Sample records for main lipid classes

  1. Polar Lipids Analysis of Cultured Phytoplankton Reveals Significant Inter-taxa Changes, Low Influence of Growth Stage, and Usefulness in Chemotaxonomy.

    PubMed

    Cañavate, José Pedro; Armada, Isabel; Hachero-Cruzado, Ismael

    2017-05-01

    The high lipid diversity of microalgae has been used to taxonomically differentiate phytoplankton taxa at the class level. However, important lipids such as phospholipids (PL) and betaine lipids (BL) with potential chemotaxonomy application in phytoplankton ecology have been scarcely studied. The chemotaxonomy value of PL and BL depends on their intraspecific extent of variation as microalgae respond to external changing factors. To determine such effects, lipid class changes occurring at different growth stages in 15 microalgae from ten different classes were analyzed. BL occurred in 14 species and were the less affected lipids by growth stage with diacylglyceryl-hydroxymethyl-N,N,N-trimethyl-b-alanine (DGTA) showing the highest stability. PL were more influenced by growth stage with phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidyletanolamine (PE) declining towards older culture stages in some species. Glycolipids were the more common lipids, and no evident age-related variability pattern could be associated to taxonomic diversity. Selecting BL and PL as descriptor variables optimally distinguished microalgae taxonomic variability at all growth stages. Principal coordinate analysis arranged species through a main tendency from diacylglyceryl-hydroxymethyl-N,N,N-trimethyl-b-alanine (DGCC) containing species (mainly dinoflagellates and haptophytes) to DGTA or PC containing species (mainly cryptophytes). Two diatom classes with similar fatty acid profiles could be distinguished from their respective content in DGTA (Bacillariophyceae) or DGCC (Mediophyceae). In green lineage classes (Trebouxiophyceae, Porphyridophyceae, and Chlorodendrophyceae), PC was a better descriptor than BL. BL and PL explained a higher proportion of microalgae taxonomic variation than did fatty acids and played a complementary role as lipid markers.

  2. Hydrophilic interaction liquid chromatography-mass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes.

    PubMed

    Cífková, Eva; Hájek, Roman; Lísa, Miroslav; HolĿapek, Michal

    2016-03-25

    The goal of this work is a systematic optimization of hydrophilic interaction liquid chromatography (HILIC) separation of acidic lipid classes (namely phosphatidic acids-PA, lysophosphatidic acids-LPA, phosphatidylserines-PS and lysophosphatidylserines-LPS) and other lipid classes under mass spectrometry (MS) compatible conditions. The main parameters included in this optimization are the type of stationary phases used in HILIC, pH of the mobile phase, the type and concentration of mobile phase additives. Nine HILIC columns with different chemistries (unmodified silica, modified silica using diol, 2-picolylamine, diethylamine and 1-aminoanthracene and hydride silica) are compared with the emphasis on peak shapes of acidic lipid classes. The optimization of pH is correlated with the theoretical calculation of acidobasic equilibria of studied lipid classes. The final method using the hydride column, pH 4 adjusted by formic acid and the gradient of acetonitrile and 40 mmol/L of aqueous ammonium formate provides good peak shapes for all analyzed lipid classes including acidic lipids. This method is applied for the identification of lipids in real samples of porcine brain and kidney extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. "Lipid raft aging" in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease.

    PubMed

    Díaz, Mario; Fabelo, Noemí; Ferrer, Isidre; Marín, Raquel

    2018-07-01

    Lipid rafts are highly dynamic membrane domains featured by distinctive biochemical composition and physicochemical properties compared with the surrounding plasma membrane. These microstructures are associated not only with cellular signaling and communication in normal nerve cells but also with pathological processing of amyloid precursor protein in Alzheimer's disease. Using lipid rafts isolated from human frontal cortex in nondemented subjects aging 24 to 85 years, we demonstrate here that lipid structure of lipid rafts undergo significant alterations of specific lipid classes and phospholipid-bound fatty acids as brain cortex correlating with aging. Main changes affect levels of plasmalogens, polyunsaturated fatty acids (especially docosahexaenoic acid and arachidonic acid), total polar lipids (mainly phosphatidylinositol, sphingomyelin, sulfatides, and cerebrosides), and total neutral lipids (particularly cholesterol and sterol esters). Besides, relevant relationships between main fatty acids and/or lipid classes were altered in an age-related manner. This "lipid raft aging" exhibits clear gender differences and appear to be more pronounced in women than in men, especially in older (postmenopausal) women. The outcomes led us to conclude that human cortical lipid rafts are modified by aging in a gender-dependent fashion. Given the central role of bilayer lipid matrix in lipid rafts functionality and neuronal signaling, we hypothesize that these findings might underlie the higher prevalence of cognitive decline evolving toward Alzheimer's disease in postmenopausal women. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes.

    PubMed

    van Smeden, Jeroen; Boiten, Walter A; Hankemeier, Thomas; Rissmann, Robert; Bouwstra, Joke A; Vreeken, Rob J

    2014-01-01

    Ceramides (CERs), cholesterol, and free fatty acids (FFAs) are the main lipid classes in human stratum corneum (SC, outermost skin layer), but no studies report on the detailed analysis of these classes in a single platform. The primary aims of this study were to 1) develop an LC/MS method for (semi-)quantitative analysis of all main lipid classes present in human SC; and 2) use this method to study in detail the lipid profiles of human skin substitutes and compare them to human SC lipids. By applying two injections of 10μl, the developed method detects all major SC lipids using RPLC and negative ion mode APCI-MS for detection of FFAs, and NPLC using positive ion mode APCI-MS to analyze CERs and cholesterol. Validation showed this lipid platform to be robust, reproducible, sensitive, and fast. The method was successfully applied on ex vivo human SC, human SC obtained from tape strips and human skin substitutes (porcine SC and human skin equivalents). In conjunction with FFA profiles, clear differences in CER profiles were observed between these different SC sources. Human skin equivalents more closely mimic the lipid composition of human stratum corneum than porcine skin does, although noticeable differences are still present. These differences gave biologically relevant information on some of the enzymes that are probably involved in SC lipid processing. For future research, this provides an excellent method for (semi-)quantitative, 'high-throughput' profiling of SC lipids and can be used to advance the understanding of skin lipids and the biological processes involved. © 2013.

  5. LMSD: LIPID MAPS structure database

    PubMed Central

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Brown, Alex; Dennis, Edward A.; Glass, Christopher K.; Merrill, Alfred H.; Murphy, Robert C.; Raetz, Christian R. H.; Russell, David W.; Subramaniam, Shankar

    2007-01-01

    The LIPID MAPS Structure Database (LMSD) is a relational database encompassing structures and annotations of biologically relevant lipids. Structures of lipids in the database come from four sources: (i) LIPID MAPS Consortium's core laboratories and partners; (ii) lipids identified by LIPID MAPS experiments; (iii) computationally generated structures for appropriate lipid classes; (iv) biologically relevant lipids manually curated from LIPID BANK, LIPIDAT and other public sources. All the lipid structures in LMSD are drawn in a consistent fashion. In addition to a classification-based retrieval of lipids, users can search LMSD using either text-based or structure-based search options. The text-based search implementation supports data retrieval by any combination of these data fields: LIPID MAPS ID, systematic or common name, mass, formula, category, main class, and subclass data fields. The structure-based search, in conjunction with optional data fields, provides the capability to perform a substructure search or exact match for the structure drawn by the user. Search results, in addition to structure and annotations, also include relevant links to external databases. The LMSD is publicly available at PMID:17098933

  6. Lipid class and fatty acid composition of a little-known and rarely collected alga Exophyllum wentii Weber-van Bosse from Bali Island, Indonesia.

    PubMed

    Illijas, Muhammad I; Indy, Jeane R; Yasui, Hajime; Itabashi, Yutaka

    2009-01-01

    The lipid class and fatty acid composition of a little-known and rarely collected alga Exophyllum wentii from Bali Island, Indonesia were determined for fresh and frozen-thawed samples using thin-layer chromatography, gas-liquid chromatography, and high-performance liquid chromatography. Glycoglycerolipids, which mainly consisted of mongalactosyldiacylglycerols (MGDG) and digalactosyldiacylglycerols (DGDG), were the predominant lipid components, accounting for 67% and 56% of the total polar lipid content in the fresh and frozen-thawed samples, respectively. Phospholipids, including phosphatidylcholines (PC) and phosphatidylglycerols (PG), were detected with lesser amounts in both samples (16-17% of the total polar lipid content). Free fatty acids (FFA), sterols and triacylglycerols (TAG) were also detected in minor quantities; however, the FFA content in the frozen-thawed sample increased to up to 20% of the total lipid content, suggesting that hydrolysis of the membrane lipids had occurred. A crude enzyme preparation from the alga showed activities for hydrolyzing the acyl groups of the phospholipids and glycoglycerolipids. Palmitic acid (16:0) and arachidonic acid (20:4n-6) were the major fatty acids in both the total lipid and in individual polar lipid classes as well as the dominant fatty acids released from the membrane lipids by enzymatic hydrolysis. The high level of 20:4n-6 (29%) in the total lipid and the presence of considerable amounts of PC (11% of the total polar lipid) and PG (6.2%) support classification of E. wentii into the Division Rhodophyta.

  7. Supercritical fluid chromatography for lipid analysis in foodstuffs.

    PubMed

    Donato, Paola; Inferrera, Veronica; Sciarrone, Danilo; Mondello, Luigi

    2017-01-01

    The task of lipid analysis has always challenged separation scientists, and new techniques in chromatography were often developed for the separation of lipids; however, no single technique or methodology is yet capable of affording a comprehensive screening of all lipid species and classes. This review acquaints the role of supercritical fluid chromatography within the field of lipid analysis, from the early developed capillary separations based on pure CO 2 , to the most recent techniques employing packed columns under subcritical conditions, including the niche multidimensional techniques using supercritical fluids in at least one of the separation dimensions. A short history of supercritical fluid chromatography will be introduced first, from its early popularity in the late 1980s, to the sudden fall and oblivion until the last decade, experiencing a regain of interest within the chromatographic community. Afterwards, the subject of lipid nomenclature and classification will be briefly dealt with, before discussing the main applications of supercritical fluid chromatography for food analysis, according to the specific class of lipids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics[S

    PubMed Central

    Hines, Kelly M.; Herron, Josi; Xu, Libin

    2017-01-01

    Ion mobility-mass spectrometry (IM-MS) has proven to be a highly informative technique for the characterization of lipids from cells and tissues. We report the combination of hydrophilic-interaction liquid chromatography (HILIC) with traveling-wave IM-MS (TWIM-MS) for comprehensive lipidomics analysis. Main lipid categories such as glycerolipids, sphingolipids, and glycerophospholipids are separated on the basis of their lipid backbones in the IM dimension, whereas subclasses of each category are mostly separated on the basis of their headgroups in the HILIC dimension, demonstrating the orthogonality of HILIC and IM separations. Using our previously established lipid calibrants for collision cross-section (CCS) measurements in TWIM, we measured over 250 CCS values covering 12 lipid classes in positive and negative modes. The coverage of the HILIC-IM-MS method is demonstrated in the analysis of Neuro2a neuroblastoma cells exposed to benzalkonium chlorides (BACs) with C10 or C16 alkyl chains, which we have previously shown to affect gene expression related to cholesterol and lipid homeostasis. We found that BAC exposure resulted in significant changes to several lipid classes, including glycerides, sphingomyelins, phosphatidylcholines, and phosphatidylethanolamines. Our results indicate that BAC exposure modifies lipid homeostasis in a manner that is dependent upon the length of the BAC alkyl chain. PMID:28167702

  9. Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses

    NASA Astrophysics Data System (ADS)

    Salvo, Flora; Hamoutene, Dounia; Hayes, Vonda E. Wareham; Edinger, Evan N.; Parrish, Christopher C.

    2018-03-01

    The trophic behavior of some deep-sea Newfoundland cold-water corals was explored using fatty acid (FA) and lipid profiles. No significant effect of geographic location and/or depth was identified in lipid or FA composition. However, differences were detected between and within taxon groups in hexa- or octocoral subclasses. Phospholipids constituted the main lipid class in all groups except black-thorny corals which had less structural lipids likely due to their morphology (stiff axes) and slower growth rates. Within each subclass, major differences in the identity of dominant FAs were detected at the order level, whereas differences between species and taxon groups of the same order were mainly driven by a variation in proportions of the dominant FA. Soft corals and gorgonians (Order Alcyonacea) were close in composition and are likely relying on phytodetritus resulting from algae, macrophytes and/or foraminifera, while sea pens (Order Pennatulacea) seem to consume more diatoms and/or herbivorous zooplankton with the exception of Pennatula sp. In the hexacoral subclass, black-thorny corals ( Stauropathes arctica) differed significantly from the stony-cup corals ( Flabellum alabastrum); S. arctica was seemingly more carnivorous (zooplankton markers) than F. alabastrum, which appears omnivorous (phyto- and zooplankton markers). Our results suggest that deep-sea corals are not as opportunistic as expected but have some selective feeding associated with taxonomy.

  10. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention.

    PubMed

    Grimm, Marcus O W; Michaelson, Daniel M; Hartmann, Tobias

    2017-11-01

    In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Lipid content and composition of coffee brews prepared by different methods.

    PubMed

    Ratnayake, W M; Hollywood, R; O'Grady, E; Stavric, B

    1993-04-01

    The lipid content and composition of boiled, filtered, dripped, Turkish and espresso coffees prepared from roasted beans of Coffea arabica and Coffea robusta, and of coffees prepared from different brands of instant coffee were examined. The lipid content varied with the method of preparation. While coffee brews filtered through filter paper contained less than 7 mg lipids, those prepared by boiling without filtering and espresso coffee reached 60-160 mg lipids/150-ml cup. Coffee brew filtered through a metal screener contained 50 mg lipids/150-ml cup. Although the lipid content varied, the method of preparation of the brew and filtration had no important influence on the lipid composition. During paper filtration lipids remained mainly in spent coffee grounds, and the brew and filter paper retained only 0.4 and 9.4%, respectively, of the total lipids recovered. However, the lipids in the brew, filter paper and spent coffee grounds had the same profile, indicating that there was no preferential retention of a particular lipid component in filter paper. Triglycerides and diterpene alcohol esters were the major lipid classes in coffee brewed from ground coffee beans, and ranged from 86.6 to 92.9 and 6.5 to 12.5% of total lipids, respectively. For coffee brews made from instant coffee, the levels of these two lipid classes were 96.4-98.5 and 1.6-3.6%, respectively. The lipid contents of both regular and decaffeinated instant coffees varied slightly from one brand to the other, and ranged from 1.8 to 6.6 mg/150-ml cup.

  12. Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum.

    PubMed

    Chen, Lin; Zhang, Lanlan; Liu, Tianzhong

    2016-08-01

    During the study of Trentepohlia arborum it became clear that its cells are rich in lipids and carotenoids. Thus, lipid content, composition and fatty acids profiles in individual lipid classes, as well as pigment profiles, responding to different culture conditions, were further investigated. The results showed that the predominant carotenoids and lipid fraction in total lipid in this study was β-carotene and TAG, respectively. The lipid content increased significantly under high light while nitrogen-replete conditions induced the highest carotenoids content. However, only with a double stress of high light and nitrogen-deficiency it was possible to maximize the productivities of both carotenoids and lipids. Carotenoids (mainly β-carotene) accounted for ca. 5% of the microalgal lipid under the double stress. Data herein show the potential of T. arborum for the production of both lipids and carotenoids, and hence provide an appropriate way to produce different products from T. arborum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The relative proportions of different lipid classes and their fatty acid compositions change with culture age in the cariogenic dental pathogen Streptococcus mutans UA159.

    PubMed

    Custer, Jenny E; Goddard, Bryan D; Matter, Stephen F; Kaneshiro, Edna S

    2014-06-01

    The oral cariogenic bacterial pathogen Streptococcus mutans strain UA159 has become an important research organism strain since its genome was sequenced. However, there is a paucity of information on its lipidome using direct analytical biochemical approaches. We here report on comprehensive analyses of the major lipid classes and their fatty acids in cells grown in batch standing cultures. Using 2-D high-performance thin-layer chromatography lipid class composition changes were detected with culture age. More lipid components were detected in the stationary-phase compared to log-phase cells. The major lipids identified included 1,3-bis(sn-3'-phosphatidyl)-sn-glycerol (phosphatidylglycerol), 1,3-diphosphatidylglycerol (cardiolipin), aminoacyl-phosphatidylglycerol, monoglucosyldiacylglycerol, diglucosyldiacylglycerol, diglucosylmonoacylglycerol and, glycerophosphoryldiglucosyldiacylglycerol. Culture age also affected the fatty acid composition of the total polar lipid fraction. Thus, the major lipid classes detected in log-phase and stationary-phase cells were isolated and their fatty acids were analyzed by gas-liquid chromatography to determine the basis for the fatty acid compositional changes in the total polar lipid fraction. The analyses showed that the relative proportions of these acids changed with culture age within individual lipid classes. Hence fatty acid changes in the total polar lipid fraction reflected changes in both lipid class composition and fatty acid compositions within individual lipid classes.

  14. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients.

    PubMed

    van Smeden, Jeroen; Bouwstra, Joke A

    2016-01-01

    Human skin acts as a primary barrier between the body and its environment. Crucial for this skin barrier function is the lipid matrix in the outermost layer of the skin, the stratum corneum (SC). Two of its functions are (1) to prevent excessive water loss through the epidermis and (2) to avoid that compounds from the environment permeate into the viable epidermal and dermal layers and thereby provoke an immune response. The composition of the SC lipid matrix is dominated by three lipid classes: cholesterol, free fatty acids and ceramides. These lipids adopt a highly ordered, 3-dimensional structure of stacked densely packed lipid layers (lipid lamellae): the lateral and lamellar lipid organization. The way in which these lipids are ordered depends on the composition of the lipids. One very common skin disease in which the SC lipid barrier is affected is atopic dermatitis (AD). This review addresses the SC lipid composition and organization in healthy skin, and elaborates on how these parameters are changed in lesional and nonlesional skin of AD patients. Concerning the lipid composition, the changes in the three main lipid classes and the importance of the carbon chain lengths of the lipids are discussed. In addition, this review addresses how these changes in lipid composition induce changes in lipid organization and subsequently correlate with an impaired skin barrier function in both lesional and nonlesional skin of these patients. Furthermore, the effect of filaggrin and mutations in the filaggrin gene on the SC lipid composition is critically discussed. Also, the breakdown products of filaggrin, the natural moisturizing factor molecules and its relation to SC-pH is described. Finally, the paper discusses some major changes in epidermal lipid biosynthesis in patients with AD and other related skin diseases, and how inflammation has a deteriorating effect on the SC lipids and SC biosynthesis. The review ends with perspectives on future studies in relation to other skin diseases. © 2016 S. Karger AG, Basel.

  15. A new multidimensional stoichiometric classification of compounds: moving beyond the van Krevelen diagram.

    NASA Astrophysics Data System (ADS)

    Rivas-Ubach, A.; Liu, Y.; Bianchi, T. S.; Tolic, N.; Jansson, C.; Paša-Tolić, L.

    2017-12-01

    The role of nutrients in organisms, especially primary producers, has been a topic of special interest in ecosystem research for understanding the ecosystem structure and function. The majority of macro-elements in organisms, such as C, H, O, N and P, do not act as single elements but are components of organic compounds (lipids, peptides, carbohydrates, etc), which are more directly related to the physiology of organisms and thus to the ecosystem function. However, accurately deciphering the overall content of the main compound classes (lipids, proteins, carbohydrates,…) in organisms is still a major challenge. van Krevelen (vK) diagrams have been widely used as an estimation of the main compound categories present in environmental samples based on O:C vs H:C molecular ratios, but a stoichiometric classification based exclusively on O:C and H:C ratios is feeble. Different compound classes show large O:C and H:C ratio overlapping and other heteroatoms, such as N and P, should be considered to robustly distinguish the different classes. We propose a new compound classification for biological/environmental samples based on the C:H:O:N:P stoichiometric ratios of thousands of molecular formulas of characterized compounds from 6 different main categories: lipids, peptides, amino-sugars, carbohydrates, nucleotides and phytochemical compounds (oxy-aromatic compounds). This new multidimensional stoichiometric compound constraints classification (MSCC) can be applied to data obtained with high resolution mass spectrometry (HRMS), allowing an accurate overview of the relative abundances of the main compound categories present in organismal samples. The MSCC has been optimized for plants, but it could be also applied to different organisms and serve as a strong starting point to further investigate other environmental complex matrices (soils, aerosols, etc). The proposed MSCC advances environmental research, especially eco-metabolomics, ecophysiology and ecological stoichiometry studies, providing a new tool to understand the ecosystem structure and function at the molecular level.

  16. Quantitative profile of lipid classes in blood by normal phase chromatography with evaporative light scattering detector: application in the detection of lipid class abnormalities in liver cirrhosis.

    PubMed

    Chamorro, Laura; García-Cano, Ana; Busto, Rebeca; Martínez-González, Javier; Albillos, Agustín; Lasunción, Miguel Ángel; Pastor, Oscar

    2013-06-05

    The lack of analytical methods specific for each lipid class, particularly for phospholipids and sphyngolipids, makes necessary their separation by preparative techniques before quantification. LC-MS would be the election method but for daily work in the clinical laboratory this is not feasible for different reasons, both economic and time consuming. In the present work, we have optimized an HPLC method to quantify lipid classes in plasma and erythrocytes and applied it to samples from patients with cirrhosis. Lipid classes were analyzed by normal phase liquid chromatography with evaporative light scattering detection. We employed a quaternary solvent system to separate twelve lipid classes in 15 min. Interday, intraday and recovery for quantification of lipid classes in plasma were excellent with our methodology. The total plasma lipid content of cirrhotic patients vs control subjects was decreased with diminished CE (81±33 vs 160±17 mg/dL) and PC (37±16 vs 60±19 mg/dL). The composition of erythrocytes showed a decrease in acidic phospholipids: PE, PI and PS. Present methodology provides a reliable quantification of lipid classes in blood. The lipid profile of cirrhotics showed alterations in the PC/PE plasma ratio and in the phospholipid content of erythrocytes, which might reflect alterations in hepatocyte and erythrocyte membrane integrity. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source

    PubMed Central

    Breitkopf, Susanne B.; Ricoult, Stéphane J. H.; Yuan, Min; Xu, Ying; Peake, David A.; Manning, Brendan D.

    2017-01-01

    Introduction Advances in high-resolution mass spectrometry have created renewed interest for studying global lipid biochemistry in disease and biological systems. Objectives Here, we present an untargeted 30 min. LC-MS/MS platform that utilizes positive/negative polarity switching to perform unbiased data dependent acquisitions (DDA) via higher energy collisional dissociation (HCD) fragmentation to profile more than 1000–1500 lipid ions mainly from methyl-tert-butyl ether (MTBE) or chloroform:methanol extractions. Methods The platform uses C18 reversed-phase chromatography coupled to a hybrid QExactive Plus/HF Orbitrap mass spectrometer and the entire procedure takes ~10 h from lipid extraction to identification/quantification for a data set containing 12 samples (~4 h for a single sample). Lipids are identified by both accurate precursor ion mass and fragmentation features and quantified using Lipid-Search and Elements software. Results Using this approach, we are able to profile intact lipid ions from up to 18 different main lipid classes and 66 subclasses. We show several studies from different biological sources, including cultured cancer cells, resected tissues from mice such as lung and breast tumors and biological fluids such as plasma and urine. Conclusions Using mouse embryonic fibroblasts, we showed that TSC2−/− KD significantly abrogates lipid biosynthesis and that rapamycin can rescue triglyceride (TG) lipids and we show that SREBP−/− shuts down lipid biosynthesis significantly via mTORC1 signaling pathways. We show that in mouse EGFR driven lung tumors, a large number of TGs and phosphatidylmethanol (PMe) lipids are elevated while some phospholipids (PLs) show some of the largest decrease in lipid levels from ~ 2000 identified lipid ions. In addition, we identified more than 1500 unique lipid species from human blood plasma. PMID:28496395

  18. Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga1[OPEN

    PubMed Central

    Winge, Per; El Assimi, Aimen; Jouhet, Juliette; Vadstein, Olav

    2017-01-01

    Molecular mechanisms of phosphorus (P) limitation are of great interest for understanding algal production in aquatic ecosystems. Previous studies point to P limitation-induced changes in lipid composition. As, in microalgae, the molecular mechanisms of this specific P stress adaptation remain unresolved, we reveal a detailed phospholipid-recycling scheme in Nannochloropsis oceanica and describe important P acquisition genes based on highly corresponding transcriptome and lipidome data. Initial responses to P limitation showed increased expression of genes involved in P uptake and an expansion of the P substrate spectrum based on purple acid phosphatases. Increase in P trafficking displayed a rearrangement between compartments by supplying P to the chloroplast and carbon to the cytosol for lipid synthesis. We propose a novel phospholipid-recycling scheme for algae that leads to the rapid reduction of phospholipids and synthesis of the P-free lipid classes. P mobilization through membrane lipid degradation is mediated mainly by two glycerophosphoryldiester phosphodiesterases and three patatin-like phospholipases A on the transcriptome level. To compensate for low phospholipids in exponential growth, N. oceanica synthesized sulfoquinovosyldiacylglycerol and diacylglyceroltrimethylhomoserine. In this study, it was shown that an N. oceanica strain has a unique repertoire of genes that facilitate P acquisition and the degradation of phospholipids compared with other stramenopiles. The novel phospholipid-recycling scheme opens new avenues for metabolic engineering of lipid composition in algae. PMID:29051196

  19. Comparative study of lipids in mature seeds of six Cordia species (family Boraginaceae) collected in different regions of Brazil.

    PubMed

    Carvalho, Patricía de O; Arrebola, Melissa B; Sawaya, Alexandra C H F; Cunha, Ildenize B S; Bastos, Deborah H M; Eberlin, Marcos N

    2006-08-01

    The oil content, FA, and lipid class composition of the mature seeds of six Cordia species were analyzed. Mature seeds of each species were collected in their natural habitat from 2002 to 2004. The total lipid content varied from 1.9% to 13.2%, there being significant differences between the results found in different years for each species and between the species analyzed. The contents of FFA varied from 2.0% to 7.9% of total lipids. Neutral lipids (NL) were the largest class, making up between 89.6% and 96.4% of the total lipids; the phospholipids (PL) were the second largest class (3.0% to 8.9% of the total lipids), and the glycolipids (GL) were the smallest class (0.6 to 3.4%). The presence of GLA was determined in each class of lipids; it is predominant in the NL. Levels of GLA ranged from 1.2% to 6.8% of total seed FA. This is, to our knowledge the first study of lipid composition in seeds of species of Cordia from Brazil.

  20. Separation of sardine oil without heating from surimi waste and its effect on lipid metabolism in rats.

    PubMed

    Toyoshima, Kotoe; Noguchi, Ryoko; Hosokawa, Masashi; Fukunaga, Kenji; Nishiyama, Toshimasa; Takahashi, Riki; Miyashita, Kazuo

    2004-04-21

    Sardine oil was obtained by centrifugation of surimi wastewater without heating or chemical refining. This oil (CE) showed light yellow color and the peroxide value was less than 1.0 meq/kg. The main lipid class of CE was triacylglycerol (TG) (>99%). These features indicate that CE can be directly used as food materials without further purification. Commercial sardine oil (CO) is usually prepared via some kind of refining process with high temperature (250 degrees C) and chemical treatment. The comparative study on the physiological effects of these sardine oils (CE and CO) revealed that the dietary sardine oils were more effective in reducing abdominal fat pads, plasma total cholesterol, and TG levels of rats than was a soybean oil diet (control). Furthermore, these effects were greater in CE than CO, although there was little difference in the fatty acid composition of both oils. Although the main lipid class of CE was TG (>99%), CE was prepared by centrifugation from surimi waste and directly used as dietary fat without further purification. Therefore, CE may contain some kinds of minor components, which could be attributed to the higher physiological activity of CE. To reveal the involvement of the minor compounds in CE, we prepared TG from CE by column chromatography and measured its effect on lipid metabolism of rats. TG from CE also showed the reducing effects on abdominal fad pads and plasma lipid levels. The effect of TG from CE was almost the same as that of original CE, suggesting that the higher nutritional activity of CE than CO may not be due to the minor compounds in CE.

  1. LipidFrag: Improving reliability of in silico fragmentation of lipids and application to the Caenorhabditis elegans lipidome

    PubMed Central

    Neumann, Steffen; Schmitt-Kopplin, Philippe

    2017-01-01

    Lipid identification is a major bottleneck in high-throughput lipidomics studies. However, tools for the analysis of lipid tandem MS spectra are rather limited. While the comparison against spectra in reference libraries is one of the preferred methods, these libraries are far from being complete. In order to improve identification rates, the in silico fragmentation tool MetFrag was combined with Lipid Maps and lipid-class specific classifiers which calculate probabilities for lipid class assignments. The resulting LipidFrag workflow was trained and evaluated on different commercially available lipid standard materials, measured with data dependent UPLC-Q-ToF-MS/MS acquisition. The automatic analysis was compared against manual MS/MS spectra interpretation. With the lipid class specific models, identification of the true positives was improved especially for cases where candidate lipids from different lipid classes had similar MetFrag scores by removing up to 56% of false positive results. This LipidFrag approach was then applied to MS/MS spectra of lipid extracts of the nematode Caenorhabditis elegans. Fragments explained by LipidFrag match known fragmentation pathways, e.g., neutral losses of lipid headgroups and fatty acid side chain fragments. Based on prediction models trained on standard lipid materials, high probabilities for correct annotations were achieved, which makes LipidFrag a good choice for automated lipid data analysis and reliability testing of lipid identifications. PMID:28278196

  2. Could Fidicina mannifera (Hemiptera: Cicadoidea: Fidicinini) promote a resource pulse in two Brazilian Cerrado vegetation classes?

    PubMed

    Oliveira, R N; Caramori, S S; Maccagnan, D H B

    2017-11-01

    Cicadas are usually studied regarding their importance in agriculture. However, the possibility of this group to represent a pulse of nutrients can also imply on the success of a given species in the biome. The aim of this study was to assess the level of total soluble proteins and lipids of Fidicina mannifera (Fabricius, 1803), and to determine whether the species can promote a pulse of nutrients in two vegetation classes of the Brazilian Cerrado. To assess the pulse of nutrients, it was concluded the determination of total soluble proteins and lipids from samples of males and adult females of F. mannifera, and the spatial distribution of exuviae of this species was also calculated in two vegetation classes of the Brazilian Cerrado. The amount of protein provided by each individual did not differ between males and females (p = 0.66) but females had 40% more lipids than males (p = 0.05). Regarding F. mannifera the gallery forest offered 11.75 g/ha of protein, 3.91 g/ha of lipids, and the Cerrado stricto sensu offered 4.25 g/ha of protein, and 1.41 g/ha of lipid. The male cicadas have a hollow abdomen, which houses a resonance chamber for sound production in order to attract females to mate, and females store larger amounts of lipids, mainly located in the abdominal cavity, where the body fat is directly linked to the reproductive system for the development of the ovaries and egg production after emergence. The mass occurrence of F. mannifera in the Brazilian Cerrado and the fast availability of proteins and lipids make this species a food resource that can directly impact the diet of secondary consumers and scavengers, although the amount of nutrients available by F. mannifera does not promote a pulse of nutrients in the study site.

  3. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage.

    PubMed

    Lu, F S H; Bruheim, I; Haugsgjerd, B O; Jacobsen, C

    2014-08-15

    The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40 °C) for 28 or 42 days. The oxidative stability of krill oil was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature firstly increased the lipid oxidation in krill oil and subsequently the non-enzymatic browning reactions. The occurrence of these reactions was most likely due to the reaction between α-dicarbonyl or carbonyl compounds with amino acids or ammonia. In addition to tocopherol and astaxanthin esters, the formation of pyrroles might help to protect the krill oil against lipid oxidation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry.

    PubMed

    Sadowski, Tomasz; Klose, Christian; Gerl, Mathias J; Wójcik-Maciejewicz, Anna; Herzog, Ronny; Simons, Kai; Reich, Adam; Surma, Michal A

    2017-03-07

    The lipid composition of human skin is essential for its function; however the simultaneous quantification of a wide range of stratum corneum (SC) and sebaceous lipids is not trivial. We developed and validated a quantitative high-throughput shotgun mass spectrometry-based platform for lipid analysis of tape-stripped SC skin samples. It features coverage of 16 lipid classes; total quantification to the level of individual lipid molecules; high reproducibility and high-throughput capabilities. With this method we conducted a large lipidomic survey of 268 human SC samples, where we investigated the relationship between sampling depth and lipid composition, lipidome variability in samples from 14 different sampling sites on the human body and finally, we assessed the impact of age and sex on lipidome variability in 104 healthy subjects. We found sebaceous lipids to constitute an abundant component of the SC lipidome as they diffuse into the topmost SC layers forming a gradient. Lipidomic variability with respect to sampling depth, site and subject is considerable, and mainly accredited to sebaceous lipids, while stratum corneum lipids vary less. This stresses the importance of sampling design and the role of sebaceous lipids in skin studies.

  5. Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga.

    PubMed

    Mühlroth, Alice; Winge, Per; El Assimi, Aimen; Jouhet, Juliette; Maréchal, Eric; Hohmann-Marriott, Martin F; Vadstein, Olav; Bones, Atle M

    2017-12-01

    Molecular mechanisms of phosphorus (P) limitation are of great interest for understanding algal production in aquatic ecosystems. Previous studies point to P limitation-induced changes in lipid composition. As, in microalgae, the molecular mechanisms of this specific P stress adaptation remain unresolved, we reveal a detailed phospholipid-recycling scheme in Nannochloropsis oceanica and describe important P acquisition genes based on highly corresponding transcriptome and lipidome data. Initial responses to P limitation showed increased expression of genes involved in P uptake and an expansion of the P substrate spectrum based on purple acid phosphatases. Increase in P trafficking displayed a rearrangement between compartments by supplying P to the chloroplast and carbon to the cytosol for lipid synthesis. We propose a novel phospholipid-recycling scheme for algae that leads to the rapid reduction of phospholipids and synthesis of the P-free lipid classes. P mobilization through membrane lipid degradation is mediated mainly by two glycerophosphoryldiester phosphodiesterases and three patatin-like phospholipases A on the transcriptome level. To compensate for low phospholipids in exponential growth, N. oceanica synthesized sulfoquinovosyldiacylglycerol and diacylglyceroltrimethylhomoserine. In this study, it was shown that an N. oceanica strain has a unique repertoire of genes that facilitate P acquisition and the degradation of phospholipids compared with other stramenopiles. The novel phospholipid-recycling scheme opens new avenues for metabolic engineering of lipid composition in algae. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. SEASONAL VARIABILTIY LIPIDS, LIPID CLASSES AND PCBS IN INDIGENOUS POPULATIONS OF RIBBED MUSSELS, MODIOLUS DEMISSUS

    EPA Science Inventory

    Two indigenous ribbed mussel (Modiolus demissus) populations were sampled approximately every four weeks during 1997 to investigate the seasonal variability of total lipids, lipid classes, and polychlorinated biphenyl (PCB) concentrations. One population was located in a highly c...

  7. LC-ESI-MS/MS identification of polar lipids of two thermophilic Anoxybacillus bacteria containing a unique lipid pattern.

    PubMed

    Rezanka, Tomáš; Kambourova, Margarita; Derekova, Anna; Kolouchová, Irena; Sigler, Karel

    2012-07-01

    Phospholipids and glycolipids from two recently described species belonging to the thermophilic genus Anoxybacillus were analyzed by liquid chromatography-electrospray tandem mass spectrometry (LC/ESI-MS/MS). Analysis of total lipids from the facultatively anaerobic A. bogrovensis on a HILIC (Hydrophilic Interaction LIquid Chromatography) column succeeded in separating diacyl- and plasmalogen phospholipids. The LC/ESI-MS/MS analysis of the strict aerobe A. rupiensis revealed the presence of different unique polar lipids, predominantly alanyl-, lysyl-, and glucosyl-phosphatidylglycerols and cardiolipins. Each of the classes of polar lipids was then analyzed by means of the ESI-MS/MS and more than 140 molecular species of six lipid classes from A. bogrovensis and nearly 200 molecular species of nine classes of polar lipids from A. rupiensis were identified. Five classes of unidentified polar lipids were detected in both strains. Plasmalogens were thus determined for the first time in a facultatively anaerobic bacterium, i.e. A. bogrovensis.

  8. [Socioeconomic inequalities and age and gender differences in cardiovascular risk factors].

    PubMed

    López-González, Ángel A; Bennasar-Veny, Miquel; Tauler, Pedro; Aguilo, Antoni; Tomàs-Salvà, Matias; Yáñez, Aina

    2015-01-01

    To describe the cardiovascular risk factors in a working population in the Balearic Islands and to examine whether differences by social class vary according to age and gender. A cross-sectional study was carried out in a sample of active workers aged 20-65 years in the Balearic Islands. The participants were included in the study during their annual work health assessment in 2011. The following variables were collected: occupation, social class, age, gender, height, weight, smoking, blood pressure, lipid profile, and glucose levels. Cardiovascular risk was calculated using two different equations (Framingham and REGICOR). Differences by social class were observed for most cardiovascular risk factors. The pattern of these differences differed depending on age group and gender. Differences in obesity by social class increased with age in women but decreased in men. More differences in hypertension by social class were found among women than among men, with differences increasing with age in both genders. Significant differences by social class were found among women in lipid profile, and these differences increased with age, mainly for low levels of high-density lipoprotein-cholesterol. Inequalities in cardiovascular risk factors by social class were higher among women than among men. Some cardiovascular risk factors such as smoking and obesity showed significant inequalities from a very early age. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  9. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach.

    PubMed

    Cífková, Eva; Holčapek, Michal; Lísa, Miroslav; Ovčačíková, Magdaléna; Lyčka, Antonín; Lynen, Frédéric; Sandra, Pat

    2012-11-20

    The identification and quantitation of a wide range of lipids in complex biological samples is an essential requirement for the lipidomic studies. High-performance liquid chromatography-mass spectrometry (HPLC/MS) has the highest potential to obtain detailed information on the whole lipidome, but the reliable quantitation of multiple lipid classes is still a challenging task. In this work, we describe a new method for the nontargeted quantitation of polar lipid classes separated by hydrophilic interaction liquid chromatography (HILIC) followed by positive-ion electrospray ionization mass spectrometry (ESI-MS) using a single internal lipid standard to which all class specific response factors (RFs) are related to. The developed method enables the nontargeted quantitation of lipid classes and molecules inside these classes in contrast to the conventional targeted quantitation, which is based on predefined selected reaction monitoring (SRM) transitions for selected lipids only. In the nontargeted quantitation method described here, concentrations of lipid classes are obtained by the peak integration in HILIC chromatograms multiplied by their RFs related to the single internal standard (i.e., sphingosyl PE, d17:1/12:0) used as common reference for all polar lipid classes. The accuracy, reproducibility and robustness of the method have been checked by various means: (1) the comparison with conventional lipidomic quantitation using SRM scans on a triple quadrupole (QqQ) mass analyzer, (2) (31)P nuclear magnetic resonance (NMR) quantitation of the total lipid extract, (3) method robustness test using subsequent measurements by three different persons, (4) method transfer to different HPLC/MS systems using different chromatographic conditions, and (5) comparison with previously published results for identical samples, especially human reference plasma from the National Institute of Standards and Technology (NIST human plasma). Results on human plasma, egg yolk and porcine liver extracts are presented and discussed.

  10. Levoglucosan and Lipid Class Compounds in the Asian Dusts and Marine Aerosols Collected During the ACE-Asia Campaign

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Simoneit, B. R.; Kawamura, K.; Mochida, M.; Lee, M.; Lee, G.; Huebert, B. J.

    2002-12-01

    In order to characterize organic aerosols in the Asian Pacific region, we collected filter samples at Gosan (formerly Kosan) and Sapporo sites as well as on mobile platforms (R.V. R.H. Brown and NCAR C-130) in the western North Pacific. The aerosol extracts were analyzed by capillary GC-MS employing a TMS derivatization technique. We identified over 100 organic compounds in the samples. They are categorized into seven different classes in terms of functional groups and sources. First, sugar-type compounds were detected in the aerosols, including levoglucosan, galactosan and mannosan, which are tracers for biomass burning. Second, a homologous series of fatty acids (C12-C30) and fatty alcohols (C12-C30) mainly from plant waxes and marine lipids were present. The third group includes dicarboxylic acids (>C3) and other atmospheric oxidation products. Although oxalic (C2) and malonic (C3) acids were not detected by this method, they are very abundant in the aerosols. The fourth group includes n-alkanes (C18-C35) which usually showed a strong odd/even predominance, suggesting an important contribution from higher plant waxes. The fifth includes polynuclear aromatic hydrocarbons (PAH) ranging from phenanthrene to coronene, all combustion products of petroleum and mainly coal. Saccharides were the sixth group and consisted mainly of a- and b- glucose, sucrose and its alditol, and minor amounts of xylitol, sorbitol and arabitol. These saccharides are tracers for soil dust. Phthalates were detected as the seventh class, with a dominance of dioctyl phthalate. The results suggest that organic aerosols originate primarily from (1) natural emissions of terrestrial plant wax and marine lipids, (2) smoke from biomass burning (mainly non-conifer fuels), (3) soil resuspension due to spring agricultural activity, (4) urban/industrial emissions from fossil fuel use (coal), and (5) secondary reaction products. These compounds are transported by the strong westerly winds and therefore secondary oxidation is also significant in Southeast Asia and the western North Pacific.

  11. Lipid requirement of the membrane sodium-plus-potassium ion-dependent adenosine triphosphatase system.

    PubMed Central

    Wheeler, K P; Walker, J A; Barker, D M

    1975-01-01

    The dependence of the (Na-++K-+)-dependent ATPase (adenosine triphosphatase) (EC 3.6.1.3) on lipid has been examined in a number of different ways, with the use of various preparations from kidney tissue. The main findings were as follows. (1) The ATPase activities of the preparations examined were closely correlated with their total phospholipid content. (2) Extraction of the ATPase with deoxycholate or Lubrol W, combined with suitable salt-fractionation and washing procedures, removed phospholipid, cholesterol and enzymic activity in parallel; but activity was completely lost before all lipid had been removed. (3) The loss of activity could not be attributed to inhibition by residual detergent. (4) No selective removal of any particular phospholipid class by detergent could be detected. (5) Consistent reactivation of the Lubrol-extracted enzymes was obtained by adding dispersions of exogenous phospholipid, but only some, bearing a net negative charge, such as phosphatidylserine and phosphatidylglycerol, were effective. (6) The degree of reactivation was correlated with the amount of residual activity remaining after lipid depletion. (7) Partial purification of the ATPase, giving a 50-fold increase in specific activity, was not accompanied by selective enhancement of any particular class of phospholipid. We conclude that although the ATPase is dependent on phospholipid, only the reactivation results provide evidence for specificity. PMID:125082

  12. RELATIONSHIPS AMONG TOTAL LIPID, LIPID CLASSES AND POLYCHLORINATED BIPHENYL CONCENTRATIONS IN TWO INDIGENOUS POPULATIONS OF RIBBED MUSSELS (GUKENSIA DEMISSA) OVER AN ANNUAL CYCLE

    EPA Science Inventory

    Two indigenous ribbed mussel (Geukensia demissa) populations were sampled approximately every four weeks during 1997 to investigate the relationships among concentrations of total lipid, lipid classes, and polychlorinated biphenyls (PCBs). One population was located in a highly c...

  13. LHCII organization and thylakoid lipids affect the sensitivity of the photosynthetic apparatus to high-light treatment.

    PubMed

    Dankov, Kolyo G; Dobrikova, Anelia G; Ughy, Bettina; Bogos, Balázs; Gombos, Zoltan; Apostolova, Emilia L

    2011-06-01

    Pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photosynthetic oxygen evolution were used to investigate the role of the different amount and organization of light-harvesting complexes of photosystem II (LHCII) in four pea species on the susceptibility of the photosynthetic apparatus to high-light treatment. In this work we analyzed the thylakoid membrane lipid composition of the studied pea plants. A relationship between the structural organization of LHCII proteins, the amount of the main lipid classes and the sensitivity of the photosynthetic apparatus to high-light treatment was found. The results reveal that the photosynthetic apparatus, enriched in oligomeric forms of LHCII concomitant with decreased amount of anionic lipids and increased content of the monogalactosyldiacylglycerol (MGDG), is less sensitive to high light. Our data also suggest that the degree of LHCII oligomerization, as well as the lipid composition do not influence the degree of recovery of the PSII photochemistry after excess light exposure. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. HDL particles incorporate into lipid bilayers - a combined AFM and single molecule fluorescence microscopy study.

    PubMed

    Plochberger, Birgit; Röhrl, Clemens; Preiner, Johannes; Rankl, Christian; Brameshuber, Mario; Madl, Josef; Bittman, Robert; Ros, Robert; Sezgin, Erdinc; Eggeling, Christian; Hinterdorfer, Peter; Stangl, Herbert; Schütz, Gerhard J

    2017-11-21

    The process, how lipids are removed from the circulation and transferred from high density lipoprotein (HDL) - a main carrier of cholesterol in the blood stream - to cells, is highly complex. HDL particles are captured from the blood stream by the scavenger receptor, class B, type I (SR-BI), the so-called HDL receptor. The details in subsequent lipid-transfer process, however, have not yet been completely understood. The transfer has been proposed to occur directly at the cell surface across an unstirred water layer, via a hydrophobic channel in the receptor, or after HDL endocytosis. The role of the target lipid membrane for the transfer process, however, has largely been overlooked. Here, we studied at the single molecule level how HDL particles interact with synthetic lipid membranes. Using (high-speed) atomic force microscopy and fluorescence correlation spectroscopy (FCS) we found out that, upon contact with the membrane, HDL becomes integrated into the lipid bilayer. Combined force and single molecule fluorescence microscopy allowed us to directly monitor the transfer process of fluorescently labelled amphiphilic lipid probe from HDL particles to the lipid bilayer upon contact.

  15. It’s a lipid’s world: Bioactive lipid metabolism and signaling in neural stem cell differentiation

    PubMed Central

    Bieberich, Erhard

    2012-01-01

    Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called “bioactive lipids”. Pioneering work in Dr. Robert Ledeen’s laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: 1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and 2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed. PMID:22246226

  16. Interspecific variability in phosphorus-induced lipid remodelling among marine eukaryotic phytoplankton.

    PubMed

    Cañavate, José Pedro; Armada, Isabel; Hachero-Cruzado, Ismael

    2017-01-01

    The response of marine microalgal lipids to phosphorus is of central importance in phytoplankton ecology but remains poorly understood. We determined how taxonomically diverse microalgal species remodelled their lipid class profile in response to phosphorus availability and whether these changes coincided with those already known to occur in land plants and in the limited number of phytoplankton species for which data are available. The complete lipid class profile and specific lipid ratios influenced by phosphorus availability were quantified in two green microalgae and seven Chromalveolates exposed to phosphorus repletion, deprivation and replenishment. Lipid class cell quota changes in the two green microalgae resembled the currently described pattern of betaine lipids substituting for phospholipids under phosphorus depletion, whereas only two of the studied Chromalveolates showed this pattern. Sulpholipids counterbalanced phosphatidylglycerol only in Picochlorum atomus. In all other species, both lipids decreased simultaneously under phosphorus deprivation, although sulpholipids declined more slowly. Phosphorus deprivation always induced a decrease in digalactosyl-diacylglycerol. However, the ratio of digalactosyl-diacylglycerol to total phospholipids increased in eight species and remained unchanged in Isochrysis galbana. Marine phytoplankton seems to have evolved a diversified mechanism for remodelling its lipid class profile under the influence of phosphorus, with cryptophytes and particularly haptophytes exhibiting previously unobserved lipid responses to phosphorus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Lipids and fatty acids in Calanus sinicus during oversummering in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Li, Chaolun; Liu, Mengtan; Jin, Xin

    2017-07-01

    Over-summering is a crucial period for Calanus sinicus in the southern Yellow Sea, where it is a key member of the zooplankton community. Lipids play an important role in copepod diapause, which is part of their over-summering strategy. We investigated how different fatty acids and lipid classes, including wax esters, changed during over-summering of C. sinicus during three cruises in June and August 2011 and November 2010, corresponding to the pre-, during and post-diapause periods, respectively. Large amounts of lipids were accumulated, mainly wax esters as previously found in C. finmarchicus during its diapause, and most of the storage lipids were used during over-summering. Wax ester polyunsaturated fatty acids (PUFAs) showed the most variation of the fatty acids (FAs), while the percentage composition of FAs in polar lipids was relatively stable. Selective use of wax ester PUFAs has already been shown to play important roles in the winter diapause of Calanus species in other regions, and our FA results show that this is the case for the Yellow Sea Cold Bottom Water (YSCBW) population that diapauses in summer.

  18. The influence of acclimation temperature on the lipid composition of the larval lamprey, Petromyzon marinus, depends on tissue and lipid class.

    PubMed

    Kao, Yung-Hsi; Sheridan, Mark A; Holmes, John A; Youson, John H

    2010-11-01

    This study was designed to examine the effect of thermal acclimation on the lipid composition of fat depot organs the liver and kidneys of larval sea lamprey, Petromyzon marinus. We found that 21 °C-acclimated larvae possessed lower total lipid amounts in the liver (39% lower) and kidneys (30% lower) than 13 °C-acclimated larvae. Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not the structural lipid, phospholipid. Compared to 21 °C-acclimated larvae, 13 °C-acclimated larvae were found to possess fewer saturated fatty acids (SFAs) and more unsaturated fatty acids (USFAs) in renal triacylglycerol and phospholipid classes, while there were no significant differences in the SFAs and USFAs of hepatic triacylglycerol, phospholipid, cholesteryl ester, fatty acid, and monoacylglycerol classes. Fewer SFAs, found in the kidney triacylglycerol of 13 °C-acclimated lamprey, were due to lower 12:0 and 14:0 fatty acids, but those in the renal phospholipid class were characterized by fewer 14:0, 15:0, and 16:0 fatty acids. More USFAs in renal triacylglycerol, as indicated by a higher unsaturation index, primarily resulted from higher polyunsaturated fatty acids (18:2ω6, 18:3ω3, and 18:4ω3); whereas, in the renal phospholipid class, this was a result of higher monoenes (18:1, 20:1, and 22:1ω9) and ω3 polyunsaturated fatty acids (18:4ω3). These data suggest that the influence of thermal acclimation on the lipid composition of lamprey fat depot organs depends on tissue and lipid class.

  19. Variation in lipid classes and fatty acid composition of salmon shark (Lamna ditropis) liver with season and gender.

    PubMed

    Jayasinghe, Chamila; Gotoh, Naohiro; Wada, Shun

    2003-02-01

    The influence of season and gender on lipid content, lipid classes, and fatty acid compositions was assessed in livers of salmon shark (Lamna ditropis), caught in the Pacific Ocean. No significant difference in the hepatosomatic index was noted with season, though the lipid content was significantly higher (P<0.05) in winter. Triacylglycerol (TAG) was identified as the predominant lipid class (78.5-82.0%), followed by sterol esters (5.7-9.1%) and hydrocarbons (3.4-5.4%). No significant differences were observed in TAG composition with respect to the season or gender. However, diacylglyceryl ether contents were significantly higher (P<0.05) in winter (3.8-5.3%) than those obtained in summer (1.3-1.1%). Polyunsaturated fatty acids constituted the major fatty acid class of salmon shark total liver lipid and docosahexaenoic acid (C22:6n-3) (22.7-28.4%) was the most abundant fatty acid which was significantly lower (P<0.05) in winter. These results suggested that lipid characteristics of salmon shark liver were influenced by season, but not by gender.

  20. Lipid Class, Carotenoid, and Toxin Dynamics of Karenia Brevis (Dinophyceae) During Diel Vertical Migration

    EPA Science Inventory

    Karenia brevis’ (Hansen and Moestrup) internal lipid, carotenoid, and toxin concentrations are influenced by its ability to use ambient light and nutrients for growth and reproduction. This project investigated changes of K. brevis toxicity, lipid class and carotenoid concentrat...

  1. Distributions and Transformations of Natural Abundance 14C and 13C in Dissolved and Particulate Lipids in a Major Temperate Estuary

    NASA Astrophysics Data System (ADS)

    Bauer, J. E.; Canuel, E. A.; McIntosh, H.; Barrett, A.; Ferer, E.; Hossler, K.

    2013-12-01

    Limited previous studies have shown major differences in the natural 14C and 13C isotopic signatures and radiocarbon ages of different biochemical classes (e.g., proteins, carbohydrates, lipid, etc.) in river, estuarine and marine dissolved and particulate organic matter (DOM and POM, respectively). Of particular note are the much greater radiocarbon ages of lipophilic materials than other compound classes. Possible explanations for these findings include greater-than-expected inputs of fossil and highly aged lipid-containing organic matter to rivers and estuaries, extended sorptive-protection of lipophilic materials from degradation and/or lower overall reactivities of lipids vs. other major biochemical classes. We measured the Delta 14C and del 13C signatures and 14C ages of lipid classes in DOM and POM in a major temperate estuary, Delaware Bay (USA) over two years. Changes in DOM were also followed during large volume dark and light incubations to assess the microbial and photochemical reactivity and processing of DOM and lipids. Neutral lipids in DOM were among the most highly aged (> 30,000 yrs BP) of any materials measured in natural waters to date, and were significantly older than co-occurring polar lipids (~4,000-5,000 yrs BP). In general, DOM lipid ages were significantly greater than POM lipid ages across the river-estuary transect, arguing against sorptive protection as the major factor explaining greater ages of lipid than those of other compound classes. Both dark and light incubations of DOM resulted in losses of very highly aged material (30-50,000 y BP), with the remnant exported lipids being correspondingly younger. The microbial and photochemical alterations were most pronounced for lipids from freshwater reaches of the system (i.e., the Delaware River). These findings suggest that a) dissolved vs. particulate lipids have fundamentally different sources and/or physico-chemical partitioning, b) different lipid classes (e.g., neutral vs. polar) derive from uniquely aged sources and/or are processed at dissimilar rates, and c) biological and photochemical alteration and physical mixing during estuarine transport of DOM and POM can result in significant changes to the composition and ages of the exported materials. The implications of these findings for land-to-ocean fluxes of carbon and organic matter and impacts on oceanic DOM and POM are also examined.

  2. Amyloid and membrane complexity: The toxic interplay revealed by AFM.

    PubMed

    Canale, Claudio; Oropesa-Nuñez, Reinier; Diaspro, Alberto; Dante, Silvia

    2018-01-01

    Lipid membranes play a fundamental role in the pathological development of protein misfolding diseases. Several pieces of evidence suggest that the lipid membrane could act as a catalytic surface for protein aggregation. Furthermore, a leading theory indicates the interaction between the cell membrane and misfolded oligomer species as the responsible for cytotoxicity, hence, for neurodegeneration in disorders such as Alzheimer's and Parkinson's disease. The definition of the mechanisms that drive the interaction between pathological protein aggregates and plasma membrane is fundamental for the development of effective therapies for a large class of diseases. Atomic force microscopy (AFM) has been employed to study how amyloid aggregates affect the cell physiological properties. Considerable efforts were spent to characterize the interaction with model systems, i.e., planar supported lipid bilayers, but some works also addressed the problem directly on living cells. Here, an overview of the main works involving the use of the AFM on both model system and living cells will be provided. Different kind of approaches will be presented, as well as the main results derived from the AFM analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    EPA Science Inventory

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  4. Separation and identification of neutral cereal lipids by normal phase high-performance liquid chromatography, using evaporative light-scattering and electrospray mass spectrometry for detection.

    PubMed

    Rocha, João M; Kalo, Paavo J; Ollilainen, Velimatti; Malcata, F Xavier

    2010-04-30

    A novel method was developed for the analysis of molecular species in neutral lipid classes, using separation by normal phase high-performance liquid chromatography, followed by detection by evaporative light-scattering and electrospray ionization tandem mass spectrometry. Monoacid standards, i.e. sterol esters, triacylglycerols, fatty acids, diacylglycerols, free sterols and monoacylglycerols, were separated to baseline on microbore 3 microm-silica gel columns. Complete or partial separation of molecular species in each lipid class permitted identification by automatic tandem mass spectrometry of ammonium adducts, produced via positive electrospray ionization. After optimization of the method, separation and identification of molecular species of various lipid classes was comprehensively tested by analysis of neutral lipids from the free lipid extract of maize flour. 2010 Elsevier B.V. All rights reserved.

  5. Discrepant responses of methane emissions to additions with different organic compound classes of rice straw in paddy soil.

    PubMed

    Tan, Wenbing; Yu, Hanxia; Huang, Caihong; Li, Dan; Zhang, Hui; Jia, Yufu; Wang, Guoan; Xi, Beidou

    2018-07-15

    Crop straw incorporation has become a prevailing agricultural practice that guarantees the food production and security. There is a significant body of work on the effects of straw incorporation on the methane (CH 4 ) emissions in paddy fields. However, it is unclear whether there are diverse links between CH 4 emission dynamics and incorporations of different organic compound classes of straw to paddy fields. In this study, soil incubations were conducted to assess the respective effect of incorporations of hydrolysable amino acid (HAA), dilute-acid extractable carbohydrate (DAC), lipid and acid-insoluble organic matter (AIOM) fractions of rice straw on the CH 4 emission in paddy soil. It is revealed that incorporations of HAA and DAC fractions exert the greatest intensities to stimulate the CH 4 emissions, which mainly takes place in the early period of incubation; on contrary, the incorporation of lipid fraction exerts the lowest intensity and mainly takes place in the late period. The pattern of CH 4 emission after incorporation of AIOM fraction occurs peaks both in the early and late periods of incubation. Our findings highlight that the time of occurrence and intensity of effects of rice straw incorporation on CH 4 emissions vary significantly depending on the different organic compound classes of rice straw, which may be key to proposing a promising management strategy for mitigating CH 4 emissions in paddy fields in the context of straw incorporation. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Membrane Lipid Microenvironment Modulates Thermodynamic Properties of the Na+-K+-ATPase in Branchial and Intestinal Epithelia in Euryhaline Fish In vivo

    PubMed Central

    Díaz, Mario; Dópido, Rosa; Gómez, Tomás; Rodríguez, Covadonga

    2016-01-01

    We have analyzed the effects of different native membrane lipid composition on the thermodynamic properties of the Na+-K+-ATPase in different epithelia from the gilthead seabream Sparus aurata. Thermodynamic parameters of activation for the Na+-K+-ATPase, as well as contents of lipid classes and fatty acids from polar lipids were determined for gill epithelia and enterocytes isolated from pyloric caeca, anterior intestine and posterior intestine. Arrhenius analyses of control animals revealed differences in thermal discontinuity values (Td) and activation energies determined at both sides of Td between intestinal and gill epithelia. Eyring plots disclosed important differences in enthalpy of activation (ΔH‡) and entropy of activation (ΔS‡) between enterocytes and branchial cells. Induction of n-3 LCPUFA deficiency dramatically altered membrane lipid composition in enterocytes, being the most dramatic changes the increase in 18:1n-9 (oleic acid) and the reduction of n-3 LCPUFA (mainly DHA, docosahexaenoic acid). Strikingly, branchial cells were much more resistant to diet-induced lipid alterations than enterocytes, indicating the existence of potent lipostatic mechanisms preserving membrane lipid matrix in gill epithelia. Paralleling lipid alterations, values of Ea1, ΔH‡ and ΔS‡ for the Na+-K+-ATPase were all increased, while Td values vanished, in LCPUFA deficient enterocytes. In turn, Differences in thermodynamic parameters were highly correlated with specific changes in fatty acids, but not with individual lipid classes including cholesterol in vivo. Thus, Td was positively related to 18:1n-9 and negatively to DHA. Td, Ea1 and ΔH‡ were exponentially related to DHA/18:1n-9 ratio. The exponential nature of these relationships highlights the strong impact of subtle changes in the contents of oleic acid and DHA in setting the thermodynamic properties of epithelial Na+-K+-ATPase in vivo. The effects are consistent with physical effects on the lipid membrane surrounding the enzyme as well as with direct interactions with the Na+-K+-ATPase. PMID:28018232

  7. Lipid class and depth-specific thermal properties in the blubber of the short-finned pilot whale and the pygmy sperm whale.

    PubMed

    Bagge, Laura E; Koopman, Heather N; Rommel, Sentiel A; McLellan, William A; Pabst, D A

    2012-12-15

    Blubber, the specialized hypodermis of cetaceans, provides thermal insulation through the quantity and quality of lipids it contains. Quality refers to percent lipid content; however, not all lipids are the same. Certain deep-diving cetacean groups possess blubber with lipids - wax esters (WE) - that are not typically found in mammals, and the insulative quality of 'waxy' blubber is unknown. Our study explored the influence of lipid storage class - specifically WE in pygmy sperm whales (Kogia breviceps; N=7) and typical mammalian triacylglycerols in short-finned pilot whales (Globicephala macrorhynchus; N=7) - on blubber's thermal properties. Although the blubber of both species had similar total lipid contents, the thermal conductivity of G. macrorhynchus blubber (0.20±0.01 W m(-1) °C(-1)) was significantly higher than that of K. breviceps (0.15±0.01 W m(-1) °C(-1); P=0.0006). These results suggest that lipid class significantly influences the ability of blubber to resist heat flow. In addition, because the lipid content of blubber is known to be stratified, we measured its depth-specific thermal conductivities. In K. breviceps blubber, the depth-specific conductivity values tended to vary inversely with lipid content. In contrast, G. macrorhynchus blubber displayed unexpected depth-specific relationships between lipid content and conductivity, which suggests that temperature-dependent effects, such as melting, may be occurring. Differences in heat flux measurements across the depth of the blubber samples provide evidence that both species are capable of storing heat in their blubber. The function of blubber as an insulator is complex and may rely upon its lipid class, stratified composition and dynamic heat storage capabilities.

  8. Lipid composition of thermophilic Geobacillus sp. strain GWE1, isolated from sterilization oven.

    PubMed

    Shah, Siddharth P; Jansen, Susan A; Taylor, Leeandrew Jacques-Asa; Chong, Parkson Lee-Gau; Correa-Llantén, Daniela N; Blamey, Jenny M

    2014-05-01

    GWE1 strain is an example of anthropogenic thermophilic bacterium, recently isolated from dark crusty material from sterilization ovens by Correa-Llantén et al. (Kor. J. Microb. Biotechnol. 2013. 41(3):278-283). Thermostability is likely to arise from the adaptation of macromolecules such as proteins, lipids and nucleic acids. Complex lipid arrangement and/or type in the cell membrane are known to affect thermostability of microorganisms and efforts were made to understand the chemical nature of the polar lipids of membrane. In this work, we extracted total lipids from GWE1 cell membrane, separated them by TLC into various fractions and characterize the lipid structures of certain fractions with analytical tools such as (1)H, (13)C, (31)P and 2D NMR spectroscopy, ATR-FTIR spectroscopy and MS(n) spectrometry. We were able to identify glycerophosphoethanolamine, glycerophosphate, glycerophosphocholine, glycerophosphoglycerol and cardiolipin lipid classes and an unknown glycerophospholipid class with novel MS/MS spectra pattern. We have also noticed the presence of saturated iso-branched fatty acids with NMR spectra in individual lipid classes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Effects of cadmium on lipids of almond seedlings (Prunus dulcis).

    PubMed

    Elloumi, Nada; Zouari, Mohamed; Chaari, Leila; Jomni, Chiraz; Marzouk, Brahim; Ben Abdallah, Ferjani

    2014-12-01

    Cadmium uptake and distribution, as well as its effects on lipid composition was investigated in almond seedlings (Prunus dulcis) grown in culture solution supplied with two concentrations of Cd (50 and 150 μM). The accumulation of Cd increased with external metal concentrations, and was considerably higher in roots than in leaves. Fourteen days after Cd treatment, the membrane lipids were extracted and separated on silica-gel thin layer chromatography (TLC). Fatty acid methyl esters were analyzed by FID-GC on a capillary column. Our results showed that Cd stress decreased the quantities of all lipids classes (phospholipids, galactolipids and neutral lipids). Galactolipid, phospholipid and neutral lipid concentrations decreased more in roots than in leaves by Cd-treatment. In almost all lipid classes the proportion of palmitic acid (16:0), linoleic (18: 2) and that of linolenic (18: 3) acid decreased, suggesting that heavy metal treatment induced an alteration in the fatty acid synthesis processes. In conclusion, our results show that the changes found in total fatty acids, in the quantities of all lipids classes, and in the in the profiles of individual polar lipids suggest that membrane structure and function might be altered by Cd stress.

  10. Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus.

    PubMed

    Piffanelli, P; Ross, J H; Murphy, D J

    1997-03-01

    Pollen development in angiosperms is regulated by the interaction of products contributed by both the gametophytic (haploid) and sporophytic (diploid) genomes. In entomophilous species, lipids are major products of both sporophytic and gametophytic metabolism during pollen development. Mature pollen grains of Brassica napus are shown to contain three major acyl lipid pools as follows: (i) the extracellular tryphine mainly consisting of medium-chain neutral esters; (ii) the intracellular membranes, particularly endoplasmic reticulum, mainly containing phospholipids; and (iii) the intracellular storage lipids, which are mostly triacylglycerols. This paper reports on the kinetics of accumulation of these lipid classes during pollen maturation and the expression patterns of several lipid biosynthetic genes and their protein products that are differentially regulated in developing microspores/ pollen grains (gametophyte) and tapetal cells (sporophyte) of B. napus. Detailed analysis of three members of the stearoyl-ACP desaturase (sad) gene family by Northern blotting, in situ hybridization and RT-PCR showed that the same individual genes were expressed both in gametophytic and sporophytic tissues, although under different temporal regulation. In the tapetum, maximal expression of two marker genes for lipid biosynthesis (sad and ear) occurred at a bud length of 2-3 mm, and the corresponding gene products SAD and EAR were detected by Western blotting in 3-4 mm buds, coinciding with the maximal rates of tapetal lipid accumulation. These lipids are released following tapetal cell disintegration and are relocated to form the major structural component of the extracellular tryphine layer that coats the mature pollen grain. In contrast, in developing microspores/pollen grains, maximal expression of the lipid marker genes sad, ear, acp and cyb5 was at the 3-5 mm bud stages, with the SAD and EAR gene products detected in 4-7 mm buds. This pattern of expression coincided with accumulation of the intracellular storage and membrane lipid components of pollen. These results suggest that, although the same genes may be expressed in the sporophytic tapetal cells and in gametophytic tissues, they are regulated differentially leading to the production of the various contrasting lipidic structures that are assembled together to give rise to a viable, fertile pollen grain.

  11. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.

    PubMed

    Zhu, Chun; Wakeham, Stuart G; Elling, Felix J; Basse, Andreas; Mollenhauer, Gesine; Versteegh, Gerard J M; Könneke, Martin; Hinrichs, Kai-Uwe

    2016-12-01

    Membrane lipids of marine planktonic archaea have provided unique insights into archaeal ecology and paleoceanography. However, past studies of archaeal lipids in suspended particulate matter (SPM) and sediments mainly focused on a small class of fully saturated glycerol dibiphytanyl glycerol tetraether (GDGT) homologues identified decades ago. The apparent low structural diversity of GDGTs is in strong contrast to the high diversity of metabolism and taxonomy among planktonic archaea. Furthermore, adaptation of archaeal lipids in the deep ocean remains poorly constrained. We report the archaeal lipidome in SPM from diverse oceanic regimes. We extend the known inventory of planktonic archaeal lipids to include numerous unsaturated archaeal ether lipids (uns-AELs). We further reveal (i) different thermal regulations and polar headgroup compositions of membrane lipids between the epipelagic (≤ 100 m) and deep (>100 m) populations of archaea, (ii) stratification of unsaturated GDGTs with varying redox conditions, and (iii) enrichment of tetra-unsaturated archaeol and fully saturated GDGTs in epipelagic and deep oxygenated waters, respectively. Such stratified lipid patterns are consistent with the typical distribution of archaeal phylotypes in marine environments. We, thus, provide an ecological context for GDGT-based paleoclimatology and bring about the potential use of uns-AELs as biomarkers for planktonic Euryarchaeota. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Light-Induced Changes in Fatty Acid Profiles of Specific Lipid Classes in Several Freshwater Phytoplankton Species

    PubMed Central

    Wacker, Alexander; Piepho, Maike; Harwood, John L.; Guschina, Irina A.; Arts, Michael T.

    2016-01-01

    We tested the influence of two light intensities [40 and 300 μmol PAR / (m2s)] on the fatty acid composition of three distinct lipid classes in four freshwater phytoplankton species. We chose species of different taxonomic classes in order to detect potentially similar reaction characteristics that might also be present in natural phytoplankton communities. From samples of the bacillariophyte Asterionella formosa, the chrysophyte Chromulina sp., the cryptophyte Cryptomonas ovata and the zygnematophyte Cosmarium botrytis we first separated glycolipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine) as well as non-polar lipids (triacylglycerols), before analyzing the fatty acid composition of each lipid class. High variation in the fatty acid composition existed among different species. Individual fatty acid compositions differed in their reaction to changing light intensities in the four species. Although no generalizations could be made for species across taxonomic classes, individual species showed clear but small responses in their ecologically-relevant omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in terms of proportions and of per tissue carbon quotas. Knowledge on how lipids like fatty acids change with environmental or culture conditions is of great interest in ecological food web studies, aquaculture, and biotechnology, since algal lipids are the most important sources of omega-3 long-chain PUFA for aquatic and terrestrial consumers, including humans. PMID:27014290

  13. Daunorubicin and Cytarabine Lipid Complex Injection

    MedlinePlus

    Daunorubicin and cytarabine lipid complex is used to treat certain types of acute myeloid leukemia (AML; a type of cancer of ... is in a class of medications called anthracyclines. Cytarabine is in a class of medications called antimetabolites. ...

  14. Factors influencing particulate lipid production in the East Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Gašparović, B.; Frka, S.; Koch, B. P.; Zhu, Z. Y.; Bracher, A.; Lechtenfeld, O. J.; Neogi, S. B.; Lara, R. J.; Kattner, G.

