Associations between park features and adolescent park use for physical activity.
Edwards, Nicole; Hooper, Paula; Knuiman, Matthew; Foster, Sarah; Giles-Corti, Billie
2015-02-18
Eighty per cent of adolescents globally do insufficient physical activity. Parks are a popular place for adolescents to be active. However, little is known about which park features are associated with higher levels of park use by adolescents. This study aimed to examine which environmental park features, and combination of features, were correlated with higher levels of park use for physical activity among adolescents. By examining park features in parks used by adolescents for physical activity, this study also aimed to create a park 'attractiveness' score predictive of adolescent park use, and to identify factors that might predict use of their closest park. Adolescents (n = 1304) living in Geraldton, a large rural centre of Western Australia, completed a survey that measured physical activity behaviour, perceptions of park availability and the main park used for physical activity. All parks in the study area (n = 58) were digitized using a Geographic Information System (GIS) and features audited using the Public Open Space Desktop Auditing Tool (POSDAT). Only 27% of participants reported using their closest park for physical activity. Park use was associated with seven features: presence of a skate park, walking paths, barbeques, picnic table, public access toilets, lighting around courts and equipment and number of trees >25. When combined to create an overall attractiveness score, every additional 'attractive' feature present, resulted in a park being nearly three times more likely to be in the high use category. To increase park use for physical activity, urban planners and designers should incorporate park features attractive to adolescents.
Physics Experiments with Nintendo Wii Controllers
ERIC Educational Resources Information Center
Wheeler, Martyn D.
2011-01-01
This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from…
Algorithms for Spectral Decomposition with Applications to Optical Plume Anomaly Detection
NASA Technical Reports Server (NTRS)
Srivastava, Askok N.; Matthews, Bryan; Das, Santanu
2008-01-01
The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main approaches that can be taken to extract relevant features from these high-dimensional data streams. The first set of approaches relies on extracting features using a physics-based paradigm where the underlying physical mechanism that generates the spectra is used to infer the most important features in the data stream. We focus on a complementary methodology that uses a data-driven technique that is informed by the underlying physics but also has the ability to adapt to unmodeled system attributes and dynamics. We discuss the following four algorithms: Spectral Decomposition Algorithm (SDA), Non-Negative Matrix Factorization (NMF), Independent Component Analysis (ICA) and Principal Components Analysis (PCA) and compare their performance on a spectral emulator which we use to generate artificial data with known statistical properties. This spectral emulator mimics the real-world phenomena arising from the plume of the space shuttle main engine and can be used to validate the results that arise from various spectral decomposition algorithms and is very useful for situations where real-world systems have very low probabilities of fault or failure. Our results indicate that methods like SDA and NMF provide a straightforward way of incorporating prior physical knowledge while NMF with a tuning mechanism can give superior performance on some tests. We demonstrate these algorithms to detect potential system-health issues on data from a spectral emulator with tunable health parameters.
A Proposal to Introduce a Topic of Contemporary Physics into High-School Teaching
ERIC Educational Resources Information Center
Santos, Wilma M.S.; Luiz, Adir M.; de Carvalho, Carlos R.
2009-01-01
This article presents an approach to integrate contemporary physics into high-school teaching. We present a simple way to understand mass spectroscopy using basic physics concepts, so that high-school students may have contact with recent topics of modern research. The main features of a time-of-flight (TOF) mass spectrometer using secondary…
Mielenz, T J; Callahan, L F; Edwards, M C
2017-01-01
Our study had two main objectives: 1) to determine whether perceived neighbourhood physical features are associated with physical activity levels in adults with arthritis; and 2) to determine whether the conclusions are more precise when item response theory (IRT) scores are used instead of average scores for the perceived neighbourhood physical features scales. Information on health outcomes, neighbourhood characteristics, and physical activity levels were collected using a telephone survey of 937 participants with self-reported arthritis. Neighbourhood walkability and aesthetic features and physical activity levels were measured by self-report. Adjusted proportional odds models were constructed separately for each neighbourhood physical features scale. We found that among adults with arthritis, poorer perceived neighbourhood physical features (both walkability and aesthetics) are associated with decreased physical activity level compared to better perceived neighbourhood features. This association was only observed in our adjusted models when IRT scoring was employed with the neighbourhood physical feature scales (walkability scale: odds ratio [OR] 1.20, 95% confidence interval [CI] 1.02, 1.41; aesthetics scale: OR 1.32, 95% CI 1.09, 1.62), not when average scoring was used (walkability scale: OR 1.14, 95% CI 1.00, 1.30; aesthetics scale: OR 1.16, 95% CI 1.00, 1.36). In adults with arthritis, those reporting poorer walking and aesthetics features were found to have decreased physical activity levels compared to those reporting better features when IRT scores were used, but not when using average scores. This study may inform public health physical environmental interventions implemented to increase physical activity, especially since arthritis prevalence is expected to be close to 20% of the population in 2020. Based on NIH initiatives, future health research will utilize IRT scores. The differences found in this study may be a precursor for research on how past and future treatment effects may vary between these two types of measurement scores. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Nakai, Takashi; Metzler, Michael W.
2005-01-01
This article features the standards and practice for K-12 physical education in Japan. Physical education in Japan has many similarities to, and differences with, programs in the United States. Many of the main objectives for the school curriculum are the same; both systems promote major outcomes related to fitness and lifelong sport and physical…
NASA Astrophysics Data System (ADS)
Blettler, Martín. C. M.; Amsler, Mario L.; Eberle, Eliana G.; Szupiany, Ricardo; Latosinski, Francisco G.; Abrial, Elie; Oberholster, Paul J.; Espinola, Luis A.; Paira, Aldo; Poza, Ailen; Rodrigues Capítulo, Alberto
2016-12-01
Interdisciplinary research in the fields of ecohydrology and ecogeomorphology is becoming increasingly important as a way to understand how biological and physical processes interact with each other in river systems. The objectives of the current study were 1) to determine changes in invertebrate community due to hydrological stages, 2) to link local physical features [flow configuration, sediment composition and morphological feature) with the ecological structure between and within dissimilar morphological units (meander and confluence), and 3) to determine the existence and the origin of bed hydro-geomorphic patches, determining their ecological structure. Results were discussed in the frame of prevailing ecological models and concepts. The study site extends over a floodplain area of the large Paraná River (Argentina), including minor and major secondary channels as well as the main channel. Overall results suggested that hydrodynamics was the driving force determining distribution patterns of benthic assemblages in the floodplain. However, while the invertebrates living in minor secondary channels seem to benefit from flooding, this hydrological phase had the opposite effect on organisms from the main and major secondary channels. We also found a clear linkage between physical features and invertebrate ecology, which caused a dissimilar fauna structure between and within the meander and the confluence. Furthermore, several sandy-patches were recorded in the confluence. These patches were colonized by the particular benthic assemblage recorded in the main channel, supported the view of rivers as patchy discontinua, under uncertain ecological equilibrium.
NASA Technical Reports Server (NTRS)
Rietmeijer, F. J. M.; Schramm, L. S.; Barrett, R. A.; Mckay, D. S.; Zook, H. A.
1986-01-01
The physical properties of impact features in the Solar Max main electronics box thermal blanket are consistent with hypervelocity impacts of particles in the near-earth space environment. The majority of particles are orbital debris and include spacecraft paints and bismuth-rich particles. At least 30 percent of all impact features are caused by micrometeorites, which include silicates and sulfides. Some micrometeorites survive impact with only minor shock-metamorphic effects or chemical fractionation. Currently calibration experiments are under way to relate flux to particle diameter (or mass).
Physics experiments with Nintendo Wii controllers
NASA Astrophysics Data System (ADS)
Wheeler, Martyn D.
2011-01-01
This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from a spring undergoing simple harmonic motion, a pair of controllers mounted on colliding gliders on a linear air track, and a person jumping from a balance board.
ERIC Educational Resources Information Center
Physics Education, 1983
1983-01-01
Discusses investigations of mirages with an astronomical telescope and a way of demonstrating three of the main features of laser/maser action. Also discusses several physics demonstrations using color television. These include thin-film interference effects, single-slit diffraction, emission/absorption spectra, "rings and brushes"…
NASA Astrophysics Data System (ADS)
Khoroshkov, V. S.; Minakova, E. I.
1998-11-01
A branch of radiology, proton therapy employs fast protons as a tool for the treatment of various, mainly oncological, diseases. The features of tissue ionization by protons (Bragg peak) facilitate a further step towards solving the principal challenge in radiology: to deliver a sufficiently high and homogeneous dose to virtually any tumour, while sparing healthy neighbouring tissues, organs and structures. The state of the art of proton therapy is described, as well as the main technical, physics and clinical results gained since the 1950s at high-energy physics centres worldwide. The future of proton therapy is connected with the construction of hospital-based facilities with dedicated medical accelerators and modern technical instrumentation.
Coupled reactors analysis: New needs and advances using Monte Carlo methodology
Aufiero, M.; Palmiotti, G.; Salvatores, M.; ...
2016-08-20
Coupled reactors and the coupling features of large or heterogeneous core reactors can be investigated with the Avery theory that allows a physics understanding of the main features of these systems. However, the complex geometries that are often encountered in association with coupled reactors, require a detailed geometry description that can be easily provided by modern Monte Carlo (MC) codes. This implies a MC calculation of the coupling parameters defined by Avery and of the sensitivity coefficients that allow further detailed physics analysis. The results presented in this paper show that the MC code SERPENT has been successfully modifed tomore » meet the required capabilities.« less
Constructing phylogenetic trees using interacting pathways.
Wan, Peng; Che, Dongsheng
2013-01-01
Phylogenetic trees are used to represent evolutionary relationships among biological species or organisms. The construction of phylogenetic trees is based on the similarities or differences of their physical or genetic features. Traditional approaches of constructing phylogenetic trees mainly focus on physical features. The recent advancement of high-throughput technologies has led to accumulation of huge amounts of biological data, which in turn changed the way of biological studies in various aspects. In this paper, we report our approach of building phylogenetic trees using the information of interacting pathways. We have applied hierarchical clustering on two domains of organisms-eukaryotes and prokaryotes. Our preliminary results have shown the effectiveness of using the interacting pathways in revealing evolutionary relationships.
Variability in the topside ionosphere of Mars as seen by the MAVEN NGIMS instrument
NASA Astrophysics Data System (ADS)
Mayyasi, M.; Benna, M.; Mahaffy, P. R.; Elrod, M. K.
2017-12-01
Topside features in the ionosphere of Mars have been observed with every class of instrument to make ionospheric measurements of the planet. Many of these features include plasma enhancements that persist above the main ionospheric layer. A variety of physical mechanisms have been proposed to produce these enhancements, yet there remain inconsistencies between observational trends and theoretical drivers. The NASA Mars Atmosphere and Volatile Evolution mission Neutral Gas and Ion Mass Spectrometer (NGIMS) instrument is making in situ measurements to provide the chemical composition of the Martian ionized and neutral atmosphere. NGIMS observations typically span the altitude region at Mars in which both the ionospheric peak and topside plasma features are observed. In this presentation, NGIMS electron density data is analyzed for detections of topside enhancements that are closest to and above the main ionospheric peak. The ion composition of the detected topside bulges are subsequently analyzed against the ambient neutral species measurements and topographic parameters for insights into the mechanisms likely to be producing these enigmatic features.
Physical properties of Moving Magnetic Features observed around a pore
NASA Astrophysics Data System (ADS)
Criscuoli, S.; Del Moro, D.; Giannattasio, F.; Viticchié, B.; Giorgi, F.; Ermolli, I.; Zuccarello, F.; Berrilli, F.
2012-06-01
Movies of magnetograms of sunspots often show small-size magnetic patches that move radially away and seem to be expelled from the field of the spot. These patches are named Moving Magnetic Features (MMFs). They have been mostly observed around spots and have been interpreted as manifestations of penumbral filaments. Nevertheless, few observations of MMFS streaming out from spots without penumbra have been reported. He we investigate the physical properties of MMFs observed around the field of a pore derived by the analyses of high spectral, spatial and temporal resolution data acquired at the Dunn Solar Telescope with IBIS. We find that the main properties of the investigated features agree with those reported for MMFs observed around regular spots. These results indicate that an improvement of current numerical simulations is required to understand the generation of MMFs in the lack of penumbrae.
PREFACE: 15th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb)
NASA Astrophysics Data System (ADS)
Sokolovskii, Grigorii; Averkiev, Nikita
2013-08-01
The fifteenth Russian Youth Conference on Physics and Astronomy PhysicA.SPb was held 23-24 October 2012 in Saint-Petersburg, Russia. The Conference continues the tradition of Saint-Petersburg Seminars on Physics and Astronomy originating from the mid-90s. The main feature of PhysicA.SPb since then, remains the combination of both scientific and educational quality of the contributions delivered to the young audience. This feature makes it possible to combine the whole spectrum of modern Physics and Astronomy within one conference. PhysicA.SPb 2012 has brought together more than 150 students, young scientists and their professors from many universities and research institutes across Russia, as well as from Belarus, Ukraine, Finland, France and the United Kingdom. Oral and poster presentations were combined into a few well-defined sections among which one should name Astronomy and Astrophysics, Physics of semiconductors, Physics of solid state, Physics and technology of the alternative energetics, Nanostructured and thin-film materials, THz and UHF materials and devices, and Physics of the quantum-sized structures. This issue of the Journal of Physics: Conference Series presents the extended contributions from participants of PhysicA.SPb 2012 that were peer-reviewed by expert referees through processes administered by the Presiders of the Organising and Programme Committees to the best professional and scientific standards. Grigorii S. Sokolovskii and Nikita S. Averkiev Editors
Brambilla, Giovanni; Maffei, Luigi; Di Gabriele, Maria; Gallo, Veronica
2013-07-01
An experimental study was carried out in 20 squares in the center of Rome, covering a wide range of different uses, sonic environments, geometry, and architectural styles. Soundwalks along the perimeter of each square were performed during daylight and weekdays taking binaural and video recordings, as well as spot measurements of illuminance. The cluster analysis performed on the physical parameters, not only acoustic, provided two clusters that are in satisfactory agreement with the "a priori" classification. Applying the principal component analysis (PCA) to five physical parameters, two main components were obtained which might be associated to two environmental features, namely, "chaotic/calm" and "open/enclosed." On the basis of these two features, six squares were selected for the laboratory audio-video tests where 32 subjects took part filling in a questionnaire. The PCA performed on the subjective ratings on the sonic environment showed two main components which might be associated to two emotional meanings, namely, "calmness" and "vibrancy." The linear regression modeling between five objective parameters and the mean value of subjective ratings on chaotic/calm and enclosed/open attributes showed a good correlation. Notwithstanding these interesting results being limited to the specific data set, it is worth pointing out that the complexity of the soundscape quality assessment can be more comprehensively examined merging the field measurements of physical parameters with the subjective ratings provided by field and/or laboratory tests.
NASA Astrophysics Data System (ADS)
Yashchenko, I. G.; Polishchuk, Y. M.
2017-12-01
Using a global database on physical and chemical properties of oils, the distribution of viscous, heavy, waxy and highly resinous oils is analyzed in terms of volumes of their reserves. It is known that heavy and viscous oils account for slightly more than 33% of the total samples. Resinous and paraffin oils account for less than 30% in the total samples. The criteria necessary to classify oils as hard-to-recover oil reserves are determined. Features of physical and chemical properties of these oils are studied under various conditions. The results of a comparative analysis of hard-to-recover oils of a low quality from the main basins of the Arctic zone of Russia are given, which made it possible to establish features of physical and chemical properties of oil. The results of the research can be used to develop new and improve existing methods and technologies for oil production and refining.
Dolash, Karry; He, Meizi; Yin, Zenong; Sosa, Erica T
2015-04-01
Park features' association with physical activity among predominantly Hispanic communities is not extensively researched. The purpose of this study was to assess factors associated with park use and physical activity among park users in predominantly Hispanic neighborhoods. Data were collected across 6 parks and included park environmental assessments to evaluate park features, physical activity observations to estimate physical activity energy expenditure as kcal/kg/ minute per person, and park user interviews to assess motivators for park use. Quantitative data analysis included independent t tests and ANOVA. Thematic analysis of park user interviews was conducted collectively and by parks. Parks that were renovated had higher physical activity energy expenditure scores (mean = .086 ± .027) than nonrenovated parks (mean = .077 ± .028; t = -3.804; P < .01). Basketball courts had a significantly higher number of vigorously active park users (mean = 1.84 ± .08) than tennis courts (mean = .15 ± .01; F = 21.9, η(2) = 6.1%, P < .01). Thematic analysis of qualitative data revealed 4 emerging themes-motivation to be physically active, using the play spaces in the park, parks as the main place for physical activity, and social support for using parks. Renovations to park amenities, such as increasing basketball courts and trail availability, could potentially increase physical activity among low-socioeconomic-status populations.
A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania
NASA Astrophysics Data System (ADS)
Burducea, I.; Straticiuc, M.; Ghiță, D. G.; Moșu, D. V.; Călinescu, C. I.; Podaru, N. C.; Mous, D. J. W.; Ursu, I.; Zamfir, N. V.
2015-09-01
A 3 MV Tandetron™ accelerator system has been installed and commissioned at the "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry - RBS, Nuclear Reaction Analysis - NRA, Particle Induced X-ray and γ-ray Emission - PIXE and PIGE and micro-beam experiments - μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He- of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.
ERIC Educational Resources Information Center
Silverstein, Todd P.
2016-01-01
A highly instructive, wide-ranging laboratory project in which students study the effects of various parameters on the enzymatic activity of alcohol dehydrogenase has been adapted for the upper-division biochemistry and physical biochemistry laboratory. Our two main goals were to provide enhanced data analysis, featuring nonlinear regression, and…
Investigations of planetary ring phenomena
NASA Technical Reports Server (NTRS)
Burns, Joseph A.
1987-01-01
Faint planetary rings, their dynamical behavior and physical properties, were the main focus of the research efforts. The motion of weakly-charged dust through the gravitational and magnetic fields of Jupiter were examined. Several topics concerning features of Saturn's rings were addressed. The origin and fate of the Uranian ring dust is presently being studied.
Coastal management at Ojo de Liebre, Baja California Sur
Frederico Salinas-Zavala; Alfredo Ortega-Rubio; Diego Valez-Zamudio; Aradit Castelanos-Vera
2000-01-01
We analyzed the biotic, abiotic, and human components interacting at the coastal zone of the Ojo de Liebre Lagoon, Baja California Sur, Mexico. Using geographic information systems, satellite images, and the main biological, physical, and socioeconomic components, we developed an environmental characterization of the zone. According with the natural features of the...
Cognitive Abilities and Genotype in a Population-Based Sample of People with Prader-Willi Syndrome
ERIC Educational Resources Information Center
Whittington, J.; Holland, A.; Webb, T.; Butler, J.; Clarke, D.; Boer, H.
2004-01-01
Prader-Willi syndrome (PWS) is characterized by extreme floppiness at birth, impaired sexual development, short stature, severe over-eating, characteristic physical features and learning disabilities (LD). Impaired social cognition, literal mindedness and cognitive inflexibility are also present. The syndrome has two main genetic subtypes that…
Geography From Another Dimension
NASA Technical Reports Server (NTRS)
2002-01-01
The GEODESY software program is intended to promote geographical awareness among students with its remote sensing capabilities to observe the Earth's surface from distant vantage points. Students and teachers using GEODESY learn to interpret and analyze geographical data pertaining to the physical attributes of their community. For example, the program provides a digital environment of physical features, such as mountains and bodies of water, as well as man-made features, such as roads and parks, using aerial photography, satellite imagery, and geographic information systems data in accordance with National Geography Standards. The main goal is to have the students and teachers gain a better understanding of the unique forces that drive their coexistence. GEODESY was developed with technical assistance and financial support from Stennis Space Center's Commercial Remote Sensing Program Office, now known as the Earth Science Applications Directorate.
Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.
2015-01-01
Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.
Desired features of smartphone applications promoting physical activity.
Rabin, Carolyn; Bock, Beth
2011-12-01
Approximately one-third of adults in the United States are physically inactive. This is a significant public health concern as physical activity (PA) can influence the risk of cardiovascular disease, diabetes, and certain forms of cancer. To minimize these health risks, effective PA interventions must be developed and disseminated to the vast number of individuals who remain sedentary. Smartphone technology presents an exciting opportunity for delivering PA interventions remotely. Although a number of PA applications are currently available for smartphones, these "apps" are not based on established theories of health behavior change and most do not include evidence-based features (e.g., reinforcement and goal setting). Our aim was to collect formative data to develop a smartphone PA app that is empirically and theoretically-based and incorporates user preferences. We recruited 15 sedentary adults to test three currently available PA smartphone apps and provide qualitative and quantitative feedback. Findings indicate that users have a number of specific preferences with regard to PA app features, including that apps provide automatic tracking of PA (e.g., steps taken and calories burned), track progress toward PA goals, and integrate a music feature. Participants also preferred that PA apps be flexible enough to be used with several types of PA, and have well-documented features and user-friendly interfaces (e.g., a one-click main page). When queried by the researcher, most participants endorsed including goal-setting and problem-solving features. These findings provide a blue print for developing a smartphone PA app that incorporates evidence-based components and user preferences.
Identity Crisis in Cormac McCarthy's "All the Pretty Horses"
ERIC Educational Resources Information Center
Gebreen, Hayder A. K.
2016-01-01
The issue of identity is one of the main issues that encounters man in each culture. Identity is a set of behaviors, emotions, and thought patterns which are unique to every individual that define him as a member of a certain group. Identity is shaped by race, ethnicity, religious beliefs, language, physical features, childhood experiences, sexual…
2016-12-22
105 A.1 Main Loop ... loop monitoring for preventative maintenance rather than early replacement based on statistical projections or replacement-after- failure schemes. IC...estimates, RF-DNA may provide a means to track an IC’s physical degradation during actual use. Monitoring an IC’s degradation in a closed loop fashion
Tutorial on X-Ray Free-Electron Lasers
Carlsten, Bruce E.
2018-05-02
This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less
Tutorial on X-Ray Free-Electron Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsten, Bruce E.
This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less
Molecular machines operating on the nanoscale: from classical to quantum
2016-01-01
Summary The main physical features and operating principles of isothermal nanomachines in the microworld, common to both classical and quantum machines, are reviewed. Special attention is paid to the dual, constructive role of dissipation and thermal fluctuations, the fluctuation–dissipation theorem, heat losses and free energy transduction, thermodynamic efficiency, and thermodynamic efficiency at maximum power. Several basic models are considered and discussed to highlight generic physical features. This work examines some common fallacies that continue to plague the literature. In particular, the erroneous beliefs that one should minimize friction and lower the temperature for high performance of Brownian machines, and that the thermodynamic efficiency at maximum power cannot exceed one-half are discussed. The emerging topic of anomalous molecular motors operating subdiffusively but very efficiently in the viscoelastic environment of living cells is also discussed. PMID:27335728
Neutron cross section measurements at n-TOF for ADS related studies
NASA Astrophysics Data System (ADS)
Mastinu, P. F.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Bustreo, N.; aumann, P.; vá, F. Be; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; itzpatrick, L.; Frais-Kölbl, H.; Fujii, K.; Furman, W.; Guerrero, C.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krti ka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescherand, M.; Wisshak, K.
2006-05-01
A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.
Trees and Shrubs of the Penobscot Experimental Forest, Penobscot County, Maine
Lawrence O. Safford; Robert M. Frank; Elbert L., Jr. Little
1969-01-01
A reference guide for scientists, students, and visitors to the Penobscot Experimental Forest. A research unit of the Northeastern Forest Experiment Station, the 4,000-acre site is located in southern Penobscot County near Bangor. Includes the history and a description of the physical features of the Penobscot, an annotated list of 103 species of woody plants and...
Oliveira, Eliana Faria; Martinez, Pablo Ariel; São-Pedro, Vinícius Avelar; Gehara, Marcelo; Burbrink, Frank Thomas; Mesquita, Daniel Oliveira; Garda, Adrian Antonio; Colli, Guarino Rinaldi; Costa, Gabriel Correa
2018-03-01
Spatial patterns of genetic variation can help understand how environmental factors either permit or restrict gene flow and create opportunities for regional adaptations. Organisms from harsh environments such as the Brazilian semiarid Caatinga biome may reveal how severe climate conditions may affect patterns of genetic variation. Herein we combine information from mitochondrial DNA with physical and environmental features to study the association between different aspects of the Caatinga landscape and spatial genetic variation in the whiptail lizard Ameivula ocellifera. We investigated which of the climatic, environmental, geographical and/or historical components best predict: (1) the spatial distribution of genetic diversity, and (2) the genetic differentiation among populations. We found that genetic variation in A. ocellifera has been influenced mainly by temperature variability, which modulates connectivity among populations. Past climate conditions were important for shaping current genetic diversity, suggesting a time lag in genetic responses. Population structure in A. ocellifera was best explained by both isolation by distance and isolation by resistance (main rivers). Our findings indicate that both physical and climatic features are important for explaining the observed patterns of genetic variation across the xeric Caatinga biome.
Millimeter image of the HL Tau Disk: gaps opened by planets?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui
2015-10-20
Several observed features which favor planet-induced gaps in the disk are pointed out. Parameters of a two-fluid simulation model are listed, and some model results are shown. It is concluded that (1) interaction between planets, gas, and dust can explain the main features in the ALMA observation; (2) the millimeter image of a disk is determined by the dust profile, which in turn is influenced by planetary masses, viscosity, disk self-gravity, etc.; and (3) models that focus on the complex physics between gas and dust (and planets) are crucial in interpreting the (sub)millimeter images of disks.
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
2014-04-01
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
Proton-Proton and Proton-Antiproton Colliders
NASA Astrophysics Data System (ADS)
Scandale, Walter
2015-02-01
In the last five decades, proton-proton and proton-antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion-ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.
ERIC Educational Resources Information Center
Andrews, David L.; Romero, Luciana C. Davila
2009-01-01
The dynamical behaviour of simple harmonic motion can be found in numerous natural phenomena. Within the quantum realm of atomic, molecular and optical systems, two main features are associated with harmonic oscillations: a finite ground-state energy and equally spaced quantum energy levels. Here it is shown that there is in fact a one-to-one…
Overview of the observations of symbiotic stars
NASA Technical Reports Server (NTRS)
Viotti, Roberto
1993-01-01
The term Symbiotic stars commonly denotes variable stars whose optical spectra simultaneously present a cool absorption spectrum (typically TiO absorption bands) and emission lines of high ionization energy. This term is now used for the category of variable stars with composite spectrum. The main spectral features of these objects are: (1) the presence of the red continuum typical of a cool star, (2) the rich emission line spectrum, and (3) the UV excess, frequently with the Balmer continuum in emission. In addition to the peculiar spectrum, the very irregular photometric and spectroscopic variability is the major feature of the symbiotic stars. Moreover, the light curve is basic to identify the different phases of activity in a symbiotic star. The physical mechanisms that cause the symbiotic phenomenon and its variety are the focus of this paper. An astronomical phenomenon characterized by a composite stellar spectrum with two apparently conflicting features, and large variability has been observed. Our research set out to find the origin of this behavior and, in particular, to identify and measure the physical mechanism(s) responsible for the observed phenomena.
NASA Astrophysics Data System (ADS)
Ripani, M.
2015-08-01
The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.
Women in Physics: A Caribbean Perspective
NASA Astrophysics Data System (ADS)
Tanner, Kandice
2009-03-01
This paper is concerned with aspects of post-secondary education of women in physics in the Caribbean, focusing more specifically on the main university campuses in Trinidad and Tobago, Jamaica, and Barbados. Within this framework, there are three institutions of tertiary education that provide for undergraduate and post-graduate studies in physics. On average, the bachelor-level graduating class is roughly 40% female. A great majority of these students go on to seek master's degrees in engineering. Among those enrolled in graduate programs featuring research in astronomy, materials science, environmental physics, medical physics, and quantum physics, 58% are female. Significant numbers of women from the selected countries and from the Caribbean region are engaged in bachelor and doctoral programs in physics abroad, but no formal survey is available to provide the relevant quantitative information. However, an attempt will be made to quantify this component. Based in part on personal experience, a comparison will be made between domestic and foreign educational pathways, in terms of access to resources, level of research training, and occupational opportunities following graduation.
Lyons, E T; DeLong, R L
2005-03-01
Photomicrographs of several morphologic features of hookworms (Uncinaria spp) from northern fur seal (Callorhinus ursinus) and California sea lion (Zalophus californianus) pups are presented. The main purpose is to show and describe some physical characteristics of hookworms from the two hosts; it is not to decide from these attributes whether the Uncinaria spp are the same species. The number of species of Uncinaria in pinnipeds is uncertain and specimens need to be examined from the various infected seals and sea lions before the taxonomy of these parasites can be clarified. Information in the present paper should aid in this determination.
Recent Developments on the Turbulence Modeling Resource Website (Invited)
NASA Technical Reports Server (NTRS)
Rumssey, Christopher L.
2015-01-01
The NASA Langley Turbulence Model Resource (TMR) website has been active for over five years. Its main goal of providing a one-stop, easily accessible internet site for up-to-date information on Reynolds-averaged Navier-Stokes turbulence models remains unchanged. In particular, the site strives to provide an easy way for users to verify their own implementations of widely-used turbulence models, and to compare the results from different models for a variety of simple unit problems covering a range of flow physics. Some new features have been recently added to the website. This paper documents the site's features, including recent developments, future plans, and open questions.
Improved method for predicting protein fold patterns with ensemble classifiers.
Chen, W; Liu, X; Huang, Y; Jiang, Y; Zou, Q; Lin, C
2012-01-27
Protein folding is recognized as a critical problem in the field of biophysics in the 21st century. Predicting protein-folding patterns is challenging due to the complex structure of proteins. In an attempt to solve this problem, we employed ensemble classifiers to improve prediction accuracy. In our experiments, 188-dimensional features were extracted based on the composition and physical-chemical property of proteins and 20-dimensional features were selected using a coupled position-specific scoring matrix. Compared with traditional prediction methods, these methods were superior in terms of prediction accuracy. The 188-dimensional feature-based method achieved 71.2% accuracy in five cross-validations. The accuracy rose to 77% when we used a 20-dimensional feature vector. These methods were used on recent data, with 54.2% accuracy. Source codes and dataset, together with web server and software tools for prediction, are available at: http://datamining.xmu.edu.cn/main/~cwc/ProteinPredict.html.
NASA Astrophysics Data System (ADS)
Welty, Scott; Rylander, Jeff
2001-05-01
Working off of a 10,000 Toyota TAPESTRY grant, 80 physics students at Maine East High School in Park Ridge, Illinois, spent the 1999-2000 school year building a gaint pool ball maze in the school's stairwell. The maze sits in a 10 × 11 × 1 ft recess in the wall. It features an 11-ft screwlift operated by a crank accessible to the passing student to raise the balls to the top where they then meander down four possible trails of copper tubing, performing a variety of physics tricks along the way. The project was a great lesson in organization, engineering, building, quality control, and of course, the laws of physics. The maze is now the "property" of all future AP physics classes whose job it will be to fine-tune, repair, replace, and generally take care of the maze.
ERIC Educational Resources Information Center
Mitchell, Jerry T.; Cantrill, Jeremy; Kearse, Justin
2012-01-01
Bridges are some of the most majestic features in the American landscape. For classrooms, the bridge serves as an important component of one of the main themes of geography: movement. One bridge, north of Manhattan and crossing the Hudson River, is the Tappan Zee. One aspect that stands out in a way that does not at all appear reasonable: the…
A 'learning-by-doing' treatment planning tutorial for medical physicists.
Meyer, J; Hartmann, B; Kalet, I
2009-06-01
A framework for a tutorial for treatment planning in radiation oncology physics was developed, based on the University of Washington treatment planning system Prism. The tutorial is aimed at students in Medical Physics to accompany the lectures on treatment planning to enhance their theoretical knowledge. A web-based layout was chosen to allow independent work of the students. The tutorial guides the students through three different learning modules, designed mainly to enhance their understanding of the processes involved in treatment planning but also to learn the specific features of a modern treatment planning system. Each of the modules contains four units, with the aim to introduce the relevant Prism features, practice skills in different tasks and finally check the learning outcomes with a challenge and a self-scoring quiz. A survey for students' feedback completes the tutorial. Various tools and learning methods help to create an interactive, appealing learning environment, in which the emphasis is shifted from teacher-centred to student-centred learning paradigms. In summary, Prism lends itself well for educational purposes. The tutorial covers all main aspects of treatment planning. In its current form the tutorial is self-contained but still adjustable and expandable. The tutorial can be made available upon request to the authors.
Physics behind the mechanical nucleosome positioning code
NASA Astrophysics Data System (ADS)
Zuiddam, Martijn; Everaers, Ralf; Schiessel, Helmut
2017-11-01
The positions along DNA molecules of nucleosomes, the most abundant DNA-protein complexes in cells, are influenced by the sequence-dependent DNA mechanics and geometry. This leads to the "nucleosome positioning code", a preference of nucleosomes for certain sequence motives. Here we introduce a simplified model of the nucleosome where a coarse-grained DNA molecule is frozen into an idealized superhelical shape. We calculate the exact sequence preferences of our nucleosome model and find it to reproduce qualitatively all the main features known to influence nucleosome positions. Moreover, using well-controlled approximations to this model allows us to come to a detailed understanding of the physics behind the sequence preferences of nucleosomes.
Symptoms and signs of acromegaly: an ongoing need to raise awareness among healthcare practitioners.
Zarool-Hassan, Redzuan; Conaglen, Helen M; Conaglen, John V; Elston, Marianne S
2016-06-01
INTRODUCTION Chronic excess growth hormone production results in acromegaly, a condition associated with widespread physical changes, including soft tissue and bony overgrowth. When untreated, acromegaly reduces life expectancy. Patients usually remain undiagnosed for years after the onset of symptoms, by which stage irreversible physical changes have often occurred. METHOD A cross-sectional questionnaire study involving patients with acromegaly from the Waikato Endocrine Unit and the New Zealand Acromegaly Society evaluated features of acromegaly that were present before diagnosis. The aim of this study was to identify acromegaly features that were most prevalent to promote increased awareness about the disease by healthcare providers. RESULTS 81 participants were included. The main pre-diagnosis physical changes participants reported were acral changes, alterations in facial features and oral symptoms. For some, these features were present for more than 10 years before the acromegaly diagnosis. Multiple co-morbidities associated with acromegaly were reported. Two-thirds of the participants felt that an earlier diagnosis was possible. Most participants were in contact with General Practitioners (GPs) and/or dentists before diagnosis. Endocrinologists had the highest diagnosis rate, followed by GPs. Dentists had a low diagnosis rate despite a high prevalence of oral symptoms among study participants. CONCLUSION Increased awareness of acromegaly among primary care clinicians is important as they are the first-point-of-contact with the healthcare system for most patients. Health professionals' early recognition of symptoms and signs of acromegaly would reduce delays in time-to-diagnosis, enable earlier treatment and may improve outcomes for patients with acromegaly. MESH KEYWORDS Acromegaly; symptoms; delayed diagnosis; clinicians; primary healthcare.
An explosion model for the formation of the radio halo of NGC 891
NASA Astrophysics Data System (ADS)
You, Jun-han; Allen, R. J.; Hu, Fu-xing
1987-06-01
The explosion model for the formation of the radio halo of NGC 891 proposed here are mainly based on two physical assumptions: a) the relativistic electrons belong to two families, a halo family and a disk family: the disk family originating in supernova events throughout the disk and the halo family, in a violent explosion of the galactic nucleus in the distant past. b) Energy equipartition, that is, the magnetic energy density be proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.
An explosion model for the formation of the radio halo of NGC 891
NASA Astrophysics Data System (ADS)
You, Jun-Han; Allen, R. J.; Hu, Fu-Xing
1986-06-01
The explosion model for the formation of the radio halo of NGC 891 proposed here is mainly based on two physical assumptions: (1) the relativistic electrons belong to two families, a halo family and a disk family, the disk family originating in supernova events throughout the disk, and the halo family in a violent explosion of the galactic nucleus in the distant past; and (2) energy equipartition, where the magnetic energy density is proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.
Marsella, L T; Savastano, L; Saracino, V; Del Vecchio, R
2005-01-01
The authors emphasize the violation of children's and adolescents' rights as a result of the exploitation of child labour. Besides the legal aspect, they pointed out the medical features related to the delicate growing process of the child in the phases of development and adaptation of the main organs to hard work. Currently the problem is being supervised by those states that recognize the right for minors to be protected against any kind of physical, mental, spiritual and moral risk.
Content-based cell pathology image retrieval by combining different features
NASA Astrophysics Data System (ADS)
Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong
2004-04-01
Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.
Cantu, C.; Wright, R.G.; Scott, J.M.; Strand, Espen
2004-01-01
Mexico currently has 144 nature reserves covering approximately 9.1% of its land area. These reserves were established for a variety of reasons - often unrelated to the protection of biodiversity. In 2000 in response to a growing concern about the lack of organized conservation reserve planning to protect the important threatened biological and physical features of Mexico, the Mexican Commission for Knowledge and Use of Biodiversity (CONABIO) proposed the establishment of 151 new reserves for Mexico covering 51,429,500 ha. We compiled a GIS analysis using digital thematic maps of physical and biological features to examine how the existing and proposed reserves serve to protect the biodiversity and physical features of the country. Using a conservation target of placing a minimum of 12% of the land area of each important biophysical feature in nature reserves, we found that the 144 existing nature reserves covering 18 million ha (9% of the country) only meet that target for elevation ranges >3000 m and areas with poor soils. These mountainous areas represent less than 1% of the country. The gaps in the existing nature reserves network occur mainly at lower and intermediate elevations (<3000 m) areas with xeric, tropical, and temperate ecosystems, and high productivity soils. The areas proposed by CONABIO increase the proportion of protected lands in the country to over 27% and most of the conservation targets for geophysical features, and land cover, categories are met. Whether this area would be sufficient to maintain viable populations and ecological integrity of species and ecosystems is unknown. Even with the new reserves, low elevation coastal lands would be below the conservation target in the nature reserves. To include a representative sample of these lands would be difficult as these are the same areas where the majority of people live. ?? 2003 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Buta, Ronald J.
2017-11-01
Rings are important and characteristic features of disc-shaped galaxies. This paper is the first in a series that re-visits galactic rings with the goals of further understanding the nature of the features and for examining their role in the secular evolution of galaxy structure. The series begins with a new sample of 3962 galaxies drawn from the Galaxy Zoo 2 citizen science data base, selected because zoo volunteers recognized a ring-shaped pattern in the morphology as seen in Sloan Digital Sky Survey colour images. The galaxies are classified within the framework of the Comprehensive de Vaucouleurs revised Hubble-Sandage system. It is found that zoo volunteers cued on the same kinds of ring-like features that were recognized in the 1995 Catalogue of Southern Ringed Galaxies. This paper presents the full catalogue of morphological classifications, comparisons with other sources of classifications and some histograms designed mainly to highlight the content of the catalogue. The advantages of the sample are its large size and the generally good quality of the images; the main disadvantage is the low physical resolution that limits the detectability of linearly small rings such as nuclear rings. The catalogue includes mainly inner and outer disc rings and lenses. Cataclysmic (`encounter-driven') rings (such as ring and polar ring galaxies) are recognized in less than 1 per cent of the sample.
Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite
NASA Astrophysics Data System (ADS)
Yang, X.; Cleveland, M.
2016-12-01
We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.
CLS 2+1 flavor simulations at physical light-and strange-quark masses
NASA Astrophysics Data System (ADS)
Mohler, Daniel; Schaefer, Stefan; Simeth, Jakob
2018-03-01
We report recent efforts by CLS to generate an ensemble with physical lightand strange-quark masses in a lattice volume of 192 × 963 at β = 3:55 corresponding to a lattice spacing of 0:064 fm. This ensemble is being generated as part of the CLS 2+1 flavor effort with improved Wilson fermions. Our simulations currently cover 5 lattice spacings ranging from 0:039 fm to 0:086 fm at various pion masses along chiral trajectories with either the sum of the quark masses kept fixed, or with the strange-quark mass at the physical value. The current status of simulations is briefly reviewed, including a short discussion of measured autocorrelation times and of the main features of the simulations. We then proceed to discuss the thermalization strategy employed for the generation of the physical quark-mass ensemble and present first results for some simple observables. Challenges encountered in the simulation are highlighted.
Thermal Analysis of Unusual Local-scale Features on the Surface of Vesta
NASA Technical Reports Server (NTRS)
Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Capaccioni, F.; Palomba, E.; Zambon, F.; Ammannito, E.; Blewett, D. T.; Combe, J.-Ph.; Denevi, B. W.;
2013-01-01
At 525 km in mean diameter, Vesta is the second-most massive object in the main asteroid belt of our Solar System. At all scales, pyroxene absorptions are the most prominent spectral features on Vesta and overall, Vesta mineralogy indicates a complex magmatic evolution that led to a differentiated crust and mantle [1]. The thermal behavior of areas of unusual albedo seen on the surface at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) [2] hyperspectral images are routinely used, by means of temperature-retrieval algorithms, to compute surface temperatures along with spectral emissivities. Here we present temperature maps of several local-scale features of Vesta that were observed by Dawn under different illumination conditions and different local solar times.
The influence of glacial meltwater on alpine aquatic ecosystems: a review.
Slemmons, Krista E H; Saros, Jasmine E; Simon, Kevin
2013-10-01
The recent and rapid recession of alpine glaciers over the last 150 years has major implications for associated aquatic communities. Glacial meltwater shapes many of the physical features of high altitude lakes and streams, producing turbid environments with distinctive hydrology patterns relative to nival systems. Over the past decade, numerous studies have investigated the chemical and biological effects of glacial meltwater on freshwater ecosystems. Here, we review these studies across both lake and stream ecosystems. Focusing on alpine regions mainly in the Northern Hemisphere, we present examples of how glacial meltwater can affect habitat by altering physical and chemical features of aquatic ecosystems, and review the subsequent effects on the biological structure and function of lakes and streams. Collectively or separately, these factors can drive the overall distribution, diversity and behavior of primary producers, triggering cascading effects throughout the food web. We conclude by proposing areas for future research, particularly in regions where glaciers are soon projected to disappear.
NASA Astrophysics Data System (ADS)
Golvano-Escobal, Irati; Gonzalez-Rosillo, Juan Carlos; Domingo, Neus; Illa, Xavi; López-Barberá, José Francisco; Fornell, Jordina; Solsona, Pau; Aballe, Lucia; Foerster, Michael; Suriñach, Santiago; Baró, Maria Dolors; Puig, Teresa; Pané, Salvador; Nogués, Josep; Pellicer, Eva; Sort, Jordi
2016-07-01
Spatio-temporal patterns are ubiquitous in different areas of materials science and biological systems. However, typically the motifs in these types of systems present a random distribution with many possible different structures. Herein, we demonstrate that controlled spatio-temporal patterns, with reproducible spiral-like shapes, can be obtained by electrodeposition of Co-In alloys inside a confined circular geometry (i.e., in disks that are commensurate with the typical size of the spatio-temporal features). These patterns are mainly of compositional nature, i.e., with virtually no topographic features. Interestingly, the local changes in composition lead to a periodic modulation of the physical (electric, magnetic and mechanical) properties. Namely, the Co-rich areas show higher saturation magnetization and electrical conductivity and are mechanically harder than the In-rich ones. Thus, this work reveals that confined electrodeposition of this binary system constitutes an effective procedure to attain template-free magnetic, electric and mechanical surface patterning with specific and reproducible shapes.
Quantifying site-specific physical heterogeneity within an estuarine seascape
Kennedy, Cristina G.; Mather, Martha E.; Smith, Joseph M.
2017-01-01
Quantifying physical heterogeneity is essential for meaningful ecological research and effective resource management. Spatial patterns of multiple, co-occurring physical features are rarely quantified across a seascape because of methodological challenges. Here, we identified approaches that measured total site-specific heterogeneity, an often overlooked aspect of estuarine ecosystems. Specifically, we examined 23 metrics that quantified four types of common physical features: (1) river and creek confluences, (2) bathymetric variation including underwater drop-offs, (3) land features such as islands/sandbars, and (4) major underwater channel networks. Our research at 40 sites throughout Plum Island Estuary (PIE) provided solutions to two problems. The first problem was that individual metrics that measured heterogeneity of a single physical feature showed different regional patterns. We solved this first problem by combining multiple metrics for a single feature using a within-physical feature cluster analysis. With this approach, we identified sites with four different types of confluences and three different types of underwater drop-offs. The second problem was that when multiple physical features co-occurred, new patterns of total site-specific heterogeneity were created across the seascape. This pattern of total heterogeneity has potential ecological relevance to structure-oriented predators. To address this second problem, we identified sites with similar types of total physical heterogeneity using an across-physical feature cluster analysis. Then, we calculated an additive heterogeneity index, which integrated all physical features at a site. Finally, we tested if site-specific additive heterogeneity index values differed for across-physical feature clusters. In PIE, the sites with the highest additive heterogeneity index values were clustered together and corresponded to sites where a fish predator, adult striped bass (Morone saxatilis), aggregated in a related acoustic tracking study. In summary, we have shown general approaches to quantifying site-specific heterogeneity.
Modeling the interdependent network based on two-mode networks
NASA Astrophysics Data System (ADS)
An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian
2017-10-01
Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.
