupyter Notebooks which can be connected to an on-demand computing and HPC environment, and data services built as part of the VWP.
NASA Astrophysics Data System (ADS)
Huning, L. S.; Margulis, S. A.
2013-12-01
Concepts in introductory hydrology courses are often taught in the context of process-based modeling that ultimately is integrated into a watershed model. In an effort to reduce the learning curve associated with applying hydrologic concepts to real-world applications, we developed and incorporated a 'hydrology toolbox' that complements a new, companion textbook into introductory undergraduate hydrology courses. The hydrology toolbox contains the basic building blocks (functions coded in MATLAB) for an integrated spatially-distributed watershed model that makes hydrologic topics (e.g. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) more user-friendly and accessible for students. The toolbox functions can be used in a modular format so that students can study individual hydrologic processes and become familiar with the hydrology toolbox. This approach allows such courses to emphasize understanding and application of hydrologic concepts rather than computer coding or programming. While topics in introductory hydrology courses are often introduced and taught independently or semi-independently, they are inherently interconnected. These toolbox functions are therefore linked together at the end of the course to reinforce a holistic understanding of how these hydrologic processes are measured, interconnected, and modeled. They are integrated into a spatially-distributed watershed model or numerical laboratory where students can explore a range of topics such as rainfall-runoff modeling, urbanization, deforestation, watershed response to changes in parameters or forcings, etc. Model output can readily be visualized and analyzed by students to understand watershed response in a real river basin or a simple 'toy' basin. These tools complement the textbook, each of which has been well received by students in multiple hydrology courses with various disciplinary backgrounds. The same governing equations that students have studied in the textbook and used in the toolbox have been encapsulated in the watershed model. Therefore, the combination of the hydrology toolbox, integrated watershed model, and textbook tends to eliminate the potential disconnect between process-based modeling and an 'off-the-shelf' watershed model.
NASA Astrophysics Data System (ADS)
Schellekens, Jaap; van Gils, Jos; Christophe, Christophe; Sperna-Weiland, Frederiek; Winsemius, Hessel
2013-04-01
The ability to quickly link a complete water quality model to any distributed hydrological model can be of great value. It provides the hydrological modeller with more information on the performance of the model by being able to add particle tracing and independent mass balance calculations to an existing distributed hydrological model. It also allows for full catchment water quality calculations forced by emissions to different hydrological compartments, taking into account the relevant processes in the different compartments of the hydrological model. A combined distributed hydrological model and hydrochemical model (Delwaq) have been combined within the modeling framework OpenStreams to model large scale hydrological processes in the Rhine basin upstream of the Dutch border at Lobith. Several models have been setup to evaluate (1) the origin of high and low flows in the Rhine basin based on subcatchment contribution and (2) the contribution of different land covers to the total flow with special reference to urban land cover. In addition (3) the relative share of fast and slow runoff components in the total river discharge has been quantified, as well as the age of these two fractions, both as a function of time. Finally (4) the transmission of a pollutant released in infiltrating water and undergoing sorption has been simulated, as a first test for implementing full water quality modelling. The results of a thirty-five year run using daily time steps for 1975 to 2010 were analysed for monthly average contribution to the total flow of each subcatchment and the different land cover types both for average flow conditions and for the top ten and bottom ten flow percentiles. Furthermore, a number of high and low flow events have been analysed in detail. They reveal the large contribution of the basin area upstream of Basel to the dry season flow, especially during the driest summers. Flood conditions in the basin have a more varied origin with the Moselle being the main contributor. The amount of urban land cover (6.7%) generated a fairly large amount of (quick) runoff. In times up to 21 % of the flow at Lobith is generated in urban areas. The location of urban areas (in general close to the river) in combination with the associated impermeable surfaces most probably cause the relatively large contribution of urban areas. The fast runoff fraction at Lobith has an average age between 5 and 25 days, depending on the hydrology within the year, while the slow runoff fraction shows an average age between 300 and 600 days, again depending on the hydrology within the year. The time needed to flush out 90% of the total volume of water from the basin is about 20 years.
Ge Sun; Devendra Amatya; Steve McNulty
2016-01-01
Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...
The PCR-GLOBWB global hydrological reanalysis product
NASA Astrophysics Data System (ADS)
Wanders, Niko; Bierkens, Marc; Sutanudjaja, Edwin; van Beek, Rens
2014-05-01
Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal "land surface hydrological reanalysis" dataset with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we use PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB simulates moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid variations of elevation, land cover and soil saturation distribution. The model includes improved schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. It also dynamically simulates water storage in reservoirs, water demand and the withdrawal, allocation and consumptive use of surface water and groundwater resources. By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrate the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow accumulation and melt, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields with consideration of local topographic and orographic effects. Results show that the model parameters can be successfully calibrated, while corrections to the forcing precipitation fields are substantial. Topography has the largest impact on the corrected precipitation and globally the precipitation is reduced by 3%. The calibrated model output is compared to the reference run of PCR-GLOBWB before calibration showing significant improvement in simulation of the global terrestrial water cycle. The RMSE is reduced by 10% on average, leading to improved discharge simulations, especially under base flow situations. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).
Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.
2007-01-01
The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible process will help to quantify the effects of anthropogenic changes and development on hydrologic variability and help planners and resource managers balance current and future water requirements with ecological needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.; Rutqvist, J.; Sonnenthal, E.
The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The name DECOVALEXstands for DEvelopment of COupled models and their VALidation againstExperiments. The general goal of this project is to encouragemultidisciplinary interactive and cooperative research on modelingcoupled processes in geologic formations in support of the performanceassessment for underground storage of radioactive waste. Three multi-yearproject stages of DECOVALEX have been completed in the past decade,mainly focusing on coupled thermal-hydrological-mechanicalprocesses.Currently, a fourth three-year project stage of DECOVALEX isunder way, referred to as DECOVALEX-THMC. THMC stands for Thermal,Hydrological, Mechanical, and Chemical processes.more » The new project stageaims at expanding the traditional geomechanical scope of the previousDECOVALEX project stages by incorporating geochemical processes importantfor repository performance. The U.S. Department of Energy (DOE) leadsTask D of the new DECOVALEX phase, entitled "Long-termPermeability/Porosity Changes in the EDZ and Near Field due to THC andTHM Processes for Volcanic and Crystalline-Bentonite Systems." In itsleadership role for Task D, DOE coordinates and sets the direction forthe cooperative research activities of the international research teamsengaged in Task D.« less
Picturing and modelling catchments by representative hillslopes
NASA Astrophysics Data System (ADS)
Loritz, Ralf; Hassler, Sibylle; Jackisch, Conrad; Zehe, Erwin
2016-04-01
Hydrological modelling studies often start with a qualitative sketch of the hydrological processes of a catchment. These so-called perceptual models are often pictured as hillslopes and are generalizations displaying only the dominant and relevant processes of a catchment or hillslope. The problem with these models is that they are prone to become too much predetermined by the designer's background and experience. Moreover it is difficult to know if that picture is correct and contains enough complexity to represent the system under study. Nevertheless, because of their qualitative form, perceptual models are easy to understand and can be an excellent tool for multidisciplinary exchange between researchers with different backgrounds, helping to identify the dominant structures and processes in a catchment. In our study we explore whether a perceptual model built upon an intensive field campaign may serve as a blueprint for setting up representative hillslopes in a hydrological model to reproduce the functioning of two distinctly different catchments. We use a physically-based 2D hillslope model which has proven capable to be driven by measured soil-hydrological parameters. A key asset of our approach is that the model structure itself remains a picture of the perceptual model, which is benchmarked against a) geo-physical images of the subsurface and b) observed dynamics of discharge, distributed state variables and fluxes (soil moisture, matric potential and sap flow). Within this approach we are able to set up two behavioral model structures which allow the simulation of the most important hydrological fluxes and state variables in good accordance with available observations within the 19.4 km2 large Colpach catchment and the 4.5 km2 large Wollefsbach catchment in Luxembourg without the necessity of calibration. This corroborates, contrary to the widespread opinion, that a) lower mesoscale catchments may be modelled by representative hillslopes and b) physically-based models can be parametrized based on comprehensive field data and a good perceptual model. Our results particularly indicate that the main challenge in understanding and modelling the seasonal water balance of a catchment is a proper representation of the phenological cycle of vegetation, not exclusively the structure of the subsurface and spatial variability of soil hydraulic parameters.
MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y.S. Wu
This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used tomore » support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrologic properties, flow and transport. The mountain-scale THM model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The THM model focuses on evaluating the changes in UZ flow fields arising out of thermal stress and rock deformation during and after the thermal period (the period during which temperatures in the mountain are significantly higher than ambient temperatures).« less
Mountain hydrology of the western United States
Bales, Roger C.; Molotch, Noah P.; Painter, Thomas H; Dettinger, Michael D.; Rice, Robert; Dozier, Jeff
2006-01-01
Climate change and climate variability, population growth, and land use change drive the need for new hydrologic knowledge and understanding. In the mountainous West and other similar areas worldwide, three pressing hydrologic needs stand out: first, to better understand the processes controlling the partitioning of energy and water fluxes within and out from these systems; second, to better understand feedbacks between hydrological fluxes and biogeochemical and ecological processes; and, third, to enhance our physical and empirical understanding with integrated measurement strategies and information systems. We envision an integrative approach to monitoring, modeling, and sensing the mountain environment that will improve understanding and prediction of hydrologic fluxes and processes. Here extensive monitoring of energy fluxes and hydrologic states are needed to supplement existing measurements, which are largely limited to streamflow and snow water equivalent. Ground‐based observing systems must be explicitly designed for integration with remotely sensed data and for scaling up to basins and whole ranges.
NASA Astrophysics Data System (ADS)
Pomeroy, J. W.; Fang, X.
2014-12-01
The vast effort in hydrology devoted to parameter calibration as a means to improve model performance assumes that the models concerned are not fundamentally wrong. By focussing on finding optimal parameter sets and ascribing poor model performance to parameter or data uncertainty, these efforts may fail to consider the need to improve models with more intelligent descriptions of hydrological processes. To test this hypothesis, a flexible physically based hydrological model including a full suite of snow hydrology processes as well as warm season, hillslope and groundwater hydrology was applied to Marmot Creek Research Basin, Canadian Rocky Mountains where excellent driving meteorology and basin biophysical descriptions exist. Model parameters were set from values found in the basin or from similar environments; no parameters were calibrated. The model was tested against snow surveys and streamflow observations. The model used algorithms that describe snow redistribution, sublimation and forest canopy effects on snowmelt and evaporative processes that are rarely implemented in hydrological models. To investigate the contribution of these processes to model predictive capability, the model was "falsified" by deleting parameterisations for forest canopy snow mass and energy, blowing snow, intercepted rain evaporation, and sublimation. Model falsification by ignoring forest canopy processes contributed to a large increase in SWE errors for forested portions of the research basin with RMSE increasing from 19 to 55 mm and mean bias (MB) increasing from 0.004 to 0.62. In the alpine tundra portion, removing blowing processes resulted in an increase in model SWE MB from 0.04 to 2.55 on north-facing slopes and -0.006 to -0.48 on south-facing slopes. Eliminating these algorithms degraded streamflow prediction with the Nash Sutcliffe efficiency dropping from 0.58 to 0.22 and MB increasing from 0.01 to 0.09. These results show dramatic model improvements by including snow redistribution and melt processes associated with wind transport and forest canopies. As most hydrological models do not currently include these processes, it is suggested that modellers first improve the realism of model structures before trying to optimise what are inherently inadequate simulations of hydrology.
NASA Astrophysics Data System (ADS)
Toohey, R.; Boll, J.; Brooks, E.; Jones, J.
2009-12-01
Surface runoff and percolation to ground water are two hydrological processes of concern to the Atlantic slope of Costa Rica because of their impacts on flooding and drinking water contamination. As per legislation, the Costa Rican Government funds land use management from the farm to the regional scale to improve or conserve hydrological ecosystem services. In this study, we examined how land use (e.g., forest, coffee, sugar cane, and pasture) affects hydrological response at the point, plot (1 m2), and the field scale (1-6ha) to empirically conceptualize the dominant hydrological processes in each land use. Using our field data, we upscaled these conceptual processes into a physically-based distributed hydrological model at the field, watershed (130 km2), and regional (1500 km2) scales. At the point and plot scales, the presence of macropores and large roots promoted greater vertical percolation and subsurface connectivity in the forest and coffee field sites. The lack of macropores and large roots, plus the addition of management artifacts (e.g., surface compaction and a plough layer), altered the dominant hydrological processes by increasing lateral flow and surface runoff in the pasture and sugar cane field sites. Macropores and topography were major influences on runoff generation at the field scale. Also at the field scale, antecedent moisture conditions suggest a threshold behavior as a temporal control on surface runoff generation. However, in this tropical climate with very intense rainstorms, annual surface runoff was less than 10% of annual precipitation at the field scale. Significant differences in soil and hydrological characteristics observed at the point and plot scales appear to have less significance when upscaled to the field scale. At the point and plot scales, percolation acted as the dominant hydrological process in this tropical environment. However, at the field scale for sugar cane and pasture sites, saturation-excess runoff increased as irrigation intensity and duration (e.g., quantity) increased. Upscaling our conceptual models to the watershed and regional scales, historical data (1970-2004) was used to investigate whether dominant hydrological processes changed over time due to land use change. Preliminary investigations reveal much higher runoff coefficients (<30%) at the larger watershed scales. The increase in importance of runoff at the larger geographic scales suggests an emerging process and process non-linearity between the smaller and larger scales. Upscaling is an important and useful concept when investigating catchment response using the tools of field work and/or physically distributed hydrological modeling.
Design of a mobile hydrological data measurement system
NASA Astrophysics Data System (ADS)
Liu, Yunping; Wang, Tianmiao; Dai, Fenfen
2017-06-01
The current hydrological data acquisition is mainly used in the instrument measurement. Instrument measurement equipment is mainly fixed in a certain water area and the device is easy to be lost. In view of a series of problems, the dynamic measurement system is established by the method of unmanned surface vessel and embedded technology, which can realize any positions measurement of a lake. This method has many advantages, such as mobile convenience, saving money and so on.
Water resources data-Maine, water year 2003
Stewart, G.J.; Caldwell, J.M.; Cloutier, A.R.
2004-01-01
This volume of the annual hydrologic data report of Maine is one of a series of annual reports that document data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.
Advances in river ice hydrology 1999-2003
NASA Astrophysics Data System (ADS)
Morse, Brian; Hicks, Faye
2005-01-01
In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999-2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat.There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable agencies to intervene better at the time of ice-jam-induced floods; and (3) finalize ice-jam prevention methods on the St Lawrence River to safeguard its $2 billion commercial navigation industry. Copyright
NASA Astrophysics Data System (ADS)
Hulsman, Petra; Savenije, Hubert; Bogaard, Thom
2017-04-01
In hydrology and water resources management, precipitation and discharge are the main time series for hydrological modelling. However, in African river catchments, the quantity and quality of the available precipitation stations and discharge measurements are unfortunately often inadequate for reliable hydrological modelling. To cope with these uncertainties, this study proposes to calibrate on water levels and to constrain the model using the Normalised Difference Infrared Index (NDII) as a proxy for root zone moisture stress. With the NDII, the leaf water content can be monitored. Previous studies related the NDII to the equivalent water thickness (EWT) of leaves, which is used to determine the vegetation water content (VWC). As the water content in the leaves is related to the water content in the root zone, the NDII can also be used as indicator of the soil moisture content in the root zone. In previous studies it was found that the root zone moisture content is exponentially correlated to the NDII during periods of moisture stress. In this study, the semi-distributed rainfall runoff model FLEX-Topo has been applied to the Mara River Basin. In this model seven sub-basins are distinguished and four hydrological response units with each a unique model structure based on the expected dominant flow processes. To calibrate the model, the water levels have been back-calculated from modelled discharges, using cross-section data and the Strickler formula calibrating parameter 'k•s1/2', and compared to measured water levels. In addition, the correlation between the NDII and root zone moisture content has been analysed for this river basin for each sub-catchment and hydrological response unit. Also, the application of the NDII as model constraint or for calibration has been analysed.
NASA Astrophysics Data System (ADS)
Shafii, M.; Tolson, B.; Matott, L. S.
2012-04-01
Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.
Plot-scale field experiment of surface hydrologic processes with EOS implications
NASA Technical Reports Server (NTRS)
Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.
1992-01-01
Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.
Short-term ensemble radar rainfall forecasts for hydrological applications
NASA Astrophysics Data System (ADS)
Codo de Oliveira, M.; Rico-Ramirez, M. A.
2016-12-01
Flooding is a very common natural disaster around the world, putting local population and economy at risk. Forecasting floods several hours ahead and issuing warnings are of main importance to permit proper response in emergency situations. However, it is important to know the uncertainties related to the rainfall forecasting in order to produce more reliable forecasts. Nowcasting models (short-term rainfall forecasts) are able to produce high spatial and temporal resolution predictions that are useful in hydrological applications. Nonetheless, they are subject to uncertainties mainly due to the nowcasting model used, errors in radar rainfall estimation, temporal development of the velocity field and to the fact that precipitation processes such as growth and decay are not taken into account. In this study an ensemble generation scheme using rain gauge data as a reference to estimate radars errors is used to produce forecasts with up to 3h lead-time. The ensembles try to assess in a realistic way the residual uncertainties that remain even after correction algorithms are applied in the radar data. The ensembles produced are compered to a stochastic ensemble generator. Furthermore, the rainfall forecast output was used as an input in a hydrodynamic sewer network model and also in hydrological model for catchments of different sizes in north England. A comparative analysis was carried of how was carried out to assess how the radar uncertainties propagate into these models. The first named author is grateful to CAPES - Ciencia sem Fronteiras for funding this PhD research.
An Educational Model for Hands-On Hydrology Education
NASA Astrophysics Data System (ADS)
AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.
2014-12-01
This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.
Hydrological and geomorphological controls of malaria transmission
NASA Astrophysics Data System (ADS)
Smith, M. W.; Macklin, M. G.; Thomas, C. J.
2013-01-01
Malaria risk is linked inextricably to the hydrological and geomorphological processes that form vector breeding sites. Yet environmental controls of malaria transmission are often represented by temperature and rainfall amounts, ignoring hydrological and geomorphological influences altogether. Continental-scale studies incorporate hydrology implicitly through simple minimum rainfall thresholds, while community-scale coupled hydrological and entomological models do not represent the actual diversity of the mosquito vector breeding sites. The greatest range of malaria transmission responses to environmental factors is observed at the catchment scale where seemingly contradictory associations between rainfall and malaria risk can be explained by hydrological and geomorphological processes that govern surface water body formation and persistence. This paper extends recent efforts to incorporate ecological factors into malaria-risk models, proposing that the same detailed representation be afforded to hydrological and, at longer timescales relevant for predictions of climate change impacts, geomorphological processes. We review existing representations of environmental controls of malaria and identify a range of hydrologically distinct vector breeding sites from existing literature. We illustrate the potential complexity of interactions among hydrology, geomorphology and vector breeding sites by classifying a range of water bodies observed in a catchment in East Africa. Crucially, the mechanisms driving surface water body formation and destruction must be considered explicitly if we are to produce dynamic spatial models of malaria risk at catchment scales.
Construction of a Distributed-network Digital Watershed Management System with B/S Techniques
NASA Astrophysics Data System (ADS)
Zhang, W. C.; Liu, Y. M.; Fang, J.
2017-07-01
Integrated watershed assessment tools for supporting land management and hydrologic research are becoming established tools in both basic and applied research. The core of these tools are mainly spatially distributed hydrologic models as they can provide a mechanism for investigating interactions among climate, topography, vegetation, and soil. However, the extensive data requirements and the difficult task of building input parameter files for driving these distributed models, have long been an obstacle to the timely and cost-effective use of such complex models by watershed managers and policy-makers. Recently, a web based geographic information system (GIS) tool to facilitate this process has been developed for a large watersheds of Jinghe and Weihe catchments located in the loess plateau of the Huanghe River basin in north-western China. A web-based GIS provides the framework within which spatially distributed data are collected and used to prepare model input files of these two watersheds and evaluate model results as well as to provide the various clients for watershed information inquiring, visualizing and assessment analysis. This Web-based Automated Geospatial Watershed Assessment GIS (WAGWA-GIS) tool uses widely available standardized spatial datasets that can be obtained via the internet oracle databank designed with association of Map Guide platform to develop input parameter files for online simulation at different spatial and temporal scales with Xing’anjiang and TOPMODEL that integrated with web-based digital watershed. WAGWA-GIS automates the process of transforming both digital data including remote sensing data, DEM, Land use/cover, soil digital maps and meteorological and hydrological station geo-location digital maps and text files containing meteorological and hydrological data obtained from stations of the watershed into hydrological models for online simulation and geo-spatial analysis and provides a visualization tool to help the user interpret results. The utility of WAGWA-GIS in jointing hydrologic and ecological investigations has been demonstrated on such diverse landscapes as Jinhe and Weihe watersheds, and will be extended to be utilized in the other watersheds in China step by step in coming years
GEOMORPHIC AND HYDROLOGIC INTERACTIONS IN THE DETERMINATION OF EQUILIBRIUM SOIL DEPTH
NASA Astrophysics Data System (ADS)
Nicotina, L.; Rinaldo, A.; Tarboton, D. G.
2009-12-01
In this work we propose numerical studies of the interactions between hydrology and geomorphology in the formation of the actual soil depth that drives ecologic and hydrologic processes. Sediment transport and geomorphic landscape evolution processes (i.e. erosion/deposition vs. soil production) strongly influence hydrology, carbon sequestration, soil formation and stream water chemistry. The process of rock conversion into soil originates a strong hydrologic control through the formation of the soil depth that participates to hydrologic processes, influence vegetation type and patterns and actively participate in the co-evolution mechanisms that shape the landscape. The description of spatial patterns in hydrology is usually constrained by the availability of field data, especially when dealing with quantities that are not easily measurable. In these circumstances it is deemed fundamental the capability of deriving hydrologic boundary conditions from physically based approaches. Here we aim, in a general framework, at the formulation of an integrated approach for the prediction of soil depth by mean of i) soil production models and ii) geomorphic transport laws. The processes that take place in the critical zone are driven by the extension of it and have foundamental importance over short time scales as well as on geologic time scales (i.e. as biota affects climate that drives hydrology and thus contributes on shaping the landscape). Our study aims at the investigation of the relationships between soil depth, topography and runoff production, we also address the mechanisms that bring to the development of actual patterns of soil depths which at the same time influence runoff. We use a schematic representation of the hydrologic processes that relies on the description of the topography (throuh a topographic wetness index) and the spatially variable soil depths. Such a model is applied in order to investigate the development of equilibrium soil depth patterns under different hydrologic regimes and under two different hypothesis for the dynamic equilibrium (local or topographic dynamic equilibrium) of soils as well as the temporal scales associated to them. The obtained results are tested against a field survey of soil depths carried out in the Dry Creek catchment located in southern Idaho, near Boise (USA). The develped approach results to be suitable for the problem at hand as the hydrologic model results to be sensitive to the soil depths distribution.
Mapping (un)certainties in the sign of hydrological projections
NASA Astrophysics Data System (ADS)
Melsen, Lieke; Addor, Nans; Mizukami, Naoki; Newman, Andrew; Torfs, Paul; Clark, Martyn; Uijlenhoet, Remko; Teuling, Ryan
2017-04-01
While hydrological projections are of vital importance, particularly for water infrastructure design and food production, they are also prone to different sources of uncertainty. Using a multi-model set-up we investigated the uncertainty in hydrological projections for the period 2070-2100 associated with the parameterization of hydrological models, hydrological model structure, and General Circulation Models (GCMs) needed to force the hydrological model, for 605 basins throughout the contiguous United States. The use of such a large sample of basins gave us the opportunity to recognize spatial patterns in the results, and to attribute the uncertainty to particular hydrological processes. We investigated the sign of the projected change in mean annual runoff. The parameterization influenced the sign of change in 5 to 34% of the basins, depending on the hydrological model and GCM forcing. The hydrological model structure led to uncertainty in the sign of the change in 13 to 26% of the basins, depending on GCM forcing. This uncertainty could largely be attributed to the conceptualization of snow processes in the hydrological models. In 14% of the basins, none of the hydrological models was behavioural, which could be related to catchments with high aridity and intermittent flow behaviour. In 41 to 69% of the basins, the sign of the change was uncertain due to GCM forcing, which could be attributed to disagreement among the climate models regarding the projected change in precipitation. The results demonstrate that even the sign of change in mean annual runoff is highly uncertain in the majority of the investigated basins. If we want to use hydrological projections for water management purposes, including the design of water infrastructure, we clearly need to increase our understanding of climate and hydrological processes and their feedbacks.
USDA-ARS?s Scientific Manuscript database
Hydrology deals with the occurrence, movement, and storage of water in the Earth system. Hydrologic science comprises understanding the underlying physical and stochastic processes involved and estimating the quantity and quality of water in the various phases and stores. The study of hydrology als...
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Rakovec, Oldrich; Kumar, Rohini; Samaniego, Luis
2016-04-01
There have been tremendous improvements in distributed hydrologic modeling (DHM) which made a process-based simulation with a high spatiotemporal resolution applicable on a large spatial scale. Despite of increasing information on heterogeneous property of a catchment, DHM is still subject to uncertainties inherently coming from model structure, parameters and input forcing. Sequential data assimilation (DA) may facilitate improved streamflow prediction via DHM using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is, however, often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. If parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by DHM may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we present a global multi-parametric ensemble approach to incorporate parametric uncertainty of DHM in DA to improve streamflow predictions. To effectively represent and control uncertainty of high-dimensional parameters with limited number of ensemble, MPR method is incorporated with DA. Lagged particle filtering is utilized to consider the response times and non-Gaussian characteristics of internal hydrologic processes. The hindcasting experiments are implemented to evaluate impacts of the proposed DA method on streamflow predictions in multiple European river basins having different climate and catchment characteristics. Because augmentation of parameters is not required within an assimilation window, the approach could be stable with limited ensemble members and viable for practical uses.
NASA Astrophysics Data System (ADS)
Bormann, H.; Faß, T.; Giertz, S.; Junge, B.; Diekkrüger, B.; Reichert, B.; Skowronek, A.
This paper presents the concept, first results and perspectives of the hydrological sub-project of the IMPETUS-Benin project which is part of the GLOWA program funded by the German ministry of education and research. In addition to the research concept, first results on field hydrology, pedology, hydrogeology and hydrological modelling are presented, focusing on the understanding of the actual hydrological processes. For analysing the processes a 30 km 2 catchment acting as a super test site was chosen which is assumed to be representative for the entire catchment of about 15,000 km 2. First results of the field investigations show that infiltration, runoff generation and soil erosion strongly depend on land cover and land use which again influence the soil properties significantly. A conceptual hydrogeological model has been developed summarising the process knowledge on runoff generation and subsurface hydrological processes. This concept model shows a dominance of fast runoff components (surface runoff and interflow), a groundwater recharge along preferential flow paths, temporary interaction between surface and groundwater and separate groundwater systems on different scales (shallow, temporary groundwater on local scale and permanent, deep groundwater on regional scale). The findings of intensive measurement campaigns on soil hydrology, groundwater dynamics and soil erosion have been integrated into different, scale-dependent hydrological modelling concepts applied at different scales in the target region (upper Ouémé catchment in Benin, about 15,000 km 2). The models have been applied and successfully validated. They will be used for integrated scenario analyses in the forthcoming project phase to assess the impacts of global change on the regional water cycle and on typical problem complexes such as food security in West African countries.
Genetic Programming for Automatic Hydrological Modelling
NASA Astrophysics Data System (ADS)
Chadalawada, Jayashree; Babovic, Vladan
2017-04-01
One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resources Research, 47(11).
Lysimeter Research Group - A scientific community network for lysimeter research
NASA Astrophysics Data System (ADS)
Cepuder, Peter; Nolz, Reinhard; Bohner, Andreas; Baumgarten, Andreas; Klammler, Gernot; Murer, Erwin; Wimmer, Bernhard
2014-05-01
A lysimeter is a vessel that isolates a volume of soil between ground surface and a certain depth, and includes a sampling device for percolating water at its bottom. Lysimeters are traditionally used to study water and solute transport in the soil. Equipped with a weighing system, soil water sensors and temperature sensors, lysimeters are valuable instruments to investigate hydrological processes in the system soil-plant-atmosphere, especially fluxes across its boundary layers, e.g. infiltration, evapotranspiration and deep drainage. Modern lysimeter facilities measure water balance components with high precision and high temporal resolution. Hence, lysimeters are used in various research disciplines - such as hydrology, hydrogeology, soil science, agriculture, forestry, and climate change studies - to investigate hydrological, chemical and biological processes in the soil. The Lysimeter Research Group (LRG) was established in 1992 as a registered nonprofit association with free membership (ZVR number: 806128239, Austria). It is organized as an executive board with an international scientific steering committee. In the beginning the LRG focused mainly on nitrate contamination in Austria and its neighboring countries. Today the main intention of the LRG is to advance interdisciplinary exchange of information between researchers and users working in the field of lysimetry on an international level. The LRG also aims for the dissemination of scientific knowledge to the public and the support of decision makers. Main activities are the organization of a lysimeter conference every two years in Raumberg-Gumpenstein (Styria, Austria), the organization of excursions to lysimeter stations and related research sites around Europe, and the maintenance of a website (www.lysimeter.at). The website contains useful information about numerous European lysimeter stations regarding their infrastructure, instrumentation and operation, as well as related links and references which may help scientists to find an appropriate research site for potential cooperation projects. Currently, the website is becoming revised and updated. Up to now the LRG counts 485 registered members from 54 countries. Registration is possible free of charge via www.lysimeter.at. The LRG wants to attract new members from all over the world, intensify co-operation with other research groups, and enhance and support new and innovative ideas and technologies in lysimeter research.
NASA Astrophysics Data System (ADS)
Yi, Shuhua; Wang, Xiaoyun; Qin, Yu; Xiang, Bo; Ding, Yongjian
2014-07-01
Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai-Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost hydrology scheme to examine this issue. Our results showed that 1) the DOS-TEM model could properly simulate the responses of soil thermal and hydrological dynamics and of ecosystem dynamics to climate warming and spatial differences in precipitation; 2) the simulated results were consistent with plot-scale studies showing that warming caused an increase in maximum unfrozen thickness, a reduction in vegetation and soil carbon pools as a whole, and decreases in soil water content, net primary production, and heterotrophic respiration; and 3) the simulated results were also consistent with basin-scale studies showing that the ecosystem responses to warming were different in regions with different combinations of water and energy constraints. Permafrost prevents water from draining into water reservoirs. However, the degradation of permafrost in response to warming is a long-term process that also enhances evapotranspiration. Thus, the degradation of the alpine grassland ecosystem on the Qinghai-Tibetan Plateau (releasing carbon) cannot be mainly attributed to the disappearing waterproofing function of permafrost.
Climate change and water table fluctuation: Implications for raised bog surface variability
NASA Astrophysics Data System (ADS)
Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija
2018-03-01
Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.
NASA Astrophysics Data System (ADS)
Zhang, Hongbo; Huang, Qiang; Zhang, Qiang; Gu, Lei; Chen, Keyu; Yu, Qijun
2016-03-01
Under the combined influence of climate changes and human activities, the hydrological regime of the Wei River shows remarkable variations which have caused many issues in the Wei River in recent decades, such as a lack of freshwater, water pollution, disastrous flooding and channel sedimentation. Hence, hydrological regime changes and potential human-induced impacts have been drawing increasing attention from local government and hydrologists. This study investigates hydrological regime changes in the natural and measured runoff series at four hydrological stations on the main Wei River and quantifies features of their long-term change by analysing their historical annual and seasonal runoff data using several approaches, i.e., continuous wavelet transform, cross-wavelet, wavelet coherence, trend-free pre-whitening Mann-Kendall test and detrended fluctuation analysis. By contrasting two different analysis results between natural and measured river runoff series, the impacts of human activities on the long-term hydrological regime were investigated via the changes of spatio-temporal distribution in dominant periods, the trends and long-range memory of river runoff. The results show : (a) that periodic properties of the streamflow changes are the result of climate, referring to precipitation changes in particular, while human activities play a minor role; (b) a significant decreasing trend can be observed in the natural streamflow series along the entire main stream of the Wei River and the more serious decrease emerging in measured flow should result from human-induced influences in recent decades; and (c) continuous decreasing streamflow in the Wei River will trigger serious shortages of freshwater in the future, which may challenge the sustainability and safety of water resources development in the river basin, and should be paid great attention before 2020.
NASA Astrophysics Data System (ADS)
Wegener, P.; Covino, T. P.; Wohl, E.; Kampf, S. K.; Lacy, S.
2015-12-01
Wetlands have been widely demonstrated to provide important watershed services, such as the sequestration of carbon (C) and removal of nitrate (NO3-) from through-flowing water. Hydrologic connectivity (degree of water and associated material exchange) between floodplain water bodies (e.g., side channels, ponds) and the main channel influence rates of C accumulation and NO3- uptake, and the degree to which wetlands contribute to enhanced water quality at the catchment scale. However, environmental engineers have largely ignored the role of hydrologic connectivity in providing essential ecosystem services, and constructed wetlands are commonly built using compacted clay and berms that result in less groundwater and surface water exchange than observed in natural wetlands. In a study of an active beaver meadow (multithreaded, riparian wetland) in Rocky Mountain National Park, CO, we show how shifts in hydrology (connectivity, residence times, flow paths) from late spring snowmelt (high connectivity) to autumn/winter baseflow (low connectivity) influence ecosystem metabolism metrics (e.g., gross primary production, ecosystem respiration, and net ecosystem productivity) and NO3- uptake rates. We use a combination of mixing analyses, tracer tests, and hydrometric methods to evaluate shifts in surface and subsurface hydrologic connections between floodplain water bodies from snowmelt to baseflow. In the main channel and three floodplain water bodies, we quantify metabolism metrics and NO3- uptake kinetics across shifting flow regimes. Results from our research indicate that NO3- uptake and metabolism dynamics respond to changing levels of hydrologic connectivity to the main channel, emphasizing the importance of incorporating connectivity in wetland mitigation practices that seek to enhance water quality at the catchment scale.
NASA Astrophysics Data System (ADS)
Barros Grace, Virgínia; Mas-Pla, Josep; Oliveira Novais, Therezinha; Sacchi, Elisa; Zuppi, Gian Maria
2008-03-01
The hydrologic complex of Babitonga Bay (Brazil) forms a vast environmental complex where agriculture, shellfish farming, and industries coexist with a unique natural area of Atlantic rain forest and mangrove systems. The origin of different continental hydrological components, the environmental transition between saline and freshwaters, and the influence of the seasonality on Babitonga Bay waters are evaluated using isotopes and chemistry. End-member mixing analysis is used to explore hydrological processes in the bay. We show that a mixing of waters from different origins takes place in the bay modifying its chemical characteristics. Furthermore, biogeochemical processes related to well-developed mangrove systems are responsible for an efficient bromide uptake, which limit its use as a tracer as commonly used in non-biologically active environments. Seasonal behaviours are also distinguished from our datasets. The rainy season (April) provides a homogenization of the hydrological processes that is not seen after the dry season (October), when larger spatial differences appear and when the effects of biological processes on the bay hydrochemistry are more dynamic, or can be better recognized. Moreover, Cl/Br and stable isotopes of water molecule allow a neat definition of the hydrological and biogeochemical processes that control chemical composition in coastal and transition areas.
Assessment of an improved hydrological loading model from space geodesy: case study in South America
NASA Astrophysics Data System (ADS)
Nicolas, Joëlle; Boy, Jean-Paul; Durand, Frédéric; Mémin, Anthony
2017-04-01
Loading effects are crustal deformations induced by ocean, atmosphere and continental water mass redistributions. In this study we focus on hydrological loading effect monitored by space geodesy and in particular by GNSS and GRACE. Classically, hydrological loading models take into account snow and soil-moisture but don't consider surface waters (rivers, lakes…). As a result, huge discrepancies between GPS observations and those models arise around large rivers such as the Amazon where nearly half of the vertical signal cannot be explained by the combination of atmospheric, oceanic and hydrological loading models. To better resolve the hydrological signal, we improve the continental water storage models computed from soil-moisture and snow GLDAS/Noah or MERRA data sets by including surface water runoff. We investigate how continental water storage model improvements are supported by GNSS and GRACE observations in South America main river basins: Amazon, Orinoco and Parana. In this area the hydrological effects are among the largest in the world mainly due to the river level variations. We present the results of time series analyses with spectral and principal component analysis (PCA) methods. We extract the dominant spatio-temporal annual mode. We also identify and characterize the spatio-temporal changes in the annual hydrology signal, which is the key to a better understanding of the water cycle variations of those major rivers. We demonstrate that it is crucial to take into account the river contribution in fluid signatures before investigating high-frequency variability and episodic events.
NASA Astrophysics Data System (ADS)
Brisson, Cathy; Boucher, Marie-Amélie; Latraverse, Marco
2014-05-01
This research focuses on the improvement of streamflow forecasts for two subcatchments in the Lac-St-Jean area, a northern part of the province of Quebec in Canada. Those two subcatchments, named Manouane and Passes-Dangereuses, are part of a bigger system, which comprises many reservoirs and six hydropower plants. This system is managed by Rio Tinto Alcan, an aluminium producer who needs this energy for its processes. Optimal management of the hydropower plants highly depends on the reliability of the inflow forecasts to the reservoirs and also on the reliability of observed streamflow. The latter are not directly measured, but rather deduced from the computation of a water balance. This water balance includes streamflow computation based on rating curves for river sections and upstream reservoirs and a modelling process using CEQUEAU hydrological model (Morin et al., 1981). In addition, mostly during the winter, the model has to account for a transfer of water from Lac Manouane reservoir to Passes-Dangereuses through Bonnard channel. Winter flow though Bonnard channel is controlled by a spillway, and represented in CEQUEAU by a transfer function and a fixed time delay (2 days). However, it is suspected that the evacuation function, as it is currently computed, is inaccurate. The main objective of this work is to reduce predictive uncertainty for Lac Manouane and Passes-Dangereuses catchment, for the one-day ahead horizon. This objective is twofold. First, the uncertainty related to the parameterization of the hydrological model had never been evaluated. It was to be investigated whether it is better to spatialize the calibration of the hydrological model. In its actual form, the calibration of the hydrological model CEQUEAU (Morin et al., 1981) is based exclusively on the downstream outflow. There is, however, intermediate streamflow measurements data available for an intermediate location. Our study shows that calibrating the model using streamflows for both locations (intermediate location and downstream) leads to improved forecasts, as measured by the Nash-Sutcliffe efficiency criterion. The parameter sets thus determined best represent the phenomena of exchange and runoff in the watershed. Second, this study aims at reducing the uncertainty associated to the evacuation function for the Bonnard channel as well as the time delay related to this transfer. Instead of using a fixed 2-day time delay for the transfer, it was attempted to represent the channel in the hydrological model CEQUEAU and compute the time delay from this model. The results show that hydrological modelling does not improve the results and that the 2-day time delay is adequate, especially for first days of opening and few days after closure of the gate. In addition, this research shows that the evacuation function of Bonnard spillway is inexact for large streamflows. It is considered the main source of uncertainty for the prediction of inflows to the reservoirs. We also show that the evacuated streamflows can be successfully corrected by hydrological modelling. This case study shows that a careful revision of the inflow forecasting process for those important watersheds can help reduce predictive uncertainty. Although the application is specific to the Lac-St-Jean area, we believe that our experience could serve other users and water managers with similar issues regarding inflow uncertainty. Reference Morin, G., J.-P. Fortin, J.-P. Lardeau, W. Sochanska and S. Paquette. 1981. Modèle CEQUEAU : Manuel d'utilisation. Rapport de recherche no R-93, INRS-Eau, Sainte-Foy
ERIC Educational Resources Information Center
Najm, Majdi R. Abou; Mohtar, Rabi H.; Cherkauer, Keith A.; French, Brian F.
2010-01-01
Proper understanding of scaling and large-scale hydrologic processes is often not explicitly incorporated in the teaching curriculum. This makes it difficult for students to connect the effect of small scale processes and properties (like soil texture and structure, aggregation, shrinkage, and cracking) on large scale hydrologic responses (like…
Impacts of fire on hydrology and erosion in steep mountain big sagebrush communities
Frederick B. Pierson; Peter R. Robichaud; Kenneth E. Spaeth; Corey A. Moffet
2003-01-01
Wildfire is an important ecological process and management issue on western rangelands. Major unknowns associated with wildfire are its affects on vegetation and soil conditions that influence hydrologic processes including infiltration, surface runoff, erosion, sediment transport, and flooding. Post wildfire hydrologic response was studied in big sagebrush plant...
Ning Liu; Peng-Sen Sun; Shi-Rong Liu; Ge Sun
2013-01-01
Main publication is written in Chinese.Aims: Optimal spatial scale of hydrological response unit (HRU) is a precondition for eco-hydrological modeling as it is essential to improve accuracy. Our objective was to evaluate the spatial scale of HRU for application of the WASSSI-C model.Methods: We determined the best HRU scale for the eco-...
Hydrologic refugia, plants, and climate change.
McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E
2017-08-01
Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Voitsekhovych, Oleg; Laptev, Genadiy; Kanivets, Vladimir; Konoplev, Alexey
2013-04-01
Near 27 year passed after the Chernobyl Accident, and the experience gained to study radionuclide behavior in the aquatic systems and to mitigate water contamination are still pose of interest for scientists, society and regulatory austerities. There are different aspects of radionuclide transport in the environment were studied since the Chernobyl fallout in 1986 covered the river catchments, wetlands, river, lakes/reservoirs and reached the Black Sea. The monitoring time series data set and also data on the radionuclides behavior studies in the water bodies (river, lakes and the Black Sea) are available now in Ukraine and other affected countries. Its causation analyses, considering the main geochemical, physical and chemical and hydrological process, governing by radionuclide mobility and transport on the way from the initially contaminated catchments, through the river-reservoir hydrological system to the Black Sea can help in better understanding of the main factors governing be the radionuclide behavior in the environment. Radionuclide washout and its hydrological transport are determined speciation of radionuclides as well as soil types and hydrological mode and also geochemistry and landscape conditions at the affected areas. Mobility and bioavailability of radionuclides are determined by ratio of radionuclide chemical forms in fallout and site-specific environmental characteristics determining rates of leaching, fixation/remobilization as well as sorption-desorption of mobile fraction (its solid-liquid distribution). In many cases the natural attenuation processes governing by the above mentioned processes supported by water flow transportation and sedimentation played the key role in self-rehabilitation of the aquatic ecosystems. The models developed during post-Chernobyl decade and process parameters studies can help in monitoring and remediation programs planed for Fukusima Daichi affected watersheds areas as well. Some most important monitoring data collection results and experience gained during post-Chernobyl decades at the Dnieper River aquatic system are presented (catchments, river and reservoirs). This experience show that only information on radionuclide deposition levels is not enough for accurate predictions on radionuclide wash-out and transport in the hydrological systems. Data on speciation in fallout, rates of transformation processes and site-specific environmental characteristics determining these rates are needed. Information on radionuclide chemical forms, their transformation in other words mobility and bioavailability should be taken into account when rehabilitation and decontamination strategies are developed on local or regional scale. Number of inadequate water protection measures carried out during initial post-accidental period took place because lack of preparedness, data and decision making support tools were in use, Environmental radiation monitoring network has not been developed and huge impact of social stressing and inadequate risk perception took place. Many experimental data, models developed and experience for safe management at the contaminated watersheds and water bodies can be useful and in particular those, who dealing with consequences of Fucusima accident 2011. The paper gives extended overview and describes experience of authors in justification and evaluation of the remedial actions applied after Chernobyl accident with focus on most important lessons learned and potentially utilized in future.
Assessing Impacts of Landuse Changes on Hydrology for the Upper San Pedro Watershed
The assessment of landuse changes on hydrology is essential for the development of sustainable water resource strategies. Specifically, understanding how each land use influences hydrological processes will greatly improve predictability of hydrological consequences to landuse ch...
On the nature of persistence in dendrochronologic records with implications for hydrology
Landwehr, J.M.; Matalas, N.C.
1986-01-01
Hydrologic processes are generally held to be persistent and not secularly independent. Impetus for this view was given by Hurst in his work which dealt with properties of the rescaled range of many types of long geophysical records, in particular dendrochronologic records, in addition to hydrologic records. Mandelbrot introduced an infinite memory stationary process, the fractional Gaussian noise process (F), as an explanation for Hurst's observations. This is in contrast to other explanations which have been predicated on the implicit non-stationarity of the process underlying the construction of the records. In this work, we introduce a stationary finite memory process which arises naturally from a physical concept and show that it can accommodate the persistence structures observed for dendrochronological records more successfully than an F or any other of a family of related processes examined herein. Further, some question arises as to the empirical plausibility of an F process. Dendrochronologic records are used because they are widely held to be surrogates for records of average hydrologic phenomena and the length of these records allows one to explore questions of stochastic process structure which cannot be explored with great validity in the case of generally much shorter hydrologic records. ?? 1986.
Advances in Canadian forest hydrology, 1995-1998
NASA Astrophysics Data System (ADS)
Buttle, J. M.; Creed, I. F.; Pomeroy, J. W.
2000-06-01
Approximately 42% of Canada is covered by forests, which in turn can be subdivided into nine distinct forest ecozones. Many forested ecozones are located in northern Canada, where cold winters and cool summers provide forest environments that are less well-understood than those in more temperate locations. A number of major developments in recent years have stressed the need for enhanced understanding of hydrological processes in these forest landscapes. These include an increased emphasis on sustainable forest management in Canada as well as major scientific initiatives (e.g. BOREAS) examining water, carbon and energy fluxes in forest ecosystems, with a particular focus on boreal and subarctic forests. Recent progress in our understanding of forest hydrology across Canada is reviewed. Studies of hydrological processes across the spectrum of forest ecozones are highlighted, as well as work on hydrological responses to forest disturbance and recovery. Links between studies of hydrological processes in Canada's forests and other fields of research are examined, with particular attention paid to ongoing efforts to model hydrological impacts and interactions with the climate, biogeochemistry, geomorphology and ecology of forested landscapes.
Application of the Hydroecological Integrity Assessment Process for Missouri Streams
Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.
2009-01-01
Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and proposed hydrologic alterations; and (2) a Missouri Stream Classification Tool (MOSCT) designed for placing previously unclassified streams into one of the five pre-defined stream types.
netherland hydrological modeling instrument
NASA Astrophysics Data System (ADS)
Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.
2012-04-01
Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many decision supports and evaluations. The main focus of the instrument is operational drought management and evaluating adaptive measures for different climate scenario's. It has also been used though as a basis to evaluate water quality of WFD-water bodies and measures, nutrient-leaching and describing WFD groundwater bodies. There is a toolkit to translate the hydrological NHI results to values for different water users. For instance with the NHI results agricultural yields can be calculated, effects on ground water dependant ecosystems, subsidence, shipping, drinking water supply. This makes NHI a valuable decision support system in Dutch water management.
Towards simplification of hydrologic modeling: Identification of dominant processes
Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.
2016-01-01
The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many
NASA Astrophysics Data System (ADS)
Chardon, J.; Mathevet, T.; Le Lay, M.; Gailhard, J.
2012-04-01
In the context of a national energy company (EDF : Electricité de France), hydro-meteorological forecasts are necessary to ensure safety and security of installations, meet environmental standards and improve water ressources management and decision making. Hydrological ensemble forecasts allow a better representation of meteorological and hydrological forecasts uncertainties and improve human expertise of hydrological forecasts, which is essential to synthesize available informations, coming from different meteorological and hydrological models and human experience. An operational hydrological ensemble forecasting chain has been developed at EDF since 2008 and is being used since 2010 on more than 30 watersheds in France. This ensemble forecasting chain is characterized ensemble pre-processing (rainfall and temperature) and post-processing (streamflow), where a large human expertise is solicited. The aim of this paper is to compare 2 hydrological ensemble post-processing methods developed at EDF in order improve ensemble forecasts reliability (similar to Monatanari &Brath, 2004; Schaefli et al., 2007). The aim of the post-processing methods is to dress hydrological ensemble forecasts with hydrological model uncertainties, based on perfect forecasts. The first method (called empirical approach) is based on a statistical modelisation of empirical error of perfect forecasts, by streamflow sub-samples of quantile class and lead-time. The second method (called dynamical approach) is based on streamflow sub-samples of quantile class and streamflow variation, and lead-time. On a set of 20 watersheds used for operational forecasts, results show that both approaches are necessary to ensure a good post-processing of hydrological ensemble, allowing a good improvement of reliability, skill and sharpness of ensemble forecasts. The comparison of the empirical and dynamical approaches shows the limits of the empirical approach which is not able to take into account hydrological dynamic and processes, i. e. sample heterogeneity. For a same streamflow range corresponds different processes such as rising limbs or recession, where uncertainties are different. The dynamical approach improves reliability, skills and sharpness of forecasts and globally reduces confidence intervals width. When compared in details, the dynamical approach allows a noticeable reduction of confidence intervals during recessions where uncertainty is relatively lower and a slight increase of confidence intervals during rising limbs or snowmelt where uncertainty is greater. The dynamic approach, validated by forecaster's experience that considered the empirical approach not discriminative enough, improved forecaster's confidence and communication of uncertainties. Montanari, A. and Brath, A., (2004). A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 40, W01106, doi:10.1029/2003WR002540. Schaefli, B., Balin Talamba, D. and Musy, A., (2007). Quantifying hydrological modeling errors through a mixture of normal distributions. Journal of Hydrology, 332, 303-315.
NASA Astrophysics Data System (ADS)
Bouteffeha, Maroua; Dagès, Cécile; Bouhlila, Rachida; Raclot, Damien; Molénat, Jérôme
2013-04-01
In Mediterranean regions, food and water demand increase with population growth leading to considerable changes of the land use and agricultural practices. In North Africa, particularly in the Mediterranean zones, hill reservoirs are water harvesting infrastructures that have been increasingly adopted to mobilize runoff and create alternative water resource that can be used to develop agriculture. Hill reservoirs are also used to prevent from silting of downstream dams. Management of water resources collected in these infrastructures requires a good knowledge of their hydrological functioning. In particular, the rate of water exchanges between the reservoir and the underlying aquifer, called surface-subsurface exchange hereafter, is still an open question. The main purpose of the study is to better know the hydrological functioning of hill reservoirs in quantifying at the annual and intra-annual time scales the flux of surface-subsurface exchange and the uncertainty associated to the flux. The approach is based on the hydrological water balance of the hill reservoir. It was applied to the hill reservoir of the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). The dense monitoring of the observation catchment allowed quantifying the fluxes of all hydrological processes governing the reservoir hydrology, and their associated uncertainties. The water balance was established by considering water inputs (direct rainfall, waddy and hillslope runoff, surface-subsurface exchange), water outputs (evaporation, spillway discharge) and hill reservoir water volume changes. The surface-subsurface exchange component was deduced as the default closure term in the water balance. The results first demonstrate the ability of the proposed approach to estimate the net surface-subsurface exchange flux and its uncertainty at various time scales. Its application on the Kamech catchment for two hydrological years (09/2009-08/2010 and 09/2010-08/2011) shows that the net surface-subsurface exchange flux is positive, i.e. the infiltration from the hill reservoir to the aquifer predominates the discharge from the aquifer to the reservoir. Moreover the surface-subsurface exchange constitutes the main output component in the water balance. The annual surface-subsurface exchange flux appeared almost constant from one year to the other one whatever the hydrological conditions variability over the catchment. Moreover, the analysis of the intra-annual variability shows that the flux was nearly constant within every year. Reference: Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.
Hydrologic budgets across the Long-Term Agroecosystems Research network
USDA-ARS?s Scientific Manuscript database
Quantification of the components of the hydrologic budget at a site (precipitation, evaporation, runoff,…) gives important indications about major and minor hydrologic processes controlling field and watershed scale response. Hydrologic budgets are needed prior to assessment of potential changes att...
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; Allroggen, Niklas
2017-04-01
The missing vision into the subsurface appears to be a major limiting factor for our hydrological process understanding and theory development. Today, hydrology-related sciences have collected tremendous evidence for soils acting as drainage network and retention stores simultaneously in structured and self-organising domains. However, our present observation technology relies mainly on point-scale sensors, which integrate over a volume of unknown structures and is blind for their distribution. Although heterogeneity is acknowledged at all scales, it is rarely seen as inherent system property. At small scales (soil moisture probe) and at large scales (neutron probe) our measurements leave quite some ambiguity. Consequently, spatially and temporally continuous measurement of soil water states is essential for advancing our understanding and development of subsurface process theories. We present results from several irrigation experiments accompanied by 2D and 3D time-lapse GPR for the development of a novel technique to visualise and quantify water dynamics in the subsurface. Through the comparison of TDR, tracer and gravimetric measurement of soil moisture it becomes apparent that all sensor-based techniques are capable to record temporal dynamics, but are challenged to precisely quantify the measurements and to extrapolate them in space. At the same time excavative methods are very limited in temporal and spatial resolution. The application of non-invasive 4D GPR measurements complements the existing techniques and reveals structural and temporal dynamics simultaneously. By consequently increasing the density of the GPR data recordings in time and space, we find means to process the data also in the time-dimension. This opens ways to quantitatively analyse soil water dynamics in complex settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.
Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less
Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; ...
2016-04-16
Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO 2 and CH 4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ 2H and δ 18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface activemore » layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ 2H vs δ 18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less
NASA Astrophysics Data System (ADS)
Crouch, T. D.; Ogden, F. L.; Stallard, R. F.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project
2010-12-01
Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One of the project’s main objectives is to understand how reforestation effects seasonal stream flows. To meet this objective, a baseline characterization of hydrology on the small catchment scale is being assessed across different land uses typical in rural Panama. The small experimental catchments are found within Panama’s protected Soberania National Park and the adjacent headwaters of the Agua Salud and Mendoza Rivers, all of which are part of the greater Panama Canal Watershed. The land uses being monitored include a variety of control catchments as well as treated pasture sites. The catchments used for this study include a mature old regrowth forest, a 50% deforested or mosaic regrowth site, an active pasture and a monoculture invasive grass site (saccharum spontaneum) as experimental controls and two treated catchments that were recently abandoned pastures converted to teak and native species timber plantations. Installed instrumentation includes a network of rain gauges, v-notched weirs, atmometers, an eddy covariance system and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across these six geologically and topographically similar catchments are available from 2009 and 2010. Classic water balance and paired catchment techniques were used to compare the catchments on an annual, seasonal, and event basis. This study sets the stage for hydrologic modeling and for better understanding the effects of vegetation and land-use history on rainfall-runoff processes for the Agua Salud Project and Panama Canal Watershed Experiment.
Equifinality and process-based modelling
NASA Astrophysics Data System (ADS)
Khatami, S.; Peel, M. C.; Peterson, T. J.; Western, A. W.
2017-12-01
Equifinality is understood as one of the fundamental difficulties in the study of open complex systems, including catchment hydrology. A review of the hydrologic literature reveals that the term equifinality has been widely used, but in many cases inconsistently and without coherent recognition of the various facets of equifinality, which can lead to ambiguity but also methodological fallacies. Therefore, in this study we first characterise the term equifinality within the context of hydrological modelling by reviewing the genesis of the concept of equifinality and then presenting a theoretical framework. During past decades, equifinality has mainly been studied as a subset of aleatory (arising due to randomness) uncertainty and for the assessment of model parameter uncertainty. Although the connection between parameter uncertainty and equifinality is undeniable, we argue there is more to equifinality than just aleatory parameter uncertainty. That is, the importance of equifinality and epistemic uncertainty (arising due to lack of knowledge) and their implications is overlooked in our current practice of model evaluation. Equifinality and epistemic uncertainty in studying, modelling, and evaluating hydrologic processes are treated as if they can be simply discussed in (or often reduced to) probabilistic terms (as for aleatory uncertainty). The deficiencies of this approach to conceptual rainfall-runoff modelling are demonstrated for selected Australian catchments by examination of parameter and internal flux distributions and interactions within SIMHYD. On this basis, we present a new approach that expands equifinality concept beyond model parameters to inform epistemic uncertainty. The new approach potentially facilitates the identification and development of more physically plausible models and model evaluation schemes particularly within the multiple working hypotheses framework, and is generalisable to other fields of environmental modelling as well.
NASA Astrophysics Data System (ADS)
Veldkamp, Ted; Ward, Philip; de Moel, Hans; Aerts, Jeroen; Muller Schmied, Hannes; Portmann, Felix; Zhao, Fang; Gerten, Dieter; Masaki, Yoshimitsu; Pokhrel, Yadu; Satoh, Yusuke; Gosling, Simon; Zaherpour, Jamal; Wada, Yoshihide
2017-04-01
Human impacts on freshwater resources and hydrological features form the core of present-day water related hazards, like flooding, droughts, water scarcity, and water quality issues. Driven by the societal and scientific needs to correctly model such water related hazards a fair amount of resources has been invested over the past decades to represent human activities and their interactions with the hydrological cycle in global hydrological models (GHMs). Use of these GHMs - including the human dimension - is widespread, especially in water resources research. Evaluation or comparative assessments of the ability of such GHMs to represent real-world hydrological conditions are, unfortunately, however often limited to (near-)natural river basins. Such studies are, therefore, not able to test the model representation of human activities and its associated impact on estimates of freshwater resources or assessments of hydrological extremes. Studies that did perform a validation exercise - including the human dimension and looking into managed catchments - either focused only on one hydrological model, and/or incorporated only a few data points (i.e. river basins) for validation. To date, a comprehensive comparative analysis that evaluates whether and where incorporating the human dimension actually improves the performance of different GHMs with respect to their representation of real-world hydrological conditions and extremes is missing. The absence of such study limits the potential benchmarking of GHMs and their outcomes in hydrological hazard and risk assessments significantly, potentially hampering incorporation of GHMs and their modelling results in actual policy making and decision support with respect to water resources management. To address this issue, we evaluate in this study the performance of five state-of-the-art GHMs that include anthropogenic activities in their modelling scheme, with respect to their representation of monthly discharges and hydrological extremes. To this end, we compared their monthly discharge simulations under a naturalized and a time-dependent human impact simulation, with monthly GRDC river discharge observations of 2,412 stations over the period 1971-2010. Evaluation metrics that were used to assess the performance of the GHMs included the modified Kling-Gupta Efficiency index, and its individual parameters describing the linear correlation coefficient, the bias ratio, and the variability ratio, as well as indicators for hydrological extremes (Q90, Q10). Our results show that inclusion of anthropogenic activities in the modelling framework generally enhances the overall performance of the GHMs studied, mainly driven by bias-improvements, and to a lesser extent due to changes in modelled hydrological variability. Whilst the inclusion of anthropogenic activities takes mainly effect in the managed catchments, a significant share of the (near-)natural catchments is influenced as well. To get estimates of hydrological extremes right, especially when looking at low-flows, inclusion of human activities is paramount. Whilst high-flow estimates are mainly decreased, impact of human activities on low-flows is ambiguous, i.e. due to the relative importance of the timing of return flows and reservoir operations. Even with inclusion of the human dimension we find, nevertheless, a persistent overestimation of hydrological extremes across all models, which should be accounted for in future assessments.
Critical zone evolution and the origins of organised complexity in watersheds
NASA Astrophysics Data System (ADS)
Harman, C.; Troch, P. A.; Pelletier, J.; Rasmussen, C.; Chorover, J.
2012-04-01
The capacity of the landscape to store and transmit water is the result of a historical trajectory of landscape, soil and vegetation development, much of which is driven by hydrology itself. Progress in geomorphology and pedology has produced models of surface and sub-surface evolution in soil-mantled uplands. These dissected, denuding modeled landscapes are emblematic of the kinds of dissipative self-organized flow structures whose hydrologic organization may also be understood by low-dimensional hydrologic models. They offer an exciting starting-point for examining the mapping between the long-term controls on landscape evolution and the high-frequency hydrologic dynamics. Here we build on recent theoretical developments in geomorphology and pedology to try to understand how the relative rates of erosion, sediment transport and soil development in a landscape determine catchment storage capacity and the relative dominance of runoff process, flow pathways and storage-discharge relationships. We do so by using a combination of landscape evolution models, hydrologic process models and data from a variety of sources, including the University of Arizona Critical Zone Observatory. A challenge to linking the landscape evolution and hydrologic model representations is the vast differences in the timescales implicit in the process representations. Furthermore the vast array of processes involved makes parameterization of such models an enormous challenge. The best data-constrained geomorphic transport and soil development laws only represent hydrologic processes implicitly, through the transport and weathering rate parameters. In this work we propose to avoid this problem by identifying the relationship between the landscape and soil evolution parameters and macroscopic climate and geological controls. These macroscopic controls (such as the aridity index) have two roles: 1) they express the water and energy constraints on the long-term evolution of the landscape system, and 2) they bound the range of plausible short-term hydroclimatic regimes that may drive a particular landscape's hydrologic dynamics. To ensure that the hydrologic dynamics implicit in the evolutionary parameters are compatible with the dynamics observed in the hydrologic modeling, a set of consistency checks based on flow process dominance are developed.
Statistical simulation of ensembles of precipitation fields for data assimilation applications
NASA Astrophysics Data System (ADS)
Haese, Barbara; Hörning, Sebastian; Chwala, Christian; Bárdossy, András; Schalge, Bernd; Kunstmann, Harald
2017-04-01
The simulation of the hydrological cycle by models is an indispensable tool for a variety of environmental challenges such as climate prediction, water resources management, or flood forecasting. One of the crucial variables within the hydrological system, and accordingly one of the main drivers for terrestrial hydrological processes, is precipitation. A correct reproduction of the spatio-temporal distribution of precipitation is crucial for the quality and performance of hydrological applications. In our approach we stochastically generate precipitation fields conditioned on various precipitation observations. Rain gauges provide high-quality information for a specific measurement point, but their spatial representativeness is often rare. Microwave links, e. g. from commercial cellular operators, on the other hand can be used to estimate line integrals of near-surface rainfall information. They provide a very dense observational system compared to rain gauges. A further prevalent source of precipitation information are weather radars, which provide rainfall pattern informations. In our approach we derive precipitation fields, which are conditioned on combinations of these different observation types. As method to generate precipitation fields we use the random mixing method. Following this method a precipitation field is received as a linear combination of unconditional spatial random fields, where the spatial dependence structure is described by copulas. The weights of the linear combination are chosen in the way that the observations and the spatial structure of precipitation are reproduced. One main advantage of the random mixing method is the opportunity to consider linear and non-linear constraints. For a demonstration of the method we use virtual observations generated from a virtual reality of the Neckar catchment. These virtual observations mimic advantages and disadvantages of real observations. This virtual data set allows us to evaluate simulated precipitation fields in a very detailed manner as well as to quantify uncertainties which are conveyed by measurement inaccuracies. In a further step we use real observations as a basis for the generation of precipitation fields. The resulting ensembles of precipitation fields are used for example for data assimilation applications or as input data for hydrological models.
NASA Astrophysics Data System (ADS)
Marsh, C.; Pomeroy, J. W.; Wheater, H. S.
2017-12-01
Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.
USDA-ARS?s Scientific Manuscript database
Calibration of process-based hydrologic models is a challenging task in data-poor basins, where monitored hydrologic data are scarce. In this study, we present a novel approach that benefits from remotely sensed evapotranspiration (ET) data to calibrate a complex watershed model, namely the Soil and...
System dynamics model for predicting floods from snowmelt in North American prairie watersheds
NASA Astrophysics Data System (ADS)
Li, L.; Simonovic, S. P.
2002-09-01
This study uses a system dynamics approach to explore hydrological processes in the geographic locations where the main contribution to flooding is coming from the snowmelt. Temperature is identified as a critical factor that affects watershed hydrological processes. Based on the dynamic processes of the hydrologic cycle occurring in a watershed, the feedback relationships linking the watershed structure, as well as the climate factors, to the streamflow generation were identified prior to the development of a system dynamics model. The model is used to simulate flood patterns generated by snowmelt under temperature change in the spring. Model structure captures a vertical water balance using five tanks representing snow, interception, surface, subsurface and groundwater storage. Calibration and verification results show that temperature change and snowmelt play a key role in flood generation. Results indicate that simulated values match observed data very well. The goodness-of-fit between simulated and observed peak flow data is measured using coefficient of efficiency, coefficient of determination and square of the residual mass curve coefficient. For the Assiniboine River all three measures were in the interval between 0·92 and 0·96 and for the Red River between 0·89 and 0·97. The model is capable of capturing the essential dynamics of streamflow formation. Model input requires a set of initial values for all state variables and the time series of daily temperature and precipitation information. Data from the Red River Basin, shared by Canada and the USA, are used in the model development and testing.
NASA Astrophysics Data System (ADS)
Magalhães, André; Pereira, Luci Cajueiro Carneiro; da Costa, Rauquírio Marinho
2015-03-01
The influence of rainfall and hydrological variables on the abundance and diversity of the copepod community was investigated on a monthly basis over an annual cycle in the Taperaçu mangrove estuary. In general, the results show that there were no clear spatial or tidal patterns in any biological variables during the study period, which was related to the reduced horizontal gradient in abiotic parameters, determined mainly by the morphological and morphodynamic features of the estuary. Nevertheless, seasonal and monthly trends were recorded in both the hydrological data and the abundance of the dominant copepod species. In particular, Pseudodiaptomus marshi (6,004.6 ± 22,231.6 ind m-3; F = 5.0, p < 0.05) and Acartia tonsa (905.6 ± 2,400.9 ind m-3; F = 14.6, p < 0.001) predominated during the rainy season, whereas Acartia lilljeborgii (750.8 ± 808.3 ind m-3; U = 413.0, p < 0.01) was the most abundant species in the dry season. A distinct process of succession was observed in the relative abundance of these species, driven by the shift in the rainfall regime, which affected hydrological, in particular salinity, and consequently the abundance of copepod species. We suggest that this may be a general pattern governing the dynamics of copepod populations in the estuaries of the Brazilian Amazonian region.
The need for a European data platform for hydrological observatories
NASA Astrophysics Data System (ADS)
Blöschl, Günter; Bogena, Heye; Jensen, Karsten; Zacharias, Steffen; Kunstmann, Harald; Heinrich, Ingo; Kunkel, Ralf; Vereecken, Harry
2017-04-01
Experimental research in hydrology is amazingly fragmented and disperse. Typically, individual research groups establish and operate their own hydrological test sites and observatories with dedicated funding and specific research questions in mind. Once funding ceases, provisions for archiving and exchanging the data also soon run out and often data are lost or are no longer accessible to the research community. This has not only resulted in missed opportunities for exploring and mining hydrological data but also in a general difficulty in synthesizing research findings from different locations around the world. Many reasons for this fragmentation can be put forward, including the site-specific nature of hydrological processes, the particular types of research funding and the professional education in diverse departments. However, opportunities exist for making hydrological data more accessible and valuable to the research community, for example for designing cross-catchment experiments that build on a common data base and for the development and validation of hydrological models. A number of abundantly instrumented hydrological observatories, including the TERENO catchments in Germany, the HOBE catchment in Denmark and the HOAL catchment in Austria, have, in a first step, started to join forces to serve as a community-driven nucleus for a European data platform of hydrological observatories. The common data platform aims at making data of existing hydrological observatories accessible and available to the research community, thereby providing new opportunities for the design of cross-catchment experiments and model validation efforts. Tangible instruments for implementing this platform include a common data portal, for which the TEODOOR portal (http://www.tereno.net/) is currently used. Intangible instruments include a strong motivational basis. As with any community initiative, it is important to align expectations and to provide incentives to all involved. It is argued that the main incentives lie in the shared learning from contrasting environments, which is at the heart of obtaining hydrological research findings that are generalizable beyond individual locations. From a more practical perspective, experience can be shared with testing measurement technologies and experimental design. Benefits to the wider community include a more coherent research thrust brought about by a common, accessible data set, a more long-term vision of experimental research, as well as greater visibility of experimental research. The common data platform is a first step towards a larger network of hydrological observatories. The larger network could involve a more aligned research collaboration including exchange of models, exchange of students, a joint research agenda and joint long-term projects. Ultimately, the aim is to align experimental research in hydrology to strengthen the discipline of hydrology as a whole.
Detection of Hydrological changes of Wujiang River
NASA Astrophysics Data System (ADS)
Dong, L.; Chen, Y.
2016-12-01
In the century our earth experienced a rapid environment changes due to strong human activities, which impactedthe earth'shydrology and water resources systems negatively, and causedsevere problems to the society, such as increased flood and drought risk, water pollution and ecosystem degradation. Understanding the variations of hydrological characteristics has important meaning to solve the problem of hydrology and water resources and maintain sustainable development of river basin water resources.This paper takesWujiangriveras an example,which is a typical medium watershedaffected by human activities seriously in southern China.Using the methods of Mann-Kendall test and serial cluster analysis, this paper studies the characteristics and laws of historical hydrological process inWujiang river, detectsthe impact of changing environment to watershed hydrological processes, based on the observed hydrological data of 36 years from 1980 to 2015 in three representative hydrological stationsnamedFenshi,Chixi and Pingshi. The results show that the annual runoffandannual precipitation has some kind of changes.
NASA Astrophysics Data System (ADS)
Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.
2012-12-01
The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J. Meza, et al., High-Level Design of Amanzi, the Multi-Process High Performance Computing Simulator, Technical Report ASCEM-HPC-2011-03-1, DOE Environmental Management, 2012.
Data Rescue for precipitation station network in Slovak Republic
NASA Astrophysics Data System (ADS)
Fasko, Pavel; Bochníček, Oliver; Švec, Marek; Paľušová, Zuzana; Markovič, Ladislav
2016-04-01
Transparency of archive catalogues presents very important task for the data saving. It helps to the further activities e.g. digitalization and homogenization. For the time being visualization of time series continuation in precipitation stations (approximately 1250 stations) is under way in Slovak Republic since the beginning of observation (meteorological stations gradually began to operate during the second half of the 19th century in Slovakia). Visualization is joined with the activities like verification and accessibility of the data mentioned in the archive catalogue, station localization according to the historical annual books, conversion of coordinates into x-JTSK, y-JTSK and hydrological catchment assignment. Clustering of precipitation stations at the specific hydrological catchment in the map and visualization of the data duration (line graph) will lead to the effective assignment of corresponding precipitation stations for the prolongation of time series. This process should be followed by the process of turn or trend detection and homogenization. The risks and problems at verification of records from archive catalogues, their digitalization, repairs and the way of visualization will be seen in poster. During the searching process of the historical and often short time series, we realized the importance of mainly those stations, located in the middle and higher altitudes. They might be used as replacement for up to now quoted fictive points used at the construction of precipitation maps. Supplementing and enhancing the time series of individual stations will enable to follow changes in precipitation totals during the certain period as well as area totals for individual catchments in various time periods appreciated mainly by hydrologists and agro-climatologists.
NASA Astrophysics Data System (ADS)
Li, Zhanjie; Yu, Jingshan; Xu, Xinyi; Sun, Wenchao; Pang, Bo; Yue, Jiajia
2018-06-01
Hydrological models are important and effective tools for detecting complex hydrological processes. Different models have different strengths when capturing the various aspects of hydrological processes. Relying on a single model usually leads to simulation uncertainties. Ensemble approaches, based on multi-model hydrological simulations, can improve application performance over single models. In this study, the upper Yalongjiang River Basin was selected for a case study. Three commonly used hydrological models (SWAT, VIC, and BTOPMC) were selected and used for independent simulations with the same input and initial values. Then, the BP neural network method was employed to combine the results from the three models. The results show that the accuracy of BP ensemble simulation is better than that of the single models.
Debates—Hypothesis testing in hydrology: Introduction
NASA Astrophysics Data System (ADS)
Blöschl, Günter
2017-03-01
This paper introduces the papers in the "Debates—Hypothesis testing in hydrology" series. The four articles in the series discuss whether and how the process of testing hypotheses leads to progress in hydrology. Repeated experiments with controlled boundary conditions are rarely feasible in hydrology. Research is therefore not easily aligned with the classical scientific method of testing hypotheses. Hypotheses in hydrology are often enshrined in computer models which are tested against observed data. Testability may be limited due to model complexity and data uncertainty. All four articles suggest that hypothesis testing has contributed to progress in hydrology and is needed in the future. However, the procedure is usually not as systematic as the philosophy of science suggests. A greater emphasis on a creative reasoning process on the basis of clues and explorative analyses is therefore needed.
Hydrologic landscape units and adaptive management of intermountain wetlands
Custer, Stephen G.; Sojda, R.S.
2006-01-01
daptive management is often proposed to assist in the management of national wildlife refuges and allows the exploration of alternatives as well as the addition of ne w knowledge as it becomes available. The hydrological landscape unit can be a good foundation for such efforts. Red Rock Lakes National Wildlife Refuge (NWR) is in an intermountain basin dominated by vertical tectonics in the Northern Rocky Mountains. A geographic information system was used to define the boundaries for the hydrologic landscape units there. Units identified include alluvial fan, interfan, stream alluvi um and basin flat. Management alternatives can be informed by ex amination of processes that occu r on the units. For example, an ancient alluvial fan unit related to Red Rock Creek appear s to be isolated from stream flow today, with recharge dominated by precipitation and bedrock springs; while other alluvial fan units in the area have shallow ground water recharged from mountain streams and precipitation. The scale of hydrologic processes in interfan units differs from that in alluvial fan hydrologic landscape units. These differences are important when the refuge is evaluating habitat management activities. Hydrologic landscape units provide scientific unde rpinnings for the refuge’s comprehensive planning process. New geologic, hydrologic, and biologic knowledge can be integrated into the hydrologic landscape unit definition and improve adaptive management.
NASA Technical Reports Server (NTRS)
Johnson, Donald R.
2001-01-01
This research was directed to the development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. An additional objective was to investigate the accuracy and theoretical limits of global climate predictability which are imposed by the inherent limitations of simulating trace constituent transport and the hydrologic processes of condensation, precipitation and cloud life cycles.
Wildman, R.A.; Domagalski, Joseph L.; Hering, J.G.
2009-01-01
The relative influences of hydrologic processes and biogeochemistry on the transport and retention of minor solutes were compared in the riverbed of the lower Merced River (California, USA). The subsurface of this reach receives ground water discharge and surface water infiltration due to an altered hydraulic setting resulting from agricultural irrigation. Filtered ground water samples were collected from 30 drive point locations in March, June, and October 2004. Hydrologic processes, described previously, were verified by observations of bromine concentrations; manganese was used to indicate redox conditions. The separate responses of the minor solutes strontium, barium, uranium, and phosphorus to these influences were examined. Correlation and principal component analyses indicate that hydrologic processes dominate the distribution of trace elements in the ground water. Redox conditions appear to be independent of hydrologic processes and account for most of the remaining data variability. With some variability, major processes are consistent in two sampling transects separated by 100 m. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Measuring surface flow velocity with smartphones: potential for citizen observatories
NASA Astrophysics Data System (ADS)
Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik
2014-05-01
Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.
A Multi-Scale, Integrated Approach to Representing Watershed Systems
NASA Astrophysics Data System (ADS)
Ivanov, Valeriy; Kim, Jongho; Fatichi, Simone; Katopodes, Nikolaos
2014-05-01
Understanding and predicting process dynamics across a range of scales are fundamental challenges for basic hydrologic research and practical applications. This is particularly true when larger-spatial-scale processes, such as surface-subsurface flow and precipitation, need to be translated to fine space-time scale dynamics of processes, such as channel hydraulics and sediment transport, that are often of primary interest. Inferring characteristics of fine-scale processes from uncertain coarse-scale climate projection information poses additional challenges. We have developed an integrated model simulating hydrological processes, flow dynamics, erosion, and sediment transport, tRIBS+VEGGIE-FEaST. The model targets to take the advantage of the current generation of wealth of data representing watershed topography, vegetation, soil, and landuse, as well as to explore the hydrological effects of physical factors and their feedback mechanisms over a range of scales. We illustrate how the modeling system connects precipitation-hydrologic runoff partition process to the dynamics of flow, erosion, and sedimentation, and how the soil's substrate condition can impact the latter processes, resulting in a non-unique response. We further illustrate an approach to using downscaled climate change information with a process-based model to infer the moments of hydrologic variables in future climate conditions and explore the impact of climate information uncertainty.
Simulations of ecosystem hydrological processes using a unified multi-scale model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin
2015-01-01
This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling ofmore » hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.« less
Global operational hydrological forecasts through eWaterCycle
NASA Astrophysics Data System (ADS)
van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin
2015-04-01
Central goal of the eWaterCycle project (www.ewatercycle.org) is the development of an operational hyper-resolution hydrological global model. This model is able to produce 14 day ensemble forecasts based on a hydrological model and operational weather data (presently NOAA's Global Ensemble Forecast System). Special attention is paid to prediction of situations in which water related issues are relevant, such as floods, droughts, navigation, hydropower generation, and irrigation stress. Near-real time satellite data will be assimilated in the hydrological simulations, which is a feature that will be presented for the first time at EGU 2015. First, we address challenges that are mainly computer science oriented but have direct practical hydrological implications. An important feature in this is the use of existing standards and open-source software to the maximum extent possible. For example, we use the Community Surface Dynamics Modeling System (CSDMS) approach to coupling models (Basic Model Interface (BMI)). The hydrological model underlying the project is PCR-GLOBWB, built by Utrecht University. This is the motor behind the predictions and state estimations. Parts of PCR-GLOBWB have been re-engineered to facilitate running it in a High Performance Computing (HPC) environment, run parallel on multiple nodes, as well as to use BMI. Hydrological models are not very CPU intensive compared to, say, atmospheric models. They are, however, memory hungry due to the localized processes and associated effective parameters. To accommodate this memory need, especially in an ensemble setting, a variation on the traditional Ensemble Kalman Filter was developed that needs much less on-chip memory. Due to the operational nature, the coupling of the hydrological model with hydraulic models is very important. The idea is not to run detailed hydraulic routing schemes over the complete globe but to have on-demand simulation prepared off-line with respect to topography and parameterizations. This allows for very detailed simulations at hectare to meter scales, where and when this is needed. At EGU 2015, the operational global eWaterCycle model will be presented for the first time, including forecasts at high resolution, the innovative data assimilation approach, and on-demand coupling with hydraulic models.
NASA Astrophysics Data System (ADS)
Lin, Qingxia; Wu, Zhiyong; Singh, Vijay P.; Sadeghi, S. H. R.; He, Hai; Lu, Guihua
2017-06-01
The Xijiang River is known as the Golden Watercourse because of its role in the development of the Pearl River Delta Regional Economic System in China, which was made possible by its abundant water resources. At present, the hydrological regime of the Xijiang River has now become complicated, the water shortages and successive droughts pose a threat to regional economic development. However, the complexity of hydroclimatological processes with emphasizes on drought has not been comprehended. In order to effectively predict and develop the adaptation strategies to cope with the water scarcity damage caused by hydrological droughts, it is essential to thoroughly analyze the relationship between hydrological droughts and pre/post-dependent hydroclimatological factors. To accomplish this, the extreme-point symmetric mode decomposition method (ESMD) was utilized to reveal the periodic variation in hydrological droughts that is characterized by the Standardized Drought Index (SDI). In addition, the cross-wavelet transform method was applied to investigate the correlation between large-scale climate indices and drought. The results showed that hydrological drought had the most significant response to spring ENSO (El Niño-Southern Oscillation), and the response lags in sub-basins were mostly 8-9 months except that in Yujiang River were mainly 5 or 8 months. Signal reservoir operation in the Yujiang River reduced drought severity by 52-95.8% from January to April over the 2003-2014 time period. Similarly, the cascade reservoir alleviated winter and spring droughts in the Hongshuihe River Basin. However, autumn drought was aggravated with severity increased by 41.9% in September and by 160.9% in October, so that the land surface models without considering human intervention must be used with caution in the hydrological simulation. The response lags of the VCI (Vegetation Condition Index) to hydrological drought were different in the sub-basins. The response lag for the Hongshuihe, Yujiang, and Liujiang River Basins were mostly 0-4 months, 0-1 months, and 2-3 months, respectively, but there was no obvious regular change pattern in the Guijiang River Basin.
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2015-10-01
Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.
Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada
NASA Astrophysics Data System (ADS)
Eum, Hyung-Il; Dibike, Yonas; Prowse, Terry
2017-01-01
The hydrologic response of the Athabasca River Basin (ARB) in Alberta to projected changes in the future climate is investigated using the Variable Infiltration Capacity (VIC) process-based and distributed hydrologic model. The model forcings are derived from a selected set of GCMs from the latest Coupled Model Intercomparison Project (CMIP5) statistically downscaled to a higher resolution (10 km) over Canada. Twelve hydrologic indicators that represent the magnitude and timing of the hydrologic regimes are evaluated for three 30-year time periods centered at the 1990s, 2050s and 2080s to identify significant alterations of hydrologic regimes between the reference and the two future periods using a t-test at 5% significance level. Hydrologic alteration factors (HAF) are also evaluated for each hydrologic indicator using the range of variability approach (RVA) to investigate projected changes in the distribution of these indicators. The results show increases in spring and winter flows for the two future periods at all hydrometric stations within the basin, resulting in an extended period of spring freshet. A higher rate of increase is projected for the stations located at the upper reach of the river because of the combined effects of increased precipitation and earlier snowmelt resulting from a warming climate. By contrast, summer flows are projected to decrease by up to 21% on average in the 2080s over most of the mainstem stations because of earlier snowmelt, increased evapotranspiration and no significant increase in summer precipitation. A water-management rule that optimizes impacts of water withdrawal from the lower reach of the Athabasca River under the current condition is also applied to the future scenarios to assess its relative performance under the projected climate conditions. The results indicate possible improvement in the water resources system performance in terms of increased reliability and resilience and reduced vulnerability during the two future periods as compared with those in the reference period mainly because of the projected increases in spring and winter flows, which has the potential to offset an expected future water deficit.
New Student-Centered and Data-Based Approaches to Hydrology Education
NASA Astrophysics Data System (ADS)
Bloeschl, G.; Troch, P. A. A.; Sivapalan, M.
2014-12-01
Hydrology as a science has evolved over the last century. The knowledge base has significantly expanded, and there are requirements to meet with the new expectations of a science where the connections between the parts are just as important as the parts themselves. In this new environment, what should we teach, and how should we teach it? Given the limited time we have in an undergraduate (and even graduate) curriculum, what should we include, and what should we leave out? What new material and new methods are essential, as compared to textbooks? Past practices have assumed certain basics as being essential to undergraduate teaching. Depending on the professor's background, these include basic process descriptions (infiltration, runoff generation, evaporation etc.) and basic techniques (unit hydrographs, flood frequency analysis, pumping tests). These are taught using idealized (textbook) examples and examined to test this basic competence. The main idea behind this "reductionist" approach to teaching is that the students will do the rest of the learning during practice and apprenticeship in their workplaces. Much of current hydrology teaching follows this paradigm, and the books provide the backdrop to this approach. Our view is that this approach is less than optimum, as it does not prepare the students to face up to the new challenges of the changing world. It is our view that the basics of hydrologic science are not just a collection of individual processes and techniques, but process interactions and underlying concepts or principles, and a collection of techniques that highlights these, combined with student-driven and data-based learning that enables the students to see the manifestations of these process interactions and principles in action in real world situations. While the actual number of items that can be taught in the classroom by this approach in a limited period of time may be lower than in the traditional approach, it will help the students make connections between the understanding gained in this way in solving real world problems. We will illustrate the feasibility of the approach through key examples from our own teaching.