    2014-07-01

    Extensive analyses of particulate lipids and lipid classes were conducted to gain insight into lipid production and related factors along the biogeochemical provinces of the Eastern Atlantic Ocean. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a), phaeopigments, Chl a concentrations and carbon content of eukaryotic micro-, nano- and picophytoplankton, including cell abundances for the latter two and for cyanobacteria and prokaryotic heterotrophs. We focused on the productive ocean surface (2 m depth and deep Chl a maximum (DCM). Samples from the deep ocean provided information about the relative reactivity and preservation potential of particular lipid classes. Surface and DCM particulate lipid concentrations (3.5-29.4 μg L-1) were higher than in samples from deep waters (3.2-9.3 μg L-1) where an increased contribution to the POC pool was observed. The highest lipid concentrations were measured in high latitude temperate waters and in the North Atlantic Tropical Gyral Province (13-25°N). Factors responsible for the enhanced lipid synthesis in the eastern Atlantic appeared to be phytoplankton size (micro, nano, pico) and the low nutrient status with microphytoplankton having the most expressed influence in the surface and eukaryotic nano- and picophytoplankton in the DCM layer. Higher lipid to Chl a ratios suggest enhanced lipid biosynthesis in the nutrient poorer regions. The various lipid classes pointed to possible mechanisms of phytoplankton adaptation to the nutritional conditions. Thus, it is likely that adaptation comprises the replacement of membrane phospholipids by non-phosphorus containing glycolipids under low phosphorus conditions. The qualitative and quantitative lipid compositions revealed that phospholipids were the most degradable lipids, and their occurrence decreased with increasing depth. In contrast, wax esters, possibly originating from zooplankton, survived downward transport probably due to the fast sinking rate of particles (fecal pellets). The important contribution of glycolipids in deep waters reflected their relatively stable nature and degradation resistance. A lipid-based proxy for the lipid degradative state (Lipolysis Index) suggests that many lipid classes were quite resistant to degradation even in the deep ocean.

  15. The CD1 family: serving lipid antigens to T cells since the Mesozoic era.

    PubMed

    Zajonc, Dirk M

    2016-08-01

    Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).

  16. The CD1 family: serving lipid antigens to T cells since the Mesozoic era

    PubMed Central

    Zajonc, Dirk M.

    2016-01-01

    Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs). PMID:27368414

  17. A critical assessment of transmethylation procedures for n-3 long-chain polyunsaturated fatty acid quantification of lipid classes.

    PubMed

    Sehl, Anthony; Couëdelo, Leslie; Fonseca, Laurence; Vaysse, Carole; Cansell, Maud

    2018-06-15

    Lipid transmethylation methods described in the literature are not always evaluated with care so to insure that the methods are effective, especially on food matrix or biological samples containing polyunsaturated fatty acid (PUFA). The aim of the present study was to select a method suitable for all lipid species rich in long chain n-3 PUFA. Three published methods were adapted and applied on individual lipid classes. Lipid (trans)methylation efficiency was characterized in terms of reaction yield and gas chromatography (GC) analysis. The acid-catalyzed method was unable to convert triglycerides and sterol esters, while the method using an incubation at a moderate temperature was ineffective on phospholipids and sterol esters. On the whole only the method using sodium methoxide and sulfuric acid was effective on lipid classes taken individually or in a complex medium. This study highlighted the use of an appropriate (trans)methylation method for insuring an accurate fatty acid composition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. High-temperature gas chromatography-mass spectrometry for skin surface lipids profiling.

    PubMed

    Michael-Jubeli, Rime; Bleton, Jean; Baillet-Guffroy, Arlette

    2011-01-01

    Skin surface lipids (SSLs) arising from both sebaceous glands and skin removal form a complex lipid mixture composed of free fatty acids and neutral lipids. High-temperature gas chromatography coupled with electron impact or chemical ionization mass spectrometry was used to achieve a simple analytical protocol, without prior separation in classes and without prior cleavage of lipid molecules, in order to obtain simultaneously i) a qualitative characterization of the individual SSLs and ii) a quantitative evaluation of lipid classes. The method was first optimized with SSLs collected from the forehead of a volunteer. More than 200 compounds were identified in the same run. These compounds have been classified in five lipid classes: free fatty acids, hydrocarbons, waxes, sterols, and glycerides. The advantage to this method was it provided structural information on intact compounds, which is new for cholesteryl esters and glycerides, and to obtain detailed fingerprints of the major SSLs. These fingerprints were used to compare the SSL compositions from different body areas. The squalene/cholesterol ratio was used to determine the balance between sebaceous secretion and skin removal. This method could be of general interest in fields where complex lipid mixtures are involved.

  19. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation.

    PubMed

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-09-01

    The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs.

  20. Furosemide Loaded Silica-Lipid Hybrid Microparticles: Formulation Development, in vitro and ex vivo Evaluation

    PubMed Central

    Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar

    2015-01-01

    Purpose: The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. Methods: The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. Results: In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. Conclusion: It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs. PMID:26504763

  1. Polyoxylglycerides and glycerides: effects of manufacturing parameters on API stability, excipient functionality and processing.

    PubMed

    Jannin, Vincent; Rodier, Jean-David; Musakhanian, Jasmine

    2014-05-15

    Lipid-based formulations are a viable option to address modern drug delivery challenges such as increasing the oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs), or sustaining the drug release of molecules intended for chronic diseases. Esters of fatty acids and glycerol (glycerides) and polyethylene-glycols (polyoxylglycerides) are two main classes of lipid-based excipients used by oral, dermal, rectal, vaginal or parenteral routes. These lipid-based materials are more and more commonly used in pharmaceutical drug products but there is still a lack of understanding of how the manufacturing processes, processing aids, or additives can impact the chemical stability of APIs within the drug product. In that regard, this review summarizes the key parameters to look at when formulating with lipid-based excipients in order to anticipate a possible impact on drug stability or variation of excipient functionality. The introduction presents the chemistry of natural lipids, fatty acids and their properties in relation to the extraction and refinement processes. Then, the key parameters during the manufacturing process influencing the quality of lipid-based excipients are provided. Finally, their critical characteristics are discussed in relation with their intended functionality and ability to interact with APIs and others excipients within the formulation. Copyright © 2014. Published by Elsevier B.V.

  2. Widely-targeted quantitative lipidomics methodology by supercritical fluid chromatography coupled with fast-scanning triple quadrupole mass spectrometry.

    PubMed

    Takeda, Hiroaki; Izumi, Yoshihiro; Takahashi, Masatomo; Paxton, Thanai; Tamura, Shohei; Koike, Tomonari; Yu, Ying; Kato, Noriko; Nagase, Katsutoshi; Shiomi, Masashi; Bamba, Takeshi

    2018-05-03

    Lipidomics, the mass spectrometry-based comprehensive analysis of lipids, has attracted attention as an analytical approach to provide novel insight into lipid metabolism and to search for biomarkers. However, an ideal method for both comprehensive and quantitative analysis of lipids has not been fully developed. Herein, we have proposed a practical methodology for widely-targeted quantitative lipidome analysis using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry (SFC/QqQMS) and theoretically calculated a comprehensive lipid multiple reaction monitoring (MRM) library. Lipid classes can be separated by SFC with a normal phase diethylamine-bonded silica column with high-resolution, high-throughput, and good repeatability. Structural isomers of phospholipids can be monitored by mass spectrometric separation with fatty acyl-based MRM transitions. SFC/QqQMS analysis with an internal standard-dilution method offers quantitative information for both lipid class and individual lipid molecular species in the same lipid class. Additionally, data acquired using this method has advantages including reduction of misidentification and acceleration of data analysis. Using the SFC/QqQMS system, alteration of plasma lipid levels in myocardial infarction-prone rabbits to the supplementation of eicosapentaenoic acid was first observed. Our developed SFC/QqQMS method represents a potentially useful tool for in-depth studies focused on complex lipid metabolism and biomarker discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The Ia.2 Epitope Defines a Subset of Lipid Raft Resident MHC Class II Molecules Crucial to Effective Antigen Presentation1

    PubMed Central

    Busman-Sahay, Kathleen; Sargent, Elizabeth; Harton, Jonathan A.; Drake, James R.

    2016-01-01

    Previous work has established that binding of the 11-5.2 anti-I-Ak mAb, which recognizes the Ia.2 epitope on I-Ak class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-Ak mAb that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-Ak molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2 bearing subset of I-Ak class II molecules is critically necessary for effective B cell–T cell interactions especially at low antigen doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-Ak class II molecules possessing a β chain-tethered HEL peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2 negative tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous antigen to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II confomer vital to the initiation of MHC class II restricted B cell–T cell interactions. PMID:21543648

  4. [Lipids in the amphipod Talorchestia margaritae (Amphipoda: Talitridae) and its relationship with the ecology of the species].

    PubMed

    López, Sandra; Díaz, Yusbelly; Noris, Karem; Cabrera, Aivle

    2010-09-01

    T. margaritae, an endemic species inhabiting Venezuelan coasts, plays an important ecological role in plant and animal decomposition. To understand this issue in some animal groups, especially small ones, lipid composition analysis has been an interesting tool to describe their trophic relationships and food preferences. In order to assess this and visualize the components of their diet, we determined the lipid composition differences between males and females and among age classes in this species. Two sandy beaches were selected: Mangle Quemao and Las Mercedes de Paparo, from which sand samples of known volume were collected at the supralittoral area in 2007. Organisms were separated by age and sex classes, and their size, weight, density, biomass, total lipids (TL), lipid classes and fatty acid markers present in their tissues were determined. The sizes were similar for all age classes between the two locations, while the weights were higher for Mangle Quemao. The TL and lipid classes showed similar proportions between sexes, age classes and locations (TL: 3-5%; Phospholipids: 20-30%; Glycolipids: <1%; sterols: 4%). On the other hand, Triglycerides (TAG) were higher in Mangle Quemao, which may be related to the difference between the weights of two locations. The most abundant fatty acid biomarkers in the two studied sites were 16:0 and 18:1(n-9); this last one is characteristic of a carnivorous diet. The other nine markers were identified with changes in their distribution in organisms at Mangle Quemao and between males and females of both populations. Based on observed fatty acids markers we can assume T. margaritae as a generalist carnivore. Those populations were influenced by available food; inducing differences in weight, TAG proportion and markers diversity.

  5. Enhanced Lipidome Coverage in Shotgun Analyses by using Gas-Phase Fractionation

    NASA Astrophysics Data System (ADS)

    Nazari, Milad; Muddiman, David C.

    2016-11-01

    A high resolving power shotgun lipidomics strategy using gas-phase fractionation and data-dependent acquisition (DDA) was applied toward comprehensive characterization of lipids in a hen ovarian tissue in an untargeted fashion. Using this approach, a total of 822 unique lipids across a diverse range of lipid categories and classes were identified based on their MS/MS fragmentation patterns. Classes of glycerophospholipids and glycerolipids, such as glycerophosphocholines (PC), glycerophosphoethanolamines (PE), and triglycerides (TG), are often the most abundant peaks observed in shotgun lipidomics analyses. These ions suppress the signal from low abundance ions and hinder the chances of characterizing low abundant lipids when DDA is used. These issues were circumvented by utilizing gas-phase fractionation, where DDA was performed on narrow m/z ranges instead of a broad m/z range. Employing gas-phase fractionation resulted in an increase in sensitivity by more than an order of magnitude in both positive- and negative-ion modes. Furthermore, the enhanced sensitivity increased the number of lipids identified by a factor of ≈4, and facilitated identification of low abundant lipids from classes such as cardiolipins that are often difficult to observe in untargeted shotgun analyses and require sample-specific preparation steps prior to analysis. This method serves as a resource for comprehensive profiling of lipids from many different categories and classes in an untargeted manner, as well as for targeted and quantitative analyses of individual lipids. Furthermore, this comprehensive analysis of the lipidome can serve as a species- and tissue-specific database for confident identification of other MS-based datasets, such as mass spectrometry imaging.

  6. Lipid metabolism-related gene expression pattern of Atlantic bluefin tuna (Thunnus thynnus L.) larvae fed on live prey.

    PubMed

    Betancor, Mónica B; Ortega, Aurelio; de la Gándara, Fernando; Tocher, Douglas R; Mourente, Gabriel

    2017-04-01

    The present study is the first to evaluate lipid metabolism in first-feeding Atlantic bluefin tuna (ABT; Thunnus thynnus L.) larvae fed different live prey including enriched rotifers Brachionus plicatilis and Acartia sp. copepod nauplii from 2 days after hatch. Understanding the molecular basis of lipid metabolism and regulation in ABT will provide insights to optimize diet formulations for this high-value species new to aquaculture. To this end, we investigated the effect of dietary lipid on whole larvae lipid class and fatty acid compositions and the expression of key genes involved in lipid metabolism in first feeding ABT larvae fed different live prey. Additionally, the expression of lipid metabolism genes in tissues of adult broodstock ABT was evaluated. Growth and survival data indicated that copepods were the best live prey for first feeding ABT and that differences in growth performance and lipid metabolism observed between larvae from different year classes could be a consequence of broodstock nutrition. In addition, expression patterns of lipid metabolic genes observed in ABT larvae in the trials could reflect differences in lipid class and fatty acid compositions of the live prey. The lipid nutritional requirements, including essential fatty acid requirements of larval ABT during the early feeding stages, are unknown, and the present study represents a first step in addressing these highly relevant issues. However, further studies are required to determine nutritional requirements and understand lipid metabolism during development of ABT larvae and to apply the knowledge to the commercial culture of this iconic species.

  7. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers.

    PubMed Central

    ten Grotenhuis, E; Demel, R A; Ponec, M; Boer, D R; van Miltenburg, J C; Bouwstra, J A

    1996-01-01

    The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8874014

  8. Identification and characterization of lipases from Malassezia restricta, a causative agent of dandruff.

    PubMed

    Sommer, Bettina; Overy, David P; Kerr, Russell G

    2015-11-01

    Dandruff, a skin disorder affecting 50% of the world population, is linked with proliferation of lipophilic yeasts of the genus Malassezia (particularly Malassezia globosa and M. restricta). Most Malassezia species show a unique lipid dependency and require external lipids for growth. Genome mining of the incomplete M. restricta genome led to the identification of eight lipase sequences. Sequences representing the class 3 and LIP lipase families were used to clone the lipases MrLip1, MrLip2 and MrLip3, recombinantly expressed in Pichia pastoris, and tested for their activity using mono-, di- and triacylglycerol substrates. Hydrolysis by the M. restricta lipase MrLip1 and MrLip2 (family class 3) was limited to the mono- and diacylglycerol, while MrLip3 (family LIP) hydrolyzed all three substrates. This result confirms that Malassezia family LIP lipases are responsible for the hydrolysis of triacylglycerols, the main component of human sebum. Furthermore, the information regarding lipases from M. restricta presented here might aid in the search for anti-dandruff agents. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Applications of the Non-Conventional Yeast Yarrowia lipolytica

    NASA Astrophysics Data System (ADS)

    Thevenieau, France; Nicaud, Jean-Marc; Gaillardin, Claude

    The yeast Yarrowia lipolytica is often found associated to proteinaceous or hydrophobic substrates such as alkanes or lipids. To assimilate these hydropho-bic substrates, Y. lipolytica has developed an adaptative strategy resulting in elaborated morphological and physiological changes leading to terminal and β-oxidation of substrates as well as to lipid storage. The completion of the Y. lipolytica genome greatly improved our understanding of these mechanisms. Three main applications of this metabolism will be discussed. The first class corresponds to bioconver-sion processes for the production of secondary metabolites (citric acid), of aroma ( γ - lactone, green note, epoxy geraniol) and of chemicals (dicarboxylic acids). The second class leads to fine chemical production by enantio separation of pharmaceutical compounds using Y. lipolytica enzymes such as epoxyde hydrolase or lipase. The third one refers to production of Single Cell Oils (SCO) from agriculture feedstock. In addition to its ability to handle hydrophobic substrates, Y. lipolytica has also been recognised as a strong secretor of various proteins such as proteases, lipases, RNases and others. A comprehensive review of recent developments of the Y. lipolytica expression/secretion system will finally be presented.

  10. Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils.

    PubMed

    Mansour, Maged P; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R; Nichols, Peter D; Singh, Surinder P

    2014-02-21

    New and sustainable sources of long-chain (LC, ≥C₂₀) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C₁₆-C₂₂ fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols.

  11. Immunostimulatory Properties of Lipid Modified CpG Oligonucleotides.

    PubMed

    Yu, Chunsong; An, Myunggi; Li, Meng; Liu, Haipeng

    2017-08-07

    Innate immune responses recognizing pathogen associated molecular patterns play important roles in adaptive immunity. As such, ligands which mimic the conserved products of microbial and activate innate immunity are widely used as adjuvants for vaccines. Synthetic single strand oligodeoxynucleotides (ODNs) containing unmethylated cytosine-guanine (CpG) motifs which bind Toll-like receptor 9 (TLR9) are powerful molecular adjuvants, potentiating both humoral and cellular responses. However, CpG ODN's in vitro potency has not been translated to in vivo settings primarily due to issues associated with delivery and toxicity. A major challenge in clinical application of CpG ODN is the efficient delivery to lymph nodes, the anatomic sites where all the immune responses are initiated. Targeting CpG to the key antigen presenting cells (APC) is essential for its application as a vaccine adjuvant, as it not only enhances CpG's efficacy, but also greatly reduces the systemic toxicity. We recently discovered an "albumin-hitchhiking" approach by which CpG ODNs were conjugated to a lipophilic lipid tail and follow subcutaneous injection, accumulated in lymph nodes by binding and transporting with endogenous albumin. This molecular approach targets CpG to antigen presenting cells in the draining lymph nodes via an endogenous albumin-mediated mechanism and simultaneously improves both the efficacy and safety of CpG as a vaccine adjuvant. Since CpG ODNs can be divided into structurally distinct classes, and each class of CpG ODN activates different types of immune cells and triggers different types of immunostimulatory activities, it is important to thoroughly evaluate the efficacy of this "albumin-hitchhiking" strategy in each class of CpG. Here we compare the immunostimulatory activities of three classes of lipid conjugated CpG ODNs in vitro and in vivo. Three representative sequences of lipid modified CpG ODNs were synthesized and their stimulatory effects as a vaccine adjuvant were evaluated. Our results showed that in vitro, lipid modified class A CpG exhibited enhanced stimulatory activities toward TLR transfected reporter cells or bone-marrow derived dendritic cells, whereas lipid-modification of class B or C CpG reduces the activation of TLR9 by 2-3 fold, as compared with unmodified class B and class C CpG, respectively. However, in vivo coadministration of ovalbumin (OVA) protein antigen mixed with lipid-conjugated class B or C CpG ODNs, but not class A CpGs induced dramatically increased OVA-specific humoral and cytotoxic CD8 + T cells responses compared with OVA mixed with unmodified CpGs. Further, lipid-modification greatly reduces the toxicity associated with CpG by minimizing the systemic dissemination. Taken together, these results demonstrated that amphiphilic modification of three classes of CpG motifs differentially affected and modulated the immunostimulatory activities in vitro and in vivo. Our study highlights the importance of in vivo lymph node targeting of CpG ODNs in fulfilling their use as vaccine adjuvants, providing implications for the rational design of molecular adjuvant for subunit vaccines.

  12. Identification of a new class of lipid droplet-associated proteins in plants

    USDA-ARS?s Scientific Manuscript database

    Lipid droplets in plants (also known as oil bodies, lipid bodies or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets ...

  13. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria.

    PubMed

    Adewuyi, Adewale; Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food.

  14. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria

    PubMed Central

    Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food. PMID:26904625

  15. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites.

    PubMed

    Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian

    2016-06-16

    As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.

  16. Oil goldenberry (Physalis peruviana L.).

    PubMed

    Ramadan, Mohamed F; Mörsel, Jörg-T

    2003-02-12

    Whole berries, seeds, and pulp/peel of goldenberry (Physalis peruviana L.) were compared in terms of fatty acids, lipid classes, triacylglyerols, phytosterols, fat-soluble vitamins, and beta-carotene. The total lipid contents in the whole berries, seeds, and seedless parts were 2.0, 1.8, and 0.2% (on a fresh weight basis), respectively. Linoleic acid was the dominating fatty acid followed by oleic acid as the second major fatty acid. Palmitic and stearic acids were the major saturates. In pulp/peel oil, the fatty acid profile was characterized by higher amounts of saturates, monoenes, and trienes than in whole berry and seed oils. Neutral lipids comprised >95% of total lipids in whole berry oil and seed oil, while neutral lipids separated in lower level in pulp/peel oil. Triacylglycerols were the predominant neutral lipid subclass and constituted ca. 81.6, 86.6, and 65.1% of total neutral lipids in whole berry, seed, and pulp/peel oils, respectively. Nine triacylglycerol molecular species were detected, wherein three species, C54:3, C52:2, and C54:6, were presented to the extent of approximately 91% or above. The highest level of phytosterols was estimated in pulp/peel oil that contained the highest level of unsaponifiables. In both whole berry and seed oils, campesterol and beta-sitosterol were the sterol markers, whereas Delta5-avenasterol and campesterol were the main 4-desmethylsterols in pulp/peel oil. The tocopherols level was much higher in pulp/peel oil than in whole berry and seed oils. beta- and gamma-tocopherols were the major components in whole berry and seed oils, whereas gamma- and alpha-tocopherols were the main constituents in pulp/peel oil. beta-Carotene and vitamin K(1) were also measured in markedly high levels in pulp/peel oil followed by whole berry oil and seed oil, respectively. Information provided by the present work is of importance for further chemical investigation of goldenberry oil and industrial utilization of the berries as a raw material of oils and functional foods.

  17. Egg components and hatchling lipid reserves: parental investment in kinosternid turtles from the southeastern United States.

    PubMed

    Nagle, R D; Burke, V J; Congdon, J D

    1998-05-01

    We measured egg components and pre-ovulatory parental investment in kinosternid turtles (Kinosternon baurii, Kinosternon subrubrum, Sternotherus minor, and Sternotherus odoratus) from the southeastern USA. Allocation patterns were determined by comparing lipid content of eggs and hatchlings, to determine whether females of species with hatchlings that exhibit a delayed nest-emergence strategy: (1) allocate higher proportions of energy storage lipids to eggs, (2) produce hatchlings with higher levels of storage lipids, and (3) have higher levels of pre-ovulatory parental investment in comparison to species whose hatchlings exhibit immediate emergence. Whereas total non-polar lipid (NPL) proportions by dry mass of eggs varied significantly among species, NPL proportions of hatchlings were not significantly different. Pre-ovulatory parental investment in care (proportion of hatchling NPL to egg NPL) was 40, 50, and 55% for K. subrubrum, S. minor, and S. odoratus, respectively. Lipid class composition of eggs and hatchlings was studied to distinguish lipids allocated for energy storage from those allocated to other functions. For both eggs and hatchlings, individual lipid classes (triacylglycerol, triacylglycerol fatty acid, cholesterol, cholesterol ester, and phospholipid) as proportions of total lipid, were similar among species. The major lipid class component of eggs and hatchlings of all species was triacylglycerol (> 83%), an energy storage lipid. Substantial changes in lipid classes during embryogenesis were similar among species and included: (1) depletion of triacylglycerol, (2) increase in cholesterol esters, and (3) changes in phospholipid composition. Incubation time varied significantly among species, and appeared to be responsible for differential energy utilization during embryogenesis. Our results are inconsistent with the previously observed pattern that hatchlings exhibiting a delayed nest-emergence strategy are allocated higher proportions of energy storage lipids than those that exhibit immediate emergence. However, because the species that overwinters in the nest (K. subrubrum) hatches approximately 40 days later than the species that typically does not (S. odoratus), hatchling K. subrubrum may contain higher non-polar lipid proportions than hatchling S. odoratus during similar winter time periods. Kinosternid hatchlings contain enough stored lipids to support basal maintenance costs for substantial time periods. We suggest that such reserves may be critical to hatchling survival during a period of negative energy balance, regardless of nest emergence strategy.

  18. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease

    PubMed Central

    Tracey, Timothy J.; Steyn, Frederik J.; Wolvetang, Ernst J.; Ngo, Shyuan T.

    2018-01-01

    Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS. PMID:29410613

  19. Phospholipids in sera of horses with summer eczema: lipid analysis of the autoserum preparation used in therapy.

    PubMed

    Hallamaa, R E; Batchu, K C; Tallberg, T

    2014-05-01

    Equine summer eczema, also known as insect bite hypersensitivity, affects horses recurrently during summer months. The treatment of this allergic pruritus is difficult and therefore there is a need for efficacious treatments. Autoserum therapy, based on the use of autogenous serum that is specifically prepared for oral administration and given when the animal shows clinical signs has been introduced recently. Lipids are thought to be responsible for the effect of this therapy. The main aim of this study was to analyse the phospholipid content of autogenous serum preparations and to further assess whether these preparations have different lipid profiles depending on the clinical status of the horse. The hypothesis is that the major serum phospholipids typical of the horse are present in the autoserum preparation. Descriptive controlled clinical study. Sera were collected from 10 affected and 6 healthy horses, prepared in a similar fashion and the lipids contained in the resulting autoserum preparations were analysed by electrospray ionisation mass spectrometry. The major phospholipid classes detected were phosphatidylcholine, sphingomyelin, phosphatidic acid and traces of lysophosphatidylcholine. Horses with summer eczema had significantly abundant concentrations of phosphatidylcholine (P = 0.042) and sphingomyelin (P = 0.0017) in comparison with healthy horses, while the concentration of phosphatidic acid was significantly higher in healthy horses (P = 0.0075). The autoserum preparation contains minute amounts of the main serum phospholipids in differing concentrations in healthy horses and horses with an allergic skin disease. © 2013 EVJ Ltd.

  20. Rubber particle proteins REF1 and SRPP1 interact differently with native lipids extracted from Hevea brasiliensis latex.

    PubMed

    Wadeesirisak, Kanthida; Castano, Sabine; Berthelot, Karine; Vaysse, Laurent; Bonfils, Frédéric; Peruch, Frédéric; Rattanaporn, Kittipong; Liengprayoon, Siriluck; Lecomte, Sophie; Bottier, Céline

    2017-02-01

    Rubber particle membranes from the Hevea latex contain predominantly two proteins, REF1 and SRPP1 involved in poly(cis-1,4-isoprene) synthesis or rubber quality. The repartition of both proteins on the small or large rubber particles seems to differ, but their role in the irreversible coagulation of the rubber particle is still unknown. In this study we highlighted the different modes of interactions of both recombinant proteins with different classes of lipids extracted from Hevea brasiliensis latex, and defined as phospholipids (PL), glycolipids (GL) and neutral lipids (NL). We combined two biophysical methods, polarization modulated-infrared reflection adsorption spectroscopy (PM-IRRAS) and ellipsometry to elucidate their interactions with monolayers of each class of lipids. REF1 and SRPP1 interactions with native lipids are clearly different; SRPP1 interacts mostly in surface with PL, GL or NL, without modification of its structure. In contrast REF1 inserts deeply in the lipid monolayers with all lipid classes. With NL, REF1 is even able to switch from α-helice conformation to β-sheet structure, as in its aggregated form (amyloid form). Interaction between REF1 and NL may therefore have a specific role in the irreversible coagulation of rubber particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Daunorubicin Lipid Complex Injection

    MedlinePlus

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to ... body) related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called ...

  2. Irinotecan Lipid Complex Injection

    MedlinePlus

    Irinotecan lipid complex is used in combination with other medications to treat pancreatic cancer that has spread to other ... worsened after treatment with other chemotherapy medications. Irinotecan lipid complex is in a class of antineoplastic medications ...

  3. Metabolic incorporation of unsaturated fatty acids into boar spermatozoa lipids and de novo formation of diacylglycerols.

    PubMed

    Svetlichnyy, Valentin; Müller, Peter; Pomorski, Thomas G; Schulze, Martin; Schiller, Jürgen; Müller, Karin

    2014-01-01

    Lipids play an important role in the maturation, viability and function of sperm cells. In this study, we examined the neutral and polar lipid composition of boar spermatozoa by thin-layer chromatography/mass spectrometry. Main representatives of the neutral lipid classes were diacylglycerols containing saturated (myristoyl, palmitoyl and stearoyl) fatty acyl residues. Glycerophosphatidylcholine and glycerophosphatidylethanolamine with alk(en)yl ether residues in the sn-1 position and unsaturated long chained fatty acyl residues in sn-2 position were identified as the most prominent polar lipids. The only glycoglycerolipid was sulfogalactosylglycerolipid carrying 16:0-alkyl- and 16:0-acyl chains. Using stable isotope-labelling, the metabolic incorporation of exogenously supplied fatty acids was analysed. Boar spermatozoa incorporated hexadecenoic (16:1), octadecenoic (18:1), octadecadienoic (18:2) and octadecatrienoic (18:3) acids primarily in the diacylglycerols and glycerophosphatidylcholines. In contrast, incorporation of eicosapentaenoic acid (20:5) was not detected. The analysis of molecular species composition subsequent to the incorporation of exogenous [(14)C]-octadecadienoic acid suggests two pathways for incorporation of exogenous fatty acids into glycerophosphatidylcholine: (1) de novo synthesis of glycerophosphatidylcholine via the CDP-choline pathway and (2) reacylation of lysophosphatidylcholine via an acyltransferase. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects.

    PubMed

    Lötsch, Jörn; Thrun, Michael; Lerch, Florian; Brunkhorst, Robert; Schiffmann, Susanne; Thomas, Dominique; Tegder, Irmgard; Geisslinger, Gerd; Ultsch, Alfred

    2017-06-07

    Lipid metabolism has been suggested to be a major pathophysiological mechanism of multiple sclerosis (MS). With the increasing knowledge about lipid signaling, acquired data become increasingly complex making bioinformatics necessary in lipid research. We used unsupervised machine-learning to analyze lipid marker serum concentrations, pursuing the hypothesis that for the most relevant markers the emerging data structures will coincide with the diagnosis of MS. Machine learning was implemented as emergent self-organizing feature maps (ESOM) combined with the U*-matrix visualization technique. The data space consisted of serum concentrations of three main classes of lipid markers comprising eicosanoids ( d = 11 markers), ceramides ( d = 10), and lyosophosphatidic acids ( d = 6). They were analyzed in cohorts of MS patients ( n = 102) and healthy subjects ( n = 301). Clear data structures in the high-dimensional data space were observed in eicosanoid and ceramides serum concentrations whereas no clear structure could be found in lysophosphatidic acid concentrations. With ceramide concentrations, the structures that had emerged from unsupervised machine-learning almost completely overlapped with the known grouping of MS patients versus healthy subjects. This was only partly provided by eicosanoid serum concentrations. Thus, unsupervised machine-learning identified distinct data structures of bioactive lipid serum concentrations. These structures could be superimposed with the known grouping of MS patients versus healthy subjects, which was almost completely possible with ceramides. Therefore, based on the present analysis, ceramides are first-line candidates for further exploration as drug-gable targets or biomarkers in MS.

  5. Iatroscan-measured particulate and dissolved lipids in the Almeria-Oran frontal system (Almofront-1, May 1991)

    NASA Astrophysics Data System (ADS)

    Gérin, C.; Goutx, M.

    1994-08-01

    The Chromarod-Iatroscan system was used to measure dissolved and particulate lipids at six sites representative of the main hydrological zones of the Almeria-Oran frontal system in May 1991. Concentrations ranged from 9 to 113 μg 1 -1 and from 3 to 84 μg 1 -1 respectively. Particulate carbon was estimated on a CHN Leco analyzer. Dissolved lipid concentrations were highly variable with depth and exhibited clear signatures of phytoplankton degradation throughout the profiles. In the 300-400 m layer, particulate wax esters denoted the presence of deep zooplankton which may be benefit from the downward fluxes of organic matter from the frontal zone. In surface water, high concentrations of dissolved lipids and particulate carbon marked the presence of the jet front. Particulate lipid classes in samples were related to the presence of zooplankton and to the physiological state of cells rather than to phytoplankton biomass. Particulate triglyceride concentrations (storage lipids in phytoplankton) increased from the left to the right border of the jet core and further southwards, culminating in the Atlantic anticyclonic gyre. The distribution of particulate lipids to carbon and chlorophyllatios and the increasing level of triglycerides from the jet and southwards suggested a rapid removal of the frontal production by physical transports. The ability of anticyclonic structures to enhance accumulations of energetically rich compounds and thus to play a role as fertilizers of the oligotrophic waters of the Mediterranean Sea is discussed.

  6. Towards a deeper understanding of fatty acid bioaccessibility and its dependence on culinary treatment and lipid class: a case study of gilthead seabream (Sparus aurata).

    PubMed

    Costa, Sara; Afonso, Cláudia; Cardoso, Carlos; Oliveira, Rui; Alves, Francisca; Nunes, Maria L; Bandarra, Narcisa M

    2016-11-08

    The bioaccessibility of total lipids and fatty acids (FA) in raw and grilled gilthead seabream (Sparus aurata) was determined using an in vitro digestion model. The particular impact of grilling on the FA profile of seabream was also studied. In addition, the influence of lipid class on the bioaccessibility of each FA was analysed. Grilling did not change the relative FA profile, and only the absolute values were altered. However, the relative FA profile varied across lipid classes, being more dissimilar between TAG and phospholipids. Long-chain SFA and PUFA seemed to be less bioaccessible. Moreover, grilling reduced bioaccessibility of protein, fat and many FA, with the highest reductions found in PUFA such as the DHA. Strong evidence supporting a predominantly regioselective action of lipase during in vitro digestion was found, and the impact of this phenomenon on FA bioaccessibility was assessed.

  7. A single step reversed-phase high performance liquid chromatography separation of polar and non-polar lipids.

    PubMed

    Olsson, Petter; Holmbäck, Jan; Herslöf, Bengt

    2014-11-21

    This paper reports a simple chromatographic system to separate lipids classes as well as their molecular species. By the use of phenyl coated silica as stationary phase in combination with a simple mobile phase consisting of methanol and water, all tested lipid classes elute within 30 min. Furthermore, a method to accurately predict retention times of specific lipid components for this type of chromatography is presented. Common detection systems were used, namely evaporative light scattering detection (ELSD), charged aerosol detection (CAD), electrospray mass spectrometry (ESI-MS), and UV detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Lipid and fatty acid dynamics in mature female albacore tuna (Thunnus alalunga) in the western Indian Ocean

    PubMed Central

    Pethybridge, Heidi; Appadoo, Chandani; Bodin, Nathalie

    2018-01-01

    Lipid composition in the reproductive and somatic tissues were investigated for female albacore tuna, Thunnus alalunga, in the western Indian Ocean, between latitude 18–21°S and longitude 56–60°E, from January 2014 to March 2015. Highest total lipids (TL) were found in the gonads of spawning-capable females (SCP) (mainly phospholipids, PL, triacylglycerols, TAG and wax esters, WE) and in the liver of females in the late regressing and regenerating ovary phases (mainly TAG, PL and sterols, ST). Muscle TL was low but exhibited high inter-individual variability. Correlations between gonadosomatic and hepatosomatic indices with TL and the lipid classes in albacore gonads and liver describes a pattern of reallocation of energy from the liver to the gonads during SCP. Female albacore were also observed to pursue foraging activities even during this period. Therefore, female albacore can be considered as a capital-income breeder relying mostly on stored lipids before the onset of reproduction and to a lesser extent on energy derived from concurrent feeding during the spawning season. Overall, the three examined tissues had similar general fatty acid profiles with the dominance of 22:6ω3 (docosahexaenoic acid, DHA), 16:0, 18:0 and 18:1ω9. The proportions of fatty acids varied with maturity stage and ovary lobe, with the smaller lobe having significantly higher proportions of essential fatty acids, as well as 16:0 and 18:1n9, compared to the larger one. Our results provide new information on the life-history and energy allocation strategy of albacore which will assist fisheries managers. PMID:29608623

  9. QUALITY ASSURANCE STUDY OF MARINE LIPID CLASS DETERMINATION USING CHROMAROD/IATROSCAN( REG. TRADEMARK) THIN-LAYER CHROMATOGRAPHY-FLAME IONIZATION DETECTOR

    EPA Science Inventory

    An Iatroscan thin-layer chromatorgraphy-flame ionization detector has been utilized to quantify lipid classes in marine samples. This method was evaluated relative to established quality assurance (QA) procedures used for the gas chromatographic analysis of PCBs. A method for ext...

  10. ONTOGENETIC CHANGES IN BIOCHEMICAL COMPOSITION DURING LARVAL GROWTH OF LEPIDOPHTHALMUS LOUISIANENSIS

    EPA Science Inventory

    Early stages of ghost shrimp were mass-reared in the laboratory (28?C; 20 o/ooS) from hatching to the decapodid (D) stage. Iatroscan lipid class analysis revealed that major lipid classes in recently deposited eggs were phospholipids (80.8?1.3%) and triglycerides (16.0?1.1%), bo...

  11. Amphotericin B Lipid Complex Injection

    MedlinePlus

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did not respond ... to tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in a class of medications ...

  12. Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New Transformed Land Plant Containing Long-Chain Omega-3 Oils

    PubMed Central

    Mansour, Maged P.; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R.; Nichols, Peter D.; Singh, Surinder P.

    2014-01-01

    New and sustainable sources of long-chain (LC, ≥C20) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C16–C22 fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols. PMID:24566436

  13. Profiling over 1500 lipids in induced lung sputum and the implications in studying lung diseases.

    PubMed

    t'Kindt, Ruben; Telenga, Eef D; Jorge, Lucie; Van Oosterhout, Antoon J M; Sandra, Pat; Ten Hacken, Nick H T; Sandra, Koen

    2015-01-01

    Induced lung sputum is a valuable matrix in the study of respiratory diseases. Although the methodology of sputum collection has evolved to a point where it is repeatable and responsive to inflammation, its use in molecular profiling studies is still limited. Here, an in-depth lipid profiling of induced lung sputum using high-resolution liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-Q-TOF MS) is described. An enormous complexity in lipid composition could be revealed. Over 1500 intact lipids, originating from 6 major lipid classes, have been accurately identified in 120 μL of induced sputum. By number and measured intensity, glycerophospholipids represent the largest lipid class, followed by sphingolipids, glycerolipids, fatty acyls, sterol lipids, and prenol lipids. Several prenol lipids, originating from tobacco, could be detected in the lung sputum of smokers. To illustrate the utility of the methodology in studying respiratory diseases, a comparative lipid screening was performed on lung sputum extracts in order to study the effect of Chronic Obstructive Pulmonary Disease (COPD) on the lung barrier lipidome. Results show that sphingolipid expression in induced sputum significantly differs between smokers with and without COPD.

  14. Lipid Status and Predisposing Genes in Patients with Diabetes Mellitus Type 1 from Various Ethnic Groups.

    PubMed

    Kolesnikova, L I; Kolesnikov, S I; Darenskaya, M A; Grebenkina, L A; Semenova, N V; Osipova, E V; Gnusina, S V; Bardymova, T A

    2015-12-01

    The peculiarities of HLA class II profile and lipid metabolism were examined in Buryat and Russian ethnic groups of patients with diabetes mellitus type 1. The incidence of type 1 haplotypes in HLA class II gene family was lower in Buryats than that in Russians. In comparison with Russians, the course of diabetes mellitus type 1 in Buryat patients was characterized with a lower content of total lipids, triacylglycerols, total cholesterol, and LDL, which probably explains a more favorable course of the disease in Buryat population.

  15. LipidPioneer: A Comprehensive User-Generated Exact Mass Template for Lipidomics

    PubMed Central

    Ulmer, Candice Z.; Koelmel, Jeremy P.; Ragland, Jared M.; Garrett, Timothy J.

    2017-01-01

    Lipidomics, the comprehensive measurement of lipid species in a biological system, has promising potential in biomarker discovery and disease etiology elucidation. Advances in chromatographic separation, mass spectrometric techniques, and novel substrate applications continue to expand the number of lipid species observed. The total number and type of lipid species detected in a given sample are generally indicative of the sample matrix examined (e.g. serum, plasma, cells, bacteria, tissue, etc.). Current exact mass lipid libraries are static and represent the most commonly analyzed matrices. It is common practice for users to manually curate their own lists of lipid species and adduct masses; however, this process is time-consuming. LipidPioneer, an interactive template, can be used to generate exact masses and molecular formulas of lipid species that may be encountered in the mass spectrometric analysis of lipid profiles. Over 60 lipid classes are present in the LipidPioneer template, and include several unique lipid species, such as ether-linked lipids and lipid oxidation products. In the template, users can add any fatty acyl constituents without limitation in the number of carbons or degrees of unsaturation. LipidPioneer accepts naming using the lipid class level (sum composition) and the LIPID MAPS notation for fatty acyl structure level. In addition to lipid identification, user generated lipid m/z values can be used to develop inclusion lists for targeted fragmentation experiments. Resulting lipid names and m/z values can be imported into software such as MZmine or Compound Discoverer to automate exact mass searching and isotopic pattern matching across experimental data. PMID:28074328

  16. Design, Synthesis, and Characterization of Novel Zwitterionic Lipids for Drug and siRNA Delivery Applications

    NASA Astrophysics Data System (ADS)

    Walsh, Colin L.

    Lipid-based nanoparticles have long been used to deliver biologically active molecules such as drugs, proteins, peptides, DNA, and siRNA in vivo. Liposomes and lipoplexes alter the biodistribution, pharmacokinetics, and cellular uptake of their encapsulated or associated cargo. This can increase drug efficacy while reducing toxicity, resulting in an increased therapeutic index and better clinical outcomes. Unlike small molecule drugs, which passively diffuse through lipid membranes, nucleic acids and proteins require an active, carrier mediated escape mechanism to reach their site of action. As such, the therapeutic application and drug properties dictate the required biophysical characteristics of the lipid nanoparticle. These carrier properties depend on the structure and biophysical characteristics of the lipids and other components used to formulate them. This dissertation presents a series of studies related to the development of novel synthetic lipids for use in drug delivery systems. First, we developed a novel class of zwitterionic lipids with head groups containing a cationic amine and anionic carboxylate and ester-linked oleic acid tails. These lipids exhibit structure-dependent, pH-responsive biophysical properties, and may be useful components for next-generation drug delivery systems. Second, we extended the idea of amine/carboxylate containing zwitterionic head groups and synthesized a series of acetate terminated diacyl lipids containing a quaternary amine. These lipids have an inverted headgroup orientation compared to naturally occurring zwitterionic lipids, and show interesting salt-dependent biophysical properties. Third, we synthesized and characterized a focused library of ionizable lysine-based lipids, which contain a lysine head group linked to a long-chain dialkylamine. A focused library was synthesized to determine the impact of hydrophobic fluidity, lipid net charge, and lipid pKa on the biophysical and siRNA transfection characteristics of these lipids. Our results indicate that structural variations significantly impact the biophysical and transfection behavior of this class of lipids. In summary, we have synthesized several new classes of lipids with biophysical characteristics that may be useful for drug delivery applications. Our results show that slight modifications to lipid structure impacts their biophysical behavior, which in turn dictates their potential utility in drug delivery systems. Further understanding lipid structure-activity relationships will allow for the rational design and engineering of lipids with appropriate properties for specific delivery applications.

  17. A Teaching Laboratory for Comprehensive Lipid Characterization from Food Samples

    ERIC Educational Resources Information Center

    Bendinskas, Kestutis; Weber, Benjamin; Nsouli, Tamara; Nguyen, Hoangvy V.; Joyce, Carolyn; Niri, Vadoud; Jaskolla, Thorsten W.

    2014-01-01

    Traditional and state-of-the-art techniques were combined to probe for various lipid classes from egg yolk and avocado qualitatively and quantitatively. A total lipid extract was isolated using liquid-liquid extraction. An aliquot of the total lipid extract was subjected to transesterification to form volatile fatty acid methyl esters suitable for…

  18. Lipids and Fatty Acids in Algae: Extraction, Fractionation into Lipid Classes, and Analysis by Gas Chromatography Coupled with Flame Ionization Detector (GC-FID).

    PubMed

    Guihéneuf, Freddy; Schmid, Matthias; Stengel, Dagmar B

    2015-01-01

    Despite the number of biochemical studies exploring algal lipids and fatty acid biosynthesis pathways and profiles, analytical methods used by phycologists for this purpose are often diverse and incompletely described. Potential confusion and potential variability of the results between studies can therefore occur due to change of protocols for lipid extraction and fractionation, as well as fatty acid methyl esters (FAME) preparation before gas chromatography (GC) analyses. Here, we describe a step-by-step procedure for the profiling of neutral and polar lipids using techniques such as solid-liquid extraction (SLE), thin-layer chromatography (TLC), and gas chromatography coupled with flame ionization detector (GC-FID). As an example, in this protocol chapter, analyses of neutral and polar lipids from the marine microalga Pavlova lutheri (an EPA/DHA-rich haptophyte) will be outlined to describe the distribution of fatty acid residues within its major lipid classes. This method has been proven to be a reliable technique to assess changes in lipid and fatty acid profiles in several other microalgal species and seaweeds.

  19. Synthesis, characterization, and evaluation of ionizable lysine-based lipids for siRNA delivery.

    PubMed

    Walsh, Colin L; Nguyen, Juliane; Tiffany, Matthew R; Szoka, Francis C

    2013-01-16

    We report the synthesis and characterization of a series of ionizable lysine-based lipids (ILL), novel lipids containing a lysine headgroup linked to a long-chain dialkylamine through an amide linkage at the lysine α-amine. These ILLs contain two ionizable amines and a carboxylate, and exhibit pH-dependent lipid ionization that varies with lipid structure. The synthetic scheme employed allows for the simple, orthogonal manipulation of lipids. This provides a method for the development of a compositionally diverse library with varying ionizable headgroups, tail structures, and linker regions. A focused library of four ILLs was synthesized to determine the impact of hydrophobic fluidity, lipid net charge, and lipid pK(a) on the biophysical and siRNA transfection characteristics of this new class of lipids. We found that manipulation of lipid structure impacts the protonation behavior, electrostatically driven membrane disruption, and ability to promote siRNA mediated knockdown in vitro. ILL-siRNA liposomal formulations were tested in a murine Factor VII model; however, no significant siRNA-mediated knockdown was observed. These results indicate that ILL may be useful in vitro transfection reagents, but further optimization of this new class of lipids is required to develop an effective in vivo siRNA delivery system.

  20. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB(R))

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone (JH) analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations fr...

  1. VARIATION IN GROWTH, LIPID CLASS AND FATTY ACID COMPOSITION OF THE MUD CRAB, RHITHROPANOPEUS HARRISII (GOULD) DURING LARVAL DEVELOPMENT FOLLOWING EXPOSURE TO AN INSECT JUVENILE HORMONE ANALOG (FENOXYCARB)

    EPA Science Inventory

    This study examines the effects of fenoxycarb?, an insect juvenile hormone analog, on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations from 1 ...

  2. Machine-Learned Data Structures of Lipid Marker Serum Concentrations in Multiple Sclerosis Patients Differ from Those in Healthy Subjects

    PubMed Central

    Lötsch, Jörn; Thrun, Michael; Lerch, Florian; Brunkhorst, Robert; Schiffmann, Susanne; Thomas, Dominique; Tegder, Irmgard; Geisslinger, Gerd; Ultsch, Alfred

    2017-01-01

    Lipid signaling has been suggested to be a major pathophysiological mechanism of multiple sclerosis (MS). With the increasing knowledge about lipid signaling, acquired data become increasingly complex making bioinformatics necessary in lipid research. We used unsupervised machine-learning to analyze lipid marker serum concentrations, pursuing the hypothesis that for the most relevant markers the emerging data structures will coincide with the diagnosis of MS. Machine learning was implemented as emergent self-organizing feature maps (ESOM) combined with the U*-matrix visualization technique. The data space consisted of serum concentrations of three main classes of lipid markers comprising eicosanoids (d = 11 markers), ceramides (d = 10), and lyosophosphatidic acids (d = 6). They were analyzed in cohorts of MS patients (n = 102) and healthy subjects (n = 301). Clear data structures in the high-dimensional data space were observed in eicosanoid and ceramides serum concentrations whereas no clear structure could be found in lysophosphatidic acid concentrations. With ceramide concentrations, the structures that had emerged from unsupervised machine-learning almost completely overlapped with the known grouping of MS patients versus healthy subjects. This was only partly provided by eicosanoid serum concentrations. Thus, unsupervised machine-learning identified distinct data structures of bioactive lipid serum concentrations. These structures could be superimposed with the known grouping of MS patients versus healthy subjects, which was almost completely possible with ceramides. Therefore, based on the present analysis, ceramides are first-line candidates for further exploration as drug-gable targets or biomarkers in MS. PMID:28590455

  3. Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases

    NASA Astrophysics Data System (ADS)

    Shcherbina, M. A.; Chvalun, S. N.

    2018-06-01

    The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.

  4. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  5. Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells

    USDA-ARS?s Scientific Manuscript database

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols (TAGs) in seeds, their biogenesis and function in non-seed tissues is poorly understood. Recently, we identified a class of plant-sp...

  6. Antitumor Lipids--Structure, Functions, and Medical Applications.

    PubMed

    Kostadinova, Aneliya; Topouzova-Hristova, Tanya; Momchilova, Albena; Tzoneva, Rumiana; Berger, Martin R

    2015-01-01

    Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels. © 2015 Elsevier Inc. All rights reserved.

  7. Serine Lipids of Porphyromonas gingivalis Are Human and Mouse Toll-Like Receptor 2 Ligands

    PubMed Central

    Clark, Robert B.; Cervantes, Jorge L.; Maciejewski, Mark W.; Farrokhi, Vahid; Nemati, Reza; Yao, Xudong; Anstadt, Emily; Fujiwara, Mai; Wright, Kyle T.; Riddle, Caroline; La Vake, Carson J.; Salazar, Juan C.; Finegold, Sydney

    2013-01-01

    The total cellular lipids of Porphyromas gingivalis, a known periodontal pathogen, were previously shown to promote dendritic cell activation and inhibition of osteoblasts through engagement of Toll-like receptor 2 (TLR2). The purpose of the present investigation was to fractionate all lipids of P. gingivalis and define which lipid classes account for the TLR2 engagement, based on both in vitro human cell assays and in vivo studies in mice. Specific serine-containing lipids of P. gingivalis, called lipid 654 and lipid 430, were identified in specific high-performance liquid chromatography fractions as the TLR2-activating lipids. The structures of these lipids were defined using tandem mass spectrometry and nuclear magnetic resonance methods. In vitro, both lipid 654 and lipid 430 activated TLR2-expressing HEK cells, and this activation was inhibited by anti-TLR2 antibody. In contrast, TLR4-expressing HEK cells failed to be activated by either lipid 654 or lipid 430. Wild-type (WT) or TLR2-deficient (TLR2−/−) mice were injected with either lipid 654 or lipid 430, and the effects on serum levels of the chemokine CCL2 were measured 4 h later. Administration of either lipid 654 or lipid 430 to WT mice resulted in a significant increase in serum CCL2 levels; in contrast, the administration of lipid 654 or lipid 430 to TLR2−/− mice resulted in no increase in serum CCL2. These results thus identify a new class of TLR2 ligands that are produced by P. gingivalis that likely play a significant role in mediating inflammatory responses both at periodontal sites and, potentially, in other tissues where these lipids might accumulate. PMID:23836823

  8. Hit 'em where it hurts: The growing and structurally diverse family of peptides that target lipid-II.

    PubMed

    Oppedijk, Sabine F; Martin, Nathaniel I; Breukink, Eefjan

    2016-05-01

    Understanding the mode of action of antibiotics is becoming more and more important in the time that microorganisms start to develop resistance. One very well validated target of several classes of antibiotics is the peptidoglycan precursor lipid II. In this review different classes of lipid II targeting antibiotics will be discussed in detail, including the lantibiotics, human invertebrate defensins and the recently discovered teixobactin. By hitting bacteria where it hurts, at the level of lipid II, we expect to be able to develop efficient antibacterial agents in the future. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Separation and Classification of Lipids Using Differential Ion Mobility Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvartsburg, Alexandre A.; Isaac, Georgis; Leveque, Nathalie

    2011-04-12

    Correlations between the dimensions of a 2-D separation create trend lines that normally depend on structural or functional characteristics of the compound class and thus facilitate classification of unknowns. This broadly applies to conventional ion mobility spectrometry (IMS)/mass spectrometry (MS), where the major biomolecular classes (e.g., lipids, peptides, nucleotides) occupy different trend line domains. However, strong correlation between the IMS and MS separations for ions of same charge has impeded finer distinctions. Differential IMS (or FAIMS) is generally much less correlated to MS and thus should better separate the trend lines and associated domains. We report the first observation ofmore » chemical class separation by trend lines using FAIMS, here for lipids. For all lipids, FAIMS is indeed more independent of MS than conventional IMS, and subclasses (such as phospho-, glycero-, or sphingolipids) form distinct, often non-overlapping domains. Even finer categories with different functional groups or degrees of unsaturation are often separated. As expected, resolution improves in He-rich gases: at ~70% He, glycerolipid isomers with different positions of fatty acid attachment can be resolved. These results open the door for lipidomics application of FAIMS, particularly shotgun lipidomics and targeted analyses of bioactive lipids.« less

  10. Quantitative Profiling of Major Neutral Lipid Classes in Human Meibum by Direct Infusion Electrospray Ionization Mass Spectrometry

    PubMed Central

    Chen, Jianzhong; Green, Kari B.; Nichols, Kelly K.

    2013-01-01

    Purpose. The purpose of this investigation was to better understand lipid composition in human meibum. Methods. Intact lipids in meibum samples were detected by direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis in positive detection mode using sodium iodide (NaI) as an additive. The peak intensities of all major types of lipid species, that is, wax esters (WEs), cholesteryl esters (CEs), and diesters (DEs) were corrected for peak overlapping and isotopic distribution; an additional ionization efficiency correction was performed for WEs and CEs, which was simplified by the observation that the corresponding ionization efficiency was primarily dependent on the specific lipid class and saturation degree of the lipids while independent of the carbon chain length. A set of WE and CE standards was spiked in meibum samples for ionization efficiency determination and absolute quantitation. Results. The absolute amount (μmol/mg) for each of 51 WEs and 31 CEs in meibum samples was determined. The summed masses for 51 WEs and 31 CEs accounted for 48 ± 4% and 40 ± 2%, respectively, of the total meibum lipids. The mass percentages of saturated and unsaturated species were determined to be 75 ± 2% and 25 ± 1% for CEs and 14 ± 1% and 86 ± 1% for WEs. The profiles for two types of DEs were also obtained, which include 42 α,ω Type II DEs, and 21 ω Type I-St DEs. Conclusions. Major neutral lipid classes in meibum samples were quantitatively profiled by ESI-MS analysis with NaI additive. PMID:23847307

  11. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry

    PubMed Central

    Wewer, Vera; Dombrink, Isabel; vom Dorp, Katharina; Dörmann, Peter

    2011-01-01

    Glycerolipids, sphingolipids, and sterol lipids constitute the major lipid classes in plants. Sterol lipids are composed of free and conjugated sterols, i.e., sterol esters, sterol glycosides, and acylated sterol glycosides. Sterol lipids play crucial roles during adaption to abiotic stresses and plant-pathogen interactions. Presently, no comprehensive method for sterol lipid quantification in plants is available. We used nanospray ionization quadrupole-time-of-flight mass spectrometry (Q-TOF MS) to resolve and identify the molecular species of all four sterol lipid classes from Arabidopsis thaliana. Free sterols were derivatized with chlorobetainyl chloride. Sterol esters, sterol glycosides, and acylated sterol glycosides were ionized as ammonium adducts. Quantification of molecular species was achieved in the positive mode after fragmentation in the presence of internal standards. The amounts of sterol lipids quantified by Q-TOF MS/MS were validated by comparison with results obtained with TLC/GC. Quantification of sterol lipids from leaves and roots of phosphate-deprived A. thaliana plants revealed changes in the amounts and molecular species composition. The Q-TOF method is far more sensitive than GC or HPLC. Therefore, Q-TOF MS/MS provides a comprehensive strategy for sterol lipid quantification that can be adapted to other tandem mass spectrometers. PMID:21382968

  12. COMPREHENSIVE RESPONSES OF LIPID CLASSES TO TOXIANTS AND INVOLVEMENT IN DISEASES

    EPA Science Inventory

    Along with genes and proteins, lipids are a key component of the cellular metabolome. Lipids can mediate the induction of some diseases such as atherosclerosis and also responses to some diseases, e.g., asthma. Pollutants such as ozone appear to induce biological responses throug...

  13. Altered expression of CD1d molecules and lipid accumulation in the human hepatoma cell line HepG2 after iron loading.

    PubMed

    Cabrita, Marisa; Pereira, Carlos F; Rodrigues, Pedro; Cardoso, Elsa M; Arosa, Fernando A

    2005-01-01

    Iron overload in the liver may occur in clinical conditions such as hemochromatosis and nonalcoholic steatohepatitis, and may lead to the deterioration of the normal liver architecture by mechanisms not well understood. Although a relationship between the expression of ICAM-1, and classical major histocompatibility complex (MHC) class I molecules, and iron overload has been reported, no relationship has been identified between iron overload and the expression of unconventional MHC class I molecules. Herein, we report that parameters of iron metabolism were regulated in a coordinated-fashion in a human hepatoma cell line (HepG2 cells) after iron loading, leading to increased cellular oxidative stress and growth retardation. Iron loading of HepG2 cells resulted in increased expression of Nor3.2-reactive CD1d molecules at the plasma membrane. Expression of classical MHC class I and II molecules, ICAM-1 and the epithelial CD8 ligand, gp180 was not significantly affected by iron. Considering that intracellular lipids regulate expression of CD1d at the cell surface, we examined parameters of lipid metabolism in iron-loaded HepG2 cells. Interestingly, increased expression of CD1d molecules by iron-loaded HepG2 cells was associated with increased phosphatidylserine expression in the outer leaflet of the plasma membrane and the presence of many intracellular lipid droplets. These data describe a new relationship between iron loading, lipid accumulation and altered expression of CD1d, an unconventional MHC class I molecule reported to monitor intracellular and plasma membrane lipid metabolism, in the human hepatoma cell line HepG2.

  14. Sebaceous lipid profiling of bat integumentary tissues: quantitative analysis of free Fatty acids, monoacylglycerides, squalene, and sterols.

    PubMed

    Pannkuk, Evan L; Gilmore, David F; Fuller, Nathan W; Savary, Brett J; Risch, Thomas S

    2013-12-01

    White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans and is devastating North American bat populations. Sebaceous lipids secreted from host integumentary tissues are implicated in the initial attachment and recognition of host tissues by pathogenic fungi. We are interested in determining if ratios of lipid classes in sebum can be used as biomarkers to diagnose severity of fungal infection in bats. To first establish lipid compositions in bats, we isolated secreted and integral lipid fractions from the hair and wing tissues of three species: big brown bats (Eptesicus fuscus), Eastern red bats (Lasiurus borealis), and evening bats (Nycticeius humeralis). Sterols, FFAs, MAGs, and squalene were derivatized as trimethylsilyl esters, separated by gas chromatography, and identified by mass spectrometry. Ratios of sterol to squalene in different tissues were determined, and cholesterol as a disease biomarker was assessed. Free sterol was the dominant lipid class of bat integument. Squalene/sterol ratio is highest in wing sebum. Secreted wing lipid contained higher proportions of saturated FFAs and MAGs than integral wing or secreted hair lipid. These compounds are targets for investigating responses of P. destructans to specific host lipid compounds and as biomarkers to diagnose WNS. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  15. A Remarkably Simple Class of Imidazolium-Based Lipids and Their Biological Properties.

    PubMed

    Wang, Da; Richter, Christian; Rühling, Andreas; Drücker, Patrick; Siegmund, Daniel; Metzler-Nolte, Nils; Glorius, Frank; Galla, Hans-Joachim

    2015-10-19

    A series of imidazolium salts bearing two alkyl chains in the backbone of the imidazolium core were synthesized, resembling the structure of lipids. Their antibacterial activity and cytotoxicity were evaluated using Gram-positive and Gram-negative bacteria and eukaryotic cell lines including tumor cells. It is shown that the length of alkyl chains in the backbone is vital for the antibiofilm activities of these lipid-mimicking components. In addition to their biological activity, their surface activity and their membrane interactions are shown by film balance and quartz crystal microbalance (QCM) measurements. The structure-activity relationship indicates that the distinctive chemical structure contributes considerably to the biological activities of this novel class of lipids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Variations in plasma and urinary lipids in response to enzyme replacement therapy for Fabry disease patients by nanoflow UPLC-ESI-MS/MS.

    PubMed

    Byeon, Seul Kee; Kim, Jin Yong; Lee, Jin-Sung; Moon, Myeong Hee

    2016-03-01

    A deficiency of α-galactosidase A causes Fabry disease (FD) by disrupting lipid metabolism, especially trihexosylceramide (THC). Enzyme replacement therapy (ERT) is clinically offered to FD patients in an attempt to lower the accumulated lipids. Studies on specific types of lipids that are directly or indirectly altered by FD are very scarce, even though they are crucial in understanding the biological process linked to the pathogenesis of FD. We performed a comprehensive lipid profiling of plasma and urinary lipids from FD patients with nanoflow liquid chromatography electrospray-ionization tandem mass spectrometry (nLC-ESI-MS/MS) and identified 129 plasma and 111 urinary lipids. Among these, lipids that exhibited alternations (>twofold) in patients were selected as targets for selected reaction monitoring (SRM)-based high-speed quantitation using nanoflow ultra-performance LC-ESI-MS/MS (nUPLC-ESI-MS/MS) and 31 plasma and 26 urinary lipids showed significant elevation among FD patients. Higher percentages of sphingolipids (SLs; 48% for plasma and 42% for urine) were highly elevated in patients; whereas, a smaller percentage of phospholipids (PLs; 15% for plasma and 13% for urine) were significantly affected. Even though α-galactosidase A is reported to affect THC only, the results show that other classes of lipids (especially SLs) are changed as well, indicating that FD not only alters metabolism of THC but various classes of lipids too. Most lipids showing significant increases in relative amounts before ERT decreased after ERT, but overall, ERT influenced plasma lipids more than urinary lipids.

  17. Treatment of rats with a self-selected hyperlipidic diet, increases the lipid content of the main adipose tissue sites in a proportion similar to that of the lipids in the rest of organs and tissues.

    PubMed

    Romero, María Del Mar; Roy, Stéphanie; Pouillot, Karl; Feito, Marisol; Esteve, Montserrat; Grasa, María Del Mar; Fernández-López, José-Antonio; Alemany, Marià; Remesar, Xavier

    2014-01-01

    Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in "other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the "rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed.

  18. Casein kinase 2 inhibition impairs spontaneous and oxytocin-induced contractions in late pregnant mouse uterus.

    PubMed

    Suhas, K S; Parida, Subhashree; Gokul, Chandrasekaran; Srivastava, Vivek; Prakash, E; Chauhan, Sakshi; Singh, Thakur Uttam; Panigrahi, Manjit; Telang, Avinash G; Mishra, Santosh K

    2018-05-01

    What is the central question of this study? Does the inhibition of the protein kinase casein kinase 2 (CK2) alter the uterine contractility? What is the main finding and its importance? Inhibition of CK2 impaired the spontaneous and oxytocin-induced contractility in late pregnant mouse uterus. This finding suggests that CK2 is a novel pathway mediating oxytocin-induced contractility in the uterus and thus opens up the possibility for this class of drugs to be developed as a new class of tocolytics. The protein kinase casein kinase 2 (CK2) is a ubiquitously expressed serine or threonine kinase known to phosphorylate a number of substrates. The aim of this study was to assess the effect of CK2 inhibition on spontaneous and oxytocin-induced uterine contractions in 19 day pregnant mice. The CK2 inhibitor CX-4945 elicited a concentration-dependent relaxation in late pregnant mouse uterus. CX-4945 and another selective CK2 inhibitor, apigenin, also inhibited the oxytocin-induced contractile response in late pregnant uterine tissue. Apigenin also blunted the prostaglandin F 2α response, but CX-4945 did not. Casein kinase 2 was located in the lipid raft fractions of the cell membrane, and disruption of lipid rafts was found to reverse its effect. The results of the present study suggest that CK2, located in lipid rafts of the cell membrane, is an active regulator of spontaneous and oxytocin-induced uterine contractions in the late pregnant mouse. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

  19. [Role of membrane lipids in myocardial cytoprotection

    NASA Technical Reports Server (NTRS)

    Grynberg, A.

    2000-01-01

    The cardiomyocyte capacity to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. This process is based on a balanced fatty acid (FA) metabolism, because FA is the main fuel of the heart, although the most expensive one in oxygen. The pathway is, however, weakly controlled by the cardiac myocyte which can well regulate FA mitochondrial entry but not cell FA uptake. For this reason, several pathological situations often result from either harmful accumulation of FA and derivatives or excess FA-oxidation. Control of the FA/glucose balance by decreased energy production from FA would thus offer an alternative strategy in the treatment of ischaemia, providing the cardiomyocytes weak ability in handling the non-metabolised FA is controlled. The initiation and the regulation of cardiac contraction both result from membrane activity; the other major role of lipids in the heart is their contribution to membrane homeostasis through phospholipid synthesis pathways and phospholipases. The anti-anginal activity of Trimetazidine, reported as a cytoprotective effect without a haemo-dynamic component; is associated with reduced use of FA for energy. However, accumulation of FA and derivatives has never been observed. Trimetazidine is reported to increase significantly the synthesis of phospholipids without influencing the other lipid classes, thus increasing the incorporation of FA in membrane structures. This cytoprotection appears to be based on the redirection of the use of FA to phospholipid synthesis, which would decrease their availability for energy production. This class of compounds, with the same properties as Trimetazidine, offers a metabolic approach to the treatment of ischaemia.

  20. Bioinformatics Pertinent to Lipid Analysis in Biological Samples.

    PubMed

    Ma, Justin; Arbelo, Ulises; Guerra, Yenifer; Aribindi, Katyayini; Bhattacharya, Sanjoy K; Pelaez, Daniel

    2017-01-01

    Electrospray ionization mass spectrometry has revolutionized the way lipids are studied. In this work, we present a tutorial for analyzing class-specific lipid spectra obtained from a triple quadrupole mass spectrometer. The open-source software MZmine 2.21 is used, coupled with LIPID MAPS databases. Here, we describe the steps for lipid identification, ratiometric quantification, and briefly address the differences to the analyses when using direct infusion versus tandem liquid chromatography-mass spectrometry (LC-MS). We also provide a tutorial and equations for quantification of lipid amounts using synthetic lipid standards and normalization to a protein amount.

  1. LC-MS-Based Lipidomics and Automated Identification of Lipids Using the LipidBlast In-Silico MS/MS Library.

    PubMed

    Cajka, Tomas; Fiehn, Oliver

    2017-01-01

    This protocol describes the analysis, specifically the identification, of blood plasma lipids. Plasma lipids are extracted using methyl tert-butyl ether (MTBE), methanol, and water followed by separation and data acquisition of isolated lipids using reversed-phase liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry (RPLC-QTOFMS) operated in MS/MS mode. For lipid identification, acquired MS/MS spectra are converted to the mascot generic format (MGF) followed by library search using the in-silico MS/MS library LipidBlast. Using this approach, lipid classes, carbon-chain lengths, and degree of unsaturation of fatty-acid components are annotated.

  2. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.

  3. Characterization of inositolphospholipids in Trypanosoma cruzi trypomastigote forms.

    PubMed

    Uhrig, M L; Couto, A S; Colli, W; de Lederkremer, R M

    1996-05-20

    In vivo labeling experiments with [3H]palmitic acid, [3H]inositol, and [3H]glucose allowed the identification of two main classes of inositolphospholipids (IPLs) from the trypomastigote stage of Trypanosoma cruzi. Purification of these compounds was achieved by ion-exchange chromatography, high performance liquid chromatography and thin layer chromatography. Specific phosphatidyl-inositol phospholipase C digestion, dephosphorylation and acid methanolysis showed a ceramide structure for the lower migrating IPL1. Palmitoyldihydrosphingosine and palmitoylsphingosine were detected by reverse-phase thin-layer chromatography. On the other hand, IPL2 showed to be a mixture of diacylglycero- and alkylacylglycero-phospholipids in a 1:1 ratio. After PI-PLC digestion, the lipids were separated by preparative TLC and individually analysed. The diacylglycerol contained mainly C18:0 fatty acid together with a low amount of C16:0. Hexadecylglycerol esterified with the C18:0 fatty acid was the only alkylacylglycerol detected. The C18:2 and C18:1 fatty acids, preponderant in the PI molecules of epimastigote forms, were not detected in trypomastigote forms. This is the first report on inositol phospholipids, putative precursors of lipid anchors in the infective stage of T. cruzi.

  4. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells.

    PubMed

    Morel, Etienne; Ghezzal, Sara; Lucchi, Géraldine; Truntzer, Caroline; Pais de Barros, Jean-Paul; Simon-Plas, Françoise; Demignot, Sylvie; Mineo, Chieko; Shaul, Philip W; Leturque, Armelle; Rousset, Monique; Carrière, Véronique

    2018-02-01

    Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Deciphering the mechanisms for targeting and interaction of Arabidopsis Lipid Droplet Associated Protein (LDAP) to the lipid droplet surface

    USDA-ARS?s Scientific Manuscript database

    We recently identified a new class of lipid-droplet associated proteins (LDAPs) in plants that share extensive sequence similarity with abundant structural proteins that coat rubber particles in rubber-producing plants. A majority of higher plants, however, including those that do not produce rubber...

  6. Concurrent studies of the flow of digesta in the duodenum and of exocrine pancreatic secretion of calves. 7. Influence of milk substitutes on abomasal lipolysis and biliary secretion.

    PubMed

    Ternouth, J H; Thompson, S Y; Edwards-Webb, J D

    1980-09-01

    1. The abomasal hydrolysis of lipids and the flow of endogenous (biliary) lipids was studied in two Friesian calves given four milk-substitute diets, by sampling the duodenal digesta. The diets were: reconstituted, mildly preheated, spray-dried skim-milk powder with (SKF) or without (SK) margarine fat or with 500 g/kg skim-milk powder in diet SKF replaced by soy-beran flour (ASKF) or fish-protein concentrate (BSKF) together with dried whey. The diets were given ad lib. twice daily from 13 to 37 d of age, each diet being given for six consecutive days. Collections of duodenal digesta from the re-entrant cannula situated caudal to the bile duct were made for 12 h after feeding the 6th and 12th meals for each diet. Samples from one collection only were subjected to detailed analysis of the lipid classes. 2. The inclusion of non-milk protein (ASKF and BSKF) not only increased the rate of passage of lipid through the abomasum but also the proportion of the lipid present as triglyceride particularly, in the first 2 h after feeding. 3. In a 12 h period, 2.3-6.3 g 'polar' lipids (mainly biliary phospholipids) were estimated to have been secreted. The rate of flow was high during the first hour after feeding and constant thereafter. The quantity of 'polar' lipid was not related to the type of milk fed or the duodenal flow of lipid. 4. When diet SK was fed, the small amounts of lipid present were extensively hydrolysed so that free fatty acids represented 700 g/kg lipid of dietary origin passing through the duodenum. When margarine fat was included in the diets (SKF, ASKF and BSKF), the free fatty acids represented only 210 g/kg lipid of dietary origin. 5. The quantities of lipid and nitrogen passing through the duodenum were poorly related to the quantities ingested at the beginning of the 12 h experimental period but were closely related to each other.