Drug Target Protein-Protein Interaction Networks: A Systematic Perspective
2017-01-01
The identification and validation of drug targets are crucial in biomedical research and many studies have been conducted on analyzing drug target features for getting a better understanding on principles of their mechanisms. But most of them are based on either strong biological hypotheses or the chemical and physical properties of those targets separately. In this paper, we investigated three main ways to understand the functional biomolecules based on the topological features of drug targets. There are no significant differences between targets and common proteins in the protein-protein interactions network, indicating the drug targets are neither hub proteins which are dominant nor the bridge proteins. According to some special topological structures of the drug targets, there are significant differences between known targets and other proteins. Furthermore, the drug targets mainly belong to three typical communities based on their modularity. These topological features are helpful to understand how the drug targets work in the PPI network. Particularly, it is an alternative way to predict potential targets or extract nontargets to test a new drug target efficiently and economically. By this way, a drug target's homologue set containing 102 potential target proteins is predicted in the paper. PMID:28691014
A cyber-physical system for senior collapse detection
NASA Astrophysics Data System (ADS)
Grewe, Lynne; Magaña-Zook, Steven
2014-06-01
Senior Collapse Detection (SCD) is a system that uses cyber-physical techniques to create a "smart home" system to predict and detect the falling of senior/geriatric participants in home environments. This software application addresses the needs of millions of senior citizens who live at home by themselves and can find themselves in situations where they have fallen and need assistance. We discuss how SCD uses imagery, depth and audio to fuse and interact in a system that does not require the senior to wear any devices allowing them to be more autonomous. The Microsoft Kinect Sensor is used to collect imagery, depth and audio. We will begin by discussing the physical attributes of the "collapse detection problem". Next, we will discuss the task of feature extraction resulting in skeleton and joint tracking. Improvements in error detection of joint tracking will be highlighted. Next, we discuss the main module of "fall detection" using our mid-level skeleton features. Attributes including acceleration, position and room environment factor into the SCD fall detection decision. Finally, how a detected fall and the resultant emergency response are handled will be presented. Results in a home environment will be given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micah Johnson, Andrew Slaughter
PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations:more » the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.« less
A data-driven approach to modeling physical fatigue in the workplace using wearable sensors.
Sedighi Maman, Zahra; Alamdar Yazdi, Mohammad Ali; Cavuoto, Lora A; Megahed, Fadel M
2017-11-01
Wearable sensors are currently being used to manage fatigue in professional athletics, transportation and mining industries. In manufacturing, physical fatigue is a challenging ergonomic/safety "issue" since it lowers productivity and increases the incidence of accidents. Therefore, physical fatigue must be managed. There are two main goals for this study. First, we examine the use of wearable sensors to detect physical fatigue occurrence in simulated manufacturing tasks. The second goal is to estimate the physical fatigue level over time. In order to achieve these goals, sensory data were recorded for eight healthy participants. Penalized logistic and multiple linear regression models were used for physical fatigue detection and level estimation, respectively. Important features from the five sensors locations were selected using Least Absolute Shrinkage and Selection Operator (LASSO), a popular variable selection methodology. The results show that the LASSO model performed well for both physical fatigue detection and modeling. The modeling approach is not participant and/or workload regime specific and thus can be adopted for other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Particle Physics Data Grid. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livny, Miron
2002-08-16
The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services:more » reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities.« less
Valirad, Fateme; Ghaffari, Mostafa; Abdi, Alireza; Attarchi, Mirsaeed; Mircheraghi, Seyed Farzin; Mohammadi, Saber
2015-04-23
Increased sickness absence in recent years has been a trouble making issue in industrial society. Identify the causes of sickness absence and its influencing factors, is an important step to control and reduce its associated complications and costs. The aim of this study was to evaluate main factors associated with the incidence of sickness absence. In 2012, a cross-sectional study on 758 employees of a car accessories producing company was applied and relevant information about the number of days and episodes of sickness absence, Disease resulting in absence from work, personal features, occupational factors and physical exposures were collected. To determine risk factors associated with sickness absence, Logistic regression analysis was used. The most common diseases leading to sickness absence in order of frequency were Respiratory diseases, musculoskeletal disorders, gastrointestinal diseases and injuries at work. Musculoskeletal disorders increased the danger of long term absence by 4/33 times. Blue collar and shift works were the most important occupational factors associated with the incidence of sickness absence. The main physical factors that affect incidence of sickness absence were frequent bending-twisting and heavy lifting. Identifying controllable factors of sickness absence and trying to prevent and modify them such as compliance of ergonomic principals to decrease physical can be effective in reducing sickness absence.
Mississippi River Headwaters Lakes in Minnesota. Feasibility Study. Main Report.
1982-09-01
in Leech lake and marsh restoration; and a review of the adequacy and effectiveness of the existing flood control project for Aitkin, Pine Knoll and...be retained plans in accordance with the Department of Army Regulations now in effect . The recommended plan should incorporate conservation features...BENEFITS ($1,000’s) 96 COMPARISON OF LOW FLOW NONEXCEEDANCE AT ANOKA 99 RANKING OF PLANS 100 EFFECTS OF PLANS ON PHYSICAL IMPACT AREA 103 SUMMARY OF
Emerging/changing fashion trends and their impact on conduct of anaesthesia.
Zaidi, Nadeem
2017-11-01
One of the innate features of human behaviour is to enhance personal image in order to look different from the rest of the crowd and to satisfy a need for individualism. People use different dress codes, body makeup and artificial gadgets to improve their personal and physical appearance. The main motive behind all these efforts is personal satisfaction, to appear attractive to others and to overcome phobias and complexes. Copyright the Association for Perioperative Practice.
PREFACE: 17th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb/2014)
NASA Astrophysics Data System (ADS)
Averkiev, Nikita S.; Poniaev, Sergey A.; Sokolovskii, Grigorii S.
2015-12-01
The seventeenth Russian Youth Conference on Physics and Astronomy (PhysicA.SPb) was held from 28-30 October 2014 in Saint Petersburg, Russia. The Conference continues the tradition of Saint Petersburg Seminars on Physics and Astronomy originating from the mid-1990s. Since then PhysicA.SPb maintains both the scientific and educational quality of contributions delivered to the young audience. This is the main feature of the Conference that makes it possible to combine the whole spectrum of modern Physics and Astronomy within one event. PhysicA.SPb/2014 has brought together more than 200 students, young scientists and their professor colleagues from many universities and research institutes across the whole of Russia as well as from Belarus, Ukraine, Finland, the Netherlands, France and Germany. Oral and poster presentations were combined into the well-defined sections of Astronomy and Astrophysics, Optics and spectroscopy, Physics of ferroics, Nanostructured and thin-film materials, Mathematical physics and numerical methods, Biophysics, Plasma physics, hydro- and aero-dynamics, and Physics of quantum structures. This volume of Journal of Physics: Conference Series presents the extended contributions from participants of PhysicA.SPb/2014 that were peer-reviewed by expert referees through processes administered by the Presiders of the Organising and Programme Committees to the best professional and scientific standards.
[Lithology feature extraction of CASI hyperspectral data based on fractal signal algorithm].
Tang, Chao; Chen, Jian-Ping; Cui, Jing; Wen, Bo-Tao
2014-05-01
Hyperspectral data is characterized by combination of image and spectrum and large data volume dimension reduction is the main research direction. Band selection and feature extraction is the primary method used for this objective. In the present article, the authors tested methods applied for the lithology feature extraction from hyperspectral data. Based on the self-similarity of hyperspectral data, the authors explored the application of fractal algorithm to lithology feature extraction from CASI hyperspectral data. The "carpet method" was corrected and then applied to calculate the fractal value of every pixel in the hyperspectral data. The results show that fractal information highlights the exposed bedrock lithology better than the original hyperspectral data The fractal signal and characterized scale are influenced by the spectral curve shape, the initial scale selection and iteration step. At present, research on the fractal signal of spectral curve is rare, implying the necessity of further quantitative analysis and investigation of its physical implications.
Restoring integrity--A grounded theory of coping with a fast track surgery programme.
Jørgensen, Lene Bastrup; Fridlund, Bengt
2016-01-01
The aim of this study was to generate a theory conceptualizing and explaining behavioural processes involved in coping in order to identify the predominant coping types and coping type-specific features. Patients undergoing fast track procedures do not experience a higher risk of complications, readmission, or mortality. However, such programmes presuppose an increasing degree of patient involvement, placing high educational, physical, and mental demands on the patients. There is a lack of knowledge about how patients understand and cope with fast track programmes. The study design used classical grounded theory. The study used a multimodal approach with qualitative and quantitative data sets from 14 patients. Four predominant types of coping, with distinct physiological, cognitive, affective, and psychosocial features, existed among patients going through a fast track total hip replacement programme. These patients' main concern was to restore their physical and psychosocial integrity, which had been compromised by reduced function and mobility in daily life. To restore integrity they economized their mental resources, while striving to fulfil the expectations of the fast track programme. This goal was achieved by being mentally proactive and physically active. Three out of the four predominant types of coping matched the expectations expressed in the fast track programme. The non-matching behaviour was seen among the most nervous patients, who claimed the right to diverge from the programme. In theory, four predominant types of coping with distinct physiological, cognitive, affective, and psychosocial features occur among patients going through a fast track total hip arthroplasty programme.
Evaluating Observation Influence on Regional Water Budgets in Reanalyses
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Chern, Jiun-Dar; Mocko, David; Robertson, Franklin R.; daSilva, Arlindo M.
2014-01-01
The assimilation of observations in reanalyses incurs the potential for the physical terms of budgets to be balanced by a term relating the fit of the observations relative to a forecast first guess analysis. This may indicate a limitation in the physical processes of the background model, or perhaps inconsistencies in the observing system and its assimilation. In the MERRA reanalysis, an area of long term moisture flux divergence over land has been identified over the Central United States. Here, we evaluate the water vapor budget in this region, taking advantage of two unique features of the MERRA diagnostic output; 1) a closed water budget that includes the analysis increment and 2) a gridded diagnostic output data set of the assimilated observations and their innovations (e.g. forecast departures). In the Central United States, an anomaly occurs where the analysis adds water to the region, while precipitation decreases and moisture flux divergence increases. This is related more to a change in the observing system than to a deficiency in the model physical processes. MERRAs Gridded Innovations and Observations (GIO) data narrow the observations that influence this feature to the ATOVS and Aqua satellites during the 06Z and 18Z analysis cycles. Observing system experiments further narrow the instruments that affect the anomalous feature to AMSUA (mainly window channels) and AIRS. This effort also shows the complexities of the observing system, and the reactions of the regional water budgets in reanalyses to the assimilated observations.
Sandhill crane roost selection, human disturbance, and forage resources
Pearse, Aaron T.; Krapu, Gary; Brandt, David
2017-01-01
Sites used for roosting represent a key habitat requirement for many species of birds because availability and quality of roost sites can influence individual fitness. Birds select roost sites based on numerous factors, requirements, and motivations, and selection of roosts can be dynamic in time and space because of various ecological and environmental influences. For sandhill cranes (Antigone canadensis) at their main spring-staging area along the Platte River in south-central Nebraska, USA, past investigations of roosting cranes focused on physical channel characteristics related to perceived security as motivating roost distribution. We used 6,310 roost sites selected by 313 sandhill cranes over 5 spring migration seasons (2003–2007) to quantify resource selection functions of roost sites on the central Platte River using a discrete choice analysis. Sandhill cranes generally showed stronger selection for wider channels with shorter bank vegetation situated farther from potential human disturbance features such as roads, bridges, and dwellings. Furthermore, selection for roost sites with preferable physical characteristics (wide channels with short bank vegetation) was more resilient to nearby disturbance features than more narrow channels with taller bank vegetation. The amount of cornfields surrounding sandhill crane roost sites positively influenced relative probability of use but only for more narrow channels < 100 m and those with shorter bank vegetation. We confirmed key resource features that sandhill cranes selected at river channels along the Platte River, and after incorporating spatial variation due to human disturbance, our understanding of roost site selection was more robust, providing insights on how disturbance may interact with physical habitat features. Managers can use information on roost-site selection when developing plans to increase probability of crane use at existing roost sites and to identify new areas for potential use if existing sites become limited.
Weighted low-rank sparse model via nuclear norm minimization for bearing fault detection
NASA Astrophysics Data System (ADS)
Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Yang, Boyuan; Zhai, Zhi; Yan, Ruqiang
2017-07-01
It is a fundamental task in the machine fault diagnosis community to detect impulsive signatures generated by the localized faults of bearings. The main goal of this paper is to exploit the low-rank physical structure of periodic impulsive features and further establish a weighted low-rank sparse model for bearing fault detection. The proposed model mainly consists of three basic components: an adaptive partition window, a nuclear norm regularization and a weighted sequence. Firstly, due to the periodic repetition mechanism of impulsive feature, an adaptive partition window could be designed to transform the impulsive feature into a data matrix. The highlight of partition window is to accumulate all local feature information and align them. Then, all columns of the data matrix share similar waveforms and a core physical phenomenon arises, i.e., these singular values of the data matrix demonstrates a sparse distribution pattern. Therefore, a nuclear norm regularization is enforced to capture that sparse prior. However, the nuclear norm regularization treats all singular values equally and thus ignores one basic fact that larger singular values have more information volume of impulsive features and should be preserved as much as possible. Therefore, a weighted sequence with adaptively tuning weights inversely proportional to singular amplitude is adopted to guarantee the distribution consistence of large singular values. On the other hand, the proposed model is difficult to solve due to its non-convexity and thus a new algorithm is developed to search one satisfying stationary solution through alternatively implementing one proximal operator operation and least-square fitting. Moreover, the sensitivity analysis and selection principles of algorithmic parameters are comprehensively investigated through a set of numerical experiments, which shows that the proposed method is robust and only has a few adjustable parameters. Lastly, the proposed model is applied to the wind turbine (WT) bearing fault detection and its effectiveness is sufficiently verified. Compared with the current popular bearing fault diagnosis techniques, wavelet analysis and spectral kurtosis, our model achieves a higher diagnostic accuracy.
On general features of warm dark matter with reduced relativistic gas
NASA Astrophysics Data System (ADS)
Hipólito-Ricaldi, W. S.; vom Marttens, R. F.; Fabris, J. C.; Shapiro, I. L.; Casarini, L.
2018-05-01
Reduced relativistic gas (RRG) is a useful approach to describe the warm dark matter (WDM) or the warmness of baryonic matter in the approximation when the interaction between the particles is irrelevant. The use of Maxwell distribution leads to the complicated equation of state of the Jüttner model of relativistic ideal gas. The RRG enables one to reproduce the same physical situation but in a much simpler form. For this reason RRG can be a useful tool for the theories with some sort of a "new Physics". On the other hand, even without the qualitatively new physical implementations, the RRG can be useful to describe the general features of WDM in a model-independent way. In this sense one can see, in particular, to which extent the cosmological manifestations of WDM may be dependent on its Particle Physics background. In the present work RRG is used as a complementary approach to derive the main observational features for the WDM in a model-independent way. The only assumption concerns a non-negligible velocity v for dark matter particles which is parameterized by the warmness parameter b. The relatively high values of b ( b^2˜ 10^{-6}) erase the radiation (photons and neutrinos) dominated epoch and cause an early warm matter domination after inflation. Furthermore, RRG approach enables one to quantify the lack of power in linear matter spectrum at small scales and in particular, reproduces the relative transfer function commonly used in context of WDM with accuracy of ≲ 1%. A warmness with b^2≲ 10^{-6} (equivalent to v≲ 300 km/s) does not alter significantly the CMB power spectrum and is in agreement with the background observational tests.
Graf, Christine; Beneke, Ralph; Bloch, Wilhelm; Bucksch, Jens; Dordel, Sigrid; Eiser, Stefanie; Ferrari, Nina; Koch, Benjamin; Krug, Susanne; Lawrenz, Wolfgang; Manz, Kristin; Naul, Roland; Oberhoffer, Renate; Quilling, Eike; Schulz, Henry; Stemper, Theo; Stibbe, Günter; Tokarski, Walter; Völker, Klaus; Woll, Alexander
2014-01-01
Increasing physical activity and reduction of sedentary behaviour play important roles in health promotion and prevention of lifestyle-related diseases in children and adolescents. However, the question of how much physical activity is useful for which target group is still a matter of debate. International guidelines (World Health Organization; European Association for the Study of Obesity), which are mainly based on expert opinions, recommend 60 min of physical activity every day. Age- and sex-specific features and regional differences are not taken into account. Therefore, expert consensus recommendations for promoting physical activity of children and adolescents in Germany were developed with special respect to national data, but also with respect to aspects of specific target groups, e.g., children with a lower socio-economic status (SES) or with migration background. They propose 90 min/day of physical activity, or at least 12,000 steps daily. Additionally, lifestyle factors, especially restriction of media consumption, were integrated. The recommendations provide orientation for parents and caregivers, for institutions such as schools and kindergartens as well as for communities and stakeholders. PMID:24821136
Understanding the biological underpinnings of ecohydrological processes
NASA Astrophysics Data System (ADS)
Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.
2012-12-01
Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.
NASA Astrophysics Data System (ADS)
Usoltseva Vostrikov, OM, VI; Tsoy, PA; Semenov, VN
2018-03-01
The article presents the laboratory study of deformation in artificial layered geomaterial samples down to failure with the simultaneous measurement of stresses, strains, micro-strains and signals of microseismic emission. The analysis of the synchronized experimental data made it possible to determine features of change in the microseismicity parameters and micro-strain fields in the samples depending on the deformation stage, and also to reveal the dynamics of evolution of microfailures and the main fracture zone.
CompHEP: developments and applications
NASA Astrophysics Data System (ADS)
Boos, E. E.; Bunichev, V. E.; Dubinin, M. N.; Ilyin, V. A.; Savrin, V. I.; CompHEP Collaboration
2017-11-01
New developments of the CompHEP package and its applications to the top quark and the Higgs boson physics at the LHC collider are reviewed. These developments were motivated mainly by the needs of experimental searches of DO (Tevatron) and CMS (LHC) collaborations where identification of the top quark and the Higgs boson in the framework of the Standard Model (SM) or possible extensions of the SM played an important role. New useful features of the CompHEP Graphics User Interface (GUI) are described.
[Methodologic inconsistency in anamnesis education at medical schools].
Zago, M A
1989-01-01
Some relevant points of the process of obtaining the medical anamnesis and physical examination, and the formulation of diagnostic hypotheses are analyzed. The main methodological features include: preponderance of qualitative data, absence of preselected hypotheses, direct involvement of the observer (physician) with the data source (patient), and selection of hypotheses and changes of the patient during the process. Thus, diagnostic investigation does not follow the paradigm of quantitative scientific method, rooted on the logic positivism, which dominates medical research and education.
Kinetic modeling of particle dynamics in H- negative ion sources (invited)
NASA Astrophysics Data System (ADS)
Hatayama, A.; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T.; Miyamoto, K.; Fukano, A.; Mizuno, T.
2014-02-01
Progress in the kinetic modeling of particle dynamics in H- negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H- ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H- production, and (ii) extraction physics of H- ions and beam optics.
Story Immersion in a Health Videogame for Childhood Obesity Prevention.
Lu, Amy Shirong; Thompson, Debbe; Baranowski, Janice; Buday, Richard; Baranowski, Tom
2012-02-15
Stories can serve as powerful tools for health interventions. Story immersion refers to the experience of being absorbed in a story. This is among the first studies to analyze story immersion's role in health videogames among children by addressing two main questions: Will children be more immersed when the main characters are similar to them? Do increased levels of immersion relate to more positive health outcomes? Eighty-seven 10-12-year-old African-American, Caucasian, and Hispanic children from Houston, TX, played a health videogame, "Escape from Diab" (Archimage, Houston, TX), featuring a protagonist with both African-American and Hispanic phenotypic features. Children's demographic information, immersion, and health outcomes (i.e., preference, motivation, and self-efficacy) were recorded and then correlated and analyzed. African-American and Hispanic participants reported higher immersion scores than Caucasian participants ( P = 0.01). Story immersion correlated positively ( P values < 0.03) with an increase in Fruit and Vegetable Preference ( r = 0.27), Intrinsic Motivation for Water ( r = 0.29), Vegetable Self-Efficacy ( r = 0.24), and Physical Activity Self-Efficacy ( r = 0.32). Ethnic similarity between videogame characters and players enhanced immersion and several health outcomes. Effectively embedding characters with similar phenotypic features to the target population in interactive health videogame narratives may be important when motivating children to adopt obesity prevention behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, Harsh
This dissertation presents research on addressing some of the contemporary challenges in the analysis of vector fields—an important type of scientific data useful for representing a multitude of physical phenomena, such as wind flow and ocean currents. In particular, new theories and computational frameworks to enable consistent feature extraction from vector fields are presented. One of the most fundamental challenges in the analysis of vector fields is that their features are defined with respect to reference frames. Unfortunately, there is no single “correct” reference frame for analysis, and an unsuitable frame may cause features of interest to remain undetected, thusmore » creating serious physical consequences. This work develops new reference frames that enable extraction of localized features that other techniques and frames fail to detect. As a result, these reference frames objectify the notion of “correctness” of features for certain goals by revealing the phenomena of importance from the underlying data. An important consequence of using these local frames is that the analysis of unsteady (time-varying) vector fields can be reduced to the analysis of sequences of steady (timeindependent) vector fields, which can be performed using simpler and scalable techniques that allow better data management by accessing the data on a per-time-step basis. Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most techniques are numerical in nature. The residing numerical errors can violate consistency with the underlying theory by breaching important fundamental laws, which may lead to serious physical consequences. This dissertation considers consistency as the most fundamental characteristic of computational analysis that must always be preserved, and presents a new discrete theory that uses combinatorial representations and algorithms to provide consistency guarantees during vector field analysis along with the uncertainty visualization of unavoidable discretization errors. Together, the two main contributions of this dissertation address two important concerns regarding feature extraction from scientific data: correctness and precision. The work presented here also opens new avenues for further research by exploring more-general reference frames and more-sophisticated domain discretizations.« less
Physics To Go: an Outreach Digital Library
NASA Astrophysics Data System (ADS)
Lee, Edward V.
2006-12-01
Physics to Go, part of the NSF-funded ComPADRE digital library, is a collection of websites for informal physics learning. This talk will present Physics To Go’s homepage features, show how these features are created, how resources are identified, and how Physics To Go complements other physics outreach websites.
Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics
NASA Astrophysics Data System (ADS)
El-Nabulsi, Rami Ahmad
2018-06-01
The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.
Wu, Zhenyu; Guo, Yang; Lin, Wenfang; Yu, Shuyang; Ji, Yang
2018-04-05
Predictive maintenance plays an important role in modern Cyber-Physical Systems (CPSs) and data-driven methods have been a worthwhile direction for Prognostics Health Management (PHM). However, two main challenges have significant influences on the traditional fault diagnostic models: one is that extracting hand-crafted features from multi-dimensional sensors with internal dependencies depends too much on expertise knowledge; the other is that imbalance pervasively exists among faulty and normal samples. As deep learning models have proved to be good methods for automatic feature extraction, the objective of this paper is to study an optimized deep learning model for imbalanced fault diagnosis for CPSs. Thus, this paper proposes a weighted Long Recurrent Convolutional LSTM model with sampling policy (wLRCL-D) to deal with these challenges. The model consists of 2-layer CNNs, 2-layer inner LSTMs and 2-Layer outer LSTMs, with under-sampling policy and weighted cost-sensitive loss function. Experiments are conducted on PHM 2015 challenge datasets, and the results show that wLRCL-D outperforms other baseline methods.
Guo, Yang; Lin, Wenfang; Yu, Shuyang; Ji, Yang
2018-01-01
Predictive maintenance plays an important role in modern Cyber-Physical Systems (CPSs) and data-driven methods have been a worthwhile direction for Prognostics Health Management (PHM). However, two main challenges have significant influences on the traditional fault diagnostic models: one is that extracting hand-crafted features from multi-dimensional sensors with internal dependencies depends too much on expertise knowledge; the other is that imbalance pervasively exists among faulty and normal samples. As deep learning models have proved to be good methods for automatic feature extraction, the objective of this paper is to study an optimized deep learning model for imbalanced fault diagnosis for CPSs. Thus, this paper proposes a weighted Long Recurrent Convolutional LSTM model with sampling policy (wLRCL-D) to deal with these challenges. The model consists of 2-layer CNNs, 2-layer inner LSTMs and 2-Layer outer LSTMs, with under-sampling policy and weighted cost-sensitive loss function. Experiments are conducted on PHM 2015 challenge datasets, and the results show that wLRCL-D outperforms other baseline methods. PMID:29621131
Belikova, N A; Indyka, S Ya
2016-01-01
The evaluation of the psychological condition of the patients who survived myocardial infarction and its correction taking into consideration the peculiar features of the individual reaction to the disease are the indispensable components of physical rehabilitation. The present article was designed to report the results of the study on the influence of the authors' physical rehabilitation program on the prevalence of depression and the life quality characteristics of the patients treated after myocardial infarction during the follow-up period. The patients of the main group (n=30) were enrolled in the original physical rehabilitation program. Those comprising the group of comparison (n=30) were given a course of rehabilitation in accordance with the scheme that had been recommended by the leading scientists and generally accepted in the Ukraine for the patients recovering after myocardial infarction under conditions of the out-patient clinics, spa and health resort facilities or convalescent centers. The study has demonstrated that the patients of both groups exhibited positive dynamics of their clinical condition (e.g. the decrease in the number of depressed subjects); however, this tendency was more pronounced in the main group where the number of the patients experiencing depression decreased by 61% at the end of the observation period (р<0,05). The analysis of the causes of anxiety associated with this pathology in the individual patients has demonstrated that the main factors responsible for the deterioration of the quality of life were the necessity of treatment, the limitations on the everyday physical activity, and the feeling of emotional tension. Moreover, the positive dynamics of the characteristics being evaluated was documented in the patients of the main group which gives reason to conclude that the program of physical rehabilitation proposed by the authors for the treatment of the patients after myocardial infarction is highly efficient during the follow-up period. Suffice it to say that 23 (76,7%) patients of the main group did not consider their lives as of poor quality by the end of the study period (р<0,01). There were only 18 such patients in the control group (р<0,05). The results of the present study provide a basis for recommending the proposed authors' program of physical rehabilitation for the patients treated after myocardial infarction with the emphasis on the necessity to do special dynamic exercises for the cervical and thoraco-cervical spine segments to be supplemented by the relevant educational program.
Activating Public Space: How to Promote Physical Activity in Urban Environment
NASA Astrophysics Data System (ADS)
Kostrzewska, Małgorzata
2017-10-01
Physical activity is an essential component of a healthy lifestyle. The quality and equipment of urban public space plays an important role in promoting physical activity among people (residents, tourists). In order for recreation and sports activities to be undertaken willingly, in a safe and comprehensive manner, certain spatial conditions and requirements must be met. The distinctive feature of contemporary large cities is the disappearance of local, neighbourly relations, and the consequent loneliness, alienation, and atomization of the residents. Thus, the design of public spaces should be an expression of the values of social inclusion and integration. A properly designed urban space would encourage people to leave their homes and integrate, also by undertaking different forms of physical activities. This, in turn, can lead to raising the quality of the space, especially in the context of its “familiarization” and “domestication”. The aim of the research was to identify the architectural and urban features of the public spaces of contemporary cities that can contribute to the promotion of physical activity. The paper presents the research results and the case studies of such spatial solutions and examples of good practices, which invite residents to undertake different forms of physical activities in public spaces. The issue of the integrating, inclusionary, and social function of physical recreation and sport is discussed as well, and so are the possibilities of translating these values into physical characteristics of an urban space. The main conclusions are that taking into account the diverse needs of different social groups, participation in the design and construction process, aesthetic and interesting design, vicinity of the residence, open access for all age groups and the disabled would be the most important spatial determinants of a properly designed, physically activating public space. Strategies of planning the sports and recreation infrastructure should also make sure of their multifunctionality and variability in time to adjust it to the changing needs of the residents.
Restoring integrity—A grounded theory of coping with a fast track surgery programme
Jørgensen, Lene Bastrup; Fridlund, Bengt
2016-01-01
Aims and objectives The aim of this study was to generate a theory conceptualizing and explaining behavioural processes involved in coping in order to identify the predominant coping types and coping type-specific features. Background Patients undergoing fast track procedures do not experience a higher risk of complications, readmission, or mortality. However, such programmes presuppose an increasing degree of patient involvement, placing high educational, physical, and mental demands on the patients. There is a lack of knowledge about how patients understand and cope with fast track programmes. Design The study design used classical grounded theory. Methods The study used a multimodal approach with qualitative and quantitative data sets from 14 patients. Results Four predominant types of coping, with distinct physiological, cognitive, affective, and psychosocial features, existed among patients going through a fast track total hip replacement programme. These patients’ main concern was to restore their physical and psychosocial integrity, which had been compromised by reduced function and mobility in daily life. To restore integrity they economized their mental resources, while striving to fulfil the expectations of the fast track programme. This goal was achieved by being mentally proactive and physically active. Three out of the four predominant types of coping matched the expectations expressed in the fast track programme. The non-matching behaviour was seen among the most nervous patients, who claimed the right to diverge from the programme. Conclusion In theory, four predominant types of coping with distinct physiological, cognitive, affective, and psychosocial features occur among patients going through a fast track total hip arthroplasty programme. PMID:26751199
Dynamic Socialized Gaussian Process Models for Human Behavior Prediction in a Health Social Network
Shen, Yelong; Phan, NhatHai; Xiao, Xiao; Jin, Ruoming; Sun, Junfeng; Piniewski, Brigitte; Kil, David; Dou, Dejing
2016-01-01
Modeling and predicting human behaviors, such as the level and intensity of physical activity, is a key to preventing the cascade of obesity and helping spread healthy behaviors in a social network. In our conference paper, we have developed a social influence model, named Socialized Gaussian Process (SGP), for socialized human behavior modeling. Instead of explicitly modeling social influence as individuals' behaviors influenced by their friends' previous behaviors, SGP models the dynamic social correlation as the result of social influence. The SGP model naturally incorporates personal behavior factor and social correlation factor (i.e., the homophily principle: Friends tend to perform similar behaviors) into a unified model. And it models the social influence factor (i.e., an individual's behavior can be affected by his/her friends) implicitly in dynamic social correlation schemes. The detailed experimental evaluation has shown the SGP model achieves better prediction accuracy compared with most of baseline methods. However, a Socialized Random Forest model may perform better at the beginning compared with the SGP model. One of the main reasons is the dynamic social correlation function is purely based on the users' sequential behaviors without considering other physical activity-related features. To address this issue, we further propose a novel “multi-feature SGP model” (mfSGP) which improves the SGP model by using multiple physical activity-related features in the dynamic social correlation learning. Extensive experimental results illustrate that the mfSGP model clearly outperforms all other models in terms of prediction accuracy and running time. PMID:27746515
Better physical activity classification using smartphone acceleration sensor.
Arif, Muhammad; Bilal, Mohsin; Kattan, Ahmed; Ahamed, S Iqbal
2014-09-01
Obesity is becoming one of the serious problems for the health of worldwide population. Social interactions on mobile phones and computers via internet through social e-networks are one of the major causes of lack of physical activities. For the health specialist, it is important to track the record of physical activities of the obese or overweight patients to supervise weight loss control. In this study, acceleration sensor present in the smartphone is used to monitor the physical activity of the user. Physical activities including Walking, Jogging, Sitting, Standing, Walking upstairs and Walking downstairs are classified. Time domain features are extracted from the acceleration data recorded by smartphone during different physical activities. Time and space complexity of the whole framework is done by optimal feature subset selection and pruning of instances. Classification results of six physical activities are reported in this paper. Using simple time domain features, 99 % classification accuracy is achieved. Furthermore, attributes subset selection is used to remove the redundant features and to minimize the time complexity of the algorithm. A subset of 30 features produced more than 98 % classification accuracy for the six physical activities.
Kate, Rohit J.; Swartz, Ann M.; Welch, Whitney A.; Strath, Scott J.
2016-01-01
Wearable accelerometers can be used to objectively assess physical activity. However, the accuracy of this assessment depends on the underlying method used to process the time series data obtained from accelerometers. Several methods have been proposed that use this data to identify the type of physical activity and estimate its energy cost. Most of the newer methods employ some machine learning technique along with suitable features to represent the time series data. This paper experimentally compares several of these techniques and features on a large dataset of 146 subjects doing eight different physical activities wearing an accelerometer on the hip. Besides features based on statistics, distance based features and simple discrete features straight from the time series were also evaluated. On the physical activity type identification task, the results show that using more features significantly improve results. Choice of machine learning technique was also found to be important. However, on the energy cost estimation task, choice of features and machine learning technique were found to be less influential. On that task, separate energy cost estimation models trained specifically for each type of physical activity were found to be more accurate than a single model trained for all types of physical activities. PMID:26862679
Chaotic behaviour of Zeeman machines at introductory course of mechanics
NASA Astrophysics Data System (ADS)
Nagy, Péter; Tasnádi, Péter
2016-05-01
Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.
Alcohol and the developing fetus--a review.
Chaudhuri, J D
2000-01-01
Fetal alcohol syndrome (FAS) is a collection of signs and symptoms seen in some children exposed to alcohol in the prenatal period. It is characterized mainly by physical and mental retardation, craniofacial anomalies and minor joint abnormalities. However, with the increasing incidence of FAS, there is a great variation in the clinical features of FAS. This article describes in detail these clinical features. Due to ethical reasons it is not possible to perform experiments on pregnant women. Hence to study the effects of alcohol, various animal and avian experimental models have been chosen. The various experimental findings and human correlation are described. The exact mechanism by which alcohol induces its teratogenic effects is not known. The possible mechanisms are discussed. Measures to prevent the occurrence of FAS have been suggested.
6 CFR 37.15 - Physical security features for the driver's license or identification card.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 6 Domestic Security 1 2010-01-01 2010-01-01 false Physical security features for the driver's license or identification card. 37.15 Section 37.15 Domestic Security DEPARTMENT OF HOMELAND SECURITY..., Verification, and Card Issuance Requirements § 37.15 Physical security features for the driver's license or...
Interreality: A New Paradigm for E-health.
Riva, Giuseppe
2009-01-01
"Interreality" is a personalized immersive e-therapy whose main novelty is a hybrid, closed-loop empowering experience bridging physical and virtual worlds. The main feature of interreality is a twofold link between the virtual and the real world: (a) behavior in the physical world influences the experience in the virtual one; (b) behavior in the virtual world influences the experience in the real one. This is achieved through: (1) 3D Shared Virtual Worlds: role-playing experiences in which one or more users interact with one another within a 3D world; (2) Bio and Activity Sensors (From the Real to the Virtual World): They are used to track the emotional/health/activity status of the user and to influence his/her experience in the virtual world (aspect, activity and access); (3) Mobile Internet Appliances (From the Virtual to the Real One): In interreality, the social and individual user activity in the virtual world has a direct link with the users' life through a mobile phone/digital assistant. The different technologies that are involved in the interreality vision and its clinical rationale are addressed and discussed.
Circulation in the Hudson Shelf Valley: MESA physical oceanographic studies in New York Bight, 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, D.A.; Hansen, D.V.; Han, G.C.
1982-11-20
Over 900 days of current velocity data were obtained at mainly two locations in the inner and outer Hudson Shelf Valley (HSV). The large cross-axis depth gradients in the HSV, together with the strong winter cyclones and the baroclinic density distribution over the shelf, are primarily responsible for the major circulation features observed in the valley. CSTD data from 12 cruises and meteorological data from JFK International Airport and an environmental buoy were collected concurrently with the current meter data.
Electronic states with nontrivial topology in Dirac materials
NASA Astrophysics Data System (ADS)
Turkevich, R. V.; Perov, A. A.; Protogenov, A. P.; Chulkov, E. V.
2017-08-01
The theoretical studies of phase states with a linear dispersion of the spectrum of low-energy electron excitations have been reviewed. Some main properties and methods of experimental study of these states in socalled Dirac materials have been discussed in detail. The results of modern studies of symmetry-protected electronic states with nontrivial topology have been reported. Combination of approaches based on geometry with homotopic topology methods and results of condensed matter physics makes it possible to clarify new features of topological insulators, as well as Dirac and Weyl semimetals.
NASA Astrophysics Data System (ADS)
Samphutthanon, R.; Tripathi, N. K.; Ninsawat, S.; Duboz, R.
2014-12-01
The main objective of this research was the development of an HFMD hazard zonation (HFMD-HZ) model by applying AHP and Fuzzy Logic AHP methodologies for weighting each spatial factor such as disease incidence, socio-economic and physical factors. The outputs of AHP and FAHP were input into a Geographic Information Systems (GIS) process for spatial analysis. 14 criteria were selected for analysis as important factors: disease incidence over 10 years from 2003 to 2012, population density, road density, land use and physical features. The results showed a consistency ratio (CR) value for these main criteria of 0.075427 for AHP, the CR for FAHP results was 0.092436. As both remained below the threshold of 0.1, the CR value were acceptable. After linking to actual geospatial data (disease incidence 2013) through spatial analysis by GIS for validation, the results of the FAHP approach were found to match more accurately than those of the AHP approach. The zones with the highest hazard of HFMD outbreaks were located in two main areas in central Muang Chiang Mai district including suburbs and Muang Chiang Rai district including the vicinity. The produced hazardous maps may be useful for organizing HFMD protection plans.
Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain
NASA Astrophysics Data System (ADS)
Bucchignani, E.; Cattaneo, L.; Panitz, H.-J.; Mercogliano, P.
2016-02-01
The results of a sensitivity work based on ERA-Interim driven COSMO-CLM simulations over the Middle East-North Africa (CORDEX-MENA) domain are presented. All simulations were performed at 0.44° spatial resolution. The purpose of this study was to ascertain model performances with respect to changes in physical and tuning parameters which are mainly related to surface, convection, radiation and cloud parameterizations. Evaluation was performed for the whole CORDEX-MENA region and six sub-regions, comparing a set of 26 COSMO-CLM runs against a combination of available ground observations, satellite products and reanalysis data to assess temperature, precipitation, cloud cover and mean sea level pressure. The model proved to be very sensitive to changes in physical parameters. The optimized configuration allows COSMO-CLM to improve the simulated main climate features of this area. Its main characteristics consist in the new parameterization of albedo, based on Moderate Resolution Imaging Spectroradiometer data, and the new parameterization of aerosol, based on NASA-GISS AOD distributions. When applying this configuration, Mean Absolute Error values for the considered variables are as follows: about 1.2 °C for temperature, about 15 mm/month for precipitation, about 9 % for total cloud cover, and about 0.6 hPa for mean sea level pressure.
Föger, Kathrin; Gora-Stahlberg, Gina; Sejvar, James; Ovuga, Emilio; Jilek-Aall, Louise; Schmutzhard, Erich
2017-01-01
Nakalanga syndrome is a condition that was described in Uganda and various other African countries decades ago. Its features include growth retardation, physical deformities, endocrine dysfunction, mental impairment, and epilepsy, amongst others. Its cause remains obscure. Nodding syndrome is a neurological disorder with some features in common with Nakalanga syndrome, which has been described mainly in Uganda, South Sudan, and Tanzania. It has been considered an encephalopathy affecting children who, besides head nodding attacks, can also present with stunted growth, delayed puberty, and mental impairment, amongst other symptoms. Despite active research over the last years on the pathogenesis of Nodding syndrome, to date, no convincing single cause of Nodding syndrome has been reported. In this review, by means of a thorough literature search, we compare features of both disorders. We conclude that Nakalanga and Nodding syndromes are closely related and may represent the same condition. Our findings may provide new directions in research on the cause underlying this neurological disorder. PMID:28182652
Observational features of equatorial coronal hole jets
NASA Astrophysics Data System (ADS)
Nisticò, G.; Bothmer, V.; Patsourakos, S.; Zimbardo, G.
2010-03-01
Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km s-1, while the deceleration rate appears to be about 0.11 km s-2, less than solar gravity. The average jet visibility time is about 30 min, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and equatorial coronal hole jets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjöstrand, Torbjörn; Ask, Stefan; Christiansen, Jesper R.
The Pythia program is a standard tool for the generation of events in high-energy collisions, comprising a coherent set of physics models for the evolution from a few-body hard process to a complex multiparticle final state. It contains a library of hard processes, models for initial- and final-state parton showers, matching and merging methods between hard processes and parton showers, multiparton interactions, beam remnants, string fragmentation and particle decays. It also has a set of utilities and several interfaces to external programs. Pythia 8.2 is the second main release after the complete rewrite from Fortran to C++, and now hasmore » reached such a maturity that it offers a complete replacement for most applications, notably for LHC physics studies. Lastly, the many new features should allow an improved description of data.« less
Natural Selection as Coarsening
NASA Astrophysics Data System (ADS)
Smerlak, Matteo
2017-11-01
Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.
Natural Selection as Coarsening
NASA Astrophysics Data System (ADS)
Smerlak, Matteo
2018-07-01
Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.
Null geodesics and wave front singularities in the Gödel space-time
NASA Astrophysics Data System (ADS)
Kling, Thomas P.; Roebuck, Kevin; Grotzke, Eric
2018-01-01
We explore wave fronts of null geodesics in the Gödel metric emitted from point sources both at, and away from, the origin. For constant time wave fronts emitted by sources away from the origin, we find cusp ridges as well as blue sky metamorphoses where spatially disconnected portions of the wave front appear, connect to the main wave front, and then later break free and vanish. These blue sky metamorphoses in the constant time wave fronts highlight the non-causal features of the Gödel metric. We introduce a concept of physical distance along the null geodesics, and show that for wave fronts of constant physical distance, the reorganization of the points making up the wave front leads to the removal of cusp ridges.
Real-time skin feature identification in a time-sequential video stream
NASA Astrophysics Data System (ADS)
Kramberger, Iztok
2005-04-01
Skin color can be an important feature when tracking skin-colored objects. Particularly this is the case for computer-vision-based human-computer interfaces (HCI). Humans have a highly developed feeling of space and, therefore, it is reasonable to support this within intelligent HCI, where the importance of augmented reality can be foreseen. Joining human-like interaction techniques within multimodal HCI could, or will, gain a feature for modern mobile telecommunication devices. On the other hand, real-time processing plays an important role in achieving more natural and physically intuitive ways of human-machine interaction. The main scope of this work is the development of a stereoscopic computer-vision hardware-accelerated framework for real-time skin feature identification in the sense of a single-pass image segmentation process. The hardware-accelerated preprocessing stage is presented with the purpose of color and spatial filtering, where the skin color model within the hue-saturation-value (HSV) color space is given with a polyhedron of threshold values representing the basis of the filter model. An adaptive filter management unit is suggested to achieve better segmentation results. This enables the adoption of filter parameters to the current scene conditions in an adaptive way. Implementation of the suggested hardware structure is given at the level of filed programmable system level integrated circuit (FPSLIC) devices using an embedded microcontroller as their main feature. A stereoscopic clue is achieved using a time-sequential video stream, but this shows no difference for real-time processing requirements in terms of hardware complexity. The experimental results for the hardware-accelerated preprocessing stage are given by efficiency estimation of the presented hardware structure using a simple motion-detection algorithm based on a binary function.
PREFACE: 16th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb/2013)
NASA Astrophysics Data System (ADS)
2014-12-01
The sixteenth Russian Conference on Physics and Astronomy PhysicA.SPb was held 23-24 October 2013 in Saint-Petersburg, Russia. The Conference continues the tradition of Saint-Petersburg Seminars on Physics and Astronomy originating from mid-90s. Since then PhysicA.SPb maintains both scientific and educational quality of contributions delivered to the young audience. This is the main feature of the Conference that makes it possible to combine the whole spectrum of modern Physics and Astronomy within one event. PhysicA.SPb/2013 has brought together about 200 students, young scientists and their colleague professors from many universities and research institutes across whole Russia as well as from Belarus, Ukraine, Switzerland, Turkey, Finland and France. Oral and poster presentations were combined into a few well-defined sections among which one should name Astronomy and Astrophysics, Plasma physics, hydro- and aero-dynamics, Physics of quantum-sized structures, Nanostructured and thin-film materials, Biophysics, THz and UHF materials and devices, Optoelectronic devices, Optics and spectroscopy, Atomic and elementary particles physics, Defects and impurities in solid state, Physics and technology of the alternative energetics. This issue of the Journal of Physics: Conference Series presents the extended contributions from participants of PhysicA.SPb/2013 that were peer-reviewed by expert referees through processes administered by the Presiders of the Organising and Programme Committees to the best professional and scientific standards. The Editors: Nikita S. Averkiev, Sergey A. Poniaev and Grigorii S. Sokolovskii
Giammarioli, Anna Maria; Siracusano, Alessandra; Sorrentino, Eugenio; Bettoni, Monica; Malorni, Walter
2012-01-01
Gender medicine is a multi-faceted field of investigation integrating various aspects of psycho-social and biological sciences but it mainly deals with the impact of the gender on human physiology, pathophysiology, and clinical features of diseases. In Italy, the Decree Law 81/2008 recently introduced the gender issue in the risk assessment at the workplaces. This review briefly describes our current knowledge on gender medicine and on the Italian legislation in risk management. Public or private scientific institutions should be the first to pay attention to the safety of their workers, who are simultaneously subjected to biological, chemical and physical agents. Main tasks of risk management in scientific research institutions are here analyzed and discussed in a gender perspective.
A practical guide to replica-exchange Wang—Landau simulations
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Li, Ying Wai; Landau, David P.
2018-04-01
This paper is based on a series of tutorial lectures about the replica-exchange Wang-Landau (REWL) method given at the IX Brazilian Meeting on Simulational Physics (BMSP 2017). It provides a practical guide for the implementation of the method. A complete example code for a model system is available online. In this paper, we discuss the main parallel features of this code after a brief introduction to the REWL algorithm. The tutorial section is mainly directed at users who have written a single-walker Wang–Landau program already but might have just taken their first steps in parallel programming using the Message Passing Interface (MPI). In the last section, we answer “frequently asked questions” from users about the implementation of REWL for different scientific problems.
Story Immersion in a Health Videogame for Childhood Obesity Prevention
Thompson, Debbe; Baranowski, Janice; Buday, Richard; Baranowski, Tom
2012-01-01
Abstract Objective Stories can serve as powerful tools for health interventions. Story immersion refers to the experience of being absorbed in a story. This is among the first studies to analyze story immersion's role in health videogames among children by addressing two main questions: Will children be more immersed when the main characters are similar to them? Do increased levels of immersion relate to more positive health outcomes? Subjects and Methods Eighty-seven 10–12-year-old African-American, Caucasian, and Hispanic children from Houston, TX, played a health videogame, “Escape from Diab” (Archimage, Houston, TX), featuring a protagonist with both African-American and Hispanic phenotypic features. Children's demographic information, immersion, and health outcomes (i.e., preference, motivation, and self-efficacy) were recorded and then correlated and analyzed. Results African-American and Hispanic participants reported higher immersion scores than Caucasian participants (P=0.01). Story immersion correlated positively (P values<0.03) with an increase in Fruit and Vegetable Preference (r=0.27), Intrinsic Motivation for Water (r=0.29), Vegetable Self-Efficacy (r=0.24), and Physical Activity Self-Efficacy (r=0.32). Conclusion Ethnic similarity between videogame characters and players enhanced immersion and several health outcomes. Effectively embedding characters with similar phenotypic features to the target population in interactive health videogame narratives may be important when motivating children to adopt obesity prevention behaviors. PMID:24066276
Kolokoltsev, M M
2016-01-01
The study of somatotypes of the constitution is an important point in planning of the improvements of measures among the population in various regions of Russia. The purpose of the work was to reveal features of age dynamics of somatotypes of the constitution in students of youthful age of the Baikal Region by means of somatotyping according to scheme by Nikityuk B. A. and Kozlova A.I (1990) with taking into account their functional group of health. There were examined 1286 Slavic young males, natives of the Irkutsk region, aged of 17-20 years, from them, according to data of the medical examination 996 were referred to the 1st (main) and 290--to the 2nd (preparatory) functional group of health for physical exercises. There were established significant differences in somatotypes of the constitution in young men of the 1st and 2nd functional groups of health. In both functional groups there is noted a significant amount of young males with transitional somatotypes that testifies to incompleteness of growth processes of their organism. The obtained results of a somatotyping are used in the educational process for a training individualization on physical culture of students of IRGTU, and also in construction of independent physical--improving programs.