Remote sensing approach for hydrologic assessments of complex lake systems
NASA Astrophysics Data System (ADS)
Bhang, Kon Joon
Lake studies play an important role in understanding water management, ecology, climatology, etc. because most of earth processes are strongly related to water dynamics. Because the studies have only used on-site gage readings, it is almost impossible to access individual lakes and to evaluate regional scale hydrology as a whole system. Especially in the Prairie Pothole Region (PPR) of North America has millions of potholes and lakes. Measuring lake levels in this region is one of the critical issues in hydrology or other related sciences and applications. The remote sensing approach with the Geographic Information System (GIS) technique could be used to overcome the difficulty associated with on-site measurements. In this study, the SRTM data was used as a main topographic dataset because the dataset provides accurate and consistent elevation data on a worldwide basis. The first chapter introduced the whole idea of this study. In the second chapter, the elevation values of the C-band SRTM 30-meter DEM were compared with point-wise elevations from the Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry for Otter Tail County, MN. The accuracy of SRTM DEM was measured as a function of land cover and geomorphologic characteristics. The typical mean vertical difference between the SRTM DEM and ICESat elevations in this study was determined for each classified land use type and the data properties were investigated. Also, the feasibility of using SRTM data for hydrologic applications, especially in a region of low relief exemplified by the Otter Tail basin in Minnesota, was examined in Chapter 3. For measuring lake levels, several lake-level estimation techniques using image processing and feature detection were tested with the Landsat imagery and SRTM data and the efficiency of the techniques were evaluated in Chapter 4. Lastly, the power law distribution of lake was simulated in Chapter 5. For the simulation, one-dimensional fractal landscapes were generated and precipitation and evaporation processes were added to the simulation algorithm to observe the effect of natural processes in lake formation. The simulation result for lake distribution was compared with real measurements and the lake distribution following the power law (linear scaling in logarithmic scale) distribution was shown.
NASA Astrophysics Data System (ADS)
Cheng, Y.; Ogden, F. L.; Zhu, J.
2016-12-01
Bioturbated soil layers (BTLs) play a significant role in hydrological response and provisioning of ecosystem services in steep, saprolitic, tropical lowlands catchments. In this study, a new physically-based model formulation was developed for testing of runoff generation hypotheses. A main feature in the model formulation is explicit simulation of hydrological processes in the BTL including macropores, which our field observations show are ubiquitous, and deep groundwater stores that provide streamflow during the dry season The numerical model developed includes two main flow paths in the BTL, including one-dimensional (1D) vertical infiltration and two-dimensional (2D) lateral flows in both macropores and the soil matrix. Hydrological processes incorporated along with the BTL processes include intercepted rainfall, evapotranspiration, 2D surface flow and 1D deep groundwater discharge. This model was first tested in a 6.5 ha secondary succession catchment, that is under study by the Smithsonian Tropical Research Institute, Agua Salud project in Panama, which is dominated by steep slopes. With the incorporation of lateral macropore flow mechanism in the BTL, the model performs better than only including soil matrix flow in the BTL especially in simulating baseflow dynamics, which illustrates the importance of preferential flow from the BTL to stream discharge dynamics. The increase in the BTL thickness promotes more flow through the BTL and increases storage in both the BTL and the deep groundwater reservoir, but decreases the total streamflow and overland flow. Lateral macropore diameter distribution influences flows more than the macropore number or distribution type. The model has thus far passed falsification tests during the early wet season. Complexity in subsurface storage and base flow generation offer a new challenge for this model. The overall objective is to develop a model formulation that is useful in practical applications related to land-use management, provisioning of ecosystem services, and water security in similar tropical settings with distinct dry and wet seasons or in the humid tropics during periods of drought.
30 CFR 822.11 - Essential hydrologic functions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Essential hydrologic functions. 822.11 Section... IN ALLUVIAL VALLEY FLOORS § 822.11 Essential hydrologic functions. (a) The operator of a surface coal... throughout the mining and reclamation process the essential hydrologic functions of an alluvial valley floor...
Fitzpatrick, F.A.; ,
2001-01-01
A geomorphic study for North Fish Creek, a northern Wisconsin tributary to Lake Superior was analyzed to determine the hydrologic and geomorphic changes caused by clear-cut logging and agricultural activity. Discharge magnitude estimated with HEC-2 for full-channel capacities indicate that modern full-channel discharges are about twice as large as pre-1946 full-channel discharges. Flood-plain deposition rates were high along the transitional main stem after European settlement. Restoration and protection activities would be most effective if focused on watershed practices to reduce runoff and on channel restoration that reduce buff and bank erosion in the upper and transitional main stems.
Hydrological processes and the water budget of lakes
Winter, Thomas C.; Lerman, Abraham; Imboden, Dieter M.; Gat, Joel R.
1995-01-01
Lakes interact with all components of the hydrological system: atmospheric water, surface water, and groundwater. The fluxes of water to and from lakes with regard to each of these components represent the water budget of a lake. Mathematically, the concept of a water budget is deceptively simple: income equals outgo, plus or minus change in storage. In practice, however, measuring the water fluxes to and from lakes accurately is not simple, because understanding of the various hydrological processes and the ability to measure the various hydrological components are limited.
Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1985
Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.A.; Janik, C.J.; Winnett, T.L.; Clark, M.D.
1987-01-01
Hydrologic and geochemical monitoring, to detect changes caused by magmatic and tectonic processes in the Long Valley caldera has continued through 1985. The monitoring included the collection of the following types of data: chemical and isotopic composition of water and gases from springs, wells, and steam vents; temperatures in wells, springs, and steam vents; flow rates of springs and streams; water levels in wells; and barometric pressure and precipitation at several sites. In addition, reservoir temperatures for the geothermal system were estimated from computations based on chemical geothermometers applied to fluid samples from wells and springs. Estimates of thermal water discharged from springs were made on the basis of boron and chloride fluxes in surface waters for selected sites in the Casa Diablo area and along the Mammoth-Hot Creek drainage. These data are presented in tables and graphs. The Long Valley area was relatively quiescent throughout 1985 in terms of geodetic changes and seismic activity. As a consequence , the hydrologic system varied mainly in response to seasonal influences of temperature, atmospheric pressure, and precipitation. However, spring flows near Casa Diablo were influenced by pumping at the geothermal production well field nearby. (Author 's abstract)
Climate change effects on watershed hydrological and biogeochemical processes
Projected changes in climate are widely expected to alter watershed processes. However, the extent of these changes is difficult to predict because complex interactions among affected hydrological and biogeochemical processes will likely play out over many decades and spatial sc...
Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts
NASA Astrophysics Data System (ADS)
Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter
2017-06-01
Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets, this methodology can be transferred to other regions for better estimation of future hydrological behavior and its impact on society.
Hydrological controls on chemical weathering in the typical carbonated river basin, SW China
NASA Astrophysics Data System (ADS)
LI, S. L.; Jin, L.; Zhong, J., Sr.
2016-12-01
The dynamics of dissolved load in the riverine system could provide an insight in understanding the surface processes, such as chemical weathering and carbon cycle. The Xijiang River is a typical carbonated river basin, located at southwestern China. The Xijiang River catchment is controlled by a humid subtropical climate. In spite of being impacted by monsoonal climate and with significant variations of discharge, the temporal variations of compositions of main ions and chemical weathering of Xijiang River are rarely documented. In this study, a systematic investigation on the seasonal and episodic water geochemistry (major ions and d13CDIC) of the major branch and outlet of Xijiang River were carried out with the purpose of 1) characterizing temporal variations of aqueous geochemistry and its controlling factors, 2) exploring the impact of hydrological controls on chemical weathering of the Xijiang River Basin. The results show that the concentrations of Cl, Na, Ca, Mg, and HCO3 are generally decreased during monsoon season, which should be mainly caused by dilution. However, the dilution effect does not strictly follow the theoretical dilution curve. Moreover, d13CDIC in the high-flow period has more negative values than in low-flow period. More negative δ13CDIC values in the river during the wet season reflected the influx of rain water with biological CO2 during the rain event. This study suggested that hydrochemistry and d13CDIC had a large variation responding to rainstorm events. The calculated results show that the weathering rates of silicate and carbonate as well as that of related CO2 consumption have a positive relation with water discharge, highlighting the hydrological controls on chemical weathering and CO2 consumption rates. The results indicated carbonated weathering rate responding to hydrological condition sensitivity in the typical carbonate river basin. This work was supported by The China National Science Fund for Outstanding Young Scholars (Grant No. 41422303).
NASA Astrophysics Data System (ADS)
Crossley, D. J.; Boy, J.-P.; Hinderer, J.; Jahr, T.; Weise, A.; Wziontek, H.; Abe, M.; Förste, C.
2014-12-01
The paper in question by Van Camp and co-authors [MVC] challenges previous work showing that ground gravity data arising from hydrology can provide a consistent signal for the comparison with satellite gravity data. The data sets used are similar to those used previously, that is, the gravity field as measured by the GRACE satellites versus ground-based data from superconducting gravimeters (SGs) over the same continental area, in this case Central Europe. One of the main impediments in this paper is the presentation that is frequently confusing and misleading as to what the data analysis really shows, for example, the irregular treatment of annual components that are first subtracted then reappear in the analysis. More importantly, we disagree on specific points. Two calculations are included in our comment to illustrate where we believe that the processing in [MVC] paper is deficient. The first deals with their erroneous treatment of the global hydrology using a truncated spherical harmonic approach which explains almost a factor 2 error in their computation of the loading. The second shows the effect of making the wrong assumption in the GRACE/hydrology/surface gravity comparison by inverting the whole of the hydrology loading for underground stations. We also challenge their claims that empirical orthogonal function techniques cannot be done in the presence of periodic components, and that SG data cannot be corrected for comparisons with GRACE data. The main conclusion of their paper, that there is little coherence between ground gravity stations and this invalidates GRACE comparisons, is therefore questionable. There is nothing in [MVC] that contradicts any of the previous papers that have shown clearly a strong relation between seasonal signals obtained from both ground gravity and GRACE satellite data.
Testing the Structure of Hydrological Models using Genetic Programming
NASA Astrophysics Data System (ADS)
Selle, B.; Muttil, N.
2009-04-01
Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.
Oren, O.; Yechieli, Y.; Böhlke, J.K.; Dody, A.
2004-01-01
The purpose of this study is to obtain a better understanding of groundwater contamination processes in an arid environment (precipitation of 50 mm/year) due to cultivation. Additional aims were to study the fate of N, K, and other ions along the whole hydrological system including the soil and vadose zone, and to compare groundwater in its natural state with contaminated groundwater (through the drilling of several wells).A combination of physical, chemical, and isotopic analyses was used to describe the hydrogeological system and the recharge trends of water and salts to the aquifers. The results indicate that intensive irrigation and fertilization substantially affected the quantity and quality of groundwater recharge. Low irrigation efficiency of about 50% contributes approximately 3.5–4 million m3/year to the hydrological system, which corresponds to 0.65 m per year of recharge in the irrigated area, by far the most significant recharge mechanism.Two main contamination processes were identified, both linked to human activity: (1) salinization due to circulation of dissolved salts in the irrigation water itself, mainly chloride, sulfate, sodium and calcium, and (2) direct input of nitrate and potassium mainly from fertilizers.The nitrate concentrations in a local shallow groundwater lens range between 100 and 300 mg/l and in the upper sub-aquifer are over 50 mg/l. A major source of nitrate is fertilizer N in the excess irrigation water. The isotopic compositions of δ15N–NO3 (range of 4.9–14.8‰) imply also possible contributions from nearby sewage ponds and/or manure. Other evidence of contamination of the local groundwater lens includes high concentrations of K (20–120 mg/l) and total organic carbon (about 10 mg/l).
Mentzafou, A; Wagner, S; Dimitriou, E
2018-04-29
Identifying the historical hydrometeorological trends in a river basin is necessary for understanding the dominant interactions between climate, human activities and local hydromorphological conditions. Estimating the hydrological reference conditions in a river is also crucial for estimating accurately the impacts from human water related activities and design appropriate water management schemes. In this effort, the output of a regional past climate model was used, covering the period from 1660 to 1990, in combination with a dynamic, spatially distributed, hydrologic model to estimate the past and recent trends in the main hydrologic parameters such as overland flow, water storages and evapotranspiration, in a Mediterranean river basin. The simulated past hydrologic conditions (1660-1960) were compared with the current hydrologic regime (1960-1990), to assess the magnitude of human and natural impacts on the identified hydrologic trends. The hydrological components of the recent period of 2008-2016 were also examined in relation to the impact of human activities. The estimated long-term trends of the hydrologic parameters were partially assigned to varying atmospheric forcing due to volcanic activity combined with spontaneous meteorological fluctuations. Copyright © 2018. Published by Elsevier B.V.
Ge Sun; Jianbiao Lu; Steven G. McNulty; James M. Vose; Devendra M. Amayta
2006-01-01
A clear understanding of the basic hydrologic processes is needed to restore and manage watersheds across the diverse physiologic gradients in the Southeastern U.S. We evaluated a physically based, spatially distributed watershed hydrologic model called MIKE SHE/MIKE 11 to evaluate disturbance impacts on water use and yield across the region. Long-term forest...
NASA Astrophysics Data System (ADS)
Guo, A.; Wang, Y.
2017-12-01
Investigating variability in dependence structures of hydrological processes is of critical importance for developing an understanding of mechanisms of hydrological cycles in changing environments. In focusing on this topic, present work involves the following: (1) identifying and eliminating serial correlation and conditional heteroscedasticity in monthly streamflow (Q), precipitation (P) and potential evapotranspiration (PE) series using the ARMA-GARCH model (ARMA: autoregressive moving average; GARCH: generalized autoregressive conditional heteroscedasticity); (2) describing dependence structures of hydrological processes using partial copula coupled with the ARMA-GARCH model and identifying their variability via copula-based likelihood-ratio test method; and (3) determining conditional probability of annual Q under different climate scenarios on account of above results. This framework enables us to depict hydrological variables in the presence of conditional heteroscedasticity and to examine dependence structures of hydrological processes while excluding the influence of covariates by using partial copula-based ARMA-GARCH model. Eight major catchments across the Loess Plateau (LP) are used as study regions. Results indicate that (1) The occurrence of change points in dependence structures of Q and P (PE) varies across the LP. Change points of P-PE dependence structures in all regions almost fully correspond to the initiation of global warming, i.e., the early 1980s. (3) Conditional probabilities of annual Q under various P and PE scenarios are estimated from the 3-dimensional joint distribution of (Q, P and PE) based on the above change points. These findings shed light on mechanisms of the hydrological cycle and can guide water supply planning and management, particularly in changing environments.
Hydrological balance and water transport processes of partially sealed soils
NASA Astrophysics Data System (ADS)
Timm, Anne; Wessolek, Gerd
2017-04-01
With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how important process orientated studies for different types of sealing material are.
A vision for Water Resources Research
NASA Astrophysics Data System (ADS)
Clark, M. P.
2017-12-01
Water Resources Research (WRR) plays a leading role in advancing hydrologic science. As AGU's hydrology journal, WRR has nurtured and published major breakthroughs in hydrologic process understanding and prediction capabilities, accomplished through innovative measurement campaigns, novel data analysis techniques, and elegant computational methods. Developing synergies between process-oriented and applications-oriented science is becoming more important as large changes in coupled human-natural systems impose new stresses on hydrologic systems and create new needs for hydrologic process understanding and prediction. In this presentation I will summarize some major opportunities for WRR, such as the growth of interdisciplinary science and the need for greater international cooperation through sharing of data and model source codes. I will discuss these opportunities in the context of major external trends, especially (1) changes in the perceived value of science to address societal problems, (2) the explosive global growth in science over the past decade, and (3) the transition to a more diffuse publishing landscape. This presentation is intended to foster discussion on ways that WRR can enhance the quality and impact of hydrologic science.
NASA Astrophysics Data System (ADS)
Johansson, Emma; Lindborg, Tobias
2017-04-01
The Arctic region is sensitive to global warming, and permafrost thaw and release of old carbon are examples of processes that may have a positive feedback effect to the global climate system. Quantification and assumptions on future change are often based on model predictions. Such models require cross-disciplinary data of high quality that often is lacking. Biogeochemical processes in the landscape are highly influenced by the hydrology, which in turn is intimately related to permafrost processes. Thus, a multidisciplinary approach is needed when collecting data and setting up field experiments aiming at increase the understanding of these processes. Here we summarize and present data collected in the GRASP, Greenland Analogue Surface Project. GRASP is a catchment-scale field study of the periglacial area in the Kangerlussuaq region, West Greenland, focusing on hydrological and biogeochemical processes in the landscape. The site investigations were initiated in 2010 and have since then resulted in three separate data sets published in ESSD (Earth system and Science Data) each one focusing on i) meteorological data and hydrology, ii) biogeochemistry and iii) geometries of sediments and the active layer. The three data-sets, which are freely available via the PANGAEA data base, enable conceptual and coupled numerical modeling of hydrological and biogeochemical processes. An important strength with the GRASP data is that all data is collected within the same, relatively small, catchment area. This implies that measurements are more easily linked to the right source area or process. Despite the small catchment area it includes the major units of the periglacial hydrological system; a lake, a talik, a supra- and subpermafrost aquifer and, consequently, biogeochemical processes in each of these units may be studied. The new data from GRASP is both used with the aim to increase the knowledge of present day periglacial hydrology and biogeochemistry but also in order to predict consequences within these subjects of future climate change.
This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...
NASA Astrophysics Data System (ADS)
Scordo, Facundo; Seitz, Carina; Melo, Walter D.; Piccolo, M. Cintia; Perillo, Gerardo M. E.
2018-04-01
This work aims to assess how Pleistocene glaciations modeled the landscape in the upper Senguer River basin and its relationship to current watershed features (drainage surface and fluvial hydrological regime). During the Pleistocene six glacial lobes developed in the upper basin of the Senguer River localized east of the Andean range in southern Argentinean Patagonia between 43° 36' - 46° 27‧ S. To describe the topography and hydrology, map the geomorphology, and propose an evolution of the study area during the Pleistocene we employed multitemporal Landsat images, national geological sheets and a mosaic of the digital elevation model (Shuttle Radar Topography Mission) along with fieldwork. The main conclusion is that until the Middle Pleistocene, the drainage divide of the Senguer River basin was located to the west of its current limits and its rivers drained the meltwater of the glaciers during interglacial periods. However, processes of drainage inversion and drainage surface reduction occurred in the headwater of most rivers of the basin during the Late Pleistocene. Those processes were favored by a relative shorter glacial extension during LGM and the dam effect produced by the moraines of the Post GPG I and III glaciations. Thus, since the Late Pleistocene, the headwaters of several rivers in the basin have been reduced, and the moraines corresponding to the Middle Pleistocene glaciations currently divide the watersheds that drain towards the Senguer River from those that flow west towards the Pacific Ocean.
NASA Astrophysics Data System (ADS)
Brunner, Philip; Doherty, J.; Simmons, Craig T.
2012-07-01
The data set used for calibration of regional numerical models which simulate groundwater flow and vadose zone processes is often dominated by head observations. It is to be expected therefore, that parameters describing vadose zone processes are poorly constrained. A number of studies on small spatial scales explored how additional data types used in calibration constrain vadose zone parameters or reduce predictive uncertainty. However, available studies focused on subsets of observation types and did not jointly account for different measurement accuracies or different hydrologic conditions. In this study, parameter identifiability and predictive uncertainty are quantified in simulation of a 1-D vadose zone soil system driven by infiltration, evaporation and transpiration. The worth of different types of observation data (employed individually, in combination, and with different measurement accuracies) is evaluated by using a linear methodology and a nonlinear Pareto-based methodology under different hydrological conditions. Our main conclusions are (1) Linear analysis provides valuable information on comparative parameter and predictive uncertainty reduction accrued through acquisition of different data types. Its use can be supplemented by nonlinear methods. (2) Measurements of water table elevation can support future water table predictions, even if such measurements inform the individual parameters of vadose zone models to only a small degree. (3) The benefits of including ET and soil moisture observations in the calibration data set are heavily dependent on depth to groundwater. (4) Measurements of groundwater levels, measurements of vadose ET or soil moisture poorly constrain regional groundwater system forcing functions.
NASA Astrophysics Data System (ADS)
Navarro, Vicente; García, Beatriz; Sánchez, David; Asensio, Laura
2011-04-01
SummaryAt the present time there is not enough information available to develop a quantitative model on how inundation takes place in the 1490 ha area of Tablas de Daimiel National Park (Central Spain) located upstream of Morenillo Dam. Given that it is the most important area in the Park from an ecological standpoint, this is a major concern, as it has not been possible to assess the potential effectiveness of the interventions geared towards improving its current state. As a result, it is not feasible to simulate the hydrologic response to the application of treated sewage effluents, an initiative recently implemented by the Public Administration responsible for water management in the Guadiana River Basin, where the Park is located. To help solve this problem, a simplified model of the hydrologic behaviour of the system has been developed focusing on the characterisation of the main trends of the inundation process. Field data from 12 drying processes were used to identify the model parameters. Later, the evolution of the system was examined after the application of treated sewage effluents, assuming the hypothesis of a dry climate. The results show that the 10 Mm 3 of available effluents is sufficient to improve from 2 ha to 60 ha the inundation condition of the areas considered to be high-priority. This therefore demonstrates that, from a hydrologic point of view, it is highly advisable to use treated sewage effluents.
A novel representation of chalk hydrology in a land surface model
NASA Astrophysics Data System (ADS)
Rahman, Mostaquimur; Rosolem, Rafael
2016-04-01
Unconfined chalk aquifers contain a significant portion of water in the United Kingdom. In order to optimize the assessment and management practices of water resources in the region, modelling and monitoring of soil moisture in the unsaturated zone of the chalk aquifers are of utmost importance. However, efficient simulation of soil moisture in such aquifers is difficult mainly due to the fractured nature of chalk, which creates high-velocity preferential flow paths in the unsaturated zone. In this study, the Joint UK Land Environment Simulator (JULES) is applied on a study area encompassing the Kennet catchment in Southern England. The fluxes and states of the coupled water and energy cycles are simulated for 10 consecutive years (2001-2010). We hypothesize that explicit representation for the soil-chalk layers and the inclusion of preferential flow in the fractured chalk aquifers improves the reproduction of the hydrological processes in JULES. In order to test this hypothesis, we propose a new parametrization for preferential flow in JULES. This parametrization explicitly describes the flow of water in soil matrices and preferential flow paths using a simplified approach which can be beneficial for large-scale hydrometeorological applications. We also define the overlaying soil properties obtained from the Harmonized World Soil Database (HWSD) in the model. Our simulation results are compared across spatial scales with measured soil moisture and river discharge, indicating the importance of accounting for the physical properties of the medium while simulating hydrological processes in the chalk aquifers.
Challenges in Extracting Information From Large Hydrogeophysical-monitoring Datasets
NASA Astrophysics Data System (ADS)
Day-Lewis, F. D.; Slater, L. D.; Johnson, T.
2012-12-01
Over the last decade, new automated geophysical data-acquisition systems have enabled collection of increasingly large and information-rich geophysical datasets. Concurrent advances in field instrumentation, web services, and high-performance computing have made real-time processing, inversion, and visualization of large three-dimensional tomographic datasets practical. Geophysical-monitoring datasets have provided high-resolution insights into diverse hydrologic processes including groundwater/surface-water exchange, infiltration, solute transport, and bioremediation. Despite the high information content of such datasets, extraction of quantitative or diagnostic hydrologic information is challenging. Visual inspection and interpretation for specific hydrologic processes is difficult for datasets that are large, complex, and (or) affected by forcings (e.g., seasonal variations) unrelated to the target hydrologic process. New strategies are needed to identify salient features in spatially distributed time-series data and to relate temporal changes in geophysical properties to hydrologic processes of interest while effectively filtering unrelated changes. Here, we review recent work using time-series and digital-signal-processing approaches in hydrogeophysics. Examples include applications of cross-correlation, spectral, and time-frequency (e.g., wavelet and Stockwell transforms) approaches to (1) identify salient features in large geophysical time series; (2) examine correlation or coherence between geophysical and hydrologic signals, even in the presence of non-stationarity; and (3) condense large datasets while preserving information of interest. Examples demonstrate analysis of large time-lapse electrical tomography and fiber-optic temperature datasets to extract information about groundwater/surface-water exchange and contaminant transport.
NASA Astrophysics Data System (ADS)
García-Ruiz, José M.; Lana-Renault, Noemí; Beguería, Santiago; Lasanta, Teodoro; Regüés, David; Nadal-Romero, Estela; Serrano-Muela, Pilar; López-Moreno, Juan I.; Alvera, Bernardo; Martí-Bono, Carlos; Alatorre, Luis C.
2010-08-01
The hydrological and geomorphic effects of land use/land cover changes, particularly those associated with vegetation regrowth after farmland abandonment were investigated in the Central Spanish Pyrenees. The main focus was to assess the interactions among slope, catchment, basin, and fluvial channel processes over a range of spatial scales. In recent centuries most Mediterranean mountain areas have been subjected to significant human pressure through deforestation, cultivation of steep slopes, fires, and overgrazing. Depopulation commencing at the beginning of the 20th century, and particularly since the 1960s, has resulted in farmland abandonment and a reduction in livestock numbers, and this has led to an expansion of shrubs and forests. Studies in the Central Spanish Pyrenees, based on experimental plots and catchments, in large basins and fluvial channels, have confirmed that these land use changes have had hydrological and geomorphic consequences regardless of the spatial scale considered, and that processes occurring at any particular scale can be explained by such processes acting on other scales. Studies using experimental plots have demonstrated that during the period of greatest human pressure (mainly the 18th and 19th centuries), cultivation of steep slopes caused high runoff rates and extreme soil loss. Large parts of the small catchments behaved as runoff and sediment source areas, whereas the fluvial channels of large basins showed signs of high torrentiality (braided morphology, bare sedimentary bars, instability, and prevalence of bedload transport). Depopulation has concentrated most human pressure on the valley bottoms and specific locations such as resorts, whereas the remainder of the area has been affected by an almost generalized abandonment. Subsequent plant recolonization has resulted in a reduction of overland flow and declining soil erosion. At a catchment scale this has caused a reduction in sediment sources, and channel incision in the secondary streams. At the regional scale, the most important consequences include a reduction in the frequency of floods, reduced sediment yields, increasing stabilization of fluvial channels (colonization of sedimentary bars by riparian vegetation and a reduction in the braiding index), and stabilization of alluvial fans. These results demonstrate the complexity and multiscalar nature of the interactions among land use and runoff generation, soil erosion, sediment transport, and fluvial channel dynamics, and highlight the need to adopt a multiscale approach in other mountain areas of the world.
NASA Astrophysics Data System (ADS)
Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.
2014-03-01
Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.
NASA Astrophysics Data System (ADS)
Maerker, Michael; Schillaci, Calogero; Melis, Rita; Mussi, Margherita
2014-05-01
The area of Melka Kunture (central Ethiopia) is one of the most important clusters of Paleolithic sites in Eastern Africa. The archaeological record spans from c. 1.7 Ma onwards, with a number of stratified occurrences of Oldowan, Acheulean, Middle Stone Age and Late Stone Age industries, together with faunal remains and human fossils. However, the archaeological sites are endangered by flooding and soil erosion. The main excavation area lies close to the convergence of the Awash river with the Atabella river, one of the main tributaries of the upper Awash catchment. In the semi-arid Ethiopian highlands, gully networks develop especially in the vicinity of the active and inactive river meanders. Various erosion processes are linked to specific driving factors such as the rainfall regime, the land use/cover changes and vertic soils with a specific hydrological behaviour. It was documented in the field and by previous research that the origin of most of the man made erosion channels is due to animal pathways and car tracks. However, paleolandscape features increase the general erosion risk. Former wetland areas and deposition zones are particularly affected by soil erosion processes. Hence, the spatial distribution and characteristics of present day geomorphic processes also reveal information on the paleolandscape. In order to assess landscape evolution and present day geomorphologic dynamics, we mapped the geomorphology describing in detail the present-day slope processes at a 10.000 scale. We performed a detailed terrain analysis based on high resolution DEMs such as SRTM-X with 25m resolution and ALOS/PRISM with 10m resolution to characterize the main erosion processes and surface runoff dynamics. The latter ones are simulated using a Soil Conservation Service Curve Number method. Landuse was delineated for a larger area using ASTER 25m multispectral data. Finally, using calibrated topographic indices and a simple hydrological model we were able to detect and quantify the major present day soil erosion and surface runoff processes. Based on the analysis of the processes and the respective terrain features derived from the digital elevation models we also identified the major paelolandscape features. This will be the basis for assessing conservation risks related to modern land use and climate.
NASA Astrophysics Data System (ADS)
Tijerina, D.; Gochis, D.; Condon, L. E.; Maxwell, R. M.
2017-12-01
Development of integrated hydrology modeling systems that couple atmospheric, land surface, and subsurface flow is growing trend in hydrologic modeling. Using an integrated modeling framework, subsurface hydrologic processes, such as lateral flow and soil moisture redistribution, are represented in a single cohesive framework with surface processes like overland flow and evapotranspiration. There is a need for these more intricate models in comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). Currently, two high-resolution, coupled hydrologic modeling applications have been developed for this domain: CONUS-ParFlow built using the integrated hydrologic model ParFlow and the National Water Model that uses the NCAR Weather Research and Forecasting hydrological extension package (WRF-Hydro). Both ParFlow and WRF-Hydro include land surface models, overland flow, and take advantage of parallelization and high-performance computing (HPC) capabilities; however, they have different approaches to overland subsurface flow and groundwater-surface water interactions. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs; both models have accomplished this, but have differences in approach and continue to be difficult to validate. A further exploration of effective methodology to accurately represent large-scale hydrology with integrated models is needed to advance this growing field. Here we compare the outputs of CONUS-ParFlow and the National Water Model to each other and with observations to study the performance of hyper-resolution models over large domains. Models were compared over a range of scales for major watersheds within the CONUS with a specific focus on the Mississippi, Ohio, and Colorado River basins. We use a novel set of approaches and analysis for this comparison to better understand differences in process and bias. This intercomparison is a step toward better understanding how much water we have and interactions between surface and subsurface. Our goal is to advance our understanding and simulation of the hydrologic system and ultimately improve hydrologic forecasts.
Recruitment variation of crappies in response to hydrology of Tennessee reservoirs
Sammons, S.M.; Bettoli, P.W.; Isermann, D.A.; Churchill, T.N.
2002-01-01
Black crappies Pomoxis nigromaculatus and white crappies P. annularis were sampled to index recruitment in seven Tennessee reservoirs (four main-stem and three tributary storage impoundments). Crappie recruitment in tributary storage impoundments appeared to be consistently higher in years of high discharge during the prespawn period (1 January-31 March). A similar relation was found in one main-stem impoundment; however, crappie recruitment in two main-stem impoundments was inversely related to discharge during the spawning period (1 April-30 May), and little recruitment variation was found in the fourth main-stem impoundment. In general, reservoir hydrology appeared to have a stronger effect on crappie recruitment in tributary storage impoundments than in main-stem impoundments, possibly because recruitment was more variable in tributary systems. Thus, it is likely that crappie populations will rarely have strong year-classes simultaneously over a wide geographic area or even within a single watershed.
NASA Astrophysics Data System (ADS)
Covino, Tim
2017-01-01
Hydrologic connections can link hillslopes to channel networks, streams to lakes, subsurface to surface, land to atmosphere, terrestrial to aquatic, and upstream to downstream. These connections can develop across vertical, lateral, and longitudinal dimensions and span spatial and temporal scales. Each of these dimensions and scales are interconnected, creating a mosaic of nested hydrologic connections and associated processes. In turn, these interacting and nested processes influence the transport, cycling, and transformation of organic material and inorganic nutrients through watersheds and along fluvial networks. Although hydrologic connections span dimensions and spatiotemporal scales, relationships between connectivity and carbon and nutrient dynamics are rarely evaluated within this framework. The purpose of this paper is to provide a cross-disciplinary view of hydrologic connectivity - highlighting the various forms of hydrologic connectivity that control fluxes of organic material and nutrients - and to help stimulate integration across scales and dimensions, and collaboration among disciplines.
Fatichi, Simone; Vivoni, Enrique R.; Odgen, Fred L; Ivanov, Valeriy Y; Mirus, Benjamin B.; Gochis, David; Downer, Charles W; Camporese, Matteo; Davison, Jason H; Ebel, Brian A.; Jones, Norm; Kim, Jongho; Mascaro, Giuseppe; Niswonger, Richard G.; Restrepo, Pedro; Rigon, Riccardo; Shen, Chaopeng; Sulis, Mauro; Tarboton, David
2016-01-01
Process-based hydrological models have a long history dating back to the 1960s. Criticized by some as over-parameterized, overly complex, and difficult to use, a more nuanced view is that these tools are necessary in many situations and, in a certain class of problems, they are the most appropriate type of hydrological model. This is especially the case in situations where knowledge of flow paths or distributed state variables and/or preservation of physical constraints is important. Examples of this include: spatiotemporal variability of soil moisture, groundwater flow and runoff generation, sediment and contaminant transport, or when feedbacks among various Earth’s system processes or understanding the impacts of climate non-stationarity are of primary concern. These are situations where process-based models excel and other models are unverifiable. This article presents this pragmatic view in the context of existing literature to justify the approach where applicable and necessary. We review how improvements in data availability, computational resources and algorithms have made detailed hydrological simulations a reality. Avenues for the future of process-based hydrological models are presented suggesting their use as virtual laboratories, for design purposes, and with a powerful treatment of uncertainty.
NASA Astrophysics Data System (ADS)
Jones, S.; Zwart, J. A.; Solomon, C.; Kelly, P. T.
2017-12-01
Current efforts to scale lake carbon biogeochemistry rely heavily on empirical observations and rarely consider physical or biological inter-lake heterogeneity that is likely to regulate terrestrial dissolved organic carbon (tDOC) decomposition in lakes. This may in part result from a traditional focus of lake ecologists on in-lake biological processes OR physical-chemical pattern across lake regions, rather than on process AND pattern across scales. To explore the relative importance of local biological processes and physical processes driven by lake hydrologic setting, we created a simple, analytical model of tDOC decomposition in lakes that focuses on the regulating roles of lake size and catchment hydrologic export. Our simplistic model can generally recreate patterns consistent with both local- and regional-scale patterns in tDOC concentration and decomposition. We also see that variation in lake hydrologic setting, including the importance of evaporation as a hydrologic export, generates significant, emergent variation in tDOC decomposition at a given hydrologic residence time, and creates patterns that have been historically attributed to variation in tDOC quality. Comparing predictions of this `biologically null model' to field observations and more biologically complex models could indicate when and where biology is likely to matter most.
Hydrological Scenario Using Tools and Applications Available in enviroGRIDS Portal
NASA Astrophysics Data System (ADS)
Bacu, V.; Mihon, D.; Stefanut, T.; Rodila, D.; Cau, P.; Manca, S.; Soru, C.; Gorgan, D.
2012-04-01
Nowadays the decision makers but also citizens are concerning with the sustainability and vulnerability of land management practices on various aspects and in particular on water quality and quantity in complex watersheds. The Black Sea Catchment is an important watershed in the Central and East Europe. In the FP7 project enviroGRIDS [1] was developed a Web Portal that incorporates different tools and applications focused on geospatial data management, hydrologic model calibration, execution and visualization and training activities. This presentation highlights, from the end-user point of view, the scenario related with hydrological models using the tools and applications available in the enviroGRIDS Web Portal [2]. The development of SWAT (Soil Water Assessment Tool) hydrological models is a well known procedure for the hydrological specialists [3]. Starting from the primary data (information related to weather, soil properties, topography, vegetation, and land management practices of the particular watershed) that are used to develop SWAT hydrological models, to specific reports, about the water quality in the studied watershed, the hydrological specialist will use different applications available in the enviroGRIDS portal. The tools and applications available through the enviroGRIDS portal are not dealing with the building up of the SWAT hydrological models. They are mainly focused on: calibration procedure (gSWAT [4]) - uses the GRID computational infrastructure to speed-up the calibration process; development of specific scenarios (BASHYT [5]) - starts from an already calibrated SWAT hydrological model and defines new scenarios; execution of scenarios (gSWATSim [6]) - executes the scenarios exported from BASHYT; visualization (BASHYT) - displays charts, tables and maps. Each application is built-up as a stack of functional layers. We combine different layers of applications by vertical interoperability in order to build the desired complex functionality. On the other hand, the applications can collaborate at the same architectural levels, which represent the horizontal interoperability. Both the horizontal and vertical interoperability is accomplished by services and by exchanging data. The calibration procedure requires huge computational resources, which are provided by the Grid infrastructure. On the other hand the scenario development through BASHYT requires a flexible way of interaction with the SWAT model in order to easily change the input model. The large user community of SWAT from the enviroGRIDS consortium or outside may greatly benefit from tools and applications related with the calibration process, scenario development and execution from the enviroGRIDS portal. [1]. enviroGRIDS project, http://envirogrids.net/ [2]. Gorgan D., Abbaspour K., Cau P., Bacu V., Mihon D., Giuliani G., Ray N., Lehmann A., Grid Based Data Processing Tools and Applications for Black Sea Catchment Basin. IDAACS 2011 - The 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications 15-17 September 2011, Prague. IEEE Computer Press, pp. 223 - 228 (2011). [3]. Soil and Water Assessment Tool, http://www.brc.tamus.edu/swat/index.html [4]. Bacu V., Mihon D., Rodila D., Stefanut T., Gorgan D., Grid Based Architectural Components for SWAT Model Calibration. HPCS 2011 - International Conference on High Performance Computing and Simulation, 4-8 July, Istanbul, Turkey, ISBN 978-1-61284-381-0, doi: 10.1109/HPCSim.2011.5999824, pp. 193-198 (2011). [5]. Manca S., Soru C., Cau P., Meloni G., Fiori M., A multi model and multiscale, GIS oriented Web framework based on the SWAT model to face issues of water and soil resource vulnerability. Presentation at the 5th International SWAT Conference, August 3-7, 2009, http://www.brc.tamus.edu/swat/4thswatconf/docs/rooma/session5/Cau-Bashyt.pdf [6]. Bacu V., Mihon D., Stefanut T., Rodila D., Gorgan D., Cau P., Manca S., Grid Based Services and Tools for Hydrological Model Processing and Visualization. SYNASC 2011 - 13 International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (in press).
Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models
NASA Astrophysics Data System (ADS)
Rathinasamy, Maheswaran; Khosa, Rakesh; Adamowski, Jan; ch, Sudheer; Partheepan, G.; Anand, Jatin; Narsimlu, Boini
2014-12-01
The temporal dynamics of hydrological processes are spread across different time scales and, as such, the performance of hydrological models cannot be estimated reliably from global performance measures that assign a single number to the fit of a simulated time series to an observed reference series. Accordingly, it is important to analyze model performance at different time scales. Wavelets have been used extensively in the area of hydrological modeling for multiscale analysis, and have been shown to be very reliable and useful in understanding dynamics across time scales and as these evolve in time. In this paper, a wavelet-based multiscale performance measure for hydrological models is proposed and tested (i.e., Multiscale Nash-Sutcliffe Criteria and Multiscale Normalized Root Mean Square Error). The main advantage of this method is that it provides a quantitative measure of model performance across different time scales. In the proposed approach, model and observed time series are decomposed using the Discrete Wavelet Transform (known as the à trous wavelet transform), and performance measures of the model are obtained at each time scale. The applicability of the proposed method was explored using various case studies-both real as well as synthetic. The synthetic case studies included various kinds of errors (e.g., timing error, under and over prediction of high and low flows) in outputs from a hydrologic model. The real time case studies investigated in this study included simulation results of both the process-based Soil Water Assessment Tool (SWAT) model, as well as statistical models, namely the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods. For the SWAT model, data from Wainganga and Sind Basin (India) were used, while for the Wavelet Volterra, ANN and ARMA models, data from the Cauvery River Basin (India) and Fraser River (Canada) were used. The study also explored the effect of the choice of the wavelets in multiscale model evaluation. It was found that the proposed wavelet-based performance measures, namely the MNSC (Multiscale Nash-Sutcliffe Criteria) and MNRMSE (Multiscale Normalized Root Mean Square Error), are a more reliable measure than traditional performance measures such as the Nash-Sutcliffe Criteria (NSC), Root Mean Square Error (RMSE), and Normalized Root Mean Square Error (NRMSE). Further, the proposed methodology can be used to: i) compare different hydrological models (both physical and statistical models), and ii) help in model calibration.
Long-Term Forest Hydrologic Monitoring in Coastal Carolinas
Devendra M. Amatya; Ge Sun; Carl C. Trettin; R. Wayne Skaggs
2003-01-01
Long-term hydrologic data are essential for understanding the hydrologic processes, as base line data for assessment of impacts and conservation of regional ecosystems, and for developing and testing eco-hydrological models. This study presents 6-year (1996-2001) of rainfall, water table and outflow data from a USDA Forest Service coastal experimental watershed on a...
Wei Wu; James S. Clark; James M. Vose
2012-01-01
Predicting long-term consequences of climate change on hydrologic processes has been limited due to the needs to accommodate the uncertainties in hydrological measurements for calibration, and to account for the uncertainties in the models that would ingest those calibrations and uncertainties in climate predictions as basis for hydrological predictions. We implemented...
Assessment of the subsurface hydrology of the UIC-NARL main camp, near Barrow, Alaska, 1993-94
McCarthy, K.A.; Solin, G.L.