  7. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery.

    PubMed

    Teixeira, M C; Carbone, C; Souto, E B

    2017-10-01

    Solid lipid nanoparticle (SLN), nanostructured lipid carriers (NLC) and hybrid nanoparticles, have gained increasing interest as drug delivery systems because of their potential to load and release drugs from the Biopharmaceutical classification system (BCS) of class II (low solubility and high permeability) and of class IV (low solubility and low permeability). Lipid properties (e.g. high solubilizing potential, biocompatibility, biotolerability, biodegradability and distinct route of absorption) contribute for the improvement of the bioavailability of these drugs for a set of administration routes. Their interest continues to grow, as translated by the number of patents being field worldwide. This paper discusses the recent advances on the use of SLN, NLC and lipid-polymer hybrid nanoparticles for the loading of lipophilic, poorly water-soluble and poorly permeable drugs, being developed for oral, topical, parenteral and ocular administration, also discussing the industrial applications of these systems. A review of the patents filled between 2014 and 2017, concerning the original inventions of lipid nanocarriers, is also provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ultraperformance convergence chromatography-high resolution tandem mass spectrometry for lipid biomarker profiling and identification.

    PubMed

    Jones, Jace W; Carter, Claire L; Li, Fei; Yu, Jianshi; Pierzchalski, Keely; Jackson, Isabel L; Vujaskovic, Zeljko; Kane, Maureen A

    2017-03-01

    Lipids represent biologically ubiquitous and highly dynamic molecules in terms of abundance and structural diversity. Whereas the potential for lipids to inform on disease/injury is promising, their unique characteristics make detection and identification of lipids from biological samples analytically demanding. We report the use of ultraperformance convergence chromatography (UPC 2 ), a variant of supercritical fluid chromatography, coupled to high-resolution, data-independent tandem mass spectrometry for characterization of total lipid extracts from mouse lung tissue. The UPC 2 platform resulted in lipid class separation and when combined with orthogonal column chemistries yielded chromatographic separation of intra-class species based on acyl chain hydrophobicity. Moreover, the combined approach of using UPC 2 with orthogonal column chemistries, accurate mass measurements, time-aligned low- and high-collision energy total ion chromatograms, and positive and negative ion mode product ion spectra correlation allowed for confident lipid identification. Of great interest was the identification of differentially expressed ceramides that were elevated 24 h post whole thorax lung irradiation. The identification of lipids that were elevated 24 h post-irradiation signifies a unique opportunity to investigate early mechanisms of action prior to the onset of clinical symptoms in the whole thorax lung irradiation mouse model. Copyright © 2016 John Wiley & Sons, Ltd.

  9. The lipidome in major depressive disorder: Shared genetic influence for ether-phosphatidylcholines, a plasma-based phenotype related to inflammation, and disease risk.

    PubMed

    Knowles, E E M; Huynh, K; Meikle, P J; Göring, H H H; Olvera, R L; Mathias, S R; Duggirala, R; Almasy, L; Blangero, J; Curran, J E; Glahn, D C

    2017-06-01

    The lipidome is rapidly garnering interest in the field of psychiatry. Recent studies have implicated lipidomic changes across numerous psychiatric disorders. In particular, there is growing evidence that the concentrations of several classes of lipids are altered in those diagnosed with MDD. However, for lipidomic abnormalities to be considered potential treatment targets for MDD (rather than secondary manifestations of the disease), a shared etiology between lipid concentrations and MDD should be demonstrated. In a sample of 567 individuals from 37 extended pedigrees (average size 13.57 people, range=3-80), we used mass spectrometry lipidomic measures to evaluate the genetic overlap between twenty-three biologically distinct lipid classes and a dimensional scale of MDD. We found that the lipid class with the largest endophenotype ranking value (ERV, a standardized parametric measure of pleiotropy) were ether-phosphodatidylcholines (alkylphosphatidylcholine, PC(O) and alkenylphosphatidylcholine, PC(P) subclasses). Furthermore, we examined the cluster structure of the twenty-five species within the top-ranked lipid class, and the relationship of those clusters with MDD. This analysis revealed that species containing arachidonic acid generally exhibited the greatest degree of genetic overlap with MDD. This study is the first to demonstrate a shared genetic etiology between MDD and ether-phosphatidylcholine species containing arachidonic acid, an omega-6 fatty acid that is a precursor to inflammatory mediators, such as prostaglandins. The study highlights the potential utility of the well-characterized linoleic/arachidonic acid inflammation pathway as a diagnostic marker and/or treatment target for MDD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Versatile lipid profiling by liquid chromatography-high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer.

    PubMed

    Gallart-Ayala, H; Courant, F; Severe, S; Antignac, J-P; Morio, F; Abadie, J; Le Bizec, B

    2013-09-24

    Lipids represent an extended class of substances characterized by such high variety and complexity that makes their unified analyses by liquid chromatography coupled to either high resolution or tandem mass spectrometry (LC-HRMS or LC-MS/MS) a real challenge. In the present study, a new versatile methodology associating ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-HRMS/MS) have been developed for a comprehensive analysis of lipids. The use of polarity switching and "all ion fragmentation" (AIF) have been two action levels particularly exploited to finally permit the detection and identification of a multi-class and multi-analyte extended range of lipids in a single run. For identification purposes, both higher energy collision dissociation (HCD) and in-source CID (collision induced dissociation) fragmentation were evaluated in order to obtain information about the precursor and product ions in the same spectra. This approach provides both class-specific and lipid-specific fragments, enhancing lipid identification. Finally, the developed method was applied for differential phenotyping of serum samples collected from pet dogs developing spontaneous malignant mammary tumors and health controls. A biological signature associated with the presence of cancer was then successfully revealed from this lipidome analysis, which required to be further investigated and confirmed at larger scale. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Future directions in lipid therapies.

    PubMed

    Ansell, Benjamin

    2002-01-01

    Cholesterol management to reduce the burden of cardiovascular disease is a major public health concern. Despite widespread recognition of lipid abnormalities as cardiovascular risk factors, significant cardiovascular event reductions with cholesterol-lowering therapies, and dissemination of treatment guidelines, most high-risk patients are not at target lipid levels. In addition to lifestyle changes, four major drug classes are available to modify lipid levels: fibrates, niacin, resins, and statins. High efficacy and tolerability in clinical trials make statins the most widely prescribed of these agents. Newer, more potent members of this class and novel formulations of niacin and resins may provide more effective therapy for dyslipidemia with fewer side effects. Several agents in development (cholesterol-absorption inhibitors and ACAT inhibitors) exploit mechanisms of action complementary to those of current treatments and combined with statins may produce greater improvements in lipid profiles than are now possible. These innovations should enable a greater number of patients to achieve more aggressive cholesterol goals, thereby reducing the risk of cardiovascular events.

  12. A semi-automated methodology for finding lipid-related GO terms.

    PubMed

    Fan, Mengyuan; Low, Hong Sang; Wenk, Markus R; Wong, Limsoon

    2014-01-01

    Although semantic similarity in Gene Ontology (GO) and other approaches may be used to find similar GO terms, there is yet a method to systematically find a class of GO terms sharing a common property with high accuracy (e.g., involving human curation). We have developed a methodology to address this issue and applied it to identify lipid-related GO terms, owing to the important and varied roles of lipids in many biological processes. Our methodology finds lipid-related GO terms in a semi-automated manner, requiring only moderate manual curation. We first obtain a list of lipid-related gold-standard GO terms by keyword search and manual curation. Then, based on the hypothesis that co-annotated GO terms share similar properties, we develop a machine learning method that expands the list of lipid-related terms from the gold standard. Those terms predicted most likely to be lipid related are examined by a human curator following specific curation rules to confirm the class labels. The structure of GO is also exploited to help reduce the curation effort. The prediction and curation cycle is repeated until no further lipid-related term is found. Our approach has covered a high proportion, if not all, of lipid-related terms with relatively high efficiency. http://compbio.ddns.comp.nus.edu.sg/∼lipidgo. © The Author(s) 2014. Published by Oxford University Press.

  13. Dynamics of biochemical components, lipid classes and energy values on gonadal development of R. philippinarum associated with the temperature and ingestion rate.

    PubMed

    Fernández-Reiriz, M J; Pérez-Camacho, A; Delgado, M; Labarta, U

    2007-08-01

    This study evaluates the effect of temperature, coupled with ingestion rate, on the dynamics of biochemical components and lipid classes in R. philippinarum. The data are discussed with regard to sexual development and energy balance. Experimental protocol developed in the present study used two groups of the clam R. philippinarum: L (temperatures of 14 degrees C and 18 degrees C) and H (temperatures of 18 degrees C and 22 degrees C). The intra-group ingestion level was similar, although the ingestion level of the clams in the group H was 2.4 times higher than group L. We observed that R. philippinarum conditioned at 18 degrees C (18L) shows higher protein content, furthermore an important loss of organic weight was observed after 48 days. In such a situation, the clams use their own reserves (carbohydrates and glycogen) for sexual development while in situations without food stress (positive energy balance) and low temperature (14 degrees C) an accumulation of reserves is produced. Strikingly dissimilar behaviour in biochemical composition was observed for the 18H and 22H treatments, both with a positive energy balance. Despite similar protein content, the highest levels of carbohydrates were observed at the lower temperature (18 degrees C). Glycogen was also higher for the 18 degrees C treatment, although the differences were significant only in the males. Although the total lipids in R. philippinarum showed no significant differences in any treatment, they became apparent and related to sex when considering the individual lipid classes. There was no variation in lipid classes in the males between the 14L and 22H treatments despite the large disparity in the degree of sexual development. However, in the females significant differences in lipid classes (phospholipids, triglycerides) were observed. The results of this study show that a positive energy balance permits R. philippinarum gonadal development and accumulation of reserves both in low and high temperature conditions. In low temperature situations, gonadal development is slower and the energy reserves are accumulated in the form of carbohydrates. When the clams are conditioned at high temperatures, gonadal development is fast and complete, carbohydrates are consumed and lipids are accumulated.

  14. Global Profiling of Metabolite and Lipid Soluble Microbial Products in Anaerobic Wastewater Reactor Supernatant Using UPLC-MSE.

    PubMed

    Tipthara, Phornpimon; Kunacheva, Chinagarn; Soh, Yan Ni Annie; Wong, Stephen C C; Pin, Ng Sean; Stuckey, David C; Boehm, Bernhard O

    2017-02-03

    Identification of soluble microbial products (SMPs) released during bacterial metabolism in mixed cultures in bioreactors is essential to understanding fundamental mechanisms of their biological production. SMPs constitute one of the main foulants (together with colloids and bacterial flocs) in membrane bioreactors widely used to treat and ultimately recycle wastewater. More importantly, the composition and origin of potentially toxic, carcinogenic, or mutagenic SMPs in renewable/reused water supplies must be determined and controlled. Certain classes of SMPs have previously been studied by GC-MS, LC-MS, and MALDI-ToF MS; however, a more comprehensive LC-MS-based method for SMP identification is currently lacking. Here we develop a UPLC-MS approach to profile and identify metabolite SMPs in the supernatant of an anaerobic batch bioreactor. The small biomolecules were extracted into two fractions based on their polarity, and separate methods were then used for the polar and nonpolar metabolites in the aqueous and lipid fractions, respectively. SMPs that increased in the supernatant after feed addition were identified primarily as phospholipids, ceramides, with cardiolipins in the highest relative abundance, and these lipids have not been previously reported in wastewater effluent.

  15. Familial hypercholesterolemia: etiology, diagnosis and new treatment options.

    PubMed

    Gouni-Berthold, Ioanna; Berthold, Heiner K

    2014-01-01

    Familial hypercholesterolemia (FH) is a common genetic disorder that presents with robust increases in low-density lipoprotein cholesterol (LDL-C) and can lead to premature cardiovascular disease. There are heterozygous and homozygous forms. The diagnosis is usually made based on blood cholesterol levels, clinical signs and family history. Genetic testing can be used to confirm the diagnosis. Effective lowering of LDL-C in FH can prevent cardiovascular morbidity and mortality, however, the disease remains greatly underdiagnosed. The mainstay of pharmacologic therapy in FH patients is high-dose statins, which are often combined with other lipid-lowering agents. The homozygous form is mainly treated with lipid apheresis. Guideline-recommended target levels of LDL-C are often not reached, making new treatment options desirable. Four classes of newer lipid-lowering drugs offer promising advances in treating FH, namely the apolipoprotein-B synthesis inhibitors (mipomersen), the microsomal transfer protein inhibitors (lomitapide), the cholesterol ester transfer protein inhibitors (anacetrapib, evacetrapib) and the proprotein convertase subtilisin/kexin type 9 inhibitors (evolocumab, alirocumab). In this review, the available evidence regarding the use of these drugs in patients with FH is discussed, with particular focus on their efficacy and safety.

  16. A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis elegans

    PubMed Central

    Li, Shiwei; Xu, Shibin; Ma, Yanli; Wu, Shuang; Feng, Yu; Cui, Qingpo; Chen, Lifeng; Zhou, Shuang; Kong, Yuanyuan; Zhang, Xiaoyu; Yu, Jialei; Wu, Mengdi; Zhang, Shaobing O.

    2016-01-01

    To identify genes that regulate the dynamics of lipid droplet (LD) size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 105 mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10). The nine groups are named drop (lipid droplet abnormal) and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion. PMID:27261001

  17. APP Function and Lipids: A Bidirectional Link

    PubMed Central

    Grimm, Marcus O. W.; Mett, Janine; Grimm, Heike S.; Hartmann, Tobias

    2017-01-01

    Extracellular neuritic plaques, composed of aggregated amyloid-β (Aβ) peptides, are one of the major histopathological hallmarks of Alzheimer’s disease (AD), a progressive, irreversible neurodegenerative disorder and the most common cause of dementia in the elderly. One of the most prominent risk factor for sporadic AD, carrying one or two aberrant copies of the apolipoprotein E (ApoE) ε4 alleles, closely links AD to lipids. Further, several lipid classes and fatty acids have been reported to be changed in the brain of AD-affected individuals. Interestingly, the observed lipid changes in the brain seem not only to be a consequence of the disease but also modulate Aβ generation. In line with these observations, protective lipids being able to decrease Aβ generation and also potential negative lipids in respect to AD were identified. Mechanistically, Aβ peptides are generated by sequential proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. The α-secretase appears to compete with β-secretase for the initial cleavage of APP, preventing Aβ production. All APP-cleaving secretases as well as APP are transmembrane proteins, further illustrating the impact of lipids on Aβ generation. Beside the pathological impact of Aβ, accumulating evidence suggests that Aβ and the APP intracellular domain (AICD) play an important role in regulating lipid homeostasis, either by direct effects or by affecting gene expression or protein stability of enzymes involved in the de novo synthesis of different lipid classes. This review summarizes the current literature addressing the complex bidirectional link between lipids and AD and APP processing including lipid alterations found in AD post mortem brains, lipids that alter APP processing and the physiological functions of Aβ and AICD in the regulation of several lipid metabolism pathways. PMID:28344547

  18. Analyzing and Understanding Lipids of Yeast: A Challenging Endeavor.

    PubMed

    Kohlwein, Sepp D

    2017-05-01

    Lipids are essential biomolecules with diverse biological functions, ranging from building blocks for all biological membranes to energy substrates, signaling molecules, and protein modifiers. Despite advances in lipid analytics by mass spectrometry, the extraction and quantitative analysis of the diverse classes of lipids are still an experimental challenge. Yeast is a model organism that provides several advantages for studying lipid metabolism, because most biosynthetic pathways are well described and a great deal of information is available on the regulatory mechanisms that control lipid homeostasis. In addition, the composition of yeast lipids is much less complex than that of mammalian lipids, making yeast an excellent reference system for studying lipid-associated cell functions. © 2017 Cold Spring Harbor Laboratory Press.

  19. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  20. Isolation and molecular characterization of Thraustochytrium strain isolated from Antarctic Peninsula and its biotechnological potential in the production of fatty acids.

    PubMed

    Caamaño, Esteban; Loperena, Lyliam; Hinzpeter, Ivonne; Pradel, Paulina; Gordillo, Felipe; Corsini, Gino; Tello, Mario; Lavín, Paris; González, Alex R

    Thraustochytrids are unicellular protists belonging to the Labyrinthulomycetes class, which are characterized by the presence of a high lipid content that could replace conventional fatty acids. They show a wide geographic distribution, however their diversity in the Antarctic Region is rather scarce. The analysis based on the complete sequence of 18S rRNA gene showed that strain 34-2 belongs to the species Thraustochytrium kinnei, with 99% identity. The total lipid profile shows a wide range of saturated fatty acids with abundance of palmitic acid (16:0), showing a range of 16.1-19.7%. On the other hand, long-chain polyunsaturated fatty acids, mainly docosahexaenoic acid and eicosapentaenoic acid are present in a range of 24-48% and 6.1-9.3%, respectively. All factors analyzed in cells (biomass, carbon consumption and lipid content) changed with variations of culture temperature (10°C and 25°C). The growth in glucose at a temperature of 10°C presented the most favorable conditions to produce omega-3fatty acid. This research provides the identification and characterization of a Thraustochytrids strain, with a total lipid content that presents potential applications in the production of nutritional supplements and as well biofuels. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Differences in the intramolecular structure of structured oils do not affect pancreatic lipase activity in vitro or the absorption by rats of (n-3) fatty acids.

    PubMed

    Porsgaard, Trine; Xu, Xuebing; Göttsche, Jesper; Mu, Huiling

    2005-07-01

    The fatty acid composition and intramolecular structure of dietary triacylglycerols (TAGs) influence their absorption. We compared the in vitro pancreatic lipase activity and the lymphatic transport in rats of fish oil and 2 enzymatically interesterified oils containing 10:0 and (n-3) PUFAs of marine origin to investigate whether the positional distribution of fatty acids influenced the overall bioavailability of (n-3) PUFAs in the body. The structured oils had the (n-3) PUFA either mainly at the sn-1,3 position (LML, M = medium-chain fatty acid, L = long-chain fatty acid) or mainly at the sn-2 position (MLM). Oils were administered to lymph-cannulated rats and lymph was collected for 24 h. The fatty acid composition as well as the lipid class distribution of lymph samples was determined. In vitro pancreatic lipase activity was greater when fish oil was the substrate than when the structured oils were the substrates (P < 0.001 at 40 min). This was consistent with a greater 8-h recovery of total fatty acids from fish oil compared with the 2 structured oils (P < 0.05). The absorption profiles of MLM and LML in rats and their in vitro rates of lipase activity did not differ. This indicates that the absorption rate is highly influenced by the lipase activity, which in turn is affected by the fatty acid composition and intramolecular structure. The lipid class distribution in lymph collected from the 3 groups of rats did not differ. In conclusion, the intramolecular structure did not affect the overall absorption of (n-3) PUFAs.

  2. Levels of Arabidopsis thaliana Leaf Phosphatidic Acids, Phosphatidylserines, and Most Trienoate-Containing Polar Lipid Molecular Species Increase during the Dark Period of the Diurnal Cycle.

    PubMed

    Maatta, Sara; Scheu, Brad; Roth, Mary R; Tamura, Pamela; Li, Maoyin; Williams, Todd D; Wang, Xuemin; Welti, Ruth

    2012-01-01

    Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light) cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C) temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry (MS) demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole MS indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid (PA) and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD) is a family of enzymes that hydrolyzes phospholipids to produce PA. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of PA. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  3. Docosahexaenoic acid modifies the clustering and size of lipid rafts and the lateral organization and surface expression of MHC class I of EL4 cells.

    PubMed

    Shaikh, Saame Raza; Rockett, Benjamin Drew; Salameh, Muhammad; Carraway, Kristen

    2009-09-01

    An emerging molecular mechanism by which docosahexaenoic acid (DHA) exerts its effects is modification of lipid raft organization. The biophysical model, based on studies with liposomes, shows that DHA avoids lipid rafts because of steric incompatibility between DHA and cholesterol. The model predicts that DHA does not directly modify rafts; rather, it incorporates into nonrafts to modify the lateral organization and/or conformation of membrane proteins, such as the major histocompatibility complex (MHC) class I. Here, we tested predictions of the model at a cellular level by incorporating oleic acid, eicosapentaenoic acid (EPA), and DHA, compared with a bovine serum albumin (BSA) control, into the membranes of EL4 cells. Quantitative microscopy showed that DHA, but not EPA, treatment, relative to the BSA control diminished lipid raft clustering and increased their size. Approximately 30% of DHA was incorporated directly into rafts without changing the distribution of cholesterol between rafts and nonrafts. Quantification of fluorescence colocalization images showed that DHA selectively altered MHC class I lateral organization by increasing the fraction of the nonraft protein into rafts compared with BSA. Both DHA and EPA treatments increased antibody binding to MHC class I compared with BSA. Antibody titration showed that DHA and EPA did not change MHC I conformation but increased total surface levels relative to BSA. Taken together, our findings are not in agreement with the biophysical model. Therefore, we propose a model that reconciles contradictory viewpoints from biophysical and cellular studies to explain how DHA modifies lipid rafts on several length scales. Our study supports the notion that rafts are an important target of DHA's mode of action.

  4. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  5. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  6. A Bioengineered Human Skin Equivalent (HSE) for the Evaluation of Protectants

    DTIC Science & Technology

    2006-11-01

    agonist clofibrate to the growth media. Medium supplemented with 25 μM palmitic acid , 15 μM linoleic acid , 25 μM oleic acid , 7 μM arachidonic acid , 0.25...granules (indicated by arrows). Fig. 6: A cross section of the HSE with lipids, ascorbic acid and clofibrate supplementation. The combination of... Clofibrate , Ascorbic Acid and Lipids Compared With the Lipid Profile of Native Human Skin. Clofibrate 300 μM Lipid class Control No ascorbic

  7. Enhanced dissolved lipid production as a response to the sea surface warming

    NASA Astrophysics Data System (ADS)

    Novak, Tihana; Godrijan, Jelena; Pfannkuchen, Daniela Marić; Djakovac, Tamara; Mlakar, Marina; Baricevic, Ana; Tanković, Mirta Smodlaka; Gašparović, Blaženka

    2018-04-01

    The temperature increase in oceans reflects on marine ecosystem functioning and surely has consequences on the marine carbon cycle and carbon sequestration. In this study, we examined dissolved lipid, lipid classes and dissolved organic carbon (DOC) production in the northern Adriatic Sea, isolated diatom Chaetoceros pseudocurvisetus batch cultures grown in a wide temperature range (10-30 °C) and in contrasting nutrient regimes, phosphorus (P)-depleted and P-replete conditions. Additionally, lipids and DOC were analyzed in the northern Adriatic (NA) in two stations characterized with different P availability, occupied from February to August 2010 that covered a temperature range from 9.3 to 31.1 °C. To gain insight into factors governing lipid and lipid classes' production in the NA, apart from temperature (T), Chlorophyll a, phytoplankton community abundance and structure, nutrient concentrations were measured together with hydrographic parameters. We found enhanced accumulation of dissolved lipids, particulary glycolipids, with increasing T, especially during the highest in situ temperature. The effect of T on enhanced dissolved lipid release is much more pronounced under P-deplete conditions indicating that oligotrophic regions might be more vulnerable to T rise. Temperature between 25 and 30 °C is a threshold T range for C. pseudocurvisetus, at which a significant part of lipid production is directed toward the dissolved phase. Unlike monocultures, there are multiple factors influencing produced lipid composition, distribution and cycling in the NA that may counteract the T influence. The possible role of enhanced dissolved lipid concentration for carbon sequestration at elevated T is discussed. On the one hand, lipids are buoyant and do not sink, which enhances their retention at the surface layer. In addition, they are surface active, and therefore prone to adsorb on sinking particles, contributing to the C sequestration.

  8. Identification of lipids that accumulate during the routine storage of prestorage leukoreduced red blood cells and cause acute lung injury

    PubMed Central

    Silliman, Christopher C.; Moore, Ernest E.; Kelher, Marguerite R.; Khan, Samina Y.; Gellar, Lauren; Elzi, David J.

    2011-01-01

    BACKGROUND Lipids accumulate during the storage of red blood cells (RBCs), prime neutrophils (PMNs), and have been implicated in transfusion-related acute lung injury (TRALI). These lipids are composed of two classes: nonpolar lipids and lysophosphatidylcholines based on their retention time on separation by high-pressure liquid chromatography. Prestorage leukoreduction significantly decreases white blood cell and platelet contamination of RBCs; therefore, it is hypothesized that prestorage leukoreduction changes the classes of lipids that accumulate during storage, and these lipids prime PMNs and induce acute lung injury (ALI) as the second event in a two-event in vivo model. STUDY DESIGN AND METHODS RBC units were divided: 50% was leukoreduced (LR-RBCs), stored, and sampled on Day 1 and at the end of storage, Day 42. Priming activity was evaluated on isolated PMNs, and the purified lipids from Day 1 or Day 42 were used as the second event in the in vivo model. RESULTS The plasma and lipids from RBCs and LR-RBCs primed PMNs, and the LR-RBC activity decreased with longer storage. Unlike RBCs, nonpolar lipids comprised the PMN-priming activity from stored LR-RBCs. Mass spectroscopy identified these lipids as arachidonic acid and 5-, 12-, and 15-hydroxyeicsotetranoic acid. At concentrations from Day 42, but not Day 1, three of four of these lipids individually, and the mixture, primed PMNs. The mixture also caused ALI as the second event in a two-event model of TRALI. CONCLUSION We conclude that the nonpolar lipids that accumulate during LR-RBC storage may represent the agents responsible for antibody-negative TRALI. PMID:21615744

  9. Fatty Acid Profile of Sunshine Bass: II. Profile Change Differs Among Fillet Lipid Classes.

    PubMed

    Trushenski, Jesse T; Lewis, Heidi A; Kohler, Christopher C

    2008-07-01

    Fatty acid (FA) profile of fish tissue mirrors dietary FA profile and changes in a time-dependent manner following a change in dietary FA composition. To determine whether FA profile change varies among lipid classes, we evaluated the FA composition of fillet cholesteryl esters (CE), phospholipids (PL), and triacylglycerols (TAG) of sunshine bass (SB, Morone chrysops x M. saxatilis) raised on feeds containing fish oil or 50:50 blend of fish oil and coconut, grapeseed, linseed, or poultry oil, with or without implementation of a finishing period (100% FO feed) prior to harvest. Each lipid class was associated with a generalized FA signature, irrespective of nutritional history: fillet PL was comprised largely of saturated FA (SFA), long-chain polyunsaturated FA (LC-PUFA), and total n-3 FA; fillet TAG was higher in MC-PUFA and total n-6 FA; and fillet CE was highest in monounsaturated FA (MUFA). Neutral lipids reflected dietary composition in a near-direct fashion; conversely, PL showed evidence of selectivity for MC- and LC-PUFA. Shorter-chain SFA were not strongly reflected within any lipid fraction, even when dietary availability was high, suggesting catabolism of these FA. FA metabolism in SB is apparently characterized by a division between saturated and unsaturated FA, whereby LC-PUFA are preferentially incorporated into tissues and SFA are preferentially oxidized for energy production. We demonstrated provision of SFA in grow-out feeds for SB, instead MC-PUFA which compete for tissue deposition, meets energy demands and allows for maximum inclusion of LC-PUFA within fillet lipids.

  10. Lipid mediator profile in vernix caseosa reflects skin barrier development.

    PubMed

    Checa, Antonio; Holm, Tina; Sjödin, Marcus O D; Reinke, Stacey N; Alm, Johan; Scheynius, Annika; Wheelock, Craig E

    2015-11-02

    Vernix caseosa (VC) is a protective layer that covers the skin of most human newborns. This study characterized the VC lipid mediator profile, and examined its relationship to gestational period, gender of the newborn and maternal lifestyle. VC collected at birth from 156 newborns within the ALADDIN birth cohort was analyzed and 3 different groups of lipid mediators (eicosanoids and related oxylipin analogs, endocannabinoids and sphingolipids) were screened using LC-MS/MS. A total of 54 compounds were detected in VC. A number of associations between lipid mediators and the gestational period were observed, including increases in the ceramide to sphingomyelin ratio as well as the endocannabinoids anandamide and 2-arachidonoylglycerol. Gender-specific differences in lipid mediator levels were observed for all 3 lipid classes. In addition, levels of the linoleic acid oxidation products 9(10)-epoxy-12Z-octadecenoic and 12(13)-epoxy-9Z-octadecenoic acid (EpOMEs) as well as 12,13-dihydroxy-9Z-octadecenoic acid (DiHOME) were increased in VC of children from mothers with an anthroposophic lifestyle. Accordingly, VC was found to be rich in multiple classes of bioactive lipid mediators, which evidence lifestyle, gender and gestational week dependencies. Levels of lipid mediators in VC may therefore be useful as early stage non-invasive markers of the development of the skin as a protective barrier.

  11. High-throughput and rapid quantification of lipids by nanoflow UPLC-ESI-MS/MS: application to the hepatic lipids of rabbits with nonalcoholic fatty liver disease.

    PubMed

    Byeon, Seul Kee; Lee, Jong Cheol; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee

    2016-07-01

    A rapid and high-throughput quantification method (approximately 300 lipids within 20 min) was established using nanoflow ultrahigh-pressure liquid chromatography-tandem mass spectrometry (nUPLC-ESI-MS/MS) with selective reaction monitoring (SRM) and applied to the quantitative profiling of the hepatic lipids of rabbits with different metabolic conditions that stimulate the development of nonalcoholic fatty liver disease (NAFLD). Among the metabolic conditions of rabbits in this study [inflammation (I), high-cholesterol diet (HC), and high-cholesterol diet combined with inflammation (HCI)], significant perturbation in hepatic lipidome (>3-fold and p < 0.01) was observed in the HC and HCI groups, while no single lipid showed a significant change in group I. In addition, this study revealed a dramatic increase (>2-fold) in relatively high-abundant monohexosylceramides (MHCs), sphingomyelins (SMs), and triacylglycerols (TGs) in both the HC and HCI groups, especially in MHCs as all 11 MHCs increased by larger than 3- to 12-fold. As the levels of the relatively high-abundant lipids in the above classes increased, the total lipidome level of each class increased significantly by approximately 2-fold to 5-fold. Other classes of lipids also generally increased, which was likely induced by the increase in mitogenic and nonapoptotic MHCs and SMs, as they promote cell proliferation. On the other hand, a slight decrease in the level of apoptotic ceramides (Cers) was observed, which agreed with the general increase in total lipid level. As distinct changes in hepatic lipidome were observed from HC groups, this suggests that HC or HCI is highly associated with NAFLD but not inflammation alone itself. Graphical Abstract Schematic of lipidomic analysis from hepatic tissue using nanoflow LC-ESI-MS/MS and nUPLC-ESI-MS/MS.

  12. Multi-class multi-residue analysis of veterinary drugs in meat using enhanced matrix removal lipid cleanup and liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Limian; Lucas, Derick; Long, David; Richter, Bruce; Stevens, Joan

    2018-05-11

    This study presents the development and validation of a quantitation method for the analysis of multi-class, multi-residue veterinary drugs using lipid removal cleanup cartridges, enhanced matrix removal lipid (EMR-Lipid), for different meat matrices by liquid chromatography tandem mass spectrometry detection. Meat samples were extracted using a two-step solid-liquid extraction followed by pass-through sample cleanup. The method was optimized based on the buffer and solvent composition, solvent additive additions, and EMR-Lipid cartridge cleanup. The developed method was then validated in five meat matrices, porcine muscle, bovine muscle, bovine liver, bovine kidney and chicken liver to evaluate the method performance characteristics, such as absolute recoveries and precision at three spiking levels, calibration curve linearity, limit of quantitation (LOQ) and matrix effect. The results showed that >90% of veterinary drug analytes achieved satisfactory recovery results of 60-120%. Over 97% analytes achieved excellent reproducibility results (relative standard deviation (RSD) < 20%), and the LOQs were 1-5 μg/kg in the evaluated meat matrices. The matrix co-extractive removal efficiency by weight provided by EMR-lipid cartridge cleanup was 42-58% in samples. The post column infusion study showed that the matrix ion suppression was reduced for samples with the EMR-Lipid cartridge cleanup. The reduced matrix ion suppression effect was also confirmed with <15% frequency of compounds with significant quantitative ion suppression (>30%) for all tested veterinary drugs in all of meat matrices. The results showed that the two-step solid-liquid extraction provides efficient extraction for the entire spectrum of veterinary drugs, including the difficult classes such as tetracyclines, beta-lactams etc. EMR-Lipid cartridges after extraction provided efficient sample cleanup with easy streamlined protocol and minimal impacts on analytes recovery, improving method reliability and consistency. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.

    PubMed

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. LIPID BIOMARKER ANALYSIS OF MARINE DINOFLAGELLATES

    EPA Science Inventory

    Many marine eukaryotic algae have been shown to possess characteristic chemotaxonomic lipid biomarkers. Dinoflagellates in particular are often characterized by the presence of sterols and pigments that are rarely found in other classes of algae. To evaluate the utility of chemic...

  15. Lipid Molecular Species Composition in Developing Soybean Cotyledons 1

    PubMed Central

    Wilson, Richard F.; Rinne, Robert W.

    1978-01-01

    The fatty acid composition of triglyceride and phospholipids in developing soybean cotyledons (Glycine max L., var. “Harosoy 63”) was analyzed at several stages of growth between 30 and 70 days after flowering. Changes observed in fatty acid composition within each lipid class were related to the levels of lipid molecular species present in the oil. Thirteen molecular species of triglyceride were identified in developing cotyledons, however three of these groups: trilinolenic, dilinolenic-monolinoleic, and linolenic-linoleic-oleic triglycerides, were not found in the mature seed. In immature cotyledons, trioleic and trilinoleic triglycerides accounted for 50% of the structures found; the level of these molecules decreased to 24.9% in the mature seed. The dilinoleic-monolinolenic triglycerides increased from 0.4 to 23.4% during cotyledon development. Changes in triglyceride composition were compared to the levels of molecular species for each phospholipid class. Dilinoleic and monosaturated monolinoleic phospholipid species were dominant in all phospholipid classes throughout development. PMID:16660395

  16. Lipids in DDGS

    USDA-ARS?s Scientific Manuscript database

    Distillers dried grains with soluble (DDGS) are one of the main coproducts of ethanol production from using the dry-grinding process. The lipids from corn or sorghum are not utilized in ethanol production, and are thus concentrated in DDGS. The main lipid components in corn and sorghum DDGS are tr...

  17. Lipid Raft Size and Lipid Mobility in Non-raft Domains Increase during Aging and Are Exacerbated in APP/PS1 Mice Model of Alzheimer's Disease. Predictions from an Agent-Based Mathematical Model

    PubMed Central

    Santos, Guido; Díaz, Mario; Torres, Néstor V.

    2016-01-01

    A connection between lipid rafts and Alzheimer's disease has been studied during the last decades. Mathematical modeling approaches have recently been used to correlate the effects of lipid composition changes in the physicochemical properties of raft-like membranes. Here we propose an agent based model to assess the effect of lipid changes in lipid rafts on the evolution and progression of Alzheimer's disease using lipid profile data obtained in an established model of familial Alzheimer's disease. We have observed that lipid raft size and lipid mobility in non-raft domains are two main factors that increase during age and are accelerated in the transgenic Alzheimer's disease mouse model. The consequences of these changes are discussed in the context of neurotoxic amyloid β production. Our agent based model predicts that increasing sterols (mainly cholesterol) and long-chain polyunsaturated fatty acids (LCPUFA) (mainly DHA, docosahexaenoic acid) proportions in the membrane composition might delay the onset and progression of the disease. PMID:27014089

  18. Dysfunctional HDL as a therapeutic target for atherosclerosis prevention.

    PubMed

    Ossoli, Alice; Pavanello, Chiara; Giorgio, Eleonora; Calabresi, Laura; Gomaraschi, Monica

    2018-03-15

    Hypercholesterolemia is one of the main risk factors for the development of atherosclerosis. Among the various lipoprotein classes, however, high density lipoproteins (HDL) are inversely associated with the incidence of atherosclerosis, since they are able to exert a series of atheroprotective functions. The central role of HDL within the reverse cholesterol transport, their antioxidant and anti-inflammatory properties and their ability to preserve endothelial homeostasis are likely responsible for HDL-mediated atheroprotection. However, drugs that effectively raise HDL-C failed to result in a decreased incidence of cardiovascular event, suggesting that plasma levels of HDL-C and HDL function are not always related. Several evidences are showing that different pathologic conditions, especially those associated with an inflammatory response, can cause dramatic alterations of HDL protein and lipid cargo resulting in HDL dysfunction. Established and investigational drugs designed to affect lipid metabolism and to increase HDL-C are only partly effective in correcting HDL dysfunction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES AND OTHER EUKARYOTIC ALGAE

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  20. Rhodnius prolixus lipophorin: lipid composition and effect of high temperature on physiological role.

    PubMed

    Majerowicz, David; Cezimbra, Milton P; Alves-Bezerra, Michele; Entringer, Petter F; Atella, Georgia C; Sola-Penna, Mauro; Meyer-Fernandes, José R; Gondim, Katia C

    2013-03-01

    Lipophorin is a major lipoprotein that transports lipids in insects. In Rhodnius prolixus, it transports lipids from midgut and fat body to the oocytes. Analysis by thin-layer chromatography and densitometry identified the major lipid classes present in the lipoprotein as diacylglycerol, hydrocarbons, cholesterol, and phospholipids (PLs), mainly phosphatidylethanolamine and phosphatidylcholine. The effect of preincubation at elevated temperatures on lipophorin capacity to deliver or receive lipids was studied. Transfer of PLs to the ovaries was only inhibited after preincubation of lipophorin at temperatures higher than 55 °C. When it was pretreated at 75 °C, maximal inhibition of phospholipid transfer was observed after 3-min heating and no difference was observed after longer times, up to 60 min. The same activity was also obtained when lipophorin was heated for 20 min at 75 °C at protein concentrations from 0.2 to 10 mg/ml. After preincubation at 55 °C, the same rate of lipophorin loading with PLs at the fat body was still present, and 30% of the activity was observed at 75 °C. The effect of temperature on lipophorin was also analyzed by turbidity and intrinsic fluorescence determinations. Turbidity of a lipophorin solution started to increase after preincubations at temperatures higher than 65 °C. Emission fluorescence spectra were obtained for lipophorin, and the spectral area decreased after preincubations at 85 °C or above. These data indicated no difference in the spectral center of mass at any tested temperature. Altogether, these results demonstrate that lipophorin from R. prolixus is very resistant to high temperatures. © 2013 Wiley Periodicals, Inc.

  1. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji

    2014-09-01

    Cationic lipid-incorporated liposomes modified with pH-sensitive polymers were prepared by introducing 3, 5-didodecyloxybenzamidine as a cationic lipid to egg yolk phosphatidylcholine liposomes modified with 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG) as a pH-sensitive polymer. These liposomes were stable at neutral pH, but were destabilized below pH 6.0 because MGlu-HPG changed its characteristics from hydrophilic to hydrophobic in response to the pH decrease. Cationic lipid inclusion improved their pH sensitivity at weakly acidic pH and association of liposomes with murine dendritic cell (DC) lines. Cationic lipid-incorporated liposomes delivered entrapped ovalbumin (OVA) molecules not only to cytosol but also to endosome/lysosome. Treatment with cationic lipid-incorporated liposomes induced up-regulation of antigen presentation-involved molecules on DCs, the promotion of cytokine production, and antigen presentation via both major histocompatibility complex (MHC) class I and II molecules. Especially, antigen presentation via MHC class II was promoted by cationic lipid inclusion, which might correspond to efficient endosome/lysosome delivery of OVA. Subcutaneous administration of OVA-loaded cationic lipid-incorporated liposomes induced antigen-specific antibody production in serum and Th1-dominant immune responses in the spleen. Furthermore, administration of the cationic lipid-incorporated liposomes to mice bearing E.G7-OVA tumor more significantly reduced the tumor volume than liposomes without cationic lipids. Therefore, cationic lipid inclusion into pH-sensitive polymer-modified liposomes, which can achieve both efficient antigen intracellular delivery and activation of antigen presenting cell, is an effective approach to develop antigen carriers for efficient cancer immunotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic

    PubMed Central

    Puri, Anu; Loomis, Kristin; Smith, Brandon; Lee, Jae-Ho; Yavlovich, Amichai; Heldman, Eli; Blumenthal, Robert

    2010-01-01

    In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We conclude with a few examples of clinically successful formulations of currently available lipid-based nanoparticles. PMID:20402623

  3. Quantitative HDL Proteomics Identifies Peroxiredoxin-6 as a Biomarker of Human Abdominal Aortic Aneurysm

    PubMed Central

    Burillo, Elena; Jorge, Inmaculada; Martínez-López, Diego; Camafeita, Emilio; Blanco-Colio, Luis Miguel; Trevisan-Herraz, Marco; Ezkurdia, Iakes; Egido, Jesús; Michel, Jean-Baptiste; Meilhac, Olivier; Vázquez, Jesús; Martin-Ventura, Jose Luis

    2016-01-01

    High-density lipoproteins (HDLs) are complex protein and lipid assemblies whose composition is known to change in diverse pathological situations. Analysis of the HDL proteome can thus provide insight into the main mechanisms underlying abdominal aortic aneurysm (AAA) and potentially detect novel systemic biomarkers. We performed a multiplexed quantitative proteomics analysis of HDLs isolated from plasma of AAA patients (N = 14) and control study participants (N = 7). Validation was performed by western-blot (HDL), immunohistochemistry (tissue), and ELISA (plasma). HDL from AAA patients showed elevated expression of peroxiredoxin-6 (PRDX6), HLA class I histocompatibility antigen (HLA-I), retinol-binding protein 4, and paraoxonase/arylesterase 1 (PON1), whereas α-2 macroglobulin and C4b-binding protein were decreased. The main pathways associated with HDL alterations in AAA were oxidative stress and immune-inflammatory responses. In AAA tissue, PRDX6 colocalized with neutrophils, vascular smooth muscle cells, and lipid oxidation. Moreover, plasma PRDX6 was higher in AAA (N = 47) than in controls (N = 27), reflecting increased systemic oxidative stress. Finally, a positive correlation was recorded between PRDX6 and AAA diameter. The analysis of the HDL proteome demonstrates that redox imbalance is a major mechanism in AAA, identifying the antioxidant PRDX6 as a novel systemic biomarker of AAA. PMID:27934969

  4. Effects of gemfibrozil on lipid metabolism, steroidogenesis and reproduction in the fathead minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPARs), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fi...

  5. Lipids in cell biology: how can we understand them better?

    PubMed Central

    Muro, Eleonora; Atilla-Gokcumen, G. Ekin; Eggert, Ulrike S.

    2014-01-01

    Lipids are a major class of biological molecules and play many key roles in different processes. The diversity of lipids is on the same order of magnitude as that of proteins: cells express tens of thousands of different lipids and hundreds of proteins to regulate their metabolism and transport. Despite their clear importance and essential functions, lipids have not been as well studied as proteins. We discuss here some of the reasons why it has been challenging to study lipids and outline technological developments that are allowing us to begin lifting lipids out of their “Cinderella” status. We focus on recent advances in lipid identification, visualization, and investigation of their biophysics and perturbations and suggest that the field has sufficiently advanced to encourage broader investigation into these intriguing molecules. PMID:24925915

  6. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less

  7. New assays for detection and localization of endogenous lipid peroxidation products in living boar sperm after BTS dilution or after freeze-thawing.

    PubMed

    Brouwers, Jos F; Silva, Patricia F N; Gadella, Barend M

    2005-01-15

    Reactive oxygen species have been implicated in sperm aberrations causing multiple pathologies including sub- and infertility. Freeze/thawing of sperm samples is routinely performed in the cattle breeding industries for semen storage prior to artificial insemination but unusual in porcine breeding industries as semen dilution and storage at 17 degrees C is sufficient for artificial insemination within 2-3 days. However, longer semen storage requires cryopreservation of boar semen. Freeze/thawing procedures induce sperm damage and induce reactive oxygen species in mammalian sperm and boar sperm seems to be more vulnerable for this than bull sperm. We developed a new method to detect reactive oxygen species induced damage at the level of the sperm plasma membrane in bull sperm. Lipid peroxidation in freshly stored and frozen/thawed sperm cells was assessed by mass spectrometric analysis of the main endogenous lipid classes, phosphatidylcholine and cholesterol and by fluorescence techniques using the lipid peroxidation reporter probe C11-BODIPY(581/591). Peroxidation as reported by the fluorescent probe, clearly corresponded with the presence of hydroxy- and hydroperoxyphosphatidylcholine in the sperm membranes, which are early stage products of lipid peroxidation. This allowed us, for the first time, to correlate endogenous lipid peroxidation with localization of this process in the living sperm cells. Cytoplasmatic droplets in incompletely matured sperm cells were intensely peroxidized. Furthermore, lipid peroxidation was particularly strong in the mid-piece and tail of frozen/thawed spermatozoa and significantly less intense in the sperm head. Induction of peroxidation in fresh sperm cells with the lipid soluble reactive oxygen species tert-butylhydroperoxide gave an even more pronounced effect, demonstrating antioxidant activity in the head of fresh sperm cells. Furthermore, we were able to show using the flow cytometer that spontaneous peroxidation was not a result of cell death, as only a pronounced subpopulation of living cells showed peroxidation after freeze-thawing. Although the method was established on bovine sperm, we discuss the importance of these assays for detecting lipid peroxidation in boar sperm cells.

  8. Organization of lipids in avian stratum corneum: Changes with temperature and hydration.

    PubMed

    Champagne, Alex M; Allen, Heather C; Bautista-Jimenez, Robin C; Williams, Joseph B

    2016-02-01

    In response to increases in ambient temperature (Ta), many animals increase total evaporative water loss (TEWL) through their skin and respiratory passages to maintain a constant body temperature, a response that compromises water balance. In birds, cutaneous water loss (CWL) accounts for approximately 65% of TEWL at thermoneutral temperatures. Although the proportion of TEWL accounted for by CWL decreases to only 25% at high Ta, the magnitude of CWL still increases, suggesting changes in the barrier function of the skin. The stratum corneum (SC) is composed of flat, dead cells called corneocytes embedded in a matrix of lipids, many of which arrange in layers called lamellae. The classes of lipids that comprise these lamellae, and their attendant physical properties, determine the rate of CWL. We measured CWL at 25, 30, 35, and 40 °C in House Sparrows (Passer domesticus) caught in the winter and summer, and in sparrows acclimated to warm and cold lab environments. We then used Fourier transform infrared spectroscopy to measure lipid-lipid and lipid-water interactions in the SC under different conditions of temperature and hydration, and correlated these results with lipid classes in the SC. As CWL increased at higher temperatures, the amount of gauche defects in lipid alkyl chains increased, indicating that lipid disorder is partially responsible for higher CWL at high temperatures. However, variation in CWL between groups could not be explained by the amount of gauche defects, and this remaining variation may be attributed to greater amounts of cerebrosides in birds with low CWL, as the sugar moieties of cerebrosides lie outside lipid lamellae and form strong hydrogen bonds with water molecules. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Phospholipid makeup of the breast adipose tissue is impacted by obesity and mammary cancer in the mouse: Results of a pilot study.

    PubMed

    Margolis, Michael; Perez, Osvaldo; Martinez, Mitchell; Santander, Ana M; Mendez, Armando J; Nadji, Mehrdad; Nayer, Ali; Bhattacharya, Sanjoy; Torroella-Kouri, Marta

    2015-01-01

    Obesity, an established risk factor for breast cancer (BC), is associated with systemic inflammation. The breast contains adipose tissue (bAT), yet whether it plays a role in BC progression in obese females is being intensively studied. There is scarce knowledge on the lipid composition of bAT in health and disease. The purpose of this pilot study was: 1) to determine whether obesity and BC are associated with inflammatory changes in bAT 2) to analyze for the first time the lipid profile of bAT in obese and lean mammary tumor-bearing and normal mice. Syngeneic E0771 mammary tumor cells were implanted into the mammary fat pad of lean and diet-induced obese C57BL/6 mice. BATs were analyzed four weeks after tumor cell inoculation by immunohistochemistry and mass spectrometry. Phospholipids were identified and subjected to ratiometric quantification using a TSQ Quantum Access Max triple quadrupole mass spectrometer utilizing precursor ion scan or neutral ion loss scan employing appropriate class specific lipid standards in a two step quantification process. Four main classes of phospholipids were analyzed: phosphatidylcholines phosphatidylserines, phosphatidylethanolamines and phosphatidylinositols. Our results showed that bAT in obese (normal and tumor-bearing) mice contained hypertrophic adipocytes compared with their corresponding samples in lean mice; higher numbers of macrophages and crown-like structures were observed in obese tumor bearers compared to obese normal mice. BAT from normal obese mice revealed higher concentrations of phosphatidylethanolamines. Furthermore, bAT from tumor-bearing mice expressed higher phosphatidylcholines than that from non-tumor bearing mice, suggesting the presence of the tumor is associated with phosphatidylcholines. Conversion of phosphatidylethanolamines to phosphatidylcholines will be investigated in E0771 cells. Additional studies are projected to investigate macrophage activation by these specific classes of phospholipids. Occurrence of triglycerides and free fatty acids will be examined in bAT and similar lipidomic analyses will be carried out visceral adipose tissue, highly inflamed in obesity. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  10. Phospholipid makeup of the breast adipose tissue is impacted by obesity and mammary cancer in the mouse: results of a pilot study

    PubMed Central

    Margolis, Michael; Perez, Osvaldo; Martinez, Mitchel; Santander, Ana M.; Mendez, Armando J.; Nadji, Mehrdad; Nayer, Ali; Bhattacharya, Sanjoy; Torroella-Kouri, Marta

    2014-01-01

    Obesity, an established risk factor for breast cancer (BC), is associated with systemic inflammation. The breast contains adipose tissue (bAT), yet whether it plays a role in BC progression in obese females is being intensively studied. There is scarce knowledge on the lipid composition of bAT in health and disease. The purpose of this pilot study was: 1) to determine whether obesity and BC are associated with inflammatory changes in bAT 2) to analyze for the first time the lipid profile of bAT in obese and lean mammary tumor-bearing and normal mice. Syngeneic E0771 mammary tumor cells were implanted into the mammary fat pad of lean and diet-induced obese C57BL/6 mice. BATs were analyzed four weeks after tumor cell inoculation by immunohistochemistry and mass spectrometry. Phospholipids were identified and subjected to ratiometric quantification using a TSQ Quantum Access Max triple quadrupole mass spectrometer utilizing precursor ion scan or neutral ion loss scan employing appropriate class specific lipid standards in a two step quantification process. Four main classes of phospholipids were analyzed: phosphatidylcholines phosphatidylserines, phosphatidylethanolamines and phosphatidylinositols. Our results showed that bAT in obese (normal and tumor-bearing) mice contained hypertrophic adipocytes compared with their corresponding samples in lean mice; higher numbers of macrophages and crown-like structures were observed in obese tumor bearers compared to obese normal mice. BAT from normal obese mice revealed higher concentrations of phosphatidylethanolamines. Furthermore, bAT from tumor-bearing mice expressed higher phosphatidylcholines than that from non-tumor bearing mice, suggesting the presence of the tumor is associated with phosphatidylcholines. Conversion of phosphatidylethanolamines to phosphatidylcholines will be investigated in E0771 cells. Additional studies are projected to investigate macrophage activation by these specific classes of phospholipids. Occurrence of triglycerides and free fatty acids will be examined in bAT and similar lipidomic analyses will be carried out visceral adipose tissue, highly inflamed in obesity. PMID:25450252

  11. Analysis of human serum lipoprotein lipid composition using MALDI-TOF mass spectrometry.

    PubMed

    Hidaka, Hiroya; Hanyu, Noboru; Sugano, Mitsutoshi; Kawasaki, Kenji; Yamauchi, Kazuyoshi; Katsuyama, Tsutomu

    2007-01-01

    This study used matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify all lipid classes in human serum lipoproteins. After the major lipoproteins classes were isolated from serum by ultracentrifugation, the lipids were extracted and mixed with 2,5-dihydroxybenzoic acid (2,5-DHB) dissolved in Folch's solution (chloroform/methanol 2:1, v/v). MALDI-TOF MS analysis of the samples identified phospholipids (PLs), lysophospholipids (lysoPLs), sphingolipids (SLs), triglycerides (TGs), cholesteryl esters (CEs), and free cholesterol; it also showed the characteristics of individual fatty acid chains in serum lipids. MALDI-TOF MS allowed analysis of strongly hydrophobic and non-polar molecules such as CEs and TGs as well as hydrophilic molecules such as phospholipids. Direct analysis of fatty acids was not possible. The concentrations of lipids were not consistent with the ion peak intensities, since the extent of polarity affected the ionization characteristics of the molecules. However, lipid molecules with similar molecular structures but various fatty acid chains, such as phosphatidylcholine (PCs), were analyzed quantitatively by MALDI-TOF MS. Quantitative measurement of cholesterol was possible with the use of an internal standard. This study shows that MALDI-TOF MS can be used for direct investigation and quantitative analysis of the phospholipid composition of serum lipoproteins.

  12. Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies.

    PubMed

    Shen, Yue; Liu, Mingzhe; Wang, Lili; Li, Zhuowei; Taylor, David C; Li, Zhixi; Zhang, Meng

    2016-04-01

    Caleosins are a class of Ca(2+) binding proteins that appear to be ubiquitous in plants. Some of the main proteins embedded in the lipid monolayer of lipid droplets, caleosins, play critical roles in the degradation of storage lipids during germination and in lipid trafficking. Some of them have been shown to have histidine-dependent peroxygenase activity, which is believed to participate in stress responses in Arabidopsis. In the model plant Arabidopsis thaliana, caleosins have been examined extensively. However, little is known on a genome-wide scale about these proteins in other members of the Brassicaceae. In this study, 51 caleosins in Brassica plants and Arabidopsis lyrata were investigated and analyzed in silico. Among them, 31 caleosins, including 7 in A. lyrata, 11 in Brassica oleracea and 13 in Brassica napus, are herein identified for the first time. Segmental duplication was the main form of gene expansion. Alignment, motif and phylogenetic analyses showed that Brassica caleosins belong to either the H-family or the L-family with different motif structures and physicochemical properties. Our findings strongly suggest that L-caleosins are evolved from H-caleosins. Predicted phosphorylation sites were differentially conserved in H-caleosin and L-caleosins, respectively. 'RY-repeat' elements and phytohormone-related cis-elements were identified in different caleosins, which suggest diverse physiological functions. Gene structure analysis indicated that most caleosins (38 out of 44) contained six exons and five introns and their intron phases were highly conserved. Structurally integrated caleosins, such as BrCLO3-3 and BrCLO4-2, showed high expression levels and may have important roles. Some caleosins, such as BrCLO2 and BoCLO8-2, lost motifs of the calcium binding domain, proline knot, potential phosphorylation sites and haem-binding sites. Combined with their low expression, it is suggested that these caleosins may have lost function.

  13. The Impact of Preoperative BMI (Obesity Class I, II, and III) on the 12-Month Evolution of Patients Undergoing Laparoscopic Gastric Bypass.

    PubMed

    Ramírez, Eva M; Espinosa, Omar; Berrones, Ricardo; Sepúlveda, Elisa M; Guilbert, Lizbeth; Solís, Miguel; Zerrweck, Carlos

    2018-05-03

    Whether or not the initial body mass index (BMI) influences weight loss and comorbidities improvement after bariatric surgery continues to be a matter of debate. The main reason for this is a lack of studies including obesity class I. Retrospective study with patients submitted to gastric bypass at a single institution. They were classified based on initial BMI (obesity class I, II, and III), and a comparative analysis of their metabolic profile (glucose, HbA1c%, C-peptide, insulin and diabetes medication), lipid profile (triglycerides, total cholesterol, HDL, LDL), and clinical data (systolic/diastolic blood pressure and cardiovascular risk) was performed at 0 and 12 months. Diabetes remission and weight loss were also analyzed. Two-hundred and twenty patients were included (23 in group 1, 113 in group 2, and 84 in group 3). Initial weight, BMI, and number of patients with T2DM were statistically different in group 1; other parameters were homogenous. At 12 months, every group had similar improvement of the metabolic profile, excepting serum insulin. Diabetes remission was 57.9, 61.1, and 60% for group 1, 2, and 3. For weight loss, there were differences between groups when using BMI and percentage of excess weight loss, but not with percentage of total weight loss. The non-metabolic and clinical data improved without differences, except for total cholesterol and LDL. The metabolic, lipid, and clinical profiles associated with obesity present similar improvement 1 year after laparoscopic gastric bypass, despite different baseline BMI. Diabetes remission and percentage of total weight loss were also similar.

  14. Differential Transmembrane Domain GXXXG Motif Pairing Impacts Major Histocompatibility Complex (MHC) Class II Structure*

    PubMed Central

    Dixon, Ann M.; Drake, Lisa; Hughes, Kelly T.; Sargent, Elizabeth; Hunt, Danielle; Harton, Jonathan A.; Drake, James R.

    2014-01-01

    Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2− I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response. PMID:24619409

  15. Nanoscale platforms for messenger RNA delivery.

    PubMed

    Li, Bin; Zhang, Xinfu; Dong, Yizhou

    2018-05-04

    Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.

  16. Influence of Ganglioside GM1 Concentration on Lipid Clustering and Membrane Properties and Curvature.

    PubMed

    Patel, Dhilon S; Park, Soohyung; Wu, Emilia L; Yeom, Min Sun; Widmalm, Göran; Klauda, Jeffery B; Im, Wonpil

    2016-11-01

    Gangliosides are a class of glycosphingolipids (GSLs) with amphiphilic character that are found at the outer leaflet of the cell membranes, where their ability to organize into special domains makes them vital cell membrane components. However, a molecular understanding of GSL-rich membranes in terms of their clustered organization, stability, and dynamics is still elusive. To gain molecular insight into the organization and dynamics of GSL-rich membranes, we performed all-atom molecular-dynamics simulations of bicomponent ganglioside GM1 in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers with varying concentrations of GM1 (10%, 20%, and 30%). Overall, the simulations show very good agreement with available experimental data, including x-ray electron density profiles along the membrane normal, NMR carbohydrate proton-proton distances, and x-ray crystal structures. This validates the quality of our model systems for investigating GM1 clustering through an ordered-lipid-cluster analysis. The increase in GM1 concentration induces tighter lipid packing, driven mainly by inter-GM1 carbohydrate-carbohydrate interactions, leading to a greater preference for the positive curvature of GM1-containing membranes and larger cluster sizes of ordered-lipid clusters (with a composite of GM1 and POPC). These clusters tend to segregate and form a large percolated cluster at a 30% GM1 concentration at 293 K. At a higher temperature of 330 K, however, the segregation is not maintained. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Lipidomic profile in three species of dinoflagellates (Amphidinium carterae, Cystodinium sp., and Peridinium aciculiferum) containing very long chain polyunsaturated fatty acids.

    PubMed

    Řezanka, Tomáš; Lukavský, Jaromír; Nedbalová, Linda; Sigler, Karel

    2017-07-01

    This study describes the identification of very long chain polyunsaturated fatty acids (VLCPUFAs) in three strains of dinoflagellates (Amphidinium carterae, Cystodinium sp., and Peridinium aciculiferum). The strains were cultivated and their lipidomic profiles were obtained by high resolution mass spectrometry with the aid of positive and negative electrospray ionization (ESI) mode by Orbitrap apparatus. Hydrophilic interaction liquid chromatography (HILIC/ESI) was used to separate major lipid classes of the three genera of dinoflagellates by neutral loss scan showing the ion [M + H-28:8] + , where 28:8 was octacosaoctaenoic acid, and by precursor ion scanning of ions at m/z 407, which was an ion corresponding to the structure of acyl of 28:8 acid (C 27 H 39 COO - ). Based on these analyzes, it was found that out of more than a dozen lipid classes present in the total lipids, only two classes of neutral lipids, i.e. major triacylglycerols and minor diacylglycerols contain VLCPUFAs. In polar lipids, VLCPUFAs were identified only in phosphatidic acid (PA) and phosphatidyl choline (PC) or in their lyso-forms (LPA and LPC). Further analysis of individual lipid classes by reversed-phase high-performance liquid chromatography (RP-HPLC) showed the presence of triacylglycerols (TAGs) containing VLCPUFAs, i.e. molecular species of the sn-28:7/28:8/28:8, sn-26:7/28:7/28:8, or sn-26:7/28:8/28:8 types. These TAGs are the longest and most unsaturated TAGs isolated from a natural source that have yet been synthesized. In the case of PA and PC, tandem MS identified sn-28:8/16:0-PA and sn-28:8/16:0-PC and the corresponding lyso-forms (28:8-LPC and 28:8-LPA). All these results indicate that TAGs containing VLCPUFAs are biosynthesized in dinoflagellates in the same manner as in higher eukaryotic organisms, which means that the PA, after conversion to DAG, serves as a precursor in the biosynthesis of other phospholipids, e.g. PC, and, after further acylation, also of TAG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Total milk fat extraction and quantification of polar and neutral lipids of cow, goat, and ewe milk by using a pressurized liquid system and chromatographic techniques.

    PubMed

    Castro-Gómez, M P; Rodriguez-Alcalá, L M; Calvo, M V; Romero, J; Mendiola, J A; Ibañez, E; Fontecha, J

    2014-11-01

    Although milk polar lipids such as phospholipids and sphingolipids located in the milk fat globule membrane constitute 0.1 to 1% of the total milk fat, those lipid fractions are gaining increasing interest because of their potential beneficial effects on human health and technological properties. In this context, the accurate quantification of the milk polar lipids is crucial for comparison of different milk species, products, or dairy treatments. Although the official International Organization for Standardization-International Dairy Federation method for milk lipid extraction gives satisfactory results for neutral lipids, it has important disadvantages in terms of polar lipid losses. Other methods using mixtures of solvents such as chloroform:methanol are highly efficient for extracting polar lipids but are also associated with low sample throughput, long time, and large solvent consumption. As an alternative, we have optimized the milk fat extraction yield by using a pressurized liquid extraction (PLE) method at different temperatures and times in comparison with those traditional lipid extraction procedures using 2:1 chloroform:methanol as a mixture of solvents. Comparison of classical extraction methods with the developed PLE procedure were carried out using raw whole milk from different species (cows, ewes, and goats) and considering fat yield, fatty acid methyl ester composition, triacylglyceride species, cholesterol content, and lipid class compositions, with special attention to polar lipids such as phospholipids and sphingolipids. The developed PLE procedure was validated for milk fat extraction and the results show that this method performs a complete or close to complete extraction of all lipid classes and in less time than the official and Folch methods. In conclusion, the PLE method optimized in this study could be an alternative to carry out milk fat extraction as a routine method. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Near infrared Raman spectra of human brain lipids

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Neudert, Lars; Simat, Thomas; Salzer, Reiner

    2005-05-01

    Human brain tissue, in particular white matter, contains high lipid content. These brain lipids can be divided into three principal classes: neutral lipids including the steroid cholesterol, phospholipids and sphingolipids. Major lipids in normal human brain tissue are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, galactocerebrosides, gangliosides, sulfatides and cholesterol. Minor lipids are cholesterolester and triacylglycerides. During transformation from normal brain tissue to tumors, composition and concentration of lipids change in a specific way. Therefore, analysis of lipids might be used as a diagnostic parameter to distinguish normal tissue from tumors and to determine the tumor type and tumor grade. Raman spectroscopy has been suggested as an analytical tool to detect these changes even under intra-operative conditions. We recorded Raman spectra of the 12 major and minor brain lipids with 785 nm excitation in order to identify their spectral fingerprints for qualitative and quantitative analyses.

  20. Combined thin layer chromatography and gas chromatography with mass spectrometric analysis of lipid classes and fatty acids in malnourished polar bears (Ursus maritimus) which swam to Iceland.

    PubMed

    Eibler, Dorothee; Krüger, Sabine; Skírnisson, Karl; Vetter, Walter

    2017-03-01

    Between 2008 and 2011, four polar bears (Ursus maritimus) from the Greenland population swam and/or drifted on ice to Iceland where they arrived in very poor body condition. Body fat resources in these animals were only between 0% and 10% of the body weight (usually 25%). Here we studied the lipid composition in different tissues (adipose tissue if available, liver, kidney and muscle). Lipid classes were determined by thin layer chromatography (TLC) and on-column gas chromatography with mass spectrometry (GC/MS). The fatty acid pattern of total lipids and free fatty acids was analyzed by GC/MS in selected ion monitoring (SIM) mode. Additionally, cholesteryl esters and native fatty acid methyl esters, initially detected as zones in thin layer chromatograms, were enriched by solid phase extraction and quantified by GC/MS. The ratio of free fatty acids to native fatty acid methyl esters could be correlated with the remained body lipids in the polar bears and thus may also serve as a marker for other starving animals or even for humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A New Route to Liposil Formation by an Interfacial Sol-Gel Process Confined by Lipid Bilayer.

    PubMed

    Shen, Shukun; Yang, Lu; Lu, Yaxing; Chen, Jian-Gang; Song, Shaofei; Hu, Daodao; Parikh, Atul

    2015-11-18

    We report a new and simple approach to prepare a class of silica-reinforced liposomes with hybrid core-shell nanostructures. The amphiphilic natural structure of lipids was exploited to sequester hydrophobic molecules, namely precursor TEOS and pyrene, in the hydrophobic midplane of liposomal bilayer assemblies in the aqueous phase. Subsequent interfacial hydrolysis of TEOS at the bilayer/water interface and ensuing condensation within the hydrophobic interstices of the lipid bilayer drives silica formation in situ, producing a novel class of silica-lipid hybrid liposils. Structural characterization by scanning- and transmission electron microscopy confirm that the liposils so generated preserve closed topologies and size-monodipersity of the parent lecithin liposomes, and DSC-TGA and XRD measurements provide evidence for the silica coating. Monitoring fluorescence measurements using embedded pyrene yield detailed information on microenvironment changes, which occur during sol-gel process and shed light on the structural evolution during silica formation. We envisage that liposils formed by this simple, new approach, exploiting the hydrophobic core of the lipid bilayer to spatially localize silica-forming precursors enables preparation of stable liposils exhibiting capacity for cargo encapsulation, bicompatibility, and fluorescence monitoring, more generally opening a window for construction of stable, functional hybrid materials.

  2. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    PubMed

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Regio- and stereospecific analysis of glycerolipids.

    PubMed

    Kuksis, Arnis; Itabashi, Yutaka

    2005-06-01

    In recent years researchers have recognized the potential value of comprehensive lipid profiling (lipidomics), which was invented and promoted by lipidologists who recognized the many valuable applications that grew out of the fields of DNA profiling (genomics) and protein profiling (proteonomics). Through lipid class-selective intrasource ionization and subsequent analysis of two-dimensional cross-peak intensities, the chemical identity and mass composition of individual molecular species of most lipid classes can now be determined in a chloroform extract. There remains, however, the necessity to distinguish the enantiomers and isobaric regioisomers resulting from enzymatic and chemical reactions, which conventional high performance liquid chromatography/mass spectrometry (HPLC/MS) has been slow to accommodate, and tandem MS unable to provide. While reversed-phase HPLC can separate regioisomers, normal-phase HPLC can resolve diastereomers, and chiral-phase HPLC can effect dramatic resolution of enantiomers, the full potential of the combined systems has seldom been exploited. The present chapter calls attention to both recent and earlier combinations of these methodologies with mass spectrometry, which allows the HPLC/ESI (electrospray ionization)-MS/MS separation and identification of enantiomeric diacylglycerols, triacylglycerols, and glycerophospholipids as well as their isobaric regioisomers. These developments permit further expansion of lipid profiling (lipidomics) and better understanding of lipid metabolism.

  4. Environmental toxicants as extrinsic epigenetic factors for parkinsonism: studies employing transgenic C. elegans model.

    PubMed

    Jadiya, Pooja; Nazir, Aamir

    2012-12-01

    Various human diseases are known to occur as a result of gene-environment interactions. Amongst such diseases, neurodegenerative Parkinson's disease (PD) is a complex disorder in which genetics and exposure to toxins constitute the main determinants in the onset of the disease. Many studies have reported on a link between pesticide exposure and increased risk of PD, however the role of different classes of pesticides vis-à-vis Parkinsonism has not been well elucidated. We carried out the present study to explore the role of six groups of pesticides viz botanicals, herbicides, fungicides, organophosphates, carbamates and pyrethroids on PD and and associated neurotoxic effects. These pesticides were studied using transgenic Caenorhabditis elegans model expressing human alpha synuclein protein tagged with yellow fluorescent protein [NL5901; (Punc-54::alphasynuclein::YFP+unc-119)] in the body wall muscle. Amongst all the classes of pesticides examined, botanical rotenone showed severe effects on PD pathogenesis. It significantly increased alpha synuclein aggregation and oxidative stress. Furthermore, it reduced mitochondrial and lipid content in the worms. Pesticides from other classes were observed to exert marginal effects as compared to rotenone thus suggesting that there is a class or structure specific effect of environmental chemicals vis-à-vis Parkinsonism. Hence it may be deduced that all classes of toxicants do not induce similar effects on neurodegeneration and associated events.