NASA Astrophysics Data System (ADS)
Adina Morosanu, Gabriela; Zaharia, Liliana; Ioana-Toroimac, Gabriela; Belleudy, Philippe
2017-04-01
The total dissolved solids (TDS) is a river water quality parameter reflecting its concentration in solute ions. It is sensitive to many physical and anthropogenic features of the watershed. In this context, the objective of this work is to analyze the spatial variation of the TDS and to identify the role of the main controlling factors (e.g. geology, soils, land use) in Jiu River and some of its main tributaries, by using a methodology based on GIS and multivariate analysis. The Jiu watershed (10,000 kmp) is located in south-western Romania and it has a high diversity of physical and anthropogenic features influencing the water flow and its quality. The study is based on TDS measurements performed in August, 2016, during low flow conditions in the Jiu River and its tributaries. To measure in situ the TDS (ppm), an EC/TDS/Temperature Hand-held Tester was used in the 12 measuring points on Jiu River and in another 7 points on some of its tributaries. Across the hydrographic basin, the recorded TDS values ranged from 31 ppm to 607 ppm, while in the case of Jiu River, the TDS varied between 38 ppm at Lonea station (upper Jiu River) and 314 ppm at Išalniča (in the lower course). For each catchment corresponding to the sampling points, the influence of some contiguous features was defined on the basis of the lithology (marls, limestones, erodible bedrocks) and soils (clay textures), as well as the land cover/use influencing the solubility and solid content. This assessment was carried out in GIS through a set of spatial statistics analysis by calculating the percentages of the catchment coverage area for each determinant. In order to identify the contributions of different catchment features on the TDS variability, principal components analysis (PCA) was then applied. The results revealed the major role of the marls and clayey soils in the increase of TDS (on the Amaradia and Gilort rivers and some sections in the middle course of the Jiu River). In contrast, turbidity did not play a significant role in the variation of TDS. The presence and extent of agricultural and industrial areas also have some influence, indicated by its positive correlation with TDS, at 95% confidence level. Thus, the main contributory variables in the increase of TDS are the geological substrate and soil texture across watersheds, followed by the anthropogenic disturbances (reflected by agricultural and industrial activities). Keywords: total dissolved solids, Jiu River, PCA, GIS
NASA Astrophysics Data System (ADS)
Djallel Dilmi, Mohamed; Mallet, Cécile; Barthes, Laurent; Chazottes, Aymeric
2017-04-01
The study of rain time series records is mainly carried out using rainfall rate or rain accumulation parameters estimated on a fixed integration time (typically 1 min, 1 hour or 1 day). In this study we used the concept of rain event. In fact, the discrete and intermittent natures of rain processes make the definition of some features inadequate when defined on a fixed duration. Long integration times (hour, day) lead to mix rainy and clear air periods in the same sample. Small integration time (seconds, minutes) will lead to noisy data with a great sensibility to detector characteristics. The analysis on the whole rain event instead of individual short duration samples of a fixed duration allows to clarify relationships between features, in particular between macro physical and microphysical ones. This approach allows suppressing the intra-event variability partly due to measurement uncertainties and allows focusing on physical processes. An algorithm based on Genetic Algorithm (GA) and Self Organising Maps (SOM) is developed to obtain a parsimonious characterisation of rain events using a minimal set of variables. The use of self-organizing map (SOM) is justified by the fact that it allows to map a high dimensional data space in a two-dimensional space while preserving as much as possible the initial space topology in an unsupervised way. The obtained SOM allows providing the dependencies between variables and consequently removing redundant variables leading to a minimal subset of only five features (the event duration, the rain rate peak, the rain event depth, the event rain rate standard deviation and the absolute rain rate variation of order 0.5). To confirm relevance of the five selected features the corresponding SOM is analyzed. This analysis shows clearly the existence of relationships between features. It also shows the independence of the inter-event time (IETp) feature or the weak dependence of the Dry percentage in event (Dd%e) feature. This confirms that a rain time series can be considered by an alternation of independent rain event and no rain period. The five selected feature are used to perform a hierarchical clustering of the events. The well-known division between stratiform and convective events appears clearly. This classification into two classes is then refined in 5 fairly homogeneous subclasses. The data driven analysis performed on whole rain events instead of fixed length samples allows identifying strong relationships between macrophysics (based on rain rate) and microphysics (based on raindrops) features. We show that among the 5 identified subclasses some of them have specific microphysics characteristics. Obtaining information on microphysical characteristics of rainfall events from rain gauges measurement suggests many implications in development of the quantitative precipitation estimation (QPE), for the improvement of rain rate retrieval algorithm in remote sensing context.
NASA Astrophysics Data System (ADS)
Botyánszki, János; Kasen, Daniel
2017-08-01
We present a radiative transfer code to model the nebular phase spectra of supernovae (SNe) in non-LTE (NLTE). We apply it to a systematic study of SNe Ia using parameterized 1D models and show how nebular spectral features depend on key physical parameters, such as the time since explosion, total ejecta mass, kinetic energy, radial density profile, and the masses of 56Ni, intermediate-mass elements, and stable iron-group elements. We also quantify the impact of uncertainties in atomic data inputs. We find the following. (1) The main features of SN Ia nebular spectra are relatively insensitive to most physical parameters. Degeneracy among parameters precludes a unique determination of the ejecta properties from spectral fitting. In particular, features can be equally well fit with generic Chandrasekhar mass ({M}{ch}), sub-{M}{Ch}, and super-{M}{Ch} models. (2) A sizable (≳0.1 {M}⊙ ) central region of stable iron-group elements, often claimed as evidence for {M}{Ch} models, is not essential to fit the optical spectra and may produce an unusual flat-top [Co III] profile. (3) The strength of [S III] emission near 9500 Å can provide a useful diagnostic of explosion nucleosynthesis. (4) Substantial amounts (≳0.1 {M}⊙ ) of unburned C/O mixed throughout the ejecta produce [O III] emission not seen in observations. (5) Shifts in the wavelength of line peaks can arise from line-blending effects. (6) The steepness of the ejecta density profile affects the line shapes, offering a constraint on explosion models. (7) Uncertainties in atomic data limit the ability to infer physical parameters.
A survey of snake-inspired robot designs.
Hopkins, James K; Spranklin, Brent W; Gupta, Satyandra K
2009-06-01
Body undulation used by snakes and the physical architecture of a snake body may offer significant benefits over typical legged or wheeled locomotion designs in certain types of scenarios. A large number of research groups have developed snake-inspired robots to exploit these benefits. The purpose of this review is to report different types of snake-inspired robot designs and categorize them based on their main characteristics. For each category, we discuss their relative advantages and disadvantages. This review will assist in familiarizing a newcomer to the field with the existing designs and their distinguishing features. We hope that by studying existing robots, future designers will be able to create new designs by adopting features from successful robots. The review also summarizes the design challenges associated with the further advancement of the field and deploying snake-inspired robots in practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernander, O.; Haga, I.; Segerberg, F.
BS>From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). Although the present status of the boiling water reactor is one of proven technology, design refinements and technical innovations are still being made to further improve reliability, economy and safety. The new standard ASEA- ATOM BWR features a number of such refinements and design improvements involving main circulation punips, containment design, refuelling system and off-gas treatment plant. In some respects the nuclear and hydraulic design of the ASEA- ATOM BWR differs from that adopted by other BWR manufacturers. Since the Oskarshamn I plant was the first nuclear power station havingmore » these features an extensive physics and hydraulics test program was made during the reactor start- up. The results of these tests have fully confirmed the ability of calculation methods to predict the behavior of the reactor. (auth)« less
The dynamical control of subduction parameters on surface topography
NASA Astrophysics Data System (ADS)
Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.
2017-04-01
The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.
NASA Astrophysics Data System (ADS)
Di Capua, R.; Offi, F.; Fontana, F.
2014-07-01
Exponential decay is a prototypical functional behaviour for many physical phenomena, and therefore it deserves great attention in physics courses at an academic level. The absorption of the electromagnetic radiation that propagates in a dissipative medium provides an example of the decay of light intensity, as stated by the law of Lambert-Beer-Bourguer. We devised a very simple experiment to check this law. The experimental setup, its realization, and the data analysis of the experiment are definitely simple. Our main goal was to create an experiment that is accessible to all students, including those in their first year of academic courses and those with poorly equipped laboratories. As illustrated in this paper, our proposal allowed us to develop a deep discussion about some general mathematical and numerical features of exponential decay. Furthermore, the special setup of the absorbing medium (sliced in finite thickness slabs) and the experimental outcomes allow students to understand the transition from the discrete to the continuum approach in experimental physics.
Nonlocal correlations in a macroscopic measurement scenario
NASA Astrophysics Data System (ADS)
Kunkri, Samir; Banik, Manik; Ghosh, Sibasish
2017-02-01
Nonlocality is one of the main characteristic features of quantum systems involving more than one spatially separated subsystem. It is manifested theoretically as well as experimentally through violation of some local realistic inequality. On the other hand, classical behavior of all physical phenomena in the macroscopic limit gives a general intuition that any physical theory for describing microscopic phenomena should resemble classical physics in the macroscopic regime, the so-called macrorealism. In the 2-2-2 scenario (two parties, with each performing two measurements and each measurement having two outcomes), contemplating all the no-signaling correlations, we characterize which of them would exhibit classical (local realistic) behavior in the macroscopic limit. Interestingly, we find correlations which at the single-copy level violate the Bell-Clauser-Horne-Shimony-Holt inequality by an amount less than the optimal quantum violation (i.e., Cirel'son bound 2 √{2 } ), but in the macroscopic limit gives rise to a value which is higher than 2 √{2 } . Such correlations are therefore not considered physical. Our study thus provides a sufficient criterion to identify some of unphysical correlations.
ERIC Educational Resources Information Center
Huggins, Elisha
2011-01-01
The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)
The unbuilt environment: culture moderates the built environment for physical activity.
Perrin, Andrew J; Caren, Neal; Skinner, Asheley C; Odulana, Adebowale; Perrin, Eliana M
2016-12-05
While research has demonstrated a link between the built environment and obesity, much variation remains unexplained. Physical features are necessary, but not sufficient, for physical activity: residents must choose to use these features in health-promoting ways. This article reveals a role for local culture in tempering the effect of the physical environment on physical activity behaviors. We developed Systematic Cultural Observation (SCO) to observe place-based, health-related culture in Lenoir County, NC (population ~60,000). Photographs (N = 6450) were taken systematically from 150 most-used road segments and geocoded. Coders assessed physical activity (PA) opportunities (e.g., public or private activity spaces, pedestrian-friendly features) and presence of people in each photograph. 28.7% of photographs contained some PA feature. Most were private or pedestrian; 3.1% contained public PA space. Only 1.5% of photographs with any PA features (2% of those with public PA space, 0.7% of those with private) depicted people despite appropriate weather and daylight conditions. Even when PA opportunities existed in this rural county, they were rarely used. This may be the result of culture ("unbuilt environment") that disfavors physical activity even in the presence of features that allow it. Policies promoting built environments designed for healthy lifestyles should consider local culture (shared styles, skills, habits, and beliefs) to maximize positive outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, Andy; /Edinburgh U.; Butterworth, Jonathan
We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard-scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays;more » the inclusion of QED radiation and beyond-Standard-Model processes. We describe the principal features of the Ariadne, Herwig++, Pythia 8 and Sherpa generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. This review is aimed at phenomenologists wishing to understand better how parton-level predictions are translated into hadron-level events as well as experimentalists wanting a deeper insight into the tools available for signal and background simulation at the LHC.« less
On the borderline between Science and Philosophy: A debate on determinism in France around 1880.
Bordoni, Stefano
2015-02-01
In the second half of the nineteenth century, a new interest in explosive chemical reactions, sudden release of energy in living beings, physical instabilities, and bifurcations in the solutions of differential equations drew the attention of some scholars. New concepts like triggering actions and guiding principles also emerged. Mathematicians, physicists, physiologists, and philosophers were attracted by this kind of phenomena since they raised a question about the actual existence of a strict determinism in science. In 1878 the mathematical physicist Joseph Boussinesq pointed out a structural analogy among physical instabilities, some essential features of living beings, and singular solutions of differential equations. These developments revived long-lasting philosophical debates on the problematic link between deterministic physical laws and free will. We find in Boussinesq an original and almost isolated attempt to merge mathematical, physical, biological, and philosophical issues into a complex intellectual framework. In the last decades, some philosophers of science rediscovered the connection between physical instabilities and determinism, both in the context of chaos theory, and in the debates on the Norton dome. I put forward a consistent historical reconstruction of the main issues and characters involved. Copyright © 2014 Elsevier Ltd. All rights reserved.
Solignac, Michel; Mougel, Florence; Vautrin, Dominique; Monnerot, Monique; Cornuet, Jean-Marie
2007-01-01
The honey bee is a key model for social behavior and this feature led to the selection of the species for genome sequencing. A genetic map is a necessary companion to the sequence. In addition, because there was originally no physical map for the honey bee genome project, a meiotic map was the only resource for organizing the sequence assembly on the chromosomes. We present the genetic (meiotic) map here and describe the main features that emerged from comparison with the sequence-based physical map. The genetic map of the honey bee is saturated and the chromosomes are oriented from the centromeric to the telomeric regions. The map is based on 2,008 markers and is about 40 Morgans (M) long, resulting in a marker density of one every 2.05 centiMorgans (cM). For the 186 megabases (Mb) of the genome mapped and assembled, this corresponds to a very high average recombination rate of 22.04 cM/Mb. Honey bee meiosis shows a relatively homogeneous recombination rate along and across chromosomes, as well as within and between individuals. Interference is higher than inferred from the Kosambi function of distance. In addition, numerous recombination hotspots are dispersed over the genome. The very large genetic length of the honey bee genome, its small physical size and an almost complete genome sequence with a relatively low number of genes suggest a very promising future for association mapping in the honey bee, particularly as the existence of haploid males allows easy bulk segregant analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, D. J.; Peeters, E.; Otaguro, J. N.
The spatial variations in polycyclic aromatic hydrocarbon (PAH) band intensities are normally attributed to the physical conditions of the emitting PAHs, however in recent years it has been suggested that such variations are caused mainly by extinction. To resolve this question, we have obtained near-infrared (NIR), mid-infrared (MIR), and radio observations of the compact H II region IRAS 12063-6259. We use these data to construct multiple independent extinction maps and also to measure the main PAH features (6.2, 7.7, 8.6, and 11.2 {mu}m) in the MIR. Three extinction maps are derived: the first using the NIR hydrogen lines and casemore » B recombination theory; the second combining the NIR data with radio data; and the third making use of the Spitzer/IRS MIR observations to measure the 9.8 {mu}m silicate absorption feature using the Spoon method and PAHFIT (as the depth of this feature can be related to overall extinction). The silicate absorption over the bright, southern component of IRAS 12063-6259 is almost absent while the other methods find significant extinction. While such breakdowns of the relationship between the NIR extinction and the 9.8 {mu}m absorption have been observed in molecular clouds, they have never been observed for H II regions. We then compare the PAH intensity variations in the Spitzer/IRS data after dereddening to those found in the original data. It was found that in most cases, the PAH band intensity variations persist even after dereddening, implying that extinction is not the main cause of the PAH band intensity variations.« less
Signal of Acceleration and Physical Mechanism of Water Cycle in Xinjiang, China
Feng, Guo-Lin; Wu, Yong-Ping
2016-01-01
Global warming accelerates water cycle with features of regional difference. However, little is known about the physical mechanism behind the phenomenon. To reveal the links between water cycle and climatic environment, we analyzed the changes of water cycle elements and their relationships with climatic and environmental factors. We found that when global warming was significant during the period of 1986-2003, the precipitation in Tarim mountains as well as Xinjiang increased rapidly except for Tarim plains, which indicated that there existed a signal of acceleration for water cycle in Xinjiang. The speed of water cycle is mainly affected by altitude, latitude, longitude, slope direction, and the most fundamental element is temperature. Moreover, according to Clausius-Kela Bai Lung relation, we found that the climate change induced the increase of temperature and accelerated the local water cycle only for the wet places. Our results provide a possible physical mechanisms of water cycle and thus well link the climate change to water circulation. PMID:27907078
Signal of Acceleration and Physical Mechanism of Water Cycle in Xinjiang, China.
Feng, Guo-Lin; Wu, Yong-Ping
2016-01-01
Global warming accelerates water cycle with features of regional difference. However, little is known about the physical mechanism behind the phenomenon. To reveal the links between water cycle and climatic environment, we analyzed the changes of water cycle elements and their relationships with climatic and environmental factors. We found that when global warming was significant during the period of 1986-2003, the precipitation in Tarim mountains as well as Xinjiang increased rapidly except for Tarim plains, which indicated that there existed a signal of acceleration for water cycle in Xinjiang. The speed of water cycle is mainly affected by altitude, latitude, longitude, slope direction, and the most fundamental element is temperature. Moreover, according to Clausius-Kela Bai Lung relation, we found that the climate change induced the increase of temperature and accelerated the local water cycle only for the wet places. Our results provide a possible physical mechanisms of water cycle and thus well link the climate change to water circulation.
Scherrieble, Andreas; Bahrizadeh, Shiva; Avareh Sadrabadi, Fatemeh; Hedayat, Laleh
2017-01-01
This paper deals with the engineering multicomponent nanofunctionalization process considering fundamental physicochemical features of nanostructures such as surface energy, chemical bonds, and electrostatic interactions. It is pursued by modeling the surface nanopatterning and evaluating the proposed technique and the models. To this end, the effects of surface modifications of nanoclay on surface interactions, orientations, and final features of TiO2/Mt nanocolloidal textiles functionalization have been investigated. Various properties of cross-linkable polysiloxanes (XPs) treated samples as well as untreated samples with XPs have been compared to one another. The complete series of samples have been examined in terms of bioactivity and some physical properties, given to provide indirect evidence on the surface nanopatterning. The results disclosed a key role of the selected factors on the final features of treated surfaces. The effects have been thoroughly explained and modeled according to the fundamental physicochemical features. The developed models and associated hypotheses interestingly demonstrated a full agreement with all measured properties and were appreciably confirmed by FESEM evidence (direct evidence). Accordingly, a guideline has been developed to facilitate engineering and optimizing the pre-, main, and post-multicomponent nanofunctionalization procedures in terms of fundamental features of nanostructures and substrates for biomedical applications and other approaches. PMID:29333437
NASA Technical Reports Server (NTRS)
Mckay, D. S.; Rietmeijer, F. J. M.; Schramm, L. S.; Barrett, R. A.; Zook, H. A.; Blanford, G. E.
1986-01-01
The physical properties of impact features observed in the Solar Max main electronics box (MEB) thermal blanket generally suggest an origin by hypervelocity impact. The chemistry of micrometeorite material suggests that a wide variety of projectile materials have survived impact with retention of varying degrees of pristinity. Impact features that contain only spacecraft paint particles are on average smaller than impact features caused by micrometeorite impacts. In case both types of materials co-occur, it is belevied that the impact feature, generally a penetration hole, was caused by a micrometeorite projectile. The typically smaller paint particles were able to penetrate though the hole in the first layer and deposit in the spray pattern on the second layer. It is suggested that paint particles have arrived with a wide range of velocities relative to the Solar Max satellite. Orbiting paint particles are an important fraction of materials in the near-Earth environment. In general, the data from the Solar Max studies are a good calibration for the design of capture cells to be flown in space and on board Space Station. The data also suggest that development of multiple layer capture cells in which the projectile may retain a large degree of pristinity is a feasible goal.
Kuriya, Bindee; Villeneuve, Edith; Bombardier, Claire
2011-03-01
To review the diagnostic and prognostic value of history/physical examination among patients with undifferentiated peripheral inflammatory arthritis (UPIA). We conducted a systematic review evaluating the association between history/physical examination features and a diagnostic or prognostic outcome. Nineteen publications were included. Advanced age, female sex, and morning stiffness were predictive of a diagnosis of rheumatoid arthritis (RA) from UPIA. A higher number of tender and swollen joints, small/large joint involvement in the upper/lower extremities, and symmetrical involvement were associated with progression to RA. Similar features were associated with persistent disease and erosions, while disability at baseline and extraarticular features were predictive of future disability. History/physical examination features are heterogeneously reported. Several features predict progression from UPIA to RA or a poor prognosis. Continued measurements in the UPIA population are needed to determine if these features are valid and reliable predictors of outcomes, especially as new definitions for RA and disease states emerge.
Sjöstrand, Torbjörn; Ask, Stefan; Christiansen, Jesper R.; ...
2015-02-11
The Pythia program is a standard tool for the generation of events in high-energy collisions, comprising a coherent set of physics models for the evolution from a few-body hard process to a complex multiparticle final state. It contains a library of hard processes, models for initial- and final-state parton showers, matching and merging methods between hard processes and parton showers, multiparton interactions, beam remnants, string fragmentation and particle decays. It also has a set of utilities and several interfaces to external programs. Pythia 8.2 is the second main release after the complete rewrite from Fortran to C++, and now hasmore » reached such a maturity that it offers a complete replacement for most applications, notably for LHC physics studies. Lastly, the many new features should allow an improved description of data.« less
Positioning navigation and timing service applications in cyber physical systems
NASA Astrophysics Data System (ADS)
Qu, Yi; Wu, Xiaojing; Zeng, Lingchuan
2017-10-01
The positioning navigation and timing (PNT) architecture was discussed in detail, whose history, evolvement, current status and future plan were presented, main technologies were listed, advantages and limitations of most technologies were compared, novel approaches were introduced, and future capacities were sketched. The concept of cyber-physical system (CPS) was described and their primary features were interpreted. Then the three-layer architecture of CPS was illustrated. Next CPS requirements on PNT services were analyzed, including requirements on position reference and time reference, requirements on temporal-spatial error monitor, requirements on dynamic services, real-time services, autonomous services, security services and standard services. Finally challenges faced by PNT applications in CPS were concluded. The conclusion was expected to facilitate PNT applications in CPS, and furthermore to provide references to the design and implementation of both architectures.
Materials prediction via classification learning
Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; ...
2015-08-25
In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturallymore » uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. In conclusion, our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle.« less
Materials Prediction via Classification Learning
Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; Lookman, Turab
2015-01-01
In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturally uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. Our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle. PMID:26304800
Status report of the Gerda Phase II startup
NASA Astrophysics Data System (ADS)
D'Andrea, Valerio; Gerda Collaboration
2017-01-01
The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge . Germanium diodes enriched to ˜ 86 % in the double beta emitter 76Ge ( enrGe are exposed being both source and detector of 0νββ decay. This process is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, at the completion of the first experimental phase (Phase I), the GERDA setup has been upgraded to perform its next step (Phase II). The aim is to reach a sensitivity to the 0νββ decay half-life larger than 10^{26} yr in about 3 years of physics data taking, exposing a detector mass of about 35 kg of enrGe with a background index of about 10^{-3} cts/(keV . kg . yr). One of the main new implementations is the liquid argon (LAr) scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper the GERDA Phase II expected goals, the upgraded items and few selected features from the first 2016 physics and calibration runs will be presented. The main Phase I achievements will be also reviewed.
Experimenting with the virtual environment Moodle in Physics Education
NASA Astrophysics Data System (ADS)
Martins, Maria Ines; Dickman, Adriana
2008-03-01
The master's program in Physics Education of the Catholic University in the state of Minas Gerais, Brazil, includes the discipline ``Digital technologies in Physics education.'' The main goal of this discipline is to discuss the role of Information and Communication Technology (ICT) in the process of learning-teaching science. We introduce our students to several virtual platforms, both free and commercial, discussing their functionality and features. We encourage our students to get in touch with computer tools and resources by planning their own computer based course using the Moodle platform. We discuss different patterns of virtual environment courses, whose proposals are centered mainly in the students, or teacher-centered or even system-centered. The student is free to choose between only one topic and a year course to work with, since their interests vary from learning something more about a specific subject to a complete e-learning course covering the entire school year. (The courses are available online in the address sitesinf01.pucmg.br/moodle. Participation only requires filling out an application form.) After three editions of this discipline, we have several courses available. We realize that students tend to focus on traditional methods, always preserving their role as knowledge-givers. In conclusion, we can say that, in spite of exhaustive discussion about autonomy involved with ICTs abilities, most of the students used the new virtual medium to organize traditional teacher-centered courses.
On the physical nature of six galactic open cluster candidates
NASA Astrophysics Data System (ADS)
Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.
We present CCD UBVI_(KC) photometry in the fields of the unstudied open cluster (OC) candidates Haffner 3, Haffner 5, NGC 2368, Haffner 25, Hogg 3 and Hogg 4. Our analysis shows that none of these objects are genuine OCs since no clear main sequences or other typical features can be seen in their colour-magnitude and colour-colour diagrams. Star counts performed within and outside the OC candidate fields not only support these results but also suggest that these objects are not OC remnants. A detailed version of this work can be seen in New Astronomy, 16, 161 (2011).
Estado evolutivo de estrellas con fenómeno B[e
NASA Astrophysics Data System (ADS)
Aidelman, Y. J.; Cidale, L.; Borges Fernandes, M.; Kraus, M.
The B[e] phenomenon is related to certain peculiar features observed in the spectrum of some B stars, which are mainly linked to the physical conditions of their circumstellar medium. As these stars are embedded in dense and optically thick circumstellar media, the determination of the spectral type and luminosity class of the central objects is quite difficult. As a consequence, their evolutionary stage and distances present huge uncertainties. In this work we study 4 B[e] stars and discuss their stellar fundamental parameters and evolutionary stages using the BCD spectrophotometric system. FULL TEXT IN SPANISH
Rotational Collision Apparatus for Indoor Egg Drops
NASA Astrophysics Data System (ADS)
Halada, Richard
2003-05-01
Our units about momentum and energy are richly illustrated with applications to car crashes and explanations of such safety features as airbags and crumple zones. The main lab exercise, however, is an egg crash (car insurance rates being so much higher). Fairly standard rules apply: Students must devise an "egg-protection package" that will keep a teacher-supplied egg intact through two successive impacts. After the test, they must hand in a written analysis of the specific physics principles they employed, modifications they would make after seeing their project's actual performance, and suggestions for applying their protection system to auto safety.
The minimal scenario of leptogenesis
NASA Astrophysics Data System (ADS)
Blanchet, Steve; Di Bari, Pasquale
2012-12-01
We review the main features and results of thermal leptogenesis within the type I seesaw mechanism, the minimal extension of the Standard Model explaining neutrino masses and mixing. After presenting the simplest approach, the vanilla scenario, we discuss various important developments of recent years, such as the inclusion of lepton and heavy neutrino flavour effects, a description beyond a hierarchical heavy neutrino mass spectrum and an improved kinetic description within the density matrix and the closed-time-path formalisms. We also discuss how leptogenesis can ultimately represent an important phenomenological tool to test the seesaw mechanism and the underlying model of new physics.
NASA Technical Reports Server (NTRS)
Vogel, Bernhard; Vogel, Heike; Fiedler, Franz
1994-01-01
A model system is presented that takes into account the main physical and chemical processes on the regional scale here in an area of 100x100 sq km. The horizontal gridsize used is 2x2 sq km. For a case study, it is demonstrated how the model system can be used to separate the contributions of the processes advection, turbulent diffusion, and chemical reactions to the diurnal cycle of ozone. In this way, typical features which are visible in observations and are reproduced by the numerical simulations can be interpreted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Ray Alden; Zou, Ling; Zhao, Haihua
This document summarizes the physical models and mathematical formulations used in the RELAP-7 code. In summary, the MOOSE based RELAP-7 code development is an ongoing effort. The MOOSE framework enables rapid development of the RELAP-7 code. The developmental efforts and results demonstrate that the RELAP-7 project is on a path to success. This theory manual documents the main features implemented into the RELAP-7 code. Because the code is an ongoing development effort, this RELAP-7 Theory Manual will evolve with periodic updates to keep it current with the state of the development, implementation, and model additions/revisions.
NASA Astrophysics Data System (ADS)
Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.
2017-12-01
We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.
NASA Astrophysics Data System (ADS)
Pohl, Benjamin; Douville, Hervé
2011-10-01
The CNRM atmospheric general circulation model Arpege-Climat is relaxed towards atmospheric reanalyses outside the 10°S-32°N 30°W-50°E domain in order to disentangle the regional versus large-scale sources of climatological biases and interannual variability of the West African monsoon (WAM). On the one hand, the main climatological features of the monsoon, including the spatial distribution of summer precipitation, are only weakly improved by the nudging, thereby suggesting the regional origin of the Arpege-Climat biases. On the other hand, the nudging technique is relatively efficient to control the interannual variability of the WAM dynamics, though the impact on rainfall variability is less clear. Additional sensitivity experiments focusing on the strong 1994 summer monsoon suggest that the weak sensitivity of the model biases is not an artifact of the nudging design, but the evidence that regional physical processes are the main limiting factors for a realistic simulation of monsoon circulation and precipitation in the Arpege-Climat model. Sensitivity experiments to soil moisture boundary conditions are also conducted and highlight the relevance of land-atmosphere coupling for the amplification of precipitation biases. Nevertheless, the land surface hydrology is not the main explanation for the model errors that are rather due to deficiencies in the atmospheric physics. The intraseasonal timescale and the model internal variability are discussed in a companion paper.
The LArIAT experiment at Fermilab
Nutini, Irene
2016-03-01
The LArIAT experiment at Fermilab is part of the International Neutrino program recently approved in the US. LArIAT aims to measure the main features of charged particles interactions in argon in the energy range (0.2 - 2.0 GeV) corresponding to the energy spectrum of the same particles when produced in a neutrino-argon interaction (neutrino energies of few GeV) typical of the short- and long-baseline neutrino beams of the Neutrino Program. Data collected from the 1 st Run are being analyzed for both Physics studies and a technical characterization of the scintillation light collection system. Furthermore, two analysis topics are reported:more » the method developed for charged pion cross section measurement, based on the specific features of the LArTPC, and the development and test of the LArIAT custom-designed cold front-end electronics for SiPM devices to collect LAr scintillation light.« less
Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh
Ross, Zachary E.; Rollins, Christopher; Cochran, Elizabeth S.; Hauksson, Egill; Avouac, Jean-Philippe; Ben-Zion, Yehuda
2017-01-01
A variety of physical mechanisms are thought to be responsible for the triggering and spatiotemporal evolution of aftershocks. Here we analyze a vigorous aftershock sequence and postseismic geodetic strain that occurred in the Yuha Desert following the 2010 Mw 7.2 El Mayor-Cucapah earthquake. About 155,000 detected aftershocks occurred in a network of orthogonal faults and exhibit features of two distinct mechanisms for aftershock triggering. The earliest aftershocks were likely driven by afterslip that spread away from the main shock with the logarithm of time. A later pulse of aftershocks swept again across the Yuha Desert with square root time dependence and swarm-like behavior; together with local geological evidence for hydrothermalism, these features suggest that the events were driven by fluid diffusion. The observations illustrate how multiple driving mechanisms and the underlying fault structure jointly control the evolution of an aftershock sequence.
A galactic microquasar mimicking winged radio galaxies.
Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M
2017-11-24
A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.
Ship electric propulsion simulator based on networking technology
NASA Astrophysics Data System (ADS)
Zheng, Huayao; Huang, Xuewu; Chen, Jutao; Lu, Binquan
2006-11-01
According the new ship building tense, a novel electric propulsion simulator (EPS) had been developed in Marine Simulation Center of SMU. The architecture, software function and FCS network technology of EPS and integrated power system (IPS) were described. In allusion to the POD propeller in ship, a special physical model was built. The POD power was supplied from the simulative 6.6 kV Medium Voltage Main Switchboard, its control could be realized in local or remote mode. Through LAN, the simulated feature information of EPS will pass to the physical POD model, which would reflect the real thruster working status in different sea conditions. The software includes vessel-propeller math module, thruster control system, distribution and emergency integrated management, double closed loop control system, vessel static water resistance and dynamic software; instructor main control software. The monitor and control system is realized by real time data collection system and CAN bus technology. During the construction, most devices such as monitor panels and intelligent meters, are developed in lab which were based on embedded microcomputer system with CAN interface to link the network. They had also successfully used in practice and would be suitable for the future demands of digitalization ship.
NASA Astrophysics Data System (ADS)
Nicdao-Quita, Maria Isabel T.
This study explored students' dominant ways of operating in science; the types of structuring that is evident, not in terms of ideas, but in terms of how the students think about, imagine, and relate to the physical processes. As the study progressed, the investigation of the students' ideas went beyond their prior knowledge; other significant dimensions emerged as these students interacted with the heating process. The students demonstrated rich and dynamic pictures of the heating process, and from these images, a larger picture of the mental entities and processes dominant in their understanding of the physical phenomenon. Four Filipino students studying in the United States were individually observed in their science classes, were visited at home, and were interviewed about water being heated. The analysis of each student's data led to the two constructs, the main explanatory approach and the students' states of mental engagement (SOME), while the student was cognitively and affectively connected with the phenomenon. The features of the main explanatory approach include an explanatory element and an affective element that pervade the students' thinking about the phenomenon. It is common to and dominant in students' thinking across time. It is the approach of the student taken as a holistic organization within the student when he or she starts dealing with the phenomenon. One of the assumptions behind dealing with the main explanatory approach is that it is much more connected with what kind of person the student is and with the state of mental engagement (SOME) the student is in. SOME refers to the personal energy of a student as he or she relates to and becomes involved with the physical process--there is absorption into the object of study. SOME is related to energizing the main explanatory approach. The interconnectedness of these two constructs can be viewed as a different level of abstraction or interpretation of the students' ways of thinking about the physical process. This way of looking at students' understanding and its connection with students' states of mental engagement has opened up an area with many possibilities, one of which is how the affective structures play a significant role in the exploration of science concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R. M.; Schaefer, R. W.; McKnight, R. D.
Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactormore » physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration-size LMFBRs. As a benchmark, ZPR-6/7 was devoid of many 'real' reactor features, such as simulated control rods and multiple enrichment zones, in its reference form. Those kinds of features were investigated experimentally in variants of the reference ZPR-6/7 or in other critical assemblies in the Demonstration Reactor Benchmark Program.« less
Ziegler, Alban; Loundon, Natalie; Jonard, Laurence; Cavé, Hélène; Baujat, Geneviève; Gherbi, Souad; Couloigner, Vincent; Marlin, Sandrine
2017-09-01
To highlight Noonan syndrome as a clinically recognizable cause of severe to profound sensorineural hearing impairment. New clinical cases and review. Patients evaluated for etiological diagnosis by a medical geneticist in a reference center for hearing impairment. Five patients presenting with confirmed Noonan syndrome and profound sensorineural hearing impairment. Diagnostic and review of the literature. Five patients presented with profound sensorineural hearing impairment and molecularly confirmed Noonan syndrome. Sensorineural hearing impairment has been progressive for three patients. Cardiac echography identified pulmonary stenosis in two patients and was normal for the three other patients. Short stature was found in two patients. Mild intellectual disability was found in one patient. Inconspicuous clinical features as facial dysmorphism, cryptorchidism, or easy bruising were of peculiar interest to reach the diagnosis of Noonan syndrome. Profound sensorineural hearing impairment can be the main feature of Noonan syndrome. Associated features are highly variable; thus, detailed medical history and careful physical examination are mandatory to consider the diagnosis in case of a sensorineural hearing impairment.
NASA Astrophysics Data System (ADS)
Gauthier, Robert C.; Mnaymneh, Khaled
2005-09-01
The key feature that gives photonic crystals (PhCs) their ability to form photonic band gaps (PBGs) analogous to electronic band gaps of semiconductors is their translation symmetries. In recent years, however, it has been found that structures that possess only rotational symmetries can also have PBGs. In addition, these structures, known as Photonic Quasicrystals (PhQs), have other interesting qualities that set them apart of their translational cousins. One interesting feature is how defect states can be created in PhQs. If the rotational symmetry is disturbed, defect states analogous to defects states that are created in PhCs can be obtained. Simulation results of these defect states and other propagation properties of planar 12-fold photonic quasicrystal patterns, and its physical implementations in Silicon-On-Insulator (SOI) are presented. The main mechanisms required to make any optical multiplexing system is propagation; stop bands and add/drop ports. With the rotationally symmetry of the PhQ causing the stop bands, line defects facilitating propagation and now these specially design defect states acting as add/drop ports, a physical implementation of an OADM can be presented. Theoretical, practical and manufacturing benefits of PhQs are discussed. Simulated transmission plots are shown for various fill factors, dielectric contrast and propagation direction. It is shown that low index waveguides can be produced using the quasi-crystal photonic crystal pattern. Fabrication steps and results are shown.
Neglected features of lifestyle: Their relevance in non-alcoholic fatty liver disease
Trovato, Francesca M; Martines, Giuseppe Fabio; Brischetto, Daniela; Trovato, Guglielmo; Catalano, Daniela
2016-01-01
AIM To investigated in non-alcoholic-fatty-liver-disease (NAFLD), with ultrasound (US)-detected fatty liver, and in a group of non-alcoholic and otherwise healthy subjects, relationship of neglected features of lifestyle with NAFLD and obesity. METHODS Five hundred and thirty-two NAFLD and 667 non-NAFLD healthy subjects, age 21-60 years were studied. Severity of liver steatosis was assessed by US bright liver score. The adherence to mediterranean diet score (AMDS) was assessed on the basis of a 1-wk recall computerized questionnaire which included a detailed physical activity reports (Baecke questionnaire). The western dietary profile score, as a simplified paradigm of unhealthy diet, a questionnaire quantifying sun exposure score and a sleep habits questionnaires provided a further comprehensive lifestyle assessment. RESULTS Body mass index (BMI), insulin resistance (HOMA), and triglycerides, poorer adherence to a mediterranean diet profile, sedentary habits, minor sun exposure and use of “western diet” foods are greater in NAFLD. Multiple linear regression analysis, weighted by years of age, displays BMI, HOMA and AMDS as the most powerful independent predictors of fatty liver severity; however, also the physical activity score, the western diet habit and the sun exposure score are acting inside the model with significant independent effects. CONCLUSION Articulated clinical intervention, according to our results, are justified in NAFLD and can be pursued addressing by focused intervention nutritional profile, physical exercise mainly in open-air subsets for enhancing sun exposure and healthier sleep duration and rhythm. PMID:27957244
The Hydra model - a model for what?
Gierer, Alfred
2012-01-01
The introductory personal remarks refer to my motivations for choosing research projects, and for moving from physics to molecular biology and then to development, with Hydra as a model system. Historically, Trembley's discovery of Hydra regeneration in 1744 was the beginning of developmental biology as we understand it, with passionate debates about preformation versus de novo generation, mechanisms versus organisms. In fact, seemingly conflicting bottom-up and top-down concepts are both required in combination to understand development. In modern terms, this means analysing the molecules involved, as well as searching for physical principles underlying development within systems of molecules, cells and tissues. During the last decade, molecular biology has provided surprising and impressive evidence that the same types of molecules and molecular systems are involved in pattern formation in a wide range of organisms, including coelenterates like Hydra, and thus appear to have been "invented" early in evolution. Likewise, the features of certain systems, especially those of developmental regulation, are found in many different organisms. This includes the generation of spatial structures by the interplay of self-enhancing activation and "lateral" inhibitory effects of wider range, which is a main topic of my essay. Hydra regeneration is a particularly clear model for the formation of defined patterns within initially near-uniform tissues. In conclusion, this essay emphasizes the analysis of development in terms of physical laws, including the application of mathematics, and insists that Hydra was, and will continue to be, a rewarding model for understanding general features of embryogenesis and regeneration.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
...; biology and ecology; and habitat selection. (2) Information on the effects of potential threat factors... particular physical or biological features that are essential to the conservation of the species and where such physical or biological features are found; (c) Whether any of these features may require special...
Effects of preprocessing Landsat MSS data on derived features
NASA Technical Reports Server (NTRS)
Parris, T. M.; Cicone, R. C.
1983-01-01
Important to the use of multitemporal Landsat MSS data for earth resources monitoring, such as agricultural inventories, is the ability to minimize the effects of varying atmospheric and satellite viewing conditions, while extracting physically meaningful features from the data. In general, the approaches to the preprocessing problem have been derived from either physical or statistical models. This paper compares three proposed algorithms; XSTAR haze correction, Color Normalization, and Multiple Acquisition Mean Level Adjustment. These techniques represent physical, statistical, and hybrid physical-statistical models, respectively. The comparisons are made in the context of three feature extraction techniques; the Tasseled Cap, the Cate Color Cube. and Normalized Difference.
Arrows as anchors: An analysis of the material features of electric field vector arrows
NASA Astrophysics Data System (ADS)
Gire, Elizabeth; Price, Edward
2014-12-01
Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in students' use of representations for computation. We focus on the vector-arrows representation of electric fields and describe this representation as a conceptual blend of electric field concepts, physical space, and the material features of the representation (i.e., the physical writing and the surface upon which it is drawn). In this representation, spatial extent (e.g., distance on paper) is used to represent both distances in coordinate space and magnitudes of electric field vectors. In conceptual blending theory, this conflation is described as a clash between the input spaces in the blend. We explore the benefits and drawbacks of this clash, as well as other features of this representation. This analysis is illustrated with examples from clinical problem-solving interviews with upper-division physics majors. We see that while these intermediate physics students make a variety of errors using this representation, they also use the geometric features of the representation to add electric field contributions and to organize the problem situation productively.
Organic semiconductor crystals.
Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping
2018-01-22
Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.
Relationship between the neighbourhood built environment and early child development.
Christian, Hayley; Ball, Stephen J; Zubrick, Stephen R; Brinkman, Sally; Turrell, Gavin; Boruff, Bryan; Foster, Sarah
2017-11-01
The relationship between features of the neighbourhood built environment and early child development was investigated using area-level data from the Australian Early Development Census. Overall 9.0% of children were developmentally vulnerable on the Physical Health and Well-being domain, 8.1% on the Social Competence domain and 8.1% on the Emotional Maturity domain. After adjustment for socio-demographic factors, Local Communities with the highest quintile of home yard space had significantly lower odds of developmental vulnerability on the Emotional Maturity domain. Residing in a Local Community with fewer main roads was associated with a decrease in the proportion of children developmentally vulnerable on the Social Competence domain. Overall, sociodemographic factors were more important than aspects of the neighbourhood physical environment for explaining variation between Local Communities in the developmental vulnerability of children. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Advances in the research of pressure therapy for pediatric burn patients with facial scar].
Wei, Y T; Fu, J F; Li-Tsang, Z H P
2017-05-20
Facial scar and deformation caused by burn injury severely affect physical and psychological well-being of pediatric burn patients, which needs medical workers and pediatric burn patients' family members to pay much attention to and to perform early rehabilitation treatment. Pressure therapy is an important rehabilitative strategy for pediatric burn patients with facial scar, mainly including wearing headgears and transparent pressure facemasks, which have their own features. To achieve better treatment results, pressure therapy should be chosen according to specific condition of pediatric burn patients and combined with other assistant therapies. Successful rehabilitation for pediatric burn patients relies on cooperation of both family members of pediatric burn patients and society. Rehabilitation knowledge should be provided to parents of pediatric burn patients to acquire their full support and cooperation in order to achieve best therapeutic effects and ultimately to rebuild physical and psychological well-being of pediatric burn patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less
Nonequilibrium statistical mechanics Brussels-Austin style
NASA Astrophysics Data System (ADS)
Bishop, Robert C.
The fundamental problem on which Ilya Prigogine and the Brussels-Austin Group have focused can be stated briefly as follows. Our observations indicate that there is an arrow of time in our experience of the world (e.g., decay of unstable radioactive atoms like uranium, or the mixing of cream in coffee). Most of the fundamental equations of physics are time reversible, however, presenting an apparent conflict between our theoretical descriptions and experimental observations. Many have thought that the observed arrow of time was either an artifact of our observations or due to very special initial conditions. An alternative approach, followed by the Brussels-Austin Group, is to consider the observed direction of time to be a basic physical phenomenon due to the dynamics of physical systems. This essay focuses mainly on recent developments in the Brussels-Austin Group after the mid-1980s. The fundamental concerns are the same as in their earlier approaches (subdynamics, similarity transformations), but the contemporary approach utilizes rigged Hilbert space (whereas the older approaches used Hilbert space). While the emphasis on nonequilibrium statistical mechanics remains the same, their more recent approach addresses the physical features of large Poincaré systems, nonlinear dynamics and the mathematical tools necessary to analyze them.
Plant antiherbivore defenses in Fabaceae species of the Chaco.
Lima, T E; Sartori, A L B; Rodrigues, M L M
2017-01-01
The establishment and maintenance of plant species in the Chaco, one of the widest continuous areas of forests in the South American with sharp climatic variations, are possibly related to biological features favoring plants with particular defenses. This study assesses the physical and chemical defenses mechanisms against herbivores of vegetative and reproductive organs. Its analyses of 12 species of Fabaceae (Leguminosae) collected in remnants of Brazilian Chaco shows that 75% present structural defense characters and 50% have chemical defense - defense proteins in their seeds, like protease inhibitors and lectins. Physical defenses occur mainly on branches (78% of the species), leaves (67%), and reproductive organs (56%). The most common physical characters are trichomes and thorns, whose color represents a cryptic character since it does not contrast with the other plant structures. Defense proteins occur in different concentrations and molecular weight classes in the seeds of most species. Protease inhibitors are reported for the first time in seeds of: Albizia niopoides, Anadenanthera colubrina, Mimosa glutinosa, Prosopis rubriflora, and Poincianella pluviosa. The occurrence of physical and chemical defenses in members of Fabaceae indicate no associations between defense characters in these plant species of the Chaco.