1995-01-01
Imikpuk Lake serves as the drinking-water source for the Ukpeagvik Inupiat Corporation-National Arctic Research Laboratory (UIC-NARL, formerly known as the Naval Arctic Research Laboratory) near Barrow, Alaska. Previously acceptable hazardous-waste disposal practices and accidental releases of various fuels and solvents during the past several decades have resulted in contamination of soil and ground water in the vicinity of the lake. As part of an assessment of the risk that subsurface contamination poses to the quality of water in the lake, the subsurface hydrology of the UIC-NARL main camp was examined. The study area is located approximately 530 kilometers north of the Arctic Circle, on the northern coast of Alaska, and the short annual thaw season and the presence of shallow, areally continuous permafrost restrict hydrologic processes. A transient ground-water system is present within the active layer-the shallow subsurface layer that thaws each summer and refreezes each winter. Water-level and thaw-depth data collected during the summers of 1993 and 1994 show that the configurations of both the water table and the subsurface frost govern the ground- water flow system in the UIC-NARL main camp and indicate that recharge to and discharge from the system are small. Spatial irregularities in the vertical extent of the active layer result from variations in land-surface elevation, variations in soil type, and the presence of buildings and other structures that either act as a heat source or block heat transfer to and from the subsurface. Distinct features in the active-layer hydrologic system in the UIC-NARL main camp include a permafrost ridge, which generally acts as a flow-system divide between the Arctic Ocean and inland water bodies; a mound in the water table, which indicates increased impedance to ground- water flow toward Imikpuk Lake and acts as a flow-system divide between the lake and Middle Salt Lagoon; and a depression in the water table, which suggests a local breach in the permafrost ridge that allows some ground water to flow directly from the main camp to the Arctic Ocean. Similar thaw depths and water-table elevations were measured during the summers of 1993 and 1994, and little change occurred in the thickness of the ground-water zone between mid- and late-thaw- season measurements. These data suggest that the system is in a state of quasi-equilibrium and that ground-water discharge is small. The observed drop in the water table as the active layer develops over the summer is probably largely the result of evapotranspiration losses rather than system outflow.
NASA Technical Reports Server (NTRS)
Hinderer, J.; Lemoine, Frank G.; Crossley, D.; Boy, J.-P.
2004-01-01
We investigate the time-variable gravity changes in Europe retrieved from the initial GRACE monthly solutions spanning a 18 month duration from April 2002 to October 2003. Gravity anomaly maps are retrieved in Central Europe from the monthly satellite solutions we compare the fields according to various truncation levels (typically between degree 10 and 20) of the initial fields (expressed in spherical harmonics to degree 120). For these different degrees, an empirical orthogonal function (EOF) decomposition of the time-variable gravity field leads us to its main spatial and temporal characteristics. We show that the dominant signal is found to be annual with an amplitude and a phase both in agreement with predictions in Europe modeled using snow and soil-moisture variations from recent hydrology models. We compare these GRACE gravity field changes to surface gravity observations from 6 superconducting gravimeters of the GGP (Global Geodynamics Project) European sub-network, with a special attention to loading corrections. Initial results suggest that all 3 data sets (GRACE, hydrology and GGP) are responding to annual changes in near-surface water in Europe of a few microGal (at length scales of approx.1000 km) that show a high value in winter and a summer minimum. We also point out that the GRACE gravity field evolution seems to indicate that there is a trend in gravity between summer 2002 and summer 2003 which can be related to the 2003 heatwave in Europe and its hydrological consequences (drought). Despite the limited time span of our analysis and the uncertainties in retrieving a regional solution from the network of gravimeters, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.
NASA Astrophysics Data System (ADS)
Oni, S. K.; Futter, M. N.; Buttle, J. M.; Dillon, P.
2014-12-01
Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth due to its proximity to the greater Toronto area. This has led to extensive land use changes which have impacted its water resources and altered runoff patterns in some rivers draining to the lake. Here, we use a paired-catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most-urban impacted catchment. Annual runoff from Lovers Creek increased from 239 to 442 mm/yr in contrast to the reference catchment (Black River at Washago) where runoff was relatively stable with an annual mean of 474 mm/yr. Increased annual runoff from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992-1997; pre-major development) and late (2004-2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to runoff flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible runoff simulations in Lovers Creek due to greater scatter between the parameters in canonical space. Separation of early and late period parameter sets for the reference catchment was based on climate and snowmelt related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW.
Surface water hydrology and the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.
2016-12-01
Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.
NASA Astrophysics Data System (ADS)
Istanbulluoglu, E.; Vivoni, E. R.; Ivanov, V. Y.; Bras, R. L.
2005-12-01
Landscape morphology has an important control on the spatial and temporal organization of basin hydrologic response to climate forcing, affecting soil moisture redistribution as well as vegetation function. On the other hand, erosion, driven by hydrology and modulated by vegetation, produces landforms over geologic time scales that reflect characteristic signatures of the dominant land forming process. Responding to extreme climate events or anthropogenic disturbances of the land surface, infrequent but rapid forms of erosion (e.g., arroyo development, landsliding) can modify topography such that basin hydrology is significantly influenced. Despite significant advances in both hydrologic and geomorphic modeling over the past two decades, the dynamic interactions between basin hydrology, geomorphology and terrestrial ecology are not adequately captured in current model frameworks. In order to investigate hydrologic-geomorphic-ecologic interactions at the basin scale we present initial efforts in integrating the CHILD landscape evolution model (Tucker et al. 2001) with the tRIBS hydrology model (Ivanov et al. 2004), both developed in a common software environment. In this talk, we present preliminary results of the numerical modeling of the coupled evolution of basin hydro-geomorphic response and resulting landscape morphology in two sets of examples. First, we discuss the long-term evolution of both the hydrologic response and the resulting basin morphology from an initially uplifted plateau. In the second set of modeling experiments, we implement changes in climate and land-use to an existing topography and compare basin hydrologic response to the model results when landscape form is fixed (e.g. no coupling between hydrology and geomorphology). Model results stress the importance of internal basin dynamics, including runoff generation mechanisms and hydrologic states, in shaping hydrologic response as well as the importance of employing comprehensive conceptualizations of hydrology in modeling landscape evolution.
Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2005)
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...
Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2003)
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...
Holmquist-Johnson, Christopher; Hanson, Leanne; Daniels, Joan; Talbert, Colin; Haegele, Jeanette
2016-05-23
Topock Marsh is a large wetland adjacent to the Colorado River and the main feature of Havasu National Wildlife Refuge (Havasu NWR) in southern Arizona. In 2010, the U.S. Fish and Wildlife Service (FWS) and Bureau of Reclamation began a project to improve water management capabilities at Topock Marsh and protect habitats and species. Initial construction required a drawdown, which caused below-average inflows and water depths in 2010–11. U.S. Geological Survey Fort Collins Science Center (FORT) scientists collected an assemblage of biotic, abiotic, and hydrologic data from Topock Marsh during the drawdown and immediately after, thus obtaining valuable information needed by FWS.Building upon that work, FORT developed a decision support system (DSS) to better understand ecosystem health and function of Topock Marsh under various hydrologic conditions. The DSS was developed using a spatially explicit geographic information system package of historical data, habitat indices, and analytical tools to synthesize outputs for hydrologic time periods. Deliverables include high-resolution orthorectified imagery of Topock Marsh; a DSS tool that can be used by Havasu NWR to compare habitat availability associated with three hydrologic scenarios (dry, average, wet years); and this final report which details study results. This project, therefore, has addressed critical FWS management questions by integrating ecologic and hydrologic information into a DSS framework. This DSS will assist refuge management to make better informed decisions about refuge operations and better understand the ecological results of those decisions by providing tools to identify the effects of water operations on species-specific habitat and ecological processes. While this approach was developed to help FWS use the best available science to determine more effective water management strategies at Havasu NWR, technologies used in this study could be applied elsewhere within the region.
Visualizing landscape hydrology as a means of education - The water cycle in a box
NASA Astrophysics Data System (ADS)
Lehr, Christian; Rauneker, Philipp; Fahle, Marcus; Hohenbrink, Tobias; Böttcher, Steven; Natkhin, Marco; Thomas, Björn; Dannowski, Ralf; Schwien, Bernd; Lischeid, Gunnar
2016-04-01
We used an aquarium to construct a physical model of the water cycle. The model can be used to visualize the movement of the water through the landscape from precipitation and infiltration via surface and subsurface flow to discharge into the sea. The model consists of two aquifers that are divided by a loamy aquitard. The 'geological' setting enables us to establish confining groundwater conditions and to demonstrate the functioning of artesian wells. Furthermore, small experiments with colored water as tracer can be performed to identify flow paths below the ground, simulate water supply problems like pollution of drinking water wells from inflowing contaminated groundwater or changes in subsurface flow direction due to changes in the predominant pressure gradients. Hydrological basics such as the connectivity of streams, lakes and the surrounding groundwater or the dependency of groundwater flow velocity from different substrates can directly be visualized. We used the model as an instructive tool in education and for public relations. We presented the model to different audiences from primary school pupils to laymen, students of hydrology up to university professors. The model was presented to the scientific community as part of the "Face of the Earth" exhibition at the EGU general assembly 2014. Independent of the antecedent knowledge of the audience, the predominant reactions were very positive. The model often acted as icebreaker to get a conversation on hydrological topics started. Because of the great interest, we prepared video material and a photo documentation on 1) the construction of the model and 2) the visualization of steady and dynamic hydrological situations. The videos will be published soon under creative common license and the collected material will be made accessible online. Accompanying documents will address professionals in hydrology as well as non-experts. In the PICO session, we will present details about the construction of the model and its main features. Further, short videos of specific processes and experiments will be shown.
NASA Astrophysics Data System (ADS)
Hensley, R. T.; Cohen, M. J.; Spangler, M.; Gooseff, M. N.
2017-12-01
The lower Santa Fe River is a large, karst river of north Florida, fed by numerous artesian springs and also containing multiple sink-rise systems. We performed repeated longitudinal profiles collecting very high frequency measurements of multiple stream parameters including temperature, dissolved oxygen, carbon dioxide, pH, dissolved organic matter, nitrate, ammonium, phosphate and turbidity. This high frequency dataset provided a spatially explicit understanding of solute sources and coupled biogeochemical processing rates along the 25 km study reach. We noted marked changes in river profiles as the river transitioned from low to high flow during the onset of the wet season. The role of lateral inflow from springs as the primary solute source was greatly reduced under high flow conditions. Effects of sink-rise systems, which under low flow conditions allow the majority of flow to bypass several kilometer long sections of the main channel, virtually disappeared under high flow conditions. Impeded light transmittance at high flow reduced primary production and by extension assimilatory nutrient uptake. This study demonstrates how high frequency longitudinal profiling can be used to observe how hydrologic conditions can alter groundwater-surface water interactions and modulate the sourcing, transport and biogeochemical processing of stream solutes.
Hydrological conditions in the straits of the Ryukyu archipelago and adjacent basins
NASA Astrophysics Data System (ADS)
Moroz, V. V.; Bogdanov, K. T.
2007-10-01
The structure and dynamics of the water are studied on the basis of hydrological and meteorological long-term data combined with the materials of field observations over a period longer than half a century in the region of the Ryukyu archipelago. New data about the hydrological characteristics of the waters were obtained. Characteristic differences of waters of various modifications in the main straits between the islands are demonstrated. The dependence of the water structure formation in the straits on the seasonal variability of the water exchange through the straits is distinguished.
NASA Astrophysics Data System (ADS)
Sarigu, Alessio; Cortis, Clorinda; Montaldo, Nicola
2014-05-01
In the last three decades, climate change and human activities increased desertification process in Mediterranean regions, with dramatic consequences for agriculture and water availability. For instance in the Flumendosa reservoir system in Sardinia the average annual runoff in the latter part of the 20th century was less than half the historic average rate, while the precipitation over the Flumendosa basin has decreased, but not at such a drastic rate as the discharge, suggesting a marked non-linear response of discharge to precipitation changes. With the objective of analyzing and looking for the reasons of the historical runoff decrease a new ecohydrological model is developed and tested for the main basin of the Sardinia island, the Flumendosa basin. The eco-hydrological model developed couples a distributed hydrological model and a vegetation dynamic model (VDM). The hydrological model estimates the soil water balance of each basin cell using the force-restore method and the Philips model for runoff estimate. Then it computes runoff propagation along the river network through a modified version of the Muskingum -Cunge method (Mancini et al., 2000; Montaldo et al., 2004). The VDM evaluates the changes in biomass over time from the difference between the rates of biomass production (photosynthesis) and loss (respiration and senescence), and provides LAI, which is then used by the hydrological model for evapotranspiration and rainfall interception estimates. Case study is the Flumendosa basin (Sardinia, basin area of about 1700 km2), which is characterized by a reservoir system that supplies water to the main city of Sardinia, Cagliari. Data are from 42 rain stations (1922-2008 period) over the entire basin and data of runoff are available for the same period. The model has been successfully calibrated for the 1922 - 2008 period for which rain, meteorological data and discharge data are available. We demonstrate that the hystorical strong decrease of runoff is due to a change of rainfall regime, with a decrease of rainfall during the winter months, and a little increase of rainfall during spring-summer months. Indeed, the higher Spring rainfall produced an increase of transpiration mainly, whithout any impact on runoff. Instead the decrease of rainfall in winter months produces a strong decrease of runoff. This trend impacts significantly on monthly runoff production, and, more important, on yearly runoff production, because most of the yearly runoff contribution comes from the winter months. Yearly runoff is more important in Sardinia water resources systems, because runoff is accumulated in dam reservoirs, and is the main water resources of the island. Hence, due to the change of rainfall regime in last decades we are observing a dramatic decrease of runoff, which is reaching to impact on the water availability of the Sardinian major city, Cagliari.
Scaling Considerations Related to Interactions of Hydrologics, Pedologic and Geomorphic Processes
Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K...
Brokering technologies to realize the hydrology scenario in NSF BCube
NASA Astrophysics Data System (ADS)
Boldrini, Enrico; Easton, Zachary; Fuka, Daniel; Pearlman, Jay; Nativi, Stefano
2015-04-01
In the National Science Foundation (NSF) BCube project an international team composed of cyber infrastructure experts, geoscientists, social scientists and educators are working together to explore the use of brokering technologies, initially focusing on four domains: hydrology, oceans, polar, and weather. In the hydrology domain, environmental models are fundamental to understand the behaviour of hydrological systems. A specific model usually requires datasets coming from different disciplines for its initialization (e.g. elevation models from Earth observation, weather data from Atmospheric sciences, etc.). Scientific datasets are usually available on heterogeneous publishing services, such as inventory and access services (e.g. OGC Web Coverage Service, THREDDS Data Server, etc.). Indeed, datasets are published according to different protocols, moreover they usually come in different formats, resolutions, Coordinate Reference Systems (CRSs): in short different grid environments depending on the original data and the publishing service processing capabilities. Scientists can thus be impeded by the burden of discovery, access and normalize the desired datasets to the grid environment required by the model. These technological tasks of course divert scientists from their main, scientific goals. The use of GI-axe brokering framework has been experimented in a hydrology scenario where scientists needed to compare a particular hydrological model with two different input datasets (digital elevation models): - the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) dataset, v.2. - the Shuttle Radar Topography Mission (SRTM) dataset, v.3. These datasets were published by means of Hyrax Server technology, which can provide NetCDF files at their original resolution and CRS. Scientists had their model running on ArcGIS, so the main goal was to import the datasets using the available ArcPy library and have EPSG:4326 with the same resolution grid as the reference system, so that model outputs could be compared. ArcPy however is able to access only GeoTIff datasets that are published by a OGC Web Coverage Service (WCS). The GI-axe broker has then been deployed between the client application and the data providers. It has been configured to broker the two different Hyrax service endpoints and republish the data content through a WCS interface for the use of the ArcPy library. Finally, scientists were able to easily run the model, and to concentrate on the comparison of the different results obtained according to the selected input dataset. The use of a third party broker to perform such technological tasks has also shown to have the potential advantage of increasing the repeatability of a study among different researchers.
USDA-ARS?s Scientific Manuscript database
Topography exerts critical controls on many hydrologic, geomorphologic, and environmental biophysical processes. Unfortunately many watershed modeling systems use topography only to define basin boundaries and stream channels and do not explicitly account for the topographic controls on processes su...
An approach for modelling snowcover ablation and snowmelt runoff in cold region environments
NASA Astrophysics Data System (ADS)
Dornes, Pablo Fernando
Reliable hydrological model simulations are the result of numerous complex interactions among hydrological inputs, landscape properties, and initial conditions. Determination of the effects of these factors is one of the main challenges in hydrological modelling. This situation becomes even more difficult in cold regions due to the ungauged nature of subarctic and arctic environments. This research work is an attempt to apply a new approach for modelling snowcover ablation and snowmelt runoff in complex subarctic environments with limited data while retaining integrity in the process representations. The modelling strategy is based on the incorporation of both detailed process understanding and inputs along with information gained from observations of basin-wide streamflow phenomenon; essentially a combination of deductive and inductive approaches. The study was conducted in the Wolf Creek Research Basin, Yukon Territory, using three models, a small-scale physically based hydrological model, a land surface scheme, and a land surface hydrological model. The spatial representation was based on previous research studies and observations, and was accomplished by incorporating landscape units, defined according to topography and vegetation, as the spatial model elements. Comparisons between distributed and aggregated modelling approaches showed that simulations incorporating distributed initial snowcover and corrected solar radiation were able to properly simulate snowcover ablation and snowmelt runoff whereas the aggregated modelling approaches were unable to represent the differential snowmelt rates and complex snowmelt runoff dynamics. Similarly, the inclusion of spatially distributed information in a land surface scheme clearly improved simulations of snowcover ablation. Application of the same modelling approach at a larger scale using the same landscape based parameterisation showed satisfactory results in simulating snowcover ablation and snowmelt runoff with minimal calibration. Verification of this approach in an arctic basin illustrated that landscape based parameters are a feasible regionalisation framework for distributed and physically based models. In summary, the proposed modelling philosophy, based on the combination of an inductive and deductive reasoning, is a suitable strategy for reliable predictions of snowcover ablation and snowmelt runoff in cold regions and complex environments.
NASA Astrophysics Data System (ADS)
Hulsman, P.; Bogaard, T.; Savenije, H. H. G.
2016-12-01
In hydrology and water resources management, discharge is the main time series for model calibration. Rating curves are needed to derive discharge from continuously measured water levels. However, assuring their quality is demanding due to dynamic changes and problems in accurately deriving discharge at high flows. This is valid everywhere, but even more in African socio-economic context. To cope with these uncertainties, this study proposes to use water levels instead of discharge data for calibration. Also uncertainties in rainfall measurements, especially the spatial heterogeneity needs to be considered. In this study, the semi-distributed rainfall runoff model FLEX-Topo was applied to the Mara River Basin. In this model seven sub-basins were distinguished and four hydrological response units with each a unique model structure based on the expected dominant flow processes. Parameter and process constrains were applied to exclude unrealistic results. To calibrate the model, the water levels were back-calculated from modelled discharges, using cross-section data and the Strickler formula calibrating parameter `k•s1/2', and compared to measured water levels. The model simulated the water depths well for the entire basin and the Nyangores sub-basin in the north. However, the calibrated and observed rating curves differed significantly at the basin outlet, probably due to uncertainties in the measured discharge, but at Nyangores they were almost identical. To assess the effect of rainfall uncertainties on the hydrological model, the representative rainfall in each sub-basin was estimated with three different methods: 1) single station, 2) average precipitation, 3) areal sub-division using Thiessen polygons. All three methods gave on average similar results, but method 1 resulted in more flashy responses, method 2 dampened the water levels due to averaging the rainfall and method 3 was a combination of both. In conclusion, in the case of unreliable rating curves, water level data can be used instead and a new rating curve can be calibrated. The effect of rainfall uncertainties on the hydrological model was insignificant.
Soil moisture monitoring in Candelaro basin, Southern Italy
NASA Astrophysics Data System (ADS)
Campana, C.; Gigante, V.; Iacobellis, V.
2012-04-01
The signature of the hydrologic regime can be investigated, in principle, by recognizing the main mechanisms of runoff generation that take place in the basin and affect the seasonal behavior or the rainfall-driven events. In this framework, besides the implementation of hydrological models, a crucial role should be played by direct observation of key state variables such as soil moisture at different depths and different distances from the river network. In fact, understanding hydrological systems is often limited by the frequency and spatial distribution of observations. Experimental catchments, which are field laboratories with long-term measurements of hydrological variables, are not only sources of data but also sources of knowledge. Wireless distributed sensing platforms are a key technology to address the need for overcoming field limitations such as conflicts between soil use and cable connections. A stand-alone wireless network system has been installed for continuous monitoring of soil water contents at multiple depths along a transect located in Celone basin (sub-basin of Candelaro basin in Puglia, Southern Italy). The transect consists of five verticals, each one having three soil water content sensors at multiple depths: 0,05 m, 0,6 m and 1,2 m below the ground level. The total length of the transect is 307 m and the average distance between the verticals is 77 m. The main elements of the instrumental system installed are: fifteen Decagon 10HS Soil Moisture Sensors, five Decagon Em50R Wireless Radio Data Loggers, one Rain gauge, one Decagon Data Station and one Campbell CR1000 Data Logger. Main advantages of the system as described and presented in this work are that installation of the wireless network system is fast and easy to use, data retrieval and monitoring information over large spatial scales can be obtained in (near) real-time mode and finally other type of sensors can be connected to the system, also offering wide potentials for future applications. First records of the wireless underground network system indicate the presence of interesting patterns in space-time variability of volumetric soil moisture content, that provide evidence of the combined process of vertical infiltration and lateral flow. ACKNOWLEDGEMENT The research in this work is supported by the MIRAGE FP7 project (Grant agreement n. 211732).
Quantification of water resources uncertainties in the Luvuvhu sub-basin of the Limpopo river basin
NASA Astrophysics Data System (ADS)
Oosthuizen, N.; Hughes, D.; Kapangaziwiri, E.; Mwenge Kahinda, J.; Mvandaba, V.
2018-06-01
In the absence of historical observed data, models are generally used to describe the different hydrological processes and generate data and information that will inform management and policy decision making. Ideally, any hydrological model should be based on a sound conceptual understanding of the processes in the basin and be backed by quantitative information for the parameterization of the model. However, these data are often inadequate in many sub-basins, necessitating the incorporation of the uncertainty related to the estimation process. This paper reports on the impact of the uncertainty related to the parameterization of the Pitman monthly model and water use data on the estimates of the water resources of the Luvuvhu, a sub-basin of the Limpopo river basin. The study reviews existing information sources associated with the quantification of water balance components and gives an update of water resources of the sub-basin. The flows generated by the model at the outlet of the basin were between 44.03 Mm3 and 45.48 Mm3 per month when incorporating +20% uncertainty to the main physical runoff generating parameters. The total predictive uncertainty of the model increased when water use data such as small farm and large reservoirs and irrigation were included. The dam capacity data was considered at an average of 62% uncertainty mainly as a result of the large differences between the available information in the national water resources database and that digitised from satellite imagery. Water used by irrigated crops was estimated with an average of about 50% uncertainty. The mean simulated monthly flows were between 38.57 Mm3 and 54.83 Mm3 after the water use uncertainty was added. However, it is expected that the uncertainty could be reduced by using higher resolution remote sensing imagery.
A physically-based Distributed Hydrologic Model for Tropical Catchments
NASA Astrophysics Data System (ADS)
Abebe, N. A.; Ogden, F. L.
2010-12-01
Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.
NASA Astrophysics Data System (ADS)
Zhou, Wen-Jun; Lu, Hua-Zheng; Zhang, Yi-Ping; Sha, Li-Qing; Schaefer, Douglas Allen; Song, Qing-Hai; Deng, Yun; Deng, Xiao-Bao
2016-10-01
To better understand the effect of dissolved organic carbon (DOC) transported by hydrological processes (rainfall, throughfall, litter leachate, and surface soil water; 0-20 cm) on soil respiration in tropical rainforests, we detected the DOC flux in rainfall, throughfall, litter leachate, and surface soil water (0-20 cm), compared the seasonality of δ13CDOC in each hydrological process, and δ13C in leaves, litter, and surface soil, and analysed the throughfall, litter leachate, and surface soil water (0-20 cm) effect on soil respiration in a tropical rainforest in Xishuangbanna, south-west China. Results showed that the surface soil intercepted 94.4 ± 1.2 % of the annual litter leachate DOC flux and is a sink for DOC. The throughfall and litter leachate DOC fluxes amounted to 6.81 and 7.23 % of the net ecosystem exchange respectively, indicating that the DOC flux through hydrological processes is an important component of the carbon budget, and may be an important link between hydrological processes and soil respiration in a tropical rainforest. Even the variability in soil respiration is more dependent on the hydrologically transported water than DOC flux insignificantly, soil temperature, and soil-water content (at 0-20 cm). The difference in δ13C between the soil, soil water (at 0-20 cm), throughfall, and litter leachate indicated that DOC is transformed in the surface soil and decreased the sensitivity indices of soil respiration of DOC flux to water flux, which suggests that soil respiration is more sensitive to the DOC flux in hydrological processes, especially the soil-water DOC flux, than to soil temperature or soil moisture.
NASA Astrophysics Data System (ADS)
Govind, Ajit; Chen, Jing Ming; Ju, Weimin
2009-06-01
Ecosystem models that simulate biogeochemical processes usually ignore hydrological controls that govern them. It is quite possible that topographically driven water fluxes significantly influence the spatial distribution of C sources and sinks because of their large contribution to the local water balance. To investigate this, we simulated biogeochemical processes along with the associated feedback mechanisms in a boreal ecosystem using a spatially explicit hydroecological model, boreal ecosystem productivity simulator (BEPS)-TerrainLab V2.0, that has a tight coupling of ecophysiological, hydrological, and biogeochemical processes. First, the simulated dynamics of snowpack, soil temperature, net ecosystem productivity (NEP), and total ecosystem respiration (TER) were validated with high-frequency measurements for 2 years. The model was able to explain 80% of the variability in NEP and 84% of the variability in TER. Further, we investigated the influence of topographically driven subsurface base flow on soil C and N cycling and on the spatiotemporal patterns of C sources and sinks using three hydrological modeling scenarios that differed in hydrological conceptualizations. In general, the scenarios that had nonexplicit hydrological representation overestimated NEP, as opposed to the scenario that had an explicit (realistic) representation. The key processes controlling the NEP differences were attributed to the combined effects of variations in photosynthesis (due to changes in stomatal conductance and nitrogen (N) availability), heterotrophic respiration, and autotrophic respiration, all of which occur simultaneously affecting NEP. Feedback relationships were also found to exacerbate the differences. We identified six types of NEP differences (biases), of which the most commonly found was due to an underestimation of the existing C sources, highlighting the vulnerability of regional-scale ecosystem models that ignore hydrological processes.
Historical Climate Change Impacts on the Hydrological Processes of the Ponto-Caspian Basin
NASA Astrophysics Data System (ADS)
Koriche, Sifan A.; Singarayer, Joy S.; Coe, Michael T.; Nandini, Sri; Prange, Matthias; Cloke, Hannah; Lunt, Dan
2017-04-01
The Ponto-Caspian basin is one of the largest basins globally, composed of a closed basin (Caspian Sea) and open basins connecting to the global ocean (Black and Azov Sea). Over the historical time period (1850-present) Caspian Sea levels have varied between -25 and -29mbsl (Arpe et al., 2012), resulting in considerable changes to the area of the lake (currently 371,000 km2). Given projections of future climate change and the importance of the Caspian Sea for fisheries, agriculture, and industry, it is vital to understand how sea levels may vary in the future. Hydrological models can be used to assess the impacts of climate change on hydrological processes for future forecasts. However, it is critical to first evaluate such models using observational data for the present and recent past, and to understand the key hydrological processes driving past changes in sea level. In this study, the Terrestrial Hydrological Model (THMB) (Coe, 2000, 2002) is applied and evaluated to investigate the hydrological processes of the Ponto-Caspian basin for the historical period 1900 to 2000. The model has been forced using observational reanalysis datasets (ERA-Interim, ERA-20) and historical climate model data outputs (from CESM and HadCM3 models) to investigate the variability in the Caspian Sea level and the major river discharges. We examine the differences produced by driving the hydrological model with reanalysis data or climate models. We evaluate the model performance compared to observational discharge measurements and Caspian Sea level data. Secondly, we investigated the sensitivity of historical Caspian Sea level variations to different aspects of climate changes to examine the most important processes involved over this time period.
Testing the structure of a hydrological model using Genetic Programming
NASA Astrophysics Data System (ADS)
Selle, Benny; Muttil, Nitin
2011-01-01
SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.
Model Calibration in Watershed Hydrology
NASA Technical Reports Server (NTRS)
Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh
2009-01-01
Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.
A blueprint for using climate change predictions in an eco-hydrological study
NASA Astrophysics Data System (ADS)
Caporali, E.; Fatichi, S.; Ivanov, V. Y.
2009-12-01
There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for uncertainties in projections of future climate is discussed and a methodology for propagating these uncertainties into the probability density functions of changes in eco-hydrological variables is presented.
Shope, William G.; ,
1987-01-01
The US Geological Survey is utilizing a national network of more than 1000 satellite data-collection stations, four satellite-relay direct-readout ground stations, and more than 50 computers linked together in a private telecommunications network to acquire, process, and distribute hydrological data in near real-time. The four Survey offices operating a satellite direct-readout ground station provide near real-time hydrological data to computers located in other Survey offices through the Survey's Distributed Information System. The computerized distribution system permits automated data processing and distribution to be carried out in a timely manner under the control and operation of the Survey office responsible for the data-collection stations and for the dissemination of hydrological information to the water-data users.
USERS MANUAL FOR HYDROLOGICAL SIMULATION PROGRAM - FORTRAN (HSPF)
The Hydrological Simulation Program--Fortran (HSPF) is a set of computer codes that can simulate the hydrologic, and associated water quality, processes on pervious and impervious land surfaces and in streams and well-mixed impoundments. The manual discusses the modular structure...
NASA Astrophysics Data System (ADS)
He, Zhonghua; Liang, Hong; Yang, Chaohui; Huang, Fasu; Zeng, Xinbo
2018-02-01
Hydrologic drought, as a typical natural phenomenon in the context of global climate change, is the extension and development of meteorological and agricultural droughts, and it is an eventual and extreme drought. This study selects 55 hydrological control basins in Southern China as research areas. The study analyzes features, such as intensity and occurrence frequency of hydrologic droughts, and explores the spatial-temporal evolution patterns in the karst drainage basins in Southern China by virtue of Streamflow Drought Index. Results show that (1) the general hydrologic droughts from 1970s to 2010s exhibited ;an upward trend after having experienced a previous decline; in the karst drainage basins in Southern China; the trend was mainly represented by the gradual alleviation of hydrologic droughts from 1970s to 1990s and the gradual aggravation from 2000s to 2010s. (2) The spatial-temporal evolution pattern of occurrence frequency in the karst drainage basins in Southern China was consistent with the intensity of hydrologic droughts. The periods of 1970s and 2010s exhibited the highest occurrence frequency. (3) The karst drainage basins in Southern China experienced extremely complex variability of hydrologic droughts from 1970s to 2010s. Drought intensity and occurrence frequency significantly vary for different types of hydrology.
Hydrological responses to channelization and the formation of valley plugs and shoals
Pierce, Aaron R.; King, Sammy L.
2017-01-01
Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.
Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography
NASA Astrophysics Data System (ADS)
Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.
2010-12-01
Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.
NASA Technical Reports Server (NTRS)
Starr, D. OC. (Editor); Melfi, S. Harvey (Editor)
1991-01-01
The proposed GEWEX Water Vapor Project (GVaP) addresses fundamental deficiencies in the present understanding of moist atmospheric processes and the role of water vapor in the global hydrologic cycle and climate. Inadequate knowledge of the distribution of atmospheric water vapor and its transport is a major impediment to progress in achieving a fuller understanding of various hydrologic processes and a capability for reliable assessment of potential climatic change on global and regional scales. GVap will promote significant improvements in knowledge of atmospheric water vapor and moist processes as well as in present capabilities to model these processes on global and regional scales. GVaP complements a number of ongoing and planned programs focused on various aspects of the hydrologic cycle. The goal of GVaP is to improve understanding of the role of water vapor in meteorological, hydrological, and climatological processes through improved knowledge of water vapor and its variability on all scales. A detailed description of the GVaP is presented.
Prieto, Iván; Armas, Cristina; Pugnaire, Francisco I
2012-03-01
Hydraulic redistribution (HR) is the passive movement of water between different soil parts via plant root systems, driven by water potential gradients in the soil-plant interface. New data suggest that HR is a heterogeneous and patchy process. In this review we examine the main biophysical and environmental factors controlling HR and its main implications at the plant, community and ecosystem levels. Experimental evidence and the use of novel modelling approaches suggest that HR may have important implications at the community scale, affecting net primary productivity as well as water and vegetation dynamics. Globally, HR may influence hydrological and biogeochemical cycles and, ultimately, climate. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
The citation impact of hydrology journals
NASA Astrophysics Data System (ADS)
Clark, Martyn P.; Hanson, R. Brooks
2017-06-01
We examine a suite of journal-level productivity and citation statistics for six leading hydrology journals in order to help authors understand the robustness and meaning of journal impact factors. The main results are (1) the probability distribution of citations is remarkably homogenous across hydrology journals; (2) hydrology papers tend to have a long-lasting impact, with a large fraction of papers cited after the 2 year window used to calculate the journal impact factor; and (3) journal impact factors are characterized by substantial year-to-year variability (especially for smaller journals), primarily because a small number of highly cited papers have a large influence on the journal impact factor. Consequently, the ranking of hydrology journals with respect to the journal impact factor in a given year does not have much information content. These results highlight problems in using citation data to evaluate hydrologic science. We hope that this analysis helps authors better understand journal-level citation statistics, and also helps improve research assessments in institutions and funding agencies.
NASA Astrophysics Data System (ADS)
Regina, J. A.; Ogden, F. L.
2014-12-01
Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to watershed management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One question posed by this project concerns the hydrologic role of fire in tropical environments. Within the Panama Canal Watershed, fire has seen widespread use among agriculturalists. This study focused on a monoculture invasive grass (Saccharum spontaneum) catchment. Specifically, the effects of significant wildfire events on hydrological processes in the catchment were analyzed. The catchment is within Panama's protected Soberania National Park, which is part of the greater Panama Canal Watershed. Installed instrumentation includes a rain gauge cluster, a two-stage v-notch weir, atmometer and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across the catchment is available from 2009-2013. Various hydrologic characteristics, such as runoff ratio, peak flow per unit area, time to peak, runoff duration, and leaf area index, from before and after the events were compared. These characteristics are related to rates of ground water recharge and the occurrence of flash floods. This study provides a baseline from which the potential impacts of fire on hydrological processes in tropical environments can be analyzed.
Towards understanding the dynamic behaviour of floodplains as human-water systems
NASA Astrophysics Data System (ADS)
Di Baldassarre, G.; Kooy, M.; Kemerink, J. S.; Brandimarte, L.
2013-03-01
This paper offers a conceptual approach to explore the complex dynamics of floodplains as fully coupled human-water systems. A number of hydrologists have recently investigated the impact of human activities (such as flood control measures, land-use changes, and settlement patterns) on the frequency and severity of floods. Meanwhile, social scientists have shown how interactions between society and waters in floodplain areas, including the frequency and severity of floods, have an impact on the ways in which social relations unfold (in terms of governance processes, policies, and institutions) and societies are organised (spatially, politically, and socially). However, we argue that the interactions and associated feedback mechanisms between hydrological and social processes remain largely unexplored and poorly understood. Thus, there is a need to better understand how the institutions and governance processes interact with hydrological processes in floodplains to influence the frequency and severity of floods, while (in turn) hydrological processes co-constitute the social realm and make a difference for how social relations unfold to shape governance processes and institutions. Our research goal, therefore, is not in identifying one or the other side of the cycle (hydrological or social), but in explaining the relationship between them: how, when, where, and why they interact, and to what result for both social relations and hydrological processes? We argue that long time series of hydrological and social data, along with remote sensing data, can be used to observe floodplain dynamics from unconventional approaches, and understand the complex interactions between water and human systems taking place in floodplain areas, across scales and levels of human impacts, and within different hydro-climatic conditions, socio-cultural settings, and modes of governance.
Towards understanding the dynamic behaviour of floodplains as human-water systems
NASA Astrophysics Data System (ADS)
Di Baldassarre, G.; Kooy, M.; Kemerink, J. S.; Brandimarte, L.
2013-08-01
This paper offers a conceptual approach to explore the complex dynamics of floodplains as fully coupled human-water systems. A number of hydrologists have recently investigated the impact of human activities (such as flood control measures, land-use changes, and settlement patterns) on the frequency and severity of floods. Meanwhile, social scientists have shown how interactions between society and waters in deltas and floodplain areas, including the frequency and severity of floods, have an impact on the ways in which social relations unfold (in terms of governance processes, policies, and institutions) and societies are organised (spatially, politically, and socially). However, we argue that the interactions and associated feedback mechanisms between hydrological and social processes remain largely unexplored and poorly understood. Thus, there is a need to better understand how the institutions and governance processes interact with hydrological processes in deltas and floodplains to influence the frequency and severity of floods, while (in turn) hydrological processes co-constitute the social realm and make a difference for how social relations unfold to shape governance processes and institutions. Our research goal, therefore, is not in identifying one or the other side of the cycle (hydrological or social), but in explaining the relationship between them: how, when, where, and why they interact, and to what result for both social relations and hydrological processes? We argue that long time series of hydrological and social data, along with remote sensing data, can be used to observe floodplain dynamics from unconventional approaches, and understand the complex interactions between water and human systems taking place in floodplain areas, across scales and levels of human impacts, and within different hydro-climatic conditions, socio-cultural settings, and modes of governance.
NASA Astrophysics Data System (ADS)
Gebregiorgis, A. S.; Peters-Lidard, C. D.; Tian, Y.; Hossain, F.
2011-12-01
Hydrologic modeling has benefited from operational production of high resolution satellite rainfall products. The global coverage, near-real time availability, spatial and temporal sampling resolutions have advanced the application of physically based semi-distributed and distributed hydrologic models for wide range of environmental decision making processes. Despite these successes, the existence of uncertainties due to indirect way of satellite rainfall estimates and hydrologic models themselves remain a challenge in making meaningful and more evocative predictions. This study comprises breaking down of total satellite rainfall error into three independent components (hit bias, missed precipitation and false alarm), characterizing them as function of land use and land cover (LULC), and tracing back the source of simulated soil moisture and runoff error in physically based distributed hydrologic model. Here, we asked "on what way the three independent total bias components, hit bias, missed, and false precipitation, affect the estimation of soil moisture and runoff in physically based hydrologic models?" To understand the clear picture of the outlined question above, we implemented a systematic approach by characterizing and decomposing the total satellite rainfall error as a function of land use and land cover in Mississippi basin. This will help us to understand the major source of soil moisture and runoff errors in hydrologic model simulation and trace back the information to algorithm development and sensor type which ultimately helps to improve algorithms better and will improve application and data assimilation in future for GPM. For forest and woodland and human land use system, the soil moisture was mainly dictated by the total bias for 3B42-RT, CMORPH, and PERSIANN products. On the other side, runoff error was largely dominated by hit bias than the total bias. This difference occurred due to the presence of missed precipitation which is a major contributor to the total bias both during the summer and winter seasons. Missed precipitation, most likely light rain and rain over snow cover, has significant effect on soil moisture and are less capable of producing runoff that results runoff dependency on the hit bias only.
airGR: a suite of lumped hydrological models in an R-package
NASA Astrophysics Data System (ADS)
Coron, Laurent; Perrin, Charles; Delaigue, Olivier; Andréassian, Vazken; Thirel, Guillaume
2016-04-01
Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2015), called airGR, to make these models widely available. It includes: - the water balance annual GR1A (Mouehli et al., 2006), - the monthly GR2M (Mouehli, 2003) models, - three versions of the daily model, namely GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al., 2011), - the hourly GR4H model (Mathevet, 2005), - a degree-day snow module CemaNeige (Valéry et al., 2014). The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithms selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is already used for educational purposes. The presentation will detail the main functionalities of the package and present a case study application. References: - Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances et du réalisme des modèles pluie-débit ?, PhD thesis (in French), UPMC, Paris, France. - Mathevet, T. (2005), Quels modèles pluie-débit globaux pour le pas de temps horaire ? Développement empirique et comparaison de modèles sur un large échantillon de bassins versants, PhD thesis (in French), ENGREF - Cemagref (Antony), Paris, France. - Mouelhi S. (2003), Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier, PhD thesis (in French), ENGREF - Cemagref Antony, Paris, France. - Mouelhi, S., C. Michel, C. Perrin and V. Andréassian (2006), Stepwise development of a two-parameter monthly water balance model, Journal of Hydrology, 318(1-4), 200-214, doi:10.1016/j.jhydrol.2005.06.014. - Perrin, C., C. Michel and V. Andréassian (2003), Improvement of a parsimonious model for streamflow simulation, Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. - Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. - R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ - Valéry, A., V. Andréassian and C. Perrin (2014), "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058.
Delineating floodplain and upload areas for hydrologic models: A comparison of methods
USDA-ARS?s Scientific Manuscript database
A spatially distributed representation of basin hydrology and transport processes in eco-hydrological models facilitates the identification of critical source areas and the placement of management and conservation measures. Floodplains are critical landscape features that differ from neighboring up...