  5. Lipidomic analysis of biological samples: Comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods.

    PubMed

    Lísa, Miroslav; Cífková, Eva; Khalikova, Maria; Ovčačíková, Magdaléna; Holčapek, Michal

    2017-11-24

    Lipidomic analysis of biological samples in a clinical research represents challenging task for analytical methods given by the large number of samples and their extreme complexity. In this work, we compare direct infusion (DI) and chromatography - mass spectrometry (MS) lipidomic approaches represented by three analytical methods in terms of comprehensiveness, sample throughput, and validation results for the lipidomic analysis of biological samples represented by tumor tissue, surrounding normal tissue, plasma, and erythrocytes of kidney cancer patients. Methods are compared in one laboratory using the identical analytical protocol to ensure comparable conditions. Ultrahigh-performance liquid chromatography/MS (UHPLC/MS) method in hydrophilic interaction liquid chromatography mode and DI-MS method are used for this comparison as the most widely used methods for the lipidomic analysis together with ultrahigh-performance supercritical fluid chromatography/MS (UHPSFC/MS) method showing promising results in metabolomics analyses. The nontargeted analysis of pooled samples is performed using all tested methods and 610 lipid species within 23 lipid classes are identified. DI method provides the most comprehensive results due to identification of some polar lipid classes, which are not identified by UHPLC and UHPSFC methods. On the other hand, UHPSFC method provides an excellent sensitivity for less polar lipid classes and the highest sample throughput within 10min method time. The sample consumption of DI method is 125 times higher than for other methods, while only 40μL of organic solvent is used for one sample analysis compared to 3.5mL and 4.9mL in case of UHPLC and UHPSFC methods, respectively. Methods are validated for the quantitative lipidomic analysis of plasma samples with one internal standard for each lipid class. Results show applicability of all tested methods for the lipidomic analysis of biological samples depending on the analysis requirements. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    EPA Science Inventory

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  7. Revisiting "You are what you eat, +1‰": Bacterial Trophic Structure and the Sedimentary Record

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Tang, T.; Mohr, W.; Sattin, S.

    2015-12-01

    "You are what you eat, +1‰" is a central principle of carbon stable isotope (δ13C) distributions and is widely applied to understand the structure and ordering of macrobiotic ecosystems. Although based on observations from multicellular organisms that are able to ingest "food", this idea also has been applied to Precambrian ecosystems dominated by unicellular, microbial life, with the suggestion that such systems could sustain ordered trophic structures observable in their isotopes. However, using a new approach to community profiling known as protein stable isotope fingerprinting (P-SIF), we find that the carbon isotope ratios of whole proteins separated from environmental samples show differences only between metabolically-distinct autotrophs; heterotrophs are not 13C-enriched. In parallel, a survey of the relative distribution of 13C between biochemical classes - specifically acetogenic lipids, isoprenoid lipids, amino acids, and nucleic acids/sugars - across a variety of bacterial species appears to be a function of the main carbon metabolite, not an indicator of heterotrophy vs. autotrophy. Indeed, autotrophy, heterotrophy, and mixotrophy all are indistinguishable when the primary food source is fresh photosynthate, i.e., sugar. Significant assimilation of acetate is diagnosed by acetogenic lipids that are relatively 13C-enriched vs. isoprenoid lipids. Mixed-substrate heterotrophy, in contrast, satisfies the classic "…+1‰" rule for bulk biomass, yet simultaneously it collapses the biochemical patterns of 13C almost completely. Together these observations point to a paradigm shift for understanding the preservation of bulk organic and lipid δ13C signatures in the rock record, suggesting that patterns of δ13Corg must primarily reflect changing carbon inputs, not the extent or intensity of heterotrophy.

  8. Trophic interactions of the pelagic ecosystem over the Reykjanes Ridge as evaluated by fatty acid and stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Petursdottir, H.; Gislason, A.; Falk-Petersen, S.; Hop, H.; Svavarsson, J.

    2008-01-01

    Trophic relationships of the important oceanic crustacean species Calanus finmarchicus, Meganyctiphanes norvegica and Sergestes arcticus, as well as the mesopelagic fishes Maurolicus muelleri, Benthosema glaciale and Sebastes mentella, were investigated over the Reykjanes Ridge in June 2003 and in June 2004. Measurements were performed of length, wet weight, dry weight, total lipid, lipid class, fatty acid and fatty alcohol profiles and stable isotopes (δ 13C and δ 15N). High amounts of the Calanus lipid markers, 20:1(n-9) and 22:1(n-11) in these species confirm the importance of Calanus spp. in this ecosystem. Comparisons of fatty acid/alcohol profiles by multivariate analysis revealed two main trophic pathways over the Reykjanes Ridge. In one pathway, Calanus spp. was an important part of the diet for the small mesopelagic fish species M. muelleri and B. glaciale and the shrimp S. arcticus, whereas in the other pathway, the euphausiid M. norvegica was the dominant food for the redfish S. mentella, and Calanus spp. were of less importance. M. muelleri and the smaller B. glaciale feed on C. finmarchicus, whereas the larger B. glaciale and S. arcticus select the larger, deeper-living C. hyperboreus. All investigated species are true pelagic species except for the shrimp S. arcticus, which seems to have a benthic feeding habit as well. The δ 15N levels show that of the species investigated, C. finmarchicus occupies the lowest trophic level (2.0) and the redfish, S. mentella, the highest (4.2). All the species were lipid rich, typical for subarctic pelagic ecosystem. Calanus finmarchicus, S. arcticus and B. glaciale store wax esters as their lipid stores, while M. norvegica, M. muelleri and S. mentella store triacylglycerols.

  9. Changes in Lipids and Inflammatory Markers after Consuming Diets High in Red Meat or Dairy for Four Weeks.

    PubMed

    Turner, Kirsty M; Keogh, Jennifer B; Meikle, Peter J; Clifton, Peter M

    2017-08-17

    There is a body of evidence linking inflammation, altered lipid metabolism, and insulin resistance. Our previous research found that insulin sensitivity decreased after a four-week diet high in dairy compared to a control diet and to one high in red meat. Our aim was to determine whether a relationship exists between changes in insulin sensitivity and inflammatory biomarkers, or with lipid species. Fasting Tumor Necrosis Factor alpha (TNF-α), Tumor Necrosis Factor Receptor II (sTNF-RII), C-reactive protein (CRP), and lipids were measured at the end of each diet. TNF-α and the ratio TNF-α/sTNF-RII were not different between diets and TNF-α, sTNF-RII, or the ratio TNF-α/sTNF-RII showed no association with homeostasis model assessment-estimated insulin resistance (HOMA-IR). A number of phosphatidylethanolamine (PE) and phosphatidylinositol (PI) species differed between dairy and red meat and dairy and control diets, as did many phosphatidylcholine (PC) species and cholesteryl ester (CE) 14:0, CE15:0, lysophosphatidylcholine (LPC) 14:0, and LPC15:0. None had a significant relationship ( p = 0.001 or better) with log homeostasis model assessment-estimated insulin resistance (HOMA-IR), although LPC14:0 had the strongest relationship ( p = 0.004) and may be the main mediator of the effect of dairy on insulin sensitivity. LPC14:0 and the whole LPC class were correlated with CRP. The correlations between dietary change and the minor plasma phospholipids PI32:1 and PE32:1 are novel and may reflect significant changes in membrane composition. Inflammatory markers were not altered by changes in protein source while the correlation of LPC with CRP confirms a relationship between changes in lipid profile and inflammation.

  10. Changes in Lipids and Inflammatory Markers after Consuming Diets High in Red Meat or Dairy for Four Weeks

    PubMed Central

    Turner, Kirsty M.; Keogh, Jennifer B.; Meikle, Peter J.; Clifton, Peter M.

    2017-01-01

    There is a body of evidence linking inflammation, altered lipid metabolism, and insulin resistance. Our previous research found that insulin sensitivity decreased after a four-week diet high in dairy compared to a control diet and to one high in red meat. Our aim was to determine whether a relationship exists between changes in insulin sensitivity and inflammatory biomarkers, or with lipid species. Fasting Tumor Necrosis Factor alpha (TNF-α), Tumor Necrosis Factor Receptor II (sTNF-RII), C-reactive protein (CRP), and lipids were measured at the end of each diet. TNF-α and the ratio TNF-α/sTNF-RII were not different between diets and TNF-α, sTNF-RII, or the ratio TNF-α/sTNF-RII showed no association with homeostasis model assessment-estimated insulin resistance (HOMA-IR). A number of phosphatidylethanolamine (PE) and phosphatidylinositol (PI) species differed between dairy and red meat and dairy and control diets, as did many phosphatidylcholine (PC) species and cholesteryl ester (CE) 14:0, CE15:0, lysophosphatidylcholine (LPC) 14:0, and LPC15:0. None had a significant relationship (p = 0.001 or better) with log homeostasis model assessment-estimated insulin resistance (HOMA-IR), although LPC14:0 had the strongest relationship (p = 0.004) and may be the main mediator of the effect of dairy on insulin sensitivity. LPC14:0 and the whole LPC class were correlated with CRP. The correlations between dietary change and the minor plasma phospholipids PI32:1 and PE32:1 are novel and may reflect significant changes in membrane composition. Inflammatory markers were not altered by changes in protein source while the correlation of LPC with CRP confirms a relationship between changes in lipid profile and inflammation. PMID:28817063

  11. Keratins and lipids in ethnic hair.

    PubMed

    Cruz, C F; Fernandes, M M; Gomes, A C; Coderch, L; Martí, M; Méndez, S; Gales, L; Azoia, N G; Shimanovich, U; Cavaco-Paulo, A

    2013-06-01

    Human hair has an important and undeniable relevance in society due to its important role in visual appearance and social communication. Hair is mainly composed of structural proteins, mainly keratin and keratin associated proteins and lipids. Herein, we report a comprehensive study of the content and distribution of the lipids among ethnic hair, African, Asian and Caucasian hair. More interestingly, we also report the study of the interaction between those two main components of hair, specifically, the influence of the hair internal lipids in the structure of the hair keratin. This was achieved by the use of a complete set of analytical tools, such as thin layer chromatography-flame ionization detector, X-ray analysis, molecular dynamics simulation and confocal microscopy. The experimental results indicated different amounts of lipids on ethnic hair compositions and higher percentage of hair internal lipids in African hair. In this type of hair, the axial diffraction of keratin was not observed in X-ray analysis, but after hair lipids removal, the keratin returned to its typical packing arrangement. In molecular dynamic simulation, lipids were shown to intercalate dimers of keratin, changing its structure. From those results, we assume that keratin structure may be influenced by higher concentration of lipids in African hair. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Markers of sympathetic nervous system activity associate with complex plasma lipids in metabolic syndrome subjects.

    PubMed

    Nestel, Paul J; Khan, Anmar A; Straznicky, Nora E; Mellett, Natalie A; Jayawardana, Kaushala; Mundra, Piyushkumar A; Lambert, Gavin W; Meikle, Peter J

    2017-01-01

    Plasma sphingolipids including ceramides, and gangliosides are associated with insulin resistance (IR) through effects on insulin signalling and glucose metabolism. Our studies of subjects with metabolic syndrome (MetS) showed close relationships between IR and sympathetic nervous system (SNS) activity including arterial norepinephrine (NE). We have therefore investigated possible associations of IR and SNS activity with complex lipids that are involved in both insulin sensitivity and neurotransmission. We performed a cross-sectional assessment of 23 lipid classes/subclasses (total 339 lipid species) by tandem mass spectrometry in 94 overweight untreated subjects with IR (quantified by HOMA-IR, Matsuda index and plasma insulin). Independently of IR parameters, several circulating complex lipids associated significantly with arterial NE and NEFA (non-esterified fatty acids) and marginally with heart rate (HR). After accounting for BMI, HOMA-IR, systolic BP, age, gender, and correction for multiple comparisons, these associations were significant (p < 0.05): NE with ceramide, phosphatidylcholine, alkyl- and alkenylphosphatidylcholine and free cholesterol; NEFA with mono- di- and trihexosylceramide, G M3 ganglioside, sphingomyelin, phosphatidylcholine, alkyl- and alkenylphosphatidylcholine, phosphatidylinositol and free cholesterol; HR marginally (p = or <0.1>0.05) with ceramide, G M3 ganglioside, sphingomyelin, lysophosphatidylcholine, phosphatidylinositol, lysophosphatidylinositol and free cholesterol. Multiple subspecies of these lipids significantly associated with NE and NEFA. None of the IR biomarkers associated significantly with lipid classes/subclasses after correction for multiple comparisons. This is the first demonstration that arterial norepinephrine and NEFA, that reflect both SNS activity and IR, associate significantly with circulating complex lipids independently of IR, suggesting a role for such lipids in neural mechanisms operating in MetS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Accumulation of hydroxyl lipids and 4-hydroxy-2-hexenal in live fish infected with fish diseases.

    PubMed

    Tanaka, Ryusuke; Shigeta, Kazuhiro; Sugiura, Yoshimasa; Hatate, Hideo; Matsushita, Teruo

    2014-04-01

    Hydroxy lipids (L-OH) and 4-hydroxy-2-hexenal (HHE) levels as well as other parameters such as lipid level, lipid class, fatty acid composition, and other aldehydes levels in the liver of diseased fish were investigated. Although significant differences in lipid level, lipid class, fatty acid composition, and other aldehyde levels were not always observed between normal and diseased fish, L-OH and HHE levels were significantly higher in the liver of the diseased fish than in that of the normal fish cultured with the same feeds under the same conditions. In the liver of puffer fish (Fugu rubripes) infected with Trichodina, L-OH and HHE levels significantly increased from 25.29±5.04 to 47.70 ± 5.27 nmol/mg lipid and from 299.79±25.25 to 1,184.40±60.27 nmol/g tissue, respectively. When the levels of HHE and other aldehydes in the liver of the normal and diseased puffer fish were plotted, a linear relationship with a high correlation coefficient was observed between HHE and propanal (r2=0.9447). Increased L-OH and HHE levels in the liver of the diseased fish and a high correlation between HHE and propanal in the liver of the normal and diseased fish were also observed in flat fish (Paralichthys olivaceus) infected with streptococcus, yellowtail (Seriola quinqueradiata) infected with jaundice, and amberjack (S. purpurascens) infected with Photobacterium damselae subsp. piscicida.

  14. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids.

    PubMed

    Hauff, Simone; Vetter, Walter

    2009-03-23

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was approximately 90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPC(eq)) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese was 0.60%, 1.42% and 0.79%, respectively.

  15. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics.

    PubMed

    Maier, Martin A; Jayaraman, Muthusamy; Matsuda, Shigeo; Liu, Ju; Barros, Scott; Querbes, William; Tam, Ying K; Ansell, Steven M; Kumar, Varun; Qin, June; Zhang, Xuemei; Wang, Qianfan; Panesar, Sue; Hutabarat, Renta; Carioto, Mary; Hettinger, Julia; Kandasamy, Pachamuthu; Butler, David; Rajeev, Kallanthottathil G; Pang, Bo; Charisse, Klaus; Fitzgerald, Kevin; Mui, Barbara L; Du, Xinyao; Cullis, Pieter; Madden, Thomas D; Hope, Michael J; Manoharan, Muthiah; Akinc, Akin

    2013-08-01

    In recent years, RNA interference (RNAi) therapeutics, most notably with lipid nanoparticle-based delivery systems, have advanced into human clinical trials. The results from these early clinical trials suggest that lipid nanoparticles (LNPs), and the novel ionizable lipids that comprise them, will be important materials in this emerging field of medicine. A persistent theme in the use of materials for biomedical applications has been the incorporation of biodegradability as a means to improve biocompatibility and/or to facilitate elimination. Therefore, the aim of this work was to further advance the LNP platform through the development of novel, next-generation lipids that combine the excellent potency of the most advanced lipids currently available with biodegradable functionality. As a representative example of this novel class of biodegradable lipids, the lipid evaluated in this work displays rapid elimination from plasma and tissues, substantially improved tolerability in preclinical studies, while maintaining in vivo potency on par with that of the most advanced lipids currently available.

  16. Introduction to fatty acids and lipids.

    PubMed

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  17. An Efficient Glycoblotting-Based Analysis of Oxidized Lipids in Liposomes and a Lipoprotein.

    PubMed

    Furukawa, Takayuki; Hinou, Hiroshi; Takeda, Seiji; Chiba, Hitoshi; Nishimura, Shin-Ichiro; Hui, Shu-Ping

    2017-10-05

    Although widely occurring lipid oxidation, which is triggered by reactive oxygen species (ROS), produces a variety of oxidized lipids, practical methods to efficiently analyze oxidized lipids remain elusive. Herein, it is shown that the glycoblotting platform can be used to analyze oxidized lipids. Analysis is based on the principle that lipid aldehydes, one of the oxidized lipid species, can be captured selectively, enriched, and detected. Moreover, 3-methyl-1-p-tolyltriazene (MTT) methylates phosphoric and carboxylic acids, and this MTT-mediated methylation is, in combination with conventional tandem mass spectrometry (MS/MS) analysis, an effective method for the structural analysis of oxidized lipids. By using three classes of standards, liposomes, and a lipoprotein, it is demonstrated that glycoblotting represents a powerful approach for focused lipidomics, even in complex macromolecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comprehensive Lipidome-Wide Profiling Reveals Dynamic Changes of Tea Lipids during Manufacturing Process of Black Tea.

    PubMed

    Li, Jia; Hua, Jinjie; Zhou, Qinghua; Dong, Chunwang; Wang, Jinjin; Deng, Yuliang; Yuan, Haibo; Jiang, Yongwen

    2017-11-22

    As important biomolecules in Camellia sinensis L., lipids undergo substantial changes during black tea manufacture, which is considered to contribute to tea sensory quality. However, limited by analytical capacity, detailed lipid composition and its dynamic changes during black tea manufacture remain unclear. Herein, we performed tea lipidome profiling using high resolution liquid chromatography coupled to mass spectrometry (LC-MS), which allows simultaneous and robust analysis of 192 individual lipid species in black tea, covering 17 (sub)classes. Furthermore, dynamic changes of tea lipids during black tea manufacture were investigated. Significant alterations of lipid pattern were revealed, involved with chlorophyll degradation, metabolic pathways of glycoglycerolipids, and other extraplastidial membrane lipids. To our knowledge, this report presented most comprehensive coverage of lipid species in black tea. This study provides a global and in-depth metabolic map of tea lipidome during black tea manufacture.

  19. A new perspective on lipid research in age-related macular degeneration.

    PubMed

    van Leeuwen, Elisabeth M; Emri, Eszter; Merle, Benedicte M J; Colijn, Johanna M; Kersten, Eveline; Cougnard-Gregoire, Audrey; Dammeier, Sascha; Meester-Smoor, Magda; Pool, Frances M; de Jong, Eiko K; Delcourt, Cécile; Rodrigez-Bocanegra, Eduardo; Biarnés, Marc; Luthert, Philip J; Ueffing, Marius; Klaver, Caroline C W; Nogoceke, Everson; den Hollander, Anneke I; Lengyel, Imre

    2018-05-04

    There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Evaluation of Collision Cross Section Calibrants for Structural Analysis of Lipids by Traveling Wave Ion Mobility-Mass Spectrometry

    PubMed Central

    2016-01-01

    Collision cross section (CCS) measurement of lipids using traveling wave ion mobility-mass spectrometry (TWIM-MS) is of high interest to the lipidomics field. However, currently available calibrants for CCS measurement using TWIM are predominantly peptides that display quite different physical properties and gas-phase conformations from lipids, which could lead to large CCS calibration errors for lipids. Here we report the direct CCS measurement of a series of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in nitrogen using a drift tube ion mobility (DTIM) instrument and an evaluation of the accuracy and reproducibility of PCs and PEs as CCS calibrants for phospholipids against different classes of calibrants, including polyalanine (PolyAla), tetraalkylammonium salts (TAA), and hexakis(fluoroalkoxy)phosphazines (HFAP), in both positive and negative modes in TWIM-MS analysis. We demonstrate that structurally mismatched calibrants lead to larger errors in calibrated CCS values while the structurally matched calibrants, PCs and PEs, gave highly accurate and reproducible CCS values at different traveling wave parameters. Using the lipid calibrants, the majority of the CCS values of several classes of phospholipids measured by TWIM are within 2% error of the CCS values measured by DTIM. The development of phospholipid CCS calibrants will enable high-accuracy structural studies of lipids and add an additional level of validation in the assignment of identifications in untargeted lipidomics experiments. PMID:27321977

  1. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance.

    PubMed

    Takahashi, Daisuke; Imai, Hiroyuki; Kawamura, Yukio; Uemura, Matsuo

    2016-04-01

    Cold acclimation (CA) results in alteration of the plasma membrane (PM) lipid composition in plants, which plays a crucial role in the acquisition of freezing tolerance via membrane stabilization. Recent studies have indicated that PM structure is consistent with the fluid mosaic model but is laterally non-homogenous and contains microdomains enriched in sterols, sphingolipids and specific proteins. In plant cells, the function of these microdomains in relation to CA and freezing tolerance is not yet fully understood. The present study aimed to investigate the lipid compositions of detergent resistant fractions of the PM (DRM) which are considered to represent microdomains. They were prepared from leaves of low-freezing tolerant oat and high-freezing tolerant rye. The DRMs contained higher proportions of sterols, sphingolipids and saturated phospholipids than the PM. In particular, one of the sterol lipid classes, acylated sterylglycoside, was the predominant sterol in oat DRM while rye DRM contained free sterol as the major sterol. Oat and rye showed different patterns (or changes) of sterols and 2-hydroxy fatty acids of sphingolipids of DRM lipids during CA. Taken together, these results suggest that CA-induced changes of lipid classes and molecular species in DRMs are associated with changes in the thermodynamic properties and physiological functions of microdomains during CA and hence, influence plant freezing tolerance. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Proximate composition and energy density of some North Pacific forage fishes

    USGS Publications Warehouse

    van Pelt, Thomas I.; Piatt, John F.; Lance, Brian K.; Roby, Daniel D.

    1997-01-01

    Mature pelagic forage fish species (capelin, sand lance, squid) had greater lipid concentrations than juvenile age-classes of large demersal and pelagic fish species (walleye pollock, Pacific cod, Atka mackerel, greenling, prowfish, rockfish, sablefish). Myctophids preyed on by puffins have at least twice as much lipid per gram compared to mature capelin, sand lance and squid, and an order of magnitude greater lipid concentrations than juvenile forage fish. Energy density of forage fishes was positively correlated with lipid content, and negatively correlated with water, ash-free lean dry mass (mostly protein), and ash contents.

  3. Synthetic lipids and their role in defining macromolecular assemblies.

    PubMed

    Parrill, Abby L

    2015-10-01

    Lipids have a variety of physiological roles, ranging from structural and biophysical contributions to membrane functions to signaling contributions in normal and abnormal physiology. This review highlights some of the contributions made by Robert Bittman to our understanding of lipid assemblies through the production of synthetic lipid analogs in the sterol, sphingolipid, and glycolipid classes. His contributions have included the development of a fluorescent cholesterol analog that shows strong functional analogies to cholesterol that has allowed live imaging of cholesterol distribution in living systems, to stereospecific synthetic approaches to both sphingolipid and glycolipid analogs crucial in defining the structure-activity relationships of lipid biological targets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Global Monitoring of the Mammalian Lipidome by Quantitative Shotgun Lipidomics.

    PubMed

    Nielsen, Inger Ødum; Maeda, Kenji; Bilgin, Mesut

    2017-01-01

    The emerging field of lipidomics presents the systems biology approach to identify and quantify the full lipid repertoire of cells, tissues, and organisms. The importance of the lipidome is demonstrated by a number of biological studies on dysregulation of lipid metabolism in human diseases such as cancer, diabetes, and neurodegenerative diseases. Exploring changes and regulations in the huge networks of lipids and their metabolic pathways requires a lipidomics methodology: Advanced mass spectrometry that resolves the complexity of the lipidome. Here, we report a comprehensive protocol of quantitative shotgun lipidomics that enables identification and quantification of hundreds of molecular lipid species, covering a wide range of lipid classes, extracted from cultured mammalian cells.

  5. Proposal for a common nomenclature for fragment ions in mass spectra of lipids

    PubMed Central

    Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F.; Peng, Bing; Ahrends, Robert

    2017-01-01

    Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines. PMID:29161304

  6. Proposal for a common nomenclature for fragment ions in mass spectra of lipids.

    PubMed

    Pauling, Josch K; Hermansson, Martin; Hartler, Jürgen; Christiansen, Klaus; Gallego, Sandra F; Peng, Bing; Ahrends, Robert; Ejsing, Christer S

    2017-01-01

    Advances in mass spectrometry-based lipidomics have in recent years prompted efforts to standardize the annotation of the vast number of lipid molecules that can be detected in biological systems. These efforts have focused on cataloguing, naming and drawing chemical structures of intact lipid molecules, but have provided no guidelines for annotation of lipid fragment ions detected using tandem and multi-stage mass spectrometry, albeit these fragment ions are mandatory for structural elucidation and high confidence lipid identification, especially in high throughput lipidomics workflows. Here we propose a nomenclature for the annotation of lipid fragment ions, describe its implementation and present a freely available web application, termed ALEX123 lipid calculator, that can be used to query a comprehensive database featuring curated lipid fragmentation information for more than 430,000 potential lipid molecules from 47 lipid classes covering five lipid categories. We note that the nomenclature is generic, extendable to stable isotope-labeled lipid molecules and applicable to automated annotation of fragment ions detected by most contemporary lipidomics platforms, including LC-MS/MS-based routines.

  7. Measurement of phospholipids by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry: the determination of choline containing compounds in foods.

    PubMed

    Zhao, Yuan-Yuan; Xiong, Yeping; Curtis, Jonathan M

    2011-08-12

    A hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC LC-MS/MS) method using multiple scan modes was developed to separate and quantify 11 compounds and lipid classes including acetylcholine (AcCho), betaine (Bet), choline (Cho), glycerophosphocholine (GPC), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphocholine (PCho) and sphingomyelin (SM). This includes all of the major choline-containing compounds found in foods. The method offers advantages over other LC methods since HILIC chromatography is readily compatible with electrospray ionization and results in higher sensitivity and improved peak shapes. The LC-MS/MS method allows quantification of all choline-containing compounds in a single run. Tests of method suitability indicated linear ranges of approximately 0.25-25 μg/ml for PI and PE, 0.5-50 μg/ml for PC, 0.05-5 μg/ml for SM and LPC, 0.5-25 μg/ml for LPE, 0.02-5 μg/ml for Cho, and 0.08-8 μg/ml for Bet, respectively. Accuracies of 83-105% with precisions of 1.6-13.2% RSD were achieved for standards over a wide range of concentrations, demonstrating that this method will be suitable for food analysis. 8 polar lipid classes were found in a lipid extract of egg yolk and different species of the same class were differentiated based on their molecular weights and fragment ion information. PC and PE were found to be the most abundant lipid classes consisting of 71% and 18% of the total phospholipids in egg yolk. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Characterization of E 471 food emulsifiers by high-performance thin-layer chromatography-fluorescence detection.

    PubMed

    Oellig, Claudia; Brändle, Klara; Schwack, Wolfgang

    2018-07-13

    Mono- and diacylglycerol (MAG and DAG) emulsifiers, also known as food additive E 471, are widely used to adjust techno-functional properties in various foods. Besides MAGs and DAGs, E 471 emulsifiers additionally comprise different amounts of triacylglycerols (TAGs) and free fatty acids (FFAs). MAGs, DAGs, TAGs and FFAs are generally determined by high-performance liquid chromatography (HPLC) or gas chromatography (GC) coupled to mass selective detection, analyzing the individual representatives of the lipid classes. In this work we present a rapid and sensitive method for the determination of MAGs, DAGs, TAGs and FFAs in E 471 emulsifiers by high-performance thin-layer chromatography with fluorescence detection (HPTLC-FLD), including a response factor system for quantitation. Samples were simply dissolved and diluted with t-butyl methyl ether before a two-fold development was performed on primuline pre-impregnated LiChrospher silica gel plates with diethyl ether and n-pentane/n-hexane/diethyl ether (52:20:28, v/v/v) as the mobile phases to 18 and 75 mm, respectively. For quantitation, the plate was scanned in the fluorescence mode at UV 366/>400 nm, when the cumulative signal for each lipid class was used. Calibration was done with 1,2-distearin and amounts of lipid classes were calculated with response factors and expressed as monostearin, distearin, tristearin and stearic acid. Limits of detection and quantitation were 1 and 4 ng/zone, respectively, for 1,2-distearin. Thus, the HPTLC-FLD approach represents a simple, rapid and convenient screening alternative to HPLC and GC analysis of the individual compounds. Visual detection additionally enables an easy characterization and the direct comparison of emulsifiers through the lipid class pattern, when utilized as a fingerprint. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Medical Student Response to a Class Lipid-Screening Project.

    ERIC Educational Resources Information Center

    Lum, Gifford; And Others

    1982-01-01

    Medical students at the State University of New York's Downstate Medical Center initiated and carried out a voluntary project to screen lipids (cholesterol) to identify known coronary risk factors. The incidence of coronary disease factors among these students and the response of students with high cholesterol levels are reported. (Authors/PP)

  10. An Overview of Lipid Droplets in Cancer and Cancer Stem Cells

    PubMed Central

    Seco, J.

    2017-01-01

    For decades, lipid droplets have been considered as the main cellular organelles involved in the fat storage, because of their lipid composition. However, in recent years, some new and totally unexpected roles have been discovered for them: (i) they are active sites for synthesis and storage of inflammatory mediators, and (ii) they are key players in cancer cells and tissues, especially in cancer stem cells. In this review, we summarize the main concepts related to the lipid droplet structure and function and their involvement in inflammatory and cancer processes. PMID:28883835

  11. Lipooligosaccharide is required for the generation of infectious elementary bodies in Chlamydia trachomatis

    PubMed Central

    Nguyen, Bidong D.; Cunningham, Doreen; Liang, Xiaofei; Chen, Xin; Toone, Eric J.; Raetz, Christian R. H.; Zhou, Pei; Valdivia, Raphael H.

    2011-01-01

    Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are the main lipid components of bacterial outer membranes and are essential for cell viability in most Gram-negative bacteria. Here we show that small molecule inhibitors of LpxC [UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase], the enzyme that catalyzes the first committed step in the biosynthesis of lipid A, block the synthesis of LOS in the obligate intracellular bacterial pathogen Chlamydia trachomatis. In the absence of LOS, Chlamydia remains viable and establishes a pathogenic vacuole (“inclusion”) that supports robust bacterial replication. However, bacteria grown under these conditions were no longer infectious. In the presence of LpxC inhibitors, replicative reticulate bodies accumulated in enlarged inclusions but failed to express selected late-stage proteins and transition to elementary bodies, a Chlamydia developmental form that is required for invasion of mammalian cells. These findings suggest the presence of an outer membrane quality control system that regulates Chlamydia developmental transition to infectious elementary bodies and highlights the potential application of LpxC inhibitors as unique class of antichlamydial agents. PMID:21628561

  12. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance

    PubMed Central

    Hashem, Abeer; Abd_Allah, E.F.; Alqarawi, A.A.; Al Huqail, Asma A.; Egamberdieva, D.; Wirth, S.

    2015-01-01

    Experiments were conducted to evaluate cadmium (Cd) stress-induced changes in growth, antioxidants and lipid composition of Solanum lycopersicum with and without arbuscular mycorrhizal fungi (AMF). Cadmium stress (50 μM) caused significant changes in the growth and physio-biochemical attributes studied. AMF mitigated the deleterious impact of Cd on the parameters studied. Cadmium stress increased malonaldehyde and hydrogen peroxide production but AMF reduced these parameters by mitigating oxidative stress. The activity of antioxidant enzymes enhanced under Cd treatment and AMF inoculation further enhanced their activity, thus strengthening the plant’s defense system. Proline and phenol content increased in Cd-treated as well as AMF-inoculated plants providing efficient protection against Cd stress. Cadmium treatment resulted in great alterations in the main lipid classes leading to a marked change in their composition. Cadmium stress caused a significant reduction in polyunsaturated fatty acids resulting in enhanced membrane leakage. The present study supports the use of AMF as a biological means to ameliorate Cd stress-induced changes in tomato. PMID:26981010

  13. Hexadecenoic fatty acid isomers: a chemical biology approach for human plasma biomarker development.

    PubMed

    Sansone, Anna; Melchiorre, Michele; Chatgilialoglu, Chryssostomos; Ferreri, Carla

    2013-11-18

    Hexadecenoic fatty acids are monounsaturated lipid components, which are interesting targets of plasma lipidomic studies and biomarker development. The main positional isomers, palmitoleic (9-cis-16:1) and sapienic acids (6-cis-16:1), have an endogenous origin from palmitic acid, the former being recognized as a component of adipose tissue with signaling activity, whereas the latter is mainly reported as a component of sebum. The trans 16:1 isomers are attributed so far to dietary sources of industrial and dairy fats, whereas the endogenous formation due to the free radical-mediated isomerization can represent an emerging, yet unexplored, pathway connected to cellular stress. Herein, we report a chemical biology approach for the development of hexadecenoic fatty acids as plasma biomarkers, with the first synthesis of 6-trans-16:1 and the efficient analytical setup with unambiguous assignment of 16:1 double bond position and geometry, which was applied to human commercial LDL and plasma cholesteryl esters. Sapienic acid was identified together with its geometrical trans isomer for the first time. The quantitation of hexadecenoic fatty acid isomers evidenced their different levels in the two lipid classes and LDL fractions, making us foresee interesting applications to the metabolic evaluation of fatty acid pathways. These findings open new perspectives for plasma lipidomics involving monounsaturated fatty acids, highlighting future developments for their evaluation in different health conditions including free radical stress.

  14. Design and assembly of new non-viral RNAi delivery agents by microwave-assisted quaternization (MAQ) of tertiary amines

    PubMed Central

    Ghosh, Animesh; Mukherjee, Koushik; Jiang, Xinpeng; Zhou, Ying; McCarroll, Joshua; Qu, James; Swain, Pamela M.; Baigude, Huricha; Rana, Tariq M.

    2010-01-01

    RNA interference (RNAi), a gene-silencing phenomenon whereby double-stranded RNA (dsRNA) triggers the sequence-specific degradation of homologous mRNA. RNAi has been quickly and widely applied to discover gene functions and holds great potential to provide a new class of therapeutic agents. However, new chemistry and delivery approaches are greatly needed to silence disease-causing genes without toxic effects. We reasoned that conjugation of the cholesterol moiety to cationic lipids would enhance RNAi efficiencies and lower the toxic effects of lipid-mediated RNAi delivery. Here, we report the first design and synthesis of new cholesterol-conjugated cationic lipids for RNAi delivery using microwave-assisted quaternization (MAQ) of tertiary amines. This strategy can be employed to develop new classes of non-viral gene delivery agents under safe and fast reaction conditions. PMID:20722369

  15. Lipid rafts in T cell signalling and disease

    PubMed Central

    Jury, Elizabeth C.; Flores-Borja, Fabian; Kabouridis, Panagiotis S.

    2007-01-01

    Lipid rafts is a blanket term used to describe distinct areas in the plasma membrane rich in certain lipids and proteins and which are thought to perform diverse functions. A large number of studies report on lipid rafts having a key role in receptor signalling and activation of lymphocytes. In T cells, lipid raft involvement was demonstrated in the early steps during T cell receptor (TCR) stimulation. Interestingly, recent evidence has shown that signalling in these domains differs in T cells isolated from patients with autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we discuss these findings and explore the potential of lipid rafts as targets for the development of a new class of agents to downmodulate immune responses and for the treatment of autoimmune diseases. PMID:17890113

  16. Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.

    PubMed

    Lu, Stella M; Fairn, Gregory D

    2018-04-01

    The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.

  17. Adjusting membrane lipids under salt stress: the case of the moderate halophilic organism Halobacillus halophilus.

    PubMed

    Lopalco, Patrizia; Angelini, Roberto; Lobasso, Simona; Köcher, Saskia; Thompson, Melanie; Müller, Volker; Corcelli, Angela

    2013-04-01

    The lipid composition of Halobacillus halophilus was investigated by combined thin-layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analyses of the total lipid extract. Main polar lipids were found to be sulfoquinovosyldiacylglycerol and phosphatidylglycerol, while cardiolipin was a minor lipid together with phosphatidic acid, alanyl-phosphatidylglycerol and two not yet fully identified lipid components. In addition the analyses of residual lipids, associated with denatured proteins after the lipid extraction, revealed the presence of significant amounts of cardiolipin, indicating that it is a not readily extractable phospholipid. Post decay source mass spectrometry analyses allowed the determination of acyl chains of main lipid components. On increasing the culture medium salinity, an increase in the shorter chains and the presence of chain unsaturations were observed. These changes in the lipid core structures might compensate for the increase in packing and rigidity of phospholipid and sulfoglycolipid polar heads in high-salt medium, therefore contributing to the homeostasis of membrane fluidity and permeability in salt stress conditions. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Novel Bacterial Proteins and Lipids Reveal the Diversity of Triterpenoid Biomarker Synthesis

    NASA Astrophysics Data System (ADS)

    Wei, J. H.; Banta, A. B.; Gill, C. C. C.; Giner, J. L.; Welander, P. V.

    2017-12-01

    Lipids preserved in sediments and rocks function as organic biomarkers providing evidence for the types of organisms that lived in ancient environments. We use a combined approach utilizing comparative genomics, molecular biology, and lipid analysis to discover novel cyclic triteprenoid lipids and their biosynthetic pathways in bacteria. Here, we present two cases of bacterial synthesis of pentacylic triterpenols previously thought to be indicative of eukaryotes, which address current incongruities in the fossil record. Cyclic triterpenoid lipids, such as hopanoids and sterols, are generally associated with bacteria and eukaryotes, respectively. The pentacyclic triterpenoid tetrahymanol, first discovered in the ciliate Tetrahymena pyriformis, and its diagenetic product gammacerane, have been previously interpreted as markers for eukaryotes and linked to water column stratification. Yet the occurrence of tetrahymanol in bacteria implies our knowledge of extant tetrahymanol producers is not complete. Through comparative genomics we identified a new gene required for tetrahymanol synthesis in the bacterium Methylomicrobium alcaliphilum. This gene encodes a novel enzyme, Tetrahymanol synthase (THS), that synthesizes tetrahymanol from the hopanoid diploptene demonstrating a pathway for tetrahymanol production in bacteria distinct from that in eukaryotes. We bionformatically identified THS homologs in 104 bacterial genomes and 472 metagenomes, implying a great diversity of tetrahymanol producers. Lipids of the arborane class, such as iso-arborinol, are commonly found in modern angiosperms. Arobranes are synthesized by the enzyme oxidosqualene cyclase (OSC), which in plants can form both tetra and pentacyclic molecules. While bacteria are known to produce tetracyclic sterol compounds, bacterial synthesis of pentacyclic arborane class triterpenols of this class were previously undiscovered. We have identified a bacterium, Eudoraea adriatica, whose OSC synthesizes arborinols, specifically the novel compounds Eudoraenol and Adriaticol. Discovery of these compounds in bacteria also sheds light on the occurrence of arboranes in Permian sediments predating the angiosperm fossil record, further demonstrating bacteria as a potential source for other orphan biomarkers.

  19. Early recycling compartment trafficking of CD1a is essential for its intersection and presentation of lipid antigens.

    PubMed

    Cernadas, Manuela; Cavallari, Marco; Watts, Gerald; Mori, Lucia; De Libero, Gennaro; Brenner, Michael B

    2010-02-01

    A major step in understanding differences in the nature of Ag presentation was the realization that MHC class I samples peptides transported to the endoplasmic reticulum from the cytosol, whereas MHC class II samples peptides from lysosomes. In contrast to MHC class I and II molecules that present protein Ags, CD1 molecules present lipid Ags for recognition by specific T cells. Each of the five members of the CD1 family (CD1a-e) localizes to a distinct subcompartment of endosomes. Accordingly, it has been widely assumed that the distinct trafficking of CD1 isoforms must also have evolved to enable them to sample lipid Ags that traffic via different routes. Among the CD1 isoforms, CD1a is unusual because it does not have a tyrosine-based cytoplasmic sorting motif and uniquely localizes to the early endocytic recycling compartment. This led us to predict that CD1a might have evolved to focus on lipids that localize to early endocytic/recycling compartments. Strikingly, we found that the glycolipid Ag sulfatide also localized almost exclusively to early endocytic and recycling compartments. Consistent with colocalization of CD1a and sulfatide, wild-type CD1a molecules efficiently presented sulfatide to CD1a-restricted, sulfatide-specific T cells. In contrast, CD1a:CD1b tail chimeras, that retain the same Ag-binding capacity as CD1a but traffic based on the cytoplasmic tail of CD1b to lysosomes, failed to present sulfatide efficiently. Thus, the intracellular trafficking route of CD1a is essential for efficient presentation of lipid Ags that traffic through the early endocytic and recycling pathways.

  20. Some Lipid Droplets Are More Equal Than Others: Different Metabolic Lipid Droplet Pools in Hepatic Stellate Cells.

    PubMed

    Molenaar, Martijn R; Vaandrager, Arie B; Helms, J Bernd

    2017-01-01

    Hepatic stellate cells (HSCs) are professional lipid-storing cells and are unique in their property to store most of the retinol (vitamin A) as retinyl esters in large-sized lipid droplets. Hepatic stellate cell activation is a critical step in the development of chronic liver disease, as activated HSCs cause fibrosis. During activation, HSCs lose their lipid droplets containing triacylglycerols, cholesteryl esters, and retinyl esters. Lipidomic analysis revealed that the dynamics of disappearance of these different classes of neutral lipids are, however, very different from each other. Although retinyl esters steadily decrease during HSC activation, triacylglycerols have multiple pools one of which becomes transiently enriched in polyunsaturated fatty acids before disappearing. These observations are consistent with the existence of preexisting "original" lipid droplets with relatively slow turnover and rapidly recycling lipid droplets that transiently appear during activation of HSCs. Elucidation of the molecular machinery involved in the regulation of these distinct lipid droplet pools may open new avenues for the treatment of liver fibrosis.

  1. Tracking Intact Phospholipids and Triacylglycerides in Bering Sea Euphausiids during Two Pulsed Feeding Experiments via Tandem LC-MS

    NASA Astrophysics Data System (ADS)

    Pleuthner, R. L.; Harvey, H. R.

    2016-02-01

    In the eastern Bering Sea and Chukchi Sea, Thysanoessa raschii are the most abundant krill species and a keystone trophic component that serves as both an important grazer and link to upper levels consumers including whales. Krill experience large variation in food resources annually and store multiple lipid classes for both reproduction and growth. Two shipboard feeding experiments tested the lipid retention in adult T. raschii and examined the fluctuation of specific lipid biomarkers under food-limited conditions. Phospholipids represent the major structural and storage lipids; their retention as intact phospholipids (IPL), as well as other glycerides (i.e. diacyl- and triacylglycerides; DG and TG), were followed over 19- and 31-day experiments using RPLC ESI-MS/MS on an LTQ Orbitrap XL. Identification and quantification of the suite of phospholipids and associated fatty acids with each experiment was performed with Lipid Search software. IPL's comprised the majority of intact lipids present, most of which had phosphatidylcholine (PC) headgroups; smaller contributions were made by phosphatidylethanolamine (PE) and phosphatidylserine (PS)-contaning IPL's. Fatty acids were largely represented by seven compounds - C14:0n, C16:0n, C16:1(n-7), C18:1(n-7), C18:1(n-9), C20:5(n-3), C22:6(n-3) - and were typically present as mixed acyl groups within each intact lipid class. Concentrations (μmole/g wet weight) of IPL and glyceride lipids showed a decrease of 21% and 26%, respectively, from initial values, suggesting that both are mobilized in times of food scarcity and during overwintering. Structures containing 16:1 decreased most for IPL's, reflecting the absence of the 16:1(n-7) dietary algal fatty acid. This powerful set of analytical and software tools allows determination of the suite of intact lipids within euphausiids to provide a more comprehensive picture of krill structural and storage lipids and their retention during times of varied food availability.

  2. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language

    PubMed Central

    2011-01-01

    Shotgun lipidome profiling relies on direct mass spectrometric analysis of total lipid extracts from cells, tissues or organisms and is a powerful tool to elucidate the molecular composition of lipidomes. We present a novel informatics concept of the molecular fragmentation query language implemented within the LipidXplorer open source software kit that supports accurate quantification of individual species of any ionizable lipid class in shotgun spectra acquired on any mass spectrometry platform. PMID:21247462

  3. Comprehensive lipid analysis: a powerful metanomic tool for predictive and diagnostic medicine.

    PubMed

    Watkins, S M

    2000-09-01

    The power and accuracy of predictive diagnostics stand to improve dramatically as a result of lipid metanomics. The high definition of data obtained with this approach allows multiple rather than single metabolites to be used in markers for a group. Since as many as 40 fatty acids are quantified from each lipid class, and up to 15 lipid classes can be quantified easily, more than 600 individual lipid metabolites can be measured routinely for each sample. Because these analyses are comprehensive, only the most appropriate and unique metabolites are selected for their predictive value. Thus, comprehensive lipid analysis promises to greatly improve predictive diagnostics for phenotypes that directly or peripherally involve lipids. A broader and possibly more exciting aspect of this technology is the generation of metabolic profiles that are not simply markers for disease, but metabolic maps that can be used to identify specific genes or activities that cause or influence the disease state. Metanomics is, in essence, functional genomics from metabolite analysis. By defining the metabolic basis for phenotype, researchers and clinicians will have an extraordinary opportunity to understand and treat disease. Much in the same way that gene chips allow researchers to observe the complex expression response to a stimulus, metanomics will enable researchers to observe the complex metabolic interplay responsible for defining phenotype. By extending this approach beyond the observation of individual dysregulations, medicine will begin to profile not single diseases, but health. As health is the proper balance of all vital metabolic pathways, comprehensive or metanomic analysis lends itself very well to identifying the metabolite distributions necessary for optimum health. Comprehensive and quantitative analysis of lipids would provide this degree of diagnostic power to researchers and clinicians interested in mining metabolic profiles for biological meaning.

  4. Lipid Profile in Different Parts of Edible Jellyfish Rhopilema esculentum.

    PubMed

    Zhu, Si; Ye, Mengwei; Xu, Jilin; Guo, Chunyang; Zheng, Huakun; Hu, Jiabao; Chen, Juanjuan; Wang, Yajun; Xu, Shanliang; Yan, Xiaojun

    2015-09-23

    Jellyfish Rhopilema esculentum has been exploited commercially as a delicious food for a long time. Although the edible and medicinal values of R. esculentum have gained extensive attention, the effects of lipids on its nutritional value have rarely been reported. In the present of study, the lipid profile including lipid classes, fatty acyl compositions, and fatty acid (FA) positions in lipids from different parts (oral arms, umbrella, and mouth stalk) of R. esculentum was explored by ultraperformance liquid chromatography--electrospray ionization--quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS). More than 87 species from 10 major lipid classes including phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), phosphatidylinositol (PI), lysophosphatidylinositol (LPI), phosphatidylserine (PS), ceramide (Cer), ceramide 2-aminoethylphosphonate (CAEP), and triacylglycerol (TAG) were separated and characterized. Semiquantification of individual lipid species in different parts of R. esculentum was also conducted. Results showed that glycerophospholipids (GPLs) enriched in highly unsaturated fatty acids (HUFAs) were the major compenents in all parts of R. esculentum, which accounted for 54-63% of total lipids (TLs). Considering the high level of GPLs and the FA compositions in GPLs, jellyfish R. esculentum might have great potential as a health-promoting food for humans and as a growth-promoting diet for some commercial fish and crustaceans. Meanwhile, LPC, LPE, and LPI showed high levels in oral arms when compared with umbrella and mouth stalk, which may be due to the high proportion of phospholipase A2 (PLA2) in oral arms. Moreover, a high CAEP level was detected in oral arms, which may render cell membranes with resistance to chemical hydrolysis by PLA2. The relatively low TAG content could be associated with specific functions of oral arms.

  5. A Modern Analogue for Proterozoic Inverse Carbon Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Close, H. G.; Diefendorf, A. F.; Freeman, K. H.; Pearson, A.

    2008-12-01

    The carbon isotope distribution preserved in sedimentary lipids changes near the Neoproterozoic-Cambrian boundary. In older samples, n-alkyl lipids contain more 13C than both isoprenoid lipids and kerogen [1]. In younger samples, the opposite prevails. Although extreme heterotrophy has been invoked as a mechanism to explain the enrichment in 13C [2], here we suggest another explanation. The switch may reflect a fundamental transition from an oligotrophic ocean dominated by prokaryotic biomass, to an ocean in which carbon fixation is more intensive and burial is dominated by eukaryotic biomass. An analogue for Proterozoic ordering is found in the modern, oligotrophic Pacific Ocean, where n-alkyl lipids of picoplankton (0.2-0.5 μm particulate matter) contain excess 13C relative to the same lipids found in larger size classes (> 0.5 μm). Picoplanktonic lipids are heavier isotopically (-18 ‰) than both the sterols of eukaryotes (-23 ‰ to -26 ‰) and the total organic matter (-20 ‰; TOM). The 0.2-0.5 μm size class also has a distinct chain-length abundance profile. Although large particles must be the vehicle for total carbon export, paradoxically the lipid component of export production appears to be dominated by the 0.2-0.5 μm source. The picoplanktonic chain lengths and isotopic composition dominate lipids of TOM at 670 meters. When the ratio of prokaryotic to eukaryotic production is high, as in the modern central Pacific Ocean, it appears that exported material has an inverse carbon isotope signature similar to that preserved in Precambrian samples. [1] Logan, G. A. et al., Nature 376:53-56 (1995). [2] Rothman, D. H. et al., PNAS 100:8124-8129 (2003).

  6. LipidPedia: a comprehensive lipid knowledgebase.

    PubMed

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  7. Infrared microscopic imaging of cutaneous wound healing: lipid conformation in the migrating epithelial tongue

    NASA Astrophysics Data System (ADS)

    Yu, Guo; Stojadinovic, Olivera; Tomic-Canic, Marjana; Flach, Carol R.; Mendelsohn, Richard

    2012-09-01

    Infrared microscopic imaging has been utilized to analyze for the first time the spatial distribution of lipid structure in an ex vivo human organ culture skin wound healing model. Infrared images were collected at zero, two, four, and six days following wounding. Analysis of lipid infrared spectral properties revealed the presence of a lipid class with disordered chains within and in the vicinity of the migrating epithelial tongue. The presence of lipid ester C=O bands colocalized with the disordered chains provided evidence for the presence of carbonyl-containing lipid species. Gene array data complemented the biophysical studies and provided a biological rationale for the generation of the disordered chain species. This is the first clear observation, to our knowledge, of disordered lipid involvement in cutaneous wound healing. Several possibilities are discussed for the biological relevance of these observations.

  8. Genetic variants at the PDZ-interacting domain of the scavenger receptor class B type I interact with diet to influence the risk of metabolic syndrome in obese men and women.

    PubMed

    Junyent, Mireia; Arnett, Donna K; Tsai, Michael Y; Kabagambe, Edmond K; Straka, Robert J; Province, Michael; An, Ping; Lai, Chao-Qiang; Parnell, Laurence D; Shen, Jian; Lee, Yu-Chi; Borecki, Ingrid; Ordovás, Jose M

    2009-05-01

    The scaffolding protein PDZ domain containing 1 (PDZK1) regulates the HDL receptor scavenger receptor class B type I. However, the effect of PDZK1 genetic variants on lipids and metabolic syndrome (MetS) traits remains unknown. This study evaluated the association of 3 PDZK1 single nucleotide polymorphisms (SNP) (i33968C > T, i15371G > A, and i19738C > T) with lipids and risk of MetS and their potential interactions with diet. PDZK1 SNP were genotyped in 1000 participants (481 men, 519 women) included in the Genetics of Lipid Lowering Drugs and Diet Network study. Lipoprotein subfractions were measured by proton NMR spectroscopy and dietary intake was estimated using a validated questionnaire. The PDZK1_i33968C > T polymorphism was associated with MetS (P = 0.034), mainly driven by the association of the minor T allele with higher plasma triglycerides (P = 0.004) and VLDL (P = 0.021), and lower adiponectin concentrations (P = 0.022) than in participants homozygous for the major allele (C). We found a significant gene x BMI x diet interaction, in which the deleterious association of the i33968T allele with MetS was observed in obese participants with high PUFA and carbohydrate (P-values ranging from 0.004 to 0.020) intakes. Conversely, a there was a protective effect in nonobese participants with high PUFA intake (P < 0.05). These findings suggest that PDZK1_i33968C > T genetic variants may be associated with a higher risk of exhibiting MetS. This gene x BMI x diet interaction offers the potential to identify dietary and other lifestyle changes that may obviate the onset of MetS in individuals with a specific genetic background.

  9. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed Central

    Kawai, Y; Moribayashi, A

    1982-01-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica. Images PMID:6284719

  10. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed

    Kawai, Y; Moribayashi, A

    1982-08-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.

  11. Nonsymbiotic Hemoglobin-2 Leads to an Elevated Energy State and to a Combined Increase in Polyunsaturated Fatty Acids and Total Oil Content When Overexpressed in Developing Seeds of Transgenic Arabidopsis Plants1[OA

    PubMed Central

    Vigeolas, Helene; Hühn, Daniela; Geigenberger, Peter

    2011-01-01

    Nonsymbiotic hemoglobins are ubiquitously expressed in plants and divided into two different classes based on gene expression pattern and oxygen-binding properties. Most of the published research has been on the function of class 1 hemoglobins. To investigate the role of class 2 hemoglobins, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated overexpressing Arabidopsis hemoglobin-2 (AHb2) under the control of a seed-specific promoter. Overexpression of AHb2 led to a 40% increase in the total fatty acid content of developing and mature seeds in three subsequent generations. This was mainly due to an increase in the polyunsaturated C18:2 (ω-6) linoleic and C18:3 (ω-3) α-linolenic acids. Moreover, AHb2 overexpression led to an increase in the C18:2/C18:1 and C18:3/C18:2 ratios as well as in the C18:3 content in mol % of total fatty acids and in the unsaturation/saturation index of total seed lipids. The increase in fatty acid content was mainly due to a stimulation of the rate of triacylglycerol synthesis, which was attributable to a 3-fold higher energy state and a 2-fold higher sucrose content of the seeds. Under low external oxygen, AHb2 overexpression maintained an up to 5-fold higher energy state and prevented fermentation. This is consistent with AHb2 overexpression results in improved oxygen availability within developing seeds. In contrast to this, overexpression of class 1 hemoglobin did not lead to any significant increase in the metabolic performance of the seeds. These results provide evidence for a specific function of class 2 hemoglobin in seed oil production and in promoting the accumulation of polyunsaturated fatty acids by facilitating oxygen supply in developing seeds. PMID:21205621

  12. Polyion-induced aggregation of oppositely charged liposomes and charged colloidal particles: the many facets of complex formation in low-density colloidal systems.

    PubMed

    Cametti, C

    2008-10-01

    This review focusses on recent developments in the experimental study of polyion-induced charged colloidal particle aggregation, with particular emphasis on the formation of cationic liposome clusters induced by the addition of anionic adsorbing polyions. These structures can be considered, under certain points of view, a new class of colloidal systems, with intriguing properties that opens interesting and promising new opportunities in various biotechnological applications. Lipidic structures of different morphologies and different structural complexities interacting with oppositely charged polyions give rise to a rich variety of self-assembled structures that present various orders of hierarchy in the sense that, starting from a basic level, for example a lipid bilayer, they arrange themselves into superstructures as, for example, multilamellar stacks or liquid-crystalline structures. These structures can be roughly divided into two classes according to the fact that the elementary structure, involved in building a more complex one, keeps or does not keeps its basic arrangement. To the first one, belong those aggregates composed by single structures that maintain their integrity, for example, lipidic vesicles assembled together by an appropriate external agent. The second one encompasses structures that do not resemble the ones of the original objects which form them, but, conversely, derive from a deep restructuring and rearrangement process, where the original morphology of the initial constitutive elements is completely lost. In this review, I will only briefly touch on higher level hierarchy structures and I will focus on the assembling processes involving preformed lipid bilayer vesicles that organize themselves into clusters, the process being induced by the adsorption of oppositely charged polyions. The scientific interest in polyion-induced liposome aggregates is two-fold. On the one hand, in soft-matter physics, they represent an interesting colloidal system, governed by a balance between long-range electrostatic repulsion and short-range attraction, resulting in relatively large, equilibrium clusters, whose size and overall charge can be continuously tunable by simple environmental parameters. These structures present a variety of behaviors with a not yet completely understood phenomenology. On the other hand, the resulting structures possess some peculiar properties that justify their employment as drug delivery systems. Bio-compatibility, stability and ability to deliver various bio-active molecules and, moreover, their environmental responsiveness make liposome-based clusters a versatile carrier, with possibility of efficient targeting to different organs and tissues. Among the different structures made possible by the aggregating mechanism (cationic particles stuck together by anionic polyions or conversely anionic particles stuck together by cationic polyions), I will review the main experimental evidences for the existence of cationic liposome clusters. Especial attention is paid to our own work, mainly aimed at the characterization of these novel structures from a physical point of view.

  13. Influence of north climatic conditions on the peat lipids composition

    NASA Astrophysics Data System (ADS)

    Serebrennikova, O. V.; Strelnikova, E. B.; Duchko, M. A.; Preis, Yu I.

    2018-03-01

    The paper studies the composition of lipid organic compounds of peat from the northern regions of the Russian Federation. Peat was sampled in the northern taiga, forest-tundra and tundra zones, characterized by various hydrothermal conditions and vegetation cover. n-Alkanes, fatty acids and their ethers, aldehydes, ketones, alcohols, tocopherols, squalene, bi-, tri- and pentacyclic terpenoids, as well as steroids were identified in peat lipids by gas chromatography-mass spectrometry. The dependences of the total content of lipids and the majority of the investigated compounds classes on the ambient temperature and vegetation, as well as the correlation between the composition of n-alkanes and humidity were revealed.

  14. Free fatty acids chain length distribution affects the permeability of skin lipid model membranes.

    PubMed

    Uchiyama, Masayuki; Oguri, Masashi; Mojumdar, Enamul H; Gooris, Gert S; Bouwstra, Joke A

    2016-09-01

    The lipid matrix in the stratum corneum (SC) plays an important role in the barrier function of the skin. The main lipid classes in this lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to determine whether a variation in CER subclass composition and chain length distribution of FFAs affect the permeability of this matrix. To examine this, we make use of lipid model membranes, referred to as stratum corneum substitute (SCS). We prepared SCS containing i) single CER subclass with either a single FFA or a mixture of FFAs and CHOL, or ii) a mixture of various CER subclasses with either a single FFA or a mixture of FFAs and CHOL. In vitro permeation studies were performed using ethyl-p-aminobenzoic acid (E-PABA) as a model drug. The flux of E-PABA across the SCS containing the mixture of FFAs was higher than that across the SCS containing a single FA with a chain length of 24 C atoms (FA C24), while the E-PABA flux was not effected by the CER composition. To select the underlying factors for the changes in permeability, the SCSs were examined by Fourier transform infrared spectroscopy (FTIR) and Small angle X-ray scattering (SAXS). All lipid models demonstrated a similar phase behavior. However, when focusing on the conformational ordering of the individual FFA chains, the shorter chain FFA (with a chain length of 16, 18 or 20 C atoms forming only 11m/m% of the total FFA level) had a higher conformational disordering, while the conformational ordering of the chains of the CER and FA C24 and FA C22 hardly did not change irrespective of the composition of the SCS. In conclusion, the conformational mobility of the short chain FFAs present only at low levels in the model SC lipid membranes has a great impact on the permeability of E-PABA. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A systematic survey of lipids across mouse tissues

    PubMed Central

    Jain, Mohit; Ngoy, Soeun; Sheth, Sunil A.; Swanson, Raymond A.; Rhee, Eugene P.; Liao, Ronglih; Clish, Clary B.; Mootha, Vamsi K.

    2014-01-01

    Lipids are a diverse collection of macromolecules essential for normal physiology, but the tissue distribution and function for many individual lipid species remain unclear. Here, we report a mass spectrometry survey of lipid abundance across 18 mouse tissues, detecting ∼1,000 mass spectrometry features, of which we identify 179 lipids from the glycerolipids, glycerophospholipids, lysophospholipids, acylcarnitines, sphingolipids, and cholesteryl ester classes. Our data reveal tissue-specific organization of lipids and can be used to generate testable hypotheses. For example, our data indicate that circulating triglycerides positively and negatively associated with future diabetes in humans are enriched in mouse adipose tissue and liver, respectively, raising hypotheses regarding the tissue origins of these diabetes-associated lipids. We also integrate our tissue lipid data with gene expression profiles to predict a number of substrates of lipid-metabolizing enzymes, highlighting choline phosphotransferases and sterol O-acyltransferases. Finally, we identify several tissue-specific lipids not present in plasma under normal conditions that may be of interest as biomarkers of tissue injury, and we show that two of these lipids are released into blood following ischemic brain injury in mice. This resource complements existing compendia of tissue gene expression and may be useful for integrative physiology and lipid biology. PMID:24518676

  16. A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications.

    PubMed

    Bugnicourt, Loïc; Ladavière, Catherine

    2017-06-28

    Chitosan and lipid colloids have separately shown a growing interest in the field of drug delivery applications. Their success is mainly due to their interesting physicochemical behaviors, as well as their biological properties such as bioactivity and biocompatibility. While chitosan is a well-known cationic polysaccharide with the ability to strongly interact with drugs and biological matrices through mainly electrostatic interactions, lipid colloids are carriers particularly recognized for the drug vectorization. In recent years, the combination of both entities has been considered because it offers new systems which gather the advantages of each of them to efficiently deliver various types of bioactive species. The purpose of this review is to describe these associations between chemically-unmodified chitosan chains (solubilized or dispersed) and lipid colloids (as nanoparticles or organized in lipid layers), as well as their potential in the drug delivery area so far. Three assemblies have mainly been reported in the literature: i) lipid nanoparticles (solid lipid nanoparticles or nanostructured lipid carriers) coated with chitosan chains, ii) lipid vesicles covered with chitosan chains, and iii) chitosan chains structured in nanoparticles with a lipid coating. Their elaboration processes, their physicochemical characterization, and their biological studies are detailed and discussed herein. The different bioactive species (drugs and bio(macro)molecules) incorporated in these assemblies, their maximal incorporation efficiency, and their loading capacity are also presented. This review reveals the versatility of these assemblies. Depending on the organization of lipids (i.e., nanoparticles or vesicles) and the state of polymer chains (i.e., solubilized or dispersed under the form of nanoparticles), a large variety of drugs can be successfully incorporated, and various routes of administration can be considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    PubMed

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  18. Ontogenetic changes in biochemical composition during larval and early postlarval development of Lepidophthalmus louisianensis, a ghost shrimp with abbreviated development

    EPA Science Inventory

    Larvae of the ghost shrimp, Lepidophthalmus louisianensis, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the decapodid (D) stage. Iatroscan lipid class analysis revealed that polar lipids (Zoea I: 77.4|1.7%; Zoea II: 77.5|2.1%; Decapodid: 80.0|1.7%...

  19. Lipid composition and sensitivity of Prototheca wickerhamii to membrane-active antimicrobial agents.

    PubMed Central

    Sud, I J; Feingold, D S

    1979-01-01

    The lipid composition of Prototheca wickerhamii ATCC 16529 is presented and discussed in relation to the unique susceptibility of the organism to drugs of three membrane-active antimicrobial classes: the polyenes, the polymyxins, and the imidazoles. The presence of ergosterol in the neutral lipid fraction of the membrane is likely responsible for the exquisite susceptibility to amphotericin B. The presence of a large quantity of free fatty acids in the membrane appears responsible for imidazole susceptibility. The membrane determinants of polymyxin B susceptibility are less well defined. PMID:518077

  20. Worksite wellness: a cholesterol awareness program.

    PubMed

    Fritsch, Michelle A; Montpellier, Julie; Kussman, Cyra

    2009-02-01

    A 7-month intervention was undertaken to determine the impact of education and coaching on lifestyle choices and lipid values among employees with hyperlipidemia. Four classes over 2 months at the worksite during work time and two telephone interventions were provided with pre, mid, and post data collection. Total cholesterol and low-density lipoprotein values improved during the intervention. Positive lifestyle changes were made involving exercise and diet. Appropriate physician visits and continuous health care increased. Lipid-based interventions at the worksite can elicit positive changes in lifestyle, appropriate health care use, and improved lipid values.

  1. Surface analysis of lipids by mass spectrometry: more than just imaging.

    PubMed

    Ellis, Shane R; Brown, Simon H; In Het Panhuis, Marc; Blanksby, Stephen J; Mitchell, Todd W

    2013-10-01

    Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A plural role for lipids in motor neuron diseases: energy, signaling and structure

    PubMed Central

    Schmitt, Florent; Hussain, Ghulam; Dupuis, Luc; Loeffler, Jean-Philippe; Henriques, Alexandre

    2013-01-01

    Motor neuron diseases (MNDs) are characterized by selective death of motor neurons and include mainly adult-onset amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Neurodegeneration is not the single pathogenic event occurring during disease progression. There are multiple lines of evidence for the existence of defects in lipid metabolism at peripheral level. For instance, hypermetabolism is well characterized in ALS, and dyslipidemia correlates with better prognosis in patients. Lipid metabolism plays also a role in other MNDs. In SMA, misuse of lipids as energetic nutrients is described in patients and in related animal models. The composition of structural lipids in the central nervous system is modified, with repercussion on membrane fluidity and on cell signaling mediated by bioactive lipids. Here, we review the main epidemiologic and mechanistic findings that link alterations of lipid metabolism and motor neuron degeneration, and we discuss the rationale of targeting these modifications for therapeutic management of MNDs. PMID:24600344

  3. Effects of temperature on growth and lipid synthesis of diatom Chaetoceros Curvisetus and the Northern Adriatic (Mediteranean) plankton community

    NASA Astrophysics Data System (ADS)

    Novak, Tihana; Gašparović, Blaženka; Godrijan, Jelena; Maric, Daniela; Djakovac, Tamara; Mlakar, Marina

    2017-04-01

    Phytoplankton is the major primary producer in the world. Marine phytoplankton lives in a rather changing environment, with variations in temperature, light, salinity, nutrient availability, etc. In such changing environment phytoplankton should live, grow and reproduce, and, in order to achieve that, they fix carbon and nutrients to produce biomolecules (lipids, proteins and carbohydrates). Lipids are a good indicator of organic matter (OM) processes in the seas and oceans, also good bioindicators for OM origin, and phytoplankton adaptations to environmental stress. Marine lipids are produced by organisms, mostly in phototrophic part of the seas and oceans, and their crucial producer is phytoplankton. We were interested to see how the increasing temperature and different nutrient availability affect quantitative and qualitative lipid and lipid classes production by plankton community. To test how marine phytoplankton would respond to predicted increasing temperature we conducted monoculture batch experiments in laboratory on model diatom Chaetoceros curvisetus at five different temperatures from 10 to 30C. Also we conducted experiments in phosphorous replete and deplete conditions mimicking eutrophic and oligotrophic marine conditions. We have chosen Chaetoceros curvisetus as a model culture since it is a major component of Northern Adriatic (NA) phytoplankton, but also Chaetoceros genus of diatoms is most abundant in wide range of marine ecosystems. We also conducted annual sampling of the NA particulate matter that covers the same temperature range as for the batch experiments. NA samples were taken on two stations with different nutrient supply that were characterized as oligotrophic and mesotrophic stations. Samples were taken from 2013 to 2014 on a monthly basis. Lipid classes were characterized with thin-layer chromatography-flame ionization detection. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a) concentrations and phytoplankton taxonomy and cell abundances.

  4. Comparison of lipids in organs of the starfish Asterias amurensis associated with different treatments

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Ikegame, Keita; Takahashi, Koretaro; Xue, Changhu; Zhang, Weinong; Wang, Hongxun; Hou, Wenfu; Wang, Yuming

    2013-09-01

    Lipids were extracted from organs of the starfish Asterias amurensis associated with different treatments (raw-control, boiling and heating), and then analyzed for lipid content, lipid oxidation index, lipid classes and fatty acid composition. Results showed that boiling softened the hard starfish shells, thus facilitating the collection of starfish organs. As compared with raw organs, the boiled organs had lower water content and higher lipid content, possibly due to the loss of water-holding capacity caused by protein denaturation. Both boiling and heating increased the peroxide value (PV), thiobarbituric acid (TBA) value and carbon value (CV) of lipids. Despite slight increases in the content of complex lipids, associated lipid composition had no substantial variations upon boiling and heating. For simple lipids, the content of 1, 2-diglyceride decreased in boiled and heated organs, with free fatty acids observed on thin layer chromatography (TLC). However, neither boiling nor heating significantly changed the fatty acid compositions of simple or complex lipids in starfish organs, suggesting that these two treatments had no significant effects on complex lipids in starfish organs. Together, our results indicated that boiling of starfish soon after capture facilitated the handling and extraction of useful complex lipids consisting of abundant glucosylceramide and eicosapentaenoic acid (EPA)-bounded phospholipids.

  5. Dissolved lipid production in the Northern Adriatic (Mediterranean) in response to sea surface warmin

    NASA Astrophysics Data System (ADS)

    Gasparovic, Blazenka; Novak, Tihana; Godrijan, Jelena; Mlakar, Marina; MAric, Daniela; Djakovac, Tamara

    2017-04-01

    Marine dissolved organic matter (OM) represents one of the largest active pools of organic carbon in the global carbon cycle. Oceans and seas are responsible for half of global primary production. Ocean warming caused by climate change is already starting to impact the marine life that necessary will have impact on ocean productivity. The partition of OM production by phytoplankton (major OM producer in seas and ocens) in the conditions of rising temperatures may considerably change. This has implications for the export of organic matter from the photic zone. In this study, we set out to see how annual temperature changes between 10 and 30 C in the Northern Adriatic (Mediterranean) affect production of DOM and particularly dissolved lipids and lipid classes. We have sampled at two stations being oligotrophic and mesotrophic where we expected different system reaction to temperature changes. In addition, we performed microcosm incubations covering temperature range of the NA with nutrient amendments to test whether changes in the available nutrients would reflect those of dissolved OM in the NA. We have selected to work with extracellular OM produced during growth of diatom Chaetoceros curvisetus cultures according to the criteria that genera Chaetoceros are important component of the phytoplankton in the NA and are often among bloom-forming taxa. Details on the dissolved lipid and lipid classes production as plankton responce to rising temperature will be discussed.

  6. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation.