Effects of band selection on endmember extraction for forestry applications
NASA Astrophysics Data System (ADS)
Karathanassi, Vassilia; Andreou, Charoula; Andronis, Vassilis; Kolokoussis, Polychronis
2014-10-01
In spectral unmixing theory, data reduction techniques play an important role as hyperspectral imagery contains an immense amount of data, posing many challenging problems such as data storage, computational efficiency, and the so called "curse of dimensionality". Feature extraction and feature selection are the two main approaches for dimensionality reduction. Feature extraction techniques are used for reducing the dimensionality of the hyperspectral data by applying transforms on hyperspectral data. Feature selection techniques retain the physical meaning of the data by selecting a set of bands from the input hyperspectral dataset, which mainly contain the information needed for spectral unmixing. Although feature selection techniques are well-known for their dimensionality reduction potentials they are rarely used in the unmixing process. The majority of the existing state-of-the-art dimensionality reduction methods set criteria to the spectral information, which is derived by the whole wavelength, in order to define the optimum spectral subspace. These criteria are not associated with any particular application but with the data statistics, such as correlation and entropy values. However, each application is associated with specific land c over materials, whose spectral characteristics present variations in specific wavelengths. In forestry for example, many applications focus on tree leaves, in which specific pigments such as chlorophyll, xanthophyll, etc. determine the wavelengths where tree species, diseases, etc., can be detected. For such applications, when the unmixing process is applied, the tree species, diseases, etc., are considered as the endmembers of interest. This paper focuses on investigating the effects of band selection on the endmember extraction by exploiting the information of the vegetation absorbance spectral zones. More precisely, it is explored whether endmember extraction can be optimized when specific sets of initial bands related to leaf spectral characteristics are selected. Experiments comprise application of well-known signal subspace estimation and endmember extraction methods on a hyperspectral imagery that presents a forest area. Evaluation of the extracted endmembers showed that more forest species can be extracted as endmembers using selected bands.
2D and 3D virtual interactive laboratories of physics on Unity platform
NASA Astrophysics Data System (ADS)
González, J. D.; Escobar, J. H.; Sánchez, H.; De la Hoz, J.; Beltrán, J. R.
2017-12-01
Using the cross-platform game engine Unity, we develop virtual laboratories for PC, consoles, mobile devices and website as an innovative tool to study physics. There is extensive uptake of ICT in the teaching of science and its impact on the learning, and considering the limited availability of laboratories for physics teaching and the difficulties this causes in the learning of school students, we design the virtual laboratories to enhance studentâĂŹs knowledge of concepts in physics. To achieve this goal, we use Unity due to provide support bump mapping, reflection mapping, parallax mapping, dynamics shadows using shadows maps, full-screen post-processing effects and render-to-texture. Unity can use the best variant for the current video hardware and, if none are compatible, to use an alternative shader that may sacrifice features for performance. The control over delivery to mobile devices, web browsers, consoles and desktops is the main reason Unity is the best option among the same kind cross-platform. Supported platforms include Android, Apple TV, Linux, iOS, Nintendo 3DS line, macOS, PlayStation 4, Windows Phone 8, Wii but also an asset server and Nvidia’s PhysX physics engine which is the most relevant tool on Unity for our PhysLab.
Magnetic Feature Tracking in the SDO Era: Past Sacrifices, Recent Advances, and Future Possibilities
NASA Astrophysics Data System (ADS)
Lamb, D. A.; DeForest, C. E.; Van Kooten, S.
2014-12-01
When implementing computer vision codes, a common reaction to the high angular resolution and the high cadence of SDO's image products has been to reduce the resolution and cadence of the data so that it "looks like" SOHO data. This can be partially justified on physical grounds: if the phenomenon that a computer vision code is trying to detect was characterized in low-resolution, low cadence data, then the higher quality data may not be needed. But sacrificing at least two, and sometimes all four main advantages of SDO's imaging data (the other two being a higher duty cycle and additional data products) threatens to also discard the perhaps more subtle discoveries waiting to be made: a classic baby-with-the-bath-water situation. In this presentation, we discuss some of the sacrifices made in implementing SWAMIS-EF, an automatic emerging magnetic flux region detection code for SDO/HMI, and how those sacrifices simultaneously simplified and complicated development of the code. SWAMIS-EF is a feature-finding code, and we will describe some situations and analyses in which a feature-finding code excels, and some in which a different type of algorithm may produce more favorable results. In particular, because the solar magnetic field is irreducibly complex at the currently observed spatial scales, searching for phenomena such as flux emergence using even semi-strict physical criteria often leads to large numbers of false or missed detections. This undesirable behavior can be mitigated by relaxing the imposed physical criteria, but here too there are tradeoffs: decreased numbers of missed detections may increase the number of false detections if the selection criteria are not both sensitive and specific to the searched-for phenomenon. Finally, we describe some recent steps we have taken to overcome these obstacles, by fully embracing the high resolution, high cadence SDO data, optimizing and partially parallelizing our existing code as a first step to allow fast magnetic feature tracking of full resolution HMI magnetograms. Even with the above caveats, if used correctly such a tool can provide a wealth of information on the positions, motions, and patterns of features, enabling large, cross-scale analyses that can answer important questions related to the solar dynamo and to coronal heating.
NASA Astrophysics Data System (ADS)
Reaver, N.; Kaplan, D. A.; Jawitz, J. W.
2017-12-01
The Budyko hypothesis states that a catchment's long-term water and energy balances are dependent on two relatively easy to measure quantities: rainfall depth and potential evaporation. This hypothesis is expressed as a simple function, the Budyko equation, which allows for the prediction of a catchment's actual evapotranspiration and discharge from measured rainfall depth and potential evaporation, data which are widely available. However, the two main analytically derived forms of the Budyko equation contain a single unknown watershed parameter, whose value varies across catchments; variation in this parameter has been used to explain the hydrological behavior of different catchments. The watershed parameter is generally thought of as a lumped quantity that represents the influence of all catchment biophysical features (e.g. soil type and depth, vegetation type, timing of rainfall, etc). Previous work has shown that the parameter is statistically correlated with catchment properties, but an explicit expression has been elusive. While the watershed parameter can be determined empirically by fitting the Budyko equation to measured data in gauged catchments where actual evapotranspiration can be estimated, this limits the utility of the framework for predicting impacts to catchment hydrology due to changing climate and land use. In this study, we developed an analytical solution for the lumped catchment parameter for both forms of the Budyko equation. We combined these solutions with a statistical soil moisture model to obtain analytical solutions for the Budyko equation parameter as a function of measurable catchment physical features, including rooting depth, soil porosity, and soil wilting point. We tested the predictive power of these solutions using the U.S. catchments in the MOPEX database. We also compared the Budyko equation parameter estimates generated from our analytical solutions (i.e. predicted parameters) with those obtained through the calibration of the Budyko equation to discharge data (i.e. empirical parameters), and found good agreement. These results suggest that it is possible to predict the Budyko equation watershed parameter directly from physical features, even for ungauged catchments.
The role of park conditions and features on park visitation and physical activity.
Rung, Ariane L; Mowen, Andrew J; Broyles, Stephanie T; Gustat, Jeanette
2011-09-01
Neighborhood parks play an important role in promoting physical activity. We examined the effect of activity area, condition, and presence of supporting features on number of park users and park-based physical activity levels. 37 parks and 154 activity areas within parks were assessed during summer 2008 for their features and park-based physical activity. Outcomes included any park use, number of park users, mean and total energy expenditure. Independent variables included type and condition of activity area, supporting features, size of activity area, gender, and day of week. Multilevel models controlled for clustering of observations at activity area and park levels. Type of activity area was associated with number of park users, mean and total energy expenditure, with basketball courts having the highest number of users and total energy expenditure, and playgrounds having the highest mean energy expenditure. Condition of activity areas was positively associated with number of basketball court users and inversely associated with number of green space users and total green space energy expenditure. Various supporting features were both positively and negatively associated with each outcome. This study provides evidence regarding characteristics of parks that can contribute to achieving physical activity goals within recreational spaces.
Evaluation of the automatic optical authentication technologies for control systems of objects
NASA Astrophysics Data System (ADS)
Averkin, Vladimir V.; Volegov, Peter L.; Podgornov, Vladimir A.
2000-03-01
The report considers the evaluation of the automatic optical authentication technologies for the automated integrated system of physical protection, control and accounting of nuclear materials at RFNC-VNIITF, and for providing of the nuclear materials nonproliferation regime. The report presents the nuclear object authentication objectives and strategies, the methodology of the automatic optical authentication and results of the development of pattern recognition techniques carried out under the ISTC project #772 with the purpose of identification of unique features of surface structure of a controlled object and effects of its random treatment. The current decision of following functional control tasks is described in the report: confirmation of the item authenticity (proof of the absence of its substitution by an item of similar shape), control over unforeseen change of item state, control over unauthorized access to the item. The most important distinctive feature of all techniques is not comprehensive description of some properties of controlled item, but unique identification of item using minimum necessary set of parameters, properly comprising identification attribute of the item. The main emphasis in the technical approach is made on the development of rather simple technological methods for the first time intended for use in the systems of physical protection, control and accounting of nuclear materials. The developed authentication devices and system are described.
Using synthetic biology to make cells tomorrow's test tubes.
Garcia, Hernan G; Brewster, Robert C; Phillips, Rob
2016-04-18
The main tenet of physical biology is that biological phenomena can be subject to the same quantitative and predictive understanding that physics has afforded in the context of inanimate matter. However, the inherent complexity of many of these biological processes often leads to the derivation of complex theoretical descriptions containing a plethora of unknown parameters. Such complex descriptions pose a conceptual challenge to the establishment of a solid basis for predictive biology. In this article, we present various exciting examples of how synthetic biology can be used to simplify biological systems and distill these phenomena down to their essential features as a means to enable their theoretical description. Here, synthetic biology goes beyond previous efforts to engineer nature and becomes a tool to bend nature to understand it. We discuss various recent and classic experiments featuring applications of this synthetic approach to the elucidation of problems ranging from bacteriophage infection, to transcriptional regulation in bacteria and in developing embryos, to evolution. In all of these examples, synthetic biology provides the opportunity to turn cells into the equivalent of a test tube, where biological phenomena can be reconstituted and our theoretical understanding put to test with the same ease that these same phenomena can be studied in the in vitro setting.
Principles of phosphorescent organic light emitting devices.
Minaev, Boris; Baryshnikov, Gleb; Agren, Hans
2014-02-07
Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.
NASA Astrophysics Data System (ADS)
Häussler, Peter; Hoffmann, Lore
2000-11-01
This article presents three interlinked studies aimed at: (1) developing a curricular frame for physics education; (2) assessing the students' interest in the contents, contexts, and activities that are suggested by that curricular frame; and (3) developing a curriculum that is in line with that frame and measuring its cognitive and emotional effects on students. The curricular frame was developed by adopting the Delphi technique and drawing on the expertise of 73 persons selected according to specified selection criteria. Interest data of some 8000 students and information of the presently taught physics curriculum were sampled longitudinally as well as cross-sectionally in various German Länder (states) by questionnaire. The third study comprised 23 experimental and 7 control classes. As a result of the comparison between the features of the curricular frame, the interest structure of students, and the current physics curriculum, there is a remarkable congruency between students' interest in physics and the kind of physics education identified in the Delphi study as being relevant. However, there is a considerable discrepancy between students' interest and the kind of physics instruction practiced in the physics classroom. Regression analysis revealed that students' interest in physics as a school subject is hardly related to their interest in physics, but mainly to the students' self-esteem of being good achievers. The data strongly suggest physics be taught so that students have a chance to develop a positive physics-related self-concept and to link physics with situations they encounter outside the classroom. A curriculum based on these principles proved superior compared to a traditional curriculum.
Birgfeld, Craig B; Heike, Carrie L; Saltzman, Babette S; Leroux, Brian G; Evans, Kelly N; Luquetti, Daniela V
2016-03-31
Craniofacial microsomia is a common congenital condition for which children receive longitudinal, multidisciplinary team care. However, little is known about the etiology of craniofacial microsomia and few outcome studies have been published. In order to facilitate large, multicenter studies in craniofacial microsomia, we assessed the reliability of phenotypic classification based on photographs by comparison with direct physical examination. Thirty-nine children with craniofacial microsomia underwent a physical examination and photographs according to a standardized protocol. Three clinicians completed ratings during the physical examination and, at least a month later, using respective photographs for each participant. We used descriptive statistics for participant characteristics and intraclass correlation coefficients (ICCs) to assess reliability. The agreement between ratings on photographs and physical exam was greater than 80 % for all 15 categories included in the analysis. The ICC estimates were higher than 0.6 for most features. Features with the highest ICC included: presence of epibulbar dermoids, ear abnormalities, and colobomas (ICC 0.85, 0.81, and 0.80, respectively). Orbital size, presence of pits, tongue abnormalities, and strabismus had the lowest ICC, values (0.17 or less). There was not a strong tendency for either type of rating, physical exam or photograph, to be more likely to designate a feature as abnormal. The agreement between photographs and physical exam regarding the presence of a prior surgery was greater than 90 % for most features. Our results suggest that categorization of facial phenotype in children with CFM based on photographs is reliable relative to physical examination for most facial features.
Physical Regulation of the Self-Assembly of Tobacco Mosaic Virus Coat Protein
Kegel, Willem K.; van der Schoot, Paul
2006-01-01
We present a statistical mechanical model based on the principle of mass action that explains the main features of the in vitro aggregation behavior of the coat protein of tobacco mosaic virus (TMV). By comparing our model to experimentally obtained stability diagrams, titration experiments, and calorimetric data, we pin down three competing factors that regulate the transitions between the different kinds of aggregated state of the coat protein. These are hydrophobic interactions, electrostatic interactions, and the formation of so-called “Caspar” carboxylate pairs. We suggest that these factors could be universal and relevant to a large class of virus coat proteins. PMID:16731551
Numerical and Physical Modelling of Bubbly Flow Phenomena - Final Report to the Department of Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrea Prosperetti
This report describes the main features of the results obtained in the course of this project. A new approach to the systematic development of closure relations for the averaged equations of disperse multiphase flow is outlined. The focus of the project is on spatially non-uniform systems and several aspects in which such systems differ from uniform ones are described. Then, the procedure used in deriving the closure relations is given and some explicit results shown. The report also contains a list of publications supported by this grant and a list of the persons involved in the work.
MODEST: A Tool for Geodesy and Astronomy
NASA Technical Reports Server (NTRS)
Sovers, Ojars J.; Jacobs, Christopher S.; Lanyi, Gabor E.
2004-01-01
Features of the JPL VLBI modeling and estimation software "MODEST" are reviewed. Its main advantages include thoroughly documented model physics, portability, and detailed error modeling. Two unique models are included: modeling of source structure and modeling of both spatial and temporal correlations in tropospheric delay noise. History of the code parallels the development of the astrometric and geodetic VLBI technique and the software retains many of the models implemented during its advancement. The code has been traceably maintained since the early 1980s, and will continue to be updated with recent IERS standards. Scripts are being developed to facilitate user-friendly data processing in the era of e-VLBI.
Spectroscopic signatures of localization with interacting photons in superconducting qubits
NASA Astrophysics Data System (ADS)
Roushan, P.; Neill, C.; Tangpanitanon, J.; Bastidas, V. M.; Megrant, A.; Barends, R.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Foxen, B.; Giustina, M.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Neven, H.; Angelakis, D. G.; Martinis, J.
2017-12-01
Quantized eigenenergies and their associated wave functions provide extensive information for predicting the physics of quantum many-body systems. Using a chain of nine superconducting qubits, we implement a technique for resolving the energy levels of interacting photons. We benchmark this method by capturing the main features of the intricate energy spectrum predicted for two-dimensional electrons in a magnetic field—the Hofstadter butterfly. We introduce disorder to study the statistics of the energy levels of the system as it undergoes the transition from a thermalized to a localized phase. Our work introduces a many-body spectroscopy technique to study quantum phases of matter.
Autoclaved Sand-Lime Products with a Polypropylene Mesh
NASA Astrophysics Data System (ADS)
Kostrzewa, Paulina; Stępień, Anna
2017-10-01
The paper presents the results of the research on modifications of silicate bricks with a polypropylene mesh and their influence on physical, mechanical and microstructural properties of such bricks. The main goal of the paper was to determine effects of the polypropylene mesh on sand-lime product parameters. The analysis has focused on compressive strength, water absorption, bulk density and structural features of the material. The obtained product is characterized by improved basic performance characteristics compared to traditional silicate products. Using the polypropylene mesh increased compressive strength by 25% while decreasing the product density. The modified products retain their form and do not disintegrate after losing their bearing capacity.
Carbon nanotubes: physics and applications
NASA Astrophysics Data System (ADS)
Bellucci, S.
2005-01-01
We overview definitions, properties and applications of Carbon nanotubes (CNTs). We describe the CNTs lifecycle: starting with phases and requirements, going through the different synthesis methods, describing then the various purification techniques. The fundamentals of functionalization and the use of defects in CNTs are reviewed, in connection also to ion irradiation techniques. Metal oxides and other semiconducting 1D nanostructures are then considered, before entering the description of the main features of the present status of INFN-LNF research in nanoscience, focusing on CNTs, as well as on aluminium nitride NTs (AlN NTs). We conclude our review by illustrating device application criteria for many applications in different areas of the field of nanotechnology.
NASA Astrophysics Data System (ADS)
Govindarajan, A.; Vijayalakshmi, R.; Ramamurthy, V.
2018-04-01
The main aim of this article is to study the combined effects of heat and mass transfer to radiative Magneto Hydro Dynamics (MHD) oscillatory optically thin dusty fluid in a saturated porous medium channel. Based on certain assumptions, the momentum, energy, concentration equations are obtained.The governing equations are non-dimensionalised, simplified and solved analytically. The closed analytical form solutions for velocity, temperature, concentration profiles are obtained. Numerical computations are presented graphically to show the salient features of various physical parameters. The shear stress, the rate of heat transfer and the rate of mass transfer are also presented graphically.
Channel plasmon-polariton guiding by subwavelength metal grooves.
Bozhevolnyi, Sergey I; Volkov, Valentyn S; Devaux, Eloïse; Ebbesen, Thomas W
2005-07-22
We report on realization of channel plasmon-polariton (CPP) propagation along a subwavelength metal groove. Using imaging with a near-field microscope and end-fire coupling with a tapered fiber connected to a tunable laser at telecommunication wavelengths (1425-1620 nm), we demonstrate low-loss (propagation length approximately 100 microm) and well-confined (mode width approximately 1.1 microm) CPP guiding along a triangular 0.6 microm-wide and 1 microm-deep groove in gold. We develop a simple model based on the effective-index method that accounts for the main features of CPP guiding and provides a clear physical picture of this phenomenon.
On the efficient and reliable numerical solution of rate-and-state friction problems
NASA Astrophysics Data System (ADS)
Pipping, Elias; Kornhuber, Ralf; Rosenau, Matthias; Oncken, Onno
2016-03-01
We present a mathematically consistent numerical algorithm for the simulation of earthquake rupture with rate-and-state friction. Its main features are adaptive time stepping, a novel algebraic solution algorithm involving nonlinear multigrid and a fixed point iteration for the rate-and-state decoupling. The algorithm is applied to a laboratory scale subduction zone which allows us to compare our simulations with experimental results. Using physical parameters from the experiment, we find a good fit of recurrence time of slip events as well as their rupture width and peak slip. Computations in 3-D confirm efficiency and robustness of our algorithm.
NASA Astrophysics Data System (ADS)
Sona, Alberto
1992-03-01
Lasers are being increasingly used in bioptics and in life sciences in general, especially for medical applications for therapy and diagnostics. Lasers are also broadly used in environment sciences to monitor atmospheric parameters and concentrations of molecular species of natural origin or coming from human activities such as the various kind of pollutants. The peculiar features of lasers exploited in these areas are mainly the capability of developing an action or performing a measurement without physical contact with the target and, if required, from a remote position with the assistance of suitable beam delivery systems such as telescopes, microscopes, or optical fibers. These features are directly related to the space and time coherence of the laser light and to the energy storage capability of the laser material which allow an extremely effective concentration of the beam energy in space, direction frequency, or time. A short description of the principle of operation and relevant properties of lasers are given and the most significant properties of the laser emission are briefly reviewed. Lasers for medical applications (mainly for therapy) will be mentioned, pointing out the specific property exploited for the various applications. Finally, examples of laser applications to the environmental sciences will be reported. A summary of the properties exploited in the various bio-optical applications is shown.
External versus internal triggers of bar formation in cosmological zoom-in simulations
NASA Astrophysics Data System (ADS)
Zana, Tommaso; Dotti, Massimo; Capelo, Pedro R.; Bonoli, Silvia; Haardt, Francesco; Mayer, Lucio; Spinoso, Daniele
2018-01-01
The emergence of a large-scale stellar bar is one of the most striking features in disc galaxies. By means of state-of-the-art cosmological zoom-in simulations, we study the formation and evolution of bars in Milky Way-like galaxies in a fully cosmological context, including the physics of gas dissipation, star formation and supernova feedback. Our goal is to characterize the actual trigger of the non-axisymmetric perturbation that leads to the strong bar observable in the simulations at z = 0, discriminating between an internal/secular and an external/tidal origin. To this aim, we run a suite of cosmological zoom-in simulations altering the original history of galaxy-satellite interactions at a time when the main galaxy, though already bar-unstable, does not feature any non-axisymmetric structure yet. We find that the main effect of a late minor merger and of a close fly-by is to delay the time of bar formation and those two dynamical events are not directly responsible for the development of the bar and do not alter significantly its global properties (e.g. its final extension). We conclude that, once the disc has grown to a mass large enough to sustain global non-axisymmetric modes, then bar formation is inevitable.
Neural evidence reveals the rapid effects of reward history on selective attention.
MacLean, Mary H; Giesbrecht, Barry
2015-05-05
Selective attention is often framed as being primarily driven by two factors: task-relevance and physical salience. However, factors like selection and reward history, which are neither currently task-relevant nor physically salient, can reliably and persistently influence visual selective attention. The current study investigated the nature of the persistent effects of irrelevant, physically non-salient, reward-associated features. These features affected one of the earliest reliable neural indicators of visual selective attention in humans, the P1 event-related potential, measured one week after the reward associations were learned. However, the effects of reward history were moderated by current task demands. The modulation of visually evoked activity supports the hypothesis that reward history influences the innate salience of reward associated features, such that even when no longer relevant, nor physically salient, these features have a rapid, persistent, and robust effect on early visual selective attention. Copyright © 2015 Elsevier B.V. All rights reserved.
Fast-moving features in the debris disk around AU Microscopii.
Boccaletti, Anthony; Thalmann, Christian; Lagrange, Anne-Marie; Janson, Markus; Augereau, Jean-Charles; Schneider, Glenn; Milli, Julien; Grady, Carol; Debes, John; Langlois, Maud; Mouillet, David; Henning, Thomas; Dominik, Carsten; Maire, Anne-Lise; Beuzit, Jean-Luc; Carson, Joseph; Dohlen, Kjetil; Engler, Natalia; Feldt, Markus; Fusco, Thierry; Ginski, Christian; Girard, Julien H; Hines, Dean; Kasper, Markus; Mawet, Dimitri; Ménard, François; Meyer, Michael R; Moutou, Claire; Olofsson, Johan; Rodigas, Timothy; Sauvage, Jean-Francois; Schlieder, Joshua; Schmid, Hans Martin; Turatto, Massimo; Udry, Stephane; Vakili, Farrokh; Vigan, Arthur; Wahhaj, Zahed; Wisniewski, John
2015-10-08
In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
NASA Astrophysics Data System (ADS)
Finkelstein, A. V.; Galzitskaya, O. V.
2004-04-01
Protein physics is grounded on three fundamental experimental facts: protein, this long heteropolymer, has a well defined compact three-dimensional structure; this structure can spontaneously arise from the unfolded protein chain in appropriate environment; and this structure is separated from the unfolded state of the chain by the “all-or-none” phase transition, which ensures robustness of protein structure and therefore of its action. The aim of this review is to consider modern understanding of physical principles of self-organization of protein structures and to overview such important features of this process, as finding out the unique protein structure among zillions alternatives, nucleation of the folding process and metastable folding intermediates. Towards this end we will consider the main experimental facts and simple, mostly phenomenological theoretical models. We will concentrate on relatively small (single-domain) water-soluble globular proteins (whose structure and especially folding are much better studied and understood than those of large or membrane and fibrous proteins) and consider kinetic and structural aspects of transition of initially unfolded protein chains into their final solid (“native”) 3D structures.
Kalay, Ziya
2011-08-01
How small can a macroscopic object be made without losing its intended function? Obviously, the smallest possible size is determined by the size of an atom, but it is not so obvious how many atoms are required to assemble an object so small, and yet that performs the same function as its macroscopic counterpart. In this review, we are concerned with objects of intermediate nature, lying between the microscopic and the macroscopic world. In physics and chemistry literature, this regime in-between is often called mesoscopic, and is known to bear interesting and counterintuitive features. After a brief introduction to the concept of mesoscopic systems from the perspective of physics, we discuss the functional aspects of mesoscopic architectures in cell biology, and supramolecular chemistry through many examples from the literature. We argue that the biochemistry of the cell is largely regulated by mesoscopic functional architectures; however, the significance of mesoscopic phenomena seems to be quite underappreciated in biological sciences. With this motivation, one of our main purposes here is to emphasize the critical role that mesoscopic structures play in cell biology and biochemistry.
Learning from physics-based earthquake simulators: a minimal approach
NASA Astrophysics Data System (ADS)
Artale Harris, Pietro; Marzocchi, Warner; Melini, Daniele
2017-04-01
Physics-based earthquake simulators are aimed to generate synthetic seismic catalogs of arbitrary length, accounting for fault interaction, elastic rebound, realistic fault networks, and some simple earthquake nucleation process like rate and state friction. Through comparison of synthetic and real catalogs seismologists can get insights on the earthquake occurrence process. Moreover earthquake simulators can be used to to infer some aspects of the statistical behavior of earthquakes within the simulated region, by analyzing timescales not accessible through observations. The develoment of earthquake simulators is commonly led by the approach "the more physics, the better", pushing seismologists to go towards simulators more earth-like. However, despite the immediate attractiveness, we argue that this kind of approach makes more and more difficult to understand which physical parameters are really relevant to describe the features of the seismic catalog at which we are interested. For this reason, here we take an opposite minimal approach and analyze the behavior of a purposely simple earthquake simulator applied to a set of California faults. The idea is that a simple model may be more informative than a complex one for some specific scientific objectives, because it is more understandable. The model has three main components: the first one is a realistic tectonic setting, i.e., a fault dataset of California; the other two components are quantitative laws for earthquake generation on each single fault, and the Coulomb Failure Function for modeling fault interaction. The final goal of this work is twofold. On one hand, we aim to identify the minimum set of physical ingredients that can satisfactorily reproduce the features of the real seismic catalog, such as short-term seismic cluster, and to investigate on the hypothetical long-term behavior, and faults synchronization. On the other hand, we want to investigate the limits of predictability of the model itself.
Acoustic Features Influence Musical Choices Across Multiple Genres.
Barone, Michael D; Bansal, Jotthi; Woolhouse, Matthew H
2017-01-01
Based on a large behavioral dataset of music downloads, two analyses investigate whether the acoustic features of listeners' preferred musical genres influence their choice of tracks within non-preferred, secondary musical styles. Analysis 1 identifies feature distributions for pairs of genre-defined subgroups that are distinct. Using correlation analysis, these distributions are used to test the degree of similarity between subgroups' main genres and the other music within their download collections. Analysis 2 explores the issue of main-to-secondary genre influence through the production of 10 feature-influence matrices, one per acoustic feature, in which cell values indicate the percentage change in features for genres and subgroups compared to overall population averages. In total, 10 acoustic features and 10 genre-defined subgroups are explored within the two analyses. Results strongly indicate that the acoustic features of people's main genres influence the tracks they download within non-preferred, secondary musical styles. The nature of this influence and its possible actuating mechanisms are discussed with respect to research on musical preference, personality, and statistical learning.
The detectability of radio emission from exoplanets
NASA Astrophysics Data System (ADS)
Lynch, C. R.; Murphy, Tara; Lenc, E.; Kaplan, D. L.
2018-05-01
Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with 3σ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a 3σ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.
Neuronal avalanches and learning
NASA Astrophysics Data System (ADS)
de Arcangelis, Lucilla
2011-05-01
Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.
Present status, future prospects of domestic acoustical instruments
NASA Astrophysics Data System (ADS)
Guibin, L.
1984-01-01
The product lines, specifications, and special features of China's main acoustical instrument products are described. The methods of operation nd the main problems associated with these products are discussed. Examples of the application of acoustical instruments are given. The main features of a digital signal analyzer are enumerated.
Land mine detection using multispectral image fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.
1995-03-29
Our system fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a varietymore » of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts. We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the spectral bands add value to the detection system. The most important features from the various sensors are fused using a supervised learning pattern classifier (the probabilistic neural network). We present results of experiments to detect land mines from real data collected from an airborne platform, and evaluate the usefulness of fusing feature information from multiple spectral bands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasuga, Toshihiro; Shirahata, Mai; Usui, Fumihiko
Most outer main-belt asteroids have low albedos because of their carbonaceouslike bodies. However, infrared satellite surveys have revealed that some asteroids have high albedos, which may suggest the presence of unusual surface minerals for those primitive objects. We present new near-infrared (1.1–2.5 μm) spectra of four outer main-belt asteroids with albedos ≥ 0.1. The C-complex asteroids (555) Norma and (2542) Calpurnia are featureless and have (50%–60%) amorphous Mg pyroxenes that might explain the high albedos. Asteroids (701) Oriola (which is a C-complex asteroid) and (2670) Chuvashia (a D/T-type or M-type asteroid) show possible broad absorption bands (1.5–2.1 μm). The featuremore » can be reproduced by either Mg-rich amorphous pyroxene (with 50%–60% and 80%–95% Mg, respectively) or orthopyroxene (crystalline silicate), which might be responsible for the high albedos. No absorption features of water ice (near 1.5 and 2.0 μm) are detected in the objects. We discuss the origin of high albedo components in the outer main-belt asteroids and their physical relations to comets.« less
Underwood, Marion K; Beron, Kurt J; Rosen, Lisa H
2011-05-01
This investigation examined the relation between developmental trajectories jointly estimated for social and physical aggression and adjustment problems at age 14. Teachers provided ratings of children's social and physical aggression in Grades 3, 4, 5, 6, and 7 for a sample of 255 children (131 girls, 21% African American, 52% European American, 21% Mexican American). Participants, parents, and teachers completed measures of the adolescent's adjustment to assess internalizing symptoms, rule-breaking behaviors, and borderline and narcissistic personality features. Results showed that membership in a high and rising trajectory group predicted rule-breaking behaviors and borderline personality features. Membership in a high desister group predicted internalizing symptoms, rule-breaking behaviors, and borderline and narcissistic personality features. The findings suggest that although low levels of social and physical aggression may not bode poorly for adjustment, individuals engaging in high levels of social and physical aggression in middle childhood may be at greatest risk for adolescent psychopathology, whether they increase or desist in their aggression through early adolescence.
UNDERWOOD, MARION K.; BERON, KURT J.; ROSEN, LISA H.
2011-01-01
This investigation examined the relation between developmental trajectories jointly estimated for social and physical aggression and adjustment problems at age 14. Teachers provided ratings of children's social and physical aggression in Grades 3, 4, 5, 6, and 7 for a sample of 255 children (131 girls, 21% African American, 52% European American, 21% Mexican American). Participants, parents, and teachers completed measures of the adolescent's adjustment to assess internalizing symptoms, rule-breaking behaviors, and borderline and narcissistic personality features. Results showed that membership in a high and rising trajectory group predicted rule-breaking behaviors and borderline personality features. Membership in a high desister group predicted internalizing symptoms, rule-breaking behaviors, and borderline and narcissistic personality features. The findings suggest that although low levels of social and physical aggression may not bode poorly for adjustment, individuals engaging in high levels of social and physical aggression in middle childhood may be at greatest risk for adolescent psychopathology, whether they increase or desist in their aggression through early adolescence. PMID:21532919
A DETAILED FAR-ULTRAVIOLET SPECTRAL ATLAS OF MAIN-SEQUENCE B STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Myron A.
2010-02-01
We have constructed a detailed spectral atlas covering the wavelength region 930-1225 A for 10 sharp-lined B0-B9 stars near the main sequence. Most of the spectra we assembled are from the archives of the Far Ultraviolet Spectroscopic Explorer satellite, but for nine stars, wavelength coverage above 1188 A was taken from high-resolution International Ultraviolet Explorer or echelle Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra. To represent the tenth star at type B0.2 V, we used the Copernicus atlas of {tau} Sco. We made extensive line identifications in the region 949-1225 A of all atomic features having published oscillator strengths atmore » types B0, B2, and B8. These are provided as a supplementary data product-hence the term detailed atlas. Our list of found features totals 2288, 1612, and 2469 lines, respectively. We were able to identify 92%, 98%, and 98% of these features with known atomic transitions with varying degrees of certainty in these spectra. The remaining lines do not have published oscillator strengths. Photospheric lines account for 94%, 87%, and 91%, respectively, of all our identifications, with the remainder being due to interstellar (usually molecular H{sub 2}) lines. We also discuss the numbers of lines with respect to the distributions of various ions for these three most studied spectral subtypes. A table is also given of 162 least blended lines that can be used as possible diagnostics of physical conditions in B star atmospheres.« less
NASA Astrophysics Data System (ADS)
Bordoni, Massimiliano; Meisina, Claudia; Valentino, Roberto; Bittelli, Marco; Battista Bischetti, Gian; Vercesi, Alberto; Chersich, Silvia; Giuseppina Persichillo, Maria
2016-04-01
Rainfall-induced shallow landslides are widespread slope instabilities phenomena in several hilly and mountainous contexts all over the world. Due to their high density of diffusion also in small areas, they can provoke important damages to terrains, infrastructures, buildings, and, sometimes, loss of human lives. Shallow landslides affect superficial soils of limited thickness (generally lower than 2 m), located above weathered or not bedrock levels. Their triggering mechanism is strictly linked to the hydrological response of the soils to rainfall events. Thus, it becomes fundamental a comprehensive analysis of the soil properties which can influence the susceptibility of a slope to shallow landslides. In this study, a multidisciplinary approach was followed for the characterization of the soils and the individuation of the triggering conditions in an area particularly prone to shallow failures, for slope stability assessment. This area corresponded to the hilly sector of North-Eastern Oltrepò Pavese (Lombardy Region, Northern Italy), where the density of shallow landslides is really high, reaching more than 36 landslides per km2. The soils of the study area were analyzed through a multidisciplinary characterization, which took into account for the main geotechnical, mechanical and mineralogical parameters and also for the main pedological features of the materials. This approach allowed for identifying the main features and the horizons which could influence the soil behavior in relation to the conditions that are preparatory to shallow landslides development. In a test-site slope, representative of the main geomorphological, geological and landslides distribution characteristics typical of the study area, a continuous in time monitoring of meteorological (rainfall amount, air temperature, air humidity, atmospheric pressure, net solar radiation, wind speed and direction) and hydrological (soil water content, pore water pressure) parameters was implemented. In this way, the triggering mechanism of shallow failures in the study area was identified and the effects of the different hydrological parameters on slope stability assessment through a simplified physically-based model (Lu and Godt's model) was quantified. In several slopes, representative of the main land uses (cultivated vineyards, abandoned vineyards, shrub lands, woodlands) of the study area, soil root reinforcement of the vegetation of the slopes was measured since root density and root tensile strength. This parameter was, then, integrated in the same simplified physically-based model (Lu and Godt's model), in order to improve the assessment of slope instabilities. Moreover, this analysis allowed for a better identification of the land use classes more susceptible to shallow landslides, furnishing an important tool for land planning.
Zaccone, Claudio; Cavoski, Ivana; Costi, Roberta; Sarais, Giorgia; Caboni, Pierluigi; Traversa, Andreina; Miano, Teodoro M
2014-10-15
The bracken fern Pteridium aquilinum (L.) Kuhn, one of the most common plant species on Earth, produces a wide range of secondary metabolites including the norsesquiterpene glucoside ptaquiloside (PTA). Several studies are present in literature about eco-toxicological aspects related to PTA, whereas results about the effect of growth conditions and soil properties on the production and mobility of PTA are sometimes conflicting and further investigations are needed. The aim of the present work is to investigate the occurrence and possible fate of PTA in soils showing different physical and chemical features, and collected in several areas of the South of Italy. The PTA content was determined in both soil and fern samples by GC-MS; both the extraction protocol and recovery were previously tested through incubation studies. Soils samples were also characterized from the physical and chemical points of view in order to correlate the possible influence of soil parameters on PTA production and occurrence. PTA concentration in P. aquilinum fern seemed to be significantly affected by the availability of nutrients (mainly P) and soil pH. At the same time, PTA concentration in soil samples was always undetectable, independent of the PTA concentration in the corresponding Pteridium samples and pedo-climatic conditions. This seems to suggest the degradation of the PTA by indigenous soil microbial community, whereas incubation studies underlined a certain affinity of PTA for both organic colloids and clay/silt particles. Copyright © 2014 Elsevier B.V. All rights reserved.
WE-E-218-01: Writing and Reviewing Papers in Medical Physics.
Hendee, W; Slattery, P; Rogers, D; Karellas, A
2012-06-01
There is an art to writing a scientific paper so that it communicates accurately, succinctly, and comprehensively. Developing this art comes with experience, and sharing that experience with younger physicists is an obligation of senior scientists, especially those with editorial responsibilities for the journal. In this workshop, the preparation of a scientific manuscript will be dissected so participants can appreciate how each part is developed and then assembled into a complete paper. Then the review process for the paper will be discussed, including how to examine a paper and write an insightful and constructive review. Finally, we will consider the challenge of accommodating the concerns and recommendations of a reviewer in preparing a revision of the paper. A second feature of the workshop will be a discussion of the process of electronic submission of a paper for consideration by Medical Physics. The web-based PeerX-Press engine for manuscript submission and management will be examined, with attention to special features such as epaps and line-referencing. Finally, new features of Medical Physics will be explained, such as Vision 20/20 manuscripts, Physics Letters and the standardized formatting of book reviews. 1. Improve the participants' abilities to write a scientific manuscript. 2. Understand the review process for Medical Physics manuscripts and how to participate in and benefit from it. 3. Appreciate the many features of the PeerX-Press electronic management process for Medical Physics manuscripts. 4. Develop a knowledge of new features of Medical Physics. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Kamh, G. M. E.
2007-08-01
Al-hambra is an immense and valuable archaeological site in Spain built on Sabika hill with red brick and natural sandy limestone. It exhibits weathering features indicating salt weathering process. The main aim of this study is to examine weathering processes and intensity acting on Al-hambra. Rock petrography and mineralogical composition have been examined using thin sections, scanning electron microscope, X-ray diffraction and X-ray fluorescence; limits of rock’s physical parameters using ultrasonic waves and mercury porosimeter; rock salt content through hydrochemical analysis. Salts attacking this structure are mainly from wet deposition of air pollutants on the long term chemical alteration of rock’s carbonate content to its equivalent salts. The salts’ concentration limit within the examined rock samples is considerably low but it is effective on the long run through hydration of sulphate salts and/or crystallization of chloride salts. Rock texture type and its silica as well as clay content reduces its resistance to internal stresses by salts as well as wetting and drying cycles at such humid area. The recession in limits of physical parameters examined for deep seated and weathered limestone samples quantitatively reflects weathering intensity on Al-hambra.
Material and shape perception based on two types of intensity gradient information
Nishida, Shin'ya
2018-01-01
Visual estimation of the material and shape of an object from a single image includes a hard ill-posed computational problem. However, in our daily life we feel we can estimate both reasonably well. The neural computation underlying this ability remains poorly understood. Here we propose that the human visual system uses different aspects of object images to separately estimate the contributions of the material and shape. Specifically, material perception relies mainly on the intensity gradient magnitude information, while shape perception relies mainly on the intensity gradient order information. A clue to this hypothesis was provided by the observation that luminance-histogram manipulation, which changes luminance gradient magnitudes but not the luminance-order map, effectively alters the material appearance but not the shape of an object. In agreement with this observation, we found that the simulated physical material changes do not significantly affect the intensity order information. A series of psychophysical experiments further indicate that human surface shape perception is robust against intensity manipulations provided they do not disturb the intensity order information. In addition, we show that the two types of gradient information can be utilized for the discrimination of albedo changes from highlights. These findings suggest that the visual system relies on these diagnostic image features to estimate physical properties in a distal world. PMID:29702644
An Intelligent Pictorial Information System
NASA Astrophysics Data System (ADS)
Lee, Edward T.; Chang, B.
1987-05-01
In examining the history of computer application, we discover that early computer systems were developed primarily for applications related to scientific computation, as in weather prediction, aerospace applications, and nuclear physics applications. At this stage, the computer system served as a big calculator to perform, in the main, manipulation of numbers. Then it was found that computer systems could also be used for business applications, information storage and retrieval, word processing, and report generation. The history of computer application is summarized in Table I. The complexity of pictures makes picture processing much more difficult than number and alphanumerical processing. Therefore, new techniques, new algorithms, and above all, new pictorial knowledge, [1] are needed to overcome the limitatins of existing computer systems. New frontiers in designing computer systems are the ways to handle the representation,[2,3] classification, manipulation, processing, storage, and retrieval of pictures. Especially, the ways to deal with similarity measures and the meaning of the word "approximate" and the phrase "approximate reasoning" are an important and an indispensable part of an intelligent pictorial information system. [4,5] The main objective of this paper is to investigate the mathematical foundation for the effective organization and efficient retrieval of pictures in similarity-directed pictorial databases, [6] based on similarity retrieval techniques [7] and fuzzy languages [8]. The main advantage of this approach is that similar pictures are stored logically close to each other by using quantitative similarity measures. Thus, for answering queries, the amount of picture data needed to be searched can be reduced and the retrieval time can be improved. In addition, in a pictorial database, very often it is desired to find pictures (or feature vectors, histograms, etc.) that are most similar to or most dissimilar [9] to a test picture (or feature vector). Using similarity measures, one can not only store similar pictures logically or physically close to each other in order to improve retrieval or updating efficiency, one can also use such similarity measures to answer fuzzy queries involving nonexact retrieval conditions. In this paper, similarity directed pictorial databases involving geometric figures, chromosome images, [10] leukocyte images, cardiomyopathy images, and satellite images [11] are presented as illustrative examples.
NASA Astrophysics Data System (ADS)
Peresan, Antonella; Gentili, Stefania
2017-04-01
Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic catalog into background seismicity and individual sequences of earthquake clusters, also in areas characterized by moderate seismic activity, where the standard declustering techniques may turn out rather gross approximations. With these results acquired, the main statistical features of seismic clusters are explored, including complex interdependence of related events, with the aim to characterize the space-time patterns of earthquakes occurrence in North-Eastern Italy and capture their basic differences with Central Italy sequences.
ERIC Educational Resources Information Center
Karadenizli, Zeynep Inci
2016-01-01
The aim of this study is to investigate the relationships between ball throwing velocity (BTV), and physical features and anaerobic power (AP) for talent identification in team handball players. Players (n: 54) at 21,91 ± 4,94 age, training experience 11,19 ± 4,46 years participated voluntarily to study. These players consist of 54 Turkish…
Memory Scanning, Introversion-Extraversion, and Levels of Processing.
ERIC Educational Resources Information Center
Eysenck, Michael W.; Eysenck, M. Christine
1979-01-01
Investigated was the hypothesis that high arousal increases processing of physical characteristics and reduces processing of semantic characteristics. While introverts and extroverts had equivalent scanning rates for physical features, introverts were significantly slower in searching for semantic features of category membership, indicating…
Quantum Interactive Dualism: An Alternative to Materialism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, Henry P
2005-06-01
Materialism rest implicitly upon the general conception of nature promoted by Galileo and Newton during the seventeenth century. It features the causal closure of the physical: The course of physically described events for all time is fixed by laws that refer exclusively to the physically describeable features of nature, and initial conditions on these feature. No reference to subjective thoughts or feeling of human beings enter. That simple conception of nature was found during the first quarter of the twentieth century to be apparently incompatible with the empirical facts. The founders of quantum theory created a new fundamental physical theory,more » quantum theory, which introduced crucially into the causal structure certain conscious choices made by human agents about how they will act. These conscious human choices are ''free'' in the sense that they are not fixed by the known laws. But they can influence the course of physically described events. Thus the principle of the causal closure of the physical fails. Applications in psycho-neuro-dynamics are described.« less
A thermodynamically general theory for convective vortices
NASA Astrophysics Data System (ADS)
Renno, Nilton O.
2008-08-01
Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.
On the effect of model parameters on forecast objects
NASA Astrophysics Data System (ADS)
Marzban, Caren; Jones, Corinne; Li, Ning; Sandgathe, Scott
2018-04-01
Many physics-based numerical models produce a gridded, spatial field of forecasts, e.g., a temperature map
. The field for some quantities generally consists of spatially coherent and disconnected objects
. Such objects arise in many problems, including precipitation forecasts in atmospheric models, eddy currents in ocean models, and models of forest fires. Certain features of these objects (e.g., location, size, intensity, and shape) are generally of interest. Here, a methodology is developed for assessing the impact of model parameters on the features of forecast objects. The main ingredients of the methodology include the use of (1) Latin hypercube sampling for varying the values of the model parameters, (2) statistical clustering algorithms for identifying objects, (3) multivariate multiple regression for assessing the impact of multiple model parameters on the distribution (across the forecast domain) of object features, and (4) methods for reducing the number of hypothesis tests and controlling the resulting errors. The final output
of the methodology is a series of box plots and confidence intervals that visually display the sensitivities. The methodology is demonstrated on precipitation forecasts from a mesoscale numerical weather prediction model.