NASA Astrophysics Data System (ADS)
Seidl, Roman; Barthel, Roland
2016-04-01
Interdisciplinary scientific and societal knowledge plays an increasingly important role in global change research. Also, in the field of water resources interdisciplinarity as well as cooperation with stakeholders from outside academia have been recognized as important. In this contribution, we revisit an integrated regional modelling system (DANUBIA), which was developed by an interdisciplinary team of researchers and relied on stakeholder participation in the framework of the GLOWA-Danube project from 2001 to 2011 (Mauser and Prasch 2016). As the model was developed before the current increase in literature on participatory modelling and interdisciplinarity, we ask how a socio-hydrology approach would have helped and in what way it would have made the work different. The present contribution firstly presents the interdisciplinary concept of DANUBIA, mainly with focus on the integration of human behaviour in a spatially explicit, process-based numerical modelling system (Roland Barthel, Janisch, Schwarz, Trifkovic, Nickel, Schulz, and Mauser 2008; R. Barthel, Nickel, Meleg, Trifkovic, and Braun 2005). Secondly, we compare the approaches to interdisciplinarity in GLOWA-Danube with concepts and ideas presented by socio-hydrology. Thirdly, we frame DANUBIA and a review of key literature on socio-hydrology in the context of a survey among hydrologists (N = 184). This discussion is used to highlight gaps and opportunities of the socio-hydrology approach. We show that the interdisciplinary aspect of the project and the participatory process of stakeholder integration in DANUBIA were not entirely successful. However, important insights were gained and important lessons were learnt. Against the background of these experiences we feel that in its current state, socio-hydrology is still lacking a plan for knowledge integration. Moreover, we consider necessary that socio-hydrology takes into account the lessons learnt from these earlier examples of knowledge integration (see also, Hamilton, ElSawah, Guillaume, Jakeman, and Pierce 2015; Jakeman and Letcher 2003). Our contribution attempts to close a gap between previous concepts of integration of socio-economic aspects into hydrology (typically inspired by Integrated Water Resources Management) and the new socio-hydrology approach. We suppose that socio-hydrology could benefit from widening its scope and considering previous research at the boundaries between hydrology and social sciences. At the same time, concepts developed prior to socio-hydrology were seldom entirely successful. It might be beneficial to review these approaches developed earlier and those that are being developed in parallel from the perspective of socio-hydrology. References: Barthel, R., S. Janisch, N. Schwarz, A. Trifkovic, D. Nickel, C. Schulz, and W. Mauser. 2008. An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environmental Modelling & Software, 23: 1095-1121. Barthel, R., D. Nickel, A. Meleg, A. Trifkovic, and J. Braun. 2005. Linking the physical and the socio-economic compartments of an integrated water and land use management model on a river basin scale using an object-oriented water supply model. Physics and Chemistry of the Earth, 30: 389-397. doi: 10.1016/j.pce.2005.06.006 Hamilton, S. H., S. ElSawah, J. H. A. Guillaume, A. J. Jakeman, and S. A. Pierce. 2015. Integrated assessment and modelling: Overview and synthesis ofsalient dimensions. Environmental Modelling and Software, 64: 215-229. doi: 10.1016/j.envsoft.2014.12.005 Jakeman, A. J., and R. A. Letcher. 2003. Integrated assessment and modelling: features, principles and examples for catchment management. Environmental Modelling & Software, 18: 491-501. doi: http://dx.doi.org/10.1016/S1364-8152(03)00024-0 Mauser, W., and M. Prasch. 2016. Regional Assessment of Global Change Impacts - The Project GLOWA-Danube: Springer International Publishing.
Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile
Frederick J. Swanson; Julia A. Jones; Charles M. Crisafulli; Antonio Lara
2013-01-01
The 2008-2009 eruption of Chaiten Volcano (Chile) involved a variety of volcanic and associated hydrologic processes that damaged nearby forests. These processes included coarse (gravel) and fine (silt to sand) tephra fall, a laterally directed blast, fluvial deposition of remobilized tephra, a variety of low-temperature mass-movement processes, and a pyroclastic flow...
Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology
NASA Astrophysics Data System (ADS)
Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.
2016-12-01
Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.
NASA Astrophysics Data System (ADS)
Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing
2017-08-01
Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of eco-hydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965-1969) from -0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010-2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.
Numerical modelling of hydrologically-driven slope instability by means of porous media mechanics
NASA Astrophysics Data System (ADS)
Kakogiannou, Evanthia; Sanavia, Lorenzo; Lora, Marco; Schrefler, Bernhard
2015-04-01
Heavy rainfall can trigger slope failure which generally involves shallow soil deposit of different grading and origin usually in a state of partial saturation. In this case of slope instability, the behaviour of the soil slope is closely related not only to the distribution of pore-water pressure but also to the stress state during rainfall infiltration involving both mechanical and hydrological processes. In order to understand better these physical key processes, in this research work, the modelling of rainfall induced slope failure is considered as a coupled variably saturated hydro-mechanical problem. Therefore, the geometrically linear finite element code Comes-Geo for non-isothermal elasto-plastic multiphase solid porous materials is used, as developed by B.A. Schrefler and his co-workers. In this context, a detailed numerical analysis of an experimental slope stability test due to rainfall infiltration is presented. The main goals of this work are to understand the triggering mechanisms during the progressive failure, the effect of using different constitutive models of the mechanical soil behavior on the numerical results and the use of the second order work criterion on the detection of slope instability.
Li, XingRong; Zhang, ZhiShan; Tan, HuiJuan; Gao, YanHong; Liu, LiChao; Wang, XingPing
2014-05-01
The main prevention and control area for wind-blown sand hazards in northern China is about 320000 km(2) in size and includes sandlands to the east of the Helan Mountain and sandy deserts and desert-steppe transitional regions to the west of the Helan Mountain. Vegetation recovery and restoration is an important and effective approach for constraining wind-blown sand hazards in these areas. After more than 50 years of long-term ecological studies in the Shapotou region of the Tengger Desert, we found that revegetation changed the hydrological processes of the original sand dune system through the utilization and space-time redistribution of soil water. The spatiotemporal dynamics of soil water was significantly related to the dynamics of the replanted vegetation for a given regional precipitation condition. The long-term changes in hydrological processes in desert areas also drive replanted vegetation succession. The soil water carrying capacity of vegetation and the model for sand fixation by revegetation in aeolian desert areas where precipitation levels are less than 200 mm are also discussed.
A fully integrated SWAT-MODFLOW hydrologic model
USDA-ARS?s Scientific Manuscript database
The Soil and Water Assessment Tool (SWAT) and MODFLOW models are being used worldwide for managing surface and groundwater water resources. The SWAT models hydrological processes occurring at the surface including shallow aquifers, while MODFLOW simulate groundwater processes. However, neither SWAT ...
Advances in Canadian forest hydrology, 1999-2003
NASA Astrophysics Data System (ADS)
Buttle, J. M.; Creed, I. F.; Moore, R. D.
2005-01-01
Understanding key hydrological processes and properties is critical to sustaining the ecological, economic, social and cultural roles of Canada's varied forest types. This review examines recent progress in studying the hydrology of Canada's forest landscapes. Work in some areas, such as snow interception, accumulation and melt under forest cover, has led to modelling tools that can be readily applied for operational purposes. Our understanding in other areas, such as the link between runoff-generating processes in different forest landscapes and hydrochemical fluxes to receiving waters, is much more tentative. The 1999-2003 period saw considerable research examining hydrological and biogeochemical responses to natural and anthropogenic disturbance of forest landscapes, spurred by major funding initiatives at the provincial and federal levels. This work has provided valuable insight; however, application of the findings beyond the experimental site is often restricted by such issues as a limited consideration of the background variability of hydrological systems, incomplete appreciation of hydrological aspects at the experiment planning stage, and experimental design problems that often bedevil studies of basin response to disturbance. Overcoming these constraints will require, among other things, continued support for long-term hydroecological monitoring programmes, the embedding of process measurement and modelling studies within these programmes, and greater responsiveness to the vagaries of policy directions related to Canada's forest resources. Progress in these and related areas will contribute greatly to the development of hydrological indicators of sustainable forest management in Canada. Copyright
Yang, Yonggang; Guo, Tingting; Jiao, Wentao
2018-06-01
There is less research on the hydrological system and its destruction processes mechanism in the mining areas, especially combined application of isotope technology and chemical signals, which is a key scientific problem that need to be solved. This study takes Jinci spring area in Shanxi as a case study. It is based on the data of hydrology and mining condition from 1954 to 2015, combining monitoring experiments, O 18 , D, S 34 and N 15 tracing, chemical and model simulation. This study investigates the hydrological regularity and impacts of mining activities on water quantity and quality, and reveals the destruction process of hydrological system. The results show that: (1) Water chemical type shows an evolutionary trend of HCO 3 - -Ca 2+ -Mg 2+ →SO 4 2- -HCO 3 - -Ca 2+ -Mg 2+ →SO 4 2- -Ca 2+ -Mg 2+ , due to the influence of exploitation and fault zones. Isotope tracer shows that mine pit water is formed by a mixture of pore water, karst water and surface water. (2) Although precipitation and seepage have a certain impact on the reducing of groundwater quantity, over-exploitation of water resource is still the main reason for reducing of groundwater quantity. Under the conditions of keeping the exploitation intensity at the current level or reducing it by 10%, groundwater level shows a declining trend. Under the condition of reducing it by 30%, groundwater level starts to rise up. When reducing by 50%, groundwater level reaches its highest point. Coalmining changes the runoff, recharge and discharge paths. (3) From 1985 to 2015, Water quality in the mining area is worsening. Ca 2+ increases by 35.30%, SO 4 2- increases by 52.80%, and TDS (Total Dissolved Solid) increases by 67.50%. Nitrates come from the industrial and domestic wastewater, which is generated by mining. The percentage of groundwater coming from gypsum dissolusion is 67.51%, and the percentage from coal measure strata water is 34.49%. The water qualities of river branches are generally deteriorated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Long-term data set analysis of stable isotopic composition in German rivers
NASA Astrophysics Data System (ADS)
Reckerth, Anne; Stichler, Willibald; Schmidt, Axel; Stumpp, Christine
2017-09-01
Stable isotopes oxygen-18 (18O) and deuterium (2H) are commonly used to investigate hydrological processes in catchments. However, only a few isotope studies have been conducted on a large scale and rarely over long time periods. The objective of this study was to identify the spatial and seasonal variability of isotopic composition in river water and how it is affected by geographical and hydrological factors. The stable isotopic composition of river water has been measured in nine large river catchments in Germany for a time period of 12 years or 26 years. We conducted time series and correlation analyses to identify spatial and temporal patterns of the isotopic composition in the rivers. Further, we compared it to isotopic composition in local precipitation and catchments characteristics. In the majority of the rivers, the spatial and temporal patterns of precipitation were directly reflected in river water. The isotopic signals of the river water were time shifted and show attenuated amplitudes. Further deviations from isotopic compositions in local precipitation were observed in catchments with complex flow systems. These deviations were attributed to catchment processes and influences like evaporation, damming and storage. The seasonality of the isotopic composition was mainly determined by the discharge regimes of the rivers. We found correlations between isotopic long-term averages and catchment altitude as well as latitude and longitude, resulting in a northwest-southeast gradient. Furthermore, it was shown that long-term averages of d-excess were inversely related to flow length and catchment size, which indicates that evaporation enrichment has an impact on the isotopic composition even in catchments of humid climates. This study showed that isotopic composition in rivers can serve as a proxy for the local precipitation and can be utilized as an indicator for hydrological processes even in large river basins. In future, such long time series will help to also understand the impact of changes in the hydrological cycle on the larger scales. They can also be used for calibration and validation of flow and transport models at catchment and sub-catchment scale.
NASA Astrophysics Data System (ADS)
Francois, B.; Wi, S.; Brown, C.
2017-12-01
There has been growing interest for hydrologists and water resources managers about the emergence of non-stationarities associated with the hydro-meteorological processes driving floods. Among the potential causes of non-stationarity, climate change is deemed a major one. Understanding the effects of climate change on hydrological regimes of the Missouri River is challenging. In this region, floods are mainly triggered by snow melting, either when temperatures get mild in spring/summer, or when rain falls over snow in early spring and fall. The sparsely gauged and topographically complex area degrades the value of hydrological modeling that otherwise might foreshadow the evolution of hydro-meteorological interactions between precipitation, temperature and snow. In this work, we explore the utility of Deep Learning (DL) for assessing flood magnitude change under climate change. By using multiple hidden layers within artificial neural networks (ANNs), DL allows modeling complex interactions between inputs (i.e. precipitation, temperature and snow water equivalent) and outputs (i.e. water discharge). The objective is to develop a parsimonious model of the flood processes that maintain the contribution of nonstationary factors and their potential evolution under climate change, while reducing extraneous factors not central to flood generation. By comparing ANN's performance with outputs from two hydrological models of differing complexity (i.e. VIC, SAC-SMA), we evaluate the modeling capability of ANNs for three snow-dominated catchments that represent different flood regimes (Yellowstone River at Billings (MT; USGS 06214500), Powder River near Locate (MT; USGS 06326500) and James River near Scotland (SD; USGS 06478500)). Nonstationary inputs for each flood process model are derived from dynamically downscaled climate projections (from the NARCCAP experiment) to project floods in the three selected catchments. The uncertainty of future snow projections as well as its impact on spring flooding are explored. Future flood frequency obtained with ANNs is compared with the one obtained thanks to hydrological models and with the traditional approach as described in Bulletin 17C. Keywords: Flood, Climate-change, Snow, Neural Networks
NASA Astrophysics Data System (ADS)
Blettler, Martín. C. M.; Amsler, Mario L.; Eberle, Eliana G.; Szupiany, Ricardo; Latosinski, Francisco G.; Abrial, Elie; Oberholster, Paul J.; Espinola, Luis A.; Paira, Aldo; Poza, Ailen; Rodrigues Capítulo, Alberto
2016-12-01
Interdisciplinary research in the fields of ecohydrology and ecogeomorphology is becoming increasingly important as a way to understand how biological and physical processes interact with each other in river systems. The objectives of the current study were 1) to determine changes in invertebrate community due to hydrological stages, 2) to link local physical features [flow configuration, sediment composition and morphological feature) with the ecological structure between and within dissimilar morphological units (meander and confluence), and 3) to determine the existence and the origin of bed hydro-geomorphic patches, determining their ecological structure. Results were discussed in the frame of prevailing ecological models and concepts. The study site extends over a floodplain area of the large Paraná River (Argentina), including minor and major secondary channels as well as the main channel. Overall results suggested that hydrodynamics was the driving force determining distribution patterns of benthic assemblages in the floodplain. However, while the invertebrates living in minor secondary channels seem to benefit from flooding, this hydrological phase had the opposite effect on organisms from the main and major secondary channels. We also found a clear linkage between physical features and invertebrate ecology, which caused a dissimilar fauna structure between and within the meander and the confluence. Furthermore, several sandy-patches were recorded in the confluence. These patches were colonized by the particular benthic assemblage recorded in the main channel, supported the view of rivers as patchy discontinua, under uncertain ecological equilibrium.
Taehee Hwang; James M. Vose; Christina Tague
2012-01-01
Lateral water flow in catchments can produce important patterns in water and nutrient fluxes and stores and also influences the long-term spatial development of forest ecosystems. Specifically, patterns of vegetation type and density along hydrologic flow paths can represent a signal of the redistribution of water and nitrogen mediated by lateral hydrologic flow. This...
iTree-Hydro: Snow hydrology update for the urban forest hydrology model
Yang Yang; Theodore A. Endreny; David J. Nowak
2011-01-01
This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest EffectsâHydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...
NASA Astrophysics Data System (ADS)
Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.
2015-12-01
The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims Branch watershed at Savannah River Site.
Kalin, Latif; Hantush, Mohamed M
2009-02-01
An index based method is developed that ranks the subwatersheds of a watershed based on their relative impacts on watershed response to anticipated land developments, and then applied to an urbanizing watershed in Eastern Pennsylvania. Simulations with a semi-distributed hydrologic model show that computed low- and high-flow frequencies at the main outlet increase significantly with the projected landscape changes in the watershed. The developed index is utilized to prioritize areas in the urbanizing watershed based on their contributions to alterations in the magnitude of selected flow characteristics at two spatial resolutions. The low-flow measure, 7Q10, rankings are shown to mimic the spatial trend of groundwater recharge rates, whereas average annual maximum daily flow, QAMAX, and average monthly median of daily flows, QMMED, rankings are influenced by both recharge and proximity to watershed outlet. Results indicate that, especially with the higher resolution, areas having quicker responses are not necessarily the more critical areas for high-flow scenarios. Subwatershed rankings are shown to vary slightly with the location of water quality/quantity criteria enforcement. It is also found that rankings of subwatersheds upstream from the site of interest, which could be the main outlet or any interior point in the watershed, may be influenced by the time scale of the hydrologic processes.
NASA Astrophysics Data System (ADS)
Ortega, Jose A.; Garzón Heydt, Guillermina
2009-11-01
On the basis of the description of the 1997 Rivillas flood deposits, a morphosedimentary feature classification is proposed. Mapping of the main morphosedimentary deposits in seven reaches along the basin has provided abundant data for each defined typology and for a better adjustment of their stability fields. Because of their unstable preservation environment, immediate post-flood field surveys with descriptions of erosive and depositional features were undertaken. Up to 18 features were classified as either sedimentary or erosive and mapped according to their genetic environments. Anthropic interference such as land use changes produce modification of sediment supply and in channel and floodplain erosive processes causing flash-floods to be more catastrophic. Erosive features are dominant over sedimentary ones, as the sedimentary budget in the river is negative. By means of HEC-RAS (Hydrologic Engineering Center) modelling, we were able to obtain mean values of the main variables limiting feature stability (velocity, depth, stream powers and shear stress). These provide information regarding maximum stability threshold and peak flood discharge. The ephemeral nature of riverine flash-flood deposits in this type of setting does not mean that they are not significant, and their interpretation after recent floods can significantly improve interpretation of the event dynamics and its flood hydrology and also be useful for flood risk mapping.
Dynamic Rainfall Patterns and the Simulation of Changing Scenarios: A behavioral watershed response
NASA Astrophysics Data System (ADS)
Chu, M.; Guzman, J.; Steiner, J. L.; Hou, C.; Moriasi, D.
2015-12-01
Rainfall is one of the fundamental drivers that control hydrologic responses including runoff production and transport phenomena that consequently drive changes in aquatic ecosystems. Quantifying the hydrologic responses to changing scenarios (e.g., climate, land use, and management) using environmental models requires a realistic representation of probable rainfall in its most sensible spatio-temporal dimensions matching that of the phenomenon under investigation. Downscaling projected rainfall from global circulation models (GCMs) is the most common practice in deriving rainfall datasets to be used as main inputs to hydrologic models which in turn are used to assess the impacts of climate changes on ecosystems. Downscaling assumes that local climate is a combination of large-scale climatic/atmospheric conditions and local conditions. However, the representation of the latter is generally beyond the capacity of current GCMs. The main objective of this study was to develop and implement a synthetic rainfall generator to downscale expected rainfall trends to 1 x 1 km rainfall daily patterns that mimic the dynamic propagation of probability distribution functions (pdf) derived from historic rainfall data (rain-gauge or radar estimated). Future projections were determined based on actual and expected changes in the pdf and stochastic processes to account for variability. Watershed responses in terms of streamflow and nutrients loads were evaluated using synthetically generated rainfall patterns and actual data. The framework developed in this study will allow practitioners to generate rainfall datasets that mimic the temporal and spatial patterns exclusive to their study area under full disclosure of the uncertainties involved. This is expected to provide significantly more accurate environmental models than is currently available and would provide practitioners with ways to evaluate the spectrum of systemic responses to changing scenarios.
NASA Astrophysics Data System (ADS)
Wi, S.; Ray, P. A.; Brown, C.
2015-12-01
A software package developed to facilitate building distributed hydrologic models in a modular modeling system is presented. The software package provides a user-friendly graphical user interface that eases its practical use in water resources-related research and practice. The modular modeling system organizes the options available to users when assembling models according to the stages of hydrological cycle, such as potential evapotranspiration, soil moisture accounting, and snow/glacier melting processes. The software is intended to be a comprehensive tool that simplifies the task of developing, calibrating, validating, and using hydrologic models through the inclusion of intelligent automation to minimize user effort, and reduce opportunities for error. Processes so far automated include the definition of system boundaries (i.e., watershed delineation), climate and geographical input generation, and parameter calibration. Built-in post-processing toolkits greatly improve the functionality of the software as a decision support tool for water resources system management and planning. Example post-processing toolkits enable streamflow simulation at ungauged sites with predefined model parameters, and perform climate change risk assessment by means of the decision scaling approach. The software is validated through application to watersheds representing a variety of hydrologic regimes.
Simulated discharge trends indicate robustness of hydrological models in a changing climate
NASA Astrophysics Data System (ADS)
Addor, Nans; Nikolova, Silviya; Seibert, Jan
2016-04-01
Assessing the robustness of hydrological models under contrasted climatic conditions should be part any hydrological model evaluation. Robust models are particularly important for climate impact studies, as models performing well under current conditions are not necessarily capable of correctly simulating hydrological perturbations caused by climate change. A pressing issue is the usually assumed stationarity of parameter values over time. Modeling experiments using conceptual hydrological models revealed that assuming transposability of parameters values in changing climatic conditions can lead to significant biases in discharge simulations. This raises the question whether parameter values should to be modified over time to reflect changes in hydrological processes induced by climate change. Such a question denotes a focus on the contribution of internal processes (i.e., catchment processes) to discharge generation. Here we adopt a different perspective and explore the contribution of external forcing (i.e., changes in precipitation and temperature) to changes in discharge. We argue that in a robust hydrological model, discharge variability should be induced by changes in the boundary conditions, and not by changes in parameter values. In this study, we explore how well the conceptual hydrological model HBV captures transient changes in hydrological signatures over the period 1970-2009. Our analysis focuses on research catchments in Switzerland undisturbed by human activities. The precipitation and temperature forcing are extracted from recently released 2km gridded data sets. We use a genetic algorithm to calibrate HBV for the whole 40-year period and for the eight successive 5-year periods to assess eventual trends in parameter values. Model calibration is run multiple times to account for parameter uncertainty. We find that in alpine catchments showing a significant increase of winter discharge, this trend can be captured reasonably well with constant parameter values over the whole reference period. Further, preliminary results suggest that some trends in parameter values do not reflect changes in hydrological processes, as reported by others previously, but instead might stem from a modeling artifact related to the parameterization of evapotranspiration, which is overly sensitive to temperature increase. We adopt a trading-space-for-time approach to better understand whether robust relationships between parameter values and forcing can be established, and to critically explore the rationale behind time-dependent parameter values in conceptual hydrological models.
Hydrological modeling in forested systems
H.E. Golden; G.R. Evenson; S. Tian; Devendra Amatya; Ge Sun
2015-01-01
Characterizing and quantifying interactions among components of the forest hydrological cycle is complex and usually requires a combination of field monitoring and modelling approaches (Weiler and McDonnell, 2004; National Research Council, 2008). Models are important tools for testing hypotheses, understanding hydrological processes and synthesizing experimental data...
HYDROLOGY AND LANDSCAPE CONNECTIVITY OF VERNAL POOLS
Vernal pools are shaped by hydrologic processes which influence many aspects of pool function. The hydrologic budget of a pool can be summarized by a water balance equation that relates changes in the amount of water in the pool to precipitation, ground- and surface-water flows, ...
HYDROLOGICAL SIMULATION PROGRAM-FORTRAN (HSPF): USERS MANUAL FOR RELEASE 8.0
The Hydrological Simulation Program--FORTRAN (HSPF) is a set of computer codes that can simulate the hydrologic, and associated water quality, processes on pervious and impervious land surfaces and in streams and well mixed impoundments. The manual discusses the modular structure...
Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in hydrology
NASA Astrophysics Data System (ADS)
Serinaldi, Francesco; Kilsby, Chris G.; Lombardo, Federico
2018-01-01
The detection and attribution of long-term patterns in hydrological time series have been important research topics for decades. A significant portion of the literature regards such patterns as 'deterministic components' or 'trends' even though the complexity of hydrological systems does not allow easy deterministic explanations and attributions. Consequently, trend estimation techniques have been developed to make and justify statements about tendencies in the historical data, which are often used to predict future events. Testing trend hypothesis on observed time series is widespread in the hydro-meteorological literature mainly due to the interest in detecting consequences of human activities on the hydrological cycle. This analysis usually relies on the application of some null hypothesis significance tests (NHSTs) for slowly-varying and/or abrupt changes, such as Mann-Kendall, Pettitt, or similar, to summary statistics of hydrological time series (e.g., annual averages, maxima, minima, etc.). However, the reliability of this application has seldom been explored in detail. This paper discusses misuse, misinterpretation, and logical flaws of NHST for trends in the analysis of hydrological data from three different points of view: historic-logical, semantic-epistemological, and practical. Based on a review of NHST rationale, and basic statistical definitions of stationarity, nonstationarity, and ergodicity, we show that even if the empirical estimation of trends in hydrological time series is always feasible from a numerical point of view, it is uninformative and does not allow the inference of nonstationarity without assuming a priori additional information on the underlying stochastic process, according to deductive reasoning. This prevents the use of trend NHST outcomes to support nonstationary frequency analysis and modeling. We also show that the correlation structures characterizing hydrological time series might easily be underestimated, further compromising the attempt to draw conclusions about trends spanning the period of records. Moreover, even though adjusting procedures accounting for correlation have been developed, some of them are insufficient or are applied only to some tests, while some others are theoretically flawed but still widely applied. In particular, using 250 unimpacted stream flow time series across the conterminous United States (CONUS), we show that the test results can dramatically change if the sequences of annual values are reproduced starting from daily stream flow records, whose larger sizes enable a more reliable assessment of the correlation structures.
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2016-01-01
Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.
The potential of historical hydrology in Switzerland
NASA Astrophysics Data System (ADS)
Wetter, Oliver
2017-11-01
Historical hydrology is based on data derived from historical written, pictorial and epigraphic documentary sources. It lies at the interface between hydrology and environmental history, using methodologies from both disciplines basically with the goal of significantly extending the instrumental measurement period with experience from the pre-instrumental past. Recently this field of research has gained increased recognition as a tool to improve current flood risk estimations when EU guidelines regulated by law the quantitative consideration of previous floods.1 Awareness to consider pre-instrumental experience in flood risk analysis seems to have risen at the level of local and federal authorities in Switzerland as well. The 2011 Fukushima catastrophe probably fostered this rethinking process, when pressure from the media, society and politics as well as the regulations of the International Atomic Energy Agency (IAEA) forced the authorities to reassess the current flood risk analysis for Swiss nuclear power plants. In 2015 a historical hydrological study was commissioned by the Federal Office for the Environment (FOEN) to assess the magnitudes of pre-instrumental Aare River flood discharges, including the most important tributaries (the Saane, Emme, Reuss and Limmat rivers). The results of the historical hydrological study serve now as the basis for the main study, EXAR (commissioned under the lead of FOEN in cooperation with the Swiss Nuclear Safety Inspectorate (ENSI), the Swiss Federal Office of Energy (SFOE), the Federal Office for Civil Protection (FOCP), and the Federal Office of Meteorology and Climatology (MeteoSwiss)), which combines historical and climatological analysis with statistical approaches and mathematical models with the goal of better understanding the hazards and possible interactions that can be caused by extreme flood events. In a second phase the catchment of the River Rhine will be targeted as well. More recently several local historical hydrological studies of smaller catchments have been requested by the responsible local authorities. The course for further publicly requested historical hydrological analysis seems thus to have been set. This paper therefore intends to discuss the potential of historical hydrological analysis, with a focus on the specific situation in Switzerland. 1Guideline 2007/60/EG of the European Parliament and Council from 23 October 2007 on assessment and management of flood risks, Official Journal of the European Union, L 288, 27-34, Brussels, 2007.
Hydrological Modeling in Alaska with WRF-Hydro
NASA Astrophysics Data System (ADS)
Elmer, N. J.; Zavodsky, B.; Molthan, A.
2017-12-01
The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.
Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces
NASA Astrophysics Data System (ADS)
Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P.
2014-08-01
Coupled hydrological-hydrogeological models, emphasising the importance of the stream-aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies aiming at investigating environmental issues. Based on an extensive literature review, stream-aquifer interfaces are described at five different scales: local [10 cm-~10 m], intermediate [~10 m-~1 km], watershed [10 km2-~1000 km2], regional [10 000 km2-~1 M km2] and continental scales [>10 M km2]. This led us to develop the concept of nested stream-aquifer interfaces, which extends the well-known vision of nested groundwater pathways towards the surface, where the mixing of low frequency processes and high frequency processes coupled with the complexity of geomorphological features and heterogeneities creates hydrological spiralling. This conceptual framework allows the identification of a hierarchical order of the multi-scale control factors of stream-aquifer hydrological exchanges, from the larger scale to the finer scale. The hyporheic corridor, which couples the river to its 3-D hyporheic zone, is then identified as the key component for scaling hydrological processes occurring at the interface. The identification of the hyporheic corridor as the support of the hydrological processes scaling is an important step for the development of regional studies, which is one of the main concerns for water practitioners and resources managers. In a second part, the modelling of the stream-aquifer interface at various scales is investigated with the help of the conductance model. Although the usage of the temperature as a tracer of the flow is a robust method for the assessment of stream-aquifer exchanges at the local scale, there is a crucial need to develop innovative methodologies for assessing stream-aquifer exchanges at the regional scale. After formulating the conductance model at the regional and intermediate scales, we address this challenging issue with the development of an iterative modelling methodology, which ensures the consistency of stream-aquifer exchanges between the intermediate and regional scales. Finally, practical recommendations are provided for the study of the interface using the innovative methodology MIM (Measurements-Interpolation-Modelling), which is graphically developed, scaling in space the three pools of methods needed to fully understand stream-aquifer interfaces at various scales. In the MIM space, stream-aquifer interfaces that can be studied by a given approach are localised. The efficiency of the method is demonstrated with two examples. The first one proposes an upscaling framework, structured around river reaches of ~10-100 m, from the local to the watershed scale. The second example highlights the usefulness of space borne data to improve the assessment of stream-aquifer exchanges at the regional and continental scales. We conclude that further developments in modelling and field measurements have to be undertaken at the regional scale to enable a proper modelling of stream-aquifer exchanges from the local to the continental scale.
Yu, Shil; Sun, Ping-an; Du, Wen-yue; He, Shi-yi; Li, Rui
2015-01-01
In this paper, observation and sampling were taken three times a month in a hydrological year for three typical sections of the middle and upper reaches of the Xijiang River basin, based on the data of hydrochemistry and flow, the article mainly discusses the evolution process of hydrochemistry in river under natural process and impact of human activity. Hydrochemical characteristics of 116. samples were analyzed in the study area. The hydrochemistry type in the middle and upper reaches of the Xijiang River basin belonged to HCO3- -Ca2+ type, and the chemical weathering type mainly came from carbonate rock weathering. Ca2+ and HCO3- were the main cations and anions, which reflected that hydrochemical characteristics of river in karst area mainly affected by the dissolution of carbonate rock. Na, Mg2, Ca2+ and Cl- mainly affected by natural conditions, the impact of human activity was little. K+, NO3-, SO4(2-) and HCO3- were affected by human activity in different degrees, and it showed different influence ways. This study had an important significance for the change of river hydrochemistry, water quality characteristics, and the effect on substance transported fluxes in the downstream of Pearl River and water quality protection in South China Monsoon Area.
Timetable of an operational flood forecasting system
NASA Astrophysics Data System (ADS)
Liechti, Katharina; Jaun, Simon; Zappa, Massimiliano
2010-05-01
At present a new underground part of Zurich main station is under construction. For this purpose the runoff capacity of river Sihl, which is passing beneath the main station, is reduced by 40%. If a flood is to occur the construction site is evacuated and gates can be opened for full runoff capacity to prevent bigger damages. However, flooding the construction site, even if it is controlled, is coupled with costs and retardation. The evacuation of the construction site at Zurich main station takes about 2 to 4 hours and opening the gates takes another 1 to 2 hours each. In the upper part of the 336 km2 Sihl catchment the Sihl lake, a reservoir lake, is situated. It belongs and is used by the Swiss Railway Company for hydropower production. This lake can act as a retention basin for about 46% of the Sihl catchment. Lowering the lake level to gain retention capacity, and therewith safety, is coupled with direct loss for the Railway Company. To calculate the needed retention volume and the water to be released facing unfavourable weather conditions, forecasts with a minimum lead time of 2 to 3 days are needed. Since the catchment is rather small, this can only be realised by the use of meteorological forecast data. Thus the management of the construction site depends on accurate forecasts to base their decisions on. Therefore an operational hydrological ensemble prediction system (HEPS) was introduced in September 2008 by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). It delivers daily discharge forecasts with a time horizon of 5 days. The meteorological forecasts are provided by MeteoSwiss and stem from the operational limited-area COSMO-LEPS which downscales the ECMWF ensemble prediction system to a spatial resolution of 7 km. Additional meteorological data for model calibration and initialisation (air temperature, precipitation, water vapour pressure, global radiation, wind speed and sunshine duration) and radar data are also provided by MeteoSwiss. Additional meteorological and hydrological observations are provided by a hydropower company, the Canton of Zurich and the Federal Office for the Environment (FOEN). The hydrological forecasting is calculated by the semi-distributed hydrological model PREVAH (Precipitation-Runoff-EVapotranspiration-HRU-related Model) and is further processed by the hydraulic model FLORIS. Finally the forecasts and alerts along with additional meteorological and hydrological observations and forecasts from collaborating institution are sent to a webserver accessible for decision makers. We will document the setup of our operational flood forecasting system, evaluate its performance and show how the collaboration and communication between science and practice, including all the different interests, works for this particular example.
NASA Astrophysics Data System (ADS)
Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R. N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.
2017-07-01
The diversity in hydrologic models has historically led to great controversy on the correct
approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.
NASA Astrophysics Data System (ADS)
Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.
2017-12-01
The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.
Hydrological connectivity in the karst critical zone: an integrated approach
NASA Astrophysics Data System (ADS)
Chen, X.; Zhang, Z.; Soulsby, C.; Cheng, Q.; Binley, A. M.; Tao, M.
2017-12-01
Spatial heterogeneity in the subsurface is high, evidenced by specific landform features (sinkholes, caves etc.) and resulting in high variability of hydrological processes in space and time. This includes complex exchange of various flow sources (e.g. hillslope springs and depression aquifers) and fast conduit flow and slow fracture flow. In this paper we integrate various "state-of-the-art" methods to understand the structure and function of this understudied critical zone environment. Geophysical, hydrometric and hydrogeochemical tools are used to characterize the hydrological connectivity of the cockpit karst critical zone in a small catchment of Chenqi, Guizhou province, China. Geophysical surveys, using electrical resistivity tomography (ERT), identified the complex conduit networks that link flows between hillslopes and depressions. Statistical time series analysis of water tables and discharge responses at hillslope springs and in depression wells and underground channels showed different threshold responses of hillslope and depression flows. This reflected the differing relative contribution of fast and slow flow paths during rainfall events of varying magnitude in the hillslope epikarst and depression aquifer in dry and wet periods. This showed that the hillslope epikarst receives a high proportion of rainfall recharge and is thus a main water resource in the catchment during the drought period. In contrast, the depression aquifer receives fast, concentrated hillslope flows during large rainfall events during the wet period, resulting in the filling of depression conduits and frequent flooding. Hydrological tracer studies using water temperatures and stable water isotopes (δD and δ18O) corroborated this and provided quantitative information of the mixing proportions of various flow sources and insights into water travel times. This revealed how higher contributions of event "new" water (from hillslope springs and depression conduits displaces "old" pre-event water primarily from low permeability fissures and fractures), particularly during heavy rainfall. As the various water sources have contrasting water quality characteristics, these mixing and exchange processes have important implications for understanding and managing water quality in karst waters.
NASA Astrophysics Data System (ADS)
Dialynas, Y. G.; Bras, R. L.; Richter, D. D., Jr.
2017-12-01
Soil erosion and burial of organic material may constitute a substantial sink of atmospheric CO2. Attempts to quantify impacts of soil erosion on the soil-atmosphere C exchange are limited by difficulties in accounting for the fate of eroded soil organic carbon (SOC), a key factor in estimating of the net effect of erosion on the C cycle. Processes that transport SOC are still inadequately represented in terrestrial carbon (C) cycle models. This study investigates hydrologic controls on SOC redistribution across the landscape focusing on dynamic feedbacks between watershed hydrology, soil erosional processes, and SOC burial. We use tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially-explicit model of SOC dynamics coupled with a physically-based hydro-geomorphic model. tRIBS-ECO systematically accounts for the fate of eroded SOC across the watershed: Rainsplash erosion and sheet erosion redistribute SOC from upland sites to depositional environments, altering depth-dependent soil biogeochemical properties in diverse soil profiles. Eroded organic material is transferred with sediment and can be partially oxidized upon transport, or preserved from decomposition by burial. The model was applied in the Calhoun Critical Zone Observatory (CZO), a site that is recovering from some of the most serious agricultural erosion in North America. Soil biogeochemical characteristics at multiple soil horizons were used to initialize the model and test performance. Remotely sensed soil moisture data (NASA SMAP) were used for model calibration. Results show significant rates of hydrologically-induced burial of SOC at the Calhoun CZO. We find that organic material at upland eroding soil profiles is largely mobilized by rainsplash erosion. Sheet erosion mainly drives C transport in lower elevation clayey soils. While SOC erosion and deposition rates declined with recent reforestation at the study site, the erosional potential of the degraded landscape remains significant.
NASA Astrophysics Data System (ADS)
Queloz, Pierre; Carraro, Luca; Bertuzzo, Enrico; Botter, Gianluca; Rao, P. Suresh C.; Rinaldo, Andrea
2014-05-01
Experimental data have been collected over a year-long period in a large weighing lysimeter. Natural climatic forcing occurs, except for rainfall which is artificially generated as a given Poisson process at a daily timescale. A constant water table is maintained and excess infiltrated water is discharged through the outlet at the bottom of the lysimeter. Soil water storage and evapotranspiration fluxes (accentuated by a willow tree planted in the lysimeter) were monitored throughout the experiment, so that accurate time series of all in- and out-fluxes are available. Five rainfall inputs were marked with individually traceable passive solutes (fluorobenzoic acids) at various initial soil moisture conditions during the first month of the experiment. Tracer concentrations were measured in the soil water and in the discharge at high temporal resolution. We aim here at directly measuring solute travel times, a proxy of hydrological transport with the main advantage to blend the bulk effects of water velocity distributions. The drivers of water displacement in this hydrological setting - and in any other realistic case - have intrinsically a non-stationary nature (e.g. random rainfall occurrence, seasonal evapotranspiration cycles and moisture-related soil connectivity), but the integration of these processes over a larger time scale (i.e. typically the time scale of the mean travel time) often lead to the stationary assumption thus considerably simplifying the data interpretation. Results clearly show that even in such a hydrological system with reduced complexity, experimental travel time distributions are non-stationary and are strongly influenced by the states encountered by the system during the transport phase. The measurements help at identifying the relevant key features influencing the experimental bulk transport. Modeling efforts have demonstrated the inability of a plug-flow reactor (old-water first reservoir) to reproduce the solute outfluxes dynamics. On the other hand, the well-mixed reactor performs well at long term, but hardly applies for the period directly following the tracer injection.
Climate is changing, everything is flowing, stationarity is immortal
NASA Astrophysics Data System (ADS)
Koutsoyiannis, Demetris; Montanari, Alberto
2015-04-01
There is no doubt that climate is changing -- and ever has been. The environment is also changing and in the last decades, as a result of demographic change and technological advancement, environmental change has been accelerating. These affect also the hydrological processes, whose changes in connection with rapidly changing human systems have been the focus of the new scientific decade 2013-2022 of the International Association of Hydrological Sciences, entitled "Panta Rhei - Everything Flows". In view of the changing systems, it has recently suggested that, when dealing with water management and hydrological extremes, stationarity is no longer a proper assumption. Hence, it was proposed that hydrological processes should be treated as nonstationary. Two main reasons contributed to this perception. First, the climate models project a future hydroclimate that will be different from the current one. Second, as streamflow record become longer, they indicate the presence of upward or downward trends. However, till now hydroclimatic projections made in the recent past have not been verified. At the same time, evidence from quite longer records, instrumental or proxy, suggest that local trends are omnipresent but not monotonic; rather at some time upward trends turn to downward ones and vice versa. These observations suggest that improvident dismiss of stationarity and adoption of nonstationary descriptions based either on climate model outputs or observed trends may entail risks. The risks stem from the facts that the future can be different from what was deterministically projected, that deterministic projections are associated with an illusion of decreased uncertainty, as well as that nonstationary models fitted on observed data may have lower predictive capacity than simpler stationary ones. In most of the cases, what is actually needed is to revisit the concept of stationarity and try to apply it carefully, making it consistent with the presence of local trends, possibly incorporating information from deterministic predictions, whenever these prove to be reliable, and estimating the total predictive uncertainty.
López-Moreno, J I; Valero-Garcés, B; Mark, B; Condom, T; Revuelto, J; Azorín-Molina, C; Bazo, J; Frugone, M; Vicente-Serrano, S M; Alejo-Cochachin, J
2017-02-01
In this study, we investigate changes in the glaciated surface and the formation of lakes in the headwater of the Querococha watershed in Cordillera Blanca (Peru) using 24 Landsat images from 1975 to 2014. Information of glacier retreat was integrated with available climate data, the first survey of recent depositional dynamics in proglacial Yanamarey Lake (4600m a.s.l.), and a relatively short hydrological record (2002-2014) at the outlet of Yanamarey Lake. A statistically significant temperature warming (0.21°C decade -1 for mean annual temperature) has been detected in the region, and it caused a reduction of the glacierized area since 1975 from 3.5 to 1.4km -2 . New small lakes formed in the deglaciated areas, increasing the flooded area from1.8ha in 1976 to 2.8ha in 2014. A positive correlation between annual rates of glacier recession and runoff was found. Sediment cores revealed a high sedimentation rate (>1cmyr -1 ) and two contrasted facies, suggesting a shift toward a reduction of meltwater inputs and higher hydrological variability likely due to an increasing role of precipitation on runoff during the last decades. Despite the age control uncertainties, the main transition likely occurred around 1998-2000, correlating with the end of the phase with maximum warming rates and glacier retreat during the 1980s and 1990s, and the slowing down of expansion of surface lake-covered surface. With this hydrological - paleolimnological approach we have documented the association between recent climate variability and glacier recession and the rapid transfer of hydroclimate signal to depositional and geochemical processes in high elevation Andean environments. This, study also alerts about water quality risks as proglacial lakes act as secondary reservoirs that trap trace and minor elements in high altitude basins. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Valent, P.; Rončák, P.; Maliariková, M.; Behan, Š.