    PubMed

    Lattif, Ali Abdul; Mukherjee, Pranab K; Chandra, Jyotsna; Roth, Mary R; Welti, Ruth; Rouabhia, Mahmoud; Ghannoum, Mahmoud A

    2011-11-01

    Candida albicans-associated bloodstream infections are linked to the ability of this yeast to form biofilms. In this study, we used lipidomics to compare the lipid profiles of C. albicans biofilms and planktonic cells, in early and mature developmental phases. Our results showed that significant differences exist in lipid composition in both developmental phases. Biofilms contained higher levels of phospholipid and sphingolipids than planktonic cells (nmol per g biomass, P<0.05 for all comparisons). In the early phase, levels of lipid in most classes were significantly higher in biofilms compared to planktonic cells (P≤0.05). The ratio of phosphatidylcholine to phosphatidylethanolamine was lower in biofilms compared to planktonic cells in both early (1.17 vs 2.52, P≤0.001) and late (2.34 vs 3.81, P≤0.001) developmental phases. The unsaturation index of phospholipids decreased with time, with this effect being particularly strong for biofilms. Inhibition of the biosynthetic pathway for sphingolipid [mannosyl diinositolphosphoryl ceramide, M(IP)₂C] by myriocin or aureobasidin A, and disruption of the gene encoding inositolphosphotransferase (Ipt1p), abrogated the ability of C. albicans to form biofilms. The differences in lipid profiles between biofilms and planktonic Candida cells may have important implications for the biology and antifungal resistance of biofilms.

  7. Growth, fatty acid profile in major lipid classes and lipid fluidity of Aurantiochytrium mangrovei SK-02 As a function of growth temperature.

    PubMed

    Chodchoey, Kanokwan; Verduyn, Cornelis

    2012-01-01

    Aurantiochytrium mangrovei Sk-02 was grown in a medium containing glucose (40 g/l), yeast extract (10 g/L) and sea salts (15 g/L) at temperatures ranging from 12 to 35°C. The fastest growth (µmax= 0.15 h(-1)) and highest fatty acid content of 415 mg/g-dry cell weight were found in the cells grown at 30°C. However, the cells grown at 12°C showed the highest percentage of polyunsaturated fatty acid (PUFA) (48.6% of total fatty acid). The percentage of docosahexaenoic acid (DHA) and pentadecanoic acid (C15:0) decreased with an increase in the growth temperature, whereas, palmitic acid (C16:0), stearic acid (C18:0) and DPA (C22:5n6) increased with an increase in the growth temperature. The composition of the major lipid class (%w/w) was slightly affected by the growth temperature. The fluidity of the organelle membrane or intracellular lipid (by DPH measurement) decreased with an increase in the growth temperatures, while the plasma membrane fluidity (by TMA-DPH measurement) could still maintain its fluidity in a wide range of temperatures (15 - 37°C). Furthermore, the distribution of DHA was found to be higher (36 - 54%) in phospholipid (PL) as compared to neutral lipid (NL) (20 - 41%).

  8. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients

    PubMed Central

    Taha, Ameer Y.; Cheon, Yewon; Ma, Kaizong; Rapoport, Stanley I.; Rao, Jagadeesh S.

    2013-01-01

    Background Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in schizophrenic (SCZ) patients, often as percent of total lipid concentration or incomplete lipid profile. In this study, we quantified absolute concentrations (nmol/g wet weight) of several lipid classes and their constituent fatty acids in postmortem prefrontal cortex of SCZ patients (n = 10) and age-matched controls (n = 10). Methods Lipids were extracted, fractionated with thin layer chromatography and assayed. Results Mean total lipid, phospholipid, individual phospholipids, plasmalogen, triglyceride and cholesteryl ester concentrations did not differ significantly between the groups. Compared to controls, SCZ brains showed significant increases in several monounsaturated and polyunsaturated fatty acids in cholesteryl ester. Significant increases or decreases occurred in palmitoleic, linoleic, γ-linolenic and n-3 docosapentaenoic acid in total lipids, triglycerides or phospholipids. Conclusion These changes suggest disturbed prefrontal cortex fatty acid concentrations, particularly within cholesteryl esters, as a pathological aspect of schizophrenia. PMID:23428160

  9. Lipidomics reveals a remarkable diversity of lipids in human plasma.

    PubMed

    Quehenberger, Oswald; Armando, Aaron M; Brown, Alex H; Milne, Stephen B; Myers, David S; Merrill, Alfred H; Bandyopadhyay, Sibali; Jones, Kristin N; Kelly, Samuel; Shaner, Rebecca L; Sullards, Cameron M; Wang, Elaine; Murphy, Robert C; Barkley, Robert M; Leiker, Thomas J; Raetz, Christian R H; Guan, Ziqiang; Laird, Gregory M; Six, David A; Russell, David W; McDonald, Jeffrey G; Subramaniam, Shankar; Fahy, Eoin; Dennis, Edward A

    2010-11-01

    The focus of the present study was to define the human plasma lipidome and to establish novel analytical methodologies to quantify the large spectrum of plasma lipids. Partial lipid analysis is now a regular part of every patient's blood test and physicians readily and regularly prescribe drugs that alter the levels of major plasma lipids such as cholesterol and triglycerides. Plasma contains many thousands of distinct lipid molecular species that fall into six main categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenols. The physiological contributions of these diverse lipids and how their levels change in response to therapy remain largely unknown. As a first step toward answering these questions, we provide herein an in-depth lipidomics analysis of a pooled human plasma obtained from healthy individuals after overnight fasting and with a gender balance and an ethnic distribution that is representative of the US population. In total, we quantitatively assessed the levels of over 500 distinct molecular species distributed among the main lipid categories. As more information is obtained regarding the roles of individual lipids in health and disease, it seems likely that future blood tests will include an ever increasing number of these lipid molecules.

  10. Fabrication of taste sensor for education

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Tahara, Yusuke; Toko, Kiyoshi; Kuriyaki, Hisao

    2017-03-01

    In order to solve the unconcern to usefulness of learning science among high school students in Japan, we developed a simple fabricated taste sensor with sensitivity and selectivity to each taste quality, which can be applied in science class. A commercialized Teflon membrane was used as the polymer membrane holding lipids. In addition, a non-adhesive method is considered to combine the membrane and the sensor electrode using a plastic cap which is easily accessible. The taste sensor for education fabricated in this way showed a good selectivity and sensitivity. By adjusting the composition of trioctylmethylammonium chloride (TOMA) and phosphoric acid di(2-ethylhexyl) ester (PAEE) included in lipid solution, we improved the selectivity of this simple taste sensor to saltiness and sourness. To verify this taste sensor as a useful science teaching material for science class, we applied this taste sensor into a science class for university students. By comparing the results between the sensory test and the sensor response, humans taste showed the same tendency just as the sensor response, which proved the sensor as a useful teaching material for science class.

  11. Comparison of the lipid composition of oat root and coleoptile plasma membranes: lack of short-term change in response to auxin

    NASA Technical Reports Server (NTRS)

    Sandstrom, R. P.; Cleland, R. E.

    1989-01-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole percent phospholipid, 25 mole percent glycolipid, and 25 mole percent free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole percent, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  12. Lipidomics profiling of goat milk, soymilk and bovine milk by UPLC-Q-Exactive Orbitrap Mass Spectrometry.

    PubMed

    Li, Qiangqiang; Zhao, Yan; Zhu, Dan; Pang, Xiumei; Liu, Yue; Frew, Russell; Chen, Gang

    2017-06-01

    Lipids are very important for human health and milk is a rich dietary source of lipids. In this study, the lipid content in three types of milk (goat, soy and bovine) were determined by using UPLC-Q-Exactive Orbitrap Mass Spectrometry. A total of 13 classes of lipids (including Cer, SM, LPC, PC, PE, DG, TG, PA, PG, PI, PS, LPE, FA) were measured. Moreover, lipid profiles differed significantly between the different milk types. Soymilk is rich in phospholipids including PC, PE, PS, PG, while goat milk is rich in medium chain triglycerides (MCT), USFA, ω-6 FA and ω-3 FA, especially EPA and DHA. Furthermore, a PLS model was established for differentiation of milk types based on the lipid profiles. A total of 14 lipids were identified as biomarkers for differentiation of milk types, thus providing a basis for milk authentication and detection of adulteration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. [The composition of lipids and lipid peroxidation in the pancreas of quails exposed to nitrates and correction by the amaranth's seeds].

    PubMed

    Tsekhmistrenko, S I; Ponomarenko, N V

    2013-01-01

    Researches of features of lipid composition, functioning of the system of antioxidant defense, maintenance of lipid peroxidation products in the quail's pancreas on the early postnatal ontogenesis stages are conducted for actions of nitrates and feeding with amaranth's seeds in mixed fodder. The arrival of nitrates in the organism of quails results in the decline of general lipids maintenance and nonetherified fat acids in the pancreas. Using of amaranth's seeds in mixed fodder on the background of the nitrate loading results in the increase of activity of the enzimes system of antioxidant defence, the growth of general lipid level in the quail's pancreas. Thus in correlation with separate classes of lipid maintenance of cholesterol goes down for certain, whereas the maintenance of triacylglycerols and ethers of cholesterol rises. The results obtained in the researches show the ability of amaranth's seeds to avert oxidative stress in quail's pancreas under nitrates influence.

  14. Adverse signaling of scavenger receptor class B1 and PGC1s in alcoholic hepatosteatosis and steatohepatitis and protection by betaine in rat.

    PubMed

    Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C; Arellanes-Robledo, Jaime; Reyes-Gordillo, Karina; Shah, Ruchi; Lakshman, M Raj

    2014-07-01

    Because scavenger receptor class B type 1 is the cholesterol uptake liver receptor, whereas peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) and PGC-1α are critical for lipid synthesis and degradation, we investigated the roles of these signaling molecules in the actions of ethanol-polyunsaturated fatty acids and betaine on hepatosteatosis and steatohepatitis. Ethanol-polyunsaturated fatty acid treatment caused the following: i) hepatosteatosis, as evidenced by increased liver cholesterol and triglycerides, lipid score, and decreased serum adiponectin; ii) marked inhibition of scavenger receptor class B type 1 glycosylation, its plasma membrane localization, and its hepatic cholesterol uptake function; and iii) moderate steatohepatitis, as evidenced by histopathological characteristics, increased liver tumor necrosis factor α and IL-6, decreased glutathione, and elevated serum alanine aminotransferase. These actions of ethanol involved up-regulated PGC-1β, sterol regulatory element-binding proteins 1c and 2, acetyl-CoA carboxylase, and HMG-CoA reductase mRNAs/proteins and inactive non-phosphorylated AMP kinase; and down-regulated silence regulator gene 1 and PGC-1α mRNA/proteins and hepatic fatty acid oxidation. Betaine markedly blunted all these actions of ethanol on hepatosteatosis and steatohepatitis. Therefore, we conclude that ethanol-mediated impaired post-translational modification, trafficking, and function of scavenger receptor class B type 1 may account for alcoholic hyperlipidemia. Up-regulation of PGC-1β and lipid synthetic genes and down-regulation of silence regulator gene 1, PGC-1α, adiponectin, and lipid degradation genes account for alcoholic hepatosteatosis. Induction of proinflammatory cytokines and depletion of endogenous antioxidant, glutathione, account for alcoholic steatohepatitis. We suggest betaine as a potential therapeutic agent because it effectively protects against adverse actions of ethanol. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Membrane lipidomics in schizophrenia patients: a correlational study with clinical and cognitive manifestations.

    PubMed

    Tessier, C; Sweers, K; Frajerman, A; Bergaoui, H; Ferreri, F; Delva, C; Lapidus, N; Lamaziere, A; Roiser, J P; De Hert, M; Nuss, P

    2016-10-04

    Schizophrenia is a severe mental condition in which several lipid abnormalities-either structural or metabolic-have been described. We tested the hypothesis that an abnormality in membrane lipid composition may contribute to aberrant dopamine signaling, and thereby symptoms and cognitive impairment, in schizophrenia (SCZ) patients. Antipsychotic-medicated and clinically stable SCZ outpatients (n=74) were compared with matched healthy subjects (HC, n=40). A lipidomic analysis was performed in red blood cell (RBC) membranes examining the major phospholipid (PL) classes and their associated fatty acids (FAs). Clinical manifestations were examined using the positive and negative syndrome scale (PANSS). Cognitive function was assessed using the Continuous Performance Test, Salience Attribution Test and Wisconsin Card Sorting Test. Sphingomyelin (SM) percentage was the lipid abnormality most robustly associated with a schizophrenia diagnosis. Two groups of patients were defined. The first group (SCZ c/SM-) is characterized by a low SM membrane content. In this group, all other PL classes, plasmalogen and key polyunsaturated FAs known to be involved in brain function, were significantly modified, identifying a very specific membrane lipid cluster. The second patient group (SCZ c/SM+) was similar to HCs in terms of RBC membrane SM composition. Compared with SCZ c/SM+, SCZ c/SM- patients were characterized by significantly more severe PANSS total, positive, disorganized/cognitive and excited psychopathology. Cognitive performance was also significantly poorer in this subgroup. These data show that a specific RBC membrane lipid cluster is associated with clinical and cognitive manifestations of dopamine dysfunction in schizophrenia patients. We speculate that this membrane lipid abnormality influences presynaptic dopamine signaling.

  16. Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueyun; Smith, Richard D.; Baker, Erin S.

    Lipids are a vital class of molecules that play important and varied roles in biological processes. Fully understanding lipid roles, however, is extremely difficult since the number and diversity of lipid species is immense, with cells expressing hundreds of enzymes that synthesize tens of thousands of different lipids. While recent advances in chromatography and high resolution mass spectrometry have greatly progressed the understanding of lipid species and functions, effectively separating many lipids still remains problematic. Isomeric lipids have made lipid characterization especially difficult and occur due to subclasses having the same chemical composition, or species having multiple acyl chains connectivitiesmore » (sn-1, sn-2, or sn-3), double bond positions and orientations (cis or trans), and functional group stereochemistry (R versus S). Fully understanding the roles of lipids in biological processes therefore requires separating and evaluating how isomers change in biological and environmental samples. To address this challenge, ion mobility spectrometry separations, ion-molecule reactions and fragmentation techniques have increasingly been added to lipid analysis workflows to improve identifications. In this manuscript, we review the current state of these approaches and their capabilities for improving the identification of specific lipid species.« less

  17. Lipidomics of human brain aging and Alzheimer's disease pathology.

    PubMed

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  18. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells

    PubMed Central

    Gidda, Satinder K; Watt, Samantha C; Collins-Silva, Jillian; Kilaru, Aruna; Arondel, Vincent; Yurchenko, Olga; Horn, Patrick J; James, Christopher N; Shintani, David; Ohlrogge, John B; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2013-01-01

    While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed. PMID:24305619

  19. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    PubMed

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton[W][OA

    PubMed Central

    Horn, Patrick J.; Korte, Andrew R.; Neogi, Purnima B.; Love, Ebony; Fuchs, Johannes; Strupat, Kerstin; Borisjuk, Ljudmilla; Shulaev, Vladimir; Lee, Young-Jin; Chapman, Kent D.

    2012-01-01

    Advances in mass spectrometry (MS) have made comprehensive lipidomics analysis of complex tissues relatively commonplace. These compositional analyses, although able to resolve hundreds of molecular species of lipids in single extracts, lose the original cellular context from which these lipids are derived. Recently, high-resolution MS of individual lipid droplets from seed tissues indicated organelle-to-organelle variation in lipid composition, suggesting that heterogeneity of lipid distributions at the cellular level may be prevalent. Here, we employed matrix-assisted laser desorption/ionization–MS imaging (MALDI-MSI) approaches to visualize lipid species directly in seed tissues of upland cotton (Gossypium hirsutum). MS imaging of cryosections of mature cotton embryos revealed a distinct, heterogeneous distribution of molecular species of triacylglycerols and phosphatidylcholines, the major storage and membrane lipid classes in cotton embryos. Other lipids were imaged, including phosphatidylethanolamines, phosphatidic acids, sterols, and gossypol, indicating the broad range of metabolites and applications for this chemical visualization approach. We conclude that comprehensive lipidomics images generated by MALDI-MSI report accurate, relative amounts of lipid species in plant tissues and reveal previously unseen differences in spatial distributions providing for a new level of understanding in cellular biochemistry. PMID:22337917

  1. Lipid and fatty acid compositions of cod ( Gadus morhua), haddock ( Melanogrammus aeglefinus) and halibut ( Hippoglossus hippoglossus)

    NASA Astrophysics Data System (ADS)

    Zeng, Duan; Mai, Kangsen; Ai, Qinghui; Milley, Joyce E.; Lall, Santosh P.

    2010-12-01

    This study was conducted to compare lipid and fatty acid composition of cod, haddock and halibut. Three groups of cod (276 g ± 61 g), haddock (538 g ± 83 g) and halibut (3704 g ± 221 g) were maintained with commercial feeds mainly based on fish meal and marine fish oil for 12 weeks prior to sampling. The fatty acid compositions of muscle and liver were determined by GC/FID after derivatization of extracted lipids into fatty acid methyl esters (FAME). Lipids were also fractionated into neutral and polar lipids using Waters silica Sep-Pak?. The phospholipid fraction was further separated by high-performance thin-layer chromatography (HPTLC) and the FAME profile was obtained. Results of the present study showed that cod and haddock were lean fish and their total muscle lipid contents were 0.8% and 0.7%, respectively, with phospholipid constituting 83.6% and 87.5% of the total muscle lipid, respectively. Halibut was a medium-fat fish and its muscle lipid content was 8%, with 84% of the total muscle lipid being neutral lipid. Total liver lipid contents of cod, haddock and halibut were 36.9%, 67.2% and 30.7%, respectively, of which the neutral lipids accounted for the major fraction (88.1%-97.1%). Polyunsaturated fatty acids were the most abundant in cod and haddock muscle neutral lipid. Monounsaturated fatty acid level was the highest in halibut muscle neutral lipid. Fatty acid compositions of phospholipid were relatively constant. In summary, the liver of cod and haddock as lean fish was the main lipid reserve organ, and structural phospholipid is the major lipid form in flesh. However, as a medium-fat fish, halibut stored lipid in both their liver and muscle.

  2. Is the full potential of the biopharmaceutics classification system reached?

    PubMed

    Bergström, Christel A S; Andersson, Sara B E; Fagerberg, Jonas H; Ragnarsson, Gert; Lindahl, Anders

    2014-06-16

    In this paper we analyse how the biopharmaceutics classification system (BCS) has been used to date. A survey of the literature resulted in a compilation of 242 compounds for which BCS classes were reported. Of these, 183 compounds had been reported to belong to one specific BCS class whereas 59 compounds had been assigned to multiple BCS classes in different papers. Interestingly, a majority of the BCS class 2 compounds had fraction absorbed (FA) values >85%, indicating that they were completely absorbed after oral administration. Solubility was computationally predicted at pH 6.8 for BCS class 2 compounds to explore the impact of the pH of the small intestine, where most of the absorption occurs, on the solubility. In addition, the solubilization capacity of lipid aggregates naturally present in the intestine was studied computationally and experimentally for a subset of 12 compounds. It was found that all acidic compounds with FA>85% were completely dissolved in the pH of the small intestine. Further, lipids at the concentration used in fasted state simulated intestinal fluid (FaSSIF) dissolved the complete dose given of the most lipophilic (logD6.5>3) compounds studied. Overall, biorelevant dissolution media (pure buffer of intestinal pH or FaSSIF) identified that for 20 of the 29 BCS class 2 compounds with FA>85% the complete dose given orally would be dissolved. These results indicate that a more relevant pH restriction for acids and/or dissolution medium with lipids present better forecast solubility-limited absorption in vivo than the presently used BCS solubility criterion. The analysis presented herein further strengthens the discussion on the requirement of more physiologically relevant dissolution media for the in vitro solubility classification performed to reach the full potential of the BCS. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  4. Novel application of liquid chromatography/mass spectrometry for the characterization of drying oils in art: Elucidation on the composition of original paint materials used by Edvard Munch (1863-1944).

    PubMed

    La Nasa, Jacopo; Zanaboni, Marco; Uldanck, Daniele; Degano, Ilaria; Modugno, Francesca; Kutzke, Hartmut; Tveit, Eva Storevik; Topalova-Casadiego, Biljana; Colombini, Maria Perla

    2015-10-08

    Modern oil paints, introduced at the beginning of the 20th century, differ from those classically used in antiquity in their chemical and compositional features. The main ingredients were still traditional drying oils, often used in mixtures with less expensive oils and added with several classes of additives. Consequently, detailed lipid profiling, together with the study of lipid degradation processes, is essential for the knowledge and the conservation of paint materials used in modern and contemporary art. A multi-analytical approach based on mass spectrometry was used for the study of original paint materials from Munch's atelier, owned by the Munch Museum in Oslo. The results obtained in the analysis of paint tubes were compared with those obtained by characterizing a paint sample collected from one of the artist's sketches for the decoration of the Festival Hall of the University of Oslo (1909-1916). Py-GC/MS was used as screening method to evaluate the presence of lipid, proteic or polysaccaridic materials. GC/MS after hydrolysis and derivatization allowed us to determine the fatty acid profile of the paint tubes, and to evaluate the molecular changes associated to curing and ageing. The determination of the fatty acid profile is not conclusive for the characterization of complex mixtures of lipid materials, thus the characterization of the triglyceride profiles was performed using an analytical procedure based on HPLC-ESI-Q-ToF. This paper describes the first application of HPLC-ESI-Q-ToF for the acquisition of the triglyceride profile in a modern paint sample, showing the potentialities of liquid chromatography in the field of lipid characterization in modern paint materials. Moreover, our results highlighted that the application of this approach can contribute to address dating, authenticity and conservation issues relative to modern and contemporary artworks. Copyright © 2015. Published by Elsevier B.V.

  5. Metabolism of nC11 fatty acid fed to Trichoderma koningii and Penicillium janthinellum II: Production of intracellular and extracellular lipids.

    PubMed

    Monreal, Carlos M; Chahal, Amarpreet; Rowland, Owen; Smith, Myron; Schnitzer, Morris

    2014-01-01

    Little is known about the fungal metabolism of nC10 and nC11 fatty acids and their conversion into lipids. A mixed batch culture of soil fungi, T. koningii and P. janthinellum, was grown on undecanoic acid (UDA), a mixture of UDA and potato dextrose broth (UDA+PDB), and PDB alone to examine their metabolic conversion during growth. We quantified seven intracellular and extracellular lipid classes using Iatroscan thin-layer chromatography with flame ionization detection (TLC-FID). Gas chromatography with flame ionization detection (GC-FID) was used to quantify 42 individual fatty acids. Per 150 mL culture, the mixed fungal culture grown on UDA+PDB produced the highest amount of intracellular (531 mg) and extracellular (14.7 mg) lipids during the exponential phase. The content of total intracellular lipids represented 25% of the total biomass-carbon, or 10% of the total biomass dry weight produced. Fatty acids made up the largest class of intracellular lipids (457 mg/150 mL culture) and they were synthesized at a rate of 2.4 mg/h during the exponential phase, and decomposed at a rate of 1.8 mg/h during the stationary phase, when UDA+PDB was the carbon source. Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and vaccenic acid (C18:1) accounted for >80% of the total intracellular fatty acids. During exponential growth on UDA+PDB, hydrocarbons were the largest pool of all extracellular lipids (6.5 mg), and intracellularly they were synthesized at a rate of 64 μg/h. The mixed fungal species culture of T. koningii and P. janthinellum produced many lipids for potential use as industrial feedstocks or bioproducts in biorefineries.

  6. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability.

    PubMed

    Moghadam, Shadi H; Saliaj, Evi; Wettig, Shawn D; Dong, Chilbert; Ivanova, Marina V; Huzil, J Torin; Foldvari, Marianna

    2013-06-03

    The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies indicated that, in most cases, absorption of IFNα was low and that an increase in SC lipid disorder does not correspond to an increase in IFNα absorption.

  7. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    PubMed

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  8. Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II

    PubMed Central

    Ateh, Eugene; Oashi, Taiji; Lu, Wuyuan; Huang, Jing; Diepeveen-de Buin, Marlies; Bryant, Joseph; Breukink, Eefjan; MacKerell, Alexander D.; de Leeuw, Erik P. H.

    2013-01-01

    We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N-acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis. For the first time, we have identified and characterized low molecular weight synthetic compounds that target Lipid II with high specificity and affinity. Optimization of these compounds may allow for their development as novel, next generation therapeutic agents for the treatment of Gram-positive pathogenic infections. PMID:24244161

  9. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry.

    PubMed

    Sandra, Koen; Pereira, Alberto Dos Santos; Vanhoenacker, Gerd; David, Frank; Sandra, Pat

    2010-06-18

    A lipidomics strategy, combining high resolution reversed-phase liquid chromatography (RPLC) with high resolution quadrupole time-of-flight mass spectrometry (QqTOF), is described. The method has carefully been assessed in both a qualitative and a quantitative fashion utilizing human blood plasma. The inherent low technical variability associated with the lipidomics method allows to measure 65% of the features with an intensity RSD value below 10%. Blood plasma lipid spike-in experiments demonstrate that relative concentration differences smaller than 25% can readily be revealed by means of a t-test. Utilizing an advanced identification strategy, it is shown that the detected features mainly originate from (lyso-)phospholipids, sphingolipids, mono-, di- and triacylglycerols and cholesterol esters. The high resolution offered by the up-front RPLC step further allows to discriminate various isomeric species associated with the different lipid classes. The added value of utilizing a Jetstream electrospray ionization (ESI) source over a regular ESI source in lipidomics is for the first time demonstrated. In addition, the application of ultra high performance LC (UHPLC) up to 1200bar to extend the peak capacity or increase productivity is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Phytoplankton: a significant trophic source for soft corals?

    NASA Astrophysics Data System (ADS)

    Widdig, Alexander; Schlichter, Dietrich

    2001-08-01

    Histological autoradiographs and biochemical analyses show that 14C-labelled microalgae (diatoms, chlorophytes and dinoflagellates) are used by the soft coral Dendronephthya sp. Digestion of the algae took place at the point of exit of the pharynx into the coelenteron. Ingestion and assimilation of the labelled algae depended on incubation time, cell density, and to a lesser extent on species-specificity. 14C incorporation into polysaccharides, proteins, lipids and compounds of low molecular weight was analysed. The 14C-labelling patterns of the four classes of substances varied depending on incubation time and cell density. 14C incorporation was highest into lipids and proteins. Dissolved labelled algal metabolites, released during incubation into the medium, contributed between 4% and 25% to the total 14C activity incorporated. The incorporated microalgae contributed a maximum of 26% (average of the four species studied) to the daily organic carbon demand, as calculated from assimilation rates at natural eucaryotic phytoplankton densities and a 1 h incubation period. The calculated contribution to the daily organic carbon demand decreased after prolonged incubation periods to about 5% after 3 h and to 1-3% after 9 h. Thus the main energetic demand of Dendronephthya sp. has to be complemented by other components of the seston.

  11. Statins, fibrates, nicotinic acid, cholesterol absorption inhibitors, anion-exchange resins, omega-3 fatty acids: which drugs for which patients?

    PubMed

    Drexel, Heinz

    2009-12-01

    Classes of lipid lowering drugs differ strongly with respect to the types of lipids or lipoproteins they predominantly affect. Statins inhibit the de-novo synthesis of cholesterol. Consequently, the liver produces less VLDL, and the serum concentration primarily of LDL cholesterol (but, to a lesser extent, also of triglycerides) is lowered. Further, statins somewhat increase HDL cholesterol. There is abundant evidence that statins lower the rate of cardiovascular events. Cardiovascular risk reduction is the better, the lower the LDL cholesterol values achieved with statin therapy are. Some evidence is available that anion exchange resins which also decrease LDL cholesterol decrease vascular risk, too. This is not the case for the ezetimibe, which strongly lowers LDL cholesterol: its potential to decrease vascular risk remains to be proven. In contrast evidence for cardiovascular risk reduction through the mainly triglyceride lowering fibrates as well as for niacin is available. Niacin is the most potent HDL increasing drug currently available and besides increasing HDL cholesterol efficaciously lowers triglycerides and LDL cholesterol. Large ongoing trials address the decisive question whether treatment with fibrates and niacin provides additional cardiovascular risk reduction when given in addition to statin treatment.

  12. Tangfeifania diversioriginum gen. nov., sp. nov., a representative of the family Draconibacteriaceae.

    PubMed

    Liu, Qian-Qian; Li, Xiao-Li; Rooney, Alejandro P; Du, Zong-Jun; Chen, Guan-Jun

    2014-10-01

    A novel Gram-stain-negative, facultatively anaerobic, catalase- and oxidase-positive, non-motile and pink-pigmented bacterium, designated G22(T), was isolated from Gahai, a saltwater lake in Qinghai province, China. Optimal growth occurred at 33-35 °C, pH 7.0-7.5, and in the presence of 2-4% (w/v) NaCl. The DNA G+C content was 40.0 mol%. The major polar lipids were phosphatidylethanolamine and three unknown lipids. The predominant cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C17:0 3-OH and iso-C15:0 3-OH, and MK-7 was the main respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain G22(T) fell within the class Bacteroidia. Its closest phylogenetic neighbour was the recently described species Draconibacterium orientale, the sole member of the family Draconibacteriaceae, with merely 90.04% sequence similarity. On the basis of phenotypic, chemotaxonomic and phylogenetic evidence observed, a novel species in a new genus, Tangfeifania diversioriginum gen. nov., sp. nov., is proposed within the family Draconibacteriaceae. The type strain is G22(T) ( = CICC 10587(T) =DSM 27063(T)).

  13. Multiplatform Metabolomics Investigation of Antiadipogenic Effects on 3T3-L1 Adipocytes by a Potent Diarylheptanoid.

    PubMed

    Du, Dan; Gu, Haiwei; Djukovic, Danijel; Bettcher, Lisa; Gong, Meng; Zheng, Wen; Hu, Liqiang; Zhang, Xinyu; Zhang, Renke; Wang, Dongfang; Raftery, Daniel

    2018-06-01

    Obesity is fast becoming a serious health problem worldwide. Of the many possible antiobesity strategies, one interesting approach focuses on blocking adipocyte differentiation and lipid accumulation to counteract the rise in fat storage. However, there is currently no drug available for the treatment of obesity that works by inhibiting adipocyte differentiation. Here we use a broad-based metabolomics approach to interrogate and better understand metabolic changes that occur during adipocyte differentiation. In particular, we focus on changes induced by the antiadipogenic diarylheptanoid, which was isolated from a traditional Chinese medicine Dioscorea zingiberensis and identified as (3 R,5 R)-3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane (1). Targeted aqueous metabolic profiling indicated that a total of 14 metabolites involved in the TCA cycle, glycolysis, amino acid metabolism, and purine catabolism participate in regulating energy metabolism, lipogenesis, and lipolysis in adipocyte differentiation and can be modulated by diarylheptanoid 1. As indicated by lipidomics analysis, diarylheptanoid 1 restored the quantity and degree of unsaturation of long-chain free fatty acids and restored the levels of 171 lipids mainly from 10 lipid classes in adipocytes. In addition, carbohydrate metabolism in diarylheptanoid-1-treated adipocytes further demonstrated the delayed differentiation process by flux analysis. Our results provide valuable information for further understanding the metabolic adjustment in adipocytes subjected to diarylheptanoid 1 treatment. Moreover, this study offers new insight into developing antiadipogenic leading compounds based on metabolomics.

  14. Development of a direct in-matrix extraction (DIME) protocol for MALDI-TOF-MS detection of glycated phospholipids in heat-treated food samples.

    PubMed

    Calvano, Cosima D; De Ceglie, Cristina; Zambonin, Carlo G

    2014-09-01

    In foodstuffs, one of the main factors inducing modifications in phospholipids (PLs) structure is the heat treatment. Among PLs, only phosphatidylethanolamines and phosphatidylserines, due to their free amino group, can be involved in Maillard reaction and can form adducts with reducing sugars, besides other by-products called advanced glycation end-products. To date, glycated lipid products are less characterized in comparison to proteins. The aim of this work was to develop a novel, rapid and sensitive extraction protocol for the detection and characterization of modified PLs (glycated and oxidized) by means of matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). At first, to investigate the formation of glycated and/or short chain by-products in different classes of PLs, representative standards were heated with or without sugar (lactose or glucose) and subjected to traditional lipid extraction methods as Bligh and Dyer and to the novel direct in matrix extraction (DIME) using 1,8-bis(dimethylamino)naphthalene as preconcentrating matrix. MALDI-MS analysis in negative ion mode allowed detecting glycation and oxidation products both on fatty acid and glucose moieties. Then, the procedure was successfully applied to different heat-treated and powdered samples (milk powders, pasteurized milk, ultra-high-temperature milk and soy flour) for the detection of modified PLs in complex foods. The currently developed DIME protocol could be a powerful tool for understanding lipid glycation also in biological samples. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.

    PubMed

    Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J

    2017-12-29

    Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery.

    PubMed

    Rao, Shasha; Prestidge, Clive A

    2016-01-01

    A number of biobarriers limit efficient oral drug absorption; both polymer-based and lipid-based nanocarriers have demonstrated properties and delivery mechanisms to overcome these biobarriers in preclinical settings. Moreover, in order to address the multifaceted oral drug delivery challenges, polymer-lipid hybrid systems are now being designed to merge the beneficial features of both polymeric and lipid-based nanocarriers. Recent advances in the development of polymer-lipid hybrids with a specific focus on their viability in oral delivery are reviewed. Three classes of polymer-lipid hybrids have been identified, i.e. lipid-core polymer-shell systems, polymer-core lipid-shell systems, and matrix-type polymer-lipid hybrids. We focus on their application to overcome the various biological barriers to oral drug absorption, as exemplified by selected preclinical studies. Numerous studies have demonstrated the superiority of polymer-lipid hybrid systems to their non-hybrid counterparts in providing improved drug encapsulation, modulated drug release, and improved cellular uptake. These features have encouraged their applications in the delivery of chemotherapeutics, proteins, peptides, and vaccines. With further research expected to optimize the manufacturing and scaling up processes and in-depth pre-clinical pharmacological and toxicological assessments, these multifaceted drug delivery systems will have significant clinical impact on the oral delivery of pharmaceuticals and biopharmaceuticals.

  17. Lipid nanoparticles for the delivery of poorly water-soluble drugs.

    PubMed

    Bunjes, Heike

    2010-11-01

    This review discusses important aspects of lipid nanoparticles such as colloidal lipid emulsions and, in particular, solid lipid nanoparticles as carrier systems for poorly water-soluble drugs, with a main focus on the parenteral and peroral use of these carriers. A short historical background of the development of colloidal lipid emulsions and solid lipid nanoparticles is provided and their similarities and differences are highlighted. With regard to drug incorporation, parameters such as the chemical nature of the particle matrix and the physicochemical nature of the drug, effects of drug partition and the role of the particle interface are discussed. Since, because of the crystalline nature of their lipid core, solid lipid nanoparticles display some additional important features compared to emulsions, their specificities are introduced in more detail. This mainly includes their solid state behaviour (crystallinity, polymorphism and thermal behaviour) and the consequences of their usually non-spherical particle shape. Since lipid nanoemulsions and -suspensions are also considered as potential means to alter the pharmacokinetics of incorporated drug substances, some underlying basic considerations, in particular concerning the drug-release behaviour of such lipid nanodispersions on dilution, are addressed as well. Colloidal lipid emulsions and solid lipid nanoparticles are interesting options for the delivery of poorly water-soluble drug substances. Their specific physicochemical properties need, however, to be carefully considered to provide a rational basis for their development into effective carrier systems for a given delivery task. © 2010 The Author. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  18. Severe Alterations in Lipid Composition of Frontal Cortex Lipid Rafts from Parkinson’s Disease and Incidental Parkinson’s Disease

    PubMed Central

    Fabelo, Noemí; Martín, Virginia; Santpere, Gabriel; Marín, Raquel; Torrent, Laia; Ferrer, Isidre; Díaz, Mario

    2011-01-01

    Lipid rafts are cholesterol- and sphingomyelin-enriched microdomains that provide a highly saturated and viscous physicochemical microenvironment to promote protein–lipid and protein–protein interactions. We purified lipid rafts from human frontal cortex from normal, early motor stages of Parkinson’s disease (PD) and incidental Parkinson’s disease (iPD) subjects and analyzed their lipid composition. We observed that lipid rafts from PD and iPD cortices exhibit dramatic reductions in their contents of n-3 and n-6 long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (22:6-n3) and arachidonic acid (20:4n-6). Also, saturated fatty acids (16:0 and 18:0) were significantly higher than in control brains. Paralleling these findings, unsaturation and peroxidability indices were considerably reduced in PD and iPD lipid rafts. Lipid classes were also affected in PD and iPD lipid rafts. Thus, phosphatidylserine and phosphatidylinositol were increased in PD and iPD, whereas cerebrosides and sulfatides and plasmalogen levels were considerably diminished. Our data pinpoint a dramatic increase in lipid raft order due to the aberrant biochemical structure in PD and iPD and indicate that these abnormalities of lipid rafts in the frontal cortex occur at early stages of PD pathology. The findings correlate with abnormal lipid raft signaling and cognitive decline observed during the development of these neurodegenerative disorders. PMID:21717034

  19. Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class.

    PubMed Central

    Sawicki, Rafał; Singh, Sharda P; Mondal, Ashis K; Benes, Helen; Zimniak, Piotr

    2003-01-01

    From the fruitfly, Drosophila melanogaster, ten members of the cluster of Delta-class glutathione S-transferases (GSTs; formerly denoted as Class I GSTs) and one member of the Epsilon-class cluster (formerly GST-3) have been cloned, expressed in Escherichia coli, and their catalytic properties have been determined. In addition, nine more members of the Epsilon cluster have been identified through bioinformatic analysis but not further characterized. Of the 11 expressed enzymes, seven accepted the lipid peroxidation product 4-hydroxynonenal as substrate, and nine were active in glutathione conjugation of 1-chloro-2,4-dinitrobenzene. Since the enzymically active proteins included the gene products of DmGSTD3 and DmGSTD7 which were previously deemed to be pseudogenes, we investigated them further and determined that both genes are transcribed in Drosophila. Thus our present results indicate that DmGSTD3 and DmGSTD7 are probably functional genes. The existence and multiplicity of insect GSTs capable of conjugating 4-hydroxynonenal, in some cases with catalytic efficiencies approaching those of mammalian GSTs highly specialized for this function, indicates that metabolism of products of lipid peroxidation is a highly conserved biochemical pathway with probable detoxification as well as regulatory functions. PMID:12443531

  20. Lipid composition of positively buoyant eggs of reef building corals

    NASA Astrophysics Data System (ADS)

    Arai, Iakayuki; Kato, Misako; Heyward, Andrew; Ikeda, Yutaka; Iizuka, Tokio; Maruyama, Tadashi

    1993-07-01

    Lipid composition of the eggs of three reef building corals, Acropora millepora, A. tenuis and Montipora digitata, were determined. Sixty to 70% of the egg dry weight was lipid, which consisted of wax esters (69.5 81.8%), triacylglycerols (1.1 8.4%) and polar lipids c/mainly phospholipids (11.9 13.2%). Montipora digitata also contained some polar lipids typical of the thylakoid membrane in chloroplasts, probably due to the presence of symbiotic zooxanthellae in the eggs. The wax esters appeared to be the major contributor to positive buoyancy of the eggs, and specific gravity of wax esters in A. millepora was estimated to be 0.92. Among the fatty acids of the wax esters, 34.9 51.3% was hexadecanoic acid (16:0) while the major fatty acids in polar lipids were octadecenoic acid (18:1), hexadecanoic acid (16:0), eicosapentaenoic acid (20:5) and eicosatetraenoic acid (20:4). The wax ester appears to be the main component of the 4.5 6.0 μm diameter lipid droplets which fill most of the central mass of the coral eggs.

  1. LIPIDS OF SARCINA LUTEA II.

    PubMed Central

    Albro, Phillip W.; Huston, Charles K.

    1964-01-01

    Albro, Phillip W. (Ft. Detrick, Frederick, Md.), and Charles K. Huston. Lipids of Sarcina lutea. II. Hydrocarbon content of the lipid extracts. J. Bacteriol. 88:981–986. 1964.—The hydrocarbon fraction from Sarcina lutea lipid extracts was characterized by a combination of thin-layer and gas-liquid chromatography and infrared spectroscopy. A total of 37 components were observed by gas-liquid chromatography of this material. A breakdown of the components into classes indicated a composition consisting of 88.9% n-saturates, 1.2% monoenes, 2.1% dienes, 5.0% trienes, and 0.6% branched-saturates. Less than 0.1% of the hydrocarbon material was aromatic. No attempt was made in this study to relate the composition to either origin or function in the cell. PMID:14222808

  2. Brominated polyunsaturated lipids from the Chinese sponge Xestospongia testudinaria as a new class of pancreatic lipase inhibitors.

    PubMed

    Liang, Lin-Fu; Wang, Ting; Cai, You-Sheng; He, Wen-Fei; Sun, Peng; Li, Yu-Fen; Huang, Qi; Taglialatela-Scafati, Orazio; Wang, He-Yao; Guo, Yue-Wei

    2014-05-22

    Chemical analysis of the Chinese marine sponge Xestospongia testudinaria afforded a library of brominated polyunsaturated lipids including eight new compounds, named xestonarienes A-H (3-10) and thirteen known analogues (11-23). The structures of the new compounds were elucidated by detailed spectroscopic analysis and by comparison with literature data. The isolated lipids were evaluated for their inhibitory activity against pancreatic lipase (PL), an essential enzyme for efficient fat digestion and the major metabolite, 14, exhibited a marked inhibitory activity (IC50 = 3.11 μM), similar to that of the positive control Orlistat (IC50 = 0.78 μM). The preliminary structure-activity relationships on the series of compounds clearly evidenced that a terminal (E)-enyne functionality, a diyne within the chain, and methyl ester group are all key functional groups for the activity of this class of PL inhibitors. Further biological investigation on compound 14 revealed a significant decrease in the plasma triglyceride level following an oral lipid challenge in C57BLKS/J male mice. Acute toxicology study demonstrated that compound 14 was non-toxic up to 1600 mg/kg p.o in mice. This is the first report of the PL inhibitory activity for brominated polyunsaturated lipids and the obtained results qualify compound 14 as a potent and bioavailable drug candidate for a mild and safe treatment to prevent and reduce obesity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Phospholipid analogues of Porphyromonas gingivalis.

    PubMed

    Tavana, A M; Korachi, M; Boote, V; Hull, P S; Love, D N; Drucker, D B

    2000-05-01

    Porphyromonas has lipids containing hydroxy acids and C16:0 and iso-C15:0 major monocarboxylic acids among others. Nothing is known of its individual phospholipid molecular species. The aim of this study was to determine molecular weights and putative identities of individual phospholipid molecular species extracted from Porphyromonas gingivalis (seven strains), P. asaccharolytica (one strain) and P. endodontalis (two strains). Cultures on Blood-Fastidious Anaerobe Agar were harvested, washed and freeze-dried. Phospholipids were extracted and separated by fast atom bombardment mass spectrometry (FAB MS) in negative-ion mode. Phospholipid classes were also separated by thin layer chromatography (TLC). The major anions in the range m/z 209-299 were consistent with the presence of the C13: 0, C15: 0, C16: 0 and C18: 3 mono-carboxylate anions. Major polar lipid anion peaks in the range m/z 618-961 were consistent with the presence of molecular species of phosphatidylethanolamine, phosphatidylglycerol and with unidentified lipid analogues. Porphyromonas gingivalis differed from comparison strains of other species by having major anions with m/z 932, 946 and 960. Unusually, a feline strain of P. gingivalis had a major peak of m/z 736. Selected anions were studied by tandem FAB MS which revealed that peaks with m/z 653 and 946 did not correspond to commonly occurring classes of polar lipids. They were however, glycerophosphates. It is concluded that the polar lipid analogue profiles obtained with Porphyromonas are quite different from those of the genera Prevotella and Bacteroides but reveal heterogeneity within P. gingivalis.

  4. Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets.

    PubMed

    Bacle, Amélie; Gautier, Romain; Jackson, Catherine L; Fuchs, Patrick F J; Vanni, Stefano

    2017-04-11

    Intracellular lipid droplets (LDs) are the main cellular site of metabolic energy storage. Their structure is unique inside the cell, with a core of esterified fatty acids and sterols, mainly triglycerides and sterol esters, surrounded by a single monolayer of phospholipids. Numerous peripheral proteins, including several that were previously associated with intracellular compartments surrounded by a lipid bilayer, have been recently shown to target the surface of LDs, but how they are able to selectively target this organelle remains largely unknown. Here, we use atomistic and coarse-grained molecular dynamics simulations to investigate the molecular properties of the LD surface and to characterize how it differs from that of a lipid bilayer. Our data suggest that although several surface properties are remarkably similar between the two structures, key differences originate from the interdigitation between surface phospholipids and core neutral lipids that occurs in LDs. This property is extremely sensitive to membrane undulations, unlike in lipid bilayers, and it strongly affects both lipid-packing defects and the lateral pressure profile. We observed a marked change in overall surface properties for surface tensions >10 mN/m, indicative of a bimodal behavior. Our simulations provide a comprehensive molecular characterization of the unique surface properties of LDs and suggest how the molecular properties of the surface lipid monolayer can be modulated by the underlying neutral lipids. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. The microbial community in decaying fallen logs varies with critical period in an alpine forest.

    PubMed

    Chang, Chenhui; Wu, Fuzhong; Yang, Wanqin; Xu, Zhenfeng; Cao, Rui; He, Wei; Tan, Bo; Justine, Meta Francis

    2017-01-01

    Little information has been available on the shifts in the microbial community in decaying fallen logs during critical periods in cold forests. Minjiang fir (Abies faxoniana) fallen logs in decay classes I-V were in situ incubated on the forest floor of an alpine forest in the eastern Tibet Plateau. The microbial community was investigated during the seasonal snow cover period (SP), snow thawing period (TP), early growing season (EG) and late growing season (LG) using Phosphorous Lipid Fatty Acid (PLFA) analysis. Total microbial biomass and microbial diversity in fallen logs were much more affected by critical period than decay class, whereas decay class had a stronger effect on microbial diversity than on microbial biomass. Abundant microbial biomass and microbial diversity in logs even without the cover of snow were observed in winter, which could not be linked to thermal insulation by snow cover. The freshly decayed logs functioned as an excellent buffer of environmental variation for microbial organisms during the sharp fluctuations in temperature in winter. We also found distinct decay patterns along with seasonality for heartwood, sapwood and bark, which requires further detailed research. Gram- bacteria mainly dominated the shifts in microbial community composition from SP to EG, while fungi and Gram+ bacteria mainly dominated it from SP to TP. Based on previous work and the present study, we conclude that fallen logs on the forest floor alter ecological processes by influencing microbial communities on woody debris and beneath the soil and litter. Our study also emphasizes the need to maintain a number of fallen logs, especially fresh ones, on the forest floor.

  6. The microbial community in decaying fallen logs varies with critical period in an alpine forest

    PubMed Central

    Chang, Chenhui; Wu, Fuzhong; Xu, Zhenfeng; Cao, Rui; He, Wei; Tan, Bo; Justine, Meta Francis

    2017-01-01

    Little information has been available on the shifts in the microbial community in decaying fallen logs during critical periods in cold forests. Minjiang fir (Abies faxoniana) fallen logs in decay classes I-V were in situ incubated on the forest floor of an alpine forest in the eastern Tibet Plateau. The microbial community was investigated during the seasonal snow cover period (SP), snow thawing period (TP), early growing season (EG) and late growing season (LG) using Phosphorous Lipid Fatty Acid (PLFA) analysis. Total microbial biomass and microbial diversity in fallen logs were much more affected by critical period than decay class, whereas decay class had a stronger effect on microbial diversity than on microbial biomass. Abundant microbial biomass and microbial diversity in logs even without the cover of snow were observed in winter, which could not be linked to thermal insulation by snow cover. The freshly decayed logs functioned as an excellent buffer of environmental variation for microbial organisms during the sharp fluctuations in temperature in winter. We also found distinct decay patterns along with seasonality for heartwood, sapwood and bark, which requires further detailed research. Gram- bacteria mainly dominated the shifts in microbial community composition from SP to EG, while fungi and Gram+ bacteria mainly dominated it from SP to TP. Based on previous work and the present study, we conclude that fallen logs on the forest floor alter ecological processes by influencing microbial communities on woody debris and beneath the soil and litter. Our study also emphasizes the need to maintain a number of fallen logs, especially fresh ones, on the forest floor. PMID:28787465

  7. Large-scale changes in bloater growth and condition in Lake Huron

    USGS Publications Warehouse

    Prichard, Carson G.; Roseman, Edward F.; Keeler, Kevin M.; O'Brien, Timothy P.; Riley, Stephen C.

    2016-01-01

    Native Bloaters Coregonus hoyi have exhibited multiple strong year-classes since 2005 and now are the most abundant benthopelagic offshore prey fish in Lake Huron, following the crash of nonnative AlewivesAlosa pseudoharengus and substantial declines in nonnative Rainbow Smelt Osmerus mordax. Despite recent recoveries in Bloater abundance, marketable-size (>229 mm) Bloaters remain scarce. We used annual survey data to assess temporal and spatial dynamics of Bloater body condition and lengths at age in the main basin of Lake Huron from 1973 to 2014. Basinwide lengths at age were modeled by cohort for the 1973–2003 year-classes using a von Bertalanffy growth model with time-varying Brody growth coefficient (k) and asymptotic length () parameters. Median Bloater weights at selected lengths were estimated to assess changes in condition by modeling weight–length relations with an allometric growth model that allowed growth parameters to vary spatially and temporally. Estimated Bloater lengths at age declined 14–24% among ages 4–8 for all year-classes between 1973 and 2004. Estimates of  declined from a peak of 394 mm (1973 year-class) to a minimum of 238 mm (1998 year-class). Observed mean lengths at age in 2014 were at all-time lows, suggesting that year-classes comprising the current Bloater population would have to follow growth trajectories unlike those characterizing the 1973–2003 year-classes to attain marketable size. Furthermore, estimated weights of 250-mm Bloaters (i.e., a large, commercially valuable size-class) declined 17% among all regions from 1976 to 2007. Decreases in body condition of large Bloaters are associated with lower lipid content and may be linked to marked declines in abundance of the amphipodsDiporeia spp. in Lake Huron. We hypothesize that since at least 1976, large Bloaters have become more negatively buoyant and may have incurred an increasingly greater metabolic cost performing diel vertical migrations to prey upon the opossum shrimp Mysis diluviana and zooplankton.

  8. Ethnic Differences in Lipid Profiles of Overweight, Obese, and Severely Obese Children and Adolescents 6-19 Years of Age.

    PubMed

    Dhuper, Sarita; Bayoumi, Nagla S; Shah, Yash D; Mehta, Shilpa

    2017-06-01

    Ethnic differences in lipid profiles exist in children and adolescents. This study assessed whether variations in lipid profiles present in overweight and obese youth were also observed in severely obese youth. Variations could explain the lower prevalence of the metabolic syndrome in certain ethnic groups at even severe levels of obesity. Data were obtained from the National Health and Nutrition Examination Survey for the years of 2001 through 2012. Subjects were divided into groups according to BMI classification. Normal weight was defined as a BMI less than the 85th percentile. Overweight was defined as a BMI between the 85th and 95th percentile. Class 1 obesity was defined as a BMI greater than the 95th percentile up to 120% of the 95th percentile. A BMI between 120% and 140% of the 95th percentile was defined as Class 2 obesity. Class 3 was defined as a BMI above 140% of the 95th percentile. Primary outcomes were mean total cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein levels (HDL). The sample included 14,481 non-Hispanic black (NHB) (N = 4710), non-Hispanic white (N = 4910), and Mexican American (N = 4861) subjects. Across all BMI categories, the NHB group had significantly lower mean TG and higher mean HDL levels (p < 0.0001). Ethnic variations in lipid profiles were found in severely obese youth. These findings could explain the lower prevalence of the metabolic syndrome in NHB youth. Ethnic-specific guidelines are necessary for improved identification of those at risk at all levels of obesity.

  9. Extraction and Analysis of Food Lipids

    USDA-ARS?s Scientific Manuscript database

    Along with proteins and carbohydrates, lipids are one of the main components of foods. Lipids are often defined as a group of biomolecules that are insoluble in water and soluble in organic solvents such as hexane, diethyl ether or chloroform. Modern methods for the extraction and analysis of lipi...

  10. Methanol-Promoted Lipid Remodelling during Cooling Sustains Cryopreservation Survival of Chlamydomonas reinhardtii

    PubMed Central

    Yang, Duanpeng; Li, Weiqi

    2016-01-01

    Cryogenic treatments and cryoprotective agents (CPAs) determine the survival rate of organisms that undergo cryopreservation, but their mechanisms of operation have not yet been characterised adequately. In particular, the way in which membrane lipids respond to cryogenic treatments and CPAs is unknown. We developed comparative profiles of the changes in membrane lipids among cryogenic treatments and between the CPAs dimethyl sulfoxide (DMSO) and methanol (MeOH) for the green alga Chlamydomonas reinhardtii. We found that freezing in liquid nitrogen led to a dramatic degradation of lipids, and that thawing at warm temperature (35°C) induced lipid remodelling. DMSO did not protect membranes, but MeOH significantly attenuated lipid degradation. The presence of MeOH during cooling (from 25°C to −55°C at a rate of 1°C/min) sustained the lipid composition to the extent that membrane integrity was maintained; this phenomenon accounts for successful cryopreservation. An increase in monogalactosyldiacylglycerol and a decrease in diacylglycerol were the major changes in lipid composition associated with survival rate, but there was no transformation between these lipid classes. Phospholipase D-mediated phosphatidic acid was not involved in freezing-induced lipid metabolism in C. reinhardtii. Lipid unsaturation changed, and the patterns of change depended on the cryogenic treatment. Our results provide new insights into the cryopreservation of, and the lipid metabolism in, algae. PMID:26731741

  11. Glycerophospholipid Profiles of Bats with White-Nose Syndrome.

    PubMed

    Pannkuk, Evan L; McGuire, Liam P; Warnecke, Lisa; Turner, James M; Willis, Craig K R; Risch, Thomas S

    2015-01-01

    Pseudogymnoascus destructans is an ascomycetous fungus responsible for the disease dubbed white-nose syndrome (WNS) and massive mortalities of cave-dwelling bats. The fungus infects bat epidermal tissue, causing damage to integumentary cells and pilosebaceous units. Differences in epidermal lipid composition caused by P. destructans infection could have drastic consequences for a variety of physiological functions, including innate immune efficiency and water retention. While bat surface lipid and stratum corneum lipid composition have been described, the differences in epidermal lipid content between healthy tissue and P. destructans-infected tissue have not been documented. In this study, we analyzed the effect of wing damage from P. destructans infection on the epidermal polar lipid composition (glycerophospholipids [GPs] and sphingomyelin) of little brown bats (Myotis lucifugus). We hypothesized that infection would lead to lower levels of total lipid or higher oxidized lipid product proportions. Polar lipids from three damaged and three healthy wing samples were profiled by electrospray ionization tandem mass spectrometry. We found lower total broad lipid levels in damaged tissue, specifically ether-linked phospholipids, lysophospholipids, phosphatidylcholine, and phosphatidylethanolamine. Thirteen individual GP species from four broad GP classes were present in higher amounts in healthy tissue. Six unsaturated GP species were absent in damaged tissue. Our results confirm that P. destructans infection leads to altered lipid profiles. Clinical signs of WNS may include lower lipid levels and lower proportions of unsaturated lipids due to cellular and glandular damage.

  12. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    PubMed

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  13. The processing and presentation of lipids and glycolipids to the immune system

    PubMed Central

    Vartabedian, Vincent F.; Savage, Paul B.; Teyton, Luc

    2016-01-01

    Summary The recognition of CD1-lipid complexes by T cells was discovered twenty years ago and has since been an emerging and expanding field of investigation. Unlike protein antigens, which are presented on MHC class I and II molecules, lipids can only be presented by CD1 molecules, a unique family of MHC-like proteins whose singularity is a hydrophobic antigen binding groove. The processing and loading of lipid antigens inside this groove of CD1 molecules require localization to late endosomal and lysosomal subcellular compartments and their acidic pHs. This particular environment provides the necessary glycolytic enzymes and lipases that process lipid and glycolipid antigens, as well as a set of lipid transfer proteins that load the final version of the antigen inside the groove of CD1. The overall sequence of events needed for efficient presentation of lipid antigens is now understood and presented in this review. However, a large number of important details have been elusive. This elusiveness is linked to the inherent technical difficulties of studying lipids and the lipid-protein interface in vitro and in vivo. Here, we will expose some of those limitations and describe new approaches to address them during the characterization of lipids and glycolipids antigen presentation. PMID:27319346

  14. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins[S

    PubMed Central

    Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph

    2016-01-01

    The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. PMID:27565170

  15. Regulation of Lipid Synthesis in Soybeans by Two Benzoic Acid Herbicides 1

    PubMed Central

    Muslih, Raad K.; Linscott, Dean L.

    1977-01-01

    The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. `Amsoy') were studied. Dinoben (20 μg/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 μg/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben. It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both. PMID:16660173

  16. CD1-Restricted T Cells at the Crossroad of Innate and Adaptive Immunity.

    PubMed

    Pereira, Catia S; Macedo, M Fatima

    2016-01-01

    Lipid-specific T cells comprise a group of T cells that recognize lipids bound to the MHC class I-like CD1 molecules. There are four isoforms of CD1 that are expressed at the surface of antigen presenting cells and therefore capable of presenting lipid antigens: CD1a, CD1b, CD1c, and CD1d. Each one of these isoforms has distinct structural features and cellular localizations, which promotes binding to a broad range of different types of lipids. Lipid antigens originate from either self-tissues or foreign sources, such as bacteria, fungus, or plants and their recognition by CD1-restricted T cells has important implications in infection but also in cancer and autoimmunity. In this review, we describe the characteristics of CD1 molecules and CD1-restricted lipid-specific T cells, highlighting the innate-like and adaptive-like features of different CD1-restricted T cell subtypes.

  17. A Global Map of Lipid-Binding Proteins and Their Ligandability in Cells.

    PubMed

    Niphakis, Micah J; Lum, Kenneth M; Cognetta, Armand B; Correia, Bruno E; Ichu, Taka-Aki; Olucha, Jose; Brown, Steven J; Kundu, Soumajit; Piscitelli, Fabiana; Rosen, Hugh; Cravatt, Benjamin F

    2015-06-18

    Lipids play central roles in physiology and disease, where their structural, metabolic, and signaling functions often arise from interactions with proteins. Here, we describe a set of lipid-based chemical proteomic probes and their global interaction map in mammalian cells. These interactions involve hundreds of proteins from diverse functional classes and frequently occur at sites of drug action. We determine the target profiles for several drugs across the lipid-interaction proteome, revealing that its ligandable content extends far beyond traditionally defined categories of druggable proteins. In further support of this finding, we describe a selective ligand for the lipid-binding protein nucleobindin-1 (NUCB1) and show that this compound perturbs the hydrolytic and oxidative metabolism of endocannabinoids in cells. The described chemical proteomic platform thus provides an integrated path to both discover and pharmacologically characterize a wide range of proteins that participate in lipid pathways in cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Molecular Packing of Functionalized Fluorinated Lipids in Langmuir Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landsberg, Michael J.; Ruggles, Jeremy L.; Hussein, Waleed M.

    2012-01-20

    Fluorinated amphipaths are a fascinating class of compounds, which, despite significant challenges associated with their syntheses, have found use across a number of areas of biotechnology. Applications range from the in vitro stabilization of membrane proteins to the development of enhanced stability intravenous drug and gene delivery systems. More recently, monolayer-forming fluorinated lipids have found use in the 2D crystallization of detergent-solubilized hydrophobic or partially hydrophobic proteins at the air-water interface. In this study, we investigate the surface properties of a novel suite of monolayer forming, partially fluorinated lipids. These modular lipid structures contain a densely fluorinated insertion in themore » hydrocarbon tail and a synthetically modifiable headgroup. Analyses of surface-pressure area isotherms and X-ray reflectometry profiles reveal that the lipids spread into fluid monolayers and are more compressible than their non-fluorinated counterparts. Furthermore, the data support a model whereby the partially fluorinated chains of the lipid tails form a film which is fundamentally incompatible with detergents and other destabilizing amphipaths.« less

  19. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    PubMed

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples.

  20. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples

    PubMed Central

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-01-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1% acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  1. The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda

    2011-03-01

    Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''

  2. Spatial variation in the accumulation of POPs and mercury in bottlenose dolphins of the Lower Florida Keys and the coastal Everglades (South Florida).

    PubMed

    Damseaux, France; Kiszka, Jeremy J; Heithaus, Michael R; Scholl, George; Eppe, Gauthier; Thomé, Jean-Pierre; Lewis, Jennifer; Hao, Wensi; Fontaine, Michaël C; Das, Krishna

    2017-01-01

    The bottlenose dolphin (Tursiops truncatus) is an upper trophic level predator and the most common cetacean species found in nearshore waters of southern Florida, including the Lower Florida Keys (LFK) and the Florida Coastal Everglades (FCE). The objective of this study was to assess contamination levels of total mercury (T-Hg) in skin and persistent organic pollutants (PCBs, PBDEs, DDXs, HCHs, HCB, Σ PCDD/Fs and Σ DL-PCBs) in blubber samples of bottlenose dolphins from LFK (n = 27) and FCE (n = 24). PCBs were the major class of compounds found in bottlenose dolphin blubber and were higher in individuals from LFK (Σ 6 PCBs LFK males: 13,421 ± 7730 ng g -1 lipids, Σ 6 PCBs LFK females: 9683 ± 19,007 ng g -1 lipids) than from FCE (Σ 6 PCBs FCE males: 5638 ng g -1  ± 3627 lipids, Σ 6 PCBs FCE females: 1427 ± 908 ng g -1 lipids). These levels were lower than previously published data from the southeastern USA. The Σ DL-PCBs were the most prevalent pollutants of dioxin and dioxin like compounds (Σ DL-PCBs LFK: 739 ng g -1 lipids, Σ DL-PCBs FCE: 183 ng g -1 lipids) since PCDD/F concentrations were low for both locations (mean 0.1 ng g -1 lipids for LFK and FCE dolphins). The toxicity equivalences of PCDD/Fs and DL-PCBs expressed as TEQ in LFK and FCE dolphins is mainly expressed by DL-PCBs (81% LFK - 65% FCE). T-Hg concentrations in skin were significantly higher in FCE (FCE median 9314 ng g -1 dw) compared to LFK dolphins (LFK median 2941 ng g -1 dw). These concentrations are the highest recorded in bottlenose dolphins in the southeastern USA, and may be explained, at least partially, by the biogeochemistry of the Everglades and mangrove sedimentary habitats that create favourable conditions for the retention of mercury and make it available at high concentrations for aquatic predators. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. 21 CFR 862.1575 - Phospholipid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... treatment of disorders involving lipid (fat) metabolism. (b) Classification. Class I (general controls). The...

  4. The influence of hair lipids in ethnic hair properties.

    PubMed

    Martí, M; Barba, C; Manich, A M; Rubio, L; Alonso, C; Coderch, L

    2016-02-01

    Biochemical studies have mainly focused on the composition of hair. African hair exhibited lower moisturization and less radial swelling when flushing with water compared with Asian or Caucasian hair, and they assumed a possible lipid differentiation among human populations. This study consists in the lipid characterization of different ethnic hairs (Caucasian, Asian and African hairs) and the influence of these lipids in different hair properties such as humidity and mechanical properties. Evaluation of water sorption and desorption of the different ethnic hairs and with and without lipids is also studied mainly to determine permeation changes of the keratin fibres. Extractions of exogenous and endogenous lipids with different organic solvents were performed; lipid analysis and its quantification using thin-layer chromatography coupled to an automated flame ionization detector (TLC/FID) were performed. Absorption and desorption curves were obtained in a thermogravimetric balance equipped with a controlled humidity chamber, the Q5000SA Sorption Analyzer (TA Instruments, New Castle, IL, U.S.A.). Also, mechanical properties (breaking stress and breaking elongation) were analysed using a computer programmable dynamometer (Instron 5500R). Lipid extraction showed the highest amount of total lipids for the African hair which may come from external sebaceous lipids compared with Asian or Caucasian hair. Caucasian fibres were found to be the most hydrated fibre, and a decrease in moisture was found in the extracted fibres, again, which is more important for the Caucasian hair. A superior lineal mass was found for the Asian fibres which supported their higher strength. The results obtained from the analysis of the mechanical properties of delipidized fibres indicate a surprising increase in the strength of African and Caucasian fibres. Perhaps this increase in strength could be related to the humidity decrease in lipid-extracted hair fibres. Results of water uptake and desorption indicate that Asian and Caucasian hairs present the lower diffusion coefficients compared with the African ones. At least for the African fibre, an extraction of its lipids that mainly account for apolar lipids ameliorates the fibre structure, decreasing its permeability to water and increasing its tensile strength. The ethnic hairs were assessed related to their lipid composition, and some differences between them were found in terms of water uptake and mechanical properties. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  5. LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets

    PubMed Central

    O’Connor, Anne; Brasher, Christopher J.; Slatter, David A.; Meckelmann, Sven W.; Hawksworth, Jade I.; Allen, Stuart M.; O’Donnell, Valerie B.

    2017-01-01

    Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users’ own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides. PMID:28405621

  6. UVA Photoirradiation of Nitro-Polycyclic Aromatic Hydrocarbons—Induction of Reactive Oxygen Species and Formation of Lipid Peroxides †

    PubMed Central

    Xia, Qingsu; Yin, Jun J.; Zhao, Yuewei; Wu, Yuh-Sen; Wang, Yu-Qui; Ma, Liang; Chen, Shoujun; Sun, Xin; Fu, Peter P.; Yu, Hongtao

    2013-01-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which nitro-PAHs induce genotoxicity. Although the metabolic activation of nitro-PAHs leading to toxicological activities has been well studied, the photo-induced activation of nitro-PAHs has seldom been reported. In this paper, we report photo-induced lipid peroxidation by 19 nitro-PAHs. The results indicated that all but two of the nitro-PAHs can induce lipid peroxidation. Mechanistic studies suggest that lipid peroxidation by nitro-PAHs is mediated by free radicals generated in the reaction. There was no structural correlation between the nitro-PAHs and their ability to induce lipid peroxidation upon UVA irradiation, or between the HOMO-LUMO gap and the ability to cause lipid peroxidation. Most of the nitro-PAHs are less potent in terms of causing lipid peroxidation than their parent PAHs. The lack of correlation is attributed to the complex photophysics and photochemistry of the nitro-PAHs and the yield of reactive oxygen species (ROS) and other factors. PMID:23493032

  7. Lamellar Biogels: Fluid-Membrane-Based Hydrogels Containing Polymer Lipids

    NASA Astrophysics Data System (ADS)

    Warriner, Heidi E.; Idziak, Stefan H. J.; Slack, Nelle L.; Davidson, Patrick; Safinya, Cyrus R.

    1996-02-01

    A class of lamellar biological hydrogels comprised of fluid membranes of lipids and surfactants with small amounts of low molecular weight poly(ethylene glycol)-derived polymer lipids (PEG-lipids) were studied by x-ray diffraction, polarized light microscopy, and rheometry. In contrast to isotropic hydrogels of polymer networks, these membrane-based birefringent liquid crystalline biogels, labeled Lα,g, form the gel phase when water is added to the liquid-like lamellar L_α phase, which reenters a liquid-like mixed phase upon further dilution. Furthermore, gels with larger water content require less PEG-lipid to remain stable. Although concentrated (~50 weight percent) mixtures of free PEG (molecular weight, 5000) and water do not gel, gelation does occur in mixtures containing as little as 0.5 weight percent PEG-lipid. A defining signature of the Lα,g regime as it sets in from the fluid lamellar L_α phase is the proliferation of layer-dislocation-type defects, which are stabilized by the segregation of PEG-lipids to the defect regions of high membrane curvature that connect the membranes.

  8. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles1[S

    PubMed Central

    Lam, Sin Man; Tong, Louis; Duan, Xinrui; Petznick, Andrea; Wenk, Markus R.; Shui, Guanghou

    2014-01-01

    The tear film covers the anterior eye and the precise balance of its various constituting components is critical for maintaining ocular health. The composition of the tear film amphiphilic lipid sublayer, in particular, has largely remained a matter of contention due to the limiting concentrations of these lipid amphiphiles in tears that render their detection and accurate quantitation tedious. Using systematic and sensitive lipidomic approaches, we validated different tear collection techniques and report the most comprehensive human tear lipidome to date; comprising more than 600 lipid species from 17 major lipid classes. Our study confers novel insights to the compositional details of the existent tear film model, in particular the disputable amphiphilic lipid sublayer constituents, by demonstrating the presence of cholesteryl sulfate, O-acyl-ω-hydroxyfatty acids, and various sphingolipids and phospholipids in tears. The discovery and quantitation of the relative abundance of various tear lipid amphiphiles reported herein are expected to have a profound impact on the current understanding of the existent human tear film model. PMID:24287120

  9. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part II. Lipids

    NASA Technical Reports Server (NTRS)

    Venkatesan, M. I.; Ruth, E.; Steinberg, S.; Kaplan, I. R.

    1987-01-01

    Organic geochemical measurements of the lipid fraction, comparing saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediments cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon. The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that approximately 50% of the shelf organic matter is exported to the slope. Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigations.

  10. Oxime Ether Lipids as Transfection Agents: Assembly and Complexation with siRNA.

    PubMed

    Puri, Anu; Zampino, Serena; Viard, Mathias; Shapiro, Bruce A

    2017-01-01

    RNAi-based therapeutic approaches to combat cancer and other diseases are currently an area of great interest. However, practical applications of this approach rely on optimal tools to carry and deliver siRNA to the desired site. Oxime ether lipids (OELs) are a class of molecules among other various carriers being examined for siRNA delivery. OELs, relatively new candidates, belong to a class of non-glycerol based lipids and have begun to claim their place as an siRNA delivery carrier in the field of RNAi therapy. Chemical synthesis steps of OELs are considered relatively simple with the ability to modify the functionalities as desired. OEL-siRNA complexes can be assembled in the presence of serum-containing buffers (or cell culture media) and recent data from our and other groups have demonstrated that OELs are viable carriers for siRNA delivery in the cell culture systems. In this chapter, we provide the details of experimental protocols routinely used in our laboratory to examine OEL-siRNA complexes including their assembly, stability, and transfection efficiencies.