Liu, Na; Zhang, Yalin; Brady, Heward John; Cao, Yuping; He, Ying; Zhang, Yingli
2012-01-01
This study investigates the role of borderline personality disorder (BPD) and antisocial personality disorder (ASPD) features as mediators of the effects of childhood maltreatment on severe intrafamilial physical violence amongst Chinese male perpetrators. A cross-sectional survey and face-to-face interview were conducted to examine childhood maltreatment, personality disorder features, impulsivity, aggression, and severe intrafamilial physical violence in a community sample of 206 abusive men in China. The results suggest that ASPD or BPD features mediate between childhood maltreatment and intimate partner violence perpetration in Chinese abusive men. These findings may yield clinical and forensic implications for assessing the psychopathology of abusive men, and may steer the intervention of intimate partner violence. © 2011 Wiley Periodicals, Inc.
A modeling analysis program for the JPL table mountain Io sodium cloud data
NASA Technical Reports Server (NTRS)
Smyth, William H.; Goldberg, Bruce A.
1988-01-01
Research in the third and final year of this project is divided into three main areas: (1) completion of data processing and calibration for 34 of the 1981 Region B/C images, selected from the massive JPL sodium cloud data set; (2) identification and examination of the basic features and observed changes in the morphological characteristics of the sodium cloud images; and (3) successful physical interpretation of these basic features and observed changes using the highly developed numerical sodium cloud model at AER. The modeling analysis has led to a number of definite conclusions regarding the local structure of Io's atmosphere, the gas escape mechanism at Io, and the presence of an east-west electric field and a System III longitudinal asymmetry in the plasma torus. Large scale stability, as well as some smaller scale time variability for both the sodium cloud and the structure of the plasma torus over a several year time period are also discussed.
Parallels among the ``music scores'' of solar cycles, space weather and Earth's climate
NASA Astrophysics Data System (ADS)
Kolláth, Zoltán; Oláh, Katalin; van Driel-Gesztelyi, Lidia
2012-07-01
Solar variability and its effects on the physical variability of our (space) environment produces complex signals. In the indicators of solar activity at least four independent cyclic components can be identified, all of them with temporal variations in their timescales. Time-frequency distributions (see Kolláth & Oláh 2009) are perfect tools to disclose the ``music scores'' in these complex time series. Special features in the time-frequency distributions, like frequency splitting, or modulations on different timescales provide clues, which can reveal similar trends among different indices like sunspot numbers, interplanetary magnetic field strength in the Earth's neighborhood and climate data. On the pseudo-Wigner Distribution (PWD) the frequency splitting of all the three main components (the Gleissberg and Schwabe cycles, and an ~5.5 year signal originating from cycle asymmetry, i.e. the Waldmeier effect) can be identified as a ``bubble'' shaped structure after 1950. The same frequency splitting feature can also be found in the heliospheric magnetic field data and the microwave radio flux.
MDI: integrity index of cytoskeletal fibers observed by AFM
NASA Astrophysics Data System (ADS)
Manghi, Massimo; Bruni, Luca; Croci, Simonetta
2016-06-01
The Modified Directional Index (MDI) is a form factor of the angular spectrum computed from the 2D Fourier transform of an image marking the prevalence of rectilinear features throughout the picture. We study some properties of the index and we apply it to AFM images of cell cytoskeleton regions featuring patterns of rectilinear nearly parallel actin filaments as in the case of microfilaments grouped in bundles. The analysis of AFM images through MDI calculation quantifies the fiber directionality changes which could be related to fiber damages. This parameter is applied to the images of Hs 578Bst cell line, non-tumoral and not immortalized human epithelial cell line, irradiated with X-rays at doses equivalent to typical radiotherapy treatment fractions. In the reported samples, we could conclude that the damages are mainly born to the membrane and not to the cytoskeleton. It could be interesting to test the parameter also using other kinds of chemical or physical agents.
NASA Astrophysics Data System (ADS)
Scarciglia, Fabio; Morrone, Fabio; Pelle, Teresa; Buttafuoco, Gabriele; Conforti, Massimo; Muto, Francesco; Critelli, Salvatore; Fabbricatore, Davide; Filomena, Luciana; Rago, Valeria; Robustelli, Gaetano; Tripodi, Vincenzo; Versace, Pasquale
2015-04-01
Effects of chemical and physical weathering processes on different rock types as predisposing factors of a number of landslides are often investigated in detail. Conversely, very few research studies on triggering mechanisms of shallow landslides and related risk assessment are focused on evaluation of morphological and physical discontinuities caused by pedogenetic processes affecting parent materials. Also sampling strategies for geotechnical or hydrological laboratory analyses can be biased by the lack of detailed information about the soil spatial variability and of a consequent horizon-wise selection of samples from soil profiles. In this work we summarize the main results on the assessment of shallow landslide susceptibility along the A3 highway section between Cosenza Sud and Altilia in northern Calabria (southern Italy). This research is part of a wider project (PON01-01503: "Integrated systems for hydrogeological risk monitoring, early warning and mitigation along the main lifelines"), aimed at hydro-geological risk mitigation and early warning along three highway sections of southern Italy. Based on a detailed geological and geomorphological survey, the main lithological, structural and relief features of the landscape were mapped, with a special emphasis on active, dormant and inactive landslides and their geo-lithological control factors. A soil survey was also carried out in the field, showing a dominance of Entisols and Inceptisols on steep slopes, and Mollisols and Alfisols on gentle landforms. Soil observations were focused on the identification of pedological discontinuities as potential factors that might trigger shallow landslides. A number of soil profiles, often close to landslide scarps, evidenced significant morphological changes of the parent materials, such as texture, pedogenic structure, dry consistence and moisture, or hydromorphic features caused by transient water-logging conditions, and clay-illuviated horizons. Buried soils were recognized, often truncated by erosion, and overlain by younger soils developed on colluvia, debris flows and detrital slope deposits. Five representative soil profiles were selected and sampled for pedological, geotechnical and hydrological laboratory analyses. Bulk and undisturbed samples were collected for chemical and physical soil analyses (particle size distribution, organic and inorganic carbon, pH, electrical conductivity, soluble salts), for determining bulk density, Atterberg limits, cohesive strength, angle of internal friction, water retention and for thin sections to be observed under an optical polarizing microscope, respectively. Preliminary results of laboratory analyses showed irregular patterns of pedological (particle size distribution, organic matter content, bulk density), geotechnical (Atterberg limits) and hydrological data (water content, pore distribution) along the soil profiles, coherently with field observations.
Report of the COSPAR mars special regions colloquium
Kminek, G.; Rummel, J.D.; Cockell, C.S.; Atlas, R.; Barlow, N.; Beaty, D.; Boynton, W.; Carr, M.; Clifford, S.; Conley, C.A.; Davila, A.F.; Debus, A.; Doran, P.; Hecht, M.; Heldmann, J.; Helbert, J.; Hipkin, V.; Horneck, G.; Kieft, Thomas L.; Klingelhoefer, G.; Meyer, M.; Newsom, H.; Ori, G.G.; Parnell, J.; Prieur, D.; Raulin, F.; Schulze-Makuch, D.; Spry, J.A.; Stabekis, P.E.; Stackebrandt, E.; Vago, J.; Viso, M.; Voytek, M.; Wells, L.; Westall, F.
2010-01-01
In this paper we present the findings of a COSPAR Mars Special Regions Colloquium held in Rome in 2007. We review and discuss the definition of Mars Special Regions, the physical parameters used to define Mars Special Regions, and physical features on Mars that can be interpreted as Mars Special Regions. We conclude that any region experiencing temperatures > -25 ??C for a few hours a year and a water activity > 0.5 can potentially allow the replication of terrestrial microorganisms. Physical features on Mars that can be interpreted as meeting these conditions constitute a Mars Special Region. Based on current knowledge of the martian environment and the conservative nature of planetary protection, the following features constitute Mars Special regions: Gullies and bright streaks associated with them, pasted-on terrain, deep subsurface, dark streaks only on a case-by-case basis, others to be determined. The parameter definition and the associated list of physical features should be re-evaluated on a regular basis. ?? 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.
Acoustic Features Influence Musical Choices Across Multiple Genres
Barone, Michael D.; Bansal, Jotthi; Woolhouse, Matthew H.
2017-01-01
Based on a large behavioral dataset of music downloads, two analyses investigate whether the acoustic features of listeners' preferred musical genres influence their choice of tracks within non-preferred, secondary musical styles. Analysis 1 identifies feature distributions for pairs of genre-defined subgroups that are distinct. Using correlation analysis, these distributions are used to test the degree of similarity between subgroups' main genres and the other music within their download collections. Analysis 2 explores the issue of main-to-secondary genre influence through the production of 10 feature-influence matrices, one per acoustic feature, in which cell values indicate the percentage change in features for genres and subgroups compared to overall population averages. In total, 10 acoustic features and 10 genre-defined subgroups are explored within the two analyses. Results strongly indicate that the acoustic features of people's main genres influence the tracks they download within non-preferred, secondary musical styles. The nature of this influence and its possible actuating mechanisms are discussed with respect to research on musical preference, personality, and statistical learning. PMID:28725200
Design and physical features of inductive coaxial copper vapor lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batenin, V. M.; Kazaryan, M. A.; Karpukhin, V. T.
A physical model of a copper vapor laser pumped by a pulse-periodic inductive (electrodeless) discharge is considered. The feasibility of efficient laser pumping by an inductive discharge and reaching high output parameters comparable to those of conventional copper vapor lasers pumped by a longitudinal electrode discharge is demonstrated. The design and physical features of an inductive copper vapor laser with an annular working volume are discussed.
Jet-images — deep learning edition
de Oliveira, Luke; Kagan, Michael; Mackey, Lester; ...
2016-07-13
Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. Finally, this interplay between physically-motivated feature driven tools and supervised learning algorithms is generalmore » and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.« less
Jet-images — deep learning edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Oliveira, Luke; Kagan, Michael; Mackey, Lester
Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. Finally, this interplay between physically-motivated feature driven tools and supervised learning algorithms is generalmore » and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.« less
Campbell, John L; Spalding, J Anthony B; Mir, Fraz A
2004-07-01
Physicians with congenital colour vision deficiency (CCVD) have reported difficulties recognising certain physical signs of illness, for example, jaundice, red rashes and pallor, and interpreting coloured charts, diagrams and slide projections. However, there has been little study of the effects of CCVD on the performance of medical practitioners. The aim of this study was to look for evidence of the effect of CCVD on the ability of physicians to recognise and describe physical signs of illness that have colour as either the main or an important feature. Twenty-three general practitioners with CCVD were shown 11 colour photographs depicting colour signs of illness and were asked to describe the signs they saw and rate their confidence in making their descriptions. Their responses were compared to those of 23 age-matched general practitioners with normal colour vision. General practitioners with CCVD compared to those with normal colour vision had less ability and confidence in detecting physical signs in the photographs and naming the colours. The results of this study support other evidence that physicians with CCVD have difficulties detecting some colour signs of illness and naming the colours. Because of the use of photographs the extent of the problem in clinical practice is unknown but medical practitioners with CCVD should be aware of the possibility of failing to detect or correctly assess physical signs that are characterised by colour.
Rogue waves: a unique approach to multidisciplinary physics
NASA Astrophysics Data System (ADS)
Residori, S.; Onorato, M.; Bortolozzo, U.; Arecchi, F. T.
2017-01-01
Rogue waves are giant waves appearing erratically and unexpectedly on the ocean surfaces. Their existence, considered as mythical in the ancient times, has recently been recognised by the scientific community and, since then, rogue waves have become the object of numerous theoretical and experimental studies. Their relevance is not restricted to oceanography, but it extends in a wide spectrum of physical contexts. General models and mathematical tools have been developed on a interdisciplinary ground and many experiments have been specifically conceived for the observation of rogue waves in a variety of different physical systems. Rogue wave phenomena are, nowadays, studied, for instance, in hydrodynamics, optics, plasmas, complex media, Bose-Einstein condensation and acoustics. We can, therefore, consider rogue waves as a paradigmatic description, able to account for the manifestation of extreme events in multidisciplinary physics. In this review, we present the main physical concepts and mathematical tools for the description of rogue waves. We will refer mostly to examples from water waves and optics, the two domains having in common the non-linear Schrödinger equation from which prototype rogue wave solutions can be derived. We will highlight the most common features of the rogue wave phenomena, as the large deviations from the Gaussian statistics of the amplitude, the existence of many uncorrelated 'grains' of activity and their clustering in inhomogeneous spatial domains via large-scale symmetry breaking.
Advancing Minorities and Women to the PhD in Physics and Astronomy
NASA Astrophysics Data System (ADS)
Stassun, Keivan
2017-01-01
We briefly review the current status of underrepresented minorities in physics and astronomy: The underrepresentation of Black-, Hispanic-, and Native-Americans is an order of magnitude problem. We then describe the Fisk-Vanderbilt Masters-to-PhD Bridge program as a successful model for addressing this problem. Since 2004 the program has admitted 110 students, 90% of them underrepresented minorities (50% female), with a retention rate of 90%. The program has become the top producer of African American master's degrees in physics, and is now one of the top producers of minority PhDs in astronomy, materials science, and physics. We summarize the main features of the program including its core strategies: (1) replacing the GRE in admissions with indicators that are better predictive of long-term success, (2) partnering with a minority-serving institution for student training through collaborative research, and (3) using the master's degree as a deliberate stepping stone to the PhD. We show how misuse of the GRE in graduate admissions may by itself in large part explain the ongoing underrepresentation of minorities in PhD programs, and we describe our alternate methods to identify talented individuals most likely to succeed. We describe our mentoring model and toolkit which may be utilized to enhance the success of all PhD students.
... this page: //medlineplus.gov/ency/patientinstructions/000673.htm Sports physical To use the sharing features on this ... or routine checkups. Why do you Need a Sports Physical? The sports physical is done to: Find ...
Oculoauriculovertebral spectrum with radial anomaly in child.
Taksande, Amar; Vilhekar, Krishna
2013-01-01
Oculoauriculovertebral spectrum (OAVS) or Goldenhar syndrome is a wide spectrum of congenital anomalies that involves structures arising from the first and second branchial arches. It is characterized by a wide spectrum of symptoms and physical features. These abnormalities mainly involve the cheekbones, jaws, mouth, ears, eyes, or vertebrae. Other conditions with ear and/or radial involvement, such as, the Nager syndrome, Holt-Oram syndrome, Radial-renal syndrome, facioauriculoradial dysplasia, Fanconi anemia, and Vertebral, Anal atresia, Cardiac, Trachea, Esophageal, Renal, and Limb (VACTERL) association should be considered for differential diagnosis. Here we report a child who had facial asymmetry, microsomia, microtia, congenital facial nerve palsy, conductive hearing loss, skin tags, iris coloboma, and preaxial polydactyly.
Modeling no-jam traffic in ant trails: a pheromone-controlled approach
NASA Astrophysics Data System (ADS)
Guo, Ning; Hu, Mao-Bin; Jiang, Rui; Ding, Jianxun; Ling, Xiang
2018-05-01
The experiment in John et al (2009 Phys. Rev. Lett. 102 108001) shows that when ants move in a single-file trail, no jam emerges even at very high densities. We propose a self-propelled model of ant traffic to reproduce the fundamental diagram without a jammed branch. In this model, ants can adjust their desired velocities actively by perceiving pheromone concentration near the front of the trail. Moreover, ants will bear the repulsive force when they have physical contact with neighbors. The velocity in the simulation decreases slightly with increasing density, which captures the main feature observed in the experiment. Distributions of velocity and distance headway basically also conform to the experimental ones.
NASA Astrophysics Data System (ADS)
Nicolaï, Ph.; Feugeas, J.-L.; Schurtz, G.
2006-06-01
We present a model of nonlocal transport for multidimensional radiation magneto hydrodynamic codes. In laser produced plasmas, it is now believed that the heat transfert can be strongly modified by the nonlocal nature of the electron conduction. Nevertheless other mechanisms as self generated magnetic fields may affect heat transport too. The model described in this work aims at extending the formula of G. Schurtz, Ph. Nicolaï and M. Busquet [1] to magnetized plasmas. A system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and applied to a physical problem in order to demonstrate the main features of the model.
NASA Astrophysics Data System (ADS)
Vila, Gabriela S.
Relativistic jets and collimated outflows are ubiquitous phenomena in astrophysical settings, from young stellar objects up to Active Galactic Nuclei. The observed emission from some of these jets can cover the whole electromagnetic spectrum, from radio to gamma-rays. The relevant features of the spectral energy distributions depend on the nature of the source and on the characteristics of the surrounding environment. Here the author reviews the main physical processes that command the interactions between populations of relativistic particles locally accelerated in the jets, with matter, radiation and magnetic fields. Special attention is given to the conditions that lead to the dominance of the different radiative mechanisms. Examples from various types of sources are used to illustrate these effects.
Models of convection-driven tectonic plates - A comparison of methods and results
NASA Technical Reports Server (NTRS)
King, Scott D.; Gable, Carl W.; Weinstein, Stuart A.
1992-01-01
Recent numerical studies of convection in the earth's mantle have included various features of plate tectonics. This paper describes three methods of modeling plates: through material properties, through force balance, and through a thin power-law sheet approximation. The results obtained are compared using each method on a series of simple calculations. From these results, scaling relations between the different parameterizations are developed. While each method produces different degrees of deformation within the surface plate, the surface heat flux and average plate velocity agree to within a few percent. The main results are not dependent upon the plate modeling method and herefore are representative of the physical system modeled.
NASA Technical Reports Server (NTRS)
Birnie, R. W.; Stoiber, R. E. (Principal Investigator)
1981-01-01
A fanning technique based on a simplistic physical model provided a classification algorithm for mixture landscapes. Results of applications to LANDSAT inventory of 1.5 million acres of forest land in Northern Maine are presented. Signatures for potential deer year habitat in New Hampshire were developed. Volcanic activity was monitored in Nicaragua, El Salvador, and Guatemala along with the Mt. St. Helens eruption. Emphasis in the monitoring was placed on the remote sensing of SO2 concentrations in the plumes of the volcanoes.
NASA Astrophysics Data System (ADS)
Wang, Pu; González, Marta; Barabási, Albert-László.
2008-03-01
Standard operating systems and Bluetooth technology will be a trend for future cell phone features. These will enable cell phone viruses to spread either through SMS or by sending Bluetooth requests when cell phones are physically close enough. The difference in spreading methods gives these two types of viruses' different epidemiological characteristics. SMS viruses' spread is mainly based on people's social connections, whereas the spreading of Bluetooth viruses is affected by people's mobility patterns and population distribution. Using cell phone data recording calls, SMS and locations of more than 6 million users, we study the spread of SMS and Bluetooth viruses and characterize how the social network and the mobility of mobile phone users affect such spreading processes.
Peculiarities of Ionospheric Response to Solar Eruptive Events
NASA Astrophysics Data System (ADS)
Cadez, V. M.; Nina, A.
2013-05-01
Solar eruptive events such as flares and coronal mass ejections (CMEs) affect the terrestrial upper atmosphere, the magnetosphere and ionosphere in particular, through sudden impacts of additional X-ray radiation and by increased intensity of the solar wind. As a consequence, a variety perturbation features occur locally as well as globally in the plasma medium in space around the Earth. We study some of such transient phenomena taking place at low altitudes of the ionosphere (below 90 km) by monitoring and analyzing registered amplitude and phase time variations of VLF radio waves with given frequencies. The main object of this research is gaining an additional insight into the structure and physical properties of the lower ionosphere.
Belarouci, Ali; Benyattou, Taha; Letartre, Xavier; Viktorovitch, Pierre
2010-09-13
A new approach is proposed for the optimum addressing of a metallic nano-antenna (NA) with a free space optical beam. This approach relies on the use of an intermediate resonator structure that provides the appropriate modal conversion of the incoming beam. More precisely, the intermediate resonator consists in a Photonic Crystal (PC) membrane resonant structure that takes benefit of surface addressable slow Bloch modes. First, a phenomenological approach including a deep physical understanding of the NA-PC coupling and its optimization is presented. In a second step, the main features of this analysis are confirmed by numerical simulations (FDTD).
Banny, Adrienne M; Tseng, Wan-Ling; Murray-Close, Dianna; Pitula, Clio E; Crick, Nicki R
2014-08-01
The present longitudinal investigation examined borderline personality features as a predictor of aggression 1 year later. Moderation by physiological reactivity and gender was also explored. One hundred ninety-six children (M = 10.11 years, SD = 0.64) participated in a laboratory stress protocol in which their systolic blood pressure, diastolic blood pressure, and skin conductance reactivity to recounting a relational stressor (e.g., threats to relationships or exclusion) were assessed. Teachers provided reports on subtypes of aggressive behavior (i.e., reactive relational, proactive relational, reactive physical, and proactive physical), and children completed a self-report measure of borderline personality features. Path analyses indicated that borderline personality features predicted increases in reactive relational aggression and proactive relational aggression among girls who evinced heightened physiological reactivity to interpersonal stress. In contrast, borderline personality features predicted decreases in proactive physical aggression in girls. Findings suggest that borderline personality features promote engagement in relationally aggressive behaviors among girls, particularly in the context of emotional dysregulation.
Teacher Explanation of Physics Concepts: A Video Study
ERIC Educational Resources Information Center
Geelan, David
2013-01-01
Video recordings of Year 11 physics lessons were analyzed to identify key features of teacher explanations. Important features of the explanations used included teachers' ability to move between qualitative and quantitative modes of discussion, attention to what students require to succeed in high stakes examinations, thoughtful use of…
Creating kampong as tourist attractions
NASA Astrophysics Data System (ADS)
Sari, N.; Utama, R.; Hidayat, A. R. T.; Zamrony, A. B.
2017-06-01
Tourism attractions become one of the main components and they drive the tourism activity in a region. The quality of tourism attractions would affect tourists’ visits. Tourism power can basically be built on any conditions which can attract people to visit. Towns is full of activities which include their economic, social, cultural and physical features, if they are presented properly, they can be a tourist attraction. Kampung City, as a form of urban settlement, has the potential to be developed as a tourism attraction. Kampung is not only a physical area of housing but it has also productive activities. Even the city’s economic activities are also influenced by the productive activities of its Kampung. The shape of Kampung which varies in physical, social, economic and cultural raises special characteristics of each Kampung. When it is linked with the city’s tourism activities, these special characteristics of course could be one of the attractions to attract tourists. This paper studies about one of Kampung in the Malang City. Administratively located in the Penanggungan Village Lowokwaru District, but the potential will just be focused on RW 4. Main productive activities of this village are pottery. In contrast to ceramics, pottery is made from clay and its uniqueness in color and shape. Based on the history of pottery in the Malang, it is concentrated in Penanggungan Village. But along with its development, pottery is decreasingly in demand and number of craftsmen is dwindling. Based on these circumstances, a concept is prepared to raise the image of the region as the Kampung of pottery and to repack it as a tourism attraction of the city.
Suminski, Richard; Wasserman, Jason A; Mayfield, Carlene A; Kubic, Micah; Porter, Julie
2014-09-01
Community development corporations (CDC) are worldwide entities that create environments facilitating physical activity. At the same time, researchers face challenges conducting cost-effective, longitudinal studies on how environmental changes affect physical activity. To provide evidence suggesting that CDC initiatives could potentially be integrated into a research framework for examining the influence of environmental improvements on physical activity. Quality of Life Plans (QLP) developed by a CDC and stakeholders from 6 lower-income neighborhoods were systematically reviewed to obtain data about environmental features targeted for change and the strategies used to bring about those changes. Strategies were deemed pro-physical activity if previous studies suggested they have the potential to affect physical activity. A total of 348 strategies were proposed of which 164 were pro-physical activity. Six environmental features were targeted including crime (57 strategies), aesthetics (39), facilities (30), walkability (17), destinations (14), and programs (5). Strategies involved implementing (90 strategies), planning (33), assessing (26), and securing funding (13). Progress reports indicated that 37.4% of the pro-physical activity strategies were implemented 1 year following the development of the QLPs. These results suggest that activities of CDCs could potentially be systematically integrated into the scientific study of environmental influences on physical activity.
Analysis of Acoustic Features in Speakers with Cognitive Disorders and Speech Impairments
NASA Astrophysics Data System (ADS)
Saz, Oscar; Simón, Javier; Rodríguez, W. Ricardo; Lleida, Eduardo; Vaquero, Carlos
2009-12-01
This work presents the results in the analysis of the acoustic features (formants and the three suprasegmental features: tone, intensity and duration) of the vowel production in a group of 14 young speakers suffering different kinds of speech impairments due to physical and cognitive disorders. A corpus with unimpaired children's speech is used to determine the reference values for these features in speakers without any kind of speech impairment within the same domain of the impaired speakers; this is 57 isolated words. The signal processing to extract the formant and pitch values is based on a Linear Prediction Coefficients (LPCs) analysis of the segments considered as vowels in a Hidden Markov Model (HMM) based Viterbi forced alignment. Intensity and duration are also based in the outcome of the automated segmentation. As main conclusion of the work, it is shown that intelligibility of the vowel production is lowered in impaired speakers even when the vowel is perceived as correct by human labelers. The decrease in intelligibility is due to a 30% of increase in confusability in the formants map, a reduction of 50% in the discriminative power in energy between stressed and unstressed vowels and to a 50% increase of the standard deviation in the length of the vowels. On the other hand, impaired speakers keep good control of tone in the production of stressed and unstressed vowels.
Detail view to show the stylized "dragon" bracket feature that ...
Detail view to show the stylized "dragon" bracket feature that stands guard by the outside door to the kitchen (north elevation of the main house) - Death Valley Ranch, Main House, Death Valley Junction, Inyo County, CA
Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael
2014-05-01
Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.
NASA Astrophysics Data System (ADS)
Cesar, Roberto Marcondes; Costa, Luciano da Fontoura
1997-05-01
The estimation of the curvature of experimentally obtained curves is an important issue in many applications of image analysis including biophysics, biology, particle physics, and high energy physics. However, the accurate calculation of the curvature of digital contours has proven to be a difficult endeavor, mainly because of the noise and distortions that are always present in sampled signals. Errors ranging from 1% to 1000% have been reported with respect to the application of standard techniques in the estimation of the curvature of circular contours [M. Worring and A. W. M. Smeulders, CVGIP: Im. Understanding, 58, 366 (1993)]. This article explains how diagrams of multiscale bending energy can be easily obtained from curvegrams and used as a robust general feature for morphometric characterization of neural cells. The bending energy is an interesting global feature for shape characterization that expresses the amount of energy needed to transform the specific shape under analysis into its lowest energy state (i.e., a circle). The curvegram, which can be accurately obtained by using digital signal processing techniques (more specifically through the Fourier transform and its inverse, as described in this work), provides multiscale representation of the curvature of digital contours. The estimation of the bending energy from the curvegram is introduced and exemplified with respect to a series of neural cells. The masked high curvature effect is reported and its implications to shape analysis are discussed. It is also discussed and illustrated that, by normalizing the multiscale bending energy with respect to a standard circle of unitary perimeter, this feature becomes an effective means for expressing shape complexity in a way that is invariant to rotation, translation, and scaling, and that is robust to noise and other artifacts implied by image acquisition.
GPU acceleration of particle-in-cell methods
NASA Astrophysics Data System (ADS)
Cowan, Benjamin; Cary, John; Meiser, Dominic
2015-11-01
Graphics processing units (GPUs) have become key components in many supercomputing systems, as they can provide more computations relative to their cost and power consumption than conventional processors. However, to take full advantage of this capability, they require a strict programming model which involves single-instruction multiple-data execution as well as significant constraints on memory accesses. To bring the full power of GPUs to bear on plasma physics problems, we must adapt the computational methods to this new programming model. We have developed a GPU implementation of the particle-in-cell (PIC) method, one of the mainstays of plasma physics simulation. This framework is highly general and enables advanced PIC features such as high order particles and absorbing boundary conditions. The main elements of the PIC loop, including field interpolation and particle deposition, are designed to optimize memory access. We describe the performance of these algorithms and discuss some of the methods used. Work supported by DARPA contract W31P4Q-15-C-0061 (SBIR).
A new timing detector for the CT-PPS project
NASA Astrophysics Data System (ADS)
Arcidiacono, R.; Cms; TOTEM Collaborations
2017-02-01
The CT-PPS detector will be installed close to the beam line on both sides of CMS, 200 m downstream the interaction point. This detector will measure forward scattered protons, allowing detailed studies of diffractive hadron physics and Central Exclusive Production. The main components of the CT-PPS detector are a silicon tracking system and a timing system. In this contribution we present the proposal of an innovative solution for the timing system, based on Ultra-Fast Silicon Detectors (UFSD). UFSD are a novel concept of silicon detectors potentially able to obtain the necessary time resolution (∼20 ps on the proton arrival time). The use of UFSD has also other attractive features as its material budget is small and the pixel geometries can be tailored to the precise physics distribution of protons. UFSD prototypes for CT-PPS have been designed by CNM (Barcelona) and FBK (Trento): we will present the status of the sensor productions and of the low-noise front-end electronics currently under development and test.
X-ray studies of neutron stars and their magnetic fields
MAKISHIMA, Kazuo
2016-01-01
Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1–7) × 108 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348
Design of Backpack to Aid Elderly for the Mazu Touring Procession in Taiwan
NASA Astrophysics Data System (ADS)
Chao, F. L.; Huang, Y. C.; Su, J. Y.; Sun, C. L.; Chen, C. C.
2017-09-01
The Dajia Mazu Touring Procession is a 9-day long religious event held annually. However, for the elderly participants, it is a big burden especially in regards to physical strength. The goal of designing backpack is to reduce the physiological stress of elderly during the procession. Firstly, physical parameters were measured to explore the dimension parameters by testing. The height of the chair is different from that of the kneeling pad; a smooth curve was chosen to coordinate the two as the main outline of the backpack. Secondly, material selections based on following limits were considered: (1) acceptable weight and size, (2) intermediate price and (3) a design that is fitting to the Dajia event. The material and structural strength were evaluated for wood, bamboo, stainless steel. Two design concept were proposed, wood is selected for construction and testing by users. The texture of the backpack is Rush grass, it was built successfully to cover the backpack’s external surface to meet local culture features.
The Bilinear Product Model of Hysteresis Phenomena
NASA Astrophysics Data System (ADS)
Kádár, György
1989-01-01
In ferromagnetic materials non-reversible magnetization processes are represented by rather complex hysteresis curves. The phenomenological description of such curves needs the use of multi-valued, yet unambiguous, deterministic functions. The history dependent calculation of consecutive Everett-integrals of the two-variable Preisach-function can account for the main features of hysteresis curves in uniaxial magnetic materials. The traditional Preisach model has recently been modified on the basis of population dynamics considerations, removing the non-real congruency property of the model. The Preisach-function was proposed to be a product of two factors of distinct physical significance: a magnetization dependent function taking into account the overall magnetization state of the body and a bilinear form of a single variable, magnetic field dependent, switching probability function. The most important statement of the bilinear product model is, that the switching process of individual particles is to be separated from the book-keeping procedure of their states. This empirical model of hysteresis can easily be extended to other irreversible physical processes, such as first order phase transitions.
Blum, Alexander; Lalli, Roberto; Renn, M Jürgen
2015-09-01
The history of the theory of general relativity presents unique features. After its discovery, the theory was immediately confirmed and rapidly changed established notions of space and time. The further implications of general relativity, however, remained largely unexplored until the mid 1950s, when it came into focus as a physical theory and gradually returned to the mainstream of physics. This essay presents a historiographical framework for assessing the history of general relativity by taking into account in an integrated narrative intellectual developments, epistemological problems, and technological advances; the characteristics of post-World War II and Cold War science; and newly emerging institutional settings. It argues that such a framework can help us understand this renaissance of general relativity as a result of two main factors: the recognition of the untapped potential of general relativity and an explicit effort at community building, which allowed this formerly disparate and dispersed field to benefit from the postwar changes in the scientific landscape.
The analysis and modeling of the ARDEC 2.5 km/s 20-mm plasma railgun shot
NASA Astrophysics Data System (ADS)
Sink, D. A.; Chang, D. I.; Davis, A.; Colombo, G.; Hildenbrand, D. J.
1993-01-01
The 20-mm round-bore plasma railgun was successfully fired at the ARDEC electric gun facility. The 4-m gun with copper rails and alumina composite insulators was operated using a light-gas gun injector to start the projectile, already located in the gun, moving prior to the introduction of current. Current from the EMACK homopolar generator (HPG) was commutated into the gun by an explosively-actuated opening switch. The muzzle velocity was recorded by breakwires and flash X-rays at 2.5 km/s. B-dot sensors, rail current Rogowski coils, and breech and muzzle voltage measurements provided data on the in-bore dynamics of the armature. Post-shot analysis using the ARMRAIL (ARMature Physics and RAILgun Performance Model) code successfully provided calculations reproducing all the main features of the data. Models account for the observed secondary arcs present throughout the shot and the basis for the code and physics modeling is given.
NASA Astrophysics Data System (ADS)
Potier, Michel; Bach, Pascal; Ménard, Frédéric; Marsac, Francis
2014-02-01
We investigated the diversity and distribution of two communities, micronekton organisms and large predatory fishes, sampled in mesoscale features of the Mozambique Channel from 2003 to 2009, by combining mid-water trawls, stomach contents of fish predators and instrumented longline fishing surveys. The highest species richness for assemblages was found in divergences and fronts rather than in the core of eddies. Despite an unbalanced scheme, diversity indices did not differ significantly between cyclonic and anticyclonic eddies, divergences and fronts. We found that eddies and associated physical cues did not substantially affect the distribution of micronektonic species which are mainly driven by the diel vertical migration pattern. Top predators exhibited a more complex response. Swordfish (Xiphias gladius) associated better with mesoscale features than tunas, with a clear preference for divergences which is consistent with the diel vertical migrations and occurrence of its main prey, the flying squids Sthenoteuthis oualaniensis (Ommastrephidae). On the other hand, the probability of presence of yellowfin tuna was not tied to any specific eddy structure. However, the highest values of positive yellowfin CPUEs were associated with low horizontal gradients of sea-level anomalies. We also showed a non-linear response of positive yellowfin CPUEs with respect to the depth of the minimal oxygen content. The larger the distance between the hooks and the minimal oxygen layer, towards the surface or at greater depths, the higher the CPUE, highlighting that yellowfin congregated in well-oxygenated waters. Micronekton sampled by mid-water trawls and stomach contents exhibited different species composition. The highly mobile organisms were not caught by trawling whereas they remain accessible to predators. The combination of stomach contents and mid-water trawls undoubtedly improved our understanding of the micronekton assemblage distribution. Our results provide some evidence that mesoscale features in the Mozambique Channel do not strongly affect the distribution of the mid-trophic level organisms such as micronekton and most of the large predatory fishes, and hypotheses are proposed to support this result.
Comparative modeling without implicit sequence alignments.
Kolinski, Andrzej; Gront, Dominik
2007-10-01
The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.
NASA Astrophysics Data System (ADS)
Baliunas, S. L.
2004-05-01
Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.
Variations of the Mid-IR Aromatic Features Inside and Among Galaxies
NASA Technical Reports Server (NTRS)
Galliano, F.; Madden, S.C.; Tielens, A. G. G. M.; Peeters, E.; Jones, A. P.
2007-01-01
We present the results of a systematic study of mid-IR spectra of Galactic regions, Magellanic H II regions, and galaxies of various types (dwarf, spiral, starburst), observed by the satellites ISO and Spitzer. We study the relative variations of the 6.2, 7.7, 8.6 and 11.3 micron features inside spatially resolved objects (such as M 82, M 51, 30 Doradus, M 17 and the Orion bar), as well as among 90 integrated spectra of 50 objects. Our main results are that the 6.2, 7.7 and 8.6 micron bands are essentially tied together, while the ratios between these bands and the 11.3 micron band varies by one order of magnitude. This implies that the properties of the PAHs are remarkably universal throughout our sample, and that the relative variations of the band ratios are mainly controlled by the fraction of ionized PAHs. In particular, we show that we can rule out the modification of the PAH size distribution as an explanation of these variations. Using a few well-studied Galactic regions (including the spectral image of the Orion bar), we give an empirical relation between the I(6.2)/I(11.3) ratio and the ionization/recombination ratio Go/n(sub e) x square root of(T(sub gas)). Finally, we discuss the physical interpretation of the I(6.2)/I(11.3) ratio, on galactic size scales.
Fishermen Follow Fine-scaled Physical Ocean Features For Finance
NASA Astrophysics Data System (ADS)
Fuller, E.; Watson, J. R.; Samhouri, J.; Castruccio, F. S.
2016-12-01
The seascapes on which many millions of people make their living and secure food have complex and dynamic spatial features - the figurative hills and valleys - that control where and how people work at sea. Here, we quantify the physical mosaic of the surface ocean by identifying Lagrangian Coherent Structures for a whole seascape - the California Current - and assess their impact on the spatial distribution of fishing. We show that there is a mixed response: some fisheries track these physical features, and others avoid them. This spatial behavior maps to economic impacts: we find that tuna fishermen can expect to make three times more revenue per trip if fishing occurs on strong coherent structures. These results highlight a connection between the physical state of the oceans, the spatial patterns of human activity and ultimately the economic prosperity of coastal communities.
Bi-layer sandwich film for antibacterial catheters
Schamberger, Florian; Zare, Hamideh Heidari; Bröskamp, Sara Felicitas; Jocham, Dieter
2017-01-01
Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters. Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly(p-xylylene). This top layer is mainly designed to release a controlled amount of Ag+ ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens’ reagens, the cap layer is deposited by using chemical vapor deposition. Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin’s pot and the principle of Le Chatelier. PMID:29046846
Bi-layer sandwich film for antibacterial catheters.
Franz, Gerhard; Schamberger, Florian; Zare, Hamideh Heidari; Bröskamp, Sara Felicitas; Jocham, Dieter
2017-01-01
Background: Approximately one quarter of all nosocomial infections can be attributed to the urinary tract. The infections are supposed to be mainly caused by implantations of urethral catheters and stents. A new catheter design is introduced with the aim to lower the high number of nosocomial urethral infections. In order to avoid limitations to use, the design is first applied to conventional commercially available balloon catheters. Results: The main feature of the design is a sandwich layer on both sides of the catheter wall, which is composed of a fragmented base layer of silver capped by a thin film of poly( p -xylylene). This top layer is mainly designed to release a controlled amount of Ag + ions, which is bactericidal, but not toxic to humans. Simultaneously, the lifetime is prolonged to at least one year. The base layer is electrolessly deposited applying Tollens' reagens, the cap layer is deposited by using chemical vapor deposition. Conclusion: The three main problems of this process, electroless deposition of a fragmented silver film on the surface of an electrically insulating organic polymer, irreproducible evaporation during heating of the precursor, and exponential decrease of the layer thickness along the capillary, have been solved trough the application of a simple electrochemical reaction and two standard principles of physics: Papin's pot and the principle of Le Chatelier.
Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra.
Vilas, F; Gaffey, M J
1989-11-10
Absorption features having depths up to 5% are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.
Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra
NASA Technical Reports Server (NTRS)
Vilas, Faith; Gaffey, Michael J.
1989-01-01
Absorption features having depths up to 5 percent are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.
Out-of-equilibrium dynamics in the cytoskeleton of the living cell
NASA Astrophysics Data System (ADS)
Lenormand, Guillaume; Bursac, Predrag; Butler, James P.; Fredberg, Jeffrey J.
2007-10-01
We report here measurements of rheological properties of the human airway smooth muscle cell using forced nanoscale motions of Arg-Gly-Asp RGD-coated microbeads tightly bound to the cytoskeleton. With changes of forcing amplitude, the storage modulus showed small but systematic nonlinearities, especially after treatment with a contractile agonist. In a dose-dependent manner, a large oscillatory shear applied from a few seconds up to 400s caused the cytoskeleton matrix to soften, a behavior comparable to physical rejuvenation observed in certain inert soft materials; the stiffness remained constant for as long as the large oscillatory shear was maintained, but suddenly fell with shear cessation. Stiffness then followed a slow scale-free recovery, a phenomenon comparable to physical aging. However, acetylated low-density lipoprotein acLDL-coated microbeads, which connect mainly to scavenger receptors, did not show similar out-of-equilibrium behaviors. Taken together, these data demonstrate in the cytoskeleton of the living cell behaviors with all the same signatures as that of soft inert condensed systems. This unexpected intersection of condensed matter physics and cytoskeletal biology suggests that trapping, intermittency, and approach to kinetic arrest represent central mesoscale features linking underlying molecular events to integrative cellular functions.
Greeves, Julie P
2015-11-01
Women have historically featured in military conflicts, but were not formally integrated into the military until the 20th century; occupations were mainly restricted to clerical or support roles. An increasing number of occupations have been opened to women and the higher physical demands of combat roles present new challenges. Inherent biological differences between sexes require women to work harder when undertaking the same tasks as men. This is reflected, in part, by the greater risk of musculoskeletal injuries of women observed notably during integrated military training. Gender "neutral" occupational standards, based on the physical requirements of the role, will ensure that women are suitably selected to cope with the demands of military tasks with a minimal risk of injury and to operational effectiveness. Initiatives such as reduced running mileage and single-sex training have contributed to a reduction in lower-limb musculoskeletal injuries, but the risk of injury remains higher in women. Nevertheless, women experience substantial gains in aerobic power and strength with appropriate and targeted training, narrowing the gap in physical performance between the sexes. Evidence-based occupational standards and optimal training programs provide short-term solutions for integrating women in support combat, and indeed direct combat roles.
Nonverbal communication in doctor-elderly patient transactions (NDEPT): development of a tool.
Gorawara-Bhat, Rita; Cook, Mary Ann; Sachs, Greg A
2007-05-01
There are several measurement tools to assess verbal dimensions in clinical encounters; in contrast, there is no established tool to evaluate physical nonverbal dimensions in geriatric encounters. The present paper describes the development of a tool to assess the physical context of exam rooms in doctor-older patient visits. Salient features of the tool were derived from the medical literature and systematic observations of videotapes and refined during current research. The tool consists of two main dimensions of exam rooms: (1) physical dimensions comprising static and dynamic attributes that become operational through the spatial configuration and can influence the manifestation of (2) kinesic attributes. Details of the coding form and inter-rater reliability are presented. The usefulness of the tool is demonstrated through an analysis of 50 National Institute of Aging videotapes. Physicians in exam rooms with no desk in the interaction, no height difference and optimal interaction distance were observed to have greater eye contact and touch than physicians' in exam rooms with a desk, similar height difference and interaction distance. The tool can enable physicians to assess the spatial configuration of exam rooms (through Parts A and B) and thus facilitate the structuring of kinesic attributes (Part C).
CONTRIBUTION OF AXIAL MOTOR IMPAIRMENT TO PHYSICAL INACTIVITY IN PARKINSON'S DISEASE
Bryant, Mon S; Hou, Jyhgong Gabriel; Collins, Robert L; Protas, Elizabeth J
2015-01-01
Objective To investigate the relationships between motor symptoms of Parkinson’s disease (PD) and activity limitations in persons with PD. Design/Methods Cross-sectional study of persons with mild to moderate PD (N=90). Associations among axial motor features, limb motor signs, the Physical Activity Scale for Elders (PASE), the ability to perform Activities of Daily Living (ADL) and level of ADL dependency were studied. A composite score of axial motor features included the following UPDRS items: speech, rigidity of the neck, arising from chair, posture, gait and postural stability. A composite score of limb motor signs included the following UPDRS items: tremor at rest of all extremities, action tremor, rigidity of all extremities, finger taps, hand movement, rapid alternating hand movements and foot tapping. Results Axial motor features of PD were significantly correlated with physical inactivity (p<.001), decreased ADL (p<.001) and increase in ADL dependency (p<.001). Limb motor signs significantly correlated with decreased ADL (p<.001) and level of ADL dependency (p=.035), but was not correlated with physical inactivity. After controlling for age, gender, disease duration and comorbidity, axial motor features contributed significantly to physical inactivity, decreased ADL and increase in ADL dependency, whereas the limb motor signs did not. Conclusions Axial motor impairment contributed to physical inactivity and decreased ability to perform ADLs in persons with PD. PMID:26368837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, P.
1967-07-01
This study, originating mainly from a literature survey, gives the principal chemical and physical features of the tributyl-phosphate (TBP) agent diluted at 30 volumes per cent in dodecane. The mixture is a very commonly used extractant in nuclear fuel processing. In this paper, the main following points are reported: -) the components (TBP and diluents) -) the TBP-diluents systems (non-loaded), -) the TBP-diluents-water systems, -) TBP-diluents-water-nitric acid systems, and -) industrial solvents. (author) [French] Cette etude, d'origine bibliographique, regroupe les caracteristiques physico-chimiques essentielles du phosphate tributylique (TBP) dilue a 30% en volume dans du dodecane. Ce melange constitue un agentmore » d'extraction tres utilise dans le traitement des combustibles nucleaires. Les principaux points traites sont les suivants: -) les constituants (TBP et diluants), -) les systemes TBP-diluants non charges, -) les systemes TBP-diluants-eau, -) les systemes TBP-diluants-eau-acide nitrique, et -) les solvants industriels. (auteur)« less
Hydrodynamic Trapping of Swimming Bacteria by Convex Walls
NASA Astrophysics Data System (ADS)
Sipos, O.; Nagy, K.; Di Leonardo, R.; Galajda, P.
2015-06-01
Swimming bacteria display a remarkable tendency to move along flat surfaces for prolonged times. This behavior may have a biological importance but can also be exploited by using microfabricated structures to manipulate bacteria. The main physical mechanism behind the surface entrapment of swimming bacteria is, however, still an open question. By studying the swimming motion of Escherichia coli cells near microfabricated pillars of variable size, we show that cell entrapment is also present for convex walls of sufficiently low curvature. Entrapment is, however, markedly reduced below a characteristic radius. Using a simple hydrodynamic model, we predict that trapped cells swim at a finite angle with the wall and a precise relation exists between the swimming angle at a flat wall and the critical radius of curvature for entrapment. Both predictions are quantitatively verified by experimental data. Our results demonstrate that the main mechanism for wall entrapment is hydrodynamic in nature and show the possibility of inhibiting cell adhesion, and thus biofilm formation, using convex features of appropriate curvature.
Constructing exact perturbations of the standard cosmological models
NASA Astrophysics Data System (ADS)
Sopuerta, Carlos F.