2016-12-01
The way land is used has a significant impact on many hydrological processes that determine the generation of flood runoff or soil erosion. Advancements in remote sensing which took place in the second half of the 20th century have led to the rise of a new research area focused on analyses of land use changes and their impact on hydrological processes. This study deals with an analysis of the changes in land use over a period of almost three centuries in the Myjava River catchment, which has an outlet at Šaštín-Stráže. In order to obtain information about the way the land was used in the past, three historical mappings representing various periods were used: the first (1st) military mapping (1764-1787), second (2nd) military mapping (1807-1869), and a military topographic mapping (1953-1957). The historical mappings have been manually vectorised in an ArcGIS environment to identify various land use categories. The historical evolution of land use was further compared with a concurrent land use mapping, which was undertaken in 2010 and exploited remote sensing techniques. The study also quantifies the impact of these changes on the long-term catchment runoff as well as their impact on flows induced by extreme precipitation events. This analysis was performed using the WetSpa distributed hydrological model, which enables the simulation of catchment runoff in a daily time step. The analysis showed that the selected catchment has undergone significant changes in land use, mainly characterized by massive deforestation at the end of the 18th century and land consolidation in the middle of the 20th century induced by communist collectivisation. The hydrological simulations demonstrated that the highest and lowest mean annual runoffs were simulated in the first (1st military mapping) and the last (concurrent land use monitoring) time intervals respectively with the smallest and largest percentages of forested areas.
NASA Astrophysics Data System (ADS)
Yang, Y.
2014-12-01
Extensive permafrost degradation starting from 1970s is observed at the Qinghai-Tibet Plateau , China. Degradation is attributed to an increase in mean annual ground temperature 0.1◦-0.5◦ C with mainly winter warming. The construction of Qinghai-Tibet Railway also influenced a state of permafrost in the area Permafrost degradation caused negative environmental consequences in the area. The areas covered by sand are expanding steadily making large concern of accelerating desertification. The general pathway of future joint dynamics of permafrost, vegetation and hydrological status at the Qinghai-Tibet Plateau is still poorly understood and foreseeable. Hydrology in the area is determined by heat-moisture dynamics of active layer. This dynamics is highly non-linear and depends as on external climatic variables temperature and precipitation, so on soil and rock properties (amount of sand against aeolian deposits in the Plateau) as well as vegetation cover, which determine thaw and freeze processes in the active layer and evaporation and run-off. SEVER DGVM was modified to include heat-moisture dynamics of active layer in the Qinghai-Tibet Plateau. SEVER DGVM imitates processes in 10 plant functional types at coarse resolution of 0.5 degrees. This model imitates behavior of average individual of each plant type in each grid cell through simulation years. Each of those grid cells processed independently. First, this model starts from "bare soil", placing a bit of each plant type and giving them some time to grow and achieve equilibrium. Then, including active layer thickness and soil moisture dynamics into this layer, it allows assessment of potential environmental dynamics in this area. Simulations demonstrate further degradation of pastureland and accelerating desertification processes in this vitally important water feed area for many Asian rivers. Negative environmental problems related to operation of Qinghai-Tibet are also assessed.
Three-dimensional modelling of slope stability using the Local Factor of Safety concept
NASA Astrophysics Data System (ADS)
Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger
2017-04-01
Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically-based three-dimensional hydro-mechanical model is able to provide more reliable slope instability predictions in more complex situations.
Restoring “hot spots” of denitrification along hydrologic flow-paths
Objectives: What are the relationships among N, C, and hydrology in degraded streams? What level of biogeochemical function remains with respect to N transformation processes (i.e. denitrification)? What could the results tell us about effectively restoring streams to process ...
Modeling the Hydrologic Processes of a Permeable Pavement System
A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...
Chen, J.; Wu, Y.
2012-01-01
This paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.
NASA Astrophysics Data System (ADS)
Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.
2013-12-01
The hydrologic community has long recognized the need for broad reform in hydrologic education. A paradigm shift is critically sought in undergraduate hydrology and water resource education by adopting context-rich, student-centered, and active learning strategies. Hydrologists currently deal with intricate issues rooted in complex natural ecosystems containing a multitude of interconnected processes. Advances in the multi-disciplinary field include observational settings such as Critical Zone and Water, Sustainability and Climate Observatories, Hydrologic Information Systems, instrumentation and modeling methods. These research advances theory and practices call for similar efforts and improvements in hydrologic education. The typical, text-book based approach in hydrologic education has focused on specific applications and/or unit processes associated with the hydrologic cycle with idealizations, rather than the contextual relations in the physical processes and the spatial and temporal dynamics connecting climate and ecosystems. An appreciation of the natural variability of these processes will lead to graduates with the ability to develop independent learning skills and understanding. This appreciation cannot be gained in curricula where field components such as observational and experimental data are deficient. These types of data are also critical when using simulation models to create environments that support this type of learning. Additional sources of observations in conjunction with models and field data are key to students understanding of the challenges associated with using models to represent such complex systems. Recent advances in scientific visualization and web-based technologies provide new opportunities for the development of active learning techniques utilizing ongoing research. The overall goal of the current study is to develop visual, case-based, data and simulation driven learning experiences to instructors and students through a web server-based system. Open source web technologies and community-based tools are used to facilitate wide dissemination and adaptation by diverse, independent institutions. The new hydrologic learning modules are based on recent developments in hydrologic modeling, data, and resources. The modules are embedded in three regional-scale ecosystems, Coastal Louisiana, Florida Everglades, and Utah Great Salt Lake Basin. These sites provide a wealth of hydrologic concepts and scenarios that can be used in most water resource and hydrology curricula. The study develops several learning modules based on the three hydro-systems covering subjects such as: water-budget analysis, effects of human and natural changes, climate-hydrology teleconnections, and water-resource management scenarios. The new developments include an instructional interface to give critical guidance and support to the learner and an instructor's guide containing adaptation and implementation procedures to assist instructors in adopting and integrating the material into courses and provide a consistent experience. The design of the new hydrologic education developments will be transferable to independent institutions and adaptable both instructionally and technically through a server system capable of supporting additional developments by the educational community.
NASA Technical Reports Server (NTRS)
Entekhabi, D.; Eagleson, P. S.
1989-01-01
Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.
King, Sammy L.; Keim, Richard F.; Hupp, Cliff R.; Edwards, Brandon L.; Kroschel, Whitney A.; Johnson, Erin L.; Cochran, J. Wesley
2016-09-12
Determine stand establishment patterns of bottomland hardwoods within selected plant communities along three sections of the floodplain. This study provides baseline information on the current geomorphic and hydrologic conditions of the river and can assist in the interpretation of forest responses to past hydrologic and geomorphic processes. Understanding the implications for floodplain forests of geomorphic adjustment in the Lower Mississippi Alluvial Valley is key to managing the region’s valuable resources for a sustainable future.
NASA Astrophysics Data System (ADS)
al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.
2017-12-01
Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.
River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins
Harvey, Judson; Gooseff, Michael
2015-01-01
Previously regarded as the passive drains of watersheds, over the past 50 years, rivers have progressively been recognized as being actively connected with off-channel environments. These connections prolong physical storage and enhance reactive processing to alter water chemistry and downstream transport of materials and energy. Here we propose river corridor science as a concept that integrates downstream transport with lateral and vertical exchange across interfaces. Thus, the river corridor, rather than the wetted river channel itself, is an increasingly common unit of study. Main channel exchange with recirculating marginal waters, hyporheic exchange, bank storage, and overbank flow onto floodplains are all included under a broad continuum of interactions known as “hydrologic exchange flows.” Hydrologists, geomorphologists, geochemists, and aquatic and terrestrial ecologists are cooperating in studies that reveal the dynamic interactions among hydrologic exchange flows and consequences for water quality improvement, modulation of river metabolism, habitat provision for vegetation, fish, and wildlife, and other valued ecosystem services. The need for better integration of science and management is keenly felt, from testing effectiveness of stream restoration and riparian buffers all the way to reevaluating the definition of the waters of the United States to clarify the regulatory authority under the Clean Water Act. A major challenge for scientists is linking the small-scale physical drivers with their larger-scale fluvial and geomorphic context and ecological consequences. Although the fine scales of field and laboratory studies are best suited to identifying the fundamental physical and biological processes, that understanding must be successfully linked to cumulative effects at watershed to regional and continental scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.
2014-09-01
The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically,more » differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.« less
River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins
NASA Astrophysics Data System (ADS)
Harvey, Jud; Gooseff, Michael
2015-09-01
Previously regarded as the passive drains of watersheds, over the past 50 years, rivers have progressively been recognized as being actively connected with off-channel environments. These connections prolong physical storage and enhance reactive processing to alter water chemistry and downstream transport of materials and energy. Here we propose river corridor science as a concept that integrates downstream transport with lateral and vertical exchange across interfaces. Thus, the river corridor, rather than the wetted river channel itself, is an increasingly common unit of study. Main channel exchange with recirculating marginal waters, hyporheic exchange, bank storage, and overbank flow onto floodplains are all included under a broad continuum of interactions known as "hydrologic exchange flows." Hydrologists, geomorphologists, geochemists, and aquatic and terrestrial ecologists are cooperating in studies that reveal the dynamic interactions among hydrologic exchange flows and consequences for water quality improvement, modulation of river metabolism, habitat provision for vegetation, fish, and wildlife, and other valued ecosystem services. The need for better integration of science and management is keenly felt, from testing effectiveness of stream restoration and riparian buffers all the way to reevaluating the definition of the waters of the United States to clarify the regulatory authority under the Clean Water Act. A major challenge for scientists is linking the small-scale physical drivers with their larger-scale fluvial and geomorphic context and ecological consequences. Although the fine scales of field and laboratory studies are best suited to identifying the fundamental physical and biological processes, that understanding must be successfully linked to cumulative effects at watershed to regional and continental scales.
NASA Astrophysics Data System (ADS)
Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.
2015-01-01
While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.
NASA Astrophysics Data System (ADS)
Infante Corona, J. A.; Lakhankar, T.; Khanbilvardi, R.; Pradhanang, S. M.
2013-12-01
Stream flow estimation and flood prediction influenced by snow melting processes have been studied for the past couple of decades because of their destruction potential, money losses and demises. It has been observed that snow, that was very stationary during its seasons, now is variable in shorter time-scales (daily and hourly) and rapid snowmelt can contribute or been the cause of floods. Therefore, good estimates of snowpack properties on ground are necessary in order to have an accurate prediction of these destructive events. The snow thermal model (SNTHERM) is a 1-dimensional model that analyzes the snowpack properties given the climatological conditions of a particular area. Gridded data from both, in-situ meteorological observations and remote sensing data will be produced using interpolation methods; thus, snow water equivalent (SWE) and snowmelt estimations can be obtained. The soil and water assessment tool (SWAT) is a hydrological model capable of predicting runoff quantity and quality of a watershed given its main physical and hydrological properties. The results from SNTHERM will be used as an input for SWAT in order to have simulated runoff under snowmelt conditions. This project attempts to improve the river discharge estimation considering both, excess rainfall runoff and the snow melting process. Obtaining a better estimation of the snowpack properties and evolution is expected. A coupled use of SNTHERM and SWAT based on meteorological in situ and remote sensed data will improve the temporal and spatial resolution of the snowpack characterization and river discharge estimations, and thus flood prediction.
Evaluation of the significance of abrupt changes in precipitation and runoff process in China
NASA Astrophysics Data System (ADS)
Xie, Ping; Wu, Ziyi; Sang, Yan-Fang; Gu, Haiting; Zhao, Yuxi; Singh, Vijay P.
2018-05-01
Abrupt changes are an important manifestation of hydrological variability. How to accurately detect the abrupt changes in hydrological time series and evaluate their significance is an important issue, but methods for dealing with them effectively are lacking. In this study, we propose an approach to evaluate the significance of abrupt changes in time series at five levels: no, weak, moderate, strong, and dramatic. The approach was based on an index of correlation coefficient calculated for the original time series and its abrupt change component. A bigger value of correlation coefficient reflects a higher significance level of abrupt change. Results of Monte-Carlo experiments verified the reliability of the proposed approach, and also indicated the great influence of statistical characteristics of time series on the significance level of abrupt change. The approach was derived from the relationship between correlation coefficient index and abrupt change, and can estimate and grade the significance levels of abrupt changes in hydrological time series. Application of the proposed approach to ten major watersheds in China showed that abrupt changes mainly occurred in five watersheds in northern China, which have arid or semi-arid climate and severe shortages of water resources. Runoff processes in northern China were more sensitive to precipitation change than those in southern China. Although annual precipitation and surface water resources amount (SWRA) exhibited a harmonious relationship in most watersheds, abrupt changes in the latter were more significant. Compared with abrupt changes in annual precipitation, human activities contributed much more to the abrupt changes in the corresponding SWRA, except for the Northwest Inland River watershed.
Uncertainty of water budget closure across the Long-Term Agroecosystems Research network
USDA-ARS?s Scientific Manuscript database
Quantification of the various components of the hydrologic budget at a site (precipitation, evaporation, runoff,…) gives important indications about major and minor hydrologic processes controlling field and watershed scale response. The objectives of this study were to: 1) develop hydrologic budget...
NASA Astrophysics Data System (ADS)
Bel Hadj Kacem, Mohamed Salah
All hydrological processes are affected by the spatial variability of the physical parameters of the watershed, and also by human intervention on the landscape. The water outflow from a watershed strictly depends on the spatial and temporal variabilities of the physical parameters of the watershed. It is now apparent that the integration of mathematical models into GIS's can benefit both GIS and three-dimension environmental models: a true modeling capability can help the modeling community bridge the gap between planners, scientists, decision-makers and end-users. The main goal of this research is to design a practical tool to simulate run-off water surface using Geographic design a practical tool to simulate run-off water surface using Geographic Information Systems and the simulation of the hydrological behavior by the Finite Element Method.
Improving evaluation of climate change impacts on the water cycle by remote sensing ET-retrieval
NASA Astrophysics Data System (ADS)
García Galiano, S. G.; Olmos Giménez, P.; Ángel Martínez Pérez, J.; Diego Giraldo Osorio, J.
2015-05-01
Population growth and intense consumptive water uses are generating pressures on water resources in the southeast of Spain. Improving the knowledge of the climate change impacts on water cycle processes at the basin scale is a step to building adaptive capacity. In this work, regional climate model (RCM) ensembles are considered as an input to the hydrological model, for improving the reliability of hydroclimatic projections. To build the RCMs ensembles, the work focuses on probability density function (PDF)-based evaluation of the ability of RCMs to simulate of rainfall and temperature at the basin scale. To improve the spatial calibration of the continuous hydrological model used, an algorithm for remote sensing actual evapotranspiration (AET) retrieval was applied. From the results, a clear decrease in runoff is expected for 2050 in the headwater basin studied. The plausible future scenario of water shortage will produce negative impacts on the regional economy, where the main activity is irrigated agriculture.
Kopprio, Germán A; Biancalana, Florencia; Fricke, Anna; Garzón Cardona, John E; Martínez, Ana; Lara, Rubén J
2015-02-28
The aims of this work are to provide an overview of the current stresses of estuaries in Argentina and to propose adaptation strategies from an ecohydrological approach. Several Argentinian estuaries are impacted by pollutants, derived mainly from sewage discharge and agricultural or industrial activities. Anthropogenic impacts are expected to rise with increasing human population. Climate-driven warmer temperature and hydrological changes will alter stratification, residence time, oxygen content, salinity, pollutant distribution, organism physiology and ecology, and nutrient dynamics. Good water quality is essential in enhancing estuarine ecological resilience to disturbances brought on by global change. The preservation, restoration, and creation of wetlands will help to protect the coast from erosion, increase sediment accretion rates, and improve water quality by removing excess nutrients and pollutants. The capacity of hydrologic basin ecosystems to absorb human and natural impacts can be improved through holistic management, which should consider social vulnerability in complex human-natural systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Around and about an application of the GAMLSS package to non-stationary flood frequency analysis
NASA Astrophysics Data System (ADS)
Debele, S. E.; Bogdanowicz, E.; Strupczewski, W. G.
2017-08-01
The non-stationarity of hydrologic processes due to climate change or human activities is challenging for the researchers and practitioners. However, the practical requirements for taking into account non-stationarity as a support in decision-making procedures exceed the up-to-date development of the theory and the of software. Currently, the most popular and freely available software package that allows for non-stationary statistical analysis is the GAMLSS (generalized additive models for location, scale and shape) package. GAMLSS has been used in a variety of fields. There are also several papers recommending GAMLSS in hydrological problems; however, there are still important issues which have not previously been discussed concerning mainly GAMLSS applicability not only for research and academic purposes, but also in a design practice. In this paper, we present a summary of our experiences in the implementation of GAMLSS to non-stationary flood frequency analysis, highlighting its advantages and pointing out weaknesses with regard to methodological and practical topics.
A system of automated processing of deep water hydrological information
NASA Technical Reports Server (NTRS)
Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.
1974-01-01
An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.
Shuhua Yi; David McGuire; Jennifer Harden; Eric Kasischke; Kristen Manies; Larr Hinzman; Anna Liljedahl; Jim Randerson; Heping Liu; Vladimire Romanovsky; Sergei Marchenko; Yongwon Kim
2009-01-01
Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were...
Snow hydrology in Mediterranean mountain regions: A review
NASA Astrophysics Data System (ADS)
Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; López-Moreno, Juan Ignacio; Drapeau, Laurent; Page, Michel Le; Escadafal, Richard
2017-08-01
Water resources in Mediterranean regions are under increasing pressure due to climate change, economic development, and population growth. Many Mediterranean rivers have their headwaters in mountainous regions where hydrological processes are driven by snowpack dynamics and the specific variability of the Mediterranean climate. A good knowledge of the snow processes in the Mediterranean mountains is therefore a key element of water management strategies in such regions. The objective of this paper is to review the literature on snow hydrology in Mediterranean mountains to identify the existing knowledge, key research questions, and promising technologies. We collected 620 peer-reviewed papers, published between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western United States, the central Chilean Andes, and the Mediterranean basin. A large amount of studies in the western United States form a strong scientific basis for other Mediterranean mountain regions. We found that: (1) the persistence of snow cover is highly variable in space and time but mainly controlled by elevation and precipitation; (2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end of the snow season and during heat waves and rain-on-snow events; (3) the snow densification rates are higher in these regions when compared to other climate regions; and (4) the snow sublimation is an important component of snow ablation, especially in high-elevation regions. Among the pressing issues is the lack of continuous ground observation in high-elevation regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic information on snowpack variability. A better spatial characterization of snow cover can be achieved by combining ground observations with remotely sensed snow data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable information that is suitable for hydrological applications. Further advances in our understanding of the snow processes in Mediterranean snow-dominated basins will be achieved by finer and more accurate representation of the climate forcing. While the theory on the snowpack energy and mass balance is now well established, the connections between the snow cover and the water resources involve complex interactions with the sub-surface processes, which demand future investigation.
Simultaneous Semi-Distributed Model Calibration Guided by ...
Modelling approaches to transfer hydrologically-relevant information from locations with streamflow measurements to locations without such measurements continues to be an active field of research for hydrologists. The Pacific Northwest Hydrologic Landscapes (PNW HL) provide a solid conceptual classification framework based on our understanding of dominant processes. A Hydrologic Landscape code (5 letter descriptor based on physical and climatic properties) describes each assessment unit area, and these units average area 60km2. The core function of these HL codes is to relate and transfer hydrologically meaningful information between watersheds without the need for streamflow time series. We present a novel approach based on the HL framework to answer the question “How can we calibrate models across separate watersheds simultaneously, guided by our understanding of dominant processes?“. We should be able to apply the same parameterizations to assessment units of common HL codes if 1) the Hydrologic Landscapes contain hydrologic information transferable between watersheds at a sub-watershed-scale and 2) we use a conceptual hydrologic model and parameters that reflect the hydrologic behavior of a watershed. In this study, This work specifically tests the ability or inability to use HL-codes to inform and share model parameters across watersheds in the Pacific Northwest. EPA’s Western Ecology Division has published and is refining a framework for defining la
EFFECTS OF GEOMORPHIC PROCESSES AND HYDROLOGIC REGIMES ON RIPARIAN VEGETATION
In this chapter, the relationships among riparian vegetation and geomorphic and hydrologic processes in central Great Basin watersheds are evaluated over a range of scales. These relationships are examined through a series of case studies that have been conducted by the Great Ba...
Wu, Zi Yi; Xie, Ping; Sang, Yan Fang; Gu, Hai Ting
2018-04-01
The phenomenon of jump is one of the importantly external forms of hydrological variabi-lity under environmental changes, representing the adaption of hydrological nonlinear systems to the influence of external disturbances. Presently, the related studies mainly focus on the methods for identifying the jump positions and jump times in hydrological time series. In contrast, few studies have focused on the quantitative description and classification of jump degree in hydrological time series, which make it difficult to understand the environmental changes and evaluate its potential impacts. Here, we proposed a theatrically reliable and easy-to-apply method for the classification of jump degree in hydrological time series, using the correlation coefficient as a basic index. The statistical tests verified the accuracy, reasonability, and applicability of this method. The relationship between the correlation coefficient and the jump degree of series were described using mathematical equation by derivation. After that, several thresholds of correlation coefficients under different statistical significance levels were chosen, based on which the jump degree could be classified into five levels: no, weak, moderate, strong and very strong. Finally, our method was applied to five diffe-rent observed hydrological time series, with diverse geographic and hydrological conditions in China. The results of the classification of jump degrees in those series were closely accorded with their physically hydrological mechanisms, indicating the practicability of our method.
NASA Technical Reports Server (NTRS)
Wang, Xue-Wen; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Fernandes, Richard; Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-8 team made measurements of surface hydrological processes at the Southern Study Area (SSA) and Northern Study Area (NSA) Old Black Spruce (OBS) Tower Flux sites, supporting its research into point hydrological processes and the spatial variation of these processes. These data were collected during the 1994 and 1996 field campaigns. Data collected may be useful in characterizing canopy interception, drip, throughfall, moss interception, drainage, evaporation, and capacity during the growing season at daily temporal resolution. This particular data set contains the measurements of throughfall, which is the amount of precipitation that fell through the canopy. A nested spatial sampling plan was implemented to determine spatial variations of the measured hydrological processes and ultimately the impact of these variations on modeled carbon and water budgets. These data are stored in ASCII text files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
BOREAS HYD-8 1996 Gravimetric Moss Moisture Data
NASA Technical Reports Server (NTRS)
Fernandes, Richard; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-8 team made measurements of surface hydrological processes that were collected at the southern study area-Old Black Spruce (SSA-OBS) Tower Flux site in 1996 to support its research into point hydrological processes and the spatial variation of these processes. Data collected may be useful in characterizing canopy interception, drip, throughfall, moss interception, drainage, evaporation, and capacity during the growing season at daily temporal resolution. This particular data set contains the gravimetric moss moisture measurements from July to August 1996. To collect these data, a nested spatial sampling plan was implemented to support research into spatial variations of the measured hydrological processes and ultimately the impact of these variations on modeled carbon and water budgets. These data are stored in ASCII text files. The HYD-08 1996 gravimetric moss moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Human impact on the geomorphic evolution of the HOAL catchment, Lower Austria
NASA Astrophysics Data System (ADS)
Pöppl, Ronald; Kraushaar, Sabine; Strauss, Peter; Fuchs, Markus
2016-04-01
Since the beginning of human settlement extensive land cover and land use changes have induced significant geomorphic landscape changes as water and sediment dynamics have been transformed. The presented project focuses on the reconstruction of Holocene geomorphic landscape evolution and the assessment of recent geomorphic processes in the Northern foothills of the Eastern Alps in Austria - an area intensively agriculturally used since the middle ages and often overlooked in its geomorphic evolution. The study area is a small catchment (ca. 66 ha) which is located in the western part of Lower Austria comprising a land use history as well as environmental settings typical for wide regions across the Northern foothills of the Eastern Alps in Austria. The catchment elevation ranges from 268 to 323 m a.s.l. and has a mean slope angle of 8%. The climate in this region can be characterized as humid. The lithology mainly consists of Tertiary marly to sandy deposits which are superimposed by Quaternary sediments (e.g. loesses). Dominant soil types are Cambisols, Luvisols, and Planosols. Furthermore, the catchment is used as a Hydrological Open Air Laboratory (HOAL) implemented for the long-term research of water-related flow and transport processes in the landscape (http://hoal.hydrology.at). The main objective of this research project is to reconstruct Holocene landscape evolution by analyzing physical parameters of sediment cores taken from colluvial and alluvial sediment archives with additional 14C and OSL dating as well as by the measurement of truncated and covered standardized Luvisol profiles. First results will be presented at the EGU General Assembly 2016.
NASA Astrophysics Data System (ADS)
Champollion, Cédric; Fores, Benjamin; Le Moigne, Nicolas; Chéry, Jean
2016-04-01
Karstic hydro-systems are highly non-linear and heterogeneous but one of the main water resource in the Mediterranean area. Neither local measurements in boreholes or analysis at the spring can take into account the variability of the water storage. Since a few years, ground-based geophysical measurements (such as gravity, electrical resistivity or seismological data) allows following water storage in heterogeneous hydrosystems at an intermediate scale between boreholes and basin. Behind classical rigorous monitoring, the integration of geophysical data in hydrological numerical models in needed for both processes interpretation and quantification. Since a few years, a karstic geophysical observatory (GEK: Géodésie de l'Environnement Karstique, OSU OREME, SNO H+) has been setup in the Mediterranean area in the south of France. The observatory is surrounding more than 250m karstified dolomite, with an unsaturated zone of ~150m thickness. At the observatory water level in boreholes, evapotranspiration and rainfall are classical hydro-meteorological observations completed by continuous gravity, resistivity and seismological measurements. The main objective of the study is the modelling of the whole observation dataset by explicit unsaturated numerical model in one dimension. Hydrus software is used for the explicit modelling of the water storage and transfer and links the different observations (geophysics, water level, evapotranspiration) with the water saturation. Unknown hydrological parameters (permeability, porosity) are retrieved from stochastic inversions. The scale of investigation of the different observations are discussed thank to the modelling results. A sensibility study of the measurements against the model is done and key hydro-geological processes of the site are presented.
Nijp, Jelmer J; Metselaar, Klaas; Limpens, Juul; Teutschbein, Claudia; Peichl, Matthias; Nilsson, Mats B; Berendse, Frank; van der Zee, Sjoerd E A T M
2017-02-15
The water content of the topsoil is one of the key factors controlling biogeochemical processes, greenhouse gas emissions and biosphere - atmosphere interactions in many ecosystems, particularly in northern peatlands. In these wetland ecosystems, the water content of the photosynthetic active peatmoss layer is crucial for ecosystem functioning and carbon sequestration, and is sensitive to future shifts in rainfall and drought characteristics. Current peatland models differ in the degree in which hydrological feedbacks are included, but how this affects peatmoss drought projections is unknown. The aim of this paper was to systematically test whether the level of hydrological detail in models could bias projections of water content and drought stress for peatmoss in northern peatlands using downscaled projections for rainfall and potential evapotranspiration in the current (1991-2020) and future climate (2061-2090). We considered four model variants that either include or exclude moss (rain)water storage and peat volume change, as these are two central processes in the hydrological self-regulation of peatmoss carpets. Model performance was validated using field data of a peatland in northern Sweden. Including moss water storage as well as peat volume change resulted in a significant improvement of model performance, despite the extra parameters added. The best performance was achieved if both processes were included. Including moss water storage and peat volume change consistently reduced projected peatmoss drought frequency with >50%, relative to the model excluding both processes. Projected peatmoss drought frequency in the growing season was 17% smaller under future climate than current climate, but was unaffected by including the hydrological self-regulating processes. Our results suggest that ignoring these two fine-scale processes important in hydrological self-regulation of northern peatlands will have large consequences for projected climate change impact on ecosystem processes related to topsoil water content, such as greenhouse gas emissions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jeanneau, Laurent; Pierson-Wickmann, Anne-Catherine; Jaffrezic, Anne; Lambert, Thibault; Gruau, Gérard
2013-04-01
Dissolved organic matter (DOM) is implied in (i) ecosystem services such as the support of biodiversity, (ii) the alteration of the drinkable water quality by formation of trihalomethane and (iii) the transfer of micropollutants from soils to rivers. Moreover, since DOM connects soils and oceans that are interacting with the atmosphere, understanding its biogeochemistry will help in investigating the carbon cycle and in creating strategies to mitigate climate change. DOM in headwater stream ecosystems is mainly inherited from allochtonous inputs with different reservoirs being mobilized during storm and interstorm events at the scale of an hydrological year. Those changes in DOM reservoirs, if accompanied by composition and reactivity changes, may impact DOM ecosystem services and drinking water production processes. Elucidating the compositional changes due to changes in the source of DOM in rivers has thus become a important axis of DOM research. The aim of this study is to test the ability of the molecular tools of the organic geochemistry and more specifically the combination of thermochemiolysis and gas chromatography - mass spectrometry (THM-GC-MS) to (i) link the variability of the river DOM composition to different DOM reservoirs in catchment soils and (ii) provide hypothesis on the nature and the mechanisms of formation (microbial growth, litter decomposition) of those reservoirs. This analytical method seems particularly adapted since it allows the differentiation between vegetal and microbial inputs and the determination of the extent of the biodegradation process of biomolecules such as lignin. To test this method, the molecular fingerprint of soil DOM has been investigated in the wetland area of a small (500 ha) agricultural catchment (the so-called Kervidy-Naizin catchment) located in Brittany, western France. The soil DOM was sampled fortnightly at three depths using zero-tension lysimeters during the hydrological year 2010-2011. The samples were freeze-dried and analyzed for their molecular composition using THM-GC-MS. Three chemical classes of compounds were investigated including lignin, polysaccharides and fatty acids. The combination of those results at the molecular scale with the results of investigations on spectroscopic (specific UV absorbance at 254 nm, SUVA) fingerprints, the isotopic (d13C) fingerprint of DOM and the hydrological data (water table depth) has highlighted (i) the correlation between molecular and bulk scales investigated using the SUVA and the proportion of lignin markers and (ii) the evolution of the molecular composition of soil DOM related to the changes of the water table depth, which could be linked to the mobilization of different reservoirs and/or to the succession of different mechanisms of production governed by the changes in hydrological regimes. This study highlights THM-GC-MS as a valuable tool to investigate the molecular composition of DOM. By differentiating the vegetal and the microbial components of DOM, it allows the investigation of the sources and mechanisms of DOM formation. Finally, its application to a catchment with hydrological data emphasizes the hydrological regime as a main driver of the evolution of the molecular composition of DOM.
Micro-topographic hydrologic variability due to vegetation acclimation under climate change
NASA Astrophysics Data System (ADS)
Le, P. V.; Kumar, P.
2012-12-01
Land surface micro-topography and vegetation cover have fundamental effects on the land-atmosphere interactions. The altered temperature and precipitation variability associated with climate change will affect the water and energy processes both directly and that mediated through vegetation. Since climate change induces vegetation acclimation that leads to shifts in evapotranspiration and heat fluxes, it further modifies microclimate and near-surface hydrological processes. In this study, we investigate the impacts of vegetation acclimation to climate change on micro-topographic hydrologic variability. The ability to accurately predict these impacts requires the simultaneous considerations of biochemical, ecophysiological and hydrological processes. A multilayer canopy-root-soil system model coupled with a conjunctive surface-subsurface flow model is used to capture the acclimatory responses and analyze the changes in dynamics of structure and connectivity of micro-topographic storage and in magnitudes of runoff. The study is performed using Light Detection and Ranging (LiDAR) topographic data in the Birds Point-New Madrid floodway in Missouri, U.S.A. The result indicates that both climate change and its associated vegetation acclimation play critical roles in altering the micro-topographic hydrological responses.
Recent advances in catchment hydrology
NASA Astrophysics Data System (ADS)
van Meerveld, I. H. J.
2017-12-01
Despite the consensus that field observations and catchment studies are imperative to understand hydrological processes, to determine the impacts of global change, to quantify the spatial and temporal variability in hydrological fluxes, and to refine and test hydrological models, there is a decline in the number of field studies. This decline and the importance of fieldwork for catchment hydrology have been described in several recent opinion papers. This presentation will summarize these commentaries, describe how catchment studies have evolved over time, and highlight the findings from selected recent studies published in Water Resources Research.
Hydrological excitation of polar motion by different variables of the GLDAS models
NASA Astrophysics Data System (ADS)
Wińska, Małgorzata; Nastula, Jolanta
Continental hydrological loading, by land water, snow, and ice, is an element that is strongly needed for a full understanding of the excitation of polar motion. In this study we compute different estimations of hydrological excitation functions of polar motion (Hydrological Angular Momentum - HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of land hydrosphere. The main aim of this study is to show the influence of different variables for example: total evapotranspiration, runoff, snowmelt, soil moisture to polar motion excitations in annual and short term scale. In our consideration we employ several realizations of the GLDAS model as: GLDAS Common Land Model (CLM), GLDAS Mosaic Model, GLDAS National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab Model (Noah), GLDAS Variable Infiltration Capacity (VIC) Model. Hydrological excitation functions of polar motion, both global and regional, are determined by using selected variables of these GLDAS realizations. First we compare a timing, spectra and phase diagrams of different regional and global HAMs with each other. Next, we estimate, the hydrological signal in geodetically observed polar motion excitation by subtracting the atmospheric -- AAM (pressure + wind) and oceanic -- OAM (bottom pressure + currents) contributions. Finally, the hydrological excitations are compared to these hydrological signal in observed polar motion excitation series. The results help us understand which variables of considered hydrological models are the most important for the polar motion excitation and how well we can close polar motion excitation budget in the seasonal and inter-annual spectral ranges.
NASA Astrophysics Data System (ADS)
Shope, C. L.; Maharjan, G. R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y. S.; Peiffer, S.; Kim, B.; Park, J.-H.; Huwe, B.
2014-02-01
Watershed-scale modeling can be a valuable tool to aid in quantification of water quality and yield; however, several challenges remain. In many watersheds, it is difficult to adequately quantify hydrologic partitioning. Data scarcity is prevalent, accuracy of spatially distributed meteorology is difficult to quantify, forest encroachment and land use issues are common, and surface water and groundwater abstractions substantially modify watershed-based processes. Our objective is to assess the capability of the Soil and Water Assessment Tool (SWAT) model to capture event-based and long-term monsoonal rainfall-runoff processes in complex mountainous terrain. To accomplish this, we developed a unique quality-control, gap-filling algorithm for interpolation of high-frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. The interdisciplinary model was calibrated to a unique combination of statistical, hydrologic, and plant growth metrics. Our results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. The addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. While this study shows the challenges of applying the SWAT model to complex terrain and extreme environments; by incorporating anthropogenic features into modeling scenarios, we can enhance our understanding of the hydroecological impact.
Chamizo, Sonia; Belnap, Jayne; Elridge, David J; Issa, Oumarou M
2016-01-01
Biocrusts exert a strong influence on hydrological processes in drylands by modifying numerous soil properties that affect water retention and movement in soils. Yet, their role in these processes is not clearly understood due to the large number of factors that act simultaneously and can mask the biocrust effect. The influence of biocrusts on soil hydrology depends on biocrust intrinsic characteristics such as cover, composition, and external morphology, which differ greatly among climate regimes, but also on external factors as soil type, topography and vegetation distribution patterns, as well as interactions among these factors. This chapter reviews the most recent literature published on the role of biocrusts in infiltration and runoff, soil moisture, evaporation and non-rainfall water inputs (fog, dew, water absorption), in an attempt to elucidate the key factors that explain how biocrusts affect land hydrology. In addition to the crust type and site characteristics, recent studies point to the crucial importance of the type of rainfall and the spatial scale at which biocrust effects are analyzed to understand their role in hydrological processes. Future studies need to consider the temporal and spatial scale investigated to obtain more accurate generalizations on the role of biocrusts in land hydrology.
We developed and applied a spatially-explicit, eco-hydrologic model to examine how a landscape disturbance affects hydrologic processes, ecosystem cycling of C and N, and ecosystem structure. We simulated how the pattern and magnitude of tree removal in a catchment influences fo...
Flexibility on storage-release based distributed hydrologic modeling with object-oriented approach
USDA-ARS?s Scientific Manuscript database
With the availability of advanced hydrologic data in the public domain such as remotely sensed and climate change scenario data, there is a need for a modeling framework that is capable of using these data to simulate and extend hydrologic processes with multidisciplinary approaches for sustainable ...
Automatization of hydrodynamic modelling in a Floreon+ system
NASA Astrophysics Data System (ADS)
Ronovsky, Ales; Kuchar, Stepan; Podhoranyi, Michal; Vojtek, David
2017-07-01
The paper describes fully automatized hydrodynamic modelling as a part of the Floreon+ system. The main purpose of hydrodynamic modelling in the disaster management is to provide an accurate overview of the hydrological situation in a given river catchment. Automatization of the process as a web service could provide us with immediate data based on extreme weather conditions, such as heavy rainfall, without the intervention of an expert. Such a service can be used by non scientific users such as fire-fighter operators or representatives of a military service organizing evacuation during floods or river dam breaks. The paper describes the whole process beginning with a definition of a schematization necessary for hydrodynamic model, gathering of necessary data and its processing for a simulation, the model itself and post processing of a result and visualization on a web service. The process is demonstrated on a real data collected during floods in our Moravian-Silesian region in 2010.
Modeling Hydrological Processes in New Mexico-Texas-Mexico Border Region
NASA Astrophysics Data System (ADS)
Samimi, M.; Jahan, N. T.; Mirchi, A.
2017-12-01
Efficient allocation of limited water resources to competing use sectors is becoming increasingly critical for water-scarce regions. Understanding natural and anthropogenic processes affecting hydrological processes is key for efficient water management. We used Soil and Water Assessment Tool (SWAT) to model governing hydrologic processes in New Mexico-Texas-Mexico border region. Our study area includes the Elephant Butte Irrigation District (EBID), which manages water resources to support irrigated agriculture. The region is facing water resources challenges associated with chronic water scarcity, over-allocation, diminishing water supply, and growing water demand. Agricultural activities rely on conjunctive use of Rio Grande River water supply and groundwater withdrawal. The model is calibrated and validated under baseline conditions in the arid and semi-arid climate in order to evaluate potential impacts of climate change on the agricultural sector and regional water availability. We highlight the importance of calibrating the crop growth parameters, evapotranspiration, and groundwater recharge to provide a realistic representation of the hydrological processes and water availability in the region. Furthermore, limitations of the model and its utility to inform stakeholders will be discussed.
Li, Xin; Liu, Shaomin; Xiao, Qin; Ma, Mingguo; Jin, Rui; Che, Tao; Wang, Weizhen; Hu, Xiaoli; Xu, Ziwei; Wen, Jianguang; Wang, Liangxu
2017-01-01
We introduce a multiscale dataset obtained from Heihe Watershed Allied Telemetry Experimental Research (HiWATER) in an oasis-desert area in 2012. Upscaling of eco-hydrological processes on a heterogeneous surface is a grand challenge. Progress in this field is hindered by the poor availability of multiscale observations. HiWATER is an experiment designed to address this challenge through instrumentation on hierarchically nested scales to obtain multiscale and multidisciplinary data. The HiWATER observation system consists of a flux observation matrix of eddy covariance towers, large aperture scintillometers, and automatic meteorological stations; an eco-hydrological sensor network of soil moisture and leaf area index; hyper-resolution airborne remote sensing using LiDAR, imaging spectrometer, multi-angle thermal imager, and L-band microwave radiometer; and synchronical ground measurements of vegetation dynamics, and photosynthesis processes. All observational data were carefully quality controlled throughout sensor calibration, data collection, data processing, and datasets generation. The data are freely available at figshare and the Cold and Arid Regions Science Data Centre. The data should be useful for elucidating multiscale eco-hydrological processes and developing upscaling methods. PMID:28654086
Different modelling approaches to evaluate nitrogen transport and turnover at the watershed scale
NASA Astrophysics Data System (ADS)
Epelde, Ane Miren; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Garneau, Cyril; Sauvage, Sabine; Sánchez-Pérez, José Miguel
2016-08-01
This study presents the simulation of hydrological processes and nutrient transport and turnover processes using two integrated numerical models: Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998), an empirical and semi-distributed numerical model; and Modelo Hidrodinâmico (MOHID) (Neves, 1985), a physics-based and fully distributed numerical model. This work shows that both models reproduce satisfactorily water and nitrate exportation at the watershed scale at annual and daily basis, MOHID providing slightly better results. At the watershed scale, both SWAT and MOHID simulated similarly and satisfactorily the denitrification amount. However, as MOHID numerical model was the only one able to reproduce adequately the spatial variation of the soil hydrological conditions and water table level fluctuation, it proved to be the only model able of reproducing the spatial variation of the nutrient cycling processes that are dependent to the soil hydrological conditions such as the denitrification process. This evidences the strength of the fully distributed and physics-based models to simulate the spatial variability of nutrient cycling processes that are dependent to the hydrological conditions of the soils.
NASA Astrophysics Data System (ADS)
Verkade, J. S.; Brown, J. D.; Davids, F.; Reggiani, P.; Weerts, A. H.