  11. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular mechanism by which these membrane-active peptides lyse membranes. The last class of membrane-active peptides discussed are the CPPs, which translocate across the lipid bilayer without inducing severe disruption and have potential as drug vehicles. CPPs are typically highly charged and can show antimicrobial activity by targeting an intracellular target rather than via a direct membrane lytic mechanism. A critical aspect in the structure-function relationship of membrane-active peptides is their specific activity relative to the lipid membrane composition of the cell target. Cell membranes have a wide diversity of lipids, and those of eukaryotic and prokaryotic species differ greatly in composition and structure. The activity of AMPs from Australian tree frogs, toxins, and CPPs has been investigated within various lipid systems to assess whether a relationship between peptide and membrane composition could be identified. NMR spectroscopy techniques are being used to gain atomistic details of how these membrane-active peptides interact with model membranes and cells, and in particular, competitive assays demonstrate the difference between affinity and activity for a specific lipid environment. Overall, the interactions between these relatively small sized peptides and various lipid bilayers give insight into how these peptides function at the membrane interface.

  12. 21 CFR 862.1470 - Lipid (total) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.... (b) Classification. Class I (general controls). The device is exempt from the premarket notification...

  13. Antimicrobial phenolics and unusual glycerides from Helichrysum italicum subsp. microphyllum.

    PubMed

    Taglialatela-Scafati, Orazio; Pollastro, Federica; Chianese, Giuseppina; Minassi, Alberto; Gibbons, Simon; Arunotayanun, Warunya; Mabebie, Blessing; Ballero, Mauro; Appendino, Giovanni

    2013-03-22

    During a large-scale isolation campaign for the heterodimeric phloroglucinyl pyrone arzanol (1a) from Helichrysum italicum subsp. microphyllum, several new phenolics as well as an unusual class of lipids named santinols (5a-c, 6-8) have been characterized. Santinols are angeloylated glycerides characterized by the presence of branched acyl- or keto-acyl chains and represent a hitherto unreported class of plant lipids. The antibacterial activity of arzanol and of a selection of Helichrysum phenolics that includes coumarates, benzofurans, pyrones, and heterodimeric phloroglucinols was evaluated, showing that only the heterodimers showed potent antibacterial action against multidrug-resistant Staphylococcus aureus isolates. These observations validate the topical use of Helichrysum extracts to prevent wound infections, a practice firmly established in the traditional medicine of the Mediterranean area.

  14. Nonessential fatty acids in formula fat blends influence essential fatty acid metabolism and composition in plasma and organ lipid classes in piglets.

    PubMed

    Wall, K M; Diersen-Schade, D; Innis, S M

    1992-12-01

    The n-6 and n-3 fatty acid status of developing organs is the cumulative result of the diet lipid composition and many complex events of lipid metabolism. Little information is available, however, on the potential effects of the saturated fatty acid chain length (8:0-16:0) or oleic acid (18:1) content of the diet on the subsequent metabolism of the essential fatty acids 18:2n-6 and 18:3n-3 and their elongated/desaturated products. The effects of feeding piglets formulas with fat blends containing either coconut oil (12:0 + 14:0) or medium chain triglycerides (MCT, 8:0 + 10:0) but similar levels of 18:1, 18:2n-6 and 18:3n-3, or MCT with high or low 18:1 but constant 18:2n-6 and 18:3n-3 on the fatty acid composition of plasma, liver and kidney triglycerides, phospholipids and cholesteryl esters, and of brain total lipid, were studied. Diet-induced changes in the fatty acid composition of lipid classes were generally similar for plasma, liver and kidney. Dietary 18:1 content was reflected in tissue lipids and was inversely associated with levels of 18:2n-6. Lower percentage of 18:2n-6, however, was not associated with lower levels of its elongated/desaturated product 20:4n-6 but was associated with higher levels of 22:6n-3. Feeding coconut oil vs. MCT resulted in lower 18:1 levels in all lipids, and higher percentages of 20:4n-6 in tissue phospholipid. Increasing the dietary n-6/n-3 ratio from 5 to 8 significantly increased tissue percentage of 18:2n-6 and decreased phospholipid 22:6n-3.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Altered temporal lobe white matter lipid ion profiles in an experimental model of sporadic Alzheimer's disease.

    PubMed

    Tong, Ming; Leão, Raiane; Vimbela, Gina V; Yalcin, Emine B; Kay, Jared; Krotow, Alexander; de la Monte, Suzanne M

    2017-07-01

    White matter is an early and important yet under-evaluated target of Alzheimer's disease (AD). Metabolic impairments due to insulin and insulin-like growth factor resistance contribute to white matter degeneration because corresponding signal transduction pathways maintain oligodendrocyte function and survival. This study utilized a model of sporadic AD in which adult Long Evans rats administered intracerebral streptozotocin (i.c. STZ) developed AD-type neurodegeneration. Temporal lobe white matter lipid ion profiles were characterized by matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). Although the lipid ion species expressed in the i.c. STZ and control groups were virtually identical, i.c. STZ mainly altered the abundances of various lipid ions. Correspondingly, the i.c. STZ group was distinguished from control by principal component analysis and data bar plots. i.c. STZ mainly reduced expression of lipid ions with low m/z's (less than 810) as well as the upper range m/z lipids (m/z 964-986), and increased expression of lipid ions with m/z's between 888 and 937. Phospholipids were mainly included among the clusters inhibited by i.c. STZ, while both sulfatides and phospholipids were increased by i.c. STZ. However, Chi-Square analysis demonstrated significant i.c. STZ-induced trend reductions in phospholipids and increases in sulfatides (P<0.00001). The i.c. STZ model of sporadic AD is associated with broad and sustained abnormalities in temporal lobe white matter lipids. The findings suggest that the i.c. STZ model could be used for pre-clinical studies to assess therapeutic measures for their ability to restore white matter integrity in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions.

    PubMed

    McMahon, Anne; Lu, Hua; Butovich, Igor A

    2013-05-01

    Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen.

  17. The Spectrophotometric Sulfo-Phospho-Vanillin Assessment of Total Lipids in Human Meibomian Gland Secretions

    PubMed Central

    McMahon, Anne; Lu, Hua

    2013-01-01

    Human meibomian gland secretions (meibum) are the major lipid component of the human preocular tear film. The predominant lipid classes found in meibum include waxes (WE), cholesteryl esters (CE), and varying amounts of cholesterol (Chl). The classical sulfo-phospho-vanillin assay (SPVA), adapted for a microplate reader, was used to quantitate lipids in meibum. To account for varying reactivities of different lipids in SPVA, a model meibomian lipid mixture (MMx) that approximated the WE/CE/Chl composition of meibum was developed and used to quantitate meibomian lipids. The overall SPV responses of MMx and meibum were found to be close, with similar intermediate and final reaction products for both. Saturated WE that had not been expected to be reactive were found to be SPV-positive. A reaction mechanism for these compounds in SPVA which involves the formation of alkenyl ethers is proposed and discussed. Tested proteins were non-reactive in SPVA. Thus, by comparing the results of gravimetric analyses of meibum samples with the results of a properly calibrated SPVA, it was estimated that the SPV-reactive lipid content of dry meibum in tested samples was about 78 % (w/w). The SPV method can also be adopted for analyzing other types of complex lipids secretions, such as sebum, as well as whole lipid extracts from other lipid-enriched organs and tissues, if proper standards are chosen. PMID:23345137

  18. The Sheep Genome Illuminates Biology of the Rumen and Lipid Metabolism

    PubMed Central

    Talbot, Richard; Maddox, Jillian F.; Faraut, Thomas; Wu, Chunhua; Muzny, Donna M.; Li, Yuxiang; Zhang, Wenguang; Stanton, Jo-Ann; Brauning, Rudiger; Barris, Wesley C.; Hourlier, Thibaut; Aken, Bronwen L.; Searle, Stephen M.J.; Adelson, David L.; Bian, Chao; Cam, Graham R.; Chen, Yulin; Cheng, Shifeng; DeSilva, Udaya; Dixen, Karen; Dong, Yang; Fan, Guangyi; Franklin, Ian R.; Fu, Shaoyin; Guan, Rui; Highland, Margaret A.; Holder, Michael E.; Huang, Guodong; Ingham, Aaron B.; Jhangiani, Shalini N.; Kalra, Divya; Kovar, Christie L.; Lee, Sandra L.; Liu, Weiqing; Liu, Xin; Lu, Changxin; Lv, Tian; Mathew, Tittu; McWilliam, Sean; Menzies, Moira; Pan, Shengkai; Robelin, David; Servin, Bertrand; Townley, David; Wang, Wenliang; Wei, Bin; White, Stephen N.; Yang, Xinhua; Ye, Chen; Yue, Yaojing; Zeng, Peng; Zhou, Qing; Hansen, Jacob B.; Kristensen, Karsten; Gibbs, Richard A.; Flicek, Paul; Warkup, Christopher C.; Jones, Huw E.; Oddy, V. Hutton; Nicholas, Frank W.; McEwan, John C.; Kijas, James; Wang, Jun; Worley, Kim C.; Archibald, Alan L.; Cockett, Noelle; Xu, Xun; Wang, Wen; Dalrymple, Brian P.

    2014-01-01

    Sheep (Ovis aries) are a major source of meat, milk and fiber in the form of wool, and represent a distinct class of animals that have a specialized digestive organ, the rumen, which carries out the initial digestion of plant material. We have developed and analyzed a high quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants, compared to non-ruminant animals. PMID:24904168

  19. Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid-biomembrane interactions.

    PubMed

    Zhang, Jingtao; Fan, Haihong; Levorse, Dorothy A; Crocker, Louis S

    2011-03-01

    Ionizable amino lipids are being pursued as an important class of materials for delivering small interfering RNA (siRNA) therapeutics, and research is being conducted to elucidate the structure-activity relationships (SAR) of these lipids. The pK(a) of cationic lipid headgroups is one of the critical physiochemical properties of interest due to the strong impact of lipid ionization on the assembly and performance of these lipids. This research focused on developing approaches that permit the rapid determination of the relevant pK(a) of the ionizable amino lipids. Two distinct approaches were investigated: (1) potentiometric titration of amino lipids dissolved in neutral surfactant micelles; and (2) pH-dependent partitioning of a fluorescent dye to cationic liposomes formulated from amino lipids. Using the approaches developed here, the pK(a) values of cationic lipids with distinct headgroups were measured and found to be significantly lower than calculated values. It was also found that lipid-lipid interaction has a strong impact on the pK(a) values of lipids. Lysis of model biomembranes by cationic lipids was used to evaluate the impact of lipid pK(a) on the interaction between cationic lipids and cell membranes. It was found that cationic lipid-biomembrane interaction depends strongly on lipid pK(a) and solution pH, and this interaction is much stronger when amino lipids are highly charged. The presence of an optimal pK(a) range of ionizable amino lipids for siRNA delivery was suggested based on these results. The pK(a) methods reported here can be used to support the SAR screen of cationic lipids for siRNA delivery, and the information revealed through studying the impact of pK(a) on the interaction between cationic lipids and cell membranes will contribute significantly to the design of more efficient siRNA delivery vehicles.

  20. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N.

    PubMed

    Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu

    2012-06-01

    Engineering strategies were applied to improve the CO(2) fixation rate and carbohydrate/lipid production of a Scenedesmus obliquus CNW-N isolate. The light intensity that promotes cell growth, carbohydrate/lipid productivity, and CO(2) fixation efficiency was identified. Nitrogen starvation was also employed to trigger the accumulation of lipid and carbohydrate. The highest productivity of biomass, lipid, and carbohydrate was 840.57 mg L(-1)d(-1), 140.35 mg L(-1)d(-1). The highest lipid and carbohydrate content was 22.4% (5-day N-starvation) and 46.65% (1-day N-starvation), respectively. The optimal CO(2) consumption rate was 1420.6 mg L(-1)d(-1). This performance is better than that reported in most other studies. Under nitrogen starvation, the microalgal lipid was mainly composed of C16/C18 fatty acid (around 90%), which is suitable for biodiesel synthesis. The carbohydrate present in the biomass was mainly glucose, accounting for 77-80% of total carbohydrates. This carbohydrate composition is also suitable for fermentative biofuels production (e.g., bioethanol and biobutanol). Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue.

    PubMed

    López-Bascón, M A; Calderón-Santiago, M; Sánchez-Ceinos, J; Fernández-Vega, A; Guzmán-Ruiz, R; López-Miranda, J; Malagon, M M; Priego-Capote, F

    2018-01-15

    The main limitations of lipidomics analysis are the chemical complexity of the lipids, the range of concentrations at which they exist, and the variety of samples usually analyzed. These limitations particularly affect the characterization of polar lipids owing to the interference of neutral lipids, essentially acylglycerides, which are at high concentration and suppress ionization of low concentrated lipids in mass spectrometry detection. The influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue by LC-MS/MS was the aim of this research. Two common extractants used for lipids isolation, methanol:chloroform (MeOH:CHCl 3 ) and methyl tert-butyl ether (MTBE), were qualitatively and quantitatively compared for the extraction of the main families of lipids. The obtained results showed that each family of lipids is influenced differently by the extractant used. However, as a general trend, the use of MTBE as extractant led to higher extraction efficiency for unsaturated fatty acids, glycerophospholipids and ceramides, while MeOH:CHCl 3 favored the isolation of saturated fatty acids and plasmalogens. The implementation of a solid-phase extraction (SPE) step for selective isolation of glycerophospholipids prior to LC-MS/MS analysis was assayed to evaluate its influence on lipids detection coverage as compared to direct analysis. This step was critical to enhance the detection coverage of glycerophospholipids by removal of ionization suppression effects caused by acylglycerides. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of Thermal Processing towards Lipid Oxidation and Non-enzymatic Browning Reactions of Antartic Krill (Euphausia superba) Meal.

    PubMed

    Liu, Yanzi; Cong, Peixu; Li, Beijia; Song, Yu; Liu, Yanjun; Xu, Jie; Xue, Changhu

    2018-04-13

    Antarctic krill is a huge source of biomass and prospective high-quality lipid source. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), nutritionally important lipid components with poor oxidative stability, were used as markers of oxidation during thermal processing of Antarctic krill (Euphausia superba) meal by evaluating the lipolysis, lipid oxidation, and non-enzymatic browning reactions. Liquid chromatography-mass spectrometry of the phospholipids (PLs) and the main oxidation products of free fatty acids (FFAs) and phosphatidylcholine (PC) was effective for evaluating the oxidation of EPA and DHA. During boiling, oxidation of EPA and DHA in the FFA and PC fractions and hydrolysis of the fatty acids at the sn-2 position of the PLs were predominant. The changes in PC during drying were mainly attributed to the oxidation of EPA and DHA. Heat treatment increased the oxidation products and concentration of hydrophobic pyrrole owing to pyrrolization between phosphatidylethanolamine (PE) and the lipid oxidation products. The lipid oxidation level of Antarctic krill increased after drying, owing to prolonged heating under the severe conditions. This article is protected by copyright. All rights reserved.

  3. Toward an Animal Model of the Human Tear Film: Biochemical Comparison of the Mouse, Canine, Rabbit, and Human Meibomian Lipidomes

    PubMed Central

    Butovich, Igor A.; Lu, Hua; McMahon, Anne; Eule, J. Corinna

    2012-01-01

    Purpose. Secretions that are produced by meibomian glands (also known as meibum) are a major source of lipids for the ocular surface of humans and animals alike. Many animal species have been evaluated for their meibomian lipidomes. However, there have been a very small number of studies in which the animals were compared with humans side by side. Therefore, the purpose of this study was to compare meibum collected from humans and three typical laboratory animals, canines, mice, and rabbits, for their meibomian lipid composition in order to determine which animal species most resembles humans. Methods. High pressure liquid chromatography (HPLC) and gas-liquid chromatography (GLC) in combination with mass spectrometry were used to evaluate lipidomes of all tested species. Results. Among three tested animal species, mice were found to be the closest match to humans in terms of their meibomian lipidomes, while canines were the second closest species. The lipids of these three species were close to each other structurally and, for most lipid classes, quantitatively. The rabbit meibomian lipidome, on the other hand, was vastly different from lipidomes of all other tested species. Interestingly, a previously described class of lipids, acylated omega-hydroxy fatty acids (OAHFA), was found to be present in every tested species as the major amphiphilic component of meibum. Conclusions. Our side by side comparison of the rabbit and the human meibum demonstrated their vast differences. Thus, the rabbit seems to be a poor animal model of the human tear film, at least when studying its biochemistry and biophysics. PMID:22918629

  4. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins.

    PubMed

    Gaebler, Anne; Penno, Anke; Kuerschner, Lars; Thiele, Christoph

    2016-10-01

    The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. Biologic Activity of Porphyromonas endodontalis complex lipids

    PubMed Central

    Mirucki, Christopher S.; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E.; Clark, Robert B.; Nichols, Frank C.

    2014-01-01

    Introduction Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a Gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis, and evaluate their capacity to promote pro-inflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Methods Constituent lipids of both organisms were fractionated by HPLC and were structurally characterized using electrospray-mass spectrometry (ESI-MS) or ESI-MS/MS. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. Results P. endodontalis total lipids were shown to promote TNF-α secretion from RAW 264.7 cells and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells but osteoblast differentiation in culture was inhibited and appeared to be dependent on TLR2 expression. Conclusions These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. PMID:25146013

  6. TRITON HYPERLIPEMIA IN DOGS

    PubMed Central

    Scanu, Angelo; Oriente, Pasquale; Szajewski, Janusz M.; McCormack, Lawrence J.; Page, Irvine H.

    1961-01-01

    Fourteen dogs, fed a regular diet and given 250 mg/kg of triton (a non-ionic surface-active agent) intravenously every 4th day, exhibited a progressively severe hyperlipemia. Serum triglycerides were the first to increase. Cholesterol, mostly in the free form, and phospholipids showed elevation only at a later stage and increased at almost identical rates. The plasma-free fatty acid concentration was from 2 to 3 times above normal. With establishment of sustained hyperlipemia, there was reduction, followed by total disappearance, of the high density D 1.063 to 1.21 lipoprotein. Most of the cholesterol and phospholipids (70 to 75 per cent of the total) were found in the D 1.006 to 1.063 lipoprotein class, the remainder in the D < 1.006 class. Triglycerides were almost evenly distributed between these two classes. The concentration of the serum lipoprotein proteins was within normal limits. All of the animals died within from 4 to 5 months after receiving the first injection of triton. Autopsy findings consistently showed: (a) numerous lipidladen macrophages in the liver, spleen, and lymph nodes; (b) significant depletion of all fat stores; (c) presence of lipids, either free or engulfed in macrophages (foam cells), in the subintima of the coronary arteries, aorta, and pulmonary arteries, indicating an early stage of atherosclerosis. Concurrent daily administration of heparin (5 mg per kilogram of body weight) did not substantially change the course of the disease. Withdrawal of triton from animals that had been receiving the detergent for from 3 to 4 months, elicited a slow return to normal of the lipid pattern. In two dogs killed when normolipemia was reestablished, all tissues were normal with the minor exception of a few hepatic macrophages still laden with sudanophilic material. It is postulated that the primary action of the injected triton was on the lipid moieties of plasma lipoproteins with formation of complexes, which, as foreign bodies, were preferentially taken up by the cells of the reticuloendothelial system. Depletion of fat stores was probably secondary to increased lipid mobilization, as an attempt by these tissues to supply energy to the parenchymal cells unable to utilize triton-bound lipids. PMID:13747053

  7. The bovine seminal plasma protein PDC-109 extracts phosphorylcholine-containing lipids from the outer membrane leaflet.

    PubMed

    Tannert, Astrid; Kurz, Anke; Erlemann, Karl-Rudolf; Müller, Karin; Herrmann, Andreas; Schiller, Jürgen; Töpfer-Petersen, Edda; Manjunath, Puttaswamy; Müller, Peter

    2007-04-01

    The bovine seminal plasma protein PDC-109 modulates the maturation of bull sperm cells by removing lipids, mainly phosphatidylcholine and cholesterol, from their cellular membrane. Here, we have characterized the process of extraction of endogenous phospholipids and of their respective analogues. By measuring the PDC-109-mediated release of fluorescent phospholipid analogues from lipid vesicles and from biological membranes (human erythrocytes, bovine epididymal sperm cells), we showed that PDC-109 extracts phospholipids with a phosphorylcholine headgroup mainly from the outer leaflet of these membranes. The ability of PDC-109 to extract endogenous phospholipids from epididymal sperm cells was followed by mass spectrometry, which allowed us to characterize the fatty acid pattern of the released lipids. From these cells, PDC-109 extracted phosphatidylcholine and sphingomyelin that contained an enrichment of mono- and di-unsaturated fatty acids as well as short-chain and lyso-phosphatidylcholine species. Based on the results, a model explaining the phospholipid specificity of PDC-109-mediated lipid release is presented.

  8. Clusterin deficiency induces lipid accumulation and tissue damage in kidney.

    PubMed

    Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young

    2018-05-01

    Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease. © 2018 Society for Endocrinology.

  9. The sheep genome illuminates biology of the rumen and lipid metabolism.

    PubMed

    Jiang, Yu; Xie, Min; Chen, Wenbin; Talbot, Richard; Maddox, Jillian F; Faraut, Thomas; Wu, Chunhua; Muzny, Donna M; Li, Yuxiang; Zhang, Wenguang; Stanton, Jo-Ann; Brauning, Rudiger; Barris, Wesley C; Hourlier, Thibaut; Aken, Bronwen L; Searle, Stephen M J; Adelson, David L; Bian, Chao; Cam, Graham R; Chen, Yulin; Cheng, Shifeng; DeSilva, Udaya; Dixen, Karen; Dong, Yang; Fan, Guangyi; Franklin, Ian R; Fu, Shaoyin; Guan, Rui; Highland, Margaret A; Holder, Michael E; Huang, Guodong; Ingham, Aaron B; Jhangiani, Shalini N; Kalra, Divya; Kovar, Christie L; Lee, Sandra L; Liu, Weiqing; Liu, Xin; Lu, Changxin; Lv, Tian; Mathew, Tittu; McWilliam, Sean; Menzies, Moira; Pan, Shengkai; Robelin, David; Servin, Bertrand; Townley, David; Wang, Wenliang; Wei, Bin; White, Stephen N; Yang, Xinhua; Ye, Chen; Yue, Yaojing; Zeng, Peng; Zhou, Qing; Hansen, Jacob B; Kristensen, Karsten; Gibbs, Richard A; Flicek, Paul; Warkup, Christopher C; Jones, Huw E; Oddy, V Hutton; Nicholas, Frank W; McEwan, John C; Kijas, James; Wang, Jun; Worley, Kim C; Archibald, Alan L; Cockett, Noelle; Xu, Xun; Wang, Wen; Dalrymple, Brian P

    2014-06-06

    Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals. Copyright © 2014, American Association for the Advancement of Science.

  10. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking.

    PubMed

    Zhang, Yanjun; Henning, Susanne M; Lee, Ru-Po; Huang, Jianjun; Zerlin, Alona; Li, Zhaoping; Heber, David

    2015-05-01

    Spices are rich in natural antioxidants and have been shown to be potent inhibitors of lipid peroxidation during cooking of meat. Turmeric contains unique conjugated curcuminoids with strong antioxidant activity. Piperine, one of the main constituents of black pepper, is known to increase the bioavailability of curcuminoids in mouse and human studies when consumed with turmeric. We investigated whether adding black pepper to turmeric powder may further inhibit lipid peroxidation when added to meat patties prior to cooking. The addition of black pepper to turmeric significantly decreased the lipid peroxidation in hamburger meat. When investigating the antioxidant activity of the main chemical markers, we determined that piperine did not exhibit any antioxidant activity. Therefore, we conclude that other black pepper ingredients are responsible for the increased antioxidant activity of combining black pepper with turmeric powder.

  11. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking

    PubMed Central

    Zhang, Yanjun; Henning, Susanne M.; Lee, Ru-Po; Huang, Jianjun; Zerlin, Alona; Li, Zhaoping; Heber, David

    2015-01-01

    Abstract Spices are rich in natural antioxidants and have been shown to be potent inhibitors of lipid peroxidation during cooking of meat. Turmeric contains unique conjugated curcuminoids with strong antioxidant activity. Piperine, one of the main constituents of black pepper, is known to increase the bioavailability of curcuminoids in mouse and human studies when consumed with turmeric. We investigated whether adding black pepper to turmeric powder may further inhibit lipid peroxidation when added to meat patties prior to cooking. The addition of black pepper to turmeric significantly decreased the lipid peroxidation in hamburger meat. When investigating the antioxidant activity of the main chemical markers, we determined that piperine did not exhibit any antioxidant activity. Therefore, we conclude that other black pepper ingredients are responsible for the increased antioxidant activity of combining black pepper with turmeric powder. PMID:25582173

  12. Influence of Meibomian Gland Expression Methods on Human Lipid Analysis Results.

    PubMed

    Kunnen, Carolina M E; Brown, Simon H J; Lazon de la Jara, Percy; Holden, Brien A; Blanksby, Stephen J; Mitchell, Todd W; Papas, Eric B

    2016-01-01

    To compare the lipid composition of human meibum across three different meibum expression techniques. Meibum was collected from five healthy non-contact lens wearers (aged 20-35 years) after cleaning the eyelid margin using three meibum expression methods: cotton buds (CB), meibomian gland evaluator (MGE) and meibomian gland forceps (MGF). Meibum was also collected using cotton buds without cleaning the eyelid margin (CBn). Lipids were analyzed by chip-based, nano-electrospray mass spectrometry (ESI-MS). Comparisons were made using linear mixed models. Tandem MS enabled identification and quantification of over 200 lipid species across ten lipid classes. There were significant differences between collection techniques in the relative quantities of polar lipids obtained (P<.05). The MGE method returned smaller polar lipid quantities than the CB approaches. No significant differences were found between techniques for nonpolar lipids. No significant differences were found between cleaned and non-cleaned eyelids for polar or nonpolar lipids. Meibum expression technique influences the relative amount of phospholipids in the resulting sample. The highest amounts of phospholipids were detected with the CB approaches and the lowest with the MGE technique. Cleaning the eyelid margin prior to expression was not found to affect the lipid composition of the sample. This may be a consequence of the more forceful expression resulting in cell membrane contamination or higher risk of tear lipid contamination as a result of reflex tearing. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Alpha1-adrenergic blockers: current usage considerations.

    PubMed

    Sica, Domenic A

    2005-12-01

    Alpha1-adrenergic-blocking drugs are effective in reducing blood pressure and do so in a fashion comparable to most other antihypertensive drug classes. These compounds are most effective in patients in the upright position, reducing systolic and diastolic pressures by 8%-10%. Alpha1-adrenergic-blocking drugs incrementally reduce blood pressure when combined with most drug classes and are the only antihypertensive drug class to improve plasma lipid profiles. Alpha1-adrenergic-blocking drugs are also accepted as important elements of the treatment plan for symptomatic benign prostatic hypertrophy. Dose escalation of an alpha1-adrenergic-blocking drug can trigger renal Na+ retention, and the ensuing volume expansion can attenuate its blood pressure-lowering effect. Orthostatic hypotension can occur with these compounds, particularly when a patient is volume-contracted. Dizziness, headache, and drowsiness are common side effects with alpha1-adrenergic blockers. A modest decline in the use of doxazosin and other alpha1-adrenergic-blocking drugs has occurred coincident to the early termination of the doxazosin treatment arm in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial.

  14. Triacylglycerol estolides, a new class of mammalian lipids, in the paracloacal gland of the brushtail possum (Trichosurus vulpecula).

    PubMed

    McLean, Stuart; Davies, Noel W; Nichols, David S; Mcleod, Bernie J

    2015-06-01

    The paracloacal glands are the most prevalent scent glands in marsupials, and previous investigation of their secretions in the brushtail possum (Trichosurus vulpecula) has identified many odorous compounds together with large amounts of neutral lipids. We have examined the lipids by LC-MS, generating ammonium adducts of acylglycerols by electrospray ionisation. Chromatograms showed a complex mixture of coeluting acylglycerols, with m/z from about 404 to 1048. Plots of single [M + NH4](+) ions showed three groups of lipids clearly separated by retention time. MS-MS enabled triacylglycerols and diacylglycerol ethers to be identified from neutral losses and formation of diacylglycerols and other product ions. The earliest-eluting lipids were found to be triacylglycerol estolides, in which a fourth fatty acid forms an ester link with a hydroxy fatty acid attached to the glycerol chain. This is the first report of triacylglycerol estolides in animals. They form a complex mixture with the triacylglycerols and diacylglycerol ethers of lipids with short- and long-chain fatty acids with varying degrees of unsaturation. This complexity suggests a functional role, possibly in social communication.

  15. Comparison of structure and organization of cutaneous lipids in a reconstructed skin model and human skin: spectroscopic imaging and chromatographic profiling.

    PubMed

    Tfayli, Ali; Bonnier, Franck; Farhane, Zeineb; Libong, Danielle; Byrne, Hugh J; Baillet-Guffroy, Arlette

    2014-06-01

    The use of animals for scientific research is increasingly restricted by legislation, increasing the demand for human skin models. These constructs present comparable bulk lipid content to human skin. However, their permeability is significantly higher, limiting their applicability as models of barrier function, although the molecular origins of this reduced barrier function remain unclear. This study analyses the stratum corneum (SC) of one such commercially available reconstructed skin model (RSM) compared with human SC by spectroscopic imaging and chromatographic profiling. Total lipid composition was compared by chromatographic analysis (HPLC). Raman spectroscopy was used to evaluate the conformational order, lateral packing and distribution of lipids in the surface and skin/RSM sections. Although HPLC indicates that all SC lipid classes are present, significant differences are observed in ceramide profiles. Raman imaging demonstrated that the RSM lipids are distributed in a non-continuous matrix, providing a better understanding of the limited barrier function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Novel Advances in Shotgun Lipidomics for Biology and Medicine

    PubMed Central

    Wang, Miao; Wang, Chunyan; Han, Rowland H.; Han, Xianlin

    2015-01-01

    The field of lipidomics, as coined in 2003, has made profound advances and been rapidly expanded. The mass spectrometry-based strategies of this analytical methodology-oriented research discipline for lipid analysis are largely fallen into three categories: direct infusion-based shotgun lipidomics, liquid chromatography-mass spectrometry-based platforms, and matrix-assisted laser desorption/ionization mass spectrometry-based approaches (particularly in imagining lipid distribution in tissues or cells). This review focuses on shotgun lipidomics. After briefly introducing its fundamentals, the major materials of this article cover its recent advances. These include the novel methods of lipid extraction, novel shotgun lipidomics strategies for identification and quantification of previously hardly accessible lipid classes and molecular species including isomers, and novel tools for processing and interpretation of lipidomics data. Representative applications of advanced shotgun lipidomics for biological and biomedical research are also presented in this review. We believe that with these novel advances in shotgun lipidomics, this approach for lipid analysis should become more comprehensive and high throughput, thereby greatly accelerating the lipidomics field to substantiate the aberrant lipid metabolism, signaling, trafficking, and homeostasis under pathological conditions and their underpinning biochemical mechanisms. PMID:26703190

  17. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression

    NASA Astrophysics Data System (ADS)

    Dreissig, Isabell; Machill, Susanne; Salzer, Reiner; Krafft, Christoph

    2009-01-01

    Brain tissue is characterized by high lipid content. Its content decreases and the lipid composition changes during transformation from normal brain tissue to tumors. Therefore, the analysis of brain lipids might complement the existing diagnostic tools to determine the tumor type and tumor grade. Objective of this work is to extract lipids from gray matter and white matter of porcine brain tissue, record infrared (IR) spectra of these extracts and develop a quantification model for the main lipids based on partial least squares (PLS) regression. IR spectra of the pure lipids cholesterol, cholesterol ester, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, galactocerebroside and sulfatide were used as references. Two lipid mixtures were prepared for training and validation of the quantification model. The composition of lipid extracts that were predicted by the PLS regression of IR spectra was compared with lipid quantification by thin layer chromatography.

  18. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production.

    PubMed

    Mutanda, T; Ramesh, D; Karthikeyan, S; Kumari, S; Anandraj, A; Bux, F

    2011-01-01

    Global petroleum reserves are shrinking at a fast pace, increasing the demand for alternate fuels. Microalgae have the ability to grow rapidly, and synthesize and accumulate large amounts (approximately 20-50% of dry weight) of neutral lipid stored in cytosolic lipid bodies. A successful and economically viable algae based biofuel industry mainly depends on the selection of appropriate algal strains. The main focus of bioprospecting for microalgae is to identify unique high lipid producing microalgae from different habitats. Indigenous species of microalgae with high lipid yields are especially valuable in the biofuel industry. Isolation, purification and identification of natural microalgal assemblages using conventional techniques is generally time consuming. However, the recent use of micromanipulation as a rapid isolating tool allows for a higher screening throughput. The appropriate media and growth conditions are also important for successful microalgal proliferation. Environmental parameters recorded at the sampling site are necessary to optimize in vitro growth. Identification of species generally requires a combination of morphological and genetic characterization. The selected microalgal strains are grown in upscale systems such as raceway ponds or photobireactors for biomass and lipid production. This paper reviews the recent methodologies adopted for site selection, sampling, strain selection and identification, optimization of cultural conditions for superior lipid yield for biofuel production. Energy generation routes of microalgal lipids and biomass are discussed in detail. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Lipid metabolism during embryonic development of the common snapping turtle, Chelydra serpentina.

    PubMed

    Lawniczak, Cynthia J; Teece, Mark A

    2009-05-01

    The metabolism of lipids and fatty acids during embryonic development of Chelydra serpentina (common snapping turtle) was investigated. Substantial changes in lipid class and fatty acid composition occurred as lipids were transferred from the yolk to the yolk sac membrane (YSM) and then to the brain, eyes, heart, and lungs of the hatchling. Lipids were hydrolyzed in the yolk prior to transport to the YSM, shown by a large increase in free fatty acids (FFAs) during the second half of development. Triglyceride-derived docosahexaenoic acid (DHA) was utilized preferentially to phospholipid-derived DHA. In the YSM, arachidonic acid (ARA) was selectively incorporated into phospholipids while DHA was preferentially incorporated into triglycerides. Selective incorporation of DHA and ARA into the brain and eyes, and ARA into the heart was observed, indicating the importance of these PUFAs for organ development and function. The amount of DHA and ARA in each organ was less than 1% of that measured in the yolk of the freshly laid egg, indicating that only a small portion of yolk PUFAs were incorporated into the hatchling organs studied. We discuss the differences in the mechanisms and utilization of yolk lipids in turtles compared with lipid uptake during embryonic development in birds.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mruetusatorn, Prachya; Boreyko, Jonathan B; Sarles, Stephen A

    Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers ( DIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the DIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and Fission: When forming DIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayersmore » continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform Shrinking: When using the lipid-in method (lipids in water phase) to form DIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and Unzipping: Finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces.« less

  1. Functional assignment to JEV proteins using SVM.

    PubMed

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).

  2. Functional assignment to JEV proteins using SVM

    PubMed Central

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP). PMID:19052658

  3. Absorption Study of Genistein Using Solid Lipid Microparticles and Nanoparticles: Control of Oral Bioavailability by Particle Sizes.

    PubMed

    Kim, Jeong Tae; Barua, Sonia; Kim, Hyeongmin; Hong, Seong-Chul; Yoo, Seung-Yup; Jeon, Hyojin; Cho, Yeongjin; Gil, Sangwon; Oh, Kyungsoo; Lee, Jaehwi

    2017-07-01

    In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.

  4. Formation and mobilization of neutral lipids in the yeast Saccharomyces cerevisiae.

    PubMed

    Wagner, A; Daum, G

    2005-11-01

    Since energy storage is a basic metabolic process, the synthesis of neutral lipids occurs in all kingdoms of life. The yeast Saccharomyces cerevisiae, widely accepted as a model eukaryotic cell, contains two classes of neutral lipids, namely STEs (steryl esters) and TAGs (triacylglycerols). TAGs are synthesized through two pathways governed by the acyl-CoA diacylglycerol acyltransferase Dga1p and the phospholipid diacylglycerol acyltransferase Lro1p. STEs are formed by two STE synthases Are1p and Are2p, two enzymes with overlapping function, which also catalyse TAG formation, although to a minor extent. Neutral lipids are stored in the so-called lipid particles and can be utilized for membrane formation under conditions of lipid depletion. For this purpose, storage lipids have to be mobilized by TAG lipases and STE hydrolases. A TAG lipase named Tgl3p was identified as a major yeast TAG hydrolytic enzyme in lipid particles. Recently, a new family of hydrolases was detected which is required for STE mobilization in S. cerevisiae. These enzymes, named Yeh1p, Yeh2p and Tgl1p, are paralogues of the mammalian acid lipase family. The role of these proteins in biosynthesis and mobilization of TAG and STE, and the regulation of these processes will be discussed in this minireview.

  5. Critical temperatures and a critical chain length in saturated diacylphosphatidylcholines: calorimetric, ultrasonic and Monte Carlo simulation study of chain-melting/ordering in aqueous lipid dispersions.

    PubMed

    Kharakoz, Dmitry P; Panchelyuga, Maria S; Tiktopulo, Elizaveta I; Shlyapnikova, Elena A

    2007-12-01

    Chain-ordering/melting transition in a series of saturated diacylphosphatidylcholines (PCs) in aqueous dispersions have been studied experimentally (calorimetric and ultrasonic techniques) and theoretically (an Ising-like lattice model). The shape of the calorimetric curves was compared with the theoretical data and interpreted in terms of the lateral interactions and critical temperatures determined for each lipid studied. A critical chain length has been found (between 16 and 17 C-atoms per chain) which subdivides PCs into two classes with different phase behavior. In shorter lipids, the transition takes place above their critical temperatures meaning that this is an intrinsically continuous transition. In longer lipids, the transition occurs below the critical temperatures of the lipids, meaning that the transition is intrinsically discontinuous (first-order). This conclusion was supported independently by the ultrasonic relaxation sensitive to density fluctuations. Interestingly, it is this length that is the most abundant among the saturated chains in biological membranes.

  6. General synthesis and physicochemical characterisation of a series of peptide-mimic lysine-based amino-functionalised lipids.

    PubMed

    Wölk, Christian; Drescher, Simon; Meister, Annette; Blume, Alfred; Langner, Andreas; Dobner, Bodo

    2013-09-16

    A series of novel malonic acid diamides (second generation) with two long hydrophobic alkyl chains and an alkaline polar head group was synthesised and characterised as a new class of amino-functionalised lipids. These peptide-mimic lipids are suitable for polynucleotide transfer. The lipids bear a novel backbone consisting of a lysine unit and a malonic acid unit. Six different head-group structures, which vary in size and number of amino groups that can be protonated, were attached to the backbone structure. Furthermore, different alkyl chains were used to build the lipophilic part (namely tetradecyl, hexadecyl, and oleyl). Phase transitions of the new compounds in aqueous dispersions at pH 10 were analysed and discussed in terms of head group and alkyl chain variations. The shape and size of the formed aggregates of selected lipid dispersions were investigated by dynamic light scattering and transmission electron microscopy. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Molecular recognition of microbial lipid-based antigens by T cells.

    PubMed

    Gras, Stephanie; Van Rhijn, Ildiko; Shahine, Adam; Le Nours, Jérôme

    2018-05-01

    The immune system has evolved to protect hosts from pathogens. T cells represent a critical component of the immune system by their engagement in host defence mechanisms against microbial infections. Our knowledge of the molecular recognition by T cells of pathogen-derived peptidic antigens that are presented by the major histocompatibility complex glycoproteins is now well established. However, lipids represent an additional, distinct chemical class of molecules that when presented by the family of CD1 antigen-presenting molecules can serve as antigens, and be recognized by specialized subsets of T cells leading to antigen-specific activation. Over the past decades, numerous CD1-presented self- and bacterial lipid-based antigens have been isolated and characterized. However, our understanding at the molecular level of T cell immunity to CD1 molecules presenting microbial lipid-based antigens is still largely unexplored. Here, we review the insights and the molecular basis underpinning the recognition of microbial lipid-based antigens by T cells.

  8. In Vitro Reconstitution of Autophagosome-Lysosome Fusion.

    PubMed

    Diao, J; Li, L; Lai, Y; Zhong, Q

    2017-01-01

    SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins are a highly regulated class of membrane proteins lying in the center of membrane fusion. In conjunction with accessory proteins, SNAREs drive efficient merger of two distinct lipid bilayers into one interconnected structure. This chapter describes our fluorescence resonance energy transfer (FRET)-based proteoliposome fusion assays for the roles of various SNARE proteins, accessory proteins, and effects of different lipid compositions on membrane fusion involved in autophagy. © 2017 Elsevier Inc. All rights reserved.

  9. Effects of β-hydroxy-β-methylbutyrate on skeletal muscle mitochondrial content and dynamics, and lipids after 10 days of bed rest in older adults.

    PubMed

    Standley, Robert A; Distefano, Giovanna; Pereira, Suzette L; Tian, Min; Kelly, Owen J; Coen, Paul M; Deutz, Nicolaas E P; Wolfe, Robert R; Goodpaster, Bret H

    2017-11-01

    Loss of muscle mass during periods of disuse likely has negative health consequences for older adults. We have previously shown that β-hydroxy-β-methylbutyrate (HMB) supplementation during 10 days of strict bed rest (BR) attenuates the loss of lean mass in older adults. To elucidate potential molecular mechanisms of HMB effects on muscle during BR and resistance training rehabilitation (RT), we examined mediators of skeletal muscle mitochondrial dynamics, autophagy and atrophy, and intramyocellular lipids. Nineteen older adults (60-76 yr) completed 10 days BR followed by 8-wk RT rehabilitation. Subjects were randomized to either HMB (3 g/day HMB; n = 11) or control (CON; n = 8) groups. Skeletal muscle cross-sectional area (CSA) was determined by histology from percutaneous vastus lateralis biopsies. We measured protein markers of mitochondrial content [oxidative phosphorylation (OXPHOS)], fusion and fission (MFN2, OPA1, FIS1, and DRP1), autophagy (Beclin1, LC3B, and BNIP3), and atrophy [poly-ubiquinated proteins (poly-ub)] by Western blot. Fatty acid composition of several lipid classes in skeletal muscle was measured by infusion-MS analysis. Poly-ub proteins and OXPHOS complex I increased in both groups following BR ( P < 0.05, main effect for time), and muscle triglyceride content tended to increase following BR in the HMB group ( P = 0.055). RT rehabilitation increased OXPHOS complex II protein ( P < 0.05), and total OXPHOS content tended ( P = 0.0504) to be higher in HMB group. In addition, higher levels of DRP1 and MFN2 were maintained in the HMB group after RT ( P < 0.05). BNIP3 and poly-ub proteins were significantly reduced following rehabilitation in both groups ( P < 0.05). Collectively, these data suggest that HMB influences mitochondrial dynamics and lipid metabolism during disuse atrophy and rehabilitation. NEW & NOTEWORTHY Mitochondrial content and dynamics remained unchanged over 10 days of BR in older adults. HMB stimulated intramuscular lipid storage as triacylglycerol following 10 days of bed rest (BR) and maintained higher mitochondrial OXPHOS content and dynamics during the 8-wk resistance exercise rehabilitation program. Copyright © 2017 the American Physiological Society.

  10. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation.

    PubMed

    Porras, David; Nistal, Esther; Martínez-Flórez, Susana; Pisonero-Vaquero, Sandra; Olcoz, José Luis; Jover, Ramiro; González-Gallego, Javier; García-Mediavilla, María Victoria; Sánchez-Campos, Sonia

    2017-01-01

    Gut microbiota is involved in obesity, metabolic syndrome and the progression of nonalcoholic fatty liver disease (NAFLD). It has been recently suggested that the flavonoid quercetin may have the ability to modulate the intestinal microbiota composition, suggesting a prebiotic capacity which highlights a great therapeutic potential in NAFLD. The present study aims to investigate benefits of experimental treatment with quercetin on gut microbial balance and related gut-liver axis activation in a nutritional animal model of NAFLD associated to obesity. C57BL/6J mice were challenged with high fat diet (HFD) supplemented or not with quercetin for 16 weeks. HFD induced obesity, metabolic syndrome and the development of hepatic steatosis as main hepatic histological finding. Increased accumulation of intrahepatic lipids was associated with altered gene expression related to lipid metabolism, as a result of deregulation of their major modulators. Quercetin supplementation decreased insulin resistance and NAFLD activity score, by reducing the intrahepatic lipid accumulation through its ability to modulate lipid metabolism gene expression, cytochrome P450 2E1 (CYP2E1)-dependent lipoperoxidation and related lipotoxicity. Microbiota composition was determined via 16S ribosomal RNA Illumina next-generation sequencing. Metagenomic studies revealed HFD-dependent differences at phylum, class and genus levels leading to dysbiosis, characterized by an increase in Firmicutes/Bacteroidetes ratio and in Gram-negative bacteria, and a dramatically increased detection of Helicobacter genus. Dysbiosis was accompanied by endotoxemia, intestinal barrier dysfunction and gut-liver axis alteration and subsequent inflammatory gene overexpression. Dysbiosis-mediated toll-like receptor 4 (TLR-4)-NF-κB signaling pathway activation was associated with inflammasome initiation response and reticulum stress pathway induction. Quercetin reverted gut microbiota imbalance and related endotoxemia-mediated TLR-4 pathway induction, with subsequent inhibition of inflammasome response and reticulum stress pathway activation, leading to the blockage of lipid metabolism gene expression deregulation. Our results support the suitability of quercetin as a therapeutic approach for obesity-associated NAFLD via its anti-inflammatory, antioxidant and prebiotic integrative response. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Antimicrobial Lipids: Novel Innate Defense Molecules are Elevated in Sinus Secretions of Patients with Chronic Rhinosinusitis

    PubMed Central

    Lee, Jivianne T.; Jansen, Mike; Yilma, Abebayehu N.; Nguyen, Angels; Desharnais, Robert; Porter, Edith

    2010-01-01

    Introduction Airway secretions possess intrinsic antimicrobial properties that contribute to the innate host defense of the respiratory tract. These microbicidal capabilities have largely been attributed to the presence of antibacterial polypeptides. However, recent investigation has demonstrated that host-derived lipids including cholesteryl esters also exhibit antimicrobial properties. The purpose of this study was to determine whether sinus secretions contain such antimicrobial lipids and to compare the lipid composition in patients with and without chronic rhinosinusitis (CRS). Methods Maxillary sinus fluid was obtained via antral lavage from subjects with (7) and without (9) a history of CRS. Following specimen collection, total lipid was extracted according to Bligh & Dyer and lipid profiles were obtained by reverse phase HPLC on an amide-embedded C18 column. In addition, the neutrophil specific antimicrobial peptides HNP1-3 were quantified by immunoblotting. Results Lipids were identified in the maxillary sinus secretions of patients with and without CRS including cholesteryl esters. However, levels of lipid composition differed between the two groups with CRS patients exhibiting greater amounts of all classes of lipids; reaching over 10-fold higher concentration when compared to nonCRS patients. This increase was independent of HNP1-3 content. Conclusions Sinus secretions of patients with CRS appear to demonstrate elevated levels of antimicrobial lipids compared to controls independent from neutrophil influx. This upregulation suggests that host-derived lipids act as mediators of mucosal immunity in CRS. Further study is necessary to determine if such antimicrobial lipids function alone or synergistically with antibacterial peptides in conferring such inherent microbicidal properties. PMID:20338107

  12. Major Alterations of Phosphatidylcholine and Lysophosphotidylcholine Lipids in the Substantia Nigra Using an Early Stage Model of Parkinson’s Disease

    PubMed Central

    Farmer, Kyle; Smith, Catherine A.; Hayley, Shawn; Smith, Jeffrey

    2015-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal pathway, where patients do not manifest motor symptoms until >50% of neurons are lost. Thus, it is of great importance to determine early neuronal changes that may contribute to disease progression. Recent attention has focused on lipids and their role in pro- and anti-apoptotic processes. However, information regarding the lipid alterations in animal models of PD is lacking. In this study, we utilized high performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and novel HPLC solvent methodology to profile phosphatidylcholines and sphingolipids within the substantia nigra. The ipsilateral substantia nigra pars compacta was collected from rats 21 days after an infusion of 6-hydroxydopamine (6-OHDA), or vehicle into the anterior dorsal striatum. We identified 115 lipid species from their mass/charge ratio using the LMAPS Lipid MS Predict Database. Of these, 19 lipid species (from phosphatidylcholine and lysophosphotidylcholine lipid classes) were significantly altered by 6-OHDA, with most being down-regulated. The two lipid species that were up-regulated were LPC (16:0) and LPC (18:1), which are important for neuroinflammatory signalling. These findings provide a first step in the characterization of lipid changes in early stages of PD-like pathology and could provide novel targets for early interventions in PD. PMID:26274953

  13. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease.

    PubMed

    Fessler, Michael B; Summer, Ross S

    2016-05-01

    The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.

  14. Surfactants have multi-fold effects on skin barrier function.

    PubMed

    Lemery, Emmanuelle; Briançon, Stéphanie; Chevalier, Yves; Oddos, Thierry; Gohier, Annie; Boyron, Olivier; Bolzinger, Marie-Alexandrine

    2015-01-01

    The stratum corneum (SC) is responsible for the barrier properties of the skin and the role of intercorneocyte skin lipids, particularly their structural organization, in controlling SC permeability is acknowledged. Upon contacting the skin, surfactants interact with the SC components leading to barrier damage. To improve knowledge of the effect of several classes of surfactant on skin barrier function at three different levels. The influence of treatments of human skin explants with six non-ionic and four ionic surfactant solutions on the physicochemical properties of skin was investigated. Skin surface wettability and polarity were assessed through contact angle measurements. Infrared spectroscopy allowed monitoring the SC lipid organization. The lipid extraction potency of surfactants was evaluated thanks to HPLC-ELSD assays. One anionic and one cationic surfactant increased the skin polarity by removing the sebaceous and epidermal lipids and by disturbing the organization of the lipid matrix. Another cationic surfactant displayed a detergency effect without disturbing the skin barrier. Several non-ionic surfactants disturbed the lipid matrix organization and modified the skin wettability without any extraction of the skin lipids. Finally two non-ionic surfactants did not show any effect on the investigated parameters or on the skin barrier. The polarity, the organization of the lipid matrix and the lipid composition of the skin allowed describing finely how surfactants can interact with the skin and disturb the skin barrier function.

  15. Localizing the lipid products of PI3Kγ in neutrophils.

    PubMed

    Norton, Laura; Lindsay, Yvonne; Deladeriere, Arnaud; Chessa, Tamara; Guillou, Hervé; Suire, Sabine; Lucocq, John; Walker, Simon; Andrews, Simon; Segonds-Pichon, Anne; Rausch, Oliver; Finan, Peter; Sasaki, Takehiko; Du, Cheng-Jin; Bretschneider, Till; Ferguson, G John; Hawkins, Phillip T; Stephens, Len

    2016-01-01

    Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migration in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)P3 and PtdIns(3,4)P2 preferentially accumulate near to the leading edge of migrating cells and are thought to act as an important cue organizing molecular and morphological polarization. We have investigated the distribution and accumulation of these lipids independently in mouse neutrophils using eGFP-PH reportersand electron microscopy (EM). We found that authentic mouse neutrophils rapidly polarized their Class I PI3K signalling, as read-out by eGFP-PH reporters, both at the up-gradient leading edge in response to local stimulation with fMLP as well as spontaneously and randomly in response to uniform stimulation. EM studies revealed these events occurred at the plasma membrane, were dominated by accumulation of PtdIns(3,4,5)P3, but not PtdIns(3,4)P2, and were dependent on PI3Kγ and its upstream activation by both Ras and Gβγs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.).

    PubMed

    Belkadhi, Aïcha; De Haro, Antonio; Obregon, Sara; Chaïbi, Wided; Djebali, Wahbi

    2015-10-01

    Salicylic acid (SA) promotes plant defense responses against toxic metal stresses. The present study addressed the hypothesis that 8-h SA pretreatment, would alter membrane lipids in a way that would protect against Cd toxicity. Flax seeds were pre-soaked for 8h in SA (0, 250 and 1000µM) and then subjected, at seedling stage, to cadmium (Cd) stress. At 100µM CdCl2, significant decreases in the percentages of phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and monogalactosyldiacylglycerol (MGDG) and changes in their relative fatty acid composition were observed in Cd-treated roots in comparison with controls. However, in roots of 8-h SA pretreated plantlets, results showed that the amounts of PC and PE were significantly higher as compared to non-pretreated plantlets. Additionally, in both lipid classes, the proportion of linolenic acid (18:3) increased upon the pretreatment with SA. This resulted in a significant increase in the fatty acid unsaturation ratio of the root PC and PE classes. As the exogenous application of SA was found to be protective of flax lipid metabolism, the possible mechanisms of protection against Cd stress in flax roots were discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    PubMed Central

    Fan, Yuting; Yokoyama, Wally; Yi, Jiang

    2017-01-01

    The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM) of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery. PMID:29072633

  18. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver.

    PubMed

    Kersten, Sander; Stienstra, Rinke

    2017-05-01

    The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is abundantly expressed in liver. PPARα is activated by fatty acids and various other lipid species, as well as by a class of chemicals referred to as peroxisome proliferators. Studies in mice have shown that PPARα serves as the master regulator of hepatic lipid metabolism during fasting. In addition, PPARα suppresses inflammation and the acute phase response. Comparatively little is known about PPARα in human liver. Here, an overview is provided of the role and regulation of PPARα in human liver. The main outcomes are: 1) the level of PPARA mRNA expression in human and mouse liver is similar. 2) Expression of PPARA in human liver is reduced in patients with non-alcoholic steatohepatitis or infected with the hepatitis C virus. 3) PPARα in human liver is able to effectively induce the expression of numerous genes involved in numerous lipid metabolic pathways, including microsomal, peroxisomal and mitochondrial fatty acid oxidation, fatty acid binding and activation, fatty acid elongation and desaturation, synthesis and breakdown of triglycerides and lipid droplets, lipoprotein metabolism, gluconeogenesis, bile acid metabolism, and various other metabolic pathways and genes. 4) PPARα activation in human liver causes the down-regulation of a large number of genes involved in various immunity-related pathways. 5) Peroxisome proliferators do not promote tumour formation in human liver as opposed to mouse liver because of structural and functional differences between human and mouse PPARα. 6) In addition to helping to correct dyslipidemia, PPARα agonists may hold promise as a therapy for patients with cholestatic liver diseases, non-alcoholic fatty liver disease, and/or type 2 diabetes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrablik, Tracy L.; Petyuk, Vladislav A.; Larson, Emily M.

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type andmore » high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.« less

  20. Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180T grown photoautotrophically and photoheterotrophically.

    PubMed

    Tang, T; Mohr, W; Sattin, S R; Rogers, D R; Girguis, P R; Pearson, A

    2017-03-01

    Anoxygenic, photosynthetic bacteria are common at redox boundaries. They are of interest in microbial ecology and geosciences through their role in linking the carbon, sulfur, and iron cycles, yet much remains unknown about how their flexible carbon metabolism-permitting either autotrophic or heterotrophic growth-is recorded in the bulk sedimentary and lipid biomarker records. Here, we investigated patterns of carbon isotope fractionation in a model photosynthetic sulfur-oxidizing bacterium, Allochromatium vinosum DSM180 T . In one treatment, A. vinosum was grown with CO 2 as the sole carbon source, while in a second treatment, it was grown on acetate. Different intracellular isotope patterns were observed for fatty acids, phytol, individual amino acids, intact proteins, and total RNA between the two experiments. Photoautotrophic CO 2 fixation yielded typical isotopic ordering for the lipid biomarkers: δ 13 C values of phytol > n-alkyl lipids. In contrast, growth on acetate greatly suppressed intracellular isotopic heterogeneity across all molecular classes, except for a marked 13 C-depletion in phytol. This caused isotopic "inversion" in the lipids (δ 13 C values of phytol < n-alkyl lipids). The finding suggests that inverse δ 13 C patterns of n-alkanes and pristane/phytane in the geologic record may be at least in part a signal for photoheterotrophy. In both experimental scenarios, the relative isotope distributions could be predicted from an isotope flux-balance model, demonstrating that microbial carbon metabolisms can be interrogated by combining compound-specific stable isotope analysis with metabolic modeling. Isotopic differences among molecular classes may be a means of fingerprinting microbial carbon metabolism, both in the modern environment and the geologic record. © 2017 John Wiley & Sons Ltd.

  1. Lipidomic Profiling Links the Fanconi Anemia Pathway to Glycosphingolipid Metabolism in Head and Neck Cancer Cells.

    PubMed

    Zhao, Xueheng; Brusadelli, Marion G; Sauter, Sharon; Butsch Kovacic, Melinda; Zhang, Wujuan; Romick-Rosendale, Lindsey E; Lambert, Paul F; Setchell, Kenneth D R; Wells, Susanne I

    2018-06-01

    Purpose: Mutations in Fanconi anemia (FA) genes are common in sporadic squamous cell carcinoma of the head and neck (HNSCC), and we have previously demonstrated that FA pathway depletion in HNSCC cell lines stimulates invasion. The goal of our studies was to use a systems approach in order to define FA pathway-dependent lipid metabolism and to extract lipid-based signatures and effectors of invasion in FA-deficient cells. Experimental Design: We subjected FA-isogenic HNSCC keratinocyte cell lines to untargeted and targeted lipidomics analyses to discover novel biomarkers and candidate therapeutic targets in FA-deficient cells. Cellular invasion assays were carried out in the presence and absence of N-butyldeoxynojirimycin (NB-DNJ), a biosynthetic inhibitor of the newly identified class of gangliosides, to investigate the requirement of ganglioside upregulation in FA-deficient HNSCC cells. Results: The most notable element of the lipid profiling results was a consistent elevation of glycosphingolipids, and particularly the accumulation of gangliosides. Conversely, repression of this same class of lipids was observed upon genetic correction of FA patient-derived HNSCC cells. Functional studies demonstrate that ganglioside upregulation is required for HNSCC cell invasion driven by FA pathway loss. The motility of nontransformed keratinocytes in response to FA loss displayed a similar dependence, thus supporting early and late roles for the FA pathway in controlling keratinocyte invasion through lipid regulation. Conclusions: Elevation of glycosphingolipids including the ganglioside GM3 in response to FA loss stimulates invasive characteristics of immortalized and transformed keratinocytes. An inhibitor of glycosphingolipid biosynthesis NB-DNJ attenuates invasive characteristics of FA-deficient HNSCC cells. Clin Cancer Res; 24(11); 2700-9. ©2018 AACR . ©2018 American Association for Cancer Research.

  2. Lipids in the cell: organisation regulates function.

    PubMed

    Santos, Ana L; Preta, Giulio

    2018-06-01

    Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.

  3. Thermotropic phase transitions in model membranes of the outer skin layer based on ceramide 6

    NASA Astrophysics Data System (ADS)

    Gruzinov, A. Yu.; Kiselev, M. A.; Ermakova, E. V.; Zabelin, A. V.

    2014-01-01

    The lipid intercellular matrix stratum corneum of the outer skin layer is a multilayer membrane consisting of a complex mixture of different lipids: ceramides, fatty acids, cholesterol, and its derivatives. The basis of the multilayer membrane is the lipid bilayer, i.e., a two-dimensional liquid crystal. Currently, it is known that the main way of substance penetration through the skin is the lipid matrix. The complexity of the actual biological system does not allow reliable direct study of its properties; therefore, system modeling is often used. Phase transitions in the lipid system whose composition simulates the native lipid matrix are studied by the X-ray synchrotron radiation diffraction method.

  4. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    PubMed Central

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  5. Biologic activity of porphyromonas endodontalis complex lipids.

    PubMed

    Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C

    2014-09-01

    Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Lipids and fatty acids in roasted chickens.

    PubMed

    Souza, S A; Visentainer, J V; Matsushita, M; Souza, N E

    1999-09-01

    Total lipids from meat portions of breast, thigh, wing, side and back with and without skin from 10 roasted chickens were extracted with chloroform and methanol and gravimetrically determined, and their fatty acids were analysed as methyl esters by gaseous chromatography, using a flame ionization detector and capillary column. The main fatty acids found were: C16:0, C18:1 omega 9, and C18:2 omega 6. The average ratio observed between PUFA/SFA was of 0.98, mainly due to the great concentration of the C18:2 omega 6 fatty acid, with an average of 26.75%. Regarding to the lipids content, the skinless breast showed the lowest content, 0.78 g/100 g, while the back with skin was the one with the highest content, 12.13 g/100 g except for the pure skin, with 26.54 grams of lipids by 100 grams.

  7. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  8. Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding.

    PubMed

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes.

  9. Antimicrobial lipids: novel innate defense molecules are elevated in sinus secretions of patients with chronic rhinosinusitis.

    PubMed

    Lee, Jivianne T; Jansen, Mike; Yilma, Abebayehu N; Nguyen, Angels; Desharnais, Robert; Porter, Edith

    2010-01-01

    Airway secretions possess intrinsic antimicrobial properties that contribute to the innate host defense of the respiratory tract. These microbicidal capabilities have largely been attributed to the presence of antibacterial polypeptides. However, recent investigation has indicated that host-derived lipids including cholesteryl esters also exhibit antimicrobial properties. The purpose of this study was to determine whether sinus secretions contain such antimicrobial lipids and to compare the lipid composition in patients with and without chronic rhinosinusitis (CRS). Maxillary sinus fluid was obtained via antral lavage from subjects with (seven patients) and without (nine patients) a history of CRS. After specimen collection, total lipid was extracted according to Bligh and Dyer (Bligh EG and Dyer WJ, A rapid method of total lipid extraction and purification, Can J Biochem Physiol 37:911-918, 1959) and lipid profiles were obtained by reverse phase high-performance liquid chromatography on an amide-embedded C18 column. In addition, the neutrophil-specific antimicrobial peptides human neutrophil peptides 1-3 (HNP1-3) were quantified by Western immunoblotting. Lipids, including cholesteryl esters, were identified in the maxillary sinus secretions of patients with and without CRS. However, levels of lipid composition differed between the two groups with CRS patients exhibiting greater amounts of all classes of lipids, reaching over 10-fold higher concentration when compared with non-CRS patients. This increase was independent of HNP1-3 content. Sinus secretions of patients with CRS appear to show elevated levels of antimicrobial lipids compared with controls independent from neutrophil influx. This up-regulation suggests that host-derived lipids act as mediators of mucosal immunity in CRS. Further study is necessary to determine if such antimicrobial lipids function alone or synergistically with antibacterial peptides in conferring such inherent microbicidal properties.

  10. Intermolecular Interaction between Phosphatidylcholine and Sulfobetaine Lipid: A Combination of Lipids with Antiparallel Arranged Headgroup Charge.

    PubMed

    Aikawa, Tatsuo; Yokota, Keisuke; Kondo, Takeshi; Yuasa, Makoto

    2016-10-05

    Intermolecular interactions between lipid molecules are important when designing lipid bilayer interfaces, which have many biomedical applications such as in drug delivery vehicles and biosensors. Phosphatidylcholine, a naturally occurring lipid, is the most common lipid found in organisms. Its chemical structure has a negatively charged phosphate linkage, adjacent to an ester linkage in a glycerol moiety, and a positively charged choline group, placed at the terminus of the molecule. Recently, several types of synthetic lipids that have headgroups with the opposite charge to that of phosphatidylcholine have emerged; that is, a positively charged ammonium group is present adjacent to the ester linkage in their glycerol moiety and a negatively charged group is placed at their terminus. These types of lipids constitute a new class of soft material. The aim of this study was to determine how such lipids, with antiparallel arranged headgroup charge, interact with naturally occurring phosphatidylcholines. We synthesized 1,2-dipalmitoyl-sn-glycero-3-sulfobetaine (DPSB) to represent a reversed-head lipid; 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was used to represent a naturally occurring phospholipid. The intermolecular interaction between these lipids was investigated using surface pressure-area (π-A) isotherms of the lipid monolayer at the air/water interface. We found that the extrapolated area and excess free energy of the mixed monolayer deviated negatively when compared with the ideal values from additivity. Moreover, differential scanning calorimetry of the lipid mixture in aqueous dispersion showed that the gel-to-liquid crystal transition temperature increased compared with that of each pure lipid composition. These results clearly indicate that DPSB preferably interacts with DPPC in the mixture. We believe that the attraction between the oppositely charged headgroups of these lipids reinforces the intermolecular interaction. Our results provide insight into the intermolecular interaction between phospholipids and reversed-head lipids, which may prove useful for the design of lipid-based materials in the future.

  11. Lipidomics by Supercritical Fluid Chromatography

    PubMed Central

    Laboureur, Laurent; Ollero, Mario; Touboul, David

    2015-01-01

    This review enlightens the role of supercritical fluid chromatography (SFC) in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC). It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering) or highly specific (mass spectrometry) detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides) defined by the LIPID MAPS consortium. PMID:26090714

  12. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.

    PubMed

    Ejsing, Christer S; Sampaio, Julio L; Surendranath, Vineeth; Duchoslav, Eva; Ekroos, Kim; Klemm, Robin W; Simons, Kai; Shevchenko, Andrej

    2009-02-17

    Although the transcriptome, proteome, and interactome of several eukaryotic model organisms have been described in detail, lipidomes remain relatively uncharacterized. Using Saccharomyces cerevisiae as an example, we demonstrate that automated shotgun lipidomics analysis enabled lipidome-wide absolute quantification of individual molecular lipid species by streamlined processing of a single sample of only 2 million yeast cells. By comparative lipidomics, we achieved the absolute quantification of 250 molecular lipid species covering 21 major lipid classes. This analysis provided approximately 95% coverage of the yeast lipidome achieved with 125-fold improvement in sensitivity compared with previous approaches. Comparative lipidomics demonstrated that growth temperature and defects in lipid biosynthesis induce ripple effects throughout the molecular composition of the yeast lipidome. This work serves as a resource for molecular characterization of eukaryotic lipidomes, and establishes shotgun lipidomics as a powerful platform for complementing biochemical studies and other systems-level approaches.

  13. [Medicines interacting with mitochondria: anti-ischemic effects of trimetazidine].

    PubMed

    Spedding, M; Tillement, J P; Morin, D; Le Ridant, A

    1999-01-01

    While mitochondria are key factors in energy production in cells they are also key factors in their life cycle because under certain circumstances they can provoke cellular apoptosis. Some 45 per cent of myocardial volume is taken up by mitochondria. Furthermore, mitochondria are key to many aspects of neuronal activity and can trigger neurodegenerative processes. Lipid oxidation is responsible for the production of much ATP resynthesis in the heart but this process is less oxygen efficient than glucose oxidation. During ischaemia, lipid oxidation is suddenly blocked, but markedly increased during reperfusion, causing accumulation of potentially toxic metabolites (acylcarnitines, acyl-CoA, lysophospholipids). These metabolites can change calcium handling, inducing arrhythmias. Trimetazidine, and another product in development, ranolazine, by inhibiting lipid oxidation favours glucose oxidation and inhibits the production of deleterious lipid metabolites. Thus this class of drugs can have beneficial effects on myocardial metabolism without direct haemodynamic effects.

  14. GDSL lipases modulate immunity through lipid homeostasis in rice

    PubMed Central

    Lam, Sin Man; Tong, Xiaohong; Liu, Jiyun; Wang, Xin; Shui, Guanghou

    2017-01-01

    Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity. PMID:29131851

  15. Utilization of Mytilus digestive gland cells for the in vitro screening of potential metabolic disruptors in aquatic invertebrates.

    PubMed

    Balbi, Teresa; Ciacci, Caterina; Grasselli, Elena; Smerilli, Arianna; Voci, Adriana; Canesi, Laura

    2017-01-01

    In vertebrate systems, many endocrine disruptors (EDs) can also interfere with energy and lipid metabolism, thus acting as metabolic disruptors. At the cellular level, these effects are mainly mediated by interactions with nuclear receptors/transcription factors, leading to the modulation of genes involved in lipid homeostasis, as well as by rapid, receptor-independent pathways. Several potential metabolic disruptors are found in aquatic environments. In fish, different EDs have been shown to affect hepatic lipid homeostasis both in vivo and in vitro. However, little information is available in aquatic invertebrates due to our poor knowledge of the regulatory pathways of lipid metabolism. In this work, primary cell cultures from the digestive gland of the bivalve Mytilus galloprovincialis were utilized to investigate the effects of model EDs (bisphenol A (BPA) and perfluorooctane sulphonate (PFOS)) on lipid homeostasis. Both compounds (at 24 and 3h of exposure) increased intracellular lipid and tryglyceride-TAG content, with strongest effects of PFOS at 10 -7 M. Acyl-CoA oxidase activity was unaffected, whereas some changes in the activity of glycolytic, antioxidant/biotransformation enzymes were observed; however, no clear relationship was found with lipid accumulation. Evaluation of mitochondrial membrane potential Δψm and determination of extracellular TAG content indicate that PFOS interferes with mitochondrial function and lipid secretion, whereas BPA mainly affects lipid secretion. Experiments with specific inhibitors showed that activation of PI-3 kinase and extracellularly regulated mitogen-activated protein kinase (ERK MAPK) plays a key role in mediating lipid accumulation. Mussel digestive gland cells represent a simple in vitro model for screening the metabolic effects of EDs in marine invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Comparative lipidomics and proteomics analysis of platelet lipid rafts using different detergents.

    PubMed

    Rabani, Vahideh; Davani, Siamak; Gambert-Nicot, Ségolène; Meneveau, Nicolas; Montange, Damien

    2016-11-01

    Lipid rafts play a pivotal role in physiological functions of platelets. Their isolation using nonionic mild detergents is considered as the gold standard method, but there is no consensual detergent for lipid raft studies. We aimed to investigate which detergent is the most suitable for lipid raft isolation from platelet membrane, based on lipidomics and proteomics analysis. Platelets were obtained from healthy donors. Twelve sucrose fractions were extracted by three different detergents, namely Brij 35, Lubrol WX, and Triton X100, at 0.05% and 1%. After lipidomics analysis and determination of fractions enriched in cholesterol (Ch) and sphingomyelin (SM), proteomics analysis was performed. Lipid rafts were mainly observed in 1-4 fractions, and non-rafts were distributed on 5-12 fractions. Considering the concentration of Ch and SM, Lubrol WX 1% and Triton X100 1% were more suitable detergents as they were able to isolate lipid raft fractions that were more enriched than non-raft fractions. By proteomics analysis, overall, 822 proteins were identified in platelet membrane. Lipid raft fractions isolated with Lubrol WX 0.05% and Triton X100 1% contained mainly plasma membrane proteins. However, only Lubrol WX 0.05 and 1% and Triton X100 1% were able to extract non-denaturing proteins with more than 10 transmembrane domains. Our results suggest that Triton X100 1% is the most suitable detergent for global lipid and protein studies on platelet plasma membrane. However, the detergent should be adapted if investigation of an association between specific proteins and lipid rafts is planned.