1999-11-01
In this paper we show a procedure to construct cosmological models which, according to a covariant criterion, can be seen as exact (nonlinear) perturbations of the standard Friedmann-Lemaı⁁tre-Robertson-Walker (FLRW) cosmological models. The special properties of this procedure will allow us to select some of the characteristics of the models and also to study in depth their main geometrical and physical features. In particular, the models are conformally stationary, which means that they are compatible with the existence of isotropic radiation, and the observers that would measure this isotropy are rotating. Moreover, these models have two arbitrary functions (one of them is a complex function) which control their main properties, and in general they do not have any isometry. We study two examples, focusing on the case when the underlying FLRW models are flat dust models. In these examples we compare our results with those of the linearized theory of perturbations about a FLRW background.
Experimental Investigation of a Helicopter Rotor Hub Wake
NASA Astrophysics Data System (ADS)
Reich, David; Elbing, Brian; Schmitz, Sven
2013-11-01
A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The main objectives of the experiment were to understand the spatial- and temporal content of the unsteady wake downstream of a rotor hub up to a distance corresponding to the empennage. Primary measurements were the total hub drag and velocity measurements at three nominal downstream locations. Various flow structures were identified and linked to geometric features of the hub model. The most prominent structures were two-per-revolution (hub component: scissors) and four-per-revolution (hub component: main hub arms) vortices shed by the hub. Both the two-per-revolution and four-per-revolution structures persisted far downstream of the hub, but the rate of dissipation was greater for the four-per-rev structures. This work provides a dataset for enhanced understanding of the fundamental physics underlying rotor hub flows and serves as validation data for future CFD analyses.
A modeling study of the role of deforestation on the climate of central and eastern Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semazzi, F.H.M.; Sun, Liqiang; Giorgi, F.
1997-11-01
This study assessed the effects of deforestation on the physical climate system of eastern and central Africa. The model used was the regional climate model (RegCM2) developed at the National Center for Atmospheric Research, and customized for the region under study. In the anomaly simulation, the land cover was systematically altered to replace the tropical forest with grass and Savannah cover. The RegCM2 realistically simulated the main features of the climate over eastern and central Africas. It was found that: (1) the rainfall dramatically decreased in 2 subregions, decreased in two subregions, increased in 1 subregion, and remained the samemore » in 1 subregion; (2) rainfall deficit mainly happened during night time over the TF subregion and daytime over the LV subregion; and (3) mean surface air temperature increased over 5 subregions and decreased in 1 subregions. Deforestation also increased the diurnal variation of surface air temperature over one subregion. 12 refs., 2 figs., 3 tabs.« less
Cyclotron resonant scattering feature simulations. II. Description of the CRSF simulation process
NASA Astrophysics Data System (ADS)
Schwarm, F.-W.; Ballhausen, R.; Falkner, S.; Schönherr, G.; Pottschmidt, K.; Wolff, M. T.; Becker, P. A.; Fürst, F.; Marcu-Cheatham, D. M.; Hemphill, P. B.; Sokolova-Lapa, E.; Dauser, T.; Klochkov, D.; Ferrigno, C.; Wilms, J.
2017-05-01
Context. Cyclotron resonant scattering features (CRSFs) are formed by scattering of X-ray photons off quantized plasma electrons in the strong magnetic field (of the order 1012 G) close to the surface of an accreting X-ray pulsar. Due to the complex scattering cross-sections, the line profiles of CRSFs cannot be described by an analytic expression. Numerical methods, such as Monte Carlo (MC) simulations of the scattering processes, are required in order to predict precise line shapes for a given physical setup, which can be compared to observations to gain information about the underlying physics in these systems. Aims: A versatile simulation code is needed for the generation of synthetic cyclotron lines. Sophisticated geometries should be investigatable by making their simulation possible for the first time. Methods: The simulation utilizes the mean free path tables described in the first paper of this series for the fast interpolation of propagation lengths. The code is parallelized to make the very time-consuming simulations possible on convenient time scales. Furthermore, it can generate responses to monoenergetic photon injections, producing Green's functions, which can be used later to generate spectra for arbitrary continua. Results: We develop a new simulation code to generate synthetic cyclotron lines for complex scenarios, allowing for unprecedented physical interpretation of the observed data. An associated XSPEC model implementation is used to fit synthetic line profiles to NuSTAR data of Cep X-4. The code has been developed with the main goal of overcoming previous geometrical constraints in MC simulations of CRSFs. By applying this code also to more simple, classic geometries used in previous works, we furthermore address issues of code verification and cross-comparison of various models. The XSPEC model and the Green's function tables are available online (see link in footnote, page 1).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-31
... the physical and biological features essential to the conservation of Casey's June beetle, and what special management considerations or protections may be required to maintain or enhance the essential... with... [the Act], on which are found those physical or biological features (I) essential to the...
Jinxue Jiang; Jinwu Wang; Xiao Zhang; Michael Wolcott
2016-01-01
Enzymatic hydrolysis of lignocellulosic biomass is highly dependent on the changes in structural features after pretreatment. Mechanical milling pretreatment is an effective approach to alter the physical structure of biomass and thus improve enzymatic hydrolysis. This study examined the influence of structural characteristics on the enzymatic hydrolysis of micronized...
Arrows as Anchors: An Analysis of the Material Features of Electric Field Vector Arrows
ERIC Educational Resources Information Center
Gire, Elizabeth; Price, Edward
2014-01-01
Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in…
Barcoding Human Physical Activity to Assess Chronic Pain Conditions
Paraschiv-Ionescu, Anisoara; Perruchoud, Christophe; Buchser, Eric; Aminian, Kamiar
2012-01-01
Background Modern theories define chronic pain as a multidimensional experience – the result of complex interplay between physiological and psychological factors with significant impact on patients' physical, emotional and social functioning. The development of reliable assessment tools capable of capturing the multidimensional impact of chronic pain has challenged the medical community for decades. A number of validated tools are currently used in clinical practice however they all rely on self-reporting and are therefore inherently subjective. In this study we show that a comprehensive analysis of physical activity (PA) under real life conditions may capture behavioral aspects that may reflect physical and emotional functioning. Methodology PA was monitored during five consecutive days in 60 chronic pain patients and 15 pain-free healthy subjects. To analyze the various aspects of pain-related activity behaviors we defined the concept of PA ‘barcoding’. The main idea was to combine different features of PA (type, intensity, duration) to define various PA states. The temporal sequence of different states was visualized as a ‘barcode’ which indicated that significant information about daily activity can be contained in the amount and variety of PA states, and in the temporal structure of sequence. This information was quantified using complementary measures such as structural complexity metrics (information and sample entropy, Lempel-Ziv complexity), time spent in PA states, and two composite scores, which integrate all measures. The reliability of these measures to characterize chronic pain conditions was assessed by comparing groups of subjects with clinically different pain intensity. Conclusion The defined measures of PA showed good discriminative features. The results suggest that significant information about pain-related functional limitations is captured by the structural complexity of PA barcodes, which decreases when the intensity of pain increases. We conclude that a comprehensive analysis of daily-life PA can provide an objective appraisal of the intensity of pain. PMID:22384191
Khan, Hassan Aqeel; Gore, Amit; Ashe, Jeff; Chakrabartty, Shantanu
2017-07-01
Physical activities are known to introduce motion artifacts in electrical impedance plethysmographic (EIP) sensors. Existing literature considers motion artifacts as a nuisance and generally discards the artifact containing portion of the sensor output. This paper examines the notion of exploiting motion artifacts for detecting the underlying physical activities which give rise to the artifacts in question. In particular, we investigate whether the artifact pattern associated with a physical activity is unique; and does it vary from one human-subject to another? Data was recorded from 19 adult human-subjects while conducting 5 distinct, artifact inducing, activities. A set of novel features based on the time-frequency signatures of the sensor outputs are then constructed. Our analysis demonstrates that these features enable high accuracy detection of the underlying physical activity. Using an SVM classifier we are able to differentiate between 5 distinct physical activities (coughing, reaching, walking, eating and rolling-on-bed) with an average accuracy of 85.46%. Classification is performed solely using features designed specifically to capture the time-frequency signatures of different physical activities. This enables us to measure both respiratory and motion information using only one type of sensor. This is in contrast to conventional approaches to physical activity monitoring; which rely on additional hardware such as accelerometers to capture activity information.
Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.
Arif, Muhammad; Kattan, Ahmed
2015-01-01
Monitoring physical activities by using wireless sensors is helpful for identifying postural orientation and movements in the real-life environment. A simple and robust method based on time domain features to identify the physical activities is proposed in this paper; it uses sensors placed on the subjects' wrist, chest and ankle. A feature set based on time domain characteristics of the acceleration signal recorded by acceleration sensors is proposed for the classification of twelve physical activities. Nine subjects performed twelve different types of physical activities, including sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing clothes and jumping rope, and lying down (resting state). Their ages were 27.2 ± 3.3 years and their body mass index (BMI) is 25.11 ± 2.6 Kg/m2. Classification results demonstrated a high validity showing precision (a positive predictive value) and recall (sensitivity) of more than 95% for all physical activities. The overall classification accuracy for a combined feature set of three sensors is 98%. The proposed framework can be used to monitor the physical activities of a subject that can be very useful for the health professional to assess the physical activity of healthy individuals as well as patients.
MacLean, Mary H; Giesbrecht, Barry
2015-07-01
Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.
Wu, Yu-Tzu; Nash, Paul; Barnes, Linda E; Minett, Thais; Matthews, Fiona E; Jones, Andy; Brayne, Carol
2014-10-22
An association between depressive symptoms and features of built environment has been reported in the literature. A remaining research challenge is the development of methods to efficiently capture pertinent environmental features in relevant study settings. Visual streetscape images have been used to replace traditional physical audits and directly observe the built environment of communities. The aim of this work is to examine the inter-method reliability of the two audit methods for assessing community environments with a specific focus on physical features related to mental health. Forty-eight postcodes in urban and rural areas of Cambridgeshire, England were randomly selected from an alphabetical list of streets hosted on a UK property website. The assessment was conducted in July and August 2012 by both physical and visual image audits based on the items in Residential Environment Assessment Tool (REAT), an observational instrument targeting the micro-scale environmental features related to mental health in UK postcodes. The assessor used the images of Google Street View and virtually "walked through" the streets to conduct the property and street level assessments. Gwet's AC1 coefficients and Bland-Altman plots were used to compare the concordance of two audits. The results of conducting the REAT by visual image audits generally correspond to direct observations. More variations were found in property level items regarding physical incivilities, with broad limits of agreement which importantly lead to most of the variation in the overall REAT score. Postcodes in urban areas had lower consistency between the two methods than rural areas. Google Street View has the potential to assess environmental features related to mental health with fair reliability and provide a less resource intense method of assessing community environments than physical audits.
ERIC Educational Resources Information Center
Asci, F. Hulya
2002-01-01
Evaluates age and gender differences in physical self-concept of Turkish university students. The Physical Self-Perception Profile was administered to participants for assessing physical self-concept. Multivariate analysis of variance revealed a significant main effect for gender, but no significant main effect for year in school. Univariate…
Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process
NASA Astrophysics Data System (ADS)
Konno, Hidetoshi; Tamura, Yoshiyasu
2018-01-01
In neural spike counting experiments, it is known that there are two main features: (i) the counting number has a fractional power-law growth with time and (ii) the waiting time (i.e., the inter-spike-interval) distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs) is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii) can be modeled by the method of SSPPs. Namely, the first one (i) associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP).
Learning From Where Students Look While Observing Simulated Physical Phenomena
NASA Astrophysics Data System (ADS)
Demaree, Dedra
2005-04-01
The Physics Education Research (PER) Group at the Ohio State University (OSU) has developed Virtual Reality (VR) programs for teaching introductory physics concepts. Winter 2005, the PER group worked with OSU's cognitive science eye-tracking lab to probe what features students look at while using our VR programs. We see distinct differences in the features students fixate on depending upon whether or not they have formally studied the related physics. Students who first make predictions seem to fixate more on the relevant features of the simulation than those who do not, regardless of their level of education. It is known that students sometimes perform an experiment and report results consistent with their misconceptions but inconsistent with the experimental outcome. We see direct evidence of one student holding onto misconceptions despite fixating frequently on the information needed to understand the correct answer. Future studies using these technologies may prove valuable for tackling difficult questions regarding student learning.
Building Undergraduate Physics Programs for the 21st Century
NASA Astrophysics Data System (ADS)
Hilborn, Robert
2001-04-01
Undergraduate physics programs in the United States are under stress because of changes in the scientific and educational environment in which they operate. The number of undergraduate physics majors is declining nationwide; there is some evidence that the "best" undergraduate students are choosing majors other than physics, and funding agencies seem to be emphasizing K-12 education. How can physics departments respond creatively and constructively to these changes? After describing some of the details of the current environment, I will discuss the activities of the National Task Force on Undergraduate Physics, supported by the American Institute of Physics, the America Physical Society, the American Association of Physics Teachers and the ExxonMobil Foundation. I will also present some analysis of Task Force site visits to departments that have thriving undergraduate physics programs, pointing out the key features that seem to be necessary for success. Among these features are department-wide recruitment and retention efforts that are the theme of this session.
Caravaca, Juan; Soria-Olivas, Emilio; Bataller, Manuel; Serrano, Antonio J; Such-Miquel, Luis; Vila-Francés, Joan; Guerrero, Juan F
2014-02-01
This work presents the application of machine learning techniques to analyse the influence of physical exercise in the physiological properties of the heart, during ventricular fibrillation. To this end, different kinds of classifiers (linear and neural models) are used to classify between trained and sedentary rabbit hearts. The use of those classifiers in combination with a wrapper feature selection algorithm allows to extract knowledge about the most relevant features in the problem. The obtained results show that neural models outperform linear classifiers (better performance indices and a better dimensionality reduction). The most relevant features to describe the benefits of physical exercise are those related to myocardial heterogeneity, mean activation rate and activation complexity. © 2013 Published by Elsevier Ltd.
Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming
2015-01-01
Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832
NASA Astrophysics Data System (ADS)
Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou
2016-06-01
Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the seismological history of an area, as well as the characteristics of the parent geothermal fluids, adding an effective tool for geothermal exploration tasks.
[Clinical features and comorbidities of Asperger syndrome in children].
Fu, Xiao-Yan; Xie, Xiao-Tian; Mei, Zhu; Cheng, Wen-Hong
2013-09-01
To investigate and summarize the clinical features and comorbidities of Asperger syndrome (AS) in children and to provide a theoretical basis for improving the understanding and diagnosis of AS. Inquiry of medical history, physical examination, behavioral observation, psychiatric examination, questionnaire survey, and the Wechsler Intelligence Scale were used to summarize and analyse the clinical data of 95 children with AS, including chief complaint, symptoms, perinatal and familial conditions, family genetic history, and common comorbidities. AS was more common in male children, with hyperactivity, inattention, and social withdrawal as frequent chief complaints. The main clinical manifestations included poor communication skills (95%), restricted interest (82%), repetitive and stereotyped patterns of behavior (77%), semantic comprehension deficit (74%), and indiscipline (68%). Verbal IQ was higher than performance IQ in most patients. The comorbidities of AS included attention deficit hyperactivity disorder (ADHD) (39%), emotional disorder (18%), and schizophrenia (2%); emotional disorder was more common in patients aged 13-16 years, while ADHD was more common in patients aged 7-16 years. Among these patients, 61% had fathers with introverted personality, 43% had mothers with introverted personality, and 19% had a family history of mental illness. AS has specific clinical manifestations. It is essential to know more about the clinical features and comorbidities of AS, which is helpful for early identification and diagnosis of AS.
NASA Astrophysics Data System (ADS)
Pasquato, Mario; Chung, Chul
2016-05-01
Context. Machine-learning (ML) solves problems by learning patterns from data with limited or no human guidance. In astronomy, ML is mainly applied to large observational datasets, e.g. for morphological galaxy classification. Aims: We apply ML to gravitational N-body simulations of star clusters that are either formed by merging two progenitors or evolved in isolation, planning to later identify globular clusters (GCs) that may have a history of merging from observational data. Methods: We create mock-observations from simulated GCs, from which we measure a set of parameters (also called features in the machine-learning field). After carrying out dimensionality reduction on the feature space, the resulting datapoints are fed in to various classification algorithms. Using repeated random subsampling validation, we check whether the groups identified by the algorithms correspond to the underlying physical distinction between mergers and monolithically evolved simulations. Results: The three algorithms we considered (C5.0 trees, k-nearest neighbour, and support-vector machines) all achieve a test misclassification rate of about 10% without parameter tuning, with support-vector machines slightly outperforming the others. The first principal component of feature space correlates with cluster concentration. If we exclude it from the regression, the performance of the algorithms is only slightly reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, A.; Pilloni, A.; Polosa, Antonio D.
Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building.more » Lastly, data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.« less
Impulse-induced localized control of chaos in starlike networks.
Chacón, Ricardo; Palmero, Faustino; Cuevas-Maraver, Jesús
2016-06-01
Locally decreasing the impulse transmitted by periodic pulses is shown to be a reliable method of taming chaos in starlike networks of dissipative nonlinear oscillators, leading to both synchronous periodic states and equilibria (oscillation death). Specifically, the paradigmatic model of damped kicked rotators is studied in which it is assumed that when the rotators are driven synchronously, i.e., all driving pulses transmit the same impulse, the networks display chaotic dynamics. It is found that the taming effect of decreasing the impulse transmitted by the pulses acting on particular nodes strongly depends on their number and degree of connectivity. A theoretical analysis is given explaining the basic physical mechanism as well as the main features of the chaos-control scenario.
NASA Astrophysics Data System (ADS)
Espath, L.; Pinto, L.; Laizet, S.; Silvestrini, J.; Scientific Team of DNS on Gravity Currents
2013-05-01
Gravity currents are very common in nature, either in atmosphere (due to sea-breeze fronts), in mountain avalanches (in airborne snow or debris flow), or in the ocean due to turbidity currents or river plumes (Simpson, 1982). In this numerical study, we focus on particle-laden hyperpycnal flows (negative-buoyancy), where the dynamics play a central role in the formation of hydrocarbon reservoirs (Meiburg & Kneller, 2009). Moreover, these particle-driven gravity currents are often extremely dangerous for the stability of submarine structures placed near the sea-floor (like pipelines or submarines cables). It is clear that the understanding of the physical mechanism associated with these currents and the correct prediction of their main features are of great importance for practical as well as theoretical purposes. For this numerical work, we are interested in the prediction of a mono-disperse dilute suspension particle-laden flow in the typical lock-exchange configuration. We consider only flat surfaces using DNS (Direct Numerical Simulation). Our approach takes into account the possibility of particles deposition but ignores erosion and/or re-suspension. Previous results for this kind of flows were obtained in laboratory experiments with Reynolds numbers up to 10400 (De Rooij & Dalziel, 2001), or by numerical simulations at moderate Reynolds numbers, up to 5000 for a 2D case (Nasr-Azadani, Hall & Meiburg, 2011) and up to 2236 for a 3D (Necker, Härtel, Kleiser & Meiburg, 2002) case with a Reynolds number based on the buoyancy velocity. It was shown that boundary conditions, initial lock configuration and different particle sizes can have a strong influence on the main characteristics of this kind of flows. The main objective of this numerical study is to undertake unprecedented simulations in order to focus on the turbulence and to investigate the effect of the Reynolds number in such flows. We want to investigate the turbulent mechanism in gravity currents such as local production and dissipation and their relationships with the main features of the flow for different Reynolds numbers, ranging from 2236 to 10000 for 2D and 3D cases. The main features of the flow will be related to the temporal evolution of the front location, sedimentation rate and the resulting streamwise deposit profiles. In particular, we will investigate the flow energy budget where the balance between kinetic and potential energy with dissipation (due to convective fluid motion and Stokes flow around particles) will be analysed in detail, using comparisons with previous experimental and numerical works.
Latorre-Román, Pedro Á; Arévalo-Arévalo, Juan Manuel; García-Pinillos, Felipe
2016-06-03
Aging is a complex physiological process whose main feature is the progressive loss of functionality, which may be delayed or attenuated by improving physical fitness. To determine the association between leg strength and the muscle cross-sectional area of the quadriceps femoris in relation to physical activity level in the elderly. Thirty-two functionally autonomous people over 80 years (men: 82.80±2.09 years; women: 83.77±4.09 years) participated in this study. The Barthel Index, the Yale Physical Activity Survey and the Chair Stand Test were the instruments used. There were significant differences between sexes in muscle area (p<0.001) in the Chair Stand Test (p=0.028) and the walk index (p=0.029), with higher values in men. The muscle area and the Chair Stand Test correlated significantly with the walk index (r=0.445, p<0.005, and r=0.522, p<0.001, respectively) and the total weekly activity index (r=0.430, p<0.005, and r=0.519, p<0.001, respectively). In the multiple linear regression models for the total weekly activity index, muscle area and the Chair Stand Test, only the latter behaved as a predictor variable. Muscle strength and muscle mass of quadriceps showed a significant association with the physical activity level in older people. Leg muscle strength was useful to reveal muscle mass and physical activity level in older people, which is relevant as a clinical practice indicator.
Chau, Josephine Y; Bonfiglioli, Catriona; Zhong, Amy; Pedisic, Zeljko; Daley, Michelle; McGill, Bronwyn; Bauman, Adrian
2017-08-01
Issue addressed This study examines how sedentary behaviour (too much sitting) was covered as a health issue by Australian newspapers and how physical activity was framed within this newspaper coverage. Methods Articles featuring sedentary behaviour published in Australian newspapers between 2000 and 2012 were analysed for content and framing. Main outcome measures were volume, number and content of newspaper articles; framing and types of sedentary behaviour; responsibility for the problem of and solutions to high levels of sedentary behaviour; and physical activity mentions and how it was framed within sedentary behaviour coverage. Results Out of 48 articles, prolonged sitting was framed as bad for health (52%) and specifically as health compromising for office workers (25%). Adults who sat a lot were framed as 'easy targets' for ill health (21% of headlines led with 'sitting ducks' or 'sitting targets'). Prolonged sitting was framed as an issue of individual responsibility (>90%) with less mention of environmental and sociocultural contributors. Thirty-six of 48 articles mentioned physical activity; 39% stated that being physically active does not matter if a person sits for prolonged periods of time or that the benefits of physical activity are undone by too much sitting. Conclusions News coverage should reflect the full socio-ecological model of sedentary behaviour and continually reinforce the independent and well-established benefits of health-enhancing physical activity alongside the need to limit prolonged sitting. So what? It is important that the entire 'move more, sit less, every day!' message is communicated by news media.
Gerber, Markus; Pühse, Uwe
2008-10-01
Stressful experiences occupy a central role in most etiological models of developmental psychopathology. Stress alone, however, insufficiently explains negative health outcomes. This raises the question why some children and adolescents are more vulnerable to the development of psychopathological symptoms than others. The primary purpose of this research was to demonstrate whether leisure time physical activity and self-esteem protect against stress-induced health problems. The findings are based on a cross-sectional study of 407 Swiss boys and girls (M=14.01 years). All variables are self-reported. Analyses of covariance were applied to test for main and moderator effects. The findings suggest that school-based stress and psychosomatic complaints are important issues during adolescence. The results show that a higher level of psychosomatic complaints accompanies stress. Surprisingly, psychosomatic complaints and physical activity were unrelated. Likewise, no association was found between physical activity and stress. In contrast, students with high self-esteem reported significantly less complaints and a lower extent of perceived stress. Finally, the results do not support the stress-moderation hypothesis. Neither physical activity nor self-esteem buffered against the detrimental effects of school-based stress on psychosomatic health. The findings lend support to previous research with German-speaking samples but are in marked contrast to Anglo-Saxon studies, which generally support the role of physical activity as a moderator of the health-illness relationship. In this investigation, developmental features and methodological limitations may have accounted for the insignificant results.
Youth Physical Activity Resources Use and Activity Measured by Accelerometry
Maslow, Andréa L.; Colabianchi, Natalie
2014-01-01
Objectives To examine whether utilization of physical activity resources (eg, parks) was associated with daily physical activity measured by accelerometry. Methods 111 adolescents completed a travel diary with concurrent accelerometry. The main exposure was self-reported utilization of a physical activity resource (none/1+ resources). The main outcomes were total minutes spent in daily 1) moderate-vigorous physical activity and 2) vigorous physical activity. Results Utilizing a physical activity resource was significantly associated with total minutes in moderate-vigorous physical activity. African-Americans and males had significantly greater moderate-vigorous physical activity. Conclusions Results from this study support the development and use of physical activity resources. PMID:21204684
Youth physical activity resource use and activity measured by accelerometry.
Maslow, Andréa L; Colabianchi, Natalie
2011-01-01
To examine whether use of physical activity resources (eg, parks) was associated with daily physical activity measured by accelerometry. One hundred eleven adolescents completed a travel diary with concurrent accelerometry. The main exposure was self-reported use of a physical activity resource (none /1+ resources). The main outcomes were total minutes spent in daily (1) moderate-vigorous physical activity and (2) vigorous physical activity. Using a physical activity resource was significantly associated with total minutes in moderate-vigorous physical activity. African Americans and males had significantly greater moderate-vigorous physical activity. Results from this study support the development and use of physical activity resources.
Who will study HSC physics? Relationships between motivation, engagement and choice
NASA Astrophysics Data System (ADS)
Abraham, Jessy
This study investigates the relationship between students' achievement motivation, sustained engagement and sustained enrolment intentions, in relation to senior secondary physics. Specifically, this study sought to determine the motivational factors that predict students' sustained engagement and sustained enrolment intentions in four physics modules, and tested whether there were gender differences. These issues were addressed through a multi-occasional exploration among senior secondary students in New South Wales during their first year of elective physics. This study pioneered an innovative approach to exploring sustained enrolment intentions in the enacted physics curriculum, since students were asked about their enrolment plans at a time when they were actually studying physics modules, rather than before they had studied the subject, which as has been the case for most research on science enrolment. An achievement motivation theoretical framework was employed to provide a more comprehensive explanation of students' sustained physics engagement and enrolment plans. A significant feature of this exploration is the topic (module) specificity of motivation. This study, based on Expectancy-Value (EV) theoretical underpinnings, has implications for strengthening physics enrolment research, and makes a significant contribution to advancing research and practice. While the declining trend in physics enrolment and the widening gender imbalance in physics participation have been explored widely, the retention of students in physics courses remains largely unexplored. The existing research mainly focuses on the main exit point from physics education, which is the transition from a general science course to non-compulsory, more specialised science courses that takes place during the transition from junior high school to senior high school in Australia. Another major exit point from physics education is the transition from senior high school to tertiary level. However, the Australian senior high school structure, where students can opt out of physics after the first year of senior secondary physics if they do not want to continue it to the final year, provides a unique exit point from physics education. This investigation examines the sustained enrolment intentions of students during their senior high school, and this adds an innovative variation to the enrolment research tradition. It further makes an original contribution to educational theory by fine-grained analysis of the retention motivations of physics students while they are studying the subject. The purpose of the study is to contribute to theory, practice and research knowledge of students' sustained engagement and enrolment plans in physics. The findings of the study inform educational practitioners and policy makers. A reliable, valid and gender invariant scale to measure the motivational and behavioural patterns of adolescent students across four physics modules was developed and tested specifically for this study. This provides researchers and educational practitioners with a sensitive measuring instrument of physics enrolment motivation. Furthermore, this study extends the current understanding of gender differences in major achievement motivational constructs and engagement constructs in relation to physics. Findings from this research hold important implications for understanding the motivational factors that affect student engagement, and also for educational practice and research relating to students' enrolment in physics.
Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System
Beruvides, Gerardo
2017-01-01
Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.). The obstacle recognition library is designed and implemented to address the design and evaluation of obstacle detection in a transportation cyber-physical system. The library is integrated into a co-simulation framework that is supported on the interaction between SCANeR software and Matlab/Simulink. From the best of the authors’ knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip light detection and ranging sensors in a cyber-physical system, for traffic scenarios, is presented. The cyber-physical system is designed and implemented in SCANeR. Secondly, three specific artificial intelligence-based methods for obstacle recognition libraries are also designed and applied using a sensory information database provided by SCANeR. The computational library has three methods for obstacle detection: a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods under different weather conditions is presented, with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and foggy conditions, the support vector machine in rainy conditions and the self-organized map in snowy conditions. PMID:28906450
NASA Astrophysics Data System (ADS)
Stassun, Keivan; Holley-Bockelmann, K.; Berlind, A. A.
2013-01-01
We briefly review the current status of underrepresented minorities in the physical sciences: The underrepresentation of Black-, Hispanic-, and Native-Americans is an order of magnitude problem. We then describe the Fisk-Vanderbilt Masters-to-PhD Bridge program as a successful model for effective partnerships with minority-serving institutions toward addressing this problem. Since 2004 the program has admitted 60 students, 54 of them underrepresented minorities (60% female), with a retention rate of 92%. The program leads the nation in master’s degrees in physics for African Americans, is one of the top ten producers of physics master’s degrees among all US citizens in general, and has become the nation’s top producer of underrepresented minority PhDs in physics, astronomy, and materials science. We summarize the main features of the program including two of its core strategies: (1) partnering a minority-serving institution and a major research university through collaborative research, and (2) using the master’s degree as a deliberate stepping stone to the PhD. We also specifically discuss one of the emerging core theories of the program: the concept of properly identifying students with 'unrealized or unrecognized potential'. We discuss our methods to recognize and select for unrealized potential during the admissions process, and how we cultivate that unrealized potential toward development of successful scientists and leaders.
The Peculiar Status of the Second Law of Thermodynamics and the Quest for its Violation
NASA Astrophysics Data System (ADS)
D'Abramo, Germano
2012-11-01
Even though the second law of thermodynamics holds the supreme position among the laws of nature, as stated by many distinguished scientists, notably Eddington and Einstein, its position appears to be also quite peculiar. Given the atomic nature of matter, whose behaviour is well described by statistical physics, the second law could not hold unconditionally, but only statistically. It is not an absolute law. As a result of this, in the present paper we try to argue that we have not yet any truly cogent argument (known fundamental physical laws) to exclude its possible macroscopic violation. Even Landauer's information-theoretic principle seems to fall short of the initial expectations of being the fundamental `physical' reason of all Maxwell's demons failure. Here we propose a modified Szilard engine which operates without any steps in the process resembling the creation or destruction of information. We argue that the information-based exorcisms must be wrong, or at the very least superfluous, and that the real physical reason why such engines cannot work lies in the ubiquity of thermal fluctuations (and friction). We see in the above peculiar features the main motivation and rationale for pursuing exploratory research to challenge the second law, which is still ongoing and probably richer than ever. A quite thorough (and critical) description of some of these challenges is also given.
The peculiar status of the second law of thermodynamics and the quest for its violation
NASA Astrophysics Data System (ADS)
D'Abramo, Germano
2012-11-01
Even though the second law of thermodynamics holds the supreme position among the laws of nature, as stated by many distinguished scientists, notably Eddington and Einstein, its position appears to be also quite peculiar. Given the atomic nature of matter, whose behavior is well described by statistical physics, the second law could not hold unconditionally, but only statistically. It is not an absolute law. As a result of this, in the present paper we try to argue that we have not yet any truly cogent argument (known fundamental physical laws) to exclude its possible macroscopic violation. Even Landauer's information-theoretic principle seems to fall short of the initial expectations of being the fundamental 'physical' reason of all Maxwell's demons failure. Here we propose a modified Szilard engine which operates without any steps in the process resembling the creation or destruction of information. We argue that the information-based exorcisms must be wrong, or at the very least superfluous, and that the real physical reason why such engines cannot work lies in the ubiquity of thermal fluctuations (and friction). We see in the above peculiar features the main motivation and rationale for pursuing exploratory research to challenge the second law, which is still ongoing and probably richer than ever. A quite thorough (and critical) description of some of these challenges is also given.
Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System.
Castaño, Fernando; Beruvides, Gerardo; Haber, Rodolfo E; Artuñedo, Antonio
2017-09-14
Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.). The obstacle recognition library is designed and implemented to address the design and evaluation of obstacle detection in a transportation cyber-physical system. The library is integrated into a co-simulation framework that is supported on the interaction between SCANeR software and Matlab/Simulink. From the best of the authors' knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip light detection and ranging sensors in a cyber-physical system, for traffic scenarios, is presented. The cyber-physical system is designed and implemented in SCANeR. Secondly, three specific artificial intelligence-based methods for obstacle recognition libraries are also designed and applied using a sensory information database provided by SCANeR. The computational library has three methods for obstacle detection: a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods under different weather conditions is presented, with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and foggy conditions, the support vector machine in rainy conditions and the self-organized map in snowy conditions.
Modern studies of the Lunar Physical libration at the Kazan University
NASA Astrophysics Data System (ADS)
Petrova, Natalia; Hanada, Hideo; Nefedyev, Yuri; Gusev, Alexander
Main results in investigation of the lunar physical libration in the Kazan University are presented in the report. Modern problems in the lunar spin-dynamics are considered. The accent is done on the fine phenomena of the lunar libration caused by complicated interior structure. Parameters of a free libration are discussed; geometrical interpretation of the chandler-like and free core nutation is given. Over the past 10 years a creative cooperation has been formed between scientists of the Kazan University and the National Astronomical Observatory of Japan (Mizusava). The project ILOM (In situ Lunar Orientation Measurement), planned in the frame of SELENE-2 or -3 missions is aimed at monitoring the physical libration of the Moon. The Russian side has taken over some of the theoretical tasks to ensure the planned observations. One of the important elements of the project is placing of a small optical telescope on the lunar surface with the purpose to detect the lunar physical libration with millisecond accuracy. Computer simulation of the future observations is being done with the purpose of their optimization: effective placement of measuring system on the lunar surface, testing of sensitivity of new observations to various features of the lunar interior structure. The results of the first stage of the simulation are presented in the paper. At this stage the software for the selection of stars and reduction of their coordinates onto the period of observations is developed, the tracks for the selected stars are constructed and analyzed, their sensitivity to the internal characteristics of the lunar body, in the first place, to the selenopotential coefficients, is tested. Inverse problem of lunar physical libration is formulated and solved. It is shown that selenographic coordinates of polar stars are insensitive to longitudinal librations tau(t). Comparing coordinates calculated for two models of a rigid and deformable Moon is carried out and components sensitive to Love number k _{2} are revealed. Analytical theory of physical libration was very convenient tool for modeling the upcoming observations. The main outcome of this collaboration was the understanding of the strategy and tactics of building an improved analytical theory of physical libration. This work was supported by RFBR grant No. 13-02-00792.
Gunter, B; Furnham, A
1984-06-01
This paper reports two studies which examined the mediating effects of programme genre and physical form of violence on viewers' perceptions of violent TV portrayals. In Expt 1, a panel of British viewers saw portrayals from five programme genres: British crime-drama series, US crime-drama series, westerns, science-fiction series and cartoons which feature either fights or shootings. In Expt. 2, the same viewers rated portrayals from British crime-drama and westerns which featured four types of violence, fist-fights, shootings, stabbings and explosions. All scenes were rated along eight unipolar scales. Panel members also completed four subscales of a personal hostility inventory. Results showed that both fictional setting and physical form had significant effects on viewers' perceptions of televised violence. British crime-drama portrayals, and portrayals that featured shootings and stabbings, were rated as most violent and disturbing. Also, there were strong differences between viewers with different self-reported propensities towards either verbal or physical aggression. More physically aggressive individuals tended to perceive physical unarmed violence as less violent than did more verbally aggressive types.
ERIC Educational Resources Information Center
Aslan, Cem Sinan
2016-01-01
The aim of this study is to compare the multiple intelligence areas of a group of physical education and sports students according to their demographic features. In the study, "Multiple Intelligence Scale", consisting of 27 items, whose Turkish validity and reliability study have been done by Babacan (2012) and which is originally owned…
Power electronics substrate for direct substrate cooling
Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA
2012-05-01
Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.
Memory for Physical Features of Discourse as a Function of Their Relevance.
ERIC Educational Resources Information Center
Fisher, Ronald P.; Cuervo, Asela
Memory for sex of the speaker and language of presentation of a spoken message was high and reliably better when the features were instrumental for comprehending the message than when they were not. This suggests that the physical characteristics of an event may be deeply or elaborately encoded when they are meaningful in light of the task…
ERIC Educational Resources Information Center
Educational Facilities Labs., Inc., New York, NY.
A description is presented of the design features of a high school's geodesic dome field house. Following consideration of various design features and criteria for the physical education facility, a comprehensive analysis is given of comparative costs of a geodesic dome field house and conventional gymnasium. On the basis of the study it would…
Velocity-curvature patterns limit human-robot physical interaction
Maurice, Pauline; Huber, Meghan E.; Hogan, Neville; Sternad, Dagmar
2018-01-01
Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration. PMID:29744380
Velocity-curvature patterns limit human-robot physical interaction.
Maurice, Pauline; Huber, Meghan E; Hogan, Neville; Sternad, Dagmar
2018-01-01
Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration.
NASA Astrophysics Data System (ADS)
Lackner, Bettina C.; Kirchengast, Gottfried
2015-04-01
Besides written and spoken language, graphical displays play an important role in communicating scientific findings or explaining scientific methods, both within one and between various disciplines. Uncertainties and probabilities are generally difficult to communicate, especially via graphics. Graphics including uncertainty sometimes need detailed written or oral descriptions to be understood. "Good" graphics should ease scientific communication, especially amongst different disciplines. One key objective of the Doctoral Programme "Climate Change: Uncertainties, Thresholds and Coping Strategies" (http://dk-climate-change.uni-graz.at/en/), located at the University of Graz, is to reach a better understanding of climate change uncertainties by bridging research in multiple disciplines, including physical climate sciences, geosciences, systems and sustainability sciences, environmental economics, and climate ethics. This asks for efforts into the formulation of a "common language", not only as to words, but also as to graphics. The focus of this work is on two topics: (1) What different kinds of uncertainties (e.g., data uncertainty, model uncertainty) are included in the graphics of the recent IPCC reports of all three working groups (WGs) and in what ways do uncertainties get illustrated? (2) How are these graphically displayed uncertainties perceived by researchers of a similar research discipline and from researchers of different disciplines than the authors of the graphics? To answer the first question, the IPCC graphics including uncertainties are grouped and analyzed with respect to different kinds of uncertainties to filter out most of the commonly used types of displays. The graphics will also be analyzed with respect to their WG origin, as we assume that graphics from researchers rooted in, e.g., physical climate sciences and geosciences (mainly IPCC WG 1) differ from those of researchers rooted in, e.g., economics or system sciences (mainly WG 3). In a subsequent analysis, some basic types of graphics displaying uncertainty are selected to serve as input for the construction of "makeshift graphics" (displaying only the main features but including no detailed title or caption). These makeshift graphics are then used to assess how the displayed features are perceived and understood by researchers of various disciplines. In this initial study, this analysis will be based on results of a workshop including the wide diversity of researchers within the FWF-DK Climate Change. We will present first results of this work.
Entangling mobility and interactions in social media.
Grabowicz, Przemyslaw A; Ramasco, José J; Gonçalves, Bruno; Eguíluz, Víctor M
2014-01-01
Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someone's location from their friends' locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite) is used for validation. Our model reproduces various topological and physical properties of the networks not captured by models uncoupling mobility and social interactions such as: i) the total size of the connected components, ii) the distance distribution between connected users, iii) the dependence of the reciprocity on the distance, iv) the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by a simplified version of our model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.
Modern halolites (halite oolites) in the Tuz Gölü, Turkey
NASA Astrophysics Data System (ADS)
Tekin, E.; Ayyildiz, T.; Gündoğan, İ.; Orti, F.
2007-03-01
Halite oolites (halolites) and pisoids (halopisoids) precipitate yearly (in summer) in the brine conduits of the saltpans in the Tuz Gölü saline lake (Central Anatolia, Turkey). These halolites are well rounded and spherical, ranging between 0.7 and 2 cm in size. They are composed of coarse-grained halite crystals as the nucleus, and by concentric halite laminae with a radial fabric as the cortex. The cortex is subdivided into inner, middle, and outer zones, each zone showing different mineralogical and morphological features. These features include the presence of: organic matter particles, native sulphur globules, gypsum-anhydrite-calcite laminae, quartz-chlorite-celestite-thermonatrite laminae, submicroscopic halite crystals, and microborings, cavities and corrosion-like structures. Our observations in the Tuz Gölü saltpan environment and in the halolite fabrics suggest that (1) an intermittent supply of heavy brines from the saline lake into the saltpan conduits, which occur under agitated conditions during pumping operations, is the main genetic reason for the halolite formation; and that (2) physical, chemical and biological factors exert a significant influence on the mineralogical-textural complexity of the cortex.
Down Syndrome - Genetics and Cardiogenetics.
Plaiasu, Vasilica
2017-09-01
During the last years, Down syndrome has been the focus of special attention. Down syndrome is a genetic disorder characterized by distinct physical features and some degree of cognitive disability. Patients with Down syndrome also present many other congenital anomalies. The mapping for phenotypes to specific regions of chromosome 21 permits to identify which genes (or small regions) contribute to the phenotypic features of Down syndrome and thus, to understand its pathogenesis. Mainly there are three cytogenetic forms of Down syndrome: free trisomy 21, mosaic trisomy 21 and robertsonian translocation trisomy 21. Prenatal and postnatal testing has become commonly used to diagnose different cases presenting the same pathology. Early clinical diagnosis is extremely important for patient prognosis. Lately, advances in Down syndrome research have been registered, but little is known about cardiovascular phenotype in Down syndrome. About half of patients with Down syndrome have congenital heart disease, and atrioventricular septal defects are the most common defects found. Basic research on Down syndrome is now rapidly accelerating, using new genomic technologies. There were many studies performed to identify a correlation between genotype and phenotype in Down syndrome.
Zahoor; Sun, Dan; Li, Ying; Wang, Jing; Tu, Yuanyuan; Wang, Yanting; Hu, Zhen; Zhou, Shiguang; Wang, Lingqiang; Xie, Guosheng; Huang, Jianliang; Alam, Aftab; Peng, Liangcai
2017-11-01
In this study, two rice cultivars were collected from experimental fields with seven nitrogen fertilizer treatments. All biomass samples contained significantly increased cellulose contents and reduced silica levels, with variable amounts of hemicellulose and lignin from different nitrogen treatments. Under chemical (NaOH, CaO, H 2 SO 4 ) and physical (hot water) pretreatments, biomass samples exhibited much enhanced hexoses yields from enzymatic hydrolysis, with high bioethanol production from yeast fermentation. Notably, both degree of polymerization (DP) of cellulose and xylose/arabinose (Xyl/Ara) ratio of hemicellulose were reduced in biomass residues, whereas other wall polymer features (cellulose crystallinity and monolignol proportion) were variable. Integrative analysis indicated that cellulose DP, hemicellulosic Xyl/Ara and silica are the major factors that significantly affect cellulose crystallinity and biomass saccharification. Hence, this study has demonstrated that nitrogen fertilizer supply could largely enhance biomass saccharification in rice cultivars, mainly by reducing cellulose DP, hemicellulosic Xyl/Ara and silica in cell walls. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fang, Jin-Qing; Li, Yong
2010-02-01
A large unified hybrid network model with a variable speed growth (LUHNM-VSG) is proposed as third model of the unified hybrid network theoretical framework (UHNTF). A hybrid growth ratio vg of deterministic linking number to random linking number and variable speed growth index α are introduced in it. The main effects of vg and α on topological transition features of the LUHNM-VSG are revealed. For comparison with the other models, we construct a type of the network complexity pyramid with seven levels, in which from the bottom level-1 to the top level-7 of the pyramid simplicity-universality is increasing but complexity-diversity is decreasing. The transition relations between them depend on matching of four hybrid ratios (dr, fd, gr, vg). Thus the most of network models can be investigated in the unification way via four hybrid ratios (dr, fd, gr, vg). The LUHNM-VSG as the level-1 of the pyramid is much better and closer to description of real-world networks as well as has potential application.
Evaluation of the physical process controlling beach changes adjacent to nearshore dredge pits
Benedet, L.; List, J.H.
2008-01-01
Numerical modeling of a beach nourishment project is conducted to enable a detailed evaluation of the processes associated with the effects of nearshore dredge pits on nourishment evolution and formation of erosion hot spots. A process-based numerical model, Delft3D, is used for this purpose. The analysis is based on the modification of existing bathymetry to simulate "what if" scenarios with/without the bathymetric features of interest. Borrow pits dredged about 30??years ago to provide sand for the nourishment project have a significant influence on project performance and formation of erosional hot spots. It was found that the main processes controlling beach response to these offshore bathymetric features were feedbacks between wave forces (roller force or alongshore component of the radiation stress), pressure gradients due to differentials in wave set-up/set-down and bed shear stress. Modeling results also indicated that backfilling of selected borrow sites showed a net positive effect within the beach fill limits and caused a reduction in the magnitude of hot spot erosion. ?? 2008 Elsevier B.V. All rights reserved.
Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model
NASA Astrophysics Data System (ADS)
Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel
2017-11-01
The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range ( 0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.
Predictability and prediction of the total number of winter extremely cold days over China
NASA Astrophysics Data System (ADS)
Luo, Xiao; Wang, Bin
2018-03-01
The current dynamical climate models have limited skills in predicting winter temperature in China. The present study uses physics-based empirical models (PEMs) to explore the sources and limits of the seasonal predictability in the total number of extremely cold days (NECD) over China. A combined cluster-rotated EOF analysis reveals two sub-regions of homogeneous variability among hundreds of stations, namely the Northeast China (NE) and Main China (MC). This reduces the large-number of predictands to only two indices, the NCED-NE and NCED-MC, which facilitates detection of the common sources of predictability for all stations. The circulation anomalies associated with the NECD-NE exhibit a zonally symmetric Arctic Oscillation-like pattern, whereas those associated with the NECD-MC feature a North-South dipolar pattern over Asia. The predictability of the NECD originates from SST and snow cover anomalies in the preceding September and October. However, the two regions have different SST predictors: The NE predictor is in the western Eurasian Arctic while the MC predictor is over the tropical-North Pacific. The October snow cover predictors also differ: The NE predictor primarily resides in the central Eurasia while the MC predictor is over the western and eastern Eurasia. The PEM prediction results suggest that about 60% (55%) of the total variance of winter NECD over the NE (Main) China are likely predictable 1 month in advance. The NECD at each station can also be predicted by using the four predictors that were detected for the two indices. The cross-validated temporal correlation skills exceed 0.70 at most stations. The physical mechanisms by which the autumn Arctic sea ice, snow cover, and tropical-North Pacific SST anomalies affect winter NECD over the NE and Main China are discussed.
NASA Astrophysics Data System (ADS)
Wongmanerod, S.; Holtz, P. O.; Reginski, K.; Bugaiski, M.; Monemar, B.