2017-12-01
Two statistical post-processing approaches for estimation of predictive hydrological uncertainty are compared: (i) 'dressing' of a deterministic forecast by adding a single, combined estimate of both hydrological and meteorological uncertainty and (ii) 'dressing' of an ensemble streamflow forecast by adding an estimate of hydrological uncertainty to each individual streamflow ensemble member. Both approaches aim to produce an estimate of the 'total uncertainty' that captures both the meteorological and hydrological uncertainties. They differ in the degree to which they make use of statistical post-processing techniques. In the 'lumped' approach, both sources of uncertainty are lumped by post-processing deterministic forecasts using their verifying observations. In the 'source-specific' approach, the meteorological uncertainties are estimated by an ensemble of weather forecasts. These ensemble members are routed through a hydrological model and a realization of the probability distribution of hydrological uncertainties (only) is then added to each ensemble member to arrive at an estimate of the total uncertainty. The techniques are applied to one location in the Meuse basin and three locations in the Rhine basin. Resulting forecasts are assessed for their reliability and sharpness, as well as compared in terms of multiple verification scores including the relative mean error, Brier Skill Score, Mean Continuous Ranked Probability Skill Score, Relative Operating Characteristic Score and Relative Economic Value. The dressed deterministic forecasts are generally more reliable than the dressed ensemble forecasts, but the latter are sharper. On balance, however, they show similar quality across a range of verification metrics, with the dressed ensembles coming out slightly better. Some additional analyses are suggested. Notably, these include statistical post-processing of the meteorological forecasts in order to increase their reliability, thus increasing the reliability of the streamflow forecasts produced with ensemble meteorological forcings.
Stieglitz, M.; Shaman, J.; McNamara, J.; Engel, V.; Shanley, J.; Kling, G.W.
2003-01-01
Hydrologic processes control much of the export of organic matter and nutrients from the land surface. It is the variability of these hydrologic processes that produces variable patterns of nutrient transport in both space and time. In this paper, we explore how hydrologic "connectivity" potentially affects nutrient transport. Hydrologic connectivity is defined as the condition by which disparate regions on the hillslope are linked via subsurface water flow. We present simulations that suggest that for much of the year, water draining through a catchment is spatially isolated. Only rarely, during storm and snowmelt events when antecedent soil moisture is high, do our simulations suggest that mid-slope saturation (or near saturation) occurs and that a catchment connects from ridge to valley. Observations during snowmelt at a small headwater catchment in Idaho are consistent with these model simulations. During early season discharge episodes, in which the mid-slope soil column is not saturated, the electrical conductivity in the stream remains low, reflecting a restricted, local (lower slope) source of stream water and the continued isolation of upper and mid-slope soil water and nutrients from the stream system. Increased streamflow and higher stream water electrical conductivity, presumably reflecting the release of water from the upper reaches of the catchment, are simultaneously observed when the mid-slope becomes sufficiently wet. This study provides preliminary evidence that the seasonal timing of hydrologic connectivity may affect a range of ecological processes, including downslope nutrient transport, C/N cycling, and biological productivity along the toposequence. A better elucidation of hydrologic connectivity will be necessary for understanding local processes as well as material export from land to water at regional and global scales. Copyright 2003 by the American Geophysical Union.
Improving Permafrost Hydrology Prediction Through Data-Model Integration
NASA Astrophysics Data System (ADS)
Wilson, C. J.; Andresen, C. G.; Atchley, A. L.; Bolton, W. R.; Busey, R.; Coon, E.; Charsley-Groffman, L.
2017-12-01
The CMIP5 Earth System Models were unable to adequately predict the fate of the 16GT of permafrost carbon in a warming climate due to poor representation of Arctic ecosystem processes. The DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic project aims to reduce uncertainty in the Arctic carbon cycle and its impact on the Earth's climate system by improved representation of the coupled physical, chemical and biological processes that drive how much buried carbon will be converted to CO2 and CH4, how fast this will happen, which form will dominate, and the degree to which increased plant productivity will offset increased soil carbon emissions. These processes fundamentally depend on permafrost thaw rate and its influence on surface and subsurface hydrology through thermal erosion, land subsidence and changes to groundwater flow pathways as soil, bedrock and alluvial pore ice and massive ground ice melts. LANL and its NGEE colleagues are co-developing data and models to better understand controls on permafrost degradation and improve prediction of the evolution of permafrost and its impact on Arctic hydrology. The LANL Advanced Terrestrial Simulator was built using a state of the art HPC software framework to enable the first fully coupled 3-dimensional surface-subsurface thermal-hydrology and land surface deformation simulations to simulate the evolution of the physical Arctic environment. Here we show how field data including hydrology, snow, vegetation, geochemistry and soil properties, are informing the development and application of the ATS to improve understanding of controls on permafrost stability and permafrost hydrology. The ATS is being used to inform parameterizations of complex coupled physical, ecological and biogeochemical processes for implementation in the DOE ACME land model, to better predict the role of changing Arctic hydrology on the global climate system. LA-UR-17-26566.
Nineteenth Century Harbors: Accounting for Coastal Urban Development in Hydrologic Change
NASA Astrophysics Data System (ADS)
Schlichting, K. M.; Ruffing, C. M.; McCormack, S. M.; Urbanova, T.; Powell, L. J.; Hermans, C. M.
2009-12-01
Harbors complicate the analytical framework of quantifying nineteenth-century hydrologic change in the northeastern United States. The hydrology of the region was fundamentally altered by the growth of water engineering such as canals as well as by land cover changes as deforestation in the region peaked and urban centers grew. Urban coastal growth epitomized nineteenth-century development as northeastern colonial ports evolved into manufacturing and industrial centers. Coastal urban industrial development concentrated tanneries, machineries, and paper processing companies along cities’ trading rivers. Additionally, the populations of cities such as Boston, New Haven, New York, Newark, and Baltimore reached unprecedented numbers, forcing urban municipalities to confront sewerage and drinking water infrastructure in the face of shortages and waterborne disease. We discuss how the concentration of industry and population at river mouths complicates the process of quantifying the effects of municipal drinking water and sewage infrastructure on regional hydrology and how the growth of nineteenth-century urban centers shaped regional hydrologic hinterlands. Additionally, harbors oblige a reconsideration of hydrologic boundaries by forcing hydrologists and environmental historians to account for fisheries and harbor engineering alongside population and industry as factors in changes to water quality and quantity in and human response to urban nineteenth-century hydrologic change.
Hydrological Variations in Australia Recovered by GRACE High-Resolution Mascons Solutions
NASA Technical Reports Server (NTRS)
Carabajal, Claudia C.; Boy, Jean-Paul; Sabaka, Terence J.; Lemoine, Frank G.; Rowlands. David; Luthcke, Scott B.; Brown, M. Y.
2011-01-01
Australia represents a challenging region in which to study hydrological variations as recovered by the GRACE (Gravity Recovery And Climate Experiment) mission data. Much of Australia is characterized by relatively small hydrological signals, with large precipitation gradients between the North and the South. These signals are better recovered using innovative GRACE processing techniques such as high-resolution mascon solutions, which may help overcome the deficiencies in the standard GRACE data processing and filtering methods. We will show the power of using regional and global mas con solutions to recover hydrological variations from 2003 to 2011, as well as the oceanic mass variations in the surrounding regions. We will compare the GRACE signals with state of the art hydrology and ocean general circulation models, precipitation, soil moisture and groundwater data sets. We especially emphasize the gravity signatures observed during the decadal drought in the Murray-Darling river basin and the early 2011 floods in North-Western Australia.
Facilitating hydrological data analysis workflows in R: the RHydro package
NASA Astrophysics Data System (ADS)
Buytaert, Wouter; Moulds, Simon; Skoien, Jon; Pebesma, Edzer; Reusser, Dominik
2015-04-01
The advent of new technologies such as web-services and big data analytics holds great promise for hydrological data analysis and simulation. Driven by the need for better water management tools, it allows for the construction of much more complex workflows, that integrate more and potentially more heterogeneous data sources with longer tool chains of algorithms and models. With the scientific challenge of designing the most adequate processing workflow comes the technical challenge of implementing the workflow with a minimal risk for errors. A wide variety of new workbench technologies and other data handling systems are being developed. At the same time, the functionality of available data processing languages such as R and Python is increasing at an accelerating pace. Because of the large diversity of scientific questions and simulation needs in hydrology, it is unlikely that one single optimal method for constructing hydrological data analysis workflows will emerge. Nevertheless, languages such as R and Python are quickly gaining popularity because they combine a wide array of functionality with high flexibility and versatility. The object-oriented nature of high-level data processing languages makes them particularly suited for the handling of complex and potentially large datasets. In this paper, we explore how handling and processing of hydrological data in R can be facilitated further by designing and implementing a set of relevant classes and methods in the experimental R package RHydro. We build upon existing efforts such as the sp and raster packages for spatial data and the spacetime package for spatiotemporal data to define classes for hydrological data (HydroST). In order to handle simulation data from hydrological models conveniently, a HM class is defined. Relevant methods are implemented to allow for an optimal integration of the HM class with existing model fitting and simulation functionality in R. Lastly, we discuss some of the design challenges of the RHydro package, including integration with big data technologies, web technologies, and emerging data models in hydrology.
Use of heat as a groundwater tracer in fractured rock hydrology
NASA Astrophysics Data System (ADS)
Bour, Olivier; Le Borgne, Tanguy; Klepikova, Maria V.; Read, Tom; Selker, John S.; Bense, Victor F.; Le Lay, Hugo; Hochreutener, Rebecca; Lavenant, Nicolas
2015-04-01
Crystalline rocks aquifers are often difficult to characterize since flows are mainly localized in few fractures. In particular, the geometry and the connections of the main flow paths are often only partly constrained with classical hydraulic tests. Here, we show through few examples how heat can be used to characterize groundwater flows in fractured rocks at the borehole, inter-borehole and watershed scale. Estimating flows from temperature measurements requires heat advection to be the dominant process of heat transport, but this condition is generally met in fractured rock at least within the few structures where flow is highly channelized. At the borehole scale, groundwater temperature variations with depth can be used to locate permeable fractures and to estimates borehole flows. Measurements can be done with classical multi-parameters probes, but also with recent technologies such as Fiber Optic Distributed Temperature Sensing (FO-DTS) which allows to measure temperature over long distances with an excellent spatial and temporal resolution. In addition, we show how a distributed borehole flowmeter can be achieved using an armored fiber-optic cable and measuring the difference in temperature between a heated and unheated cable that is a function of the fluid velocity. At the inter-borehole scale, temperature changes during cross-borehole hydraulic tests allow to identify the connections and the hydraulic properties of the main flow paths between boreholes. At the aquifer scale, groundwater temperature may be monitored to record temperature changes and estimate groundwater origin. In the example chosen, the main water supply comes from a depth of at least 300 meters through relatively deep groundwater circulation within a major permeable fault zone. The influence of groundwater extraction is clearly identified through groundwater temperature monitoring. These examples illustrate the advantages and limitations of using heat and groundwater temperature measurements for fractured rock hydrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis
The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less
Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; ...
2017-07-11
The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less
Modeling rainfall-runoff relationship using multivariate GARCH model
NASA Astrophysics Data System (ADS)
Modarres, R.; Ouarda, T. B. M. J.
2013-08-01
The traditional hydrologic time series approaches are used for modeling, simulating and forecasting conditional mean of hydrologic variables but neglect their time varying variance or the second order moment. This paper introduces the multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) modeling approach to show how the variance-covariance relationship between hydrologic variables varies in time. These approaches are also useful to estimate the dynamic conditional correlation between hydrologic variables. To illustrate the novelty and usefulness of MGARCH models in hydrology, two major types of MGARCH models, the bivariate diagonal VECH and constant conditional correlation (CCC) models are applied to show the variance-covariance structure and cdynamic correlation in a rainfall-runoff process. The bivariate diagonal VECH-GARCH(1,1) and CCC-GARCH(1,1) models indicated both short-run and long-run persistency in the conditional variance-covariance matrix of the rainfall-runoff process. The conditional variance of rainfall appears to have a stronger persistency, especially long-run persistency, than the conditional variance of streamflow which shows a short-lived drastic increasing pattern and a stronger short-run persistency. The conditional covariance and conditional correlation coefficients have different features for each bivariate rainfall-runoff process with different degrees of stationarity and dynamic nonlinearity. The spatial and temporal pattern of variance-covariance features may reflect the signature of different physical and hydrological variables such as drainage area, topography, soil moisture and ground water fluctuations on the strength, stationarity and nonlinearity of the conditional variance-covariance for a rainfall-runoff process.
Weinstein, Y.; Yechieli, Y.; Shalem, Y.; Burnett, W.C.; Swarzenski, P.W.; Herut, B.
2011-01-01
Submarine groundwater discharge (SGD) is a major process operating at the land-sea interface. Quantifying the SGD nutrient loads and the marine/terrestrial controls of this transport is of high importance, especially in oligotrophic seas such as the eastern Mediterranean. The fluxes of nutrients in groundwater discharging from the seafloor at Dor Bay (southeastern Mediterranean) were studied in detail using seepage meters. Our main finding is that the terrestrial, fresh groundwater is the main conveyor of DIN and silica to the coastal water, with loads of 500 and 560 mol/yr, respectively, per 1 m shoreline. Conversely, recirculated seawater is nutrient-poor, and its role is mainly as a dilution agent. The nutrient loads regenerated in the subterranean estuary (sub-bay sediment) are relatively small, consisting mostly of ammonium (24 mol/yr). On the other hand, the subterranean estuary at Dor Bay sequesters as much as 100 mol N/yr per 1 m shoreline, mainly via denitrification processes. These, and observations from other SGD sites, imply that the subterranean estuary at some coastal systems may function more as a sink for nitrogen than a source. This further questions the extent of nutrient contributions to the coastal water by some subterranean estuaries and warrants systematic evaluation of this process in various hydrological and marine trophic conditions. ?? 2011 American Chemical Society.
Reduction Continuous Rank Probability Score for Hydrological Ensemble Prediction System
NASA Astrophysics Data System (ADS)
Trinh, Nguyen Bao; Thielen Del-Pozo, Jutta; Pappenberger, Florian; Cloke, Hannah L.; Bogner, Konrad
2010-05-01
Ensemble Prediction System (EPS), calculated operationally by the weather services for various lead-times, are increasingly used as input to hydrological models to extend warning times from short- to medium and even long-range. Although the general skill of EPS has been demonstrated to increase continuously over the past decades, it remains comparatively low for precipitation, one of the driving forces of hydrological processes. Due to the non-linear integrating nature of river runoff and the complexities of catchment runoff processes, one cannot assume that the skill of the hydrological forecasts is necessarily similar to the skill of the meteorological predictions. Furthermore, due to the integrating nature of discharge, which accumulates effects from upstream catchment and slow-responding groundwater processes, commonly applied skill scores in meteorology may not be fully adapted to describe the skill of probabilistic discharge predictions. For example, while for hydrological applications it may be interesting to compare the forecast skill between upstream and downstream stations, meteorological applications focus more on climatologically relevant regions. In this paper, a range of widely used probabilistic skill scores for assessing reliability, spread-skill, sharpness and bias are calculated for a 12 months case study in the Danube river basin. The Continuous Rank Probability Score (CRPS) is demonstrated to have deficiencies when comparing skill of discharge forecast for different hydrological stations. Therefore, we propose a modified CRPS that allows this comparison and is therefore particularly useful for hydrological applications.
Typecasting catchments: Classification, directionality, and the pursuit of universality
NASA Astrophysics Data System (ADS)
Smith, Tyler; Marshall, Lucy; McGlynn, Brian
2018-02-01
Catchment classification poses a significant challenge to hydrology and hydrologic modeling, restricting widespread transfer of knowledge from well-studied sites. The identification of important physical, climatological, or hydrologic attributes (to varying degrees depending on application/data availability) has traditionally been the focus for catchment classification. Classification approaches are regularly assessed with regard to their ability to provide suitable hydrologic predictions - commonly by transferring fitted hydrologic parameters at a data-rich catchment to a data-poor catchment deemed similar by the classification. While such approaches to hydrology's grand challenges are intuitive, they often ignore the most uncertain aspect of the process - the model itself. We explore catchment classification and parameter transferability and the concept of universal donor/acceptor catchments. We identify the implications of the assumption that the transfer of parameters between "similar" catchments is reciprocal (i.e., non-directional). These concepts are considered through three case studies situated across multiple gradients that include model complexity, process description, and site characteristics. Case study results highlight that some catchments are more successfully used as donor catchments and others are better suited as acceptor catchments. These results were observed for both black-box and process consistent hydrologic models, as well as for differing levels of catchment similarity. Therefore, we suggest that similarity does not adequately satisfy the underlying assumptions being made in parameter regionalization approaches regardless of model appropriateness. Furthermore, we suggest that the directionality of parameter transfer is an important factor in determining the success of parameter regionalization approaches.
NASA Astrophysics Data System (ADS)
Lei, Xiaohui; Wang, Yuhui; Liao, Weihong; Jiang, Yunzhong; Tian, Yu; Wang, Hao
2011-09-01
Many regions are still threatened with frequent floods and water resource shortage problems in China. Consequently, the task of reproducing and predicting the hydrological process in watersheds is hard and unavoidable for reducing the risks of damage and loss. Thus, it is necessary to develop an efficient and cost-effective hydrological tool in China as many areas should be modeled. Currently, developed hydrological tools such as Mike SHE and ArcSWAT (soil and water assessment tool based on ArcGIS) show significant power in improving the precision of hydrological modeling in China by considering spatial variability both in land cover and in soil type. However, adopting developed commercial tools in such a large developing country comes at a high cost. Commercial modeling tools usually contain large numbers of formulas, complicated data formats, and many preprocessing or postprocessing steps that may make it difficult for the user to carry out simulation, thus lowering the efficiency of the modeling process. Besides, commercial hydrological models usually cannot be modified or improved to be suitable for some special hydrological conditions in China. Some other hydrological models are open source, but integrated into commercial GIS systems. Therefore, by integrating hydrological simulation code EasyDHM, a hydrological simulation tool named MWEasyDHM was developed based on open-source MapWindow GIS, the purpose of which is to establish the first open-source GIS-based distributed hydrological model tool in China by integrating modules of preprocessing, model computation, parameter estimation, result display, and analysis. MWEasyDHM provides users with a friendly manipulating MapWindow GIS interface, selectable multifunctional hydrological processing modules, and, more importantly, an efficient and cost-effective hydrological simulation tool. The general construction of MWEasyDHM consists of four major parts: (1) a general GIS module for hydrological analysis, (2) a preprocessing module for modeling inputs, (3) a model calibration module, and (4) a postprocessing module. The general GIS module for hydrological analysis is developed on the basis of totally open-source GIS software, MapWindow, which contains basic GIS functions. The preprocessing module is made up of three submodules including a DEM-based submodule for hydrological analysis, a submodule for default parameter calculation, and a submodule for the spatial interpolation of meteorological data. The calibration module contains parallel computation, real-time computation, and visualization. The postprocessing module includes model calibration and model results spatial visualization using tabular form and spatial grids. MWEasyDHM makes it possible for efficient modeling and calibration of EasyDHM, and promises further development of cost-effective applications in various watersheds.
Error characterization of microwave satellite soil moisture data sets using fourier analysis
USDA-ARS?s Scientific Manuscript database
Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over meso to global scales used as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these processes. ...
A model to estimate hydrological processes and water budget from an irrigation pond in Mississippi
USDA-ARS?s Scientific Manuscript database
With increased interest to conserve groundwater resources without adversely affecting crop yield potential, more irrigation farm ponds have been constructed in recent years in Mississippi. However, the hydrological processes, water budget, and environmental benefits and consequences of these ponds h...
NASA Astrophysics Data System (ADS)
Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick
2017-04-01
Motivated by climate change and its impact on the scarcity or excess of water in many parts of the world, several agencies and research institutions have taken initiatives in monitoring and predicting the hydrologic cycle at a global scale. Such a monitoring/prediction effort is important for understanding the vulnerability to extreme hydrological events and for providing early warnings. This can be based on an optimal combination of hydro-meteorological models and remote sensing, in which satellite measurements can be used as forcing or calibration data or for regularly updating the model states or parameters. Many advances have been made in these domains and the near future will bring new opportunities with respect to remote sensing as a result of the increasing number of spaceborn sensors enabling the large scale monitoring of water resources. Besides of these advances, there is currently a tendency to refine and further complicate physically-based hydrologic models to better capture the hydrologic processes at hand. However, this may not necessarily be beneficial for large-scale hydrology, as computational efforts are therefore increasing significantly. As a matter of fact, a novel thematic science question that is to be investigated is whether a flexible conceptual model can match the performance of a complex physically-based model for hydrologic simulations at large scale. In this context, the main objective of this study is to investigate how innovative techniques that allow for the estimation of soil moisture from satellite data can help in reducing errors and uncertainties in large scale conceptual hydro-meteorological modelling. A spatially distributed conceptual hydrologic model has been set up based on recent developments of the SUPERFLEX modelling framework. As it requires limited computational efforts, this model enables early warnings for large areas. Using as forcings the ERA-Interim public dataset and coupled with the CMEM radiative transfer model, SUPERFLEX is capable of predicting runoff, soil moisture, and SMOS-like brightness temperature time series. Such a model is traditionally calibrated using only discharge measurements. In this study we designed a multi-objective calibration procedure based on both discharge measurements and SMOS-derived brightness temperature observations in order to evaluate the added value of remotely sensed soil moisture data in the calibration process. As a test case we set up the SUPERFLEX model for the large scale Murray-Darling catchment in Australia ( 1 Million km2). When compared to in situ soil moisture time series, model predictions show good agreement resulting in correlation coefficients exceeding 70 % and Root Mean Squared Errors below 1 %. When benchmarked with the physically based land surface model CLM, SUPERFLEX exhibits similar performance levels. By adapting the runoff routing function within the SUPERFLEX model, the predicted discharge results in a Nash Sutcliff Efficiency exceeding 0.7 over both the calibration and the validation periods.
NASA Astrophysics Data System (ADS)
Faccini, F.; Luino, F.; Sacchini, A.; Turconi, L.; De Graff, J. V.
2015-04-01
The Ligurian area has always suffered from significant geo-hydrological events causing casualties and serious damage. The atmospheric circulation in autumn and winter coupled with landform peculiarities are the main causes this hazard becoming a risk to human life, structures, and infrastructures. Genoa city and the surrounding metropolitan area are commonly subject to heavy rainfall that induces violent flash floods and many shallow landslides. The most recent rainfall events occurred on 9-10 October and 15 November 2014, again causing loss of human lives and widespread damage. A troubling trend since the beginning of the new century, is the recurrence of such events with greater frequency than in the past. The city of Genoa serves as a very interesting case-study for geo-hydrological risks. Cloudbursts of few hours seem to have a rainfall intensity basically greater than in the past; that causes increase of hydrometric levels of the watercourses that quickly reach alarming values close to the overflowing. This meteorological factor, added to growing urbanization of the valley floors and slopes located north of Genoa, has inevitably produced a general trend of increasing risk for the city. Urbanization is particularly notable for the narrowing process in all cross-sections of Genoa's watercourses, both in the main ones and in the secondary streams that flow directly into the Gulf of Genoa. The narrowing of the sections resulted from the increasing demand for new spaces owing to both industrial development (which started initially at the coastal areas of Genoa), and the growth of the Genoa population. The number of inhabitants grew from fewer than 200 000 at the beginning of the 19th century tool a peak of over 800 000 in the 1970s modifying the water balance of the basins and increasing the geo-hydrological risk in an unacceptable way. Among the important topics analyzed in this paper are: (i) the meteorological characteristics of these events, (ii) the changes in the rate of daily precipitation, and (iii) the most significant periods of the urban land development determining important changes of the territory above all on the hydrographic network.
NASA Astrophysics Data System (ADS)
Durante, Sara; Schroeder, Katrin; Sparnocchia, Stefania; Mazzei, Luca; Borghini, Mireno; Pierini, Stefano
2017-04-01
The variability of the Tyrrhenian basin water masses properties, as inferred by the evolution of the typical step-like profile of the water column, is analyzed from 2003 to 2016. The dataset contains hydrological time series obtained in two deep control stations at a depth of about 3500 m. The study follows the evolution of double diffusion processes (a coherent basin feature) that leads to well-defined and permanent staircases. In each profile, four main steps can be recognized between 400 m and 2500 m both in conservative temperature (CT) and absolute salinity (SA), the main one having a thickness of about 400 m. The Tyrrhenian Sea is a not particularly dynamic basin if compared with other areas of the Mediterranean Sea, yet the staircases show large hydrological and depth changes. In particular, an increase of CT and SA and an uplifting are observed in the second part of the time series. Such changes can be due to both internal and external forcing. To discern the nature of the forcing, a suitable method [1] has been applied to our case study. Changes in SA are found to be similar along both isobars and neutral surfaces, so they can be ascribed to an external forcing. On the other hand, the CT shows different trends along isobars and neutral surfaces: this suggests that internal forcing can play an important role. The new Western Mediterranean Deep Water formed in severe winters after 2004-2005 and later in the Gulf of Lion (during the so-called Western Mediterranean Transition [2]) is suggested to be an external forcing producing the observed variability. Oscillatory movements of the neutral surfaces can also be observed after 2010. Computation of heat and salt fluxes (both for the whole water column and for each single step) sheds light on the conservative character of hydrological parameters of the step-system. [1] Bindoff, N.L., McDougall, T.J., 1994. J. Phys. Oceanogr. 24, 1137-1152. [2] Schroeder, K., G. P.Gasparini, M. Tangherlini, and M. Astraldi, 2006. Geophys. Res. Lett., 33, L21607, doi:10.1029/2006GL027121.
NASA Astrophysics Data System (ADS)
Praskievicz, S. J.; Luo, C.
2017-12-01
Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.
NASA Astrophysics Data System (ADS)
Görgen, K.; Pfister, L.
2008-12-01
The anticipated climate change will lead to modified hydro-meteorological regimes that influence discharge behaviour and hydraulics of rivers. This has variable impacts on managed (anthropogenic) and unmanaged (natural) systems, depending on their sensitivity and vulnerability (ecology, economy, infrastructure, transport, energy production, water management, etc.). Decision makers in these contexts need adequate adaptation strategies to minimize adverse effects of climate change, i.e. an improved knowledge on the potential impacts including uncertainties means an extension of the informed options open to users. The goal of the highly applied study presented here is the development of joint, consistent climate and discharge projections for the international Rhine River catchments (Switzerland, France, Germany, Netherlands) in order to assess future changes of hydro-meteorological regimes in the meso- and macroscale Rhine River catchments and to derive and improve the understanding of such impacts on hydrologic and hydraulic processes. The RheinBlick2050 project is an international effort initiated by the International Commission for the Hydrology of the Rhine Basin (CHR) in close cooperation with the International Commission for the Protection of the Rhine. The core experiment design foresees a data-synthesis, multi-model approach where (transient) (bias- corrected) regional climate change projections are used as forcing data for existing calibrated hydrological (and hydraulic) models at a daily temporal resolution over mesoscale catchments of the Rhine River. Mainly for validation purposes, hydro-meteorological observations from national weather services are compiled into a new consistent 5 km x 5 km reference dataset from 1961 to 2005. RCM data are mainly used from the ENSEMBLES project and other existing dynamical downscaling model runs to derive probabilistic ensembles and thereby also access uncertainties on a regional scale. A benchmarking is helping to identify those atmospheric forcing data that ideally suit the needs for the subsequent hydrological model runs with the LARSIM and HBV models and evaluate those simulations too. As a result, usable information and quantifiable statements (e.g. extreme value statistics, uncertainty assessment, validation), that might form the basis for further planning or policy relevant decisions, are to be derived. Our analyses are highly influenced by the requirements of the potential users and stakeholders from government agencies who shall make use of the data and results. Here we present first results of the application of the complete data processing and modelling chain towards discharge projections on a subset of input data, albeit still without any bias correction applied to the meteorological forcing data.
A comparison study of two snow models using data from different Alpine sites
NASA Astrophysics Data System (ADS)
Piazzi, Gaia; Riboust, Philippe; Campo, Lorenzo; Cremonese, Edoardo; Gabellani, Simone; Le Moine, Nicolas; Morra di Cella, Umberto; Ribstein, Pierre; Thirel, Guillaume
2017-04-01
The hydrological balance of an Alpine catchment is strongly affected by snowpack dynamics. Melt-water supplies a significant component of the annual water budget, both in terms of soil moisture and runoff, which play a critical role in floods generation and impact water resource management in snow-dominated basins. Several snow models have been developed with variable degrees of complexity, mainly depending on their target application and the availability of computational resources and data. According to the level of detail, snow models range from statistical snowmelt-runoff and degree-day methods using composite snow-soil or explicit snow layer(s), to physically-based and energy balance snow models, consisting of detailed internal snow-process schemes. Intermediate-complexity approaches have been widely developed resulting in simplified versions of the physical parameterization schemes with a reduced snowpack layering. Nevertheless, an increasing model complexity does not necessarily entail improved model simulations. This study presents a comparison analysis between two snow models designed for hydrological purposes. The snow module developed at UPMC and IRSTEA is a mono-layer energy balance model analytically resolving heat and phase change equations into the snowpack. Vertical mass exchange into the snowpack is also analytically resolved. The model is intended to be used for hydrological studies but also to give a realistic estimation of the snowpack state at watershed scale (SWE and snow depth). The structure of the model allows it to be easily calibrated using snow observation. This model is further presented in EGU2017-7492. The snow module of SMASH (Snow Multidata Assimilation System for Hydrology) consists in a multi-layer snow dynamic scheme. It is physically based on mass and energy balances and it reproduces the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide an estimation of the snowpack state. In this study, no DA is used. For more details on the DA scheme, please see EGU2017-7777. Observed data supplied by meteorological stations located in three experimental Alpine sites are used: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). Performances of the two models are compared through evaluations of snow mass, snow depth, albedo and surface temperature simulations in order to better understand and pinpoint limits and potentialities of the analyzed schemes and the impact of different parameterizations on models simulations.
Gsflow-py: An integrated hydrologic model development tool
NASA Astrophysics Data System (ADS)
Gardner, M.; Niswonger, R. G.; Morton, C.; Henson, W.; Huntington, J. L.
2017-12-01
Integrated hydrologic modeling encompasses a vast number of processes and specifications, variable in time and space, and development of model datasets can be arduous. Model input construction techniques have not been formalized or made easily reproducible. Creating the input files for integrated hydrologic models (IHM) requires complex GIS processing of raster and vector datasets from various sources. Developing stream network topology that is consistent with the model resolution digital elevation model is important for robust simulation of surface water and groundwater exchanges. Distribution of meteorologic parameters over the model domain is difficult in complex terrain at the model resolution scale, but is necessary to drive realistic simulations. Historically, development of input data for IHM models has required extensive GIS and computer programming expertise which has restricted the use of IHMs to research groups with available financial, human, and technical resources. Here we present a series of Python scripts that provide a formalized technique for the parameterization and development of integrated hydrologic model inputs for GSFLOW. With some modifications, this process could be applied to any regular grid hydrologic model. This Python toolkit automates many of the necessary and laborious processes of parameterization, including stream network development and cascade routing, land coverages, and meteorological distribution over the model domain.
Hydrologic controls on equilibrium soil depths
NASA Astrophysics Data System (ADS)
Nicótina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.
2011-04-01
This paper deals with modeling the mutual feedbacks between runoff production and geomorphological processes and attributes that lead to patterns of equilibrium soil depth. Our primary goal is an attempt to describe spatial patterns of soil depth resulting from long-term interactions between hydrologic forcings and soil production, erosion, and sediment transport processes under the framework of landscape dynamic equilibrium. Another goal is to set the premises for exploiting the role of soil depths in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography. Geomorphological processes are described by means of well-studied geomorphic transport laws. The modeling approach is applied to the semiarid Dry Creek Experimental Watershed, located near Boise, Idaho. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origins are discussed.
Pursuing realistic hydrologic model under SUPERFLEX framework in a semi-humid catchment in China
NASA Astrophysics Data System (ADS)
Wei, Lingna; Savenije, Hubert H. G.; Gao, Hongkai; Chen, Xi
2016-04-01
Model realism is pursued perpetually by hydrologists for flood and drought prediction, integrated water resources management and decision support of water security. "Physical-based" distributed hydrologic models are speedily developed but they also encounter unneglectable challenges, for instance, computational time with low efficiency and parameters uncertainty. This study step-wisely tested four conceptual hydrologic models under the framework of SUPERFLEX in a small semi-humid catchment in southern Huai River basin of China. The original lumped FLEXL has hypothesized model structure of four reservoirs to represent canopy interception, unsaturated zone, subsurface flow of fast and slow components and base flow storage. Considering the uneven rainfall in space, the second model (FLEXD) is developed with same parameter set for different rain gauge controlling units. To reveal the effect of topography, terrain descriptor of height above the nearest drainage (HAND) combined with slope is applied to classify the experimental catchment into two landscapes. Then the third one (FLEXTOPO) builds different model blocks in consideration of the dominant hydrologic process corresponding to the topographical condition. The fourth one named FLEXTOPOD integrating the parallel framework of FLEXTOPO in four controlled units is designed to interpret spatial variability of rainfall patterns and topographic features. Through pairwise comparison, our results suggest that: (1) semi-distributed models (FLEXD and FLEXTOPOD) taking precipitation spatial heterogeneity into account has improved model performance with parsimonious parameter set, and (2) hydrologic model architecture with flexibility to reflect perceived dominant hydrologic processes can include the local terrain circumstances for each landscape. Hence, the modeling actions are coincided with the catchment behaviour and close to the "reality". The presented methodology is regarding hydrologic model as a tool to test our hypothesis and deepen our understanding of hydrologic processes, which will be helpful to improve modeling realism.
Shuttle radar DEM hydrological correction for erosion modelling in small catchments
NASA Astrophysics Data System (ADS)
Jarihani, Ben; Sidle, Roy; Bartley, Rebecca
2016-04-01
Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modelling of environmental processes. Catchment and hillslope scale runoff and sediment processes (i.e., patterns of overland flow, infiltration, subsurface stormflow and erosion) are all topographically mediated. In remote and data-scarce regions, high resolution DEMs (LiDAR) are often not available, and moderate to course resolution digital elevation models (e.g., SRTM) have difficulty replicating detailed hydrological patterns, especially in relatively flat landscapes. Several surface reconditioning algorithms (e.g., Smoothing) and "Stream burning" techniques (e.g., Agree or ANUDEM), in conjunction with representation of the known stream networks, have been used to improve DEM performance in replicating known hydrology. Detailed stream network data are not available at regional and national scales, but can be derived at local scales from remotely-sensed data. This research explores the implication of high resolution stream network data derived from Google Earth images for DEM hydrological correction, instead of using course resolution stream networks derived from topographic maps. The accuracy of implemented method in producing hydrological-efficient DEMs were assessed by comparing the hydrological parameters derived from modified DEMs and limited high-resolution airborne LiDAR DEMs. The degree of modification is dominated by the method used and availability of the stream network data. Although stream burning techniques improve DEMs hydrologically, these techniques alter DEM characteristics that may affect catchment boundaries, stream position and length, as well as secondary terrain derivatives (e.g., slope, aspect). Modification of a DEM to better reflect known hydrology can be useful, however, knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.
NASA Astrophysics Data System (ADS)
Mizukami, N.; Clark, M. P.; Newman, A. J.; Wood, A.; Gutmann, E. D.
2017-12-01
Estimating spatially distributed model parameters is a grand challenge for large domain hydrologic modeling, especially in the context of hydrologic model applications such as streamflow forecasting. Multi-scale Parameter Regionalization (MPR) is a promising technique that accounts for the effects of fine-scale geophysical attributes (e.g., soil texture, land cover, topography, climate) on model parameters and nonlinear scaling effects on model parameters. MPR computes model parameters with transfer functions (TFs) that relate geophysical attributes to model parameters at the native input data resolution and then scales them using scaling functions to the spatial resolution of the model implementation. One of the biggest challenges in the use of MPR is identification of TFs for each model parameter: both functional forms and geophysical predictors. TFs used to estimate the parameters of hydrologic models typically rely on previous studies or were derived in an ad-hoc, heuristic manner, potentially not utilizing maximum information content contained in the geophysical attributes for optimal parameter identification. Thus, it is necessary to first uncover relationships among geophysical attributes, model parameters, and hydrologic processes (i.e., hydrologic signatures) to obtain insight into which and to what extent geophysical attributes are related to model parameters. We perform multivariate statistical analysis on a large-sample catchment data set including various geophysical attributes as well as constrained VIC model parameters at 671 unimpaired basins over the CONUS. We first calibrate VIC model at each catchment to obtain constrained parameter sets. Additionally, parameter sets sampled during the calibration process are used for sensitivity analysis using various hydrologic signatures as objectives to understand the relationships among geophysical attributes, parameters, and hydrologic processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Yang; Lei, Huimin; Yang, Dawen
Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of themore » Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.« less
Hydrologic modeling strategy for the Islamic Republic of Mauritania, Africa
Friedel, Michael J.
2008-01-01
The government of Mauritania is interested in how to maintain hydrologic balance to ensure a long-term stable water supply for minerals-related, domestic, and other purposes. Because of the many complicating and competing natural and anthropogenic factors, hydrologists will perform quantitative analysis with specific objectives and relevant computer models in mind. Whereas various computer models are available for studying water-resource priorities, the success of these models to provide reliable predictions largely depends on adequacy of the model-calibration process. Predictive analysis helps us evaluate the accuracy and uncertainty associated with simulated dependent variables of our calibrated model. In this report, the hydrologic modeling process is reviewed and a strategy summarized for future Mauritanian hydrologic modeling studies.
Milly, Paul C.D.; Dunne, Krista A.
2011-01-01
Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median -11%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate-change impacts on water.
Chemical and isotopic tracers illustrate pathways of nitrogen loss in a cranberry bed
USDA-ARS?s Scientific Manuscript database
Limited research exists on the hydrological processes driving nitrogen (N) loss from cranberry production, which has been identified as a prominent source of watershed N loading in southeastern Massachusetts (MA). To quantify the hydrological processes underlying N export in cranberry farms, the geo...
On the Use of Models in Hydrology.
ERIC Educational Resources Information Center
de Marsily, G.
1994-01-01
This discussion article addresses the nature of models used in hydrology. It proposes a minimalist classification of models into two categories: models built on data from observations of the processes involved, and those for which there are no observation data on any of these processes, at the scale of interest. (LZ)
An Overview of Hydrologic Studies at Center for Forested Wetlands Research, USDA Forest Service
Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; Timothy J. Callahan; Ge Sun; Masato Miwa; John E. Parsons
2004-01-01
Managing forested wetland landscapes for water quality improvement and productivity requires a detailed understanding of functional linkages between ecohydrological processes and management practices. Studies are being conducted at Center for Forested Wetlands Research (CFWR), USDA Forest Service to understand the fundamental hydrologic and biogeochemical processes...
NASA Astrophysics Data System (ADS)
Gil-Márquez, J. M.; Barberá, J. A.; Andreo, B.; Mudarra, M.
2017-01-01
Chemical and isotopic evolution of groundwater in an evaporite karst plateau (including wetland areas and saline to hyper-saline springs) located at S Spain was studied. Physicochemical parameters, major ions and stable isotopes were analyzed in rain, brine spring, wetland and leakage water samples, from which the most common mineral saturation indexes were computed and geochemical and isotopic modelling were performed. Results show an apparent relationship between the elevation of brine springs and their water mineralization, indicating that drainage at higher altitude may be associated to gravity-driven flows, since brackish groundwater is isotopically fractionated due to evaporation. On the other hand, the lower altitude springs could drain deeper flows with longer residence time, resulting in highly mineralized and warmer (briny) groundwater. The dissolution of halite and gypsum has proved to be the main geochemical processes, which are favored by the great ionic strength of groundwater. Calcite precipitation occurs in brackish waters draining wetlands, being boosted by common ion effect (when CaSO4 waters are present) and solute concentration caused by evaporation. Modelling results strongly support the hypothesis that most of the selected springs geochemically evolve in a common (S-N) flowpath. The methods used in this research contribute to a better understanding of the hydrogeological processes occurring in the studied evaporitic system, but also in equivalent hydrological environments worldwide.
NASA Astrophysics Data System (ADS)
Minaya, Veronica; Corzo, Gerald; van der Kwast, Johannes; Mynett, Arthur
2016-04-01
Many terrestrial biogeochemistry process models have been applied around the world at different scales and for a large range of ecosystems. Grasslands, and in particular the ones located in the Andean Region are essential ecosystems that sustain important ecological processes; however, just a few efforts have been made to estimate the gross primary production (GPP) and the hydrological budgets for this specific ecosystem along an altitudinal gradient. A previous study, which is one of the few available in the region, considered the heterogeneity of the main properties of the páramo vegetation and showed significant differences in plant functional types, site/soil parameters and daily meteorology. This study extends the work above mentioned and uses spatio-temporal analysis of the BIOME-BGC model results. This was done to simulate the GPP and the water fluxes in space and time, by applying altitudinal analysis. The catchment located at the southwestern slope of the Antisana volcano in Ecuador was selected as a representative area of the Andean páramos and its hydrological importance as one of the main sources of a water supply reservoir in the region. An accurate estimation of temporal changes in GPP in the region is important for carbon budget assessments, evaluation of the impact of climate change and biomass productivity. This complex and yet interesting problem was integrated by the ecosystem process model BIOME-BGC, the results were evaluated and associated to the land cover map where the growth forms of vegetation were identified. The responses of GPP and the water fluxes were not only dependent on the environmental drivers but also on the ecophysiology and the site specific parameters. The model estimated that the GPP at lower elevations doubles the amount estimated at higher elevations, which might have a large implication during extrapolations at larger spatio-temporal scales. The outcomes of the stand hydrological processes demonstrated a wrong consideration of a unique input of water in the system in addition to the poor estimation of the water storage leading to a wrong assessment of the water fluxes in the páramo ecosystem. A further development of the BIOME-BGC is needed to be applicable in the spatio-temporal analysis of the páramo vegetation in the region that can potentially assess the changes in the terrestrial ecosystem due to variations in the climatic drivers.