  17. Lipid and protein accumulation in developing seeds of three lupine species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet.

    PubMed

    Borek, Slawomir; Pukacka, Stanisława; Michalski, Krzysztof; Ratajczak, Lech

    2009-01-01

    A comparative study was carried out on the dynamics of lipid accumulation in developing seeds of three lupine species. Lupine seeds differ in lipid content; yellow lupine (Lupinus luteus L.) seeds contain about 6%, white lupine (Lupinus albus L.) 7-14%, and Andean lupine (Lupinus mutabilis Sweet) about 20% of lipids by dry mass. Cotyledons from developing seeds were isolated and cultured in vitro for 96 h on Heller medium with 60 mM sucrose (+S) or without sucrose (-S). Each medium was additionally enriched with 35 mM asparagine or 35 mM NaNO3. Asparagine caused an increase in protein accumulation and simultaneously decreased the lipid content, but nitrate increased accumulation of both protein and lipid. Experiments with [1-14C]acetate and [2-14C]acetate showed that the decrease in lipid accumulation in developing lupine seeds resulted from exhaustion of lipid precursors rather than from degradation or modification of the enzymatic apparatus. The carbon atom from the C-1 position of acetate was liberated mainly as CO2, whereas the carbon atom from the C-2 position was preferentially used in anabolic pathways. The dominant phospholipid in the investigated lupine seed storage organs was phosphatidylcholine. The main fatty acid in yellow lupine cotyledons was linoleic acid, in white lupine it was oleic acid, and in Andean lupine it was both linoleic and oleic acids. The relationship between stimulation of lipid and protein accumulation by nitrate in developing lupine cotyledons and enhanced carbon flux through glycolysis caused by the inorganic nitrogen form is discussed.

  18. Lipids in the proximal convoluted tubule of the cat kidney and the reabsorption of cholesterol.

    PubMed

    Bargmann, W; Krisch, B; Leonhardt, H

    1977-02-14

    Lipid deposits in the cat kidney are mainly located in the epithelium of the proximal tubuli contorti, particularly in the pars contorta. As the amount of fatty acids in the blood of renal arteries is higher than in renal veins, the lipid inclusions are likely to be formed in the proximal convoluted tubule. Whether fat occurring in the urine has been released from the nephron epithelium and the mode of this release remains obscure. The structural equivalent of lipid extrusion into the tubules has not been observed. Components of the tubular lipids include triglycerides, phosphoglycerides and cholesterol. The results of the digitonin-cholesterol reaction favour the assumption that cholesterol is eliminated in the glomeruli and pinocytotically reabsorbed by the brush border cells, this process possibly serving recycling of this compound. The dilated basal labyrinth and intercellular space contain perpendicularly oriented lipid accumulations that reach the basal lamina. The ultrastructure of the lipid storing cells of pars contorta reacting positively for phosphoglyceride and cholesterol is characterised mainly by bodies with marginal plates. As far as can be judged from their morphology, these bodies are interpreted as large peroxisomes. A special feature of the pars recta are dumbbell shaped bodies and elongated or cup-like mitochondria concentrically surrounding cytoplasmic areas, as well as a well-developed smooth ER. In what way the organelles of the brush border cells are involved in catabolic and anabolic processes as far as renal lipid metabolism is concerned remains to be answered.

  19. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2

    PubMed Central

    Ahmad, Irshad; Sharma, Anil K.; Daniell, Henry; Kumar, Shashi

    2015-01-01

    Summary Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 106 cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae. PMID:25403771

  20. A Molecular Probe for the Detection of Polar Lipids in Live Cells

    PubMed Central

    Bader, Christie A.; Shandala, Tetyana; Carter, Elizabeth A.; Ivask, Angela; Guinan, Taryn; Hickey, Shane M.; Werrett, Melissa V.; Wright, Phillip J.; Simpson, Peter V.; Stagni, Stefano; Voelcker, Nicolas H.; Lay, Peter A.; Massi, Massimiliano; Brooks, Douglas A.

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular compartments. PMID:27551717

  1. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.

    PubMed

    Panigrahi, Rashmi; Lemieux, M Joanne

    2015-01-01

    Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.

  2. Identification of plasmalogen in the gut of silkworm (Bombyx mori).

    PubMed

    Aboshi, Takako; Nishida, Ritsuo; Mori, Naoki

    2012-08-01

    Herbivorous insect species are constantly challenged with endogenous and exogenous oxidative stress. Consequently, they possess an array of antioxidant enzymes and small molecular weight antioxidants. Lipid-soluble small molecular antioxidants, such as tocopherols, have not been well studied in insects but may play important antioxidant roles. In this study, we identified plasmalogen phosphatidylethanolamines (pPEs) as well as α-, β/γ-, δ-tocopherol in the larvae of the silkworm Bombyx mori by LCMS analyses and examined their distribution. Plasmalogen are reported to inhibit the metal ion induced oxidation. The composition of tocopherols was the same among gut contents, gut tissues, and the other tissues. However, plasmalogens, a unique class of glycerophospholipids rich in polyunsaturated fatty acids and containing a vinyl ether bond at the sn-1 position, were mainly distributed in gut tissues. Plasmalogens might protect gut tissues from oxidation stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Nutritional lipid liver disease of grass carp Ctenopharyngodon idullus (C. et V.)

    NASA Astrophysics Data System (ADS)

    Lin, Ding; Mao, Yongqing; Cai, Fasheng

    1990-12-01

    The inadequate nutrient content of pellet feeds widely used in recent years in China for grass carp farming led to lipid liver degeneration in the fish. The present studies show that the pathological features of lipid liver disease are anaemia and hepatic ceroidosis. Other clinical features are; the ratio of liver to body weight exceeds 3% and lipid content exceeds 5%. Extreme infiltration of hepaiocytes by lipid results in the following deteriorative effects: swelling of the liver cells, increase of lipid droplets in the cytoplasm and dislocation of the nucleus, loss of cytoplasm staining affinity, and increased activities of GOT and GPT in serum. Lipid liver degeneration of grass carp can be divided into three stages: 1) deposition of liver lipid; 2) lipid infiltration of hepatic parenchyma; 3) atrophy of liver nucleus. The causes of lipid liver degeneration are complicated, but the main cause is assumed to be an imbalance of nutrients in daily feed and the lock of some lipotropic substances.

  4. Lipases as biocatalysts for the synthesis of structured lipids.

    PubMed

    Jala, Ram Chandra Reddy; Hu, Peng; Yang, Tiankui; Jiang, Yuanrong; Zheng, Yan; Xu, Xuebing

    2012-01-01

    Structured lipids (SL) are broadly referred to as modified or synthetic oils and fats or lipids with functional or pharmaceutical applications. Some structured lipids, such as triglycerides that contain both long-chain (mainly essential) fatty acids and medium- or short-chain fatty acids and also artificial products that mimic the structure of natural materials, namely human milk fat substitutes and cocoa butter equivalents, have been discussed. Further, other modified or synthetic lipids, such as structured phospholipids and synthetic phenolic lipids are also included in this chapter. For all the products described in this chapter, enzymatic production in industry has been already conducted in one way or another. Cocoa butter equivalents, healthy oil containing medium-chain fatty acids, phosphatidyl serine, and phenol lipids from enzyme technology have been reported for commercial operation. As the demand for better quality functional lipids is increasing, the production of structured lipids becomes an interesting area. Thus, in this chapter we have discussed latest developments as well as present industrial situation of all commercially important structured lipids.

  5. [Magneto-peloidotherapy and hydrogen sulfide baths for the correction of dyslipidemia and immune inflammation in patients with ischemic heart disease during resort treatment].

    PubMed

    Bykov, A T; Konovalova, M P; Khodasevich, L S

    2009-01-01

    A total of 55 patients with angina of effort (functional classes I-II) were treated by magneto-peloidotherapy and hydrogen sulfide baths. Effectiveness of he treatment was evaluated based on the lipid profile (total cholesterol, triglycerides, high and low density lipoproteides), atherogenicity index, lipid peroxidation, reactivity of the antioxidative defense system, and immune characteristics. Results of the study indicate that combination of magneto-peloidotherapy and hydrogen sulfide baths has hypolipidemic effect and reduces lipid peroxidation in the absence of activation of the antioxidative defense system and correction of the disbalanced immune system. Taken together, these effects decrease severity of the systemic inflammatory reaction and facilitate remission of the atherosclerotic process.

  6. Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease.

    PubMed

    Fuller, Maria; Rozaklis, Tina; Lovejoy, Melanie; Zarrinkalam, Krystyna; Hopwood, John J; Meikle, Peter J

    2008-04-01

    Gaucher disease (GD) is an inborn error of glycosphingolipid metabolism resulting from a deficiency of the lysosomal enzyme beta-glucosidase leading to the accumulation of glucosylceramide (GC) in lysosomes of affected cells. In order to determine the effect of GC accumulation on intracellular lipid content in fibroblasts from patients with GD, we measured individual species of ceramide, di- and trihexosylceramide, sphingomyelin, phosphatidylcholine, phosphatidylinositol and phosphatidylglycerol using electrospray ionisation-tandem mass spectrometry. The different subspecies of each lipid class correlated with each other and were summed to give total lipid concentrations. In addition to GC, we also noted secondary elevations in other lipids, especially in type 2 GD. Sub-cellular fractionation showed that GC was not confined to the lysosome but increased throughout the cell. The sequelae of extra-lysosomal accumulation may have implications in the pathogenic mechanisms of GD by interaction with biochemical and metabolic pathways located outside the lysosome. The elevation of ceramide in confluent type 2 GD fibroblasts redistributed from its primary site of accumulation in the lysosome to the endosomal region at four-weeks post-confluence. The accumulation of lipids in the endosome and lysosome suggests both impaired trafficking of lipids and reduced capacity of the lysosome to degrade lipids.

  7. Using ambient ozone for assignment of double bond position in unsaturated lipids.

    PubMed

    Ellis, Shane R; Hughes, Jessica R; Mitchell, Todd W; in het Panhuis, Marc; Blanksby, Stephen J

    2012-03-07

    Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.

  8. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.

    PubMed

    Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik

    2016-03-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. Mugil cephalus roe oil obtained by supercritical fluid extraction affects the lipid profile and viability in cancer HeLa and B16F10 cells.

    PubMed

    Rosa, A; Piras, A; Nieddu, M; Putzu, D; Cesare Marincola, F; Falchi, A M

    2016-09-14

    We explored the changes in viability and lipid profile occurring in cancer cells, murine melanoma cells (B16F10 cells) and human cervical carcinoma cells (HeLa cells), when exposed to 24 h-treatments with an n-3 PUFA-rich oil obtained by supercritical extraction with CO2 from Mugil cephalus processed roe (bottarga). The composition of the major lipid classes of bottarga oil was determined by the (13)C NMR technique. Reversed-phase HPLC with DAD/ELSD detection was performed to analyze cells' total fatty acid profile and the levels of phospholipids, total/free cholesterol, triacylglycerols, and cholesteryl esters. Cell-based fluorescent measurements of intracellular membranes and lipid droplets were performed on bottarga oil-treated cells using the Nile red staining technique. The treatments of cancer cells with bottarga oil reduced the viability and affected the fatty acid profile, with a significant n-3 PUFA increase in treated cells. Mullet roe oil uptake modulated the cancer cell lipid composition, inducing a remarkable incorporation of health beneficial n-3 PUFA in the polar and neutral lipid fractions. Bottarga oil treatment influenced the synthesis of intracellular membranes and accumulation of cytoplasmic lipid droplets in cancer cells.

  10. Mutual anti-oxidative effect of gossypol acetic acid and gossypol-iron complex on hepatic lipid peroxidation in male rats.

    PubMed

    El-Sharaky, A S; Wahby, M M; Bader El-Dein, M M; Fawzy, R A; El-Shahawy, I N

    2009-11-01

    Gossypol displays anticancer behavior and anti-fertility in males. Male rats were treated with either gossypol acetic acid (GAA) or gossypol-iron complex (GIC). Serum alanine transaminase (ALT) activity elevated of GAA. However, GIC-treated animals showed a decrease in hepatic glutathione (GSH) content with increased malondialdehyde (MDA) content. Whereas, GSH-Px specific activity increased in GAA group. GAA and GIC induce significant increases in the hepatic NEFA with remarkable decrease in the total saturated fatty acids with a significant increase of PUFA. Lipid peroxidation is inhibited by gossypol, which shield lipids against oxidative damage. Phenols are oxidized to phenoxy radicals, which do not permit anti-oxidation due to resonance stabilization. GAA stimulate hydroxyl radicals (()OH) generation and DNA damage. GAA and GIC produce increase in lipid peroxidation as proved by a steep rise in thiobarbituric acid reactive species (TBARS). Controversy of specificity of TBARS towards compounds other than MDA was reported. If TBARS increased, more specific assay to be employed. Assay of lipid classes and fatty acids pattern, reveled the significance of the technique in assessment of lipid peroxidation in tissues. GAA and GIC were powerful inhibitors of lipid peroxidation and exhibit pro- and antioxidant behavior, with less toxicity of GIC.

  11. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.

    PubMed

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi

    2016-04-19

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.

  12. Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides

    PubMed Central

    Takacs, Sara M.; Stuart, Jordyn M.; Basnet, Arjun; Raboune, Siham; Widlanski, Theodore S.; Doherty, Patrick; Bradshaw, Heather B.

    2013-01-01

    Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling. PMID:23874457

  13. Investigating Hydrophilic Pores in Model Lipid Bilayers using Molecular Simulations: Correlating Bilayer Properties with Pore Formation Thermodynamics

    PubMed Central

    Hu, Yuan; Sinha, Sudipta Kumar

    2015-01-01

    Cell-penetrating and antimicrobial peptides show remarkable ability to translocate across physiological membranes. Along with factors such as electric potential induced-perturbations of membrane structure and surface tension effects, experiments invoke pore-like membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a non-trivial free energy cost, thus necessitating consideration of the factors associated with pore formation and attendant free energetics. Due to experimental and modeling challenges related to the long timescales of the translocation process, we use umbrella-sampling molecular dynamics simulations with a lipid-density based order parameter to investigate membrane pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of head-groups, charge states, acyl chain lengths and saturation. We probe the dependence of pore-formation barriers on area per lipid, lipid bilayer thickness, membrane bending rigidities in three different lipid classes. The pore formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. Pore formation free energy is higher in peptide-lipid systems relative to the peptide-free lipid systems due to penalties to maintain solvation of charged hydrophilic solutes within the membrane environment. PMID:25614183

  14. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.

    PubMed

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2015-06-23

    Cell-penetrating and antimicrobial peptides show a remarkable ability to translocate across physiological membranes. Along with factors such as electric-potential-induced perturbations of membrane structure and surface tension effects, experiments invoke porelike membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a nontrivial free-energy cost, thus necessitating a consideration of the factors associated with pore formation and the attendant free energies. Because of experimental and modeling challenges related to the long time scales of the translocation process, we use umbrella sampling molecular dynamics simulations with a lipid-density-based order parameter to investigate membrane-pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of headgroups, charge states, acyl chain lengths, and saturation. We probe the dependence of pore-formation barriers on the area per lipid, lipid bilayer thickness, and membrane bending rigidities in three different lipid classes. The pore-formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. The pore-formation free energy is higher in peptide-lipid systems than in peptide-free lipid systems due to penalties to maintain the solvation of charged hydrophilic solutes within the membrane environment.

  15. The lipid composition and its alteration during the growth stage in pathogenic fungus, epidermophyton floccosum

    NASA Technical Reports Server (NTRS)

    Yamada, T.; Watanabe, R.; Nozawa, Y.; Ito, Y.

    1984-01-01

    Qualitative and quantitative changes of lipid components during the growth stages were studied in E. floccosum. The acyl group components of total lipids of Trichophyton rubrum and Microsporum cookei were also examined. The lipids of E. floccosum amounted to approximately 4% of the dry cell weight. Neutral lipids mainly consisted of triglycerides and sterols, and major polar lipids were phosphatidylcholine, phosphatidylethanolamine, and an unknown lipid X. The fatty acids in tryglycerides and phospholipids were palmitic, palmitoleic, stearic, oleic, and linoleic acids. The unknown polar lipid X which appeared between phosphatidylethanolamine and cardiolipin on thin layer chromatography plates contained no phosphorus. There was no significant change in the fatty acid components of E. floccosum and T. rubrum during the cell growth, whereas profound changes occurred in M. cookei. The sterol components of E. floccosum showed striking changes depending on the growth stage.

  16. Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness.

    PubMed

    Gayral, Mathieu; Bakan, Bénédicte; Dalgalarrondo, Michele; Elmorjani, Khalil; Delluc, Caroline; Brunet, Sylvie; Linossier, Laurent; Morel, Marie-Hélène; Marion, Didier

    2015-04-08

    Content and composition of maize endosperm lipids and their partition in the floury and vitreous regions were determined for a set of inbred lines. Neutral lipids, i.e., triglycerides and free fatty acids, accounted for more than 80% of endosperm lipids and are almost 2 times higher in the floury than in the vitreous regions. The composition of endosperm lipids, including their fatty acid unsaturation levels, as well as their distribution may be related to metabolic specificities of the floury and vitreous regions in carbon and nitrogen storage and to the management of stress responses during endosperm cell development. Remarkably, the highest contents of starch lipids were observed systematically within the vitreous endosperm. These high amounts of starch lipids were mainly due to lysophosphatidylcholine and were tightly linked to the highest amylose content. Consequently, the formation of amylose-lysophosphatidylcholine complexes has to be considered as an outstanding mechanism affecting endosperm vitreousness.

  17. [Germ cell membrane lipids in spermatogenesis].

    PubMed

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  18. Lipid composition dictates serum stability of reconstituted high-density lipoproteins: implications for in vivo applications.

    PubMed

    Gilmore, Sean F; Carpenter, Timothy S; Ingólfsson, Helgi I; Peters, Sandra K G; Henderson, Paul T; Blanchette, Craig D; Fischer, Nicholas O

    2018-04-26

    Nanolipoprotein particles (NLPs) are reconstituted high-density lipoproteins, consisting of a phospholipid bilayer stabilized by an apolipoprotein scaffold protein. This class of nanoparticle has been a vital tool in the study of membrane proteins, and in recent years has been increasingly used for in vivo applications. Previous work demonstrated that the composition of the lipid bilayer component affects the stability of these particles in serum solutions. In the current study, NLPs assembled with phosphatidylcholine lipids featuring different acyl chain structures were systematically tested to understand the effect that lipid composition has on NLP stability in both neat serum and cell culture media supplemented with 10% serum by volume. The time at which 50% of the particles dissociate, as well as the fraction of the initial population that remains resistant to dissociation, were correlated to key parameters obtained from all-atom simulations of the corresponding lipid bilayers. A significant correlation was observed between the compressibility modulus of the lipid bilayer and particle stability in these complex biological milieu. These results can be used as a reference to tune the stability of these versatile biological nanoparticles for in vitro and in vivo applications.

  19. Non-methylene interrupted and hydroxy fatty acids in polar lipids of the alga Grateloupia turuturu over the four seasons.

    PubMed

    Kendel, Melha; Barnathan, Gilles; Fleurence, Joël; Rabesaotra, Vony; Wielgosz-Collin, Gaëtane

    2013-05-01

    Phospholipids (PL) and glycolipids (GL) FA in the edible Rhodophyta Grateloupia turuturu, from Brittany, France, were investigated over four seasons. The major lipid class was GL in all seasons (around 45 %). More than 80 FA occurred in polar lipids, with chains from C12 to C26, identified as methyl esters and N-acyl pyrrolidides by gas chromatography-mass spectrometry (GC-MS). PUFA occurred at up to 47.1 % (summer) in PL, and up to 43.6 % (summer) in GL. The major PUFA were 20:5n-3 (12.2 % in PL and 29.0 % in GL) and 20:4n-6 (25.6 % in PL and 10.4 % in GL). The unusual 18:3n-7 acid was identified in PL up to 2.2 %. Several minor unsaturated FA were identified in PL and are previously unreported in seaweeds, namely 14-tricosenoic, 15-tetracosenoic, 5,11-octadecadienoic and 5,9-nonadecadienoic. Also unprecedented in seaweeds, ten 2-hydroxy and three 3-hydroxy FA occurred mainly in PL, 13.9 % in spring with the 3-hydroxyhexadecanoic acid as the major one (8.1 % winter). Three n-9 monounsaturated 2-hydroxy FA occurred in PL. The 2-hydroxy-15-tetracosenoic acid was characterized as the dimethyl disulfide adduct of its methyl ester. The 2-hydroxy-16-pentacosenoic and 2-hydroxy-17-hexacosenoic acids were identified by comparison of mass spectra and GC mobilities with those of the 2-hydroxy-15-tetracosenoic acid, and of other homogeneous FA series. These rare n-9 monounsaturated 2-hydroxy FA are unprecedented in seaweeds.

  20. Biomonitoring of PAHs by using Quercus ilex leaves: Source diagnostic and toxicity assessment

    NASA Astrophysics Data System (ADS)

    De Nicola, Flavia; Claudia, Lancellotti; MariaVittoria, Prati; Giulia, Maisto; Anna, Alfani

    2011-03-01

    Quercus ilex L. leaves were sampled at nineteen urban sites and two remote sites in order to evaluate PAH contamination degree. One-, two- and three-year-old leaves were collected and leaf lipid content was measured to investigate the influence of leaf age and lipids in PAH accumulation. Some PAH diagnostic ratios, such as Ant/Ant + Phen, Flt/Flt + Pyr, B[a]A/B[a]A + Crys and IP/IP + B[g,h,i]P, were calculated. The results suggest that Q. ilex leaves are effective biomonitors of PAH air contamination: in fact, a great PAH accumulation in leaves from the urban areas, until 30-time higher compared to those from the remote sites, has been observed. At each site, the similar total PAH concentrations in leaves of different age, probably due to a canopy effect, indicate an ability of all leaf age classes to monitor local PAH concentrations in air, remarking practical implications for air biomonitoring. The findings suggest that PAH adsorption in Q. ilex leaves does not result limited by leaf lipid content. Moreover, this study demonstrates the source-diagnostic potential of Q. ilex leaves, because, in particular, the Flt/Flt + Pyr and IP/IP + B[g,h,i]P ratios indicate vehicular traffic as the main source of PAHs in the urban areas and wood combustion in the remote areas. Moreover, to distinguish biomass combustion source, a promising tracer PAH as DB[a,h]A could be used. The high contribution of DB[a,h]A to total PAH concentrations at the remote sites determines a high carcinogenic potential in this area, similar to that calculated for the urban area where the carcinogenic PAH concentrations in absolute values are often higher.

  1. Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass unguentaria.

    PubMed

    Ribechini, Erika; Modugno, Francesca; Colombini, Maria Perla; Evershed, Richard P

    2008-03-07

    A combination of gas chromatographic (GC) and mass spectrometric (MS) techniques, including direct exposure-MS (DE-MS), high-temperature GC-MS (HTGC-MS) and GC-MS of neutral and acid fractions, was employed to study the composition and recognise origin of the organic materials used to manufacture balm residues surviving in a series of glass unguentaria recovered from excavations of a Roman villa (Villa B) in the ancient town of Oplontis (Naples, Italy). DE-MS provided comprehensive 'fingerprint' information on the solvent soluble components of the contents of the unguentaria, while GC-MS analyses provided detailed molecular compositions, highlighting the presence of a wide range of compound classes including mid- and long-chain fatty acids, long-chain hydroxy-acids, n-alkanols, alkandiols, n-alkanes, long-chain monoesters, phytosterols and diterpenoid acids. Characteristic biomarkers and their distributions indicate the presence of beeswax, Pinaceae resin and another wax, as the main organic constituents of all of the preparations examined. In particular, the occurrence of phytosterols and long-chain monoesters, in which the acyl moiety was not exclusively palmitic acid, suggested the presence of a second waxy-lipid constituent of plant origin. The results are consistent with beeswax being used in the preparation of the cosmetics preserved in the unguentaria, while the other lipids are most likely the residue of some as yet unidentified plant extract(s), possibly deriving from the cuticular waxes of flowers and/or leaves. The composition of the extracts are consistent with the ancient practices of maceration and/or "enfleurage", in which lipid-based materials, such as beeswax, animal fat or vegetables oils, were used to extract aromatic and fragrant substances from resin, flowers, spices and scented wood, in order to produce unguents and balms.

  2. Control mechanisms operating for lipid biosynthesis differ in oil-palm (Elaeis guineensis Jacq.) and olive (Olea europaea L.) callus cultures.

    PubMed Central

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-01-01

    As a prelude to detailed flux control analysis of lipid synthesis in plants, we have examined the latter in tissue cultures from two important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). Temperature was used to manipulate the overall rate of lipid formation in order to characterize and validate the system to be used for analysis. With [1-14C]acetate as a precursor, an increase in temperature from 20 to 30 degrees C produced nearly a doubling of total lipid labelling. This increase in total lipids did not change the radioactivity in the intermediate acyl-(acyl carrier protein) or acyl-CoA pools, indicating that metabolism of these pools did not exert any significant constraint for overall synthesis. In contrast, there were some differences in the proportional labelling of fatty acids and of lipid classes at the two temperatures. The higher temperature caused a decrease in polyunsaturated fatty acid labelling and an increase in the proportion of triacylglycerol labelling in both calli. The intermediate diacylglycerol was increased in olive, but not in oil palm. Overall the data indicate the suitability of olive and oil-palm cultures for the study of lipid synthesis and indicate that de novo fatty acid synthesis may exert more flux control than complex lipid assembly. In olive, diacylglycerol acyltransferase may exert significant flux control when lipid synthesis is rapid. PMID:12023881

  3. Identification of a New Class of Lipid Droplet-Associated Proteins in Plants1[C][W][OPEN

    PubMed Central

    Horn, Patrick J.; James, Christopher N.; Gidda, Satinder K.; Kilaru, Aruna; Dyer, John M.; Mullen, Robert T.; Ohlrogge, John B.; Chapman, Kent D.

    2013-01-01

    Lipid droplets in plants (also known as oil bodies, lipid bodies, or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets occur in essentially all plant cell types, many of which may not require oleosin-mediated stabilization. The proteins associated with the surface of nonseed lipid droplets, which are likely to influence the formation, stability, and turnover of this compartment, remain to be elucidated. Here, we have combined lipidomic, proteomic, and transcriptomic studies of avocado (Persea americana) mesocarp to identify two new lipid droplet-associated proteins, which we named LDAP1 and LDAP2. These proteins are highly similar to each other and also to the small rubber particle proteins that accumulate in rubber-producing plants. An Arabidopsis (Arabidopsis thaliana) homolog to LDAP1 and LDAP2, At3g05500, was localized to the surface of lipid droplets after transient expression in tobacco (Nicotiana tabacum) cells that were induced to accumulate triacylglycerols. We propose that small rubber particle protein-like proteins are involved in the general process of binding and perhaps the stabilization of lipid-rich particles in the cytosol of plant cells and that the avocado and Arabidopsis protein members reveal a new aspect of the cellular machinery that is involved in the packaging of triacylglycerols in plant tissues. PMID:23821652

  4. Comparative lipidomic analysis of synovial fluid in human and canine osteoarthritis.

    PubMed

    Kosinska, M K; Mastbergen, S C; Liebisch, G; Wilhelm, J; Dettmeyer, R B; Ishaque, B; Rickert, M; Schmitz, G; Lafeber, F P; Steinmeyer, J

    2016-08-01

    The lipid profile of synovial fluid (SF) is related to the health status of joints. The early stages of human osteoarthritis (OA) are poorly understood, which larger animals are expected to be able to model closely. This study examined whether the canine groove model of OA represents early OA in humans based on the changes in the lipid species profile in SF. Furthermore, the SF lipidomes of humans and dogs were compared to determine how closely canine lipid species profiles reflect the human lipidome. Lipids were extracted from cell- and cellular debris-free knee SF from nine donors with healthy joints, 17 patients with early and 13 patients with late osteoarthritic changes, and nine dogs with knee OA and healthy contralateral joints. Lipid species were quantified by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Compared with control canine SF most lipid species were elevated in canine OA SF. Moreover, the lipid species profiles in the canine OA model resembled early OA profiles in humans. The SF lipidomes between dog and human were generally similar, with differences in certain lipid species in the phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) classes. Our lipidomic analysis demonstrates that SF in the canine OA model closely mimics the early osteoarthritic changes that occur in humans. Further, the canine SF lipidome often reflects normal human lipid metabolism. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Optimization of lipids production by Cryptococcus laurentii 11 using cheese whey with molasses.

    PubMed

    Castanha, Rodrigo Fernandes; Mariano, Adriano Pinto; de Morais, Lilia Aparecida Salgado; Scramin, Shirlei; Monteiro, Regina Teresa Rosim

    2014-01-01

    This study aimed the optimization of culture condition and composition for production of Cryptococcus laurentii 11 biomass and lipids in cheese whey medium supplemented with sugarcane molasses. The optimization of pH, fermentation time, and molasses concentration according to a full factorial statistical experimental design was followed by a Plackett-Burman experimental design, which was used to determine whether the supplementation of the culture medium by yeast extract and inorganic salts could provide a further enhancement of lipids production. The following conditions and composition of the culture medium were found to optimize biomass and lipids production: 360 h fermentation, 6.5 pH and supplementation of (g L(-1)): 50 molasses, 0.5 yeast extract, 4 KH2PO4, 1 Na2HPO4, 0.75 MgSO4 · 7H2O and 0.002 ZnSO4 · H2O. Additional supplementation with inorganic salts and yeast extract was essential to optimize the production, in terms of product concentration and productivity, of neutral lipids by C. laurentii 11. Under this optimized condition, the production of total lipids increased by 133% in relation to control experiment (from 1.27 to 2.96 g L(-1)). The total lipids indicated a predominant (86%) presence of neutral lipids with high content of 16- and 18-carbon-chain saturated and monosaturated fatty acids. This class of lipids is considered especially suitable for the production of biodiesel.

  6. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions.

    PubMed

    Rose, Suzanne L; Fulton, James M; Brown, Christopher M; Natale, Frank; Van Mooy, Benjamin A S; Bidle, Kay D

    2014-04-01

    Coccolithoviruses employ a suite of glycosphingolipids (GSLs) to successfully infect the globally important coccolithophore Emiliania huxleyi. Lipid rafts, chemically distinct membrane lipid microdomains that are enriched in GSLs and are involved in sensing extracellular stimuli and activating signalling cascades through protein-protein interactions, likely play a fundamental role in host-virus interactions. Using combined lipidomics, proteomics and bioinformatics, we isolated and characterized the lipid and protein content of lipid rafts from control E. huxleyi cells and those infected with EhV86, the type strain for Coccolithovirus. Lipid raft-enriched fractions were isolated and purified as buoyant, detergent-resistant membranes (DRMs) in OptiPrep density gradients. Transmission electron microscopy of vesicle morphology, polymerase chain reaction amplification of the EhV major capsid protein gene and immunoreactivity to flotillin antisera served as respective physical, molecular and biochemical markers. Subsequent lipid characterization of DRMs via high performance liquid chromatography-triple quadrapole mass spectrometry revealed four distinct GSL classes. Parallel proteomic analysis confirmed flotillin as a major lipid raft protein, along with a variety of proteins affiliated with host defence, programmed cell death and innate immunity pathways. The detection of an EhV86-encoded C-type lectin-containing protein confirmed that infection occurs at the interface between lipid rafts and cellular stress/death pathways via specific GSLs and raft-associated proteins. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Effect of stratum corneum heterogeneity, anisotropy, asymmetry and follicular pathway on transdermal penetration.

    PubMed

    Barbero, Ana M; Frasch, H Frederick

    2017-08-28

    The impact of the complex structure of the stratum corneum on transdermal penetration is not yet fully described by existing models. A quantitative and thorough study of skin permeation is essential for chemical exposure assessment and transdermal delivery of drugs. The objective of this study is to analyze the effects of heterogeneity, anisotropy, asymmetry, follicular diffusion, and location of the main barrier of diffusion on percutaneous permeation. In the current study, the solution of the transient diffusion through a two-dimensional-anisotropic brick-and-mortar geometry of the stratum corneum is obtained using the commercial finite element program COMSOL Multiphysics. First, analytical solutions of an equivalent multilayer geometry are used to determine whether the lipids or corneocytes constitute the main permeation barrier. Also these analytical solutions are applied for validations of the finite element solutions. Three illustrative compounds are analyzed in these sections: diethyl phthalate, caffeine and nicotine. Then, asymmetry with depth and follicular diffusion are studied using caffeine as an illustrative compound. The following findings are drawn from this study: the main permeation barrier is located in the lipid layers; the flux and lag time of diffusion through a brick-and-mortar geometry are almost identical to the values corresponding to a multilayer geometry; the flux and lag time are affected when the lipid transbilayer diffusivity or the partition coefficients vary with depth, but are not affected by depth-dependent corneocyte diffusivity; and the follicular contribution has significance for low transbilayer lipid diffusivity, especially when flux between the follicle and the surrounding stratum corneum is involved. This study demonstrates that the diffusion is primarily transcellular and the main barrier is located in the lipid layers. Published by Elsevier B.V.

  8. Rosiglitazone and Fenofibrate Additive Effects on Lipids

    DTIC Science & Technology

    2011-10-01

    Metabolic effects of trogiltazone on fructose-induced insulin resistance in the rat,” Diabetes, vol. 43, pp. 1435–1439, 1995. [3] T. P. Ciaraldi...re- mains unclear. It is possible that these agents indirectly alter plasma lipid and lipoprotein levels indirectly by improving insulin sensitivity...induced by TZDs remains unclear. It is possible that these agents indi- rectly alter plasma lipid and lipoprotein levels indirectly by improving insulin

  9. Structural analysis of inositol phospholipids from Trypanosoma cruzi epimastigote forms.

    PubMed Central

    Bertello, L E; Gonçalvez, M F; Colli, W; de Lederkremer, R M

    1995-01-01

    Inositol phospholipids (IPL) from epimastigote forms of Trypanosoma cruzi have been investigated by metabolic labelling with [3H]palmitic acid and by GLC-MS analysis of the lipids obtained from non-labelled parasites. The IPL fraction was separated into phosphatidylinositol (PI) and inositol-phosphoceramide subfractions, the latter accounting for 80-85% of the total IPL. The neutral lipids released from the IPLs by PI-specific phospholipase C (PI-PLC) from Bacillus thuringiensis were analysed by silica-gel and reverse-phase TLC for the radioactive lipids and by GLC-MS for the non-radioactive samples. Ceramides containing dihydrosphingosine and sphingosine with C16:0 and C18:0 fatty acids were identified. The main component in the [3H]palmitic acid-labelled ceramides was palmitoyldihydrospingosine, while in the non-labelled sample the ceramides contained mainly sphingosine. This could reflect partial uptake of phospholipid from the medium. The PI contain both alkylacyl- and diacyl-glycerol lipids, with the ether lipid being more abundant. The latter was identified as 1-O-hexadecylglycerol esterified by C18:2 and C18:1 fatty acids. Interestingly, the same lipid had been identified in the anchor of the 1G7 glycoprotein of T. cruzi metacyclic forms. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 PMID:7646454

  10. Determination of the structure of lecithins.

    PubMed

    Blank, M L; Nutter, L J; Privett, O S

    1966-03-01

    A method is described for the determination of the classes of lecithins in terms of unsaturated and saturated fatty acids based on a total fatty acid composition, the composition of the fatty acids in the beta-position, and the amount of disaturated class determined via mercuric acetate adduct formation. The accuracy of the method was determined on lecithins of known composition and the method was applied to lecithins isolated from milk serum and egg lipids, safflower and soybean oils.

  11. Effects of ligand binding on the dynamics of rice nonspecific lipid transfer protein 1: a model from molecular simulations.

    PubMed

    Lai, Yen-Ting; Cheng, Chao-Sheng; Liu, Yu-Nan; Liu, Yaw-Jen; Lyu, Ping-Chiang

    2008-09-01

    Plant nonspecific lipid transfer proteins (nsLTPs) are small, basic proteins constituted mainly of alpha-helices and stabilized by four conserved disulfide bridges. They are characterized by the presence of a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers in vitro. In this study, molecular dynamics (MD) simulations were performed at room temperature to investigate the effects of lipid binding on the dynamic properties of rice nsLTP1. Rice nsLTP1, either in the free form or complexed with one or two lipids was subjected to MD simulations. The C-terminal loop was very flexible both before and after lipid binding, as revealed by calculating the root-mean-square fluctuation. After lipid binding, the flexibility of some residues that were not in direct contact with lipid molecules increased significantly, indicating an increase of entropy in the region distal from the binding site. Essential dynamics analysis revealed clear differences in motion between unliganded and liganded rice nsLTP1s. In the free form of rice nsLTP1, loop1 exhibited the largest directional motion. This specific essential motion mode diminished after binding one or two lipid molecules. To verify the origin of the essential motion observed in the free form of rice nsLTP1, we performed multiple sequence alignments to probe the intrinsic motion encoded in the primary sequence. We found that the amino acid sequence of loop1 is highly conserved among plant nsLTP1s, thus revealing its functional importance during evolution. Furthermore, the sequence of loop1 is composed mainly of amino acids with short side chains. In this study, we show that MD simulations, together with essential dynamics analysis, can be used to determine structural and dynamic differences of rice nsLTP1 upon lipid binding. 2008 Wiley-Liss, Inc.

  12. Lipid and protein accumulation in developing seeds of three lupine species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet

    PubMed Central

    Borek, Sławomir; Pukacka, Stanisława; Michalski, Krzysztof; Ratajczak, Lech

    2009-01-01

    A comparative study was carried out on the dynamics of lipid accumulation in developing seeds of three lupine species. Lupine seeds differ in lipid content; yellow lupine (Lupinus luteus L.) seeds contain about 6%, white lupine (Lupinus albus L.) 7–14%, and Andean lupine (Lupinus mutabilis Sweet) about 20% of lipids by dry mass. Cotyledons from developing seeds were isolated and cultured in vitro for 96 h on Heller medium with 60 mM sucrose (+S) or without sucrose (–S). Each medium was additionally enriched with 35 mM asparagine or 35 mM NaNO3. Asparagine caused an increase in protein accumulation and simultaneously decreased the lipid content, but nitrate increased accumulation of both protein and lipid. Experiments with [1-14C]acetate and [2-14C]acetate showed that the decrease in lipid accumulation in developing lupine seeds resulted from exhaustion of lipid precursors rather than from degradation or modification of the enzymatic apparatus. The carbon atom from the C-1 position of acetate was liberated mainly as CO2, whereas the carbon atom from the C-2 position was preferentially used in anabolic pathways. The dominant phospholipid in the investigated lupine seed storage organs was phosphatidylcholine. The main fatty acid in yellow lupine cotyledons was linoleic acid, in white lupine it was oleic acid, and in Andean lupine it was both linoleic and oleic acids. The relationship between stimulation of lipid and protein accumulation by nitrate in developing lupine cotyledons and enhanced carbon flux through glycolysis caused by the inorganic nitrogen form is discussed. PMID:19635747

  13. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  14. Fluorescent probes for lipid rafts: from model membranes to living cells.

    PubMed

    Klymchenko, Andrey S; Kreder, Rémy

    2014-01-16

    Membrane microdomains (rafts) remain one of the controversial issues in biophysics. Fluorescent molecular probes, which make these lipid nanostructures visible through optical techniques, are one of the tools currently used to study lipid rafts. The most common are lipophilic fluorescent probes that partition specifically into liquid ordered or liquid disordered phase. Their partition depends on the lipid composition of a given phase, which complicates their use in cellular membranes. A second class of probes is based on environment-sensitive dyes, which partition into both phases, but stain them by different fluorescence color, intensity, or lifetime. These probes can directly address the properties of each separate phase, but their cellular applications are still limited. The present review focuses on summarizing the current state in the field of developing and applying fluorescent molecular probes to study lipid rafts. We highlight an urgent need to develop new probes, specifically adapted for cell plasma membranes and compatible with modern fluorescence microscopy techniques to push the understanding of membrane microdomains forward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa.

    PubMed

    Bullen, Hayley E; Soldati-Favre, Dominique

    2016-08-01

    Lipids are commonly known for the structural roles they play, however, the specific contribution of different lipid classes to wide-ranging signalling pathways is progressively being unravelled. Signalling lipids and their associated effector proteins are emerging as significant contributors to a vast array of effector functions within cells, including essential processes such as membrane fusion and vesicle exocytosis. Many phospholipids have signalling capacity, however, this review will focus on phosphatidic acid (PA) and the enzymes implicated in its production from diacylglycerol (DAG) and phosphatidylcholine (PC): DGK and PLD respectively. PA is a negatively charged, cone-shaped lipid identified as a key mediator in specific membrane fusion and vesicle exocytosis events in a variety of mammalian cells, and has recently been implicated in specialised secretory organelle exocytosis in apicomplexan parasites. This review summarises the recent work implicating a role for PA regulation in exocytosis in various cell types. We will discuss how these signalling events are linked to pathogenesis in the phylum Apicomplexa. © 2016 Federation of European Biochemical Societies.

  16. New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process.

    PubMed

    Dejoye Tanzi, Celine; Abert Vian, Maryline; Chemat, Farid

    2013-04-01

    A new procedure, called Simultaneous Distillation and Extraction Process (SDEP), for lipid extraction from wet microalgae (Nannochloropsis oculata and Dunaliella salina) was reported. This method does not require a pre-drying of the biomass and employs alternative solvents such as d-limonene, α-pinene and p-cymene. This procedure has been compared with Soxhlet extraction (Sox) and Bligh & Dyer method (B&D). For N. oculata, results showed that SDEP-cymene provided similar lipid yields to B&D (21.45% and 23.78%), while SDEP-limonene and pinene provided lower yields (18.73% and 18.75% respectively). For D. salina, SDEP-pinene provided the maximum lipid yield (3.29%) compared to the other solvents, which is quite close to B&D result (4.03%). No significant differences in terms of distribution of lipid classes and fatty acid composition have been obtained for different techniques. Evaluation of energy consumption indicates a substantial saving in the extraction cost by SDEP compared to the conventional extraction technique, Soxhlet. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. 3D MALDI Mass Spectrometry Imaging of a Single Cell: Spatial Mapping of Lipids in the Embryonic Development of Zebrafish

    DOE PAGES

    Dueñas, Maria Emilia; Essner, Jeffrey J.; Lee, Young Jin

    2017-11-02

    The zebrafish ( Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE andmore » PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Lastly, four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.« less

  18. Structure and specificity of a new class of Ca2+-independent housekeeping sortase from Streptomyces avermitilis provide insights into its non-canonical substrate preference

    PubMed Central

    Das, Sreetama; Pawale, Vijaykumar S.; Dadireddy, Venkatareddy; Singh, Avinash Kumar; Ramakumar, Suryanarayanarao; Roy, Rajendra P.

    2017-01-01

    Surface proteins in Gram-positive bacteria are incorporated into the cell wall through a peptide ligation reaction catalyzed by transpeptidase sortase. Six main classes (A–F) of sortase have been identified of which class A sortase is meant for housekeeping functions. The prototypic housekeeping sortase A (SaSrtA) from Staphylococcus aureus cleaves LPXTG-containing proteins at the scissile T–G peptide bond and ligates protein-LPXT to the terminal Gly residue of the nascent cross-bridge of peptidoglycan lipid II precursor. Sortase-mediated ligation (“sortagging”) of LPXTG-containing substrates and Gly-terminated nucleophiles occurs in vitro as well as in cellulo in the presence of Ca2+ and has been applied extensively for protein conjugations. Although the majority of applications emanate from SaSrtA, low catalytic efficiency, LPXTG specificity restriction, and Ca2+ requirement (particularly for in cellulo applications) remain a drawback. Given that Gram-positive bacteria genomes encode a variety of sortases, natural sortase mining can be a viable complementary approach akin to engineering of wild-type SaSrtA. Here, we describe the structure and specificity of a new class E sortase (SavSrtE) annotated to perform housekeeping roles in Streptomyces avermitilis. Biochemical experiments define the attributes of an optimum peptide substrate, demonstrate Ca2+-independent activity, and provide insights about contrasting functional characteristics of SavSrtE and SaSrtA. Crystal structure, substrate docking, and mutagenesis experiments have identified a critical residue that dictates the preference for a non-canonical LAXTG recognition motif over LPXTG. These results have implications for rational tailoring of substrate tolerance in sortases. Besides, Ca2+-independent orthogonal specificity of SavSrtE is likely to expand the sortagging toolkit. PMID:28270507

  19. The real radical generator other than main-product hydroperoxide in lipid autoxidation.

    PubMed

    Morita, Makio; Tokita, Masako

    2006-01-01

    The theory of initiation in lipid autoxidation, which deals with the supply of radicals to the chain reaction, has not been substantively advanced for several decades. Most researchers have long assumed a mechanism of initiation in which main-product hydroperoxide is centrally responsible for autocatalytic radical generation. However, this paper, in which we investigate autoxidizing methyl linoleate, presents decisive evidence against such an assumption: Autoxidation-accelerating activity under mild conditions was not found in the chromatographically separated main-product hydroperoxide fraction but was found in other fractions; and highly active substances with structures containing a peroxide-linked dimer with two hydroperoxy groups were actually obtained.

  20. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Ovčačíková, Magdaléna; Lísa, Miroslav; Cífková, Eva; Holčapek, Michal

    2016-06-10

    Reversed-phase ultrahigh-performance liquid chromatography (RP-UHPLC) method using two 15cm sub-2μm particles octadecylsilica gel columns is developed with the goal to separate and unambiguously identify a large number of lipid species in biological samples. The identification is performed by the coupling with high-resolution tandem mass spectrometry (MS/MS) using quadrupole - time-of-flight (QTOF) instrument. Electrospray ionization (ESI) full scan and tandem mass spectra are measured in both polarity modes with the mass accuracy better than 5ppm, which provides a high confidence of lipid identification. Over 400 lipid species covering 14 polar and nonpolar lipid classes from 5 lipid categories are identified in total lipid extracts of human plasma, human urine and porcine brain. The general dependences of relative retention times on relative carbon number or relative double bond number are constructed and fit with the second degree polynomial regression. The regular retention patterns in homologous lipid series provide additional identification point for UHPLC/MS lipidomic analysis, which increases the confidence of lipid identification. The reprocessing of previously published data by our and other groups measured in the RP mode and ultrahigh-performance supercritical fluid chromatography on the silica column shows more generic applicability of the polynomial regression for the description of retention behavior and the prediction of retention times. The novelty of this work is the characterization of general trends in the retention behavior of lipids within logical series with constant fatty acyl length or double bond number, which may be used as an additional criterion to increase the confidence of lipid identification. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonius: changes in neutral and polar lipids.

    PubMed

    Beilby, J P; Kidby, D K

    1980-08-01

    Neutral and polar spore lipids of the vesicular-arbuscular (VA) endophyte Glomus caledonius, were identified and quantitatively determined during spore germination, germ tube growth, and germ tube senescence. There are no previous reports detailing the spore lipid components of any member of the Endogenaceae, which is in the Zygomycotina. The fungus contained 45 to 72% total lipid depending upon its stage of growth. The concentration of neutral lipids decreased during germination while the polar lipids increased. Triacylglycerides were the most abundant neutral lipid, and lesser amounts of diacylglycerides, monoacylglycerides, free fatty acids, bound fatty acids, hydrocarbons, and sterols. The major fatty acids identified by gas--liquid chromatography and mass spectrometry were 16:1, 16:0, and 18:1. The minor fatty acids identified were n-3 and n-6 polyunsaturates. The n-3 polyunsaturated fatty acids have not been reported before in Zygomycetes. The fatty acid composition of the individual lipid classes was examined. The major phospholipids were phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine, with smaller amounts of diphosphatidylglycerol and phosphatidic acid. The free sterol fraction was in greater quantity than sterol esters during germination and germ tube elongation. The capacity to synthesize sterols was demonstrated. Approximate net rates of change in the different lipid components were calculated. During spore germination and early germ tube growth, there was a net synthesis of lipids, with a large production of free fatty acids, in the germinating spore. Later in the growth period there was a net degradation of lipid, characterized by a large conversion of free fatty acids to unidentified compounds. During this period net free sterol synthesis ceased and sterol ester synthesis continued using the existing free sterol.

  2. Effect Of Substrates On The Fractionation Of Hydrogen Isotopes During Lipid-Biosynthesis By Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Dirghangi, S. S.; Pagani, M.

    2010-12-01

    Lipids form an important class of proxies for paleoclimatological research, and hydrogen isotope ratios of lipids are being increasingly used for understanding changes in the hydrological system. Proper understanding of hydrogen isotope fractionation during lipid biosynthesis is therefore important and attention has been directed toward understanding the magnitude of hydrogen isotope fractionation that occurs during lipid biosynthesis in various organisms. Hydrogen isotope ratios of lipids depend on the hydrogen isotopic composition of the ambient water, hydrogen isotopic composition of NADPH used during biosynthesis, growth conditions, pathways of lipid biosynthesis, and substrates in the case of heterotrophic organisms. Recently it has been observed that NADPH contributes a significant part of the hydrogen in fatty acids synthesized by bacteria during heterotrophic growth (Zhang et al, 2009). As NADPH is formed by reduction of NADP+ during metabolism of substrates, different metabolic pathways form NADPH with different D/H ratios, which in turn results in variation in D/H ratios of lipids (Zhang et al, 2009). Therefore, substrates play a significant role in hydrogen isotopic compositions of lipids. For this study, we are investigating the effects of substrates on hydrogen isotope fractionation during biosynthesis of isoprenoidal lipids by heterotrophically growing halophilic archaea. Haloarcula marismortui is a halophilic archaea which synthesizes Archaeol (a diether lipid) and other isoprenoidal lipids. We have grown Haloarcula marismortui in pure cultures on three different substrates and are in the process of evaluating isotopic variability of Archaeol and other lipids associated with substrate and the D/H composition of ambient water. Our results will be helpful for a better understanding of hydrogen isotope fractionations during lipid synthesis by archaea. Also, halophilic archaea are the only source of archaeol in hypersaline environments. Therefore, our results will also indicate whether archaeol can be used as a proxy of ambient water hydrogen isotopic compositions in hypersaline environments.

  3. Changes in the Lipid Composition and Fine Structure of Saccharomyces cerevisiae During Ascus Formation

    PubMed Central

    Illingworth, R. F.; Rose, A. H.; Beckett, A.

    1973-01-01

    Eighty to ninety percent of vegetative cells of Saccharomyces cerevisiae DCL 740 incubated in KCl-acetate medium form asci, the majority of which are four-spored. Ascospores are visible in asci after about 24 hr, and spore formation is complete after about 48 hr. The dry weight of the cells increases by about 75% during 48 hr of incubation, while the lipid content of the cells increases by a factor of four. The increase in lipid content is attributed mainly to an increased synthesis of sterol esters and triacylglycerols and to a lesser extent of phospholipids. The phospholipid and sterol compositions do not change appreciably, but there is a marked increase in the proportion of unsaturated fatty acid residues in ascan lipids. Uniformly labeled 14C-acetate is incorporated mainly into sterol esters and triacylglycerols and phospholipids. Pulse-labeling by adding acetate-U-14C to sporulating cultures and harvesting after a further 6 hr of incubation reveal two main periods of acetate incorporation, namely between 0 and 18 hr, and between 24 and 30 hr. Electron micrographs of thin sections through developing asci show that the principal changes in fine structure occur between 18 and 24 hr and include the appearance of numerous electron-transparent vesicles which become aligned around the meiotic nucleus, and the laying down of extensive endoplasmic reticulum membranes. Changes in fine structure are discussed in relation to the alterations in lipid content and composition of asci. Images PMID:4569408

  4. Novel Use of a Lipid-Lowering Fibrate Medication to Prevent Nicotine Reward and Relapse: Preclinical Findings

    PubMed Central

    Panlilio, Leigh V; Justinova, Zuzana; Mascia, Paola; Pistis, Marco; Luchicchi, Antonio; Lecca, Salvatore; Barnes, Chanel; Redhi, Godfrey H; Adair, Jordan; Heishman, Stephen J; Yasar, Sevil; Aliczki, Mano; Haller, Jozsef; Goldberg, Steven R

    2012-01-01

    Experimental drugs that activate α-type peroxisome proliferator-activated receptors (PPARα) have recently been shown to reduce the rewarding effects of nicotine in animals, but these drugs have not been approved for human use. The fibrates are a class of PPARα-activating medications that are widely prescribed to improve lipid profiles and prevent cardiovascular disease, but these drugs have not been tested in animal models of nicotine reward. Here, we examine the effects of clofibrate, a representative of the fibrate class, on reward-related behavioral, electrophysiological, and neurochemical effects of nicotine in rats and squirrel monkeys. Clofibrate prevented the acquisition of nicotine-taking behavior in naive animals, substantially decreased nicotine taking in experienced animals, and counteracted the relapse-inducing effects of re-exposure to nicotine or nicotine-associated cues after a period of abstinence. In the central nervous system, clofibrate blocked nicotine's effects on neuronal firing in the ventral tegmental area and on dopamine release in the nucleus accumbens shell. All of these results suggest that fibrate medications might promote smoking cessation. The fact that fibrates are already approved for human use could expedite clinical trials and subsequent implementation of fibrates as a treatment for tobacco dependence, especially in smokers with abnormal lipid profiles. PMID:22453137

  5. Effects of a Squalene Epoxidase Inhibitor, Terbinafine, on Ether Lipid Biosyntheses in a Thermoacidophilic Archaeon, Thermoplasma acidophilum

    PubMed Central

    Kon, Takahide; Nemoto, Naoki; Oshima, Tairo; Yamagishi, Akihiko

    2002-01-01

    The archaeal plasma membrane consists mainly of diether lipids and tetraether lipids instead of the usual ester lipids found in other organisms. Although a molecule of tetraether lipid is thought to be synthesized from two molecules of diether lipids, there is no direct information about the biosynthetic pathway(s) or intermediates of tetraether lipid biosynthesis. In this study, we examined the effects of the fungal squalene epoxidase inhibitor terbinafine on the growth and ether lipid biosyntheses in the thermoacidophilic archaeon Thermoplasma acidophilum. Terbinafine was found to inhibit the growth of T. acidophilum in a concentration-dependent manner. When growing T. acidophilum cells were pulse-labeled with [2-14C]mevalonic acid in the presence of terbinafine, incorporation of radioactivity into the tetraether lipid fraction was strongly suppressed, while accumulation of radioactivity was noted at the position corresponding to diether lipids, depending on the concentration of terbinafine. After the cells were washed with fresh medium and incubated further without the radiolabeled substrate and the inhibitor, the accumulated radioactivity in the diether lipid fraction decreased quickly while that in the tetraether lipids increased simultaneously, without significant changes in the total radioactivity of ether lipids. These results strongly suggest that terbinafine inhibits the biosynthesis of tetraether lipids from a diether-type precursor lipid(s). The terbinafine treatment will be a tool for dissecting tetraether lipid biosynthesis in T. acidophilum. PMID:11844769

  6. Mechanics of Lipid Bilayer Membranes

    NASA Astrophysics Data System (ADS)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  7. Influence of salt on lipid oxidation in meat and seafood products: A review.

    PubMed

    Mariutti, Lilian R B; Bragagnolo, Neura

    2017-04-01

    Sodium chloride, commonly known as salt, is a widely used additive in food industry due to its preservation and antimicrobial properties provided by its ability to reduce water activity. Moreover, the addition of salt to meat and seafood aims at improving water retention capacity and enhancing flavor due to its influence on the activity of some enzymes responsible for flavor development. On the other hand, salt added in meat and seafood can favor lipid oxidation, which is one of the main responsibles for quality losses in the food industry. In this review, the main mechanisms of fatty acids and cholesterol oxidation are described as well as the influence of salt on lipid oxidation in meat and seafood. Besides, the possible mechanisms of the pro-oxidant action of sodium chloride are presented and potential solutions to inhibit the salt action in lipid oxidation and decrease the salt content in food are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Influence of continental organic aerosols to the marine atmosphere over the East China Sea: Insights from lipids, PAHs and phthalates.

    PubMed

    Kang, Mingjie; Yang, Fan; Ren, Hong; Zhao, Wanyu; Zhao, Ye; Li, Linjie; Yan, Yu; Zhang, Yingjie; Lai, Senchao; Zhang, Yingyi; Yang, Yang; Wang, Zifa; Sun, Yele; Fu, Pingqing

    2017-12-31

    Total suspended particle (TSP) samples were collected during a marine cruise in the East China Sea from May 18 to June 12, 2014. They were analyzed for solvent extractable organic compounds (lipid compounds, PAHs and phthalates) using gas chromatography/mass spectrometry (GC/MS) to better understand the sources and source apportionment of aerosol pollution in the western North Pacific. Higher concentrations were observed in the terrestrially influenced aerosol samples on the basis of five-day backward air mass trajectories, especially for aerosols collected near coastal areas. Phthalates were found to be the dominant species among these measured compound classes (707±401ngm -3 for daytime and 313±155ngm -3 for nighttime), followed by fatty acids, fatty alcohols, n-alkanes and PAHs. In general, the daytime abundances for these compounds are higher than nighttime, possibly attributable to more intensive anthropogenic activities during the daytime. The factor analysis indicates that biomass burning, fungal activities and fossil fuel combustion maybe the main emission sources for organic aerosols over the East China Sea. This study demonstrates that the East Asian continent can be a natural emitter of biogenic and anthropogenic organics to the marine atmosphere through long-range transport, which controls the chemical composition and concentration of organic aerosols over the East China Sea. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Anticancer mechanisms and clinical application of alkylphospholipids.

    PubMed

    van Blitterswijk, Wim J; Verheij, Marcel

    2013-03-01

    Synthetic alkylphospholipids (ALPs), such as edelfosine, miltefosine, perifosine, erucylphosphocholine and erufosine, represent a relatively new class of structurally related antitumor agents that act on cell membranes rather than on DNA. They selectively target proliferating (tumor) cells, inducing growth arrest and apoptosis, and are potent sensitizers of conventional chemo- and radiotherapy. ALPs easily insert in the outer leaflet of the plasma membrane and cross the membrane via an ATP-dependent CDC50a-containing 'flippase' complex (in carcinoma cells), or are internalized by lipid raft-dependent endocytosis (in lymphoma/leukemic cells). ALPs resist catabolic degradation, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. At the same time, stress pathways (e.g. stress-activated protein kinase/JNK) are activated to promote apoptosis. In many preclinical and clinical studies, perifosine was the most effective ALP, mainly because it inhibits Akt activity potently and consistently, also in vivo. This property is successfully exploited clinically in highly malignant tumors, such as multiple myeloma and neuroblastoma, in which a tyrosine kinase receptor/Akt pathway is amplified. In such cases, perifosine therapy is most effective in combination with conventional anticancer regimens or with rapamycin-type mTOR inhibitors, and may overcome resistance to these agents. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin.

    PubMed

    Netto MPharm, Gladyston; Jose, Jobin

    2017-12-10

    Most of the sunscreen formulations mainly contain chemicals or synthetic molecules. Nowadays, researchers are mainly focussing on herbal formulations due to toxicity of the synthetic molecules. Silymarin is a natural flavonoids having excellent antioxidant properties. Solid lipid nanoparticles are novel drug carriers which improve the drug stability and tolerance effect and also enhance the permeation effect. This study aimed at the preparation of solid lipid nanoparticles containing silymarin that will be incorporated into a sunscreen cream and determine its sun protection factor. The solid lipid nanoparticles were prepared by micro-emulsion method; here, the glyceryl monostearate was used as lipid, and Tween 80 was used as an emulsifier. The solid lipid nanoparticles were evaluated for drug entrapment, particle size and morphology, zeta potential, and polydispersity index. The dispersion was formulated into sunscreen cream and evaluated for various parameters, such as extrudability, viscosity, spreadability, drug content, in vitro drug release, ex vivo permeation of drug, in vitro and in vivo sun protection factor determination, in vivo skin irritation test, and accelerated stability studies. The results suggested that as the concentration of emulsifier increased, the entrapment efficiency of silymarin increased. In vitro and in vivo sun protection factor determination showed that SPF of 13.80 and 14.1, respectively. Stability studies were performed under accelerated conditions, and it did not show any appreciable change in parameters. These results indicated that the sunscreen containing silymarin solid lipid nanoparticles exhibited better photoprotective action. © 2017 Wiley Periodicals, Inc.

  11. In Silico Identification Software (ISIS): A Machine Learning Approach to Tandem Mass Spectral Identification of Lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangas, Lars J.; Metz, Thomas O.; Isaac, Georgis

    2012-05-15

    Liquid chromatography-mass spectrometry-based metabolomics has gained importance in the life sciences, yet it is not supported by software tools for high throughput identification of metabolites based on their fragmentation spectra. An algorithm (ISIS: in silico identification software) and its implementation are presented and show great promise in generating in silico spectra of lipids for the purpose of structural identification. Instead of using chemical reaction rate equations or rules-based fragmentation libraries, the algorithm uses machine learning to find accurate bond cleavage rates in a mass spectrometer employing collision-induced dissocia-tion tandem mass spectrometry. A preliminary test of the algorithm with 45 lipidsmore » from a subset of lipid classes shows both high sensitivity and specificity.« less

  12. Developing Equipotent Teixobactin Analogues against Drug-Resistant Bacteria and Discovering a Hydrophobic Interaction between Lipid II and Teixobactin.

    PubMed

    Zong, Yu; Sun, Xiuyun; Gao, Hongying; Meyer, Kirsten J; Lewis, Kim; Rao, Yu

    2018-04-26

    Teixobactin, targeting lipid II, represents a new class of antibiotics with novel structures and has excellent activity against Gram-positive pathogens. We developed a new convergent method to synthesize a series of teixobactin analogues and explored structure-activity relationships. We obtained equipotent and simplified teixobactin analogues, replacing the l- allo-enduracididine with lysine, substituting oxygen to nitrogen on threonine, and adding a phenyl group on the d-phenylalanine. On the basis of the antibacterial activities that resulted from corresponding modifications of the d-phenylalanine, we propose a hydrophobic interaction between lipid II and the N-terminal of teixobactin analogues, which we map out with our analogue 35. Finally, a representative analogue from our series showed high efficiency in a mouse model of Streptococcus pneumoniae septicemia.

  13. Endoplasmic Reticulum-Plasma Membrane Contact Sites.

    PubMed

    Saheki, Yasunori; De Camilli, Pietro

    2017-06-20

    The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca 2+ dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.

  14. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice

    PubMed Central

    2013-01-01

    Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field. PMID:24564841

  15. Features in the Lipid Status of Two Generations of Fingerlings (0+) of Atlantic Salmon (Salmo salar L.) Inhabiting the Arenga River (Kola Peninsula).

    PubMed

    Nemova, Nina N; Murzina, Svetlana A; Nefedova, Zinaida A; Veselov, Alexey E

    2015-07-30

    The present research focused on determining the lipid status of salmon fingerlings (0+) in early development after dispersal form groups of spawning nests in biotopes of different hydrological conditions. The revealed qualitative and quantitative differences in the levels of phospholipids and fatty acids among two generations of Atlantic salmon fingerlings (0+) living in different biotopes of the Arenga River (a tributary of the Varzuga River) may be associated with the peculiarities of their genetically determined processes of the biosynthesis and modification of individual lipid classes and trophoecological factors (food spectrum, quality and availability of food objects, and hydrological regime). The research was organized to observe the dynamics of these developmental changes from ages 0+ to 2+.

  16. Voxel-based plaque classification in coronary intravascular optical coherence tomography images using decision trees

    NASA Astrophysics Data System (ADS)

    Kolluru, Chaitanya; Prabhu, David; Gharaibeh, Yazan; Wu, Hao; Wilson, David L.

    2018-02-01

    Intravascular Optical Coherence Tomography (IVOCT) is a high contrast, 3D microscopic imaging technique that can be used to assess atherosclerosis and guide stent interventions. Despite its advantages, IVOCT image interpretation is challenging and time consuming with over 500 image frames generated in a single pullback volume. We have developed a method to classify voxel plaque types in IVOCT images using machine learning. To train and test the classifier, we have used our unique database of labeled cadaver vessel IVOCT images accurately registered to gold standard cryoimages. This database currently contains 300 images and is growing. Each voxel is labeled as fibrotic, lipid-rich, calcified or other. Optical attenuation, intensity and texture features were extracted for each voxel and were used to build a decision tree classifier for multi-class classification. Five-fold cross-validation across images gave accuracies of 96 % +/- 0.01 %, 90 +/- 0.02% and 90 % +/- 0.01 % for fibrotic, lipid-rich and calcified classes respectively. To rectify performance degradation seen in left out vessel specimens as opposed to left out images, we are adding data and reducing features to limit overfitting. Following spatial noise cleaning, important vascular regions were unambiguous in display. We developed displays that enable physicians to make rapid determination of calcified and lipid regions. This will inform treatment decisions such as the need for devices (e.g., atherectomy or scoring balloon in the case of calcifications) or extended stent lengths to ensure coverage of lipid regions prone to injury at the edge of a stent.

  17. Localization of puroindoline-a and lipids in bread dough using confocal scanning laser microscopy.

    PubMed

    Dubreil, Laurence; Biswas, Samares C; Marion, Didier

    2002-10-09

    Puroindolines are lipid-binding proteins from wheat flour that play a significant role in bread crumb texture. The localization of wheat flour lipids and puroindoline-a (PIN-a) in bread dough was studied by confocal scanning laser microscopy (CSLM). Wheat lipids were located around gas cells (GC) and embedded within the protein-starch matrix (SPM) of the dough. PIN-a was mainly located in the matrix of dough, where it was associated with lipids. In contrast, in defatted dough, PIN-a was found around GC. Addition of puroindolines in bread dough induced a defatting of the gas bubble surface and a decrease of the lipid vesicles and/or droplet size embedded within the SPM. Therefore, puroindolines control the lipid partitioning within the different phases of dough, a phenomenon that should have important consequence on the gas bubble expansion and GC formation in the further stages (fermentation, baking) of the bread-making process.

  18. Omic studies reveal the pathogenic lipid droplet proteins in non-alcoholic fatty liver disease.

    PubMed

    Zhang, Xuelin; Wang, Yang; Liu, Pingsheng

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is an epidemic metabolic condition driven by an underlying lipid homeostasis disorder. The lipid droplet (LD), the main organelle involved in neutral lipid storage and hydrolysis, is a potential target for NAFLD therapeutic treatment. In this review, we summarize recent progress elucidating the connections between LD-associated proteins and NAFLD found by genome-wide association studies (GWAS), genomic and proteomic studies. Finally, we discuss a possible mechanism by which the protein 17β-hydroxysteroid dehydrogenase 13 (17β-HSD13) may promote the development of NAFLD.

  19. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors, which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fibrate th...

  20. Effects of Gemfibrozil on Cholesterol Metabolism and Steroidogenesis in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  1. Effects of Gemfibrozil on Cholesterol Metabolism, Steroidogenesis, and Reproduction in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. Gemfibrozil is a fib...

  2. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions.

    PubMed

    Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2017-05-01

    Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0-C18:1-C16:0), POS (C16:0-C18:1-C18:0), and SOS (C18:0-C18:1-C18:0). The storage lipids of yeasts, mainly TAGs, also contain relative high-level of C16 and C18 fatty acids and might be used as CB-like lipids (CBL). In this study, we cultivated six different yeasts, including one non-oleaginous yeast strain, Saccharomyces cerevisiae CEN.PK113-7D, and five oleaginous yeast strains, Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, Lipomyces starkeyi DSM 70296, Rhodosporidium toruloides DSM 70398, and Yarrowia lipolytica CBS 6124, in nitrogen-limited medium and compared their CBL production ability. Under the same growth conditions, we found that TAGs were the main lipids in all six yeasts and that T. oleaginosus can produce more TAGs than the other five yeasts. Less than 3% of the total TAGs were identified as potential SOS in the six yeasts. However, T. oleaginosus produced 27.8% potential POP and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future.

  3. Novel analytical methods to assess the chemical and physical properties of liposomes.

    PubMed

    Kothalawala, Nuwan; Mudalige, Thilak K; Sisco, Patrick; Linder, Sean W

    2018-08-01

    Liposomes are used in commercial pharmaceutical formulations (PFs) and dietary supplements (DSs) as a carrier vehicle to protect the active ingredient from degradation and to increase the half-life of the injectable. Even as the commercialization of liposomal products has rapidly increased, characterization methodologies to evaluate physical and chemical properties of the liposomal products have not been well-established. Herein we develop rapid methodologies to evaluate chemical and selected physical properties of liposomal formulations. Chemical properties of liposomes are determined by their lipid composition. The lipid composition is evaluated by first screening of the lipids present in the sample using HPLC-ELSD followed by HPLC-MSMS analysis with high mass accuracy (<5 ppm), fragmentation pattern and lipid structure databases searching. Physical properties such as particle size and size distribution were investigated using Tunable Resistive Pulse Sensing (TRPS). The developed methods were used to analyze commercially available PFs and DSs. As results, PFs contain distinct number of lipids as indicated by the manufacture, but DSs were more complicated containing a large number of lipids belonging to different sub-classes. Commercially available liposomes have particles with wide size distribution based on size measurements performed by TRPS. The high mass accuracy as well as identification lipids using multiple fragment ions aided to accurately identify the lipids and differentiate them from other lipophilic molecules. The developed analytical methodologies were successfully adapted to measure the physiochemical properties of commercial liposomes. Copyright © 2018. Published by Elsevier B.V.

  4. Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure.