The influence of high Be-acceptor doping on the modulation-doped GaAs/Al0.3Ga0.7As quantum wells structures has been optically studied by using the low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) techniques.The modulation doped samples were grown by the molecular-beam epitaxy technique with a varying Be acceptor concentration ranging from 1×1018 to 8×1018cm-3. Several novels physical effects were observed. The main effect is a significant shift of the main emission towards lower energies as the doping concentrations increase. There are two contradictory mechanisms, which determine the peak energy of the main emission; the shrinkage of the effective bandgap due to many body effects and the reduction of the exciton binding energy due to the carrier screening effect. We conclude that the first one is the dominating effect. At a sufficiently high doping concentration (roughly 2×1018cm-3), the lineshape of the main PL emission is modified, and a new feature, the so called Fermi-edge singularity (FES), appears on the high energy side of the PL emission and exhibits a blue-shift as a function of doping concentration. This feature has been found to be very sensitive to a temperature change, already in the range of 4.4-50K. In addition, PLE spectra with a suitable detection energy show that the absorption edge is blue-shifted with respect to the PL main emission. The resulting Stoke shift is due to phase-space-filling of the carriers, in agreement with the FES interpretation. Finally, we have found from the PLE spectra that the exciton quenching is initiated in the same doping regime. Compared to the exciton quenching in other p-type structures, the critical acceptor concentration required to quench the excitons is significantly lower than in the case of 2D structures with acceptor doping within the well, but larger than in the case of 3D bulk.
Schendan, Haune E; Kutas, Malra
2007-08-01
Transfer appropriate processing (TAP) accounts propose that memory is a function of the degree to which the same neural processes transfer appropriately from the study experience to the memory test. However, in prior research, study and test stimuli were often similar physically. In two experiments, event-related brain potentials (ERPs) were recorded to fragmented objects during an indirect memory test to isolate transfer of a specific perceptual process from overlap of physical features between experiences. An occipitotemporoparietal P2(00) at 200 msec showed implicit memory effects only when similar perceptual grouping processes of good continuation were repeatedly engaged-despite physical feature differences--as TAP accounts hypothesize. This result provides direct neurophysiological evidence for the critical role of process transfer across experiences for memory.
Playground usage and physical activity levels of children based on playground spatial features.
Reimers, Anne K; Knapp, Guido
2017-01-01
Being outdoors is one of the strongest correlates of physical activity in children. Playgrounds are spaces especially designed to enable and foster physical activity in children. This study aimed to analyze the relationship between the spatial features of public playgrounds and the usage and physical activity levels of children playing in them. A quantitative, observational study was conducted of ten playgrounds in one district of a middle-sized town in Germany. Playground spatial features were captured using an audit instrument and the playground manual of the town. Playground usage and physical activity levels of children were assessed using a modified version of the System for Observing Play and Leisure Activity in Youth. Negative binomial models were used to analyze the count data. The number of children using the playgrounds and the number of children actively playing in them were higher in those with more varied facilities and without naturalness. Girls played more actively in playgrounds without multi-purpose areas. Cleanliness, esthetics, play facility quality, division of functional areas and playground size were not related to any outcome variable. Playground spatial features are related to playground usage and activity levels of the children in the playgrounds. Playgrounds should offer a wide variety of play facilities and provide spaces for diverse play activities to respond to the needs of large numbers of different children and to provide activity-friendly areas enabling their healthy development.
Effects of Badminton on Physical Developments of Males with Physical Disability
ERIC Educational Resources Information Center
Yüksel, Mehmet Fatih
2018-01-01
This study was realized in order to determine the features of the male badminton players with physical disability, and to examine the effects of badminton on physical developments of individuals with physical disability. Totally 59 males voluntarily participated in the study, 35 of whom were male badminton players with physical disability (n = 35,…
"Big eye" surgery: the ethics of medicalizing Asian features.
Aquino, Yves Saint James
2017-06-01
The popularity of surgical modifications of race-typical features among Asian women has generated debates on the ethical implications of the practice. Focusing on blepharoplasty as a representative racial surgery, this article frames the ethical discussion by viewing Asian cosmetic surgery as an example of medicalization, which can be interpreted in two forms: treatment versus enhancement. In the treatment form, medicalization occurs by considering cosmetic surgery as remedy for pathologized Asian features; the pathologization usually occurs in reference to western features as the norm. In the enhancement form, medicalization occurs by using medical means to improve physical features to achieve a certain type of beauty or physical appearance. Each type of medicalization raises slightly different ethical concerns. The problem with treatment medicalization lies in the pathologization of Asian features, which is oppressive as it continues to reinforce racial norms of appearance and negative stereotypes. Enhancement medicalization is ethically problematic because cosmetic surgery tends to conflate beauty and health as medical goals of surgery, overemphasizing the value of appearance that can further displace women's control over their own bodies. I conclude that in both forms of medicalization, cosmetic surgery seems to narrowly frame a complex psychosocial issue involving physical appearance as a matter that can be simply solved through surgical means.
The physical driver of the optical Eigenvector 1 in Quasar Main Sequence
NASA Astrophysics Data System (ADS)
Panda, Swayamtrupta; Czerny, Bożena; Wildy, Conor
2017-11-01
Quasars are complex sources, characterized by broad band spectra from radio through optical to X-ray band, with numerous emission and absorption features. This complexity leads to rich diagnostics. However, tet{bg92} used Principal Component Analysis (PCA), and with this analysis they were able to show significant correlations between the measured parameters. The leading component, related to Eigenvector 1 (EV1) was dominated by the anticorrelation between the Fe II optical emission and [OIII] line and EV1 alone contained 30% of the total variance. It opened a way in defining a quasar main sequence, in close analogy to the stellar main sequence on the Hertzsprung-Russel (HR) diagram ( tealt{sul01}). The question still remains which of the basic theoretically motivated parameters of an active nucleus (Eddington ratio, black hole mass, accretion rate, spin, and viewing angle) is the main driver behind the EV1. Here we limit ourselves to the optical waveband, and concentrate on theoretical modelling the Fe II to Hβ ratio, and we test the hypothesis that the physical driver of EV1 is the maximum of the accretion disk temperature, reflected in the shape of the spectral energy distribution (SED). We performed computations of the Hβ and optical Fe II for a broad range of SED peak position using CLOUDY photoionisation code. We assumed that both Hβ and Fe II emission come from the Broad Line Region represented as a constant density cloud in a plane-parallel geometry. We expected that a hotter disk continuum will lead to more efficient production of Fe II but our computations show that the Fe II to Hβ ratio actually drops with the rise of the disk temperature. Thus either hypothesis is incorrect, or approximations used in our paper for the description of the line emissivity is inadequate.
NASA Astrophysics Data System (ADS)
Jun, Jinhyuck; Park, Minwoo; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Do, Munhoe; Lee, Dongchan; Kim, Taehoon; Choi, Junghoe; Luk-Pat, Gerard; Miloslavsky, Alex
2015-03-01
As the industry pushes to ever more complex illumination schemes to increase resolution for next generation memory and logic circuits, sub-resolution assist feature (SRAF) placement requirements become increasingly severe. Therefore device manufacturers are evaluating improvements in SRAF placement algorithms which do not sacrifice main feature (MF) patterning capability. There are known-well several methods to generate SRAF such as Rule based Assist Features (RBAF), Model Based Assist Features (MBAF) and Hybrid Assisted Features combining features of the different algorithms using both RBAF and MBAF. Rule Based Assist Features (RBAF) continue to be deployed, even with the availability of Model Based Assist Features (MBAF) and Inverse Lithography Technology (ILT). Certainly for the 3x nm node, and even at the 2x nm nodes and lower, RBAF is used because it demands less run time and provides better consistency. Since RBAF is needed now and in the future, what is also needed is a faster method to create the AF rule tables. The current method typically involves making masks and printing wafers that contain several experiments, varying the main feature configurations, AF configurations, dose conditions, and defocus conditions - this is a time consuming and expensive process. In addition, as the technology node shrinks, wafer process changes and source shape redesigns occur more frequently, escalating the cost of rule table creation. Furthermore, as the demand on process margin escalates, there is a greater need for multiple rule tables: each tailored to a specific set of main-feature configurations. Model Assisted Rule Tables(MART) creates a set of test patterns, and evaluates the simulated CD at nominal conditions, defocused conditions and off-dose conditions. It also uses lithographic simulation to evaluate the likelihood of AF printing. It then analyzes the simulation data to automatically create AF rule tables. It means that analysis results display the cost of different AF configurations as the space grows between a pair of main features. In summary, model based rule tables method is able to make it much easier to create rule tables, leading to faster rule-table creation and a lower barrier to the creation of more rule tables.
Physical Human Activity Recognition Using Wearable Sensors.
Attal, Ferhat; Mohammed, Samer; Dedabrishvili, Mariam; Chamroukhi, Faicel; Oukhellou, Latifa; Amirat, Yacine
2015-12-11
This paper presents a review of different classification techniques used to recognize human activities from wearable inertial sensor data. Three inertial sensor units were used in this study and were worn by healthy subjects at key points of upper/lower body limbs (chest, right thigh and left ankle). Three main steps describe the activity recognition process: sensors' placement, data pre-processing and data classification. Four supervised classification techniques namely, k-Nearest Neighbor (k-NN), Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and Random Forest (RF) as well as three unsupervised classification techniques namely, k-Means, Gaussian mixture models (GMM) and Hidden Markov Model (HMM), are compared in terms of correct classification rate, F-measure, recall, precision, and specificity. Raw data and extracted features are used separately as inputs of each classifier. The feature selection is performed using a wrapper approach based on the RF algorithm. Based on our experiments, the results obtained show that the k-NN classifier provides the best performance compared to other supervised classification algorithms, whereas the HMM classifier is the one that gives the best results among unsupervised classification algorithms. This comparison highlights which approach gives better performance in both supervised and unsupervised contexts. It should be noted that the obtained results are limited to the context of this study, which concerns the classification of the main daily living human activities using three wearable accelerometers placed at the chest, right shank and left ankle of the subject.
Features of Red Sea Water Masses
NASA Astrophysics Data System (ADS)
Kartadikaria, Aditya; Hoteit, Ibrahim
2015-04-01
Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ < 26.0. These types of water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.
Physical Human Activity Recognition Using Wearable Sensors
Attal, Ferhat; Mohammed, Samer; Dedabrishvili, Mariam; Chamroukhi, Faicel; Oukhellou, Latifa; Amirat, Yacine
2015-01-01
This paper presents a review of different classification techniques used to recognize human activities from wearable inertial sensor data. Three inertial sensor units were used in this study and were worn by healthy subjects at key points of upper/lower body limbs (chest, right thigh and left ankle). Three main steps describe the activity recognition process: sensors’ placement, data pre-processing and data classification. Four supervised classification techniques namely, k-Nearest Neighbor (k-NN), Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and Random Forest (RF) as well as three unsupervised classification techniques namely, k-Means, Gaussian mixture models (GMM) and Hidden Markov Model (HMM), are compared in terms of correct classification rate, F-measure, recall, precision, and specificity. Raw data and extracted features are used separately as inputs of each classifier. The feature selection is performed using a wrapper approach based on the RF algorithm. Based on our experiments, the results obtained show that the k-NN classifier provides the best performance compared to other supervised classification algorithms, whereas the HMM classifier is the one that gives the best results among unsupervised classification algorithms. This comparison highlights which approach gives better performance in both supervised and unsupervised contexts. It should be noted that the obtained results are limited to the context of this study, which concerns the classification of the main daily living human activities using three wearable accelerometers placed at the chest, right shank and left ankle of the subject. PMID:26690450
The Main Features and the Key Challenges of the Education System in Taiwan
ERIC Educational Resources Information Center
Chien, Chiu-Kuei Chang; Lin, Lung-Chi; Chen, Chun-Fu
2013-01-01
Taiwan has undergone radical innovation of its educational system in the wake of political liberalization and democratization, with a request for a change in the idea which diverts from "de-centralization" to "individualization." The reforms have led to two main features of pluralism and generalization of education in our…
Segar, Michelle L; Updegraff, John A; Zikmund-Fisher, Brian J; Richardson, Caroline R
2012-01-01
The reasons for exercising that are featured in health communications brand exercise and socialize individuals about why they should be physically active. Discovering which reasons for exercising are associated with high-quality motivation and behavioral regulation is essential to promoting physical activity and weight control that can be sustained over time. This study investigates whether framing physical activity in advertisements featuring distinct types of goals differentially influences body image and behavioral regulations based on self-determination theory among overweight and obese individuals. Using a three-arm randomized trial, overweight and obese women and men (aged 40-60 yr, n = 1690) read one of three ads framing physical activity as a way to achieve (1) better health, (2) weight loss, or (3) daily well-being. Framing effects were estimated in an ANOVA model with pairwise comparisons using the Bonferroni correction. This study showed that there are immediate framing effects on physical activity behavioral regulations and body image from reading a one-page advertisement about physical activity and that gender and BMI moderate these effects. Framing physical activity as a way to enhance daily well-being positively influenced participants' perceptions about the experience of being physically active and enhanced body image among overweight women, but not men. The experiment had less impact among the obese study participants compared to those who were overweight. These findings support a growing body of research suggesting that, compared to weight loss, framing physical activity for daily well-being is a better gain-frame message for overweight women in midlife.
Segar, Michelle L.; Updegraff, John A.; Zikmund-Fisher, Brian J.; Richardson, Caroline R.
2012-01-01
The reasons for exercising that are featured in health communications brand exercise and socialize individuals about why they should be physically active. Discovering which reasons for exercising are associated with high-quality motivation and behavioral regulation is essential to promoting physical activity and weight control that can be sustained over time. This study investigates whether framing physical activity in advertisements featuring distinct types of goals differentially influences body image and behavioral regulations based on self-determination theory among overweight and obese individuals. Using a three-arm randomized trial, overweight and obese women and men (aged 40–60 yr, n = 1690) read one of three ads framing physical activity as a way to achieve (1) better health, (2) weight loss, or (3) daily well-being. Framing effects were estimated in an ANOVA model with pairwise comparisons using the Bonferroni correction. This study showed that there are immediate framing effects on physical activity behavioral regulations and body image from reading a one-page advertisement about physical activity and that gender and BMI moderate these effects. Framing physical activity as a way to enhance daily well-being positively influenced participants' perceptions about the experience of being physically active and enhanced body image among overweight women, but not men. The experiment had less impact among the obese study participants compared to those who were overweight. These findings support a growing body of research suggesting that, compared to weight loss, framing physical activity for daily well-being is a better gain-frame message for overweight women in midlife. PMID:22701782
Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods.
Qu, Kaiyang; Han, Ke; Wu, Song; Wang, Guohua; Wei, Leyi
2017-09-22
DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF), is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.
36 CFR 910.34 - Accommodations for the physically handicapped.
Code of Federal Regulations, 2014 CFR
2014-07-01
... physically handicapped. 910.34 Section 910.34 Parks, Forests, and Public Property PENNSYLVANIA AVENUE... § 910.34 Accommodations for the physically handicapped. (a) Every development shall incorporate features which will make the development accessible by the physically handicapped. The standards in the “American...
36 CFR 910.34 - Accommodations for the physically handicapped.
Code of Federal Regulations, 2012 CFR
2012-07-01
... physically handicapped. 910.34 Section 910.34 Parks, Forests, and Public Property PENNSYLVANIA AVENUE... § 910.34 Accommodations for the physically handicapped. (a) Every development shall incorporate features which will make the development accessible by the physically handicapped. The standards in the “American...
Robust sensorimotor representation to physical interaction changes in humanoid motion learning.
Shimizu, Toshihiko; Saegusa, Ryo; Ikemoto, Shuhei; Ishiguro, Hiroshi; Metta, Giorgio
2015-05-01
This paper proposes a learning from demonstration system based on a motion feature, called phase transfer sequence. The system aims to synthesize the knowledge on humanoid whole body motions learned during teacher-supported interactions, and apply this knowledge during different physical interactions between a robot and its surroundings. The phase transfer sequence represents the temporal order of the changing points in multiple time sequences. It encodes the dynamical aspects of the sequences so as to absorb the gaps in timing and amplitude derived from interaction changes. The phase transfer sequence was evaluated in reinforcement learning of sitting-up and walking motions conducted by a real humanoid robot and compatible simulator. In both tasks, the robotic motions were less dependent on physical interactions when learned by the proposed feature than by conventional similarity measurements. Phase transfer sequence also enhanced the convergence speed of motion learning. Our proposed feature is original primarily because it absorbs the gaps caused by changes of the originally acquired physical interactions, thereby enhancing the learning speed in subsequent interactions.
Pre-Service Physical Education Teachers' Beliefs about Competition in Physical Education
ERIC Educational Resources Information Center
Harvey, Stephen; O'Donovan, Toni M.
2013-01-01
The discourse of competitive sport is, and has been, a defining feature of physical education for many years. Given the privileged and dominant position competition holds in physical education curricula, it is concerning that competitive physical education remains steeped in traditional pedagogies and that these pedagogies are constrained by…
10 CFR 72.182 - Design for physical protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Physical Protection § 72.182 Design for physical protection. The design for physical protection must show the site layout and the design features provided to protect the ISFSI or MRS from sabotage. It must... 10 Energy 2 2013-01-01 2013-01-01 false Design for physical protection. 72.182 Section 72.182...
10 CFR 72.182 - Design for physical protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Physical Protection § 72.182 Design for physical protection. The design for physical protection must show the site layout and the design features provided to protect the ISFSI or MRS from sabotage. It must... 10 Energy 2 2010-01-01 2010-01-01 false Design for physical protection. 72.182 Section 72.182...
10 CFR 72.182 - Design for physical protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Physical Protection § 72.182 Design for physical protection. The design for physical protection must show the site layout and the design features provided to protect the ISFSI or MRS from sabotage. It must... 10 Energy 2 2012-01-01 2012-01-01 false Design for physical protection. 72.182 Section 72.182...
10 CFR 72.182 - Design for physical protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Physical Protection § 72.182 Design for physical protection. The design for physical protection must show the site layout and the design features provided to protect the ISFSI or MRS from sabotage. It must... 10 Energy 2 2014-01-01 2014-01-01 false Design for physical protection. 72.182 Section 72.182...
10 CFR 72.182 - Design for physical protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Physical Protection § 72.182 Design for physical protection. The design for physical protection must show the site layout and the design features provided to protect the ISFSI or MRS from sabotage. It must... 10 Energy 2 2011-01-01 2011-01-01 false Design for physical protection. 72.182 Section 72.182...
ERIC Educational Resources Information Center
Xuan, Yue; Zhang, Zhaoyan
2014-01-01
Purpose: The purpose of this study was to explore the possible structural and material property features that may facilitate complete glottal closure in an otherwise isotropic physical vocal fold model. Method: Seven vocal fold models with different structural features were used in this study. An isotropic model was used as the baseline model, and…
Kathryn E. Schertz; Sonya Sachdeva; Omid Kardan; Hiroki P. Kotabe; Kathleen L. Wolf; Marc G. Berman
2018-01-01
Prior research has shown that the physical characteristics of one's environment have wide ranging effects on affect and cognition. Other research has demonstrated that one's thoughts have impacts on mood and behavior, and in this three-part research program we investigated how physical features of the environment can alter thought content. In one study, we...
USDA-ARS?s Scientific Manuscript database
Here, we examine soil-borne microbial biogeography as a function of the features that 31 define an American Viticultural Area (AVA), a geographically delimited American wine grape32 growing region, defined for its distinguishing features of climate, geology, soils, physical 33 features (topography a...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...
Application of machine learning on brain cancer multiclass classification
NASA Astrophysics Data System (ADS)
Panca, V.; Rustam, Z.
2017-07-01
Classification of brain cancer is a problem of multiclass classification. One approach to solve this problem is by first transforming it into several binary problems. The microarray gene expression dataset has the two main characteristics of medical data: extremely many features (genes) and only a few number of samples. The application of machine learning on microarray gene expression dataset mainly consists of two steps: feature selection and classification. In this paper, the features are selected using a method based on support vector machine recursive feature elimination (SVM-RFE) principle which is improved to solve multiclass classification, called multiple multiclass SVM-RFE. Instead of using only the selected features on a single classifier, this method combines the result of multiple classifiers. The features are divided into subsets and SVM-RFE is used on each subset. Then, the selected features on each subset are put on separate classifiers. This method enhances the feature selection ability of each single SVM-RFE. Twin support vector machine (TWSVM) is used as the method of the classifier to reduce computational complexity. While ordinary SVM finds single optimum hyperplane, the main objective Twin SVM is to find two non-parallel optimum hyperplanes. The experiment on the brain cancer microarray gene expression dataset shows this method could classify 71,4% of the overall test data correctly, using 100 and 1000 genes selected from multiple multiclass SVM-RFE feature selection method. Furthermore, the per class results show that this method could classify data of normal and MD class with 100% accuracy.
Evaluating Word Prediction Software for Students with Physical Disabilities
ERIC Educational Resources Information Center
Mezei, Peter; Heller, Kathryn Wolff
2005-01-01
Although word prediction software was originally developed for individuals with physical disabilities, little research has been conducted featuring participants with physical disabilities. Using the Co:Writer 4000 word prediction software, three participants with physical disabilities improved typing rate and spelling accuracy, and two of these…
Kim, Jonghoon
2014-06-01
Information gathering ability had been evaluated mainly via checklists in clinical performance examinations (CPX). But, it is not proved yet if students write the information correctly in postencounter note (PN), although they asked questions or performed physical examinations (PE) about the information when they interacted with standardized patients in CPX. This study addressed the necessity of introducing PN to evaluate the ability in CPX. After patient encounters, students were instructed to write the findings of history taking and physical examination that they considered as important information in approaching the patient's problems in PN. PNs were scored using answer keys selected from checklist items, which were considered to be recorded in PN by CPX experts. PNs of six CPX cases from 54 students were analyzed. Correlation coefficients between the key-checklist scores and PN scores of six cases were moderate to high (0.52 to 0.79). However, students frequently neglected some cardinal features of chief complains, pertinent findings of past/social history and PE, and pertinent negative findings of associated symptoms in PNs, which were checked as 'done' in the keys of checklists. It is necessary to introduce PN in CPX to evaluate the students' ability of synthesis and integration of patient information.
Effects of Organized Physical Activity on Selected Health Indices among Women Older than 55 Years.
Zmijewski, Piotr; Mazurek, Krzysztof; Kozdron, Ewa; Szczypiorski, Piotr; Frysztak, Agata
2015-01-01
The main aim of this study was to determine health benefits among women older than 55 years who participated in organized, group-based physical activity (OPA). Thirty-five women aged 65.0 ± 7.3 years volunteered for this study. The classical and nonclassical cardiovascular (CVD) risk factors were measured before and after a 2-week OPA camp in a remote location and 3 months of OPA. Self-guided physical activity was analyzed 18 months after OPA. Two-week effects included significant decreases in body mass index, waist and hip circumferences, resting systolic and diastolic blood pressure (BP) and resting heart rate, improved exercise capacity (EC), improved low-density lipoprotein and high-density lipoprotein (HDL-C), cholesterol, and other atherogenic lipid indices (ALI), and a reduction in 10-year estimated risk of death from CVD. Three-month effects included a further decrease in systolic BP, improvements in EC and HDL-C, and maintenance of lower levels of ALI, as well as lower CVD risk. The implementation of the OPA programme had a positive impact on somatic features, exercise capacity, biochemical indices, and risk for death from CVD. The presented programme can be regarded as an effective element of primary prevention of cardiovascular diseases among women older than 55 years.
ERIC Educational Resources Information Center
Bøe, Maria Vetleseter; Henriksen, Ellen Karoline; Angell, Carl
2018-01-01
Calls for renewal of physics education include more varied learning activities and increased focus on qualitative understanding and history and philosophy of science (HPS) aspects. We have studied an innovative approach implementing such features in quantum physics in traditional upper secondary physics classrooms in Norway. Data consists of 11…
Le, Trang T; Simmons, W Kyle; Misaki, Masaya; Bodurka, Jerzy; White, Bill C; Savitz, Jonathan; McKinney, Brett A
2017-09-15
Classification of individuals into disease or clinical categories from high-dimensional biological data with low prediction error is an important challenge of statistical learning in bioinformatics. Feature selection can improve classification accuracy but must be incorporated carefully into cross-validation to avoid overfitting. Recently, feature selection methods based on differential privacy, such as differentially private random forests and reusable holdout sets, have been proposed. However, for domains such as bioinformatics, where the number of features is much larger than the number of observations p≫n , these differential privacy methods are susceptible to overfitting. We introduce private Evaporative Cooling, a stochastic privacy-preserving machine learning algorithm that uses Relief-F for feature selection and random forest for privacy preserving classification that also prevents overfitting. We relate the privacy-preserving threshold mechanism to a thermodynamic Maxwell-Boltzmann distribution, where the temperature represents the privacy threshold. We use the thermal statistical physics concept of Evaporative Cooling of atomic gases to perform backward stepwise privacy-preserving feature selection. On simulated data with main effects and statistical interactions, we compare accuracies on holdout and validation sets for three privacy-preserving methods: the reusable holdout, reusable holdout with random forest, and private Evaporative Cooling, which uses Relief-F feature selection and random forest classification. In simulations where interactions exist between attributes, private Evaporative Cooling provides higher classification accuracy without overfitting based on an independent validation set. In simulations without interactions, thresholdout with random forest and private Evaporative Cooling give comparable accuracies. We also apply these privacy methods to human brain resting-state fMRI data from a study of major depressive disorder. Code available at http://insilico.utulsa.edu/software/privateEC . brett-mckinney@utulsa.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Johansson, Maria; Brunt, David
2012-04-01
The primary aim of the present study was to investigate if methods derived from environmental psychology can be used to study the qualities of the physical environment of supported housing facilities for persons with psychiatric disabilities. Three units of analysis were selected: the private area, the common indoor area, and the outdoor area. Expert assessments of 110 features of the physical environment in these units and semantic environmental description of the visual experience of them consistently showed that purpose-built supported housing facilities had more physical features important for high quality residential environments than the non-purpose-built supported housing facilities. The employed methods were thus seen to be able to describe and discriminate between qualities in the physical environment of supported housing facilities. Suggestions for the development of tools for the assessment of the physical environment in supported housing are made.
Conformal standard model, leptogenesis, and dark matter
NASA Astrophysics Data System (ADS)
Lewandowski, Adrian; Meissner, Krzysztof A.; Nicolai, Hermann
2018-02-01
The conformal standard model is a minimal extension of the Standard Model (SM) of particle physics based on the assumed absence of large intermediate scales between the TeV scale and the Planck scale, which incorporates only right-chiral neutrinos and a new complex scalar in addition to the usual SM degrees of freedom, but no other features such as supersymmetric partners. In this paper, we present a comprehensive quantitative analysis of this model, and show that all outstanding issues of particle physics proper can in principle be solved "in one go" within this framework. This includes in particular the stabilization of the electroweak scale, "minimal" leptogenesis and the explanation of dark matter, with a small mass and very weakly interacting Majoron as the dark matter candidate (for which we propose to use the name "minoron"). The main testable prediction of the model is a new and almost sterile scalar boson that would manifest itself as a narrow resonance in the TeV region. We give a representative range of parameter values consistent with our assumptions and with observation.
Statistical mechanics in the context of special relativity. II.
Kaniadakis, G
2005-09-01
The special relativity laws emerge as one-parameter (light speed) generalizations of the corresponding laws of classical physics. These generalizations, imposed by the Lorentz transformations, affect both the definition of the various physical observables (e.g., momentum, energy, etc.), as well as the mathematical apparatus of the theory. Here, following the general lines of [Phys. Rev. E 66, 056125 (2002)], we show that the Lorentz transformations impose also a proper one-parameter generalization of the classical Boltzmann-Gibbs-Shannon entropy. The obtained relativistic entropy permits us to construct a coherent and self-consistent relativistic statistical theory, preserving the main features of the ordinary statistical theory, which is recovered in the classical limit. The predicted distribution function is a one-parameter continuous deformation of the classical Maxwell-Boltzmann distribution and has a simple analytic form, showing power law tails in accordance with the experimental evidence. Furthermore, this statistical mechanics can be obtained as the stationary case of a generalized kinetic theory governed by an evolution equation obeying the H theorem and reproducing the Boltzmann equation of the ordinary kinetics in the classical limit.
Ground state, collective mode, phase soliton and vortex in multiband superconductors.
Lin, Shi-Zeng
2014-12-10
This article reviews theoretical and experimental work on the novel physics in multiband superconductors. Multiband superconductors are characterized by multiple superconducting energy gaps in different bands with interaction between Cooper pairs in these bands. The discovery of prominent multiband superconductors MgB2 and later iron-based superconductors, has triggered enormous interest in multiband superconductors. The most recently discovered superconductors exhibit multiband features. The multiband superconductors possess novel properties that are not shared with their single-band counterpart. Examples include: the time-reversal symmetry broken state in multiband superconductors with frustrated interband couplings; the collective oscillation of number of Cooper pairs between different bands, known as the Leggett mode; and the phase soliton and fractional vortex, which are the main focus of this review. This review presents a survey of a wide range of theoretical exploratory and experimental investigations of novel physics in multiband superconductors. A vast amount of information derived from these studies is shown to highlight unusual and unique properties of multiband superconductors and to reveal the challenges and opportunities in the research on the multiband superconductivity.
Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W
2014-02-01
A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.
A Healthy Lifestyle Intervention Application.
Tufte, Trond; Babic, Ankica
2017-01-01
In this project, a mHealth tool for smart-phones has been developed using Design Science methodology, where the goal has been to promote an active lifestyle. This was undertaken by implementing social and physical activity stimulating features within the application MoveFit. Users can opt to utilize just a feature or two or engage in social activities of different intensity. Regular and expert users have evaluated the application in order to meet usability requirements. In addition a field expert and a focus group have contributed towards the application's potential to increase physical activity. There was enough data collected by the app to document its good effect; it was possible to demonstrate that the app was capable of promoting physical activity. User testing has also shown the appreciation of the various features such as social networking, activity monitoring, and route/activity creation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batista, Rafael Alves; Dundovic, Andrej; Sigl, Guenter
2016-05-01
We present the simulation framework CRPropa version 3 designed for efficient development of astrophysical predictions for ultra-high energy particles. Users can assemble modules of the most relevant propagation effects in galactic and extragalactic space, include their own physics modules with new features, and receive on output primary and secondary cosmic messengers including nuclei, neutrinos and photons. In extension to the propagation physics contained in a previous CRPropa version, the new version facilitates high-performance computing and comprises new physical features such as an interface for galactic propagation using lensing techniques, an improved photonuclear interaction calculation, and propagation in time dependent environmentsmore » to take into account cosmic evolution effects in anisotropy studies and variable sources. First applications using highlighted features are presented as well.« less
Middelweerd, Anouk; van der Laan, Danielle M; van Stralen, Maartje M; Mollee, Julia S; Stuij, Mirjam; te Velde, Saskia J; Brug, Johannes
2015-03-01
The transition from adolescence to early adulthood is a critical period in which there is a decline in physical activity (PA). College and university students make up a large segment of this age group. Smartphones may be used to promote and support PA. The purpose of this qualitative study was to explore Dutch students' preferences regarding a PA application (PA app) for smartphones. Thirty Dutch students (aged 18-25 years) used a PA app for three weeks and subsequently attended a focus group discussion (k = 5). To streamline the discussion, a discussion guide was developed covering seven main topics, including general app usage, usage and appreciation of the PA app, appreciation of and preferences for its features and the sharing of PA accomplishments through social media. The discussions were audio and video recorded, transcribed and analysed according to conventional content analysis. The participants, aged 21 ± 2 years, were primarily female (67%). Several themes emerged: app usage, technical aspects, PA assessment, coaching aspects and sharing through social media. Participants most often used social networking apps (e.g., Facebook or Twitter), communication apps (e.g., WhatsApp) and content apps (e.g., news reports or weather forecasts). They preferred a simple and structured layout without unnecessary features. Ideally, the PA app should enable users to tailor it to their personal preferences by including the ability to hide features. Participants preferred a companion website for detailed information about their accomplishments and progress, and they liked tracking their workout using GPS. They preferred PA apps that coached and motivated them and provided tailored feedback toward personally set goals. They appreciated PA apps that enabled competition with friends by ranking or earning rewards, but only if the reward system was transparent. They were not willing to share their regular PA accomplishments through social media unless they were exceptionally positive. Participants prefer PA apps that coach and motivate them, that provide tailored feedback toward personally set goals and that allow competition with friends.
36 CFR § 910.34 - Accommodations for the physically handicapped.
Code of Federal Regulations, 2013 CFR
2013-07-01
... physically handicapped. § 910.34 Section § 910.34 Parks, Forests, and Public Property PENNSYLVANIA AVENUE... § 910.34 Accommodations for the physically handicapped. (a) Every development shall incorporate features which will make the development accessible by the physically handicapped. The standards in the “American...
THE NET ADVANCE OF PHYSICS Review Articles and Tutorials in an Encyclopædic Format Established 1995 [Link to MIT] Computer support for The Net Advance of Physics is furnished by The Massachusetts Newest Additions SPECIAL FEATURES: Net Advance RETRO: Nineteenth Century Physics History of Science
Effect of Social Media in a mHealth Application.
Tufte, Trond; Babic, Ankica
2017-01-01
In this project the potential of social media has been reviewed in terms how it can promote a healthy lifestyle utilized in an app. A mHealth app for smartphones has been developed using Design Science methodology, where various features from social media have been implemented with the goal of increasing physical activity. The application has been evaluated extensively in order to meet usability requirements. In addition, a focus group has contributed towards the application's potential to increase physical. The data collected is suggesting that social features have a positive impact on promoting physical activity.
The Qubit as Key to Quantum Physics Part II: Physical Realizations and Applications
ERIC Educational Resources Information Center
Dür, Wolfgang; Heusler, Stefan
2016-01-01
Using the simplest possible quantum system--the qubit--the fundamental concepts of quantum physics can be introduced. This highlights the common features of many different physical systems, and provides a unifying framework when teaching quantum physics at the high school or introductory level. In a previous "TPT" article and in a…
Eating disorder features and quality of life: Does gender matter?
Wagner, Allison F; Stefano, Emily C; Cicero, David C; Latner, Janet D; Mond, Jonathan M
2016-10-01
This study examined whether gender moderates the associations between eating disorder features and quality-of-life impairment and whether eating disorder features can explain gender differences in quality of life in a sample of undergraduate students. The SF-12 Physical and Mental Component Summary Scales were used to measure health-related quality of life (HRQoL), and the Eating Disorders Examination Questionnaire (EDE-Q) was used to quantify eating disorder behaviors and cognitions. These self-report forms were completed by undergraduate men and women (n = 709). Gender was a significant predictor of mental HRQoL, such that women in this sample reported poorer mental HRQoL than men. Eating disorder cognitions were the strongest predictor of undergraduate students' mental and physical HRQoL, while binge eating negatively predicted their physical HRQoL only. Gender was not found to moderate the associations between eating disorder features and HRQoL, and eating disorder cognitions were found to mediate the association between gender and mental HRQoL such that a proportion of the difference between undergraduate men and women's mental HRQoL was attributable to eating disorder cognitions. This study provided further evidence of the significant impact of eating disorder features, particularly eating disorder cognitions, on HRQoL. The finding that gender did not moderate the relationships between eating disorder features and HRQoL indicates the importance of investigating these features in both men and women in future research.
Virtual and physical toys: open-ended features for non-formal learning.
Petersson, Eva; Brooks, Anthony
2006-04-01
This paper examines the integrated toy--both physical and virtual--as an essential resource for collaborative learning. This learning incorporates rehabilitation, training, and education. The data derived from two different cases. Pedagogical issues related to non-formal learning and open-ended features of design are discussed. Findings suggest that social, material, and expressive affordances constitute a base for an alterative interface to encourage children's play and learning.
Recommendations for the use of notebooks in upper-division physics lab courses
NASA Astrophysics Data System (ADS)
Stanley, Jacob T.; Lewandowski, H. J.
2018-01-01
The use of lab notebooks for scientific documentation is a ubiquitous part of physics research. However, it is common for undergraduate physics laboratory courses not to emphasize the development of documentation skills, despite the fact that such courses are some of the earliest opportunities for students to start engaging in this practice. One potential impediment to the inclusion of explicit documentation training is that it may be unclear to instructors which features of authentic documentation practice are efficacious to teach and how to incorporate these features into the lab class environment. In this work, we outline some of the salient features of authentic documentation, informed by interviews with physics researchers, and provide recommendations for how these can be incorporated into the lab curriculum. We do not focus on structural details or templates for notebooks. Instead, we address holistic considerations for the purpose of scientific documentation that can guide students to develop their own documentation style. While taking into consideration all the aspects that can help improve students' documentation, it is also important to consider the design of the lab activities themselves. Students should have experience with implementing these authentic features of documentation during lab activities in order for them to find practice with documentation beneficial.
Human beings' adaptability to extreme environmental changes from medical and physical points of view
NASA Astrophysics Data System (ADS)
Khabarova, Olga; Ragulskaya, Maria; Dimitrova, Svetla; Safaraly-Oghlu Babayev, Elchin; Samsonov, Sergey; Med. Dimitry Markov, Of; Nazarova, Of Med. Olga N.; Rudenchik, Evgeny
The question about features of human reaction on the sharp environmental physical activity (EPA) changes is considered by international group of physicists and physicians on the base of results of monitoring of human health state in different cities spread on latitude and longitude. The typical reaction of human body on the influences, exceeding the organisms' ability to adaptation, is of stress-reaction character. From medical point of view there is no significant difference for human body -what external (EPA) agent shocked an organism (emotional or some physical threats). First attempt of the organism to restore its homeostasis is stress-reaction, being universal for many stress-factors. Its main stages (such as alarm, resistance, and exhaustion) are detectable by different medical equipments, but we tried to find universal, non-traumatic method of daily measurements, enough sensitive and appropriate for observation of people reaction both on weather and space weather (geomagnetic activity) changes. The experiment was based on a method of electrical conductivity measurements of biologically active (acupunctural) points of human skin. The used method (electroacupunctural method by Dr. R.Voll) is very sensitive to current state of an organism and characterize the functional condition of different organs and systems of human body and allows to express so-called "group's health status" in the units, suitable for comparison with meteorological and heliogeophysical parameters. We conduct the parallel investigations as a part of collaborative study in different geographic latitudes-longitudes (Baku:40° 23'43"N -49° 52'56"E, Troitsk (Moscow region): 55° 28'40"N -37° 18'42"E, Yakutsk: 62° 02'00"N -129° 44'00"E). Measurements were carried out on daily basis with permanent group of functionally healthy persons (Moscow -19, Yakutsk -22, CityBaku -12 volunteers). Daily monitoring of nervous, endocrinological, lymphatic systems, blood, lungs, thick and thin intestine, heart and parenhimatic organs, allergy and hypophisis was conducted simultaneously with analyses of space weather (parameters of solar and geomagnetic activities) as well as local meteorological parameters (temperature, atmospheric pressure, humidity, wind speed, etc.). It was proved that it is possible to consider not only weather changes but also geomagnetic field variations as a stressor. It is concluded that : 1. human reaction on the sharp changes of selected external (environmental) physical activity parameters goes like typical stress-reaction; 2. features of stress-reaction depend on history of previous failures of an organism and on state of external background (frequent stresses deplete human organism possibility to adaptation); 3. features of stress-reaction depend on the geographic location (latitude). Possible physi-cal explanation of human organism stress-reaction on changes of geomagnetic oscillatory regime and atmospheric thermobaric variations is discussed.
Unexpected storm-time nightside plasmaspheric density enhancement at low L shell
NASA Astrophysics Data System (ADS)
Chu, X.; Bortnik, J.; Denton, R. E.; Yue, C.
2017-12-01
We have developed a three-dimensional dynamic electron density (DEN3D) model in the inner magnetosphere using a neural network approach. The DEN3D model can provide spatiotemporal distribution of the electron density at any location and time that spacecraft observations are not available. Given DEN3D's good performance in predicting the structure and dynamic evolution of the plasma density, the salient features of the DEN3D model can be used to gain further insight into the physics. For instance, the DEN3D models can be used to find unusual phenomena that are difficult to detect in observations or simulations. We report, for the first time, an unexpected plasmaspheric density increase at low L shell regions on the nightside during the main phase of a moderate storm during 12-16 October 2004, as opposed to the expected density decrease due to storm-time plasmaspheric erosion. The unexpected density increase is first discovered in the modeled electron density distribution using the DEN3D model, and then validated using in-situ density measurements obtained from the IMAGE satellite. The density increase was likely caused by increased earthward transverse field plasma transport due to enhanced nightside ExB drift, which coincided with enhanced solar wind electric field and substorm activity. This is consistent with the results of physics-based simulation SAMI3 model which show earthward enhanced plasma transport and electron density increase at low L shells during storm main phase.
Optoelectronics for electrical and computer engineering students
NASA Astrophysics Data System (ADS)
Chua, Soo-Jin; Jalil, Mansoor
2002-05-01
We describe the contents of an advanced undergraduate course on Optoelectronics at the Department of Electrical and Computer Engineering, National University of Singapore. The emphasis has changed over the years to keep abreast of the development in the field but the broad features remain the same. A multidisciplinary approach is taken, incorporating physics, materials science and engineering concepts to explain the operation of optoelectronic components, and their application in display, communications and consumer electronics. The course comprises of 36 hours of lectures and two experiments, and covers basic radiometry and photometry, photoemitters (LEDs and lasers), photodetectors, and liquid crystal displays. The main aim of the course is to equip the student with the requisite theoretical and practical knowledge for participation in the photonics industry and for postgraduate research for students who are so inclined.
Covalency in transition-metal oxides within all-electron dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Haule, Kristjan; Birol, Turan; Kotliar, Gabriel
2014-08-01
A combination of dynamical mean field theory and density functional theory, as implemented by Haule et al. [Phys. Rev. B 81, 195107 (2010), 10.1103/PhysRevB.81.195107], is applied to both the early and late transition metal oxides. For a fixed value of the local Coulomb repulsion, without fine tuning, we obtain the main features of these series, such as the metallic character of SrVO3 and the insulating gaps of LaVO3,LaTiO3, and La2CO4, which are in good agreement with experiment. This study highlights the importance of local physics and high energy hybridization in the screening of the Hubbard interaction and how different low energy behaviors can emerge from the unified treatment of the transition metal series.
An expanded set of brown dwarf and very low mass star models
NASA Technical Reports Server (NTRS)
Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I.
1993-01-01
We present in this paper updated and improved theoretical models of brown dwarfs and late M dwarfs. The evolution and characteristics of objects between 0.01 and 0.2 solar mass are exhaustively investigated and special emphasis is placed on their properties at early ages. The dependence on the helium fraction, deuterium fraction, and metallicity of the masses, effective temperature and luminosities at the edge of the hydrogen main sequence are calculated. We derive luminosity functions for representative mass functions and compare our predictions to recent cluster data. We show that there are distinctive features in the theoretical luminosity functions that can serve as diagnostics of brown dwarf physics. A zero-metallicity model is presented as a bound to or approximation of a putative extreme halo population.
Zhang, Zhi-jian; Liu, Meng; Zhu, Jun
2013-05-01
There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.
Cantu-Jungles, Thaisa Moro; Iacomini, Marcello; Cipriani, Thales R; Cordeiro, Lucimara M C
2017-04-15
The chemical features of xylan largely determine its physical and biological properties and its use in the industry. In this work, we describe the occurrence, purification and partial characterization of a xylan in edible açaí berries (Euterpe oleraceae), using a fairly simple and inexpensive method of purification from alkaline açaí extract. A mainly linear (1→4)-β-d-xylan was found as the majority (70%) of alkali extract and 4.2% of the dry matter açaí pulp. This represents the biggest source of xylan found so far in a fruit pulp and could be suitable for applications in the industry and biomedical field. Copyright © 2016 Elsevier Ltd. All rights reserved.
Building Robota, a mini-humanoid robot for the rehabilitation of children with autism.
Billard, Aude; Robins, Ben; Nadel, Jacqueline; Dautenhahn, Kerstin
2007-01-01
The Robota project constructs a series of multiple-degrees-of-freedom, doll-shaped humanoid robots, whose physical features resemble those of a human baby. The Robota robots have been applied as assistive technologies in behavioral studies with low-functioning children with autism. These studies investigate the potential of using an imitator robot to assess children's imitation ability and to teach children simple coordinated behaviors. In this article, the authors review the recent technological developments that have made the Robota robots suitable for use with children with autism. They critically appraise the main outcomes of two sets of behavioral studies conducted with Robota and discuss how these results inform future development of the Robota robots and robots in general for the rehabilitation of children with complex developmental disabilities.
Features of Stationary Photoconductivity of High-Ohmic Semiconductors Under Local Illumination
NASA Astrophysics Data System (ADS)
Lysenko, A. P.; Belov, A. G.; Kanevskii, V. E.; Odintsova, E. A.
2018-04-01
Photoconductivity has been thoroughly studied for a long time. However, most researchers have examined photoconductivity of semiconductors while illuminating the entire surface of samples. The present paper examines the effect of local exposure that ensures a high level of injection of free charge carriers upon the conductivity of high-ohmic cadmium telluride and semi-insulating gallium arsenide samples and upon the properties of ohmic contacts to samples. The authors found that regardless of the exposure area the value of transition resistance of ohmic contacts decreases and the concentration of the main charge carriers increases in the sample in proportion to radiation intensity. This research uncovered a number of previously unknown effects that are interesting from the physical point of view. This paper focuses on discussing these effects.
Prospects for searching the η→e+e- rare decay at the CSR
NASA Astrophysics Data System (ADS)
Ji, Chang-Sheng; Shao, Ming; Zhang, Hui; Chen, Hong-Fang; Zhang, Yi-Fei
2013-04-01
We study the possibility of searching the η→e+e- rare decay on the Cooling Storage Ring (CSR) at Lanzhou. The main features of the proposed Internal Target Experiment (ITE) and External Target Facility (ETF) are included in the Monte Carlo simulation. Both the beam condition at the CSR and the major physics backgrounds are carefully taken into account. We conclude that the ITE is more suitable for such a study due to better detector acceptance and higher beam density. At the maximum designed luminosity (1034 cm-2 s-1), η→e+e- events can be collected every ~400 seconds at the CSR. With a mass resolution of 1 MeV, the expected signal-to-background (S/B) ratio is around 1.