NASA Astrophysics Data System (ADS)
Baroni, Gabriele; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine
2017-04-01
The advances in computer science and the availability of new detailed data-sets have led to a growing number of distributed hydrological models applied to finer and finer grid resolutions for larger and larger catchment areas. It was argued, however, that this trend does not necessarily guarantee better understanding of the hydrological processes or it is even not necessary for specific modelling applications. In the present study, this topic is further discussed in relation to the soil spatial heterogeneity and its effect on simulated hydrological state and fluxes. To this end, three methods are developed and used for the characterization of the soil heterogeneity at different spatial scales. The methods are applied at the soil map of the upper Neckar catchment (Germany), as example. The different soil realizations are assessed regarding their impact on simulated state and fluxes using the distributed hydrological model mHM. The results are analysed by aggregating the model outputs at different spatial scales based on the Representative Elementary Scale concept (RES) proposed by Refsgaard et al. (2016). The analysis is further extended in the present study by aggregating the model output also at different temporal scales. The results show that small scale soil variabilities are not relevant when the integrated hydrological responses are considered e.g., simulated streamflow or average soil moisture over sub-catchments. On the contrary, these small scale soil variabilities strongly affect locally simulated states and fluxes i.e., soil moisture and evapotranspiration simulated at the grid resolution. A clear trade-off is also detected by aggregating the model output by spatial and temporal scales. Despite the scale at which the soil variabilities are (or are not) relevant is not universal, the RES concept provides a simple and effective framework to quantify the predictive capability of distributed models and to identify the need for further model improvements e.g., finer resolution input. For this reason, the integration in this analysis of all the relevant input factors (e.g., precipitation, vegetation, geology) could provide a strong support for the definition of the right scale for each specific model application. In this context, however, the main challenge for a proper model assessment will be the correct characterization of the spatio- temporal variability of each input factor. Refsgaard, J.C., Højberg, A.L., He, X., Hansen, A.L., Rasmussen, S.H., Stisen, S., 2016. Where are the limits of model predictive capabilities?: Representative Elementary Scale - RES. Hydrol. Process. doi:10.1002/hyp.11029
NASA Astrophysics Data System (ADS)
Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.
2015-12-01
Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff contributed about 40%, 20% in subsurface while there is about 13% in the base flow. For better understanding and interpretation of the area there is still need of further coherent research and analysis for land use change and future climate change impact in the glaciered alpine catchment of Himalayan region.
Isabwe, Alain; Yang, Jun R; Wang, Yongming; Liu, Lemian; Chen, Huihuang; Yang, Jun
2018-07-15
Although the influence of microbial community assembly processes on aquatic ecosystem function and biodiversity is well known, the processes that govern planktonic communities in human-impacted rivers remain largely unstudied. Here, we used multivariate statistics and a null model approach to test the hypothesis that environmental conditions and obstructed dispersal opportunities, dictate a deterministic community assembly for phytoplankton and bacterioplankton across contrasting hydrographic conditions in a subtropical mid-sized river (Jiulong River, southeast China). Variation partitioning analysis showed that the explanatory power of local environmental variables was larger than that of the spatial variables for both plankton communities during the dry season. During the wet season, phytoplankton community variation was mainly explained by local environmental variables, whereas the variance in bacterioplankton was explained by both environmental and spatial predictors. The null model based on Raup-Crick coefficients for both planktonic groups suggested little evidences of the stochastic processes involving dispersal and random distribution. Our results showed that hydrological change and landscape structure act together to cause divergence in communities along the river channel, thereby dictating a deterministic assembly and that selection exceeds dispersal limitation during the dry season. Therefore, to protect the ecological integrity of human-impacted rivers, watershed managers should not only consider local environmental conditions but also dispersal routes to account for the effect of regional species pool on local communities. Copyright © 2018 Elsevier B.V. All rights reserved.
Shope, William G.
1987-01-01
The U. S. Geological Survey maintains the basic hydrologic data collection system for the United States. The Survey is upgrading the collection system with electronic communications technologies that acquire, telemeter, process, and disseminate hydrologic data in near real-time. These technologies include satellite communications via the Geostationary Operational Environmental Satellite, Data Collection Platforms in operation at over 1400 Survey gaging stations, Direct-Readout Ground Stations at nine Survey District Offices and a network of powerful minicomputers that allows data to be processed and disseminate quickly.
NASA Astrophysics Data System (ADS)
Buytaert, Wouter; Zulkafli, Zed; Grainger, Sam; Acosta, Luis; Bastiaensen, Johan; De Bièvre, Bert; Bhusal, Jagat; Chanie, Tilashwork; Clark, Julian; Dewulf, Art; Foggin, Marc; Hannah, David; Hergarten, Christian; Isaeva, Aiganysh; Karpouzoglou, Timos; Pandey, Bhopal; Paudel, Deepak; Sharma, Keshav; Steenhuis, Tammo; Tilahun, Seifu; Van Hecken, Gert; Zhumanova, Munavar
2014-10-01
The participation of the general public in the research design, data collection and interpretation process together with scientists is often referred to as citizen science. While citizen science itself has existed since the start of scientific practice, developments in sensing technology, data processing and visualisation, and communication of ideas and results, are creating a wide range of new opportunities for public participation in scientific research. This paper reviews the state of citizen science in a hydrological context and explores the potential of citizen science to complement more traditional ways of scientific data collection and knowledge generation for hydrological sciences and water resources management. Although hydrological data collection often involves advanced technology, the advent of robust, cheap and low-maintenance sensing equipment provides unprecedented opportunities for data collection in a citizen science context. These data have a significant potential to create new hydrological knowledge, especially in relation to the characterisation of process heterogeneity, remote regions, and human impacts on the water cycle. However, the nature and quality of data collected in citizen science experiments is potentially very different from those of traditional monitoring networks. This poses challenges in terms of their processing, interpretation, and use, especially with regard to assimilation of traditional knowledge, the quantification of uncertainties, and their role in decision support. It also requires care in designing citizen science projects such that the generated data complement optimally other available knowledge. Lastly, we reflect on the challenges and opportunities in the integration of hydrologically-oriented citizen science in water resources management, the role of scientific knowledge in the decision-making process, and the potential contestation to established community institutions posed by co-generation of new knowledge.
Framework for a hydrologic climate-response network in New England
Lent, Robert M.; Hodgkins, Glenn A.; Dudley, Robert W.; Schalk, Luther F.
2015-01-01
Many climate-related hydrologic variables in New England have changed in the past century, and many are expected to change during the next century. It is important to understand and monitor these changes because they can affect human water supply, hydroelectric power generation, transportation infrastructure, and stream and riparian ecology. This report describes a framework for hydrologic monitoring in New England by means of a climate-response network. The framework identifies specific inland hydrologic variables that are sensitive to climate variation; identifies geographic regions with similar hydrologic responses; proposes a fixed-station monitoring network composed of existing streamflow, groundwater, lake ice, snowpack, and meteorological data-collection stations for evaluation of hydrologic response to climate variation; and identifies streamflow basins for intensive, process-based studies and for estimates of future hydrologic conditions.
NASA Astrophysics Data System (ADS)
Liu, C.; Yang, X.; Bailey, V. L.; Bond-Lamberty, B. P.; Hinkle, C.
2013-12-01
Mathematical representations of hydrological and biogeochemical processes in soil, plant, aquatic, and atmospheric systems vary with scale. Process-rich models are typically used to describe hydrological and biogeochemical processes at the pore and small scales, while empirical, correlation approaches are often used at the watershed and regional scales. A major challenge for multi-scale modeling is that water flow, biogeochemical processes, and reactive transport are described using different physical laws and/or expressions at the different scales. For example, the flow is governed by the Navier-Stokes equations at the pore-scale in soils, by the Darcy law in soil columns and aquifer, and by the Navier-Stokes equations again in open water bodies (ponds, lake, river) and atmosphere surface layer. This research explores whether the physical laws at the different scales and in different physical domains can be unified to form a unified multi-scale model (UMSM) to systematically investigate the cross-scale, cross-domain behavior of fundamental processes at different scales. This presentation will discuss our research on the concept, mathematical equations, and numerical execution of the UMSM. Three-dimensional, multi-scale hydrological processes at the Disney Wilderness Preservation (DWP) site, Florida will be used as an example for demonstrating the application of the UMSM. In this research, the UMSM was used to simulate hydrological processes in rooting zones at the pore and small scales including water migration in soils under saturated and unsaturated conditions, root-induced hydrological redistribution, and role of rooting zone biogeochemical properties (e.g., root exudates and microbial mucilage) on water storage and wetting/draining. The small scale simulation results were used to estimate effective water retention properties in soil columns that were superimposed on the bulk soil water retention properties at the DWP site. The UMSM parameterized from smaller scale simulations were then used to simulate coupled flow and moisture migration in soils in saturated and unsaturated zones, surface and groundwater exchange, and surface water flow in streams and lakes at the DWP site under dynamic precipitation conditions. Laboratory measurements of soil hydrological and biogeochemical properties are used to parameterize the UMSM at the small scales, and field measurements are used to evaluate the UMSM.
What are the main research challenges in hydrology?
NASA Astrophysics Data System (ADS)
Savenije, H. H. G.
2012-04-01
The science of hydrology finds itself in a difficult situation. The PUB decade has told us that we are not very good at predicting hydrological behaviour in a data scarce environment. How good is our science if we are so uncertain about our predictions? On the other hand experienced hydrologists may say that we know enough for most practical problems. We can apply standard approaches or models to a variety of situations and if we have enough data we can make reasonable predictions of river flow, groundwater levels or water availability. In the world of applied hydrology we have enough knowledge to design dams, well fields, embankments, irrigation schemes, water intakes, and the like. There are proofs galore of impressive hydraulic works, all around the world. But for a scientist these accomplishments are hardly satisfying. The fact that a model works is no proof that the theory is correct, or that we understand the processes behind it. A hydrological scientist will rightly point out that there is still a lot that we don't understand. Although we can apply rainfall-runoff models to catchments, we fail to understand how exactly the water behaves, or how long it resides within the different compartments of the system. From a science perspective this is very unsatisfactory, even though engineers may argue that there is no problem as long as the models give reasonable outputs. So is our science adequate or are we still in the dark and do we fail to understand precisely how our hydrological system functions, much like a clockmaker who can read the time from a watch, but fails to understand how precisely the clockwork works? Hydrology is about the occurrence and flow of water (or moisture) through the Earth system. In that sense it is similar to other Earth sciences, such a climatology, oceanography or hydraulics. But this similarity is treacherous, because it is different in one fundamental aspect. Unlike other Earth sciences, in hydrology the medium through which the water flows is unknown. This medium is highly heterogeneous at all scales and largely unobservable. Knowing just the basic laws of conservation of mass and momentum is not sufficient because we lack geometrical relationships that define the medium through which the water flows. We often call these equations the closure relations, because they are the equations that we lack to make the system predictable. As hydrologists we know we can measure the characteristics of this medium indirectly by setting up an experiment or by calibration, but these characteristics are scale dependent and hence need to be (re-)calibrated if we move to a different scale. This makes hydrology highly empirical and dependent on calibration. Other scientists often fail to see this fundamental aspect of hydrology and may blame hydrologists for not being able to forecast the system's behaviour without calibration. They also have closure problems, but having observable system boundaries they have been able to develop scaling laws that allow them to use closure relations for new situations. For instance they developed the Manning equation for the interaction with the river bed, with tabulated coefficients for use in a wide range of hypothetical cases. A similarly simple hydrological equation such as the Darcy equation, however, always requires calibration because we cannot observe or predict subsurface characteristics. And if it is difficult for an aquifer, then we can imagine how difficult it is for a catchment. By now we know that the reductionist approach, that aims to solve this problem by starting from the smallest element and to upscale to the catchment scale, does not work. Not only because it would require lots of data, but more importantly because it is a flawed concept. It neglects the fact that the hydrological system is organised and that in upscaling there are scaling laws that we need to obey. But what are these scaling laws? That is the fundamental question. We do know that in hydrology sometimes surprisingly simple laws come to the fore, however complex the hydrological system is. Here lies the opportunity. There are physical processes at play behind the evolution of hydrological patterns. Because the formation of catchments is through erosion of the substratum and the deposition of its sediments, the formation process is the result of energy dissipation and hence entropy generation. Somewhere the answer lies in applying entropy laws to hydrology and to the characteristics of the substrate. For me, finding the laws that govern the characteristics of the substrate is the largest challenge for the science of hydrology in the coming decade. It requires that we embrace the Darwinian science of evolution and apply it to catchment formation processes. There is a lot that we can learn from geo-morphologists, geologists, physicists and ecologists. We have to find the laws that are behind the patterns that exist in and under the landscape and subsequently find the causes for the existence of relatively simple hydrological laws, such as the linear recession of a hydrograph, Lacey's equation for the width of a channel, the exponential shape of an estuary, or the predictability of the Budyko curve. And I would be very happy if we could develop the scaling law for the threshold function of the unsaturated reservoir, which can so well be described by a beta-function. Only if we try to find the physical explanation for these relatively simple laws can we claim that hydrology is a true Earth science, and can we start to make our science a predictive science.
NASA Astrophysics Data System (ADS)
Sanzana, Pedro; Gironas, Jorge; Braud, Isabelle; Branger, Flora; Rodriguez, Fabrice; Vargas, Ximena; Hitschfeld, Nancy; Francisco Munoz, Jose
2016-04-01
In addition to land use changes, the process of urbanization can modify the direction of the surface and sub-surface flows, generating complex environments and increasing the types of connectivity between pervious and impervious areas. Thus, hydrological pathways in urban and periurban areas are significantly affected by artificial elements like channels, pipes, streets and other elements of storm water systems. This work presents Geo-PUMMA, a new GIS toolbox to generate vectorial meshes for distributed hydrological modeling and extract the drainage network in urban and periurban terrain. Geo-PUMMA gathers spatial information maps (e.g. cadastral, soil types, geology and digital elevation models) to produce Hydrological Response Units (HRU) and Urban Hydrological Elements (UHE). Geo-PUMMA includes tools to improve the initial mesh derived from GIS layers intersection in order to respect geometrical constraints, which ensures numerical stability while preserving the shape of the initial HRUs and minimizing the small elements to lower computing times. The geometrical constraints taken into account include: elements convexity, limitation of the number of sliver elements (e.g. roads) and of very small or very large elements. This toolbox allows the representation of basins at small scales (0.1-10km2), as it takes into account the hydrological connectivity of the main elements explicitly, and improves the representation of water pathways compared with classical raster approaches. Geo-PUMMA also allows the extraction of basin morphologic properties such as the width function, the area function and the imperviousness function. We applied this new toolbox to two periurban catchments: the Mercier catchment located near Lyon, France, and the Estero El Guindo catchment located in the Andean piedmont in the Maipo River, Chile. We use the capability of Geo-PUMMA to generate three different meshes. The first one is the initial mesh derived from the direct intersection of GIS layers. The second one is based on fine triangulation of HRUs and is considered the best one we can obtain (reference mesh). The third one is the recommended mesh, preserving the shape of the initial HRUs and limiting the number of elements. The representation of the drainage network and its morphological properties is compared between the three meshes. This comparison shows that the drainage network representation is particularly improved at small to medium spatial scales when using the recommended meshes (i.e. 120-150 m for the El Guindo catchment and 80-150 m for the Mercier catchment). The results also show that the recommended mesh correctly represents the main features of the drainage network as compared to the reference mesh. KEYWORDS: GRASS-GIS, Computer-assisted mesh generation, periurban catchments
AOIPS water resources data management system
NASA Technical Reports Server (NTRS)
Merritt, E. S.; Shotwell, R. L.; Place, M. C.; Belknap, N. J.
1976-01-01
A geocoded data management system applicable for hydrological applications was designed to demonstrate the utility of the Atmospheric and Oceanographic Information Processing System (AOIPS) for hydrological applications. Within that context, the geocoded hydrology data management system was designed to take advantage of the interactive capability of the AOIPS hardware. Portions of the Water Resource Data Management System which best demonstrate the interactive nature of the hydrology data management system were implemented on the AOIPS. A hydrological case study was prepared using all data supplied for the Bear River watershed located in northwest Utah, southeast Idaho, and western Wyoming.
Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands
NASA Astrophysics Data System (ADS)
Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Pontes, Paulo; Crétaux, Jean-François; Bergé-Nguyen, Muriel; Biancamaria, Sylvain; Gosset, Marielle; Calmant, Stephane; Tanimoun, Bachir
2018-06-01
Hydrological and hydrodynamic models are core tools for simulation of large basins and complex river systems associated to wetlands. Recent studies have pointed towards the importance of online coupling strategies, representing feedbacks between floodplain inundation and vertical hydrology. Especially across semi-arid regions, soil-floodplain interactions can be strong. In this study, we included a two-way coupling scheme in a large scale hydrological-hydrodynamic model (MGB) and tested different model structures, in order to assess which processes are important to be simulated in large semi-arid wetlands and how these processes interact with water budget components. To demonstrate benefits from this coupling over a validation case, the model was applied to the Upper Niger River basin encompassing the Niger Inner Delta, a vast semi-arid wetland in the Sahel Desert. Simulation was carried out from 1999 to 2014 with daily TMPA 3B42 precipitation as forcing, using both in-situ and remotely sensed data for calibration and validation. Model outputs were in good agreement with discharge and water levels at stations both upstream and downstream of the Inner Delta (Nash-Sutcliffe Efficiency (NSE) >0.6 for most gauges), as well as for flooded areas within the Delta region (NSE = 0.6; r = 0.85). Model estimates of annual water losses across the Delta varied between 20.1 and 30.6 km3/yr, while annual evapotranspiration ranged between 760 mm/yr and 1130 mm/yr. Evaluation of model structure indicated that representation of both floodplain channels hydrodynamics (storage, bifurcations, lateral connections) and vertical hydrological processes (floodplain water infiltration into soil column; evapotranspiration from soil and vegetation and evaporation of open water) are necessary to correctly simulate flood wave attenuation and evapotranspiration along the basin. Two-way coupled models are necessary to better understand processes in large semi-arid wetlands. Finally, such coupled hydrologic and hydrodynamic modelling proves to be an important tool for integrated evaluation of hydrological processes in such poorly gauged, large scale basins. We hope that this model application provides new ways forward for large scale model development in such systems, involving semi-arid regions and complex floodplains.
NASA Astrophysics Data System (ADS)
Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.
2017-12-01
In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at even larger geographical domains. Keywords: PAHs; Community multi-scale air quality model; Multimedia fate model; Land use
NASA Astrophysics Data System (ADS)
Munoz-Hernandez, A.; Mayer, A. S.
2008-12-01
The hydrologic systems in Northwest Mexico are at risk of over exploitation due to poor management of the water resources and adverse climatic conditions. The purpose of this work is to create and Integrated Hydrologic-Economic-Institutional Model to support future development in the Yaqui River basin, well known by its agricultural productivity, by directing the water management practices toward sustainability. The Yaqui River basin is a semi-arid basin with an area of 72,000 square kilometers and an average precipitation of 527 mm per year. The primary user of water is agriculture followed by domestic use and industry. The water to meet user demands comes from three reservoirs constructed, in series, along the river. The main objective of the integrated simulation-optimization model is to maximize the economic benefit within the basin, subject to physical and environmental constraints. Decision variables include the water allocation to major users and reservoirs as well as aquifer releases. Economic and hydrologic (including the interaction of the surface water and groundwater) simulation models were both included in the integrated model. The surface water model refers to a rainfall-runoff model created, calibrated, and incorporated into a MATLAB code that estimates the monthly storage in the main reservoirs by solving a water balance. The rainfall-runoff model was coupled with a groundwater model of the Yaqui Valley which was previously developed (Addams, 2004). This model includes flow in the main canals and infiltration to the aquifer. The economic benefit of water for some activities such as agricultural use, domestic use, hydropower generation, and environmental value was determined. Sensitivity analysis was explored for those parameters that are not certain such as price elasticities or population growth. Different water allocation schemes were created based on climate change, climate variability, and socio-economic scenarios. Addams L. 2004. Water resource policy evaluation using a combined hydrologic-economic-agronomic modeling framework: Yaqui Valley, Sonora, Mexico. Ph.D.dissertation, Stanford University.
Gallart, Francesc; Cid, Núria; Latron, Jérôme; Llorens, Pilar; Bonada, Núria; Jeuffroy, Justin; Jiménez-Argudo, Sara-María; Vega, Rosa-María; Solà, Carolina; Soria, Maria; Bardina, Mònica; Hernández-Casahuga, Antoni-Josep; Fidalgo, Aránzazu; Estrela, Teodoro; Munné, Antoni; Prat, Narcís
2017-12-31
When the regime of a river is not perennial, there are four main difficulties with the use of hydrographs for assessing hydrological alteration: i) the main hydrological features relevant for biological communities are not quantitative (discharges) but qualitative (phases such as flowing water, stagnant pools or lack of surface water), ii) stream flow records do not inform on the temporal occurrence of stagnant pools, iii) as most of the temporary streams are ungauged, their regime has to be evaluated by alternative methods such as remote sensing or citizen science, and iv) the biological quality assessment of the ecological status of a temporary stream must follow a sampling schedule and references adapted to the flow- pool-dry regime. To overcome these challenges within an operational approach, the freely available software tool TREHS has been developed within the EU LIFE TRIVERS project. This software permits the input of information from flow simulations obtained with any rainfall-runoff model (to set an unimpacted reference stream regime) and compares this with the information obtained from flow gauging records (if available) and interviews with local people, as well as instantaneous observations by individuals and interpretation of ground-level or aerial photographs. Up to six metrics defining the permanence of water flow, the presence of stagnant pools and their temporal patterns of occurrence are used to determine natural and observed river regimes and to assess the degree of hydrological alteration. A new regime classification specifically designed for temporary rivers was developed using the metrics that measure the relative permanence of the three main phases: flow, disconnected pools and dry stream bed. Finally, the software characterizes the differences between the natural and actual regimes, diagnoses the hydrological status (degree of hydrological alteration), assesses the significance and robustness of the diagnosis and recommends the best periods for biological quality samplings. Copyright © 2017 Elsevier B.V. All rights reserved.
The benefits of daily data and scale up issues in hydrologic models-SWAT and CRAFT
NASA Astrophysics Data System (ADS)
Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell
2017-04-01
When modelling the flow pathways for nutrient transport, the lack of good data and limitation of data resolution become the key cause of low quality output in various hydrologic models. The scale of catchment being studied would present the main issues of the sensitivity and uncertainty expected on the hydrologic modelling. Equally, the time step chosen is also important to nutrient dynamics. This study aims to evaluate the benefits of using both monthly and daily data in hydrologic models, and to address the issues of catchment scale when using the two hydrologic models, the Soil and Water Assessment Tool (SWAT), and Catchment Runoff Attenuation Flux Tool (CRAFT), by comparing the difference between SWAT and CRAFT in flow pathways and sediment transport. The models are different in terms of complexity, therefore the poster will discuss the strengths and weakness of the models. Also we can show the problems of calibration and how the models can be used to support catchment modelling.
NASA Astrophysics Data System (ADS)
Petelet-Giraud, Emmanuelle; Luck, Jean-Marc; Ben Othman, Dalila; Joseph, Christian; Négrel, Philippe
2016-05-01
This study presents the ability of major/trace elements together with strontium isotopes to trace water origins at small scale at the outlet of a small watershed (Peyne, Hérault, France). Two small sub-basins draining distinct lithologies in their headwater (Plio-Villafranchian conglomerate versus Triassic gypsum-rich marls and dolomites) and the Miocene formations downstream are investigated. The Ca/Na vs. Mg/Na ratios and Ca/Sr vs. 87Sr/86Sr ratios allow the different facies that imprint the water signature to be identified, according to the hydrological conditions (low/high flows). Moreover, Sr isotopes evidence the two distinct Miocene facies, the sandy marls and the marine carbonates. The variation of the signature at the outlet of the basin allows identifying the main contributing compartments according to the hydrological conditions. This approach, based on a limited number of samples, highlights the potential of geochemical and isotopic tracers to define the contributing compartments to the runoff at the outlet of a basin. It thus could be considered as a potential alternative way to classical hydrological monitoring to delineate the main contributing areas during floods, especially in small ungauged river basins, where most of the devastating flash floods are recorded.
Scale effect challenges in urban hydrology highlighted with a distributed hydrological model
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire
2018-01-01
Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration
by innovative methods of model resolution alteration
based on the spatial data variability and scaling of flows in urban hydrology.
NASA Astrophysics Data System (ADS)
Dietze, Elisabeth; Slowinski, Michal; Kienel, Ulrike; Zawiska, Izabela; Brauer, Achim
2014-05-01
Deciphering the main processes contributing to lake and landscape evolution in the northern central European lowlands on different temporal scales is one of the main targets of the Virtual Institute of Integrated Climate and Landscape Evolution Analysis (ICLEA) of the Helmholtz Association. In the context of future climatic changes especially the hydrological system is a vulnerable landscape component that showed considerably large changes in the recent past. The analysis of lake sediment archives can help to infer long-term dynamics of regional lake and groundwater levels, although available proxy information needs to be studied carefully, as water level changes are only one trigger. Lake Fürstenseer See (53°19'N, 13°12'E, lake level in 2009: 63.3 m a.s.l.) formed after the retreat of the Weichselian ice sheet in a subglacial channel in the direct forefront of the Pommerian ice margin. The ~2 km2 large lake (zmax = 24.5 m) has a (sub-) surficial catchment area of ~(20) 40 km2 including other smaller lakes and peatlands. In the past, the lake system was artificially dammed for the operation of water mills. Located within the well-drained sandur substrate, the lake levels vary with groundwater levels in response to hydrological and catchment-related groundwater recharge. Detrital matter input from fluvial activity can be excluded. Lake sediment cores at four sites along a transect down to 23 m water depth show distinct sediment facies patterns. Stratigraphic descriptions and non-destructive continuous micro-XRF scanning allowed the differentiation of the main sediment facies, which were microscopically described using thin sections. Quantification of total organic and inorganic matter (TOC, TIC, C/N-composition) and discontinuous macrorest, diatom and Cladocera analysis helped to approach the sedimentation history. Stable isotopes of (delta-180, delta-13C) were used for characterization of carbonates. A high amount of non-reworked terrestrial plant remains from prominent facies shifts were dated with AMS-14C and allowed to link the different cores, assess individual sedimentation rates and to evaluate sediment focusing in the lake. Carbonatic and organic gyttjas are the main sedimentary components related mainly to authigenic production. Sometimes, carbonates show detrital mineral structures and correlations with allochthonous components (K, Ti, Si) that can only be provided by reworking of shore and slope material or in times of intense aeolian transport. Sandy facies dominate only at near-shore, steep sites and form distinct layers at the current sediment limit. A robust statistical analysis considering compositional data constraints allows an objective compilation of indications for lake level change from water depth-related habitat changes and shore erosion. They oppose detrital matter input from aeolian processes in times of anthropogenically-cleared forests. A first lake level reconstruction from the Early Holocene to recent times will be presented and linked to climatic and/or anthropogenic drivers of regional hydrological changes.
Hydrological regime as key to the morpho-texture and activity of braided streams
NASA Astrophysics Data System (ADS)
Storz-Peretz, Y.; Laronne, J. B.
2012-04-01
Braided streams are a common fluvial pattern in different climates. However, studies of gravel braided streams have mainly been conducted in humid braided systems or in flume simulations thereof, leaving arid braided streams scarcely investigated. Dryland rivers have bare catchments, rapid flow recession and unarmoured channel beds which are responsible for very high bedload discharges, thereby increasing the likelihood for braiding. Our main objective is to characterize the morpho-texture of the main morphological elements - mid-channel bars, chutes and anabranches (braid-cells) in the dryland braided system and compare them to their humid counterparts. Selected areas of the dryland braided Wadis Ze'elim, Rahaf and Roded in the SE hyper-arid Israel were measured, as were La-Bleone river in the French pre-alps along with the Saisera and Cimoliana rivers in NE Italy representing humid braided systems. Terrestrial Laser Scanning (TLS) of morphological units produced point clouds from which high resolution accurate Digital Elevation Models (DEMs) were extracted. Active braid cells in humid environments were also surveyed by electronic theodolite. Roughness and upper tail Grain Size Distribution (GSD) quantiles were derived from the scanned point clouds or from Wolman sampling. Results indicate that dryland anabranches tend to be finer-grained and less armoured than the bars, contrary to the humid braided systems, where the main or larger anabranches are coarser-grained and more armoured than the bars. Chutes are commonly similar or coarser-grained than the bars they dissect, in accordance with their steeper gradients due to the considerable relief of the bar-anabranch. The morpho-texture displayed in the steep braided Saisera River, located in the Italian Dolomites having the highest annual precipitation, has similarity to that of the dryland braided channels. In drylands coarse gravel is deposited mainly as bars due to the high flux of bedload, whereas the rapid flow recession is responsible for deposition of finer sediment with minimal winnowing in the branch channels. Therefore, channels are finer-grained than the bars. This process is associated with the mid-channel deposition of central bars. However, the steeper chutes and coarser anabranches are associated with erosive braiding processes, such as chute cutoffs and multiple bar dissection, allowing winnowing to occur also during rapid recession. Hence coarser-grained anabranches in drylands are essentially chutes. Lengthy flow recession in humid braided channels allows winnowing of fines, thereby generating armored channels, the finer sedimentary particles often deposited downstream as unit bars. Therefore, channels are coarser-grained than the bars they surround. Even though the steep Saisera is in a humid region, its hydrological regime is ephemeral with rapid and short recessions, responsible for a morpho-texture similar to that of dryland braided streams. Hence, the hydrologic regimen is a key to understanding the morpho-textural character of braided channels and for the higher activity of the ephemeral unarmoured channels in sub-barful events compared to their humid counterparts.
NASA Astrophysics Data System (ADS)
Corbari, Chiara; paleari, roberto; mantovani, federico; tarro, stefano; mancini, marco
2017-04-01
Weighting lysimeters allow a direct measurement of water loss from the soil, determining the soil water balance, and thus providing an interesting tool to validate hydrological models. Lysimeters, which world originates from the greek words "lysis" (movement) and "metron" (to measure) have been used to measure percolation of water through the soils for over 300 years. The aim of this study is twofold: 1) to perform water and energy flux measurements under different meteorological conditions, irrigation practice (surface flood, drip and groundwater capillary rise), and soil coverage (bare soil and basil crop), 2) to verify hydrological model FEST-EWB parameterization at the lysimeter scale. A weighting lysimeter has been constructed in the Hydraulic Laboratory of Politecnico di Milano. It consists of a steel box of 1.5 x 1.5 x 1 m containing reconstructed soil. The box is mounted on a scale with four load cells with a nominal weight of 6000 kg and a precision of 0,5 kg. The lysimeter is fully instrumented to measure all the main components of the hydrological cycle. Profiles of soil moisture and temperature are provided by 7 probes; ground heat flux is measured by a heat flux plate and two thermocouples; the drainage flux is measured by a tipping bucket rain gauge; the four components of radiation are provided by a net radiometer; air temperature and humidity are measured by a thermo-hygrometer. Data are collected every 10 minutes on a datalogger. A thermal camera is also installed to provide accurate maps of land surface temperature. The different instruments have been subjected to a rigorous calibration process. A low cost station is also installed based on an Arduino micro-controller measuring soil moisture and temperature, air humidity and temperature and solar radiation. The idea is to understand whether low cost instruments can be used to monitor the fundamental hydrological variables. The measured fluxes (e.g. evapotranspiration, soil moisture, land surface temperature) are then used to verify the correctness of the hydrological model FEST-EWB parameterization. A general good accuracy of 2-6 % between observed and modeled fluxes is obtained.
A Fresh Start for Flood Estimation in Ungauged Basins
NASA Astrophysics Data System (ADS)
Woods, R. A.
2017-12-01
The two standard methods for flood estimation in ungauged basins, regression-based statistical models and rainfall-runoff models using a design rainfall event, have survived relatively unchanged as the methods of choice for more than 40 years. Their technical implementation has developed greatly, but the models' representation of hydrological processes has not, despite a large volume of hydrological research. I suggest it is time to introduce more hydrology into flood estimation. The reliability of the current methods can be unsatisfactory. For example, despite the UK's relatively straightforward hydrology, regression estimates of the index flood are uncertain by +/- a factor of two (for a 95% confidence interval), an impractically large uncertainty for design. The standard error of rainfall-runoff model estimates is not usually known, but available assessments indicate poorer reliability than statistical methods. There is a practical need for improved reliability in flood estimation. Two promising candidates to supersede the existing methods are (i) continuous simulation by rainfall-runoff modelling and (ii) event-based derived distribution methods. The main challenge with continuous simulation methods in ungauged basins is to specify the model structure and parameter values, when calibration data are not available. This has been an active area of research for more than a decade, and this activity is likely to continue. The major challenges for the derived distribution method in ungauged catchments include not only the correct specification of model structure and parameter values, but also antecedent conditions (e.g. seasonal soil water balance). However, a much smaller community of researchers are active in developing or applying the derived distribution approach, and as a result slower progress is being made. A change in needed: surely we have learned enough about hydrology in the last 40 years that we can make a practical hydrological advance on our methods for flood estimation! A shift to new methods for flood estimation will not be taken lightly by practitioners. However, the standard for change is clear - can we develop new methods which give significant improvements in reliability over those existing methods which are demonstrably unsatisfactory?
NASA Astrophysics Data System (ADS)
Thenoux, M.; Gironas, J. A.; Mejia, A.
2013-12-01
Cities and urban growth have relevant environmental and social impacts, which could eventually be enhanced or reduced during the urban planning process. From the point of view of hydrology, impermeability and natural soil compaction are one of the main problems that urbanization brings to watershed. Previous studies demonstrate and quantify the impacts of the distribution of imperviousness in a watershed, both on runoff volumes and flow, and the quality and integrity of streams and receiving bodies. Moreover, some studies have investigated the optimal distribution of imperviousness, based on simulating different scenarios of land use change and its effects on runoff, mostly at the outlet of the watershed. However, these studies typically do not address the impact of artificial drainage system associated with the imperviousness scenarios, despite it is known that storm sewer coverage affects the flow accumulation and generation of flow hydrographs. This study seeks to quantify the effects and relevance of the artificial system when it comes to assess the hydrological impacts of the spatial distribution of imperviousness and to determine the characteristics of this influence. For this purpose, an existing model to generate imperviousness distribution scenarios is coupled with a model developed to automatically generate artificial drainage networks. These models are applied to a natural watershed to generate a variety of imperviousness and storm sewer layout scenarios, which are evaluate with a morphoclimatic instantaneous unit hydrograph model. We first tested the ability of this approach to represent the joint effects of imperviousness (i.e. level and distribution) and storm sewer coverage. We then quantified the effects of these variables on the hydrological response, considering also different return period in order to take into account the variability of the precipitation regime. Overall, we show that the layout and spatial coverage of the storm sewer system affect the hydrologic response, and that these effects depend on the degree of imperviousness and the characteristics of the precipitation. Results of this research improve our understanding on how urban planning decisions can contribute to minimize the hydrologic and environmental impacts of urban development.
Watershed scale response to climate change--Cathance Stream Basin, Maine
Dudley, Robert W.; Hay, Lauren E.; Markstrom, Steven L.; Hodgkins, Glenn A.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Cathance Stream Basin, Maine.
An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes
Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...
2017-07-10
Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less
NASA Astrophysics Data System (ADS)
ten Veldhuis, Marie-claire; van Riemsdijk, Birna
2013-04-01
Hydrological analysis of urban catchments requires high resolution rainfall and catchment information because of the small size of these catchments, high spatial variability of the urban fabric, fast runoff processes and related short response times. Rainfall information available from traditional radar and rain gauge networks does no not meet the relevant scales of urban hydrology. A new type of weather radars, based on X-band frequency and equipped with Doppler and dual polarimetry capabilities, promises to provide more accurate rainfall estimates at the spatial and temporal scales that are required for urban hydrological analysis. Recently, the RAINGAIN project was started to analyse the applicability of this new type of radars in the context of urban hydrological modelling. In this project, meteorologists and hydrologists work closely together in several stages of urban hydrological analysis: from the acquisition procedure of novel and high-end radar products to data acquisition and processing, rainfall data retrieval, hydrological event analysis and forecasting. The project comprises of four pilot locations with various characteristics of weather radar equipment, ground stations, urban hydrological systems, modelling approaches and requirements. Access to data processing and modelling software is handled in different ways in the pilots, depending on ownership and user context. Sharing of data and software among pilots and with the outside world is an ongoing topic of discussion. The availability of high resolution weather data augments requirements with respect to the resolution of hydrological models and input data. This has led to the development of fully distributed hydrological models, the implementation of which remains limited by the unavailability of hydrological input data. On the other hand, if models are to be used in flood forecasting, hydrological models need to be computationally efficient to enable fast responses to extreme event conditions. This presentation will highlight ICT-related requirements and limitations in high resolution urban hydrological modelling and analysis. Further ICT challenges arise in provision of high resolution radar data for diverging information needs as well as in combination with other data sources in the urban environment. Different types of information are required for such diverse activities as operational flood protection, traffic management, large event organisation, business planning in shopping districts and restaurants, timing of family activities. These different information needs may require different configurations and data processing for radars and other data sources. An ICT challenge is to develop techniques for deciding how to automatically respond to these diverging information needs (e.g., through (semi-)automated negotiation). Diverse activities also provide a wide variety of information resources that can supplement traditional networks of weather sensors, such as rain sensors on cars and social media. Another ICT challenge is how to combine data from these different sources for answering a particular information need. Examples will be presented of solutions are currently being explored.
Ge Sun; Johnny Boggs; Steven G. McNulty; Devendra M. Amatya; Carl C. Trettin; Zhaohua Dai; James M. Vose; Ileana B. La Torre Torres; Timothy Callahan
2008-01-01
Understanding the hydrologic processes is the first step in making sound watershed management decisions including designing Best Management Practices for nonpoint source pollution control. Over the past fifty years, various forest experimental watersheds have been instrumented across the Carolinas through collaborative studies among federal, state, and private...
Hydrologic processes in the pinyon-juniper woodlands: A literature review
Peter F. Ffolliott; Gerald J. Gottfried
2012-01-01
Hydrologic processes in the pinyon-juniper woodlands of the western region of the United States are variable because of the inherent interactions among the occurring precipitation regimes, geomorphological settings, and edaphic conditions that characterize the ecosystem. A wide range of past and present land-use practices further complicates comprehensive evaluations...
Structural and functional connectivity as a driver of hillslope erosion following disturbance
C. Jason Williams; Frederick B. Pierson; Pete Robichaud; Osama Z. Al-Hamdan; Jan Boll; Eva K. Strand
2016-01-01
Hydrologic response to rainfall on fragmented or burnt hillslopes is strongly influenced by the ensuing connectivity of runoff and erosion processes. Yet cross-scale process connectivity is seldom evaluated in field studies owing to scale limitations in experimental design. This study quantified surface susceptibility and hydrologic response across point to...
USDA-ARS?s Scientific Manuscript database
Precipitation and temperature are two primary drivers that significantly affect hydrologic processes in a watershed. A network of land-based National Climatic Data Center (NCDC) weather stations has been typically used as a primary source of climate input for agro-ecosystem models. However, the ne...
Wetland soils, hydrology and geomorphology
C. Rhett Jackson; James A. Thompson; Randall K. Kolka
2014-01-01
The hydrology, soils, and watershed processes of a wetland all interact with vegetation and animals over time to create the dynamic physical template upon which a wetland's ecosystem is based (Fig. 2.1). With respect to many ecosystem processes, the physical factors defining a wetland environment at any particular time are often treated as independent variables,...
Catchment hydrological responses to forest harvest amount and spatial pattern
Alex Abdelnour; Marc Stieglitz; Feifei Pan; Robert McKane
2011-01-01
Forest harvest effects on streamflow generation have been well described experimentally, but a clear understanding of process-level hydrological controls can be difficult to ascertain from data alone. We apply a new model, Visualizing Ecosystems for Land Management Assessments (VELMA), to elucidate how hillslope and catchment-scale processes control stream discharge in...
BOREAS HYD-8 1994 Gravimetric Moss Moisture Data
NASA Technical Reports Server (NTRS)
Wang, Xuewen; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-8 team made measurements of surface hydrological processes that were collected at the Northern Study Area-Old Black Spruce (NSA-OBS) Tower Flux site in 1994 and at Joey Lake, Manitoba, to support its research into point hydrological processes and the spatial variation of these processes. The data collected may be useful in characterizing canopy interception, drip, throughfall, moss interception, drainage, evaporation, and capacity during the growing season at daily temporal resolution. This particular data set contains the gravimetric moss moisture measurements from June to September 1994. A nested spatial sampling plan was implemented to support research into spatial variations of the measured hydrological processes and ultimately the impact of these variations on modeled carbon and water budgets. These data are stored in tabular ASCII files. The HYD-08 1994 gravimetric moss moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape
Frederick B. Pierson; Peter R. Robichaud; Corey A. Moffet; Kenneth E. Spaeth; Stuart P. Hardegree; Patrick E. Clark; C. Jason Williams
2008-01-01
Post-fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small-plot rainfall and concentrated flow...
Hydrology and landscape connectivity of vernal pools. Chapter 3.
Scott G. Liebowitz; Robert T. Brooks
2008-01-01
Hydrology is fundamental to wetland establishment and maintenance of wetland processes (Cole et al. 2002). Hydrology has been shown to affect, if not control, many aspects of wetland ecology, including litter decomposition and the accumulation of organic matter and sediment (Barlocher et al. 1978), the composition and productivity of pool fauna (Paton and Couch 2002),...
Jim E. O' Connor; Gordon E. Grant; Tana L. Haluska
2003-01-01
Within the Deschutes River basin of central Oregon, the geology, hydrology, and physiography influence geomorphic and ecologic processes at a variety of temporal and spatial scales. Hydrologic and physiographic characteristics of the basin are related to underlying geologic materials. In the southwestern part of the basin, Quaternary volcanism and tectonism has created...