    PubMed

    Bougaran, Gaël; Rouxel, Catherine; Dubois, Nolwenn; Kaas, Raymond; Grouas, Sophie; Lukomska, Ewa; Le Coz, Jean-René; Cadoret, Jean-Paul

    2012-11-01

    Microalgae offer a high potential for energetic lipid storage as well as high growth rates. They are therefore considered promising candidates for biofuel production, with the selection of high lipid-producing strains a major objective in projects on the development of this technology. We developed a mutation-selection method aimed at increasing microalgae neutral lipid productivity. A two step method, based on UVc irradiation followed by flow cytometry selection, was applied to a set of strains that had an initial high lipid content and improvement was assessed by means of Nile-red fluorescence measurements. The method was first tested on Isochrysis affinis galbana (T-Iso). Following a first round of mutation-selection, the total fatty acid content had not increased significantly, being 262 ± 21 mgTFA (gC)-1 for the wild type (WT) and 269 ± 49 mgTFA (gC)-1 for the selected population (S1M1). Conversely, fatty acid distribution among the lipid classes was affected by the process, resulting in a 20% increase for the fatty acids in the neutral lipids and a 40% decrease in the phospholipids. After a second mutation-selection step (S2M2), the total fatty acid content reached 409 ± 64 mgTFA (gC)-1 with a fatty acid distribution similar to the S1M1 population. Growth rate remained unaffected by the process, resulting in a 80% increase for neutral lipid productivity. Copyright © 2012 Wiley Periodicals, Inc.

  5. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.

    PubMed

    Viswanathan, Vasanthi S; Ryan, Matthew J; Dhruv, Harshil D; Gill, Shubhroz; Eichhoff, Ossia M; Seashore-Ludlow, Brinton; Kaffenberger, Samuel D; Eaton, John K; Shimada, Kenichi; Aguirre, Andrew J; Viswanathan, Srinivas R; Chattopadhyay, Shrikanta; Tamayo, Pablo; Yang, Wan Seok; Rees, Matthew G; Chen, Sixun; Boskovic, Zarko V; Javaid, Sarah; Huang, Cherrie; Wu, Xiaoyun; Tseng, Yuen-Yi; Roider, Elisabeth M; Gao, Dong; Cleary, James M; Wolpin, Brian M; Mesirov, Jill P; Haber, Daniel A; Engelman, Jeffrey A; Boehm, Jesse S; Kotz, Joanne D; Hon, Cindy S; Chen, Yu; Hahn, William C; Levesque, Mitchell P; Doench, John G; Berens, Michael E; Shamji, Alykhan F; Clemons, Paul A; Stockwell, Brent R; Schreiber, Stuart L

    2017-07-27

    Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFβ-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.

  6. Impact of Lipid Composition and Receptor Conformation on the Spatio-temporal Organization of μ-Opioid Receptors in a Multi-component Plasma Membrane Model

    PubMed Central

    Marino, Kristen A.; Prada-Gracia, Diego; Provasi, Davide; Filizola, Marta

    2016-01-01

    The lipid composition of cell membranes has increasingly been recognized as playing an important role in the function of various membrane proteins, including G Protein-Coupled Receptors (GPCRs). For instance, experimental and computational evidence has pointed to lipids influencing receptor oligomerization directly, by physically interacting with the receptor, and/or indirectly, by altering the bulk properties of the membrane. While the exact role of oligomerization in the function of class A GPCRs such as the μ-opioid receptor (MOR) is still unclear, insight as to how these receptors oligomerize and the relevance of the lipid environment to this phenomenon is crucial to our understanding of receptor function. To examine the effect of lipids and different MOR conformations on receptor oligomerization we carried out extensive coarse-grained molecular dynamics simulations of crystal structures of inactive and/or activated MOR embedded in an idealized mammalian plasma membrane composed of 63 lipid types asymmetrically distributed across the two leaflets. The results of these simulations point, for the first time, to specific direct and indirect effects of the lipids, as well as the receptor conformation, on the spatio-temporal organization of MOR in the plasma membrane. While sphingomyelin-rich, high-order lipid regions near certain transmembrane (TM) helices of MOR induce an effective long-range attractive force on individual protomers, both long-range lipid order and interface formation are found to be conformation dependent, with a larger number of different interfaces formed by inactive MOR compared to active MOR. PMID:27959924

  7. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers.

    PubMed

    Skotland, Tore; Ekroos, Kim; Kauhanen, Dimple; Simolin, Helena; Seierstad, Therese; Berge, Viktor; Sandvig, Kirsten; Llorente, Alicia

    2017-01-01

    Exosomes have recently appeared as a novel source of noninvasive cancer biomarkers, since these nanovesicles contain molecules from cancer cells and can be detected in biofluids. We have here investigated the potential use of lipids in urinary exosomes as prostate cancer biomarkers. A high-throughput mass spectrometry quantitative lipidomic analysis was performed to reveal the lipid composition of urinary exosomes in prostate cancer patients and healthy controls. Control samples were first analysed to characterise the lipidome of urinary exosomes and test the reproducibility of the method. In total, 107 lipid species were quantified in urinary exosomes. Several differences, for example, in cholesterol and phosphatidylcholine, were found between urinary exosomes and exosomes derived from cell lines, thus showing the importance of in vivo studies for biomarker analysis. The 36 most abundant lipid species in urinary exosomes were then quantified in 15 prostate cancer patients and 13 healthy controls. Interestingly, the levels of nine lipids species were found to be significantly different when the two groups were compared. The highest significance was shown for phosphatidylserine (PS) 18:1/18:1 and lactosylceramide (d18:1/16:0), the latter also showed the highest patient-to-control ratio. Furthermore, combinations of these lipid species and PS 18:0-18:2 distinguished the two groups with 93% sensitivity and 100% specificity. Finally, in agreement with the reported dysregulation of sphingolipid metabolism in cancer cells, alteration in specific sphingolipid lipid classes were observed. This study shows for the first time the potential use of exosomal lipid species in urine as prostate cancer biomarkers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Characterization of myrtle seed (Myrtus communis var. baetica) as a source of lipids, phenolics, and antioxidant activities.

    PubMed

    Wannes, Wissem Aidi; Marzouk, Brahim

    2016-04-01

    This study aimed to characterize the chemical composition and antioxidant activity of the oil and the methanolic extract of Myrtus communis var. baetica seed. The oil yield of myrtle seed was 8.90%, with the amount of neutral lipid, especially triacylglycerol, being the highest, followed by phospholipids and glycolipids. Total lipids and all lipid classes were rich in linoleic acid. The content of total phenols, flavonoids, tannins, and proanthocyanidins of the methanolic extract and the oil from myrtle seed was determined using spectrophotometric methods. Antioxidant activities of the oil and the methanolic extract from myrtle seed were evaluated using 1,1-diphenyl-2-picrylhydrazyl radical scavenging, β-carotene-linoleic acid bleaching, and reducing power and metal chelating activity assays. In all tests, the methanolic extract of myrtle seed showed better antioxidant activity than oil. This investigation could suggest the use of myrtle seed in food, industrial, and biomedical applications for its potential metabolites and antioxidant abilities. Copyright © 2015. Published by Elsevier B.V.

  9. Composition and Quantitation of Microalgal Lipids by ERETIC 1H NMR Method

    PubMed Central

    Nuzzo, Genoveffa; Gallo, Carmela; d’Ippolito, Giuliana; Cutignano, Adele; Sardo, Angela; Fontana, Angelo

    2013-01-01

    Accurate characterization of biomass constituents is a crucial aspect of research in the biotechnological application of natural products. Here we report an efficient, fast and reproducible method for the identification and quantitation of fatty acids and complex lipids (triacylglycerols, glycolipids, phospholipids) in microalgae under investigation for the development of functional health products (probiotics, food ingredients, drugs, etc.) or third generation biofuels. The procedure consists of extraction of the biological matrix by modified Folch method and direct analysis of the resulting material by proton nuclear magnetic resonance (1H NMR). The protocol uses a reference electronic signal as external standard (ERETIC method) and allows assessment of total lipid content, saturation degree and class distribution in both high throughput screening of algal collection and metabolic analysis during genetic or culturing studies. As proof of concept, the methodology was applied to the analysis of three microalgal species (Thalassiosira weissflogii, Cyclotella cryptica and Nannochloropsis salina) which drastically differ for the qualitative and quantitative composition of their fatty acid-based lipids. PMID:24084790

  10. Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents.

    PubMed

    Baldridge, Jory R; McGowan, Patrick; Evans, Jay T; Cluff, Christopher; Mossman, Sally; Johnson, David; Persing, David

    2004-07-01

    Toll-like receptor (TLR) agonists are being developed for use as vaccine adjuvants and as stand-alone immunomodulators because of their ability to stimulate innate and adaptive immune responses. Among the most thoroughly studied TLR agonists are the lipid A molecules that target the TLR4 complex. One promising candidate, monophosphoryl lipid A, which is a derivative of lipid A from Salmonella minnesota, has proven to be safe and effective as a vaccine adjuvant in > 120,000 human doses. A new class of synthetic lipid A mimetics, the aminoalkyl glucosaminide 4-phosphates (AGPs), have been engineered specifically to target human TLR4 and are showing promise as vaccine adjuvants and as monotherapeutic agents capable of eliciting nonspecific protection against a wide range of infectious pathogens. In this review, the authors provide an update of the preclinical and clinical experiences with the TLR4 agonists, MPL (Corixa Corporation) adjuvant and the AGPs.

  11. Tear Film Lipids

    PubMed Central

    Butovich, Igor A.

    2013-01-01

    Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author’s laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined. PMID:23769846

  12. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR

    PubMed Central

    Hong, Mei; Su, Yongchao

    2011-01-01

    Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534

  13. Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids

    PubMed Central

    Jin, Haibao; Jiao, Fang; Daily, Michael D.; Chen, Yulin; Yan, Feng; Ding, Yan-Huai; Zhang, Xin; Robertson, Ellen J.; Baer, Marcel D.; Chen, Chun-Long

    2016-01-01

    An ability to develop sequence-defined synthetic polymers that both mimic lipid amphiphilicity for self-assembly of highly stable membrane-mimetic 2D nanomaterials and exhibit protein-like functionality would revolutionize the development of biomimetic membranes. Here we report the assembly of lipid-like peptoids into highly stable, crystalline, free-standing and self-repairing membrane-mimetic 2D nanomaterials through a facile crystallization process. Both experimental and molecular dynamics simulation results show that peptoids assemble into membranes through an anisotropic formation process. We further demonstrated the use of peptoid membranes as a robust platform to incorporate and pattern functional objects through large side-chain diversity and/or co-crystallization approaches. Similar to lipid membranes, peptoid membranes exhibit changes in thickness upon exposure to external stimuli; they can coat surfaces in single layers and self-repair. We anticipate that this new class of membrane-mimetic 2D nanomaterials will provide a robust matrix for development of biomimetic membranes tailored to specific applications. PMID:27402325

  14. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  15. Water extract of gromwell (Lithospermum erythrorhizon) enhances migration of human keratinocytes and dermal fibroblasts with increased lipid synthesis in an in vitro wound scratch model.

    PubMed

    Kim, H; Kim, J; Park, J; Kim, S H; Uchida, Y; Holleran, W M; Cho, Y

    2012-01-01

    Although organic extracts of gromwell (Lithospermum erythrorhizon) have been shown to promote wound healing, the wound healing effects of water extracts of gromwell (WG) that are commonly used in traditional remedies have not been elucidated. We investigated whether WG promotes the migration and/or proliferation of cultured human keratinocytes (CHK) or dermal fibroblasts in parallel with increases in lipid synthesis during in vitro wound healing. CHK or fibroblasts were treated with 1-1,000 μg/ml WG for up to 48 h following scratch wound formation. Cell migration was assessed by measuring coverage (in percent) from the wound margin, while cell proliferation and lipid synthesis were determined by [(3)H]thymidine incorporation into DNA fractions, and [(3)H]palmitate or [(3)H]serine incorporation into lipid fractions, respectively. Low-dose WG (1 μg/ml) enhanced the wound coverage for both CHK and fibroblasts at 24 h, while cell proliferation was not altered in either cell types. Synthesis of both total lipids and individual lipid classes, including phospholipids, sphingolipids and neutral lipids, were found to be increased at 24 h in CHK treated with 1 μg/ml WG; in similarly treated fibroblasts, only the syntheses of sphingolipids (such as ceramides and glucosylceramides), but not other lipid species, were significantly increased. In contrast, a higher dose of WG (10-1,000 μg/ml) did not enhance wound coverage, and 100 μg/ml WG neither altered cell proliferation nor lipid synthesis in both CHK and fibroblasts. Low-dose WG (1 μg/ml) enhances the migration of both CHK and fibroblasts with increased lipid synthesis in an in vitro wound scratch model. Copyright © 2011 S. Karger AG, Basel.

  16. Temperature-Dependent Lipid Storage of Juvenile Arctic cod (Boreogadus saida) and Co-Occurring North Pacific Gadids

    NASA Astrophysics Data System (ADS)

    Copeman, L.; Laurel, B.; Spencer, M. L.; Iseri, P.; Sremba, A. L.

    2016-02-01

    Climate change impacts on Arctic ecosystems will largely be determined by temperature-dependent bioenergetics of resident and invading forage fish species. In this study, we experimentally measured total lipids and lipid class storage in the liver and muscle of juvenile Arctic gadids (Arctic cod, Boreogadus saida and saffron cod, Eleginus gracilis) and two North Pacific gadids (walleye pollock, Gadus chalcogrammus and Pacific cod, Gadus macrocephalus). Experiments were conducted over a 6-wk period across five temperatures (0, 5, 9, 16 and 20 °C) at the Hatfield Marine Science Center in Newport, OR, USA. Results indicated clear physiological differences among species in terms of temperature-dependent growth and lipid storage. Arctic cod exhibited highest growth and lipid storage (27 mg/g WW) at the coldest temperature (0 °C) compared to the other gadids, with near maximum growth at 5 °C and onset of mortality above 9 °C. In contrast, saffron cod growth rates steadily increased at temperatures beyond 16 °C, but lipid storage was low overall with only slightly higher lipid storage at warm temperatures (10 to 17 mg/g WW). Both walleye pollock and Pacific cod showed a domed response with increased lipid storage and growth at intermediate temperatures (9 - 12°C) and reduced growth and lipid storage at cold and warm maxima. We did not observe a trade-off between growth rate and lipid accumulation in any species. These results suggest that saffron cod can thrive in a warming Arctic but will be energetically inferior as a prey item to the more temperature-sensitive Arctic cod. Alternatively, North Pacific gadids can energetically resemble Arctic cod at warmer temperatures and could theoretically be an important prey item if their range extends northward with continued climate change.

  17. Influence of SNPs in nutrient-sensitive candidate genes and gene-diet interactions on blood lipids: the DiOGenes study.

    PubMed

    Brahe, Lena K; Ängquist, Lars; Larsen, Lesli H; Vimaleswaran, Karani S; Hager, Jörg; Viguerie, Nathalie; Loos, Ruth J F; Handjieva-Darlenska, Teodora; Jebb, Susan A; Hlavaty, Petr; Larsen, Thomas M; Martinez, J Alfredo; Papadaki, Angeliki; Pfeiffer, Andreas F H; van Baak, Marleen A; Sørensen, Thorkild I A; Holst, Claus; Langin, Dominique; Astrup, Arne; Saris, Wim H M

    2013-09-14

    Blood lipid response to a given dietary intervention could be determined by the effect of diet, gene variants or gene-diet interactions. The objective of the present study was to investigate whether variants in presumed nutrient-sensitive genes involved in lipid metabolism modified lipid profile after weight loss and in response to a given diet, among overweight European adults participating in the Diet Obesity and Genes study. By multiple linear regressions, 240 SNPs in twenty-four candidate genes were investigated for SNP main and SNP-diet interaction effects on total cholesterol, LDL-cholesterol, HDL-cholesterol and TAG after an 8-week low-energy diet (only main effect) ,and a 6-month ad libitum weight maintenance diet, with different contents of dietary protein or glycaemic index. After adjusting for multiple testing, a SNP-dietary protein interaction effect on TAG was identified for lipin 1 (LPIN1) rs4315495, with a decrease in TAG of 20.26 mmol/l per A-allele/protein unit (95% CI 20.38, 20.14, P=0.000043). In conclusion, we investigated SNP-diet interactions for blood lipid profiles for 240 SNPs in twenty-four candidate genes, selected for their involvement in lipid metabolism pathways, and identified one significant interaction between LPIN1 rs4315495 and dietary protein for TAG concentration.

  18. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure.

    PubMed

    Kovacevic, A; Savic, S; Vuleta, G; Müller, R H; Keck, C M

    2011-03-15

    The two polyhydroxy surfactants polyglycerol 6-distearate (Plurol(®)Stearique WL1009 - (PS)) and caprylyl/capryl glucoside (Plantacare(®) 810 - (PL)) are a class of PEG-free stabilizers, made from renewable resources. They were investigated for stabilization of aqueous solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Production was performed by high pressure homogenization, analysis by photon correlation spectroscopy (PCS), laser diffraction (LD), zeta potential measurements and differential scanning calorimetry (DSC). Particles were made from Cutina CP as solid lipid only (SLN) and its blends with Miglyol 812 (NLC, the blends containing increasing amounts of oil from 20% to 60%). The obtained particle sizes were identical for both surfactants, about 200 nm with polydispersity indices below 0.20 (PCS), and unimodal size distribution (LD). All dispersions with both surfactants were physically stable for 3 months at room temperature, but Plantacare (PL) showing a superior stability. The melting behaviour and crystallinity of bulk lipids/lipid blends were compared to the nanoparticles. Both were lower for the nanoparticles. The crystallinity of dispersions stabilized with PS was higher, the zeta potential decreased with storage time associated with this higher crystallinity, and leading to a few, but negligible larger particles. The lower crystallinity particles stabilized with PL remained unchanged in zeta potential (about -50 mV) and in size. These data show that surfactants have a distinct influence on the particle matrix structure (and related stability and drug loading), to which too little attention was given by now. Despite being from the same surfactant class, the differences on the structure are pronounced. They are attributed to the hydrophobic-lipophilic tail structure with one-point anchoring in the interface (PL), and the loop conformation of PS with two hydrophobic anchor points, i.e. their molecular structure and its interaction with the matrix surface and matrix bulk. Analysis of the effects of the surfactants on the particle matrix structure could potentially be used to further optimization of stability, drug loading and may be drug release. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles

    PubMed Central

    Sansone, Anna; Tolika, Evanthia; Louka, Maria; Sunda, Valentina; Deplano, Simone; Melchiorre, Michele; Anagnostopoulos, Dimitrios; Chatgilialoglu, Chryssostomos; Formisano, Cesare; Di Micco, Rosa; Faraone Mennella, Maria Rosaria; Ferreri, Carla

    2016-01-01

    Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50) compared with age-matched lean controls (n = 50); and ii) the first comparison of erythrocyte membrane phospholipids (PL) and plasma cholesteryl esters (CE) in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6) in red blood cell (RBC) membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0) and C20 omega-6, as well as decreases of oleic acid (9cis-18:1) and docosahexaenoic acid (C22:6 omega-3) as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in the choice of lipid species for the interpretation of lipidomic profiles. PMID:27045677

  20. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles.

    PubMed

    Sansone, Anna; Tolika, Evanthia; Louka, Maria; Sunda, Valentina; Deplano, Simone; Melchiorre, Michele; Anagnostopoulos, Dimitrios; Chatgilialoglu, Chryssostomos; Formisano, Cesare; Di Micco, Rosa; Faraone Mennella, Maria Rosaria; Ferreri, Carla

    2016-01-01

    Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50) compared with age-matched lean controls (n = 50); and ii) the first comparison of erythrocyte membrane phospholipids (PL) and plasma cholesteryl esters (CE) in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6) in red blood cell (RBC) membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0) and C20 omega-6, as well as decreases of oleic acid (9cis-18:1) and docosahexaenoic acid (C22:6 omega-3) as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in the choice of lipid species for the interpretation of lipidomic profiles.

  1. A not-stop-flow online normal-/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry method for comprehensive lipid profiling of human plasma from atherosclerosis patients.

    PubMed

    Li, Min; Tong, Xunliang; Lv, Pu; Feng, Baosheng; Yang, Li; Wu, Zheng; Cui, Xinge; Bai, Yu; Huang, Yining; Liu, Huwei

    2014-11-03

    A not-stop-flow online two-dimensional (2D) liquid chromatography (LC) method was developed for comprehensive lipid profiling by coupling normal- and reversed-phase LC with quadrupole time-of-flight mass spectrometry (QToF-MS), which was then applied to separate and identify the lipid species in plasma, making its merits in quality and quantity of the detection of lipids. Total 540 endogenous lipid species from 17 classes were determined in human plasma, and the differences in lipid metabolism products in human plasma between atherosclerosis patients and control subjects were explored in detail. The limit of detections (LODs) of 19 validation standards could all reach ng/mL magnitude, and the RSDs of peak area and retention time ranged 0.4-8.0% and 0.010-0.47%, respectively. In addition, a pair of isomers, galactosylceramides (GalC) and glucosylceramides (GluC), was successfully separated, showing that only the levels of GalC in atherosclerosis patients were significantly increasing, rather than GluC, compared with the controls (controls vs. patients: the ratio was 1.5-2.8-fold increasing). It would be helpful to the further research of the atherosclerosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Polar cuticular lipids differ in male and female sandflies (Phlebotomus papatasi)

    USDA-ARS?s Scientific Manuscript database

    The sand fly Phlebotomus papatasi is an important blood feeder and the main vector of Leishmania major, which causes zoonotic cutaneous leishmaniasis in parts of the Afro-Eurasian region. Polar cuticular lipids in P. papatasi were analyzed by high resolution mass spectrometry. Blood-fed females, no...

  3. Plant sphingolipids: decoding the enigma of the Sphinx.

    PubMed

    Pata, Mickael O; Hannun, Yusuf A; Ng, Carl K-Y

    2010-02-01

    Sphingolipids are a ubiquitous class of lipids present in a variety of organisms including eukaryotes and bacteria. In the last two decades, research has focused on characterizing the individual species of this complex family of lipids, which has led to a new field of research called 'sphingolipidomics'. There are at least 500 (and perhaps thousands of) different molecular species of sphingolipids in cells, and in Arabidopsis alone it has been reported that there are at least 168 different sphingolipids. Plant sphingolipids can be divided into four classes: glycosyl inositol phosphoceramides (GIPCs), glycosylceramides, ceramides, and free long-chain bases (LCBs). Numerous enzymes involved in plant sphingolipid metabolism have now been cloned and characterized, and, in general, there is broad conservation in the way in which sphingolipids are metabolized in animals, yeast and plants. Here, we review the diversity of sphingolipids reported in the literature, some of the recent advances in our understanding of sphingolipid metabolism in plants, and the physiological roles that sphingolipids and sphingolipid metabolites play in plant physiology.

  4. Plant sphingolipids: decoding the enigma of the Sphinx

    PubMed Central

    Pata, Mickael O.; Hannun, Yusuf A.; Ng, Carl K.-Y.

    2009-01-01

    Summary Sphingolipids are a ubiquitous class of lipids present in a variety of organisms including eukaryotes and bacteria. In the last two decades, research has focused on characterizing the individual species of this complex family of lipids, leading to a new field of research called sphingolipidomics. There are at least 500 (and perhaps thousands) different molecular species of sphingolipids in cells, and in Arabidopsis alone, it has been reported that there are at least 168 different sphingolipids. Plant sphingolipids can be divided into four classes: glycosyl inositol phosphoceramides (GIPCs), glycosylceramides, ceramides, and free long chain bases (LCBs). Numerous enzymes involved in plant sphingolipid metabolism have now been cloned and characterized, and, in general, there is broad conservation in the way sphingolipids are metabolized in animals, yeast and plants. Here, we review the diversity of sphingolipids reported in the literature, some of the recent advances in our understanding of sphingolipid metabolism in plants, and the physiological roles that sphingolipids and sphingolipid metabolites play in plant physiology. PMID:20028469

  5. Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems.

    PubMed

    Corin, Karolina; Baaske, Philipp; Ravel, Deepali B; Song, Junyao; Brown, Emily; Wang, Xiaoqiang; Wienken, Christoph J; Jerabek-Willemsen, Moran; Duhr, Stefan; Luo, Yuan; Braun, Dieter; Zhang, Shuguang

    2011-01-01

    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.

  6. Designer Lipid-Like Peptides: A Class of Detergents for Studying Functional Olfactory Receptors Using Commercial Cell-Free Systems

    PubMed Central

    Corin, Karolina; Baaske, Philipp; Ravel, Deepali B.; Song, Junyao; Brown, Emily; Wang, Xiaoqiang; Wienken, Christoph J.; Jerabek-Willemsen, Moran; Duhr, Stefan; Luo, Yuan; Braun, Dieter; Zhang, Shuguang

    2011-01-01

    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins. PMID:22132066

  7. Converging roles for sphingolipids and cell stress in the progression of neurological dysfunction in AIDS

    PubMed Central

    Haughey, Norman J.; Steiner, Joesph; Nath, Avindra; McArthur, Justin; Sacktor, Ned; Pardo, Carlos; Bandaru, Veera Venkata Ratnam

    2009-01-01

    Sphingolipids are a class of lipids enriched in the central nervous system that have important roles in signal transduction. Recent advances in our understanding of how sphingolipids are involved in the control of life and death signaling have uncovered roles for these lipids in the neuropathogenesis of HIV-associated neurocognitive disorders (HAND). In this review we briefly summarize the molecular mechanisms involved in the pathological production of the toxic sphingolipid, ceramide and address questions of how cytokine and cellular stress pathways that are perturbed in HAND converge to deregulate ceramide-associated signaling. PMID:18508574

  8. Reactive Oxygen Species-Mediated Cellular Stress Response and Lipid Accumulation in Oleaginous Microorganisms: The State of the Art and Future Perspectives

    PubMed Central

    Shi, Kun; Gao, Zhen; Shi, Tian-Qiong; Song, Ping; Ren, Lu-Jing; Huang, He; Ji, Xiao-Jun

    2017-01-01

    Microbial oils, which are mainly extracted from yeasts, molds, and algae, have been of considerable interest as food additives and biofuel resources due to their high lipid content. While these oleaginous microorganisms generally produce only small amounts of lipids under optimal growth conditions, their lipid accumulation machinery can be induced by environmental stresses, such as nutrient limitation and an inhospitable physical environmental. As common second messengers of many stress factors, reactive oxygen species (ROS) may act as a regulator of cellular responses to extracellular environmental signaling. Furthermore, increasing evidence indicates that ROS may act as a mediator of lipid accumulation, which is associated with dramatic changes in the transcriptome, proteome, and metabolome. However, the specific mechanisms of ROS involvement in the crosstalk between extracellular stress signaling and intracellular lipid synthesis require further investigation. Here, we summarize current knowledge on stress-induced lipid biosynthesis and the putative role of ROS in the control of lipid accumulation in oleaginous microorganisms. Understanding such links may provide guidance for the development of stress-based strategies to enhance microbial lipid production. PMID:28507542

  9. Plasma membrane lipids and their role in fungal virulence.

    PubMed

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  10. A new herbicidal site of action: Cinmethylin binds to acyl-ACP thioesterase and inhibits plant fatty acid biosynthesis.

    PubMed

    Campe, Ruth; Hollenbach, Eva; Kämmerer, Lara; Hendriks, Janneke; Höffken, Hans Wolfgang; Kraus, Helmut; Lerchl, Jens; Mietzner, Thomas; Tresch, Stefan; Witschel, Matthias; Hutzler, Johannes

    2018-06-01

    The prevalent occurrence of herbicide resistant weeds increases the necessity for new site of action herbicides for effective control as well as to relax selection pressure on the known sites of action. As a consequence, interest increased in the unexploited molecule cinmethylin as a new solution for the control of weedy grasses in cereals. Therefore, the mechanism of action of cinmethylin was reevaluated. We applied the chemoproteomic approach cellular Target Profiling™ from Evotec to identify the cinmethylin target in Lemna paucicostata protein extracts. We found three potential targets belonging to the same protein family of fatty acid thioesterases (FAT) to bind to cinmethylin with high affinity. Binding of cinmethylin to FAT proteins from Lemna and Arabidopsis was confirmed by fluorescence-based thermal shift assay. The plastid localized enzyme FAT plays a crucial role in plant lipid biosynthesis, by mediating the release of fatty acids (FA) from its acyl carrier protein (ACP) which is necessary for FA export to the endoplasmic reticulum. GC-MS analysis of free FA composition in Lemna extracts revealed strong reduction of unsaturated C18 as well as saturated C14, and C16 FAs upon treatment with cinmethylin, indicating that FA release for subsequent lipid biosynthesis is the primary target of cinmethylin. Lipid biosynthesis is a prominent target of different herbicide classes. To assess whether FAT inhibition constitutes a new mechanism of action within this complex pathway, we compared physiological effects of cinmethylin to different ACCase and VLCFA synthesis inhibitors and identified characteristic differences in plant symptomology and free FA composition upon treatment with the three herbicide classes. Also, principal component analysis of total metabolic profiling of treated Lemna plants showed strong differences in overall metabolic changes after cinmethylin, ACCase or VLCFA inhibitor treatments. Our results identified and confirmed FAT as the cinmethylin target and validate FAT inhibition as a new site of action different from other lipid biosynthesis inhibitor classes. Copyright © 2018 BASF SE. Published by Elsevier Inc. All rights reserved.

  11. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    PubMed

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform for the selection of candidate lipase genes for further detailed functional study.

  12. Multicomponent Reactions in Ligation and Bioconjugation Chemistry.

    PubMed

    Reguera, Leslie; Méndez, Yanira; Humpierre, Ana R; Valdés, Oscar; Rivera, Daniel G

    2018-05-25

    Multicomponent reactions (MCRs) encompass an exciting class of chemical transformations that have proven success in almost all fields of synthetic organic chemistry. These convergent procedures incorporate three or more reactants into a final product in one pot, thus combining high levels of complexity and diversity generation with low synthetic cost. Striking applications of these processes are found in heterocycle, peptidomimetic, and natural product syntheses. However, their potential in the preparation of large macro- and biomolecular constructs has been realized just recently. This Account describes the most relevant results of our group in the utilization of MCRs for ligation/conjugation of biomolecules along with significant contributions from other laboratories that validate the utility of this special class of bioconjugation process. Thus, MCRs have proven to be efficient in the ligation of lipids to peptides and oligosaccharides as well as the ligation of steroids, carbohydrates, and fluorescent and affinity tags to peptides and proteins. In the field of glycolipids, we highlight the power of isocyanide-based MCRs with the one-pot double lipidation of glycan fragments functionalized as either the carboxylic acid or amine. In peptide chemistry, the versatility of the multicomponent ligation strategy is demonstrated in both solution-phase lipidation protocols and solid-phase procedures enabling the simultaneous lipidation and biotinylation of peptides. In addition, we show that MCRs are powerful methods for synchronized lipidation/labeling and macrocyclization of peptides, thus accomplishing in one step what usually requires long sequences. In the realm of protein bioconjugation, MCRs have also proven to be effective in labeling, site-selective modification, immobilization, and glycoconjugation processes. For example, we illustrate a successful application of multicomponent polysaccharide-protein conjugation with the preparation of multivalent glycoconjugate vaccine candidates by the ligation of two antigenic capsular polysaccharides of a pathogenic bacterium to carrier proteins. By highlighting the ability to join several biomolecules in only one synthetic operation, we hope to encourage the biomolecular chemistry community to apply this powerful chemistry to novel biomedicinal challenges.

  13. Impact of dietary precursor ALA versus preformed DHA on fatty acid profiles of eggs, liver and adipose tissue and expression of genes associated with hepatic lipid metabolism in laying hens.

    PubMed

    Neijat, M; Eck, P; House, J D

    2017-04-01

    Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), including alpha-linolenic acid (ALA) and preformed longer chain PUFA (LCPUFA, particularly docosahexaenoic acid, DHA) differ in their egg LCPUFA enrichment efficiency. However, mechanisms leading to these differences are unclear. To this end, omega-3 PUFA contents in different lipid classes, including triacylglycerol (TAG) and total phospholipid (PL) in yolk, liver and adipose, as well as the expression of key hepatic enzymes in lipid metabolism were evaluated in laying hens in response to changes in dietary supply. Seventy Lohmann hens (n=10/treatment) consumed either a control diet (0.03% total omega-3 PUFA), or the control with supplementation (0.20%, 0.40% and 0.60% total omega-3 PUFA) from either flaxseed oil or algal product, as sources of ALA (precursor) or DHA (preformed), respectively. The study was arranged in a completely randomized design, and data were analyzed using the Proc Mixed procedure of SAS. ALA accumulated as a function of intake (P<0.0001) in total and lipid classes of yolk, liver and adipose (TAG only) for ALA- and DHA-fed hens. Unlike flaxseed oil, preformed-DHA contributed to greater (P<0.0001) accumulation of LCPUFA in yolk total PL and TAG pool, as well as adipose TAG. This may relate to elevated (P<0.0001) expression of acyl-CoA synthetase (ACSL1). No difference in hepatic EPA level in total lipids was noted between both treatment groups; EPA liver =2.1493x-0.0064; R 2 =0.70, P<0.0001 (x=dietary omega-3 PUFA). The latter result may highlight the role of hepatic EPA in the regulation of LCPUFA metabolism in laying hens. Copyright © 2017. Published by Elsevier Ltd.

  14. Fatty Acid Profile of Neutral and Polar Lipid Fraction of Wild Eggs and Hatchlings from Wild and Captive Reared Broodstock of Octopus vulgaris

    PubMed Central

    Estefanell, Juan; Mesa-Rodríguez, Antonio; Ramírez, Besay; La Barbera, Antonio; Socorro, Juan; Hernandez-Cruz, Carmen María; Izquierdo, María Soledad

    2017-01-01

    The culture of Octopus vulgaris is constrained by unsolved problems in paralarvae rearing, mainly associated to the unknown nutritional requirements of this species in early stages. In this article we studied the fatty acid profile (total, neutral, and polar lipid fractions) in wild eggs and wild hatchlings, collected in Gran Canaria (SW) (Spain) with artificial dens, in comparison to hatchlings obtained in captivity from broodstock fed on trash fish species. Total lipids were 11.5–13.5% dw, with the polar fraction representing a 70.6–75.5% of total lipid, with lower values in wild hatchling in comparison with captive ones. Docosahexaenoic acid (DHA) was the main component in neutral and polar fatty acid profile in all samples, underlying its importance in this species. Decreasing levels of saturates and arachidonic acid (ARA) from wild eggs to hatchlings, mainly associated to the polar fraction, suggest their use during embryonic development. In hatchlings, increasing levels of oleic acid in the neutral fraction and eicosapentaenoic acid (EPA) in the polar fraction, suggests their importance in hatchlings quality. Wild hatchlings showed in the polar fraction higher oleic acid and ARA, and lower DHA/ARA and EPA/ARA ratios in comparison with captive hatchlings, suggesting a difference in paralarvae nutritional status. These results suggest the importance of n-3 highly unsaturated fatty acids (HUFA), oleic acid, and ARA, presented in the adequate lipid fraction, in the diet of broodstock and paralarvae of O. vulgaris. PMID:28790921

  15. Turnover of muscle lipids and response to exercise differ between neutral and polar fractions in a model songbird, the zebra finch.

    PubMed

    Carter, Wales A; Cooper-Mullin, Clara; McWilliams, Scott R

    2018-03-19

    The turnover rates of tissues and their constituent molecules give us insights into animals' physiological demands and their functional flexibility over time. Thus far, most studies of this kind have focused on protein turnover, and few have considered lipid turnover despite an increasing appreciation of the functional diversity of this class of molecules. We measured the turnover rates of neutral and polar lipids from the pectoralis muscles of a model songbird, the zebra finch ( Taeniopygia guttata , N =65), in a 256 day C 3 /C 4 diet shift experiment, with tissue samples taken at 10 time points. We also manipulated the physiological state of a subset of these birds with a 10 week flight training regimen to test the effect of exercise on lipid turnover. We measured lipid δ 13 C values via isotope ratio mass spectrometry (IRMS) and estimated turnover in different fractions and treatment groups with non-linear mixed-effect regression. We found a significant difference between the mean retention times (τ) of neutral and polar lipids ( t 119 =-2.22, P =0.028), with polar lipids (τ=11.80±1.28 days) having shorter retention times than neutral lipids (τ=19.47±3.22 days). When all birds were considered, we also found a significant decrease in the mean retention time of polar lipids in exercised birds relative to control birds (difference=-2.2±1.83 days, t 56 =-2.37, P =0.021), but not neutral lipids (difference=4.2± 7.41 days, t 56 =0.57, P =0.57). A larger, more variable neutral lipid pool and the exposure of polar lipids in mitochondrial membranes to oxidative damage and increased turnover provide mechanisms consistent with our results. © 2018. Published by The Company of Biologists Ltd.

  16. Evolution of the Kdo2-lipid A Biosynthesis in Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Opiyo; R Pardy; H Moriyama

    BACKGROUND: Lipid A is the highly immunoreactive endotoxic center of lipopolysaccharide (LPS). It anchors the LPS into the outer membrane of most Gram-negative bacteria. Lipid A can be recognized by animal cells, triggers defense-related responses, and causes Gram-negative sepsis. The biosynthesis of Kdo2-lipid A, the LPS substructure, involves with nine enzymatic steps. RESULTS: In order to elucidate the evolutionary pathway of Kdo2-lipid A biosynthesis, we examined the distribution of genes encoding the nine enzymes across bacteria. We found that not all Gram-negative bacteria have all nine enzymes. Some Gram-negative bacteria have no genes encoding these enzymes and others have genesmore » only for the first four enzymes (LpxA, LpxC, LpxD, and LpxB). Among the nine enzymes, five appeared to have arisen from three independent gene duplication events. Two of such events happened within the Proteobacteria lineage, followed by functional specialization of the duplicated genes and pathway optimization in these bacteria. CONCLUSIONS: The nine-enzyme pathway, which was established based on the studies mainly in Escherichia coli K12, appears to be the most derived and optimized form. It is found only in E. coli and related Proteobacteria. Simpler and probably less efficient pathways are found in other bacterial groups, with Kdo2-lipid A variants as the likely end products. The Kdo2-lipid A biosynthetic pathway exemplifies extremely plastic evolution of bacterial genomes, especially those of Proteobacteria, and how these mainly pathogenic bacteria have adapted to their environment.« less

  17. Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.

    PubMed

    Marquês, Joaquim T; Viana, Ana S; De Almeida, Rodrigo F M

    2011-01-01

    Ethanol-lipid bilayer interactions have been a recurrent theme in membrane biophysics, due to their contribution to the understanding of membrane structure and dynamics. The main purpose of this study was to assess the interplay between membrane lateral heterogeneity and ethanol effects. This was achieved by in situ atomic force microscopy, following the changes induced by sequential ethanol additions on supported lipid bilayers formed in the absence of alcohol. Binary phospholipid mixtures with a single gel phase, dipalmitoylphosphatidylcholine (DPPC)/cholesterol, gel/fluid phase coexistence DPPC/dioleoylphosphatidylcholine (DOPC), and ternary lipid mixtures containing cholesterol, mimicking lipid rafts (DOPC/DPPC/cholesterol and DOPC/sphingomyelin/cholesterol), i.e., with liquid ordered/liquid disordered (ld/lo) phase separation, were investigated. For all compositions studied, and in two different solid supports, mica and silicon, domain formation or rearrangement accompanied by lipid bilayer thinning and expansion was observed. In the case of gel/fluid coexistence, low ethanol concentrations lead to a marked thinning of the fluid but not of the gel domains. In the case of ld/lo all the bilayer thins simultaneously by a similar extent. In both cases, only the more disordered phase expanded significantly, indicating that ethanol increases the proportion of disordered domains. Water/bilayer interfacial tension variation and freezing point depression, inducing acyl chain disordering (including opening and looping), tilting, and interdigitation, are probably the main cause for the observed changes. The results presented herein demonstrate that ethanol influences the bilayer properties according to membrane lateral organization. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Platform for Lipid Based Nanocarriers' Formulation Components and their Potential Effects: A Literature Review.

    PubMed

    Farid, Ragwa Mohamed; Youssef, Nancy Abdel Hamid Abou; Kassem, Abeer Ahmed

    2017-11-27

    Lipid based nanocarriers have gained recently enormous interest for pharmaceutical application. They have the potential to provide controlled drug release and to target the drug to a specific area. In addition, lipid based nanocarriers can improve the bioavailability of drugs suffering from high hepatic first-pass metabolism, by enhancing their transport via the lymphatic system. The main components of lipid based nanocarriers are lipids and surfactants. Both have great influence on the prepared lipid based systems characteristics. The criteria for their selection are much related to physicochemical properties of the drug and the required administration route. This work gives an overview on the effect of both the type and amount of lipids and surfactants used in the manufacture of lipid based nanocarriers on their behavior and characteristics. Recent studies revealed that the properties of the final product including; particle size, homogeneity, drug loading capacity, zeta potential, drug release profile, stability, permeability, pharmacokinetic properties, crystallinity and cytotoxicity, may be significantly influenced not only by the type but also the amount of the lipids and/or surfactants included in the formulation of the lipid based nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    PubMed

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A simple protocol for Matrix Assisted Laser Desorption Ionization- time of flight-mass spectrometry (MALDI-TOF-MS) analysis of lipids and proteins in single microsamples of paintings.

    PubMed

    van der Werf, Inez D; Calvano, Cosima D; Palmisano, Francesco; Sabbatini, Luigia

    2012-03-09

    A simple protocol, based on Bligh-Dyer (BD) extraction followed by MALDI-TOF-MS analysis, for fast identification of paint binders in single microsamples is proposed. For the first time it is demonstrated that the BD method is effective for the simultaneous extraction of lipids and proteins from complex, and atypical matrices, such as pigmented paint layers. The protocol makes use of an alternative denaturing anionic detergent (RapiGest™) in order to improve efficiency of protein digestion and purification step. Detection of various lipid classes, such as triacylglycerols (TAGs) and phospholipids (PLs), and their oxidation by-products was accomplished, whereas proteins could be identified by peptide mass fingerprinting. The effect of pigments on ageing of lipids and proteins was also investigated. Finally, the proposed protocol was successfully applied to the study of a late-15th century Italian panel painting allowing the identification of various proteinaceous and lipid sections in organic binders, such as egg yolk, egg white, animal glue, casein, and drying oil. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery

    NASA Astrophysics Data System (ADS)

    Dehaini, Diana; Fang, Ronnie H.; Luk, Brian T.; Pang, Zhiqing; Hu, Che-Ming J.; Kroll, Ashley V.; Yu, Chun Lai; Gao, Weiwei; Zhang, Liangfang

    2016-07-01

    Lipid-polymer hybrid nanoparticles, consisting of a polymeric core coated by a layer of lipids, are a class of highly scalable, biodegradable nanocarriers that have shown great promise in drug delivery applications. Here, we demonstrate the facile synthesis of ultra-small, sub-25 nm lipid-polymer hybrid nanoparticles using an adapted nanoprecipitation approach and explore their utility for targeted delivery of a model chemotherapeutic. The fabrication process is first optimized to produce a monodisperse population of particles that are stable under physiological conditions. It is shown that these ultra-small hybrid nanoparticles can be functionalized with a targeting ligand on the surface and loaded with drug inside the polymeric matrix. Further, the in vivo fate of the nanoparticles after intravenous injection is characterized by examining the blood circulation and biodistribution. In a final proof-of-concept study, targeted ultra-small hybrid nanoparticles loaded with the cancer drug docetaxel are used to treat a mouse tumor model and demonstrate improved efficacy compared to a clinically available formulation of the drug. The ability to synthesize a significantly smaller version of the established lipid-polymer hybrid platform can ultimately enhance its applicability across a wider range of applications.

  2. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    NASA Astrophysics Data System (ADS)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2018-02-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.

  3. Lipidomics in triacylglycerol and cholesteryl ester oxidation.

    PubMed

    Kuksis, Arnis

    2007-05-01

    Although direct mass spectrometry is capable of identification the major molecular species of lipids in crude total lipid extracts, prior chromatographic isolation is necessary for detection and identification of the minor components. This is especially important for the analysis of the oxolipids, which usually occur in trace amounts in the total lipid extract, and require prior isolation for detailed analysis. Both thin-layer chromatography and adsorption cartridges provide effective means for isolation and enrichment of lipid classes, while gas-liquid chromatography and high performance liquid chromatography with on-line mass spectrometry permit further separation and identification of molecular species. Prior chromatographic resolution is absolutely necessary for the identification of isobaric and chiral molecules, which mass spectrometry/mass spectrometry (MS/MS) cannot distinguish. Both gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry applications may require the preparation of derivatives in order to improve the chromatographic and mass spectrometric properties of the oxolipids which is a small inconvenience for securing analytical reliability. The following chapter reviews the advantages and necessity of combined chromatographic-mass spectrometric approaches to successful identification and quantification of molecular species of oxoacylglycerols and oxocholesteryl esters in in-vitro model studies of lipid peroxidation and in the analyses of oxolipids recovered from tissues.

  4. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics

    PubMed Central

    Rey, Felisa; Alves, Eliana; Melo, Tânia; Domingues, Pedro; Queiroga, Henrique; Rosa, Rui; Domingues, M. Rosário M.; Calado, Ricardo

    2015-01-01

    Embryogenesis is an important stage of marine invertebrates with bi-phasic life cycles, as it conditions their larval and adult life. Throughout embryogenesis, phospholipids (PL) play a key role as an energy source, as well as constituents of biological membranes. However, the dynamics of PL during embryogenesis in marine invertebrates is still poorly studied. The present work used a lipidomic approach to determine how polar lipid profiles shift during embryogenesis in two sympatric estuarine crabs, Carcinus maenas and Necora puber. The combination of thin layer chromatography, liquid chromatography – mass spectrometry and gas chromatography – mass spectrometry allowed us to achieve an unprecedented resolution on PL classes and molecular species present on newly extruded embryos (stage 1) and those near hatching (stage 3). Embryogenesis proved to be a dynamic process, with four PL classes being recorded in stage 1 embryos (68 molecular species in total) and seven PL classes at stage 3 embryos (98 molecular species in total). The low interspecific difference recorded in the lipidomic profiles of stage 1 embryos appears to indicate the existence of similar maternal investment. The same pattern was recorded for stage 3 embryos revealing a similar catabolism of embryonic resources during incubation for both crab species. PMID:26419891

  5. Lipid Production from Nannochloropsis

    PubMed Central

    Ma, Xiao-Nian; Chen, Tian-Peng; Yang, Bo; Liu, Jin; Chen, Feng

    2016-01-01

    Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed. PMID:27023568

  6. Fibrates are an essential part of modern anti-dyslipidemic arsenal: spotlight on atherogenic dyslipidemia and residual risk reduction.

    PubMed

    Tenenbaum, Alexander; Fisman, Enrique Z

    2012-10-11

    Currently the world faces epidemic of several closely related conditions: obesity, metabolic syndrome and type 2 diabetes (T2DM). The lipid profile of these patients and those with metabolic syndrome is characterized by the concurrent presence of qualitative as well as quantitative lipoprotein abnormalities: low levels of HDL, increased triglycerides, and prevalence of LDL particles that are smaller and denser than normal. This lipid phenotype has been defined as atherogenic dyslipidemia. Overwhelming evidences demonstrate that all components of the atherogenic dyslipidemia are important risk-factors for cardiovascular diseases. Optimal reduction of cardiovascular risk through comprehensive management of atherogenic dyslipidemias basically depends of the presence of efficacious lipid-modulating agents (beyond statin-based reduction of LDL-C). The most important class of medications which can be effectively used nowadays to combat atherogenic dyslipidemias is the fibrates. From a clinical point of view, in all available 5 randomized control trials beneficial effects of major fibrates (gemfibrozil, fenofibrate, bezafibrate) were clearly demonstrated and were highly significant in patients with atherogenic dyslipidemia. In these circumstances, the main determinant of the overall results of the trial is mainly dependent of the number of the included appropriate patients with atherogenic dyslipidemia. In a meta-analysis of dyslipidemic subgroups totaling 4726 patients a significant 35% relative risk reduction in cardiovascular events was observed compared with a non significant 6% reduction in those without dyslipidemia. However, different fibrates may have a somewhat different spectrum of effects. Currently only fenofibrate was investigated and proved to be effective in reducing microvascular complications of diabetes. Bezafibrate reduced the severity of intermittent claudication. Cardinal differences between bezafibrate and other fibrates are related to the effects on glucose metabolism and insulin resistance. Bezafibrate is the only clinically available pan - (alpha, beta, gamma) PPAR balanced activator. Bezafibrate decreases blood glucose level, HbA1C, insulin resistance and reduces the incidence of T2DM compared to placebo or other fibrates. Among major fibrates, bezafibrate appears to have the strongest and fenofibrate the weakest effect on HDL-C. Current therapeutic use of statins as monotherapy is still leaving many patients with atherogenic dyslipidemia at high risk for coronary events because even intensive statin therapy does not eliminate the residual cardiovascular risk associated with low HDL and/or high triglycerides. As compared with statin monotherapy (effective mainly on LDL-C levels and plaque stabilization), the association of a statin with a fibrate will also have a major impact on triglycerides, HDL and LDL particle size. Moreover, in the specific case of bezafibrate one could expect neutralizing of the adverse pro-diabetic effect of statins. Though muscle pain and myositis is an issue in statin/fibrate treatment, adverse interaction appears to occur to a significantly greater extent when gemfibrozil is administered. However, bezafibrate and fenofibrate seems to be safer and better tolerated. Combined fibrate/statin therapy is more effective in achieving a comprehensive lipid control and may lead to additional cardiovascular risk reduction, as could be suggested for fenofibrate following ACCORD Lipid study subgroup analysis and for bezafibrate on the basis of one small randomized study and multiple observational data. Therefore, in appropriate patients with atherogenic dyslipidemia fibrates- either as monotherapy or combined with statins - are consistently associated with reduced risk of cardiovascular events. Fibrates currently constitute an indispensable part of the modern anti-dyslipidemic arsenal for patients with atherogenic dyslipidemia.

  7. Fibrates are an essential part of modern anti-dyslipidemic arsenal: spotlight on atherogenic dyslipidemia and residual risk reduction

    PubMed Central

    2012-01-01

    Currently the world faces epidemic of several closely related conditions: obesity, metabolic syndrome and type 2 diabetes (T2DM). The lipid profile of these patients and those with metabolic syndrome is characterized by the concurrent presence of qualitative as well as quantitative lipoprotein abnormalities: low levels of HDL, increased triglycerides, and prevalence of LDL particles that are smaller and denser than normal. This lipid phenotype has been defined as atherogenic dyslipidemia. Overwhelming evidences demonstrate that all components of the atherogenic dyslipidemia are important risk-factors for cardiovascular diseases. Optimal reduction of cardiovascular risk through comprehensive management of atherogenic dyslipidemias basically depends of the presence of efficacious lipid-modulating agents (beyond statin-based reduction of LDL-C). The most important class of medications which can be effectively used nowadays to combat atherogenic dyslipidemias is the fibrates. From a clinical point of view, in all available 5 randomized control trials beneficial effects of major fibrates (gemfibrozil, fenofibrate, bezafibrate) were clearly demonstrated and were highly significant in patients with atherogenic dyslipidemia. In these circumstances, the main determinant of the overall results of the trial is mainly dependent of the number of the included appropriate patients with atherogenic dyslipidemia. In a meta-analysis of dyslipidemic subgroups totaling 4726 patients a significant 35% relative risk reduction in cardiovascular events was observed compared with a non significant 6% reduction in those without dyslipidemia. However, different fibrates may have a somewhat different spectrum of effects. Currently only fenofibrate was investigated and proved to be effective in reducing microvascular complications of diabetes. Bezafibrate reduced the severity of intermittent claudication. Cardinal differences between bezafibrate and other fibrates are related to the effects on glucose metabolism and insulin resistance. Bezafibrate is the only clinically available pan - (alpha, beta, gamma) PPAR balanced activator. Bezafibrate decreases blood glucose level, HbA1C, insulin resistance and reduces the incidence of T2DM compared to placebo or other fibrates. Among major fibrates, bezafibrate appears to have the strongest and fenofibrate the weakest effect on HDL-C. Current therapeutic use of statins as monotherapy is still leaving many patients with atherogenic dyslipidemia at high risk for coronary events because even intensive statin therapy does not eliminate the residual cardiovascular risk associated with low HDL and/or high triglycerides. As compared with statin monotherapy (effective mainly on LDL-C levels and plaque stabilization), the association of a statin with a fibrate will also have a major impact on triglycerides, HDL and LDL particle size. Moreover, in the specific case of bezafibrate one could expect neutralizing of the adverse pro-diabetic effect of statins. Though muscle pain and myositis is an issue in statin/fibrate treatment, adverse interaction appears to occur to a significantly greater extent when gemfibrozil is administered. However, bezafibrate and fenofibrate seems to be safer and better tolerated. Combined fibrate/statin therapy is more effective in achieving a comprehensive lipid control and may lead to additional cardiovascular risk reduction, as could be suggested for fenofibrate following ACCORD Lipid study subgroup analysis and for bezafibrate on the basis of one small randomized study and multiple observational data. Therefore, in appropriate patients with atherogenic dyslipidemia fibrates- either as monotherapy or combined with statins – are consistently associated with reduced risk of cardiovascular events. Fibrates currently constitute an indispensable part of the modern anti-dyslipidemic arsenal for patients with atherogenic dyslipidemia. PMID:23057687

  8. Suitable Class Experiments in Biochemistry for High-school Chemistry and Biology Courses.

    ERIC Educational Resources Information Center

    Myers, A.

    1987-01-01

    Illustrates the scope of experimental investigations for biochemistry education in high school biology and chemistry courses. Gives a brief overview of biochemistry experiments with proteins, enzymes, carbohydrates, lipids, nucleic acids, vitamins, metabolism, electron transport, and photosynthesis including materials, procedures, and outcomes.…

  9. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    DOE PAGES

    Vrablik, Tracy L.; Petyuk, Vladislav A.; Larson, Emily M.; ...

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified Caenorhabditis elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols is rich in fatty acid species obtained from the dietary Escherichia coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type andmore » high-fat daf-2 mutant strains shows a very similar proteome in both strains, except that the most abundant protein in the C. elegans lipid droplet proteome, MDT-28, is relatively less abundant in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans. Finally, we confirmed the localization of one of the newly identified lipid droplet proteins, ACS-4. We found that ACS-4 localizes to the surface of lipid droplets in the C. elegans intestine and skin. This study bolsters C. elegans as a model to study the dynamics and functions of lipid droplets in a multicellular organism.« less

  10. Serum lipid levels for a multicultural population in Auckland, New Zealand: results from the Diabetes Heart and Health Survey (DHAH) 2002-2003.

    PubMed

    Gentles, Dudley; Metcalf, Patricia; Dyall, Lorna; Scragg, Robert; Sundborn, Gerhard; Schaaf, David; Black, Peter N; Jackson, Rodney T

    2007-11-09

    To describe mean serum lipid concentrations for Maori, Pacific people (mostly of Samoan, Tongan, Niuean, or Cook Islands origin), and Others (mostly New Zealand-born Europeans), and to identify risk factors for an adverse lipid profile. A cross-sectional survey of adults aged between 35-74 years within the Auckland area. There were 1006 Maori, 996 Pacific people, and 2021 'Others' Fasting blood samples were collected from participants, and total cholesterol, high-density lipoproteins (HDL), low-density lipoproteins (LDL), and triglycerides were measured. Maori and Pacific people had similar mean serum total and LDL cholesterol levels but lower HDL levels and higher total to HDL cholesterol ratios compared to Others (adjusted for age and gender). Maori also had higher triglycerides than Others. High BMI and cigarette smoking were positively associated with unfavourable lipid profiles, while current alcohol drinking and vigorous leisure time activity were associated with increased HDL cholesterol and lower total to HDL cholesterol ratios. Over 90% of all ethnic groups had total cholesterol levels above currently accepted optimal levels (>4 mmol/L) and two-thirds were above 5 mmol/L. While 30% of Others had a total to HDL cholesterol ratio above the 'optimal' threshold of 4.5, 40% of Maori and 44% of pacific people were above this level. This is the first study to simultaneously assess lipid levels in Maori, Pacific people, and Others in one population-based study. Despite similar total and LDL cholesterol levels in all ethnic groups; overweight, obesity, and current cigarette smoking were the main risk factors for their adverse lipid profiles. Engaging in leisure-time activity and alcohol consumption (and not surprisingly lipid-lowering drugs) were associated with better lipid profiles. We confirm that the main lipid-related cardiovascular disease risk in Maori and Pacific people is due to their low HDL and high triglyceride levels.

  11. Guidelines for the Use of Protein Domains in Acidic Phospholipid Imaging.

    PubMed

    Platre, Matthieu Pierre; Jaillais, Yvon

    2016-01-01

    Acidic phospholipids are minor membrane lipids but critically important for signaling events. The main acidic phospholipids are phosphatidylinositol phosphates (PIPs also known as phosphoinositides), phosphatidylserine (PS), and phosphatidic acid (PA). Acidic phospholipids are precursors of second messengers of key signaling cascades or are second messengers themselves. They regulate the localization and activation of many proteins, and are involved in virtually all membrane trafficking events. As such, it is crucial to understand the subcellular localization and dynamics of each of these lipids within the cell. Over the years, several techniques have emerged in either fixed or live cells to analyze the subcellular localization and dynamics of acidic phospholipids. In this chapter, we review one of them: the use of genetically encoded biosensors that are based on the expression of specific lipid binding domains (LBDs) fused to fluorescent proteins. We discuss how to design such sensors, including the criteria for selecting the lipid binding domains of interest and to validate them. We also emphasize the care that must be taken during data analysis as well as the main limitations and advantages of this approach.

  12. Identification of the lipid biomarkers from plasma in idiopathic pulmonary fibrosis by Lipidomics.

    PubMed

    Yan, Feng; Wen, Zhensong; Wang, Rui; Luo, Wenling; Du, Yufeng; Wang, Wenjun; Chen, Xianyang

    2017-12-06

    Idiopathic pulmonary fibrosis (IPF) is an irreversible interstitial pulmonary disease featured by high mortality, chronic and progressive course, and poor prognosis with unclear etiology. Currently, more studies have been focusing on identifying biomarkers to predict the progression of IPF, such as genes, proteins, and lipids. Lipids comprise diverse classes of molecules and play a critical role in cellular energy storage, structure, and signaling. The role of lipids in respiratory diseases, including cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD) has been investigated intensely in the recent years. The human serum lipid profiles in IPF patients however, have not been thoroughly understood and it will be very helpful if there are available molecular biomarkers, which can be used to monitor the disease progression or provide prognostic information for IPF disease. In this study, we performed the ultraperformance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) to detect the lipid variation and identify biomarker in plasma of IPF patients. The plasma were from 22 IPF patients before received treatment and 18 controls. A total of 507 individual blood lipid species were determined with lipidomics from the 40 plasma samples including 20 types of fatty acid, 159 types of glycerolipids, 221 types of glycerophospholipids, 47 types of sphingolipids, 46 types of sterol lipids, 7 types of prenol lipids, 3 types of saccharolipids, and 4 types of polyketides. By comparing the variations in the lipid metabolite levels in IPF patients, a total of 62 unique lipids were identified by statistical analysis including 24 kinds of glycerophoslipids, 30 kinds of glycerolipids, 3 kinds of sterol lipids, 4 kinds of sphingolipids and 1 kind of fatty acids. Finally, 6 out of 62 discriminating lipids were selected as the potential biomarkers, which are able to differentiate between IPF disease and controls with ROC analysis. Our results provided vital information regarding lipid metabolism in IPF patients and more importantly, a few potentially promising biomarkers were firstly identified which may have a predictive role in monitoring and diagnosing IPF disease.

  13. Canine epidermal lipid sampling by skin scrub revealed variations between different body sites and normal and atopic dogs

    PubMed Central

    2014-01-01

    Background Previously, we evaluated a minimally invasive epidermal lipid sampling method called skin scrub, which achieved reproducible and comparable results to skin scraping. The present study aimed at investigating regional variations in canine epidermal lipid composition using the skin scrub technique and its suitability for collecting skin lipids in dogs suffering from certain skin diseases. Eight different body sites (5 highly and 3 lowly predisposed for atopic lesions) were sampled by skin scrub in 8 control dogs with normal skin. Additionally, lesional and non-lesional skin was sampled from 12 atopic dogs and 4 dogs with other skin diseases by skin scrub. Lipid fractions were separated by high performance thin layer chromatography and analysed densitometrically. Results No significant differences in total lipid content were found among the body sites tested in the control dogs. However, the pinna, lip and caudal back contained significantly lower concentrations of ceramides, whereas the palmar metacarpus and the axillary region contained significantly higher amounts of ceramides and cholesterol than most other body sites. The amount of total lipids and ceramides including all ceramide classes were significantly lower in both lesional and non-lesional skin of atopic dogs compared to normal skin, with the reduction being more pronounced in lesional skin. The sampling by skin scrub was relatively painless and caused only slight erythema at the sampled areas but no oedema. Histological examinations of skin biopsies at 2 skin scrubbed areas revealed a potential lipid extraction from the transition zone between stratum corneum and granulosum. Conclusions The present study revealed regional variations in the epidermal lipid and ceramide composition in dogs without skin abnormalities but no connection between lipid composition and predilection sites for canine atopic dermatitis lesions. The skin scrub technique proved to be a practicable sampling method for canine epidermal lipids, revealed satisfying results regarding alterations of skin lipid composition in canine atopic dermatitis and might be suitable for epidermal lipid investigations of further canine skin diseases. Although the ceramide composition should be unaffected by the deeper lipid sampling of skin scrub compared to other sampling methods, further studies are required to determine methodological differences. PMID:25012966

  14. Cultivation of Chlorella sp. with livestock waste compost for lipid production.

    PubMed

    Zhu, L-D; Li, Z-H; Guo, D-B; Huang, F; Nugroho, Y; Xia, K

    2017-01-01

    Cultivation of microalgae Chlorella sp. with livestock waste compost as an alternative nutrient source was investigated in this present study. Five culture media with different nutrient concentrations were prepared. The characteristics of algal growth and lipid production were examined. The results showed that the specific growth rate together with biomass and lipid productivities was different among all the cultures. As the initial nutrient concentration decreased, the lipid content of Chlorella sp. increased. The variations in lipid productivity of Chlorella sp. among all the cultures were mainly due to the deviations in biomass productivity. The livestock waste compost medium with 2000mgL -1 COD provided an optimal nutrient concentration for Chlorella sp. cultivation, where the highest productivities of biomass (288.84mgL -1 day -1 ) and lipid (104.89mgL -1 day -1 ) were presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Coherent anti-Stokes Raman scattering (CARS) spectroscopy in Caenorhabditis elegans and Globodera pallida: evidence for an ivermectin-activated decrease in lipid stores.

    PubMed

    Smus, Justyna P; Ludlow, Elizabeth; Dallière, Nicolas; Luedtke, Sarah; Monfort, Tual; Lilley, Catherine; Urwin, Peter; Walker, Robert J; O'Connor, Vincent; Holden-Dye, Lindy; Mahajan, Sumeet

    2017-12-01

    Macrocyclic lactones are arguably the most successful chemical class with efficacy against parasitic nematodes. Here we investigated the effect of the macrocyclic lactone ivermectin on lipid homeostasis in the plant parasitic nematode Globodera pallida and provide new insight into its mode of action. A non-invasive, non-destructive, label-free and chemically selective technique called Coherent anti-Stokes Raman scattering (CARS) spectroscopy was used to study lipid stores in G. pallida. We optimised the protocol using the free-living nematode Caenorhabditis elegans and then used CARS to quantify lipid stores in the pre-parasitic, non-feeding J2 stage of G. pallida. This revealed a concentration of lipid stores in the posterior region of J2 s within 24 h of hatching which decreased to undetectable levels over the course of 28 days. We tested the effect of ivermectin on J2 viability and lipid stores. Within 24 h, ivermectin paralysed J2 s. Counterintuitively, over the same time-course ivermectin increased the rate of depletion of J2 lipid, suggesting that in ivermectin-treated J2 s there is a disconnection between the energy requirements for motility and metabolic rate. This decrease in lipid stores would be predicted to negatively impact on J2 infective potential. These data suggest that the benefit of macrocyclic lactones as seed treatments may be underpinned by a multilevel effect involving both neuromuscular inhibition and acceleration of lipid metabolism. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. Coherent anti‐Stokes Raman scattering (CARS) spectroscopy in Caenorhabditis elegans and Globodera pallida: evidence for an ivermectin‐activated decrease in lipid stores

    PubMed Central

    Smus, Justyna P; Ludlow, Elizabeth; Dallière, Nicolas; Luedtke, Sarah; Monfort, Tual; Lilley, Catherine; Urwin, Peter; Walker, Robert J; O'Connor, Vincent

    2017-01-01

    Abstract BACKGROUND Macrocyclic lactones are arguably the most successful chemical class with efficacy against parasitic nematodes. Here we investigated the effect of the macrocyclic lactone ivermectin on lipid homeostasis in the plant parasitic nematode Globodera pallida and provide new insight into its mode of action. RESULTS A non‐invasive, non‐destructive, label‐free and chemically selective technique called Coherent anti‐Stokes Raman scattering (CARS) spectroscopy was used to study lipid stores in G. pallida. We optimised the protocol using the free‐living nematode Caenorhabditis elegans and then used CARS to quantify lipid stores in the pre‐parasitic, non‐feeding J2 stage of G. pallida. This revealed a concentration of lipid stores in the posterior region of J2 s within 24 h of hatching which decreased to undetectable levels over the course of 28 days. We tested the effect of ivermectin on J2 viability and lipid stores. Within 24 h, ivermectin paralysed J2 s. Counterintuitively, over the same time‐course ivermectin increased the rate of depletion of J2 lipid, suggesting that in ivermectin‐treated J2 s there is a disconnection between the energy requirements for motility and metabolic rate. This decrease in lipid stores would be predicted to negatively impact on J2 infective potential. CONCLUSION These data suggest that the benefit of macrocyclic lactones as seed treatments may be underpinned by a multilevel effect involving both neuromuscular inhibition and acceleration of lipid metabolism. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28834172

  17. Lipid raft disarrangement as a result of neuropathological progresses: a novel strategy for early diagnosis?

    PubMed

    Marin, R; Rojo, J A; Fabelo, N; Fernandez, C E; Diaz, M

    2013-08-15

    Lipid rafts are the preferential site of numerous membrane signaling proteins which are involved in neuronal functioning and survival. These proteins are organized in multiprotein complexes, or signalosomes, in close contact with lipid classes particularly represented in lipid rafts (i.e. cholesterol, sphingolipids and saturated fatty acids), which may contribute to physiological responses leading to neuroprotection. Increasing evidence indicates that alteration of lipid composition in raft structures as a consequence of neuropathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), causes a dramatic increase in lipid raft order. These phenomena may correlate with perturbation of signalosome activities, likely contributing to neurodegenerative progression. Interestingly, significant disruption of stable raft microenvironments has been already observed in the first stages of either AD or PD, suggesting that these alterations may represent early events in the neuropathological development. In this regard, the search for biochemical markers, such as specific metabolic products altered in the brain at the first steps of the disease, presently represents an important challenge for early diagnostic strategies. Alterations of these biomarkers may be reflected in either plasma or cerebrospinal fluid, thus representing a potential strategy to predict an accurate diagnosis. We propose that pathologically-linked lipid raft markers may be interesting candidates to be explored at this level, although it has not been studied so far to what extent alteration of different signalosome components may be reflected in peripheral fluids. In this mini-review, we will discuss on relevant aspects of lipid rafts that contribute to the modulation of neuropathological events related to AD and PD. An interesting hypothesis is that anomalies on raft biomarkers measured at peripheral fluids might mirror the lipid raft pathology observed in early stages of AD and PD. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin.

    PubMed

    Shangguan, Mingzhu; Lu, Yi; Qi, Jianping; Han, Jin; Tian, Zhiqiang; Xie, Yunchang; Hu, Fuqiang; Yuan, Hailong; Wu, Wei

    2014-02-01

    The main purpose of this study was to prepare binary lipids-based nanostructured lipid carriers to improve the oral bioavailability of silymarin, a poorly water-soluble liver protectant. Silymarin-loaded nanostructured lipid carriers were prepared by the method of high-pressure homogenization with glycerol distearates (Precirol ATO-5) and oleic acid as the solid and liquid lipids, respectively, and lecithin (Lipoid E 100) and Tween-80 as the emulsifiers. The silymarin-nanostructured lipid carrier prepared under optimum conditions was spherical in shape with mean particle size of ∼78.87 nm, entrapment efficiency of 87.55%, loading capacity of 8.32%, and zeta potential of -65.3 mV, respectively. In vitro release of silymarin-nanostructured lipid carriers was very limited even after 12 h, while in vitro lipolysis showed fast digestion of nanostructured lipid carriers within 1 h. Relative oral bioavailability of silymarin-nanostructured lipid carriers in Beagle dogs was 2.54- and 3.10-fold that of marketed Legalon® and silymarin solid dispersion pellets, respectively. It was concluded that nanostructured lipid carriers were potential drug delivery systems to improve the bioavailability of silymarin. Other than improved dissolution, alternative mechanisms such as facilitated absorption as well as lymphatic transport may contribute to bioavailability enhancement.

  19. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    PubMed

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. How Phytoplankton Membranes Cope With Steep Ionic Strength (Salinity) Gradient?

    NASA Astrophysics Data System (ADS)

    Gasparovic, B.; Sesar, T.; Cankovic, M.; Ljubešić, Z.; Hrustić, E.; Zhu, Z.; Zhang, R.; Du, J.

    2016-02-01

    We report on phytoplankton accommodation on stressful conditions being steep ionic strength, i.e. salinity, changes, the conditions regularly found in the estuaries. We aimed defining how lipid composition of phytoplankton membrane structure is accommodated to prevent spontaneous osmosis. Salinity-dependent lipid profiles for particulate lipid extracts from blooming periods of the two opposing estuaries: eutrophic and polluted Wenchang River Estuary and pristine oligotrophic/mesotrophic Krka River Estuary were characterized by thin layer chromatography (TLC). The composition of phytoplankton pigments which was analyzed by high performance liquid chromatography. Domination of pigment Fucoxanthin in both estuaries indicates diatoms were major blooming group. While total particulate lipid concentration was almost an order of magnitude higher in the Wenchang River estuary (on average 238 µg/L) than in the Krka River Estuary (on average 36 µg/L), the lipid composition was similar. This implies that salinity stress is the main influential factor on phytoplankton lipid composition rather than availability of nutrients. Details on the lipid composition that follow salinity changes will be discussed.

Top