Multi-orbit tight binding calculations for spin transfer torque in magnetic tunneling junctions
NASA Astrophysics Data System (ADS)
You, Chun-Yeol; Han, Jae-Ho; Lee, Hyun-Woo
2012-04-01
We investigate the spin transfer torque (STT) with multi-orbit tight binding model in the magnetic tunneling junctions (MTJs). So far, most of the theoretical works based on the non-equilibrium Keldysh Green's function method employ a single band model for the simplicity, except a few first principle studies. Even though the single band model captures main physics of STT in MTJ, multi-band calculation reveals new features of the STT that depend on band parameters, such as insulator bandgap, inter-band hopping energy of the ferromagnetic layer. We find that the sign change of perpendicular torkance with bandgap of the insulator layer, and when we allow the inter-band hopping, the bias dependences of perpendicular STT are dramatically changed, while no noticeable changes in parallel STT are found.
Esposito, A.; Pilloni, A.; Polosa, Antonio D.
2016-12-02
Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building.more » Lastly, data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.« less
Expanding the phenotype of Triple X syndrome: A comparison of prenatal versus postnatal diagnosis.
Wigby, Kristen; D'Epagnier, Cheryl; Howell, Susan; Reicks, Amy; Wilson, Rebecca; Cordeiro, Lisa; Tartaglia, Nicole
2016-11-01
Triple X syndrome (47, XXX) occurs in approximately 1:1,000 female births and has a variable phenotype of physical and psychological features. Prenatal diagnosis rates of 47, XXX are increasing due to non-invasive prenatal genetic testing. Previous studies suggest that prenatal diagnosed females have better neurodevelopmental outcomes. This cross-sectional study describes diagnosis, physical features, medical problems, and neurodevelopmental features in a large cohort of females with 47, XXX. Evaluation included review of medical and developmental history, physical exam, cognitive, and adaptive testing. Medical and developmental features were compared between the prenatal and postnatal diagnosis groups using rate calculations and Fisher's exact test. Cognitive and adaptive tests scores were compared using t-tests. Seventy-four females age 6 months-24 years (mean 8.3 years) participated. Forty-four (59.5%) females were in the prenatal diagnosis group. Mean age of postnatal diagnosis was 5.9 years; developmental delay was the most common indication for postnatal genetic testing. Common physical features included hypertelorism, epicanthal folds, clinodactyly, and hypotonia. Medical problems included dental disorders (44.4%), seizure disorders (16.2%), genitourinary malformations (12.2%). The prenatal diagnosis group had higher verbal (P < 0.001), general ability index (P = 0.004), and adaptive functioning scores (P < 0.001). Rates of ADHD (52.2% vs. 45.5%, P = 0.77) and learning disabilities (39.1% vs. 36.3%, P = 1.00) were similar between the two groups. These findings expand on the phenotypic features in females with Triple X syndrome and support that prenatally ascertained females have better cognitive and functional outcomes. However, prenatally diagnosed females are still at risk for neurodevelopmental disorders. Genetic counseling and treatment recommendations are summarized. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Yaoping; Chui, Cheekong K.; Cai, Yiyu; Mak, KoonHou
1998-06-01
This study presents an approach to build a 3D vascular system of coronary for the development of a virtual cardiology simulator. The 3D model of the coronary arterial tree is reconstructed from the geometric information segmented from the Visible Human data set for physical analysis of catheterization. The process of segmentation is guided by a 3D topologic hierarchy structure of coronary vessels which is obtained from a mechanical model by using Coordinate Measuring Machine (CMM) probing. This mechanical professional model includes all major coronary arterials ranging from right coronary artery to atrioventricular branch and from left main trunk to left anterior descending branch. All those branches are considered as the main operating sites for cardiology catheterization. Along with the primary arterial vasculature and accompanying secondary and tertiary networks obtained from a previous work, a more complete vascular structure can then be built for the simulation of catheterization. A novel method has been developed for real time Finite Element Analysis of catheter navigation based on this featured vasculature of vessels.
Progress Toward Attractive Stellarators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, G H; Brown, T G; Gates, D A
The quasi-axisymmetric stellarator (QAS) concept offers a promising path to a more compact stellarator reactor, closer in linear dimensions to tokamak reactors than previous stellarator designs. Concept improvements are needed, however, to make it more maintainable and more compatible with high plant availability. Using the ARIES-CS design as a starting point, compact stellarator designs with improved maintenance characteristics have been developed. While the ARIES-CS features a through-the-port maintenance scheme, we have investigated configuration changes to enable a sector-maintenance approach, as envisioned for example in ARIES AT. Three approaches are reported. The first is to make tradeoffs within the QAS designmore » space, giving greater emphasis to maintainability criteria. The second approach is to improve the optimization tools to more accurately and efficiently target the physics properties of importance. The third is to employ a hybrid coil topology, so that the plasma shaping functions of the main coils are shared more optimally, either with passive conductors made of high-temperature superconductor or with local compensation coils, allowing the main coils to become simpler. Optimization tools are being improved to test these approaches.« less
Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.
Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng
2018-01-01
In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.
Activities for the Promotion of Gender Equality in Japan—Japan Society of Applied Physics
NASA Astrophysics Data System (ADS)
Kodate, Kashiko; Tanaka, Kazuo
2005-10-01
Since 1946, the Japan Society of Applied Physics (JSAP) has strived to promote research and development in applied physics for benefits beyond national boundaries. Activities of JSAP involve multidisciplinary fields, from physics and engineering to life sciences. Of its 23,000 members, 48% are from industry, 29% from academia, and about 7% from semi-autonomous national research laboratories. Its large industrial membership is one of the distinctive features of JSAP. In preparation for the First IUPAP International Conference on Women in Physics (Paris, 2002), JSAP members took the first step under the strong leadership of then-JSAP President Toshio Goto, setting up the Committee for the Promotion Equal Participation of Men and Women in Science and Technology. Equality rather than women's advancement is highlighted to further development in science and technology. Attention is also paid to balancing the number of researchers from different age groups and affiliations. The committee has 22 members: 12 female and 10 male; 7 from corporations, 12 from universities, and 3 from semi-autonomous national research institutes. Its main activities are to organize symposia and meetings, conduct surveys among JSAP members, and provide child-care facilities at meetings and conferences. In 2002 the Japan Physics Society and the Chemical Society of Japan jointly created the Japan Inter-Society Liaison Association for the Promotion of Equal Participation of Men and Women in Science and Engineering. Membership has grown to 44 societies (of which 19 are observers) ranging from mathematics, information, and life sciences to civil engineering. Joint activities across sectors and empower the whole. The Gender Equality Bureau in the Cabinet Office recently launched a large-scale project called "Challenge Campaign" to encourage girls to major in natural science and engineering, which JSAP is co-sponsoring.
Relaxation processes and physical aging in metallic glasses
NASA Astrophysics Data System (ADS)
Ruta, B.; Pineda, E.; Evenson, Z.
2017-12-01
Since their discovery in the 1960s, metallic glasses have continuously attracted much interest across the physics and materials science communities. In the forefront are their unique properties, which hold the alluring promise of broad application in fields as diverse as medicine, environmental science and engineering. However, a major obstacle to their wide-spread commercial use is their inherent temporal instability arising from underlying relaxation processes that can dramatically alter their physical properties. The result is a physical aging process which can bring about degradation of mechanical properties, namely through embrittlement and catastrophic mechanical failure. Understanding and controlling the effects of aging will play a decisive role in our on-going endeavor to advance the use of metallic glasses as structural materials, as well as in the more general comprehension of out-of-equilibrium dynamics in complex systems. This review presents an overview of the current state of the art in the experimental advances probing physical aging and relaxation processes in metallic glasses. Similarities and differences between other hard and soft matter glasses are highlighted. The topic is discussed in a multiscale approach, first presenting the key features obtained in macroscopic studies, then connecting them to recent novel microscopic investigations. Particular emphasis is put on the occurrence of distinct relaxation processes beyond the main structural process in viscous metallic melts and their fate upon entering the glassy state, trying to disentangle results and formalisms employed by the different groups of the glass-science community. A microscopic viewpoint is presented, in which physical aging manifests itself in irreversible atomic-scale processes such as avalanches and intermittent dynamics, ascribed to the existence of a plethora of metastable glassy states across a complex energy landscape. Future experimental challenges and the comparison with recent theoretical and numerical simulations are discussed as well.
Evaluation of a Theory of Instructional Sequences for Physics Instruction
NASA Astrophysics Data System (ADS)
Wackermann, Rainer; Trendel, Georg; Fischer, Hans E.
2010-05-01
The background of the study is the theory of basis models of teaching and learning, a comprehensive set of models of learning processes which includes, for example, learning through experience and problem-solving. The combined use of different models of learning processes has not been fully investigated and it is frequently not clear under what circumstances a particular model should be used by teachers. In contrast, the theory under investigation here gives guidelines for choosing a particular model and provides instructional sequences for each model. The aim is to investigate the implementation of the theory applied to physics instruction and to show if possible effects for the students may be attributed to the use of the theory. Therefore, a theory-oriented education programme for 18 physics teachers was developed and implemented in the 2005/06 school year. The main features of the intervention consisted of coaching physics lessons and video analysis according to the theory. The study follows a pre-treatment-post design with non-equivalent control group. Findings of repeated-measures ANOVAs show large effects for teachers' subjective beliefs, large effects for classroom actions, and small to medium effects for student outcomes such as perceived instructional quality and student emotions. The teachers/classes that applied the theory especially well according to video analysis showed the larger effects. The results showed that differentiating between different models of learning processes improves physics instruction. Effects can be followed through to student outcomes. The education programme effect was clearer for classroom actions and students' outcomes than for teachers' beliefs.
A Set of Handwriting Features for Use in Automated Writer Identification.
Miller, John J; Patterson, Robert Bradley; Gantz, Donald T; Saunders, Christopher P; Walch, Mark A; Buscaglia, JoAnn
2017-05-01
A writer's biometric identity can be characterized through the distribution of physical feature measurements ("writer's profile"); a graph-based system that facilitates the quantification of these features is described. To accomplish this quantification, handwriting is segmented into basic graphical forms ("graphemes"), which are "skeletonized" to yield the graphical topology of the handwritten segment. The graph-based matching algorithm compares the graphemes first by their graphical topology and then by their geometric features. Graphs derived from known writers can be compared against graphs extracted from unknown writings. The process is computationally intensive and relies heavily upon statistical pattern recognition algorithms. This article focuses on the quantification of these physical features and the construction of the associated pattern recognition methods for using the features to discriminate among writers. The graph-based system described in this article has been implemented in a highly accurate and approximately language-independent biometric recognition system of writers of cursive documents. © 2017 American Academy of Forensic Sciences.
Ahmadpour, Naseem; Lindgaard, Gitte; Robert, Jean-Marc; Pownall, Bernard
2014-01-01
This paper describes passenger comfort as an experience generated by the cabin interior features. The findings of previous studies are affirmed regarding a set of 22 context features. Passengers experience a certain level of comfort when these features impact their body and elicit subjective perceptions. New findings characterise these perceptions in the form of eight themes and outline their particular eliciting features. Comfort is depicted as a complex construct derived by passengers' perceptions beyond the psychological (i.e. peace of mind) and physical (i.e. physical well-being) aspects, and includes perceptual (e.g. proxemics) and semantic (e.g. association) aspects. The seat was shown to have a focal role in eliciting seven of those themes and impacting comfort through its diverse characteristics. In a subsequent study, a group of aircraft cabin interior designers highlighted the possibility of employing the eight themes and their eliciting features as a framework for design and evaluation of new aircraft interiors.
Rivaes, Rui; Pinheiro, António N; Egger, Gregory; Ferreira, Teresa
2017-01-01
Fluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data, confirming the results of the general model. The patch shape model explained nearly 13% of the patch shape variability, in which the disturbances came to have less influence on driving this feature. However, grndh continues to be the primary driver of riparian vegetation between the two disturbance factors, despite the proportional increase of the mrphd effect to approximately a third of the grndh effect.
Rivaes, Rui; Pinheiro, António N.; Egger, Gregory; Ferreira, Teresa
2017-01-01
Fluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data, confirming the results of the general model. The patch shape model explained nearly 13% of the patch shape variability, in which the disturbances came to have less influence on driving this feature. However, grndh continues to be the primary driver of riparian vegetation between the two disturbance factors, despite the proportional increase of the mrphd effect to approximately a third of the grndh effect. PMID:28979278
Fibromyalgia Syndrome: Etiology, Pathogenesis, Diagnosis, and Treatment
Bellato, Enrico; Marini, Eleonora; Castoldi, Filippo; Barbasetti, Nicola; Mattei, Lorenzo; Bonasia, Davide Edoardo; Blonna, Davide
2012-01-01
Fibromyalgia syndrome is mainly characterized by pain, fatigue, and sleep disruption. The etiology of fibromyalgia is still unclear: if central sensitization is considered to be the main mechanism involved, then many other factors, genetic, immunological, and hormonal, may play an important role. The diagnosis is typically clinical (there are no laboratory abnormalities) and the physician must concentrate on pain and on its features. Additional symptoms (e.g., Raynaud's phenomenon, irritable bowel disease, and heat and cold intolerance) can be associated with this condition. A careful differential diagnosis is mandatory: fibromyalgia is not a diagnosis of exclusion. Since 1990, diagnosis has been principally based on the two major diagnostic criteria defined by the ACR. Recently, new criteria have been proposed. The main goals of the treatment are to alleviate pain, increase restorative sleep, and improve physical function. A multidisciplinary approach is optimal. While most nonsteroidal anti-inflammatory drugs and opioids have limited benefit, an important role is played by antidepressants and neuromodulating antiepileptics: currently duloxetine (NNT for a 30% pain reduction 7.2), milnacipran (NNT 19), and pregabalin (NNT 8.6) are the only drugs approved by the US Food and Drug Administration for the treatment of fibromyalgia. In addition, nonpharmacological treatments should be associated with drug therapy. PMID:23213512
NASA Astrophysics Data System (ADS)
Kustusch, Mary Bridget
2016-06-01
Students in introductory physics struggle with vector algebra and these challenges are often associated with contextual and representational features of the problems. Performance on problems about cross product direction is particularly poor and some research suggests that this may be primarily due to misapplied right-hand rules. However, few studies have had the resolution to explore student use of right-hand rules in detail. This study reviews literature in several disciplines, including spatial cognition, to identify ten contextual and representational problem features that are most likely to influence performance on problems requiring a right-hand rule. Two quantitative measures of performance (correctness and response time) and two qualitative measures (methods used and type of errors made) were used to explore the impact of these problem features on student performance. Quantitative results are consistent with expectations from the literature, but reveal that some features (such as the type of reasoning required and the physical awkwardness of using a right-hand rule) have a greater impact than others (such as whether the vectors are placed together or separate). Additional insight is gained by the qualitative analysis, including identifying sources of difficulty not previously discussed in the literature and revealing that the use of supplemental methods, such as physically rotating the paper, can mitigate errors associated with certain features.
Nakhasi, Atul; Shen, Album Xiaotian; Passarella, Ralph Joseph; Appel, Lawrence J; Anderson, Cheryl Am
2014-06-16
The US Centers for Disease Control and Prevention have identified a lack of encouragement, support, or companionship from family and friends as a major barrier to physical activity. To overcome this barrier, online social networks are now actively leveraging principles of companion social support in novel ways. The aim was to evaluate the functionality, features, and usability of existing online social networks which seek to increase physical activity and fitness among users by connecting them to physical activity partners, not just online, but also face-to-face. In September 2012, we used 3 major databases to identify the website addresses for relevant online social networks. We conducted a Google search using 8 unique keyword combinations: the common keyword "find" coupled with 1 of 4 prefix terms "health," "fitness," "workout," or "physical" coupled with 1 of 2 stem terms "activity partners" or "activity buddies." We also searched 2 prominent technology start-up news sites, TechCrunch and Y Combinator, using 2 unique keyword combinations: the common keyword "find" coupled with 1 of 2 stem terms "activity partners" and "activity buddies." Sites were defined as online social health activity networks if they had the ability to (1) actively find physical activity partners or activities for the user, (2) offer dynamic, real-time tracking or sharing of social activities, and (3) provide virtual profiles to users. We excluded from our analysis sites that were not Web-based, publicly available, in English, or free. Of the 360 initial search results, we identified 13 websites that met our complete criteria of an online social health activity network. Features such as physical activity creation (13/13, 100%) and private messaging (12/13, 92%) appeared almost universally among these websites. However, integration with Web 2.0 technologies such as Facebook and Twitter (9/13, 69%) and the option of direct event joining (8/13, 62%) were not as universally present. Largely absent were more sophisticated features that would enable greater usability, such as interactive engagement prompts (3/13, 23%) and system-created best fit activities (3/13, 23%). Several major online social networks that connect users to physical activity partners currently exist and use standardized features to achieve their goals. Future research is needed to better understand how users utilize these features and how helpful they truly are.
Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank
NASA Astrophysics Data System (ADS)
Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao
2003-03-01
The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.
School Physics Education in Southeast Asia.
ERIC Educational Resources Information Center
Seng, Chin Pin; Tee, Tan Boon
1978-01-01
Traces physics curriculum innovation in Southeast Asia since the 1950s. The unique features of such innovation in Indonesia, Malaysia, Philippines, Singapore, and Thailand are highlighted. Forecasts for the future of physics education in part of the world are also discussed. (Author/HM)
Structural organization of G-protein-coupled receptors
NASA Astrophysics Data System (ADS)
Lomize, Andrei L.; Pogozheva, Irina D.; Mosberg, Henry I.
1999-07-01
Atomic-resolution structures of the transmembrane 7-α-helical domains of 26 G-protein-coupled receptors (GPCRs) (including opsins, cationic amine, melatonin, purine, chemokine, opioid, and glycoprotein hormone receptors and two related proteins, retinochrome and Duffy erythrocyte antigen) were calculated by distance geometry using interhelical hydrogen bonds formed by various proteins from the family and collectively applied as distance constraints, as described previously [Pogozheva et al., Biophys. J., 70 (1997) 1963]. The main structural features of the calculated GPCR models are described and illustrated by examples. Some of the features reflect physical interactions that are responsible for the structural stability of the transmembrane α-bundle: the formation of extensive networks of interhelical H-bonds and sulfur-aromatic clusters that are spatially organized as 'polarity gradients' the close packing of side-chains throughout the transmembrane domain; and the formation of interhelical disulfide bonds in some receptors and a plausible Zn2+ binding center in retinochrome. Other features of the models are related to biological function and evolution of GPCRs: the formation of a common 'minicore' of 43 evolutionarily conserved residues; a multitude of correlated replacements throughout the transmembrane domain; an Na+-binding site in some receptors, and excellent complementarity of receptor binding pockets to many structurally dissimilar, conformationally constrained ligands, such as retinal, cyclic opioid peptides, and cationic amine ligands. The calculated models are in good agreement with numerous experimental data.
[Results of testing of MINISKAN mobile gamma-ray camera and specific features of its design].
Utkin, V M; Kumakhov, M A; Blinov, N N; Korsunskiĭ, V N; Fomin, D K; Kolesnikova, N V; Tultaev, A V; Nazarov, A A; Tararukhina, O B
2007-01-01
The main results of engineering, biomedical, and clinical testing of MINISKAN mobile gamma-ray camera are presented. Specific features of the camera hardware and software, as well as the main technical specifications, are described. The gamma-ray camera implements a new technology based on reconstructive tomography, aperture encoding, and digital processing of signals.
Ghayab, Hadi Ratham Al; Li, Yan; Abdulla, Shahab; Diykh, Mohammed; Wan, Xiangkui
2016-06-01
Electroencephalogram (EEG) signals are used broadly in the medical fields. The main applications of EEG signals are the diagnosis and treatment of diseases such as epilepsy, Alzheimer, sleep problems and so on. This paper presents a new method which extracts and selects features from multi-channel EEG signals. This research focuses on three main points. Firstly, simple random sampling (SRS) technique is used to extract features from the time domain of EEG signals. Secondly, the sequential feature selection (SFS) algorithm is applied to select the key features and to reduce the dimensionality of the data. Finally, the selected features are forwarded to a least square support vector machine (LS_SVM) classifier to classify the EEG signals. The LS_SVM classifier classified the features which are extracted and selected from the SRS and the SFS. The experimental results show that the method achieves 99.90, 99.80 and 100 % for classification accuracy, sensitivity and specificity, respectively.
Blind image quality assessment based on aesthetic and statistical quality-aware features
NASA Astrophysics Data System (ADS)
Jenadeleh, Mohsen; Masaeli, Mohammad Masood; Moghaddam, Mohsen Ebrahimi
2017-07-01
The main goal of image quality assessment (IQA) methods is the emulation of human perceptual image quality judgments. Therefore, the correlation between objective scores of these methods with human perceptual scores is considered as their performance metric. Human judgment of the image quality implicitly includes many factors when assessing perceptual image qualities such as aesthetics, semantics, context, and various types of visual distortions. The main idea of this paper is to use a host of features that are commonly employed in image aesthetics assessment in order to improve blind image quality assessment (BIQA) methods accuracy. We propose an approach that enriches the features of BIQA methods by integrating a host of aesthetics image features with the features of natural image statistics derived from multiple domains. The proposed features have been used for augmenting five different state-of-the-art BIQA methods, which use statistical natural scene statistics features. Experiments were performed on seven benchmark image quality databases. The experimental results showed significant improvement of the accuracy of the methods.
Feature Masking in Computer Game Promotes Visual Imagery
ERIC Educational Resources Information Center
Smith, Glenn Gordon; Morey, Jim; Tjoe, Edwin
2007-01-01
Can learning of mental imagery skills for visualizing shapes be accelerated with feature masking? Chemistry, physics fine arts, military tactics, and laparoscopic surgery often depend on mentally visualizing shapes in their absence. Does working with "spatial feature-masks" (skeletal shapes, missing key identifying portions) encourage people to…
Thin polymeric films for building biohybrid microrobots.
Ricotti, Leonardo; Fujie, Toshinori
2017-03-06
This paper aims to describe the disruptive potential that polymeric thin films have in the field of biohybrid devices and to review the recent efforts in this area. Thin (thickness < 1 mm) and ultra-thin (thickness < 1 µm) matrices possess a series of intriguing features, such as large surface area/volume ratio, high flexibility, chemical and physical surface tailorability, etc. This enables the fabrication of advanced bio/non-bio interfaces able to efficiently drive cell-material interactions, which are the key for optimizing biohybrid device performances. Thin films can thus represent suitable platforms on which living and artificial elements are coupled, with the aim of exploiting the unique features of living cells/tissues. This may allow to carry out certain tasks, not achievable with fully artificial technologies. In the paper, after a description of the desirable chemical/physical cues to be targeted and of the fabrication, functionalization and characterization procedures to be used for thin and ultra-thin films, the state-of-the-art of biohybrid microrobots based on micro/nano-membranes are described and discussed. The research efforts in this field are rather recent and they focus on: (1) self-beating cells (such as cardiomyocytes) able to induce a relatively large deformation of the underlying substrates, but affected by a limited controllability by external users; (2) skeletal muscle cells, more difficult to engineer in mature and functional contractile tissues, but featured by a higher controllability. In this context, the different materials used and the performances achieved are analyzed. Despite recent interesting advancements and signs of maturity of this research field, important scientific and technological steps are still needed. In the paper some possible future perspectives are described, mainly concerning thin film manipulation and assembly in multilayer 3D systems, new advanced materials to be used for the fabrication of thin films, cell engineering opportunities and modelling/computational efforts.
NASA Astrophysics Data System (ADS)
Alp, D.; Demory, B.-O.
2018-01-01
Context. Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. Aims: The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and to explore the dependencies on atmospheric physical parameters. We also explore under which circumstances transmission spectra are significantly affected by refraction. Finally, we search for refraction signatures in photometric residuals in Kepler data. Methods: We use the model of Hui & Seager (2002, ApJ, 572, 540) to compute deflection angles and refraction transit light curves, allowing us to explore the parameter space of atmospheric properties. The observational search is performed by stacking large samples of transit light curves from Kepler. Results: We find that out-of-transit refraction shoulders are the most easily observable features, which can reach peak amplitudes of 10 parts per million (ppm) for planets around Sun-like stars. More typical amplitudes are a few ppm or less for Jovians and at the sub-ppm level for super-Earths. In-transit, ingress, and egress refraction features are challenging to detect because of the short timescales and degeneracies with other transit model parameters. Interestingly, the signal-to-noise ratio of any refraction residuals for planets orbiting Sun-like hosts are expected to be similar for planets orbiting red dwarfs and ultra-cool stars. We also find that the maximum depth probed by transmission spectroscopy is not limited by refraction for weakly lensing planets, but that the incidence of refraction can vary significantly for strongly lensing planets. We find no signs of refraction features in the stacked Kepler light curves, which is in agreement with our model predictions.
Scaling laws for coastal overwash morphology
NASA Astrophysics Data System (ADS)
Lazarus, Eli D.
2016-12-01
Overwash is a physical process of coastal sediment transport driven by storm events and is essential to landscape resilience in low-lying barrier environments. This work establishes a comprehensive set of scaling laws for overwash morphology: unifying quantitative descriptions with which to compare overwash features by their morphological attributes across case examples. Such scaling laws also help relate overwash features to other morphodynamic phenomena. Here morphometric data from a physical experiment are compared with data from natural examples of overwash features. The resulting scaling relationships indicate scale invariance spanning several orders of magnitude. Furthermore, these new relationships for overwash morphology align with classic scaling laws for fluvial drainages and alluvial fans.
Passive Infrared Thermographic Imaging for Mobile Robot Object Identification
NASA Astrophysics Data System (ADS)
Hinders, M. K.; Fehlman, W. L.
2010-02-01
The usefulness of thermal infrared imaging as a mobile robot sensing modality is explored, and a set of thermal-physical features used to characterize passive thermal objects in outdoor environments is described. Objects that extend laterally beyond the thermal camera's field of view, such as brick walls, hedges, picket fences, and wood walls as well as compact objects that are laterally within the thermal camera's field of view, such as metal poles and tree trunks, are considered. Classification of passive thermal objects is a subtle process since they are not a source for their own emission of thermal energy. A detailed analysis is included of the acquisition and preprocessing of thermal images, as well as the generation and selection of thermal-physical features from these objects within thermal images. Classification performance using these features is discussed, as a precursor to the design of a physics-based model to automatically classify these objects.
ERIC Educational Resources Information Center
Johnson-Lawrence, Vicki; Schulz, Amy J.; Zenk, Shannon N.; Israel, Barbara A.; Wineman, Jean; Marans, Robert W.; Rowe, Zachary
2015-01-01
Regular physical activity is associated with improvements in overall health. Although resident involvement in neighborhood social activities is positively associated with physical activity, neighborhood design features, including residential density, have varied associations with physical activity. Using data from a multiethnic sample of 696…
NASA Astrophysics Data System (ADS)
Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf
2016-04-01
We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia materials online and prior to engaging in classroom activities. Pre-lecture questions on both the medical content covered in the video media and the physics concepts in the written material were designed to engage students and probe their understanding of physics. The course featured group discussion and peer-lead instruction. Following in-class instruction, students engaged with homework assignments which explore the connections of physics and the medical field in a quantitative manner. Course surveys showed a positive response by the vast majority of students. Students largely indicated that the course helped them to make a connection between physics and the biomedical field. The biomedical focus and different course format were seen as an improvement to previous traditional physics instruction.
Shorey, Ryan C.; Elmquist, Joanna; Anderson, Scott; Stuart, Gregory L.
2016-01-01
There is a large literature documenting that adult men in treatment for substance use disorders perpetrate more aggression than men without substance use disorders. Unfortunately, there is minimal research on aggression among young adult men (i.e., 18–25 years of age) in treatment for substance use. Moreover, although aggression is more likely to occur when individuals are acutely intoxicated by alcohol or drugs, research also suggests that antisocial (ASPD) and borderline (BPD) personality features increase the chances an individual will use aggression. The current study therefore examined the associations between ASPD and BPD features, including specific features that are reflective of impulsivity, and aggression in young adult men in treatment for substance use disorders (N = 79). Controlling for age, education, alcohol and drug use, ASPD features were positively associated with various indicators of aggression (e.g., physical, verbal, attitudinal), whereas BPD features were only associated with physical aggression. However, ASPD and BPD features that were specific to impulsivity were robustly related to indicators of aggression. Findings suggest that substance use treatment should attempt to target ASPD and BPD features in young adult men, which may help reduce aggression after treatment. PMID:26941068
What Can We Learn from a Simple Physics-Based Earthquake Simulator?
NASA Astrophysics Data System (ADS)
Artale Harris, Pietro; Marzocchi, Warner; Melini, Daniele
2018-03-01
Physics-based earthquake simulators are becoming a popular tool to investigate on the earthquake occurrence process. So far, the development of earthquake simulators is commonly led by the approach "the more physics, the better". However, this approach may hamper the comprehension of the outcomes of the simulator; in fact, within complex models, it may be difficult to understand which physical parameters are the most relevant to the features of the seismic catalog at which we are interested. For this reason, here, we take an opposite approach and analyze the behavior of a purposely simple earthquake simulator applied to a set of California faults. The idea is that a simple simulator may be more informative than a complex one for some specific scientific objectives, because it is more understandable. Our earthquake simulator has three main components: the first one is a realistic tectonic setting, i.e., a fault data set of California; the second is the application of quantitative laws for earthquake generation on each single fault, and the last is the fault interaction modeling through the Coulomb Failure Function. The analysis of this simple simulator shows that: (1) the short-term clustering can be reproduced by a set of faults with an almost periodic behavior, which interact according to a Coulomb failure function model; (2) a long-term behavior showing supercycles of the seismic activity exists only in a markedly deterministic framework, and quickly disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault; (3) faults that are strongly coupled in terms of Coulomb failure function model are synchronized in time only in a marked deterministic framework, and as before, such a synchronization disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault. Overall, the results show that even in a simple and perfectly known earthquake occurrence world, introducing a small degree of stochasticity may blur most of the deterministic time features, such as long-term trend and synchronization among nearby coupled faults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gala, Alan; Ohmacht, Martin
A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memorymore » access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.« less
"Social Networkout": Connecting Social Features of Wearable Fitness Trackers with Physical Exercise.
Zhu, Yaguang; Dailey, Stephanie L; Kreitzberg, Daniel; Bernhardt, Jay
2017-12-01
Despite widespread understanding of the benefits of physical activity, many adults in the United States do not meet recommended exercise guidelines. Burgeoning technologies, including wearable fitness trackers (e.g., Fitbit, Apple watch), bring new opportunities to influence physical activity by encouraging users to track and share physical activity data and compete against their peers. However, research has not explored the social processes that mediate the relationship between the use of wearable fitness trackers and intention to exercise. In this study, we applied the Theory of Planned Behavior (Ajzen, 1991) to explore the effects of two communicative features of wearable fitness devices-social sharing and social competing-on individuals' intention to exercise. Drawing upon surveys from 238 wearable fitness tracker users, we found that the relationship between the two communication features (social sharing and competing) and exercise intention was mediated by attitudes, subjective norms, and perceived behavioral control. The results suggest that the ways in which exercise data are shared significantly influence the exercise intentions, and these intentions are mediated by individuals' evaluation of exercise, belief about important others' approval of exercise, and perceived control upon exercise.
The Physics of Open Ended Evolution
NASA Astrophysics Data System (ADS)
Adams, Alyssa M.
What makes living systems different than non-living ones? Unfortunately this question is impossible to answer, at least currently. Instead, we must face computationally tangible questions based on our current understanding of physics, computation, information, and biology. Yet we have few insights into how living systems might quantifiably differ from their non-living counterparts, as in a mathematical foundation to explain away our observations of biological evolution, emergence, innovation, and organization. The development of a theory of living systems, if at all possible, demands a mathematical understanding of how data generated by complex biological systems changes over time. In addition, this theory ought to be broad enough as to not be constrained to an Earth-based biochemistry. In this dissertation, the philosophy of studying living systems from the perspective of traditional physics is first explored as a motivating discussion for subsequent research. Traditionally, we have often thought of the physical world from a bottom-up approach: things happening on a smaller scale aggregate into things happening on a larger scale. In addition, the laws of physics are generally considered static over time. Research suggests that biological evolution may follow dynamic laws that (at least in part) change as a function of the state of the system. Of the three featured research projects, cellular automata (CA) are used as a model to study certain aspects of living systems in two of them. These aspects include self-reference, open-ended evolution, local physical universality, subjectivity, and information processing. Open-ended evolution and local physical universality are attributed to the vast amount of innovation observed throughout biological evolution. Biological systems may distinguish themselves in terms of information processing and storage, not outside the theory of computation. The final research project concretely explores real-world phenomenon by means of mapping dominance hierarchies in the evolution of video game strategies. Though the main question of how life differs from non-life remains unanswered, the mechanisms behind open-ended evolution and physical universality are revealed.
36 CFR 67.7 - Standards for rehabilitation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... be substantiated by documentary, physical, or pictorial evidence. (7) Chemical or physical treatments... features. The Standards pertain to historic buildings of all materials, construction types, sizes, and... a physical record of its time, place, and use. Changes that create a false sense of historical...
36 CFR 67.7 - Standards for rehabilitation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be substantiated by documentary, physical, or pictorial evidence. (7) Chemical or physical treatments... features. The Standards pertain to historic buildings of all materials, construction types, sizes, and... a physical record of its time, place, and use. Changes that create a false sense of historical...
36 CFR 67.7 - Standards for rehabilitation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be substantiated by documentary, physical, or pictorial evidence. (7) Chemical or physical treatments... features. The Standards pertain to historic buildings of all materials, construction types, sizes, and... a physical record of its time, place, and use. Changes that create a false sense of historical...
36 CFR 67.7 - Standards for rehabilitation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be substantiated by documentary, physical, or pictorial evidence. (7) Chemical or physical treatments... features. The Standards pertain to historic buildings of all materials, construction types, sizes, and... a physical record of its time, place, and use. Changes that create a false sense of historical...
Object segmentation controls image reconstruction from natural scenes
2017-01-01
The structure of the physical world projects images onto our eyes. However, those images are often poorly representative of environmental structure: well-defined boundaries within the eye may correspond to irrelevant features of the physical world, while critical features of the physical world may be nearly invisible at the retinal projection. The challenge for the visual cortex is to sort these two types of features according to their utility in ultimately reconstructing percepts and interpreting the constituents of the scene. We describe a novel paradigm that enabled us to selectively evaluate the relative role played by these two feature classes in signal reconstruction from corrupted images. Our measurements demonstrate that this process is quickly dominated by the inferred structure of the environment, and only minimally controlled by variations of raw image content. The inferential mechanism is spatially global and its impact on early visual cortex is fast. Furthermore, it retunes local visual processing for more efficient feature extraction without altering the intrinsic transduction noise. The basic properties of this process can be partially captured by a combination of small-scale circuit models and large-scale network architectures. Taken together, our results challenge compartmentalized notions of bottom-up/top-down perception and suggest instead that these two modes are best viewed as an integrated perceptual mechanism. PMID:28827801
Stability of deep features across CT scanners and field of view using a physical phantom
NASA Astrophysics Data System (ADS)
Paul, Rahul; Shafiq-ul-Hassan, Muhammad; Moros, Eduardo G.; Gillies, Robert J.; Hall, Lawrence O.; Goldgof, Dmitry B.
2018-02-01
Radiomics is the process of analyzing radiological images by extracting quantitative features for monitoring and diagnosis of various cancers. Analyzing images acquired from different medical centers is confounded by many choices in acquisition, reconstruction parameters and differences among device manufacturers. Consequently, scanning the same patient or phantom using various acquisition/reconstruction parameters as well as different scanners may result in different feature values. To further evaluate this issue, in this study, CT images from a physical radiomic phantom were used. Recent studies showed that some quantitative features were dependent on voxel size and that this dependency could be reduced or removed by the appropriate normalization factor. Deep features extracted from a convolutional neural network, may also provide additional features for image analysis. Using a transfer learning approach, we obtained deep features from three convolutional neural networks pre-trained on color camera images. An we examination of the dependency of deep features on image pixel size was done. We found that some deep features were pixel size dependent, and to remove this dependency we proposed two effective normalization approaches. For analyzing the effects of normalization, a threshold has been used based on the calculated standard deviation and average distance from a best fit horizontal line among the features' underlying pixel size before and after normalization. The inter and intra scanner dependency of deep features has also been evaluated.
Wardlaw, Joanna M; Smith, Eric E; Biessels, Geert J; Cordonnier, Charlotte; Fazekas, Franz; Frayne, Richard; Lindley, Richard I; O'Brien, John T; Barkhof, Frederik; Benavente, Oscar R; Black, Sandra E; Brayne, Carol; Breteler, Monique; Chabriat, Hugues; DeCarli, Charles; de Leeuw, Frank-Erik; Doubal, Fergus; Duering, Marco; Fox, Nick C; Greenberg, Steven; Hachinski, Vladimir; Kilimann, Ingo; Mok, Vincent; Oostenbrugge, Robert van; Pantoni, Leonardo; Speck, Oliver; Stephan, Blossom C M; Teipel, Stefan; Viswanathan, Anand; Werring, David; Chen, Christopher; Smith, Colin; van Buchem, Mark; Norrving, Bo; Gorelick, Philip B; Dichgans, Martin
2013-01-01
Summary Cerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have few or no symptoms. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive deficits, physical disabilities, and other symptoms of neurodegeneration. Terminology and definitions for imaging the features of SVD vary widely, which is also true for protocols for image acquisition and image analysis. This lack of consistency hampers progress in identifying the contribution of SVD to the pathophysiology and clinical features of common neurodegenerative diseases. We are an international working group from the Centres of Excellence in Neurodegeneration. We completed a structured process to develop definitions and imaging standards for markers and consequences of SVD. We aimed to achieve the following: first, to provide a common advisory about terms and definitions for features visible on MRI; second, to suggest minimum standards for image acquisition and analysis; third, to agree on standards for scientific reporting of changes related to SVD on neuroimaging; and fourth, to review emerging imaging methods for detection and quantification of preclinical manifestations of SVD. Our findings and recommendations apply to research studies, and can be used in the clinical setting to standardise image interpretation, acquisition, and reporting. This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE). PMID:23867200
Temporal coherence among tropical coastal lagoons: a search for patterns and mechanisms.
Caliman, A; Carneiro, L S; Santangelo, J M; Guariento, R D; Pires, A P F; Suhett, A L; Quesado, L B; Scofield, V; Fonte, E S; Lopes, P M; Sanches, L F; Azevedo, F D; Marinho, C C; Bozelli, R L; Esteves, F A; Farjalla, V F
2010-10-01
Temporal coherence (i.e., the degree of synchronicity of a given variable among ecological units within a predefined space) has been shown for several limnological features among temperate lakes, allowing predictions about the structure and function of ecosystems. However, there is little evidence of temporal coherence among tropical aquatic systems, where the climatic variability among seasons is less pronounced. Here, we used data from long-term monitoring of physical, chemical and biological variables to test the degree of temporal coherence among 18 tropical coastal lagoons. The water temperature and chlorophyll-a concentration had the highest and lowest temporal coherence among the lagoons, respectively, whereas the salinity and water colour had intermediate temporal coherence. The regional climactic factors were the main factors responsible for the coherence patterns in the water temperature and water colour, whereas the landscape position and morphometric characteristics explained much of the variation of the salinity and water colour among the lagoons. These results indicate that both local (lagoon morphometry) and regional (precipitation, air temperature) factors regulate the physical and chemical conditions of coastal lagoons by adjusting the terrestrial and marine subsidies at a landscape-scale. On the other hand, the chlorophyll-a concentration appears to be primarily regulated by specific local conditions resulting in a weak temporal coherence among the ecosystems. We concluded that temporal coherence in tropical ecosystems is possible, at least for some environmental features, and should be evaluated for other tropical ecosystems. Our results also reinforce that aquatic ecosystems should be studied more broadly to accomplish a full understanding of their structure and function.
Work shift duration: a review comparing eight hour and 12 hour shift systems.
Smith, L; Folkard, S; Tucker, P; Macdonald, I
1998-04-01
Shiftwork is now a major feature of working life across a broad range of industries. The features of the shift systems operated can impact on the wellbeing, performance, and sleep of shiftworkers. This paper reviews the current state of knowledge on one major characteristic of shift rotas-namely, shift duration. Evidence comparing the relative effects of eight hour and 12 hour shifts on fatigue and job performance, safety, sleep, and physical and psychological health are considered. At the organisational level, factors such as the mode of system implementation, attitudes towards shift rotas, sickness absence and turnover, overtime, and moonlighting are discussed. Manual and electronic searches of the shiftwork research literature were conducted to obtain information on comparisons between eight hour and 12 hour shifts. The research findings are largely equivocal. The bulk of the evidence suggests few differences between eight and 12 hour shifts in the way they affect people. There may even be advantages to 12 hour shifts in terms of lower stress levels, better physical and psychological wellbeing, improved durations and quality of off duty sleep as well as improvements in family relations. On the negative side, the main concerns are fatigue and safety. It is noted that a 12 hour shift does not equate with being active for only 12 hours. There can be considerable extension of the person's time awake either side of the shift. However, the effects of longer term exposure to extended work days have been relatively uncharted in any systematic way. Longitudinal comparative research into the chronic impact of the compressed working week is needed.
NASA Astrophysics Data System (ADS)
Faria, S. H.; Kipfstuhl, S.; Garbe, C. S.; Bendel, V.; Weikusat, C.; Weikusat, I.
2010-12-01
The great value of polar deep ice cores stems mainly from two essential features of polar ice: its crystalline structure and its impurities. They determine the physical properties of the ice matrix and provide proxies for the investigation of past climates. Experience shows that these two essential features of polar ice manifest themselves in a multiscale diversity of dynamic structures, including dislocations, grain boundaries, solid particles, air bubbles, clathrate hydrates and cloudy bands, among others. The fact that these structures are dynamic implies that they evolve with time through intricate interactions between the crystalline structure, impurities, and the ice flow. Records of these interactions have been carefully investigated in samples of the EPICA deep ice core drilled in Dronning Maud Land, Antarctica (75°S, 0°E, 2882 m elevation, 2774.15 m core length). Here we show how the distributions of sizes and shapes of air bubbles correlate with impurities and the crystalline structure, how the interaction between moving grain boundaries and micro-inclusions changes with ice depth and temperature, as well as the possible causes for the abrupt change in ice rheology observed in the MIS6-MIS5e transition. We also discuss how these observations may affect the flow of the ice sheet and the interpretation of paleoclimate records. Micrograph of an EDML sample from 555m depth. One can identify air bubbles (dark, round objects), microinclusions (tiny defocused spots), and a grain boundary pinned by a bubble. The width of the image is 700 micrometers.
Monitoring land use/cover changes on the Romanian Black Sea Coast
NASA Astrophysics Data System (ADS)
Zoran, L. F. V.; Dida, A. I.; Zoran, M. A.
2014-10-01
Remotely sensed satellite data are critical to understanding the coastal zones' physical and social systems interaction, complementing ground based methods and providing accurate wide range, objective and comparable, at widely-varying scales, synoptically data. For some environmental agreements remote sensing may provide the only viable means of compliance verification because the phenomena are monitored occurs over large and inaccessible geographic areas. The main aim of this paper was the assessment of coastal zone land cover/use changes based on fusion technique of satellite remote sensing imagery. The evaluation of coastal zone landscapes was based upon different sub-functions which refer to landscape features such as water, soil, land-use, buildings, groundwater, biotope types. A newly proposed sub-pixel mapping algorithm was applied to a set of multispectral and multitemporal satellite data for Danube Delta, Constantza and Black Sea coastal zone areas in Romania. A land cover classification and subsequent environmental quality analysis for change detection was done based on Landsat TM , Landsat ETM, QuickBird satellite images over 1990 to 2013 period of time. Spectral signatures of different terrain features have been used to separate and classify surface units of coastal zone and sub-coastal zone area.The change in the position of the coastline in Constantza area was examined in relation with the urban expansion. A distinction was made between landfill/sedimentation processes on the one hand and dredging/erosion processes on the other. We considered the Romanian Black Sea coastal zone dynamics in connection with the spatio-temporal variation of physical and biogeochemical processes and their influences on the environmental state in the near-shore area.
Barko, V.A.; Herzog, D.P.; Hrabik, R.A.; Scheibe, J.S.
2004-01-01
Large rivers worldwide have been altered by the construction and maintenance of navigation channels, which include extensive bank revetments, wing dikes, and levees. Using 7 years of Long-Term Resource Monitoring Program (LTRMP) data collected from the unimpounded upper Mississippi River, we investigated assemblages in two main-channel-border physical habitats-those with wing dikes and those without wing dikes. Fishes were captured using daytime electrofishing, mini-fyke netting, large hoop netting, and small hoop netting. Our objectives were to (1) assess associations among fish species richness, physical measurements, and main-channel-border physical habitats using stepwise multiple regression and indicator variables; (2) identify abundant adult and young-of-year (age-0) families in both physical habitats to further investigate assemblage composition; and (3) calculate standardized species richness estimates within each physical habitat for adult and age-0 fishes to provide additional information on community structure. We found species richness was greater at wing dikes for both adult and age-0 fishes when compared with main channel borders. Stepwise multiple regression revealed significant relationships between adult species richness and passive gear deployment (e.g,, hoop nets and mini-fyke nets), physical habitat type, and river elevation, as well as interactions between physical habitat and passive gears, and physical habitat and transparency (i.e., Secchi depth). This model explained 56% of the variance in adult species richness. Approximately 15% of the variation in age-0 species richness was explained by the sample period, sample date, transparency, physical habitat, and depth of gear deployment. Long-term impacts of river modifications on fishes have not been well documented in many large river systems and warrant further study. The findings from this study provide baseline ecological information on fish assemblages using main channel borders in the unimpounded upper Mississippi River, information that will aid managers making channel maintenance decisions in large river systems.
Radio Occultation Investigation of the Rings of Saturn and Uranus
NASA Technical Reports Server (NTRS)
Marouf, Essam A.
1997-01-01
The proposed work addresses two main objectives: (1) to pursue the development of the random diffraction screen model for analytical/computational characterization of the extinction and near-forward scattering by ring models that include particle crowding, uniform clustering, and clustering along preferred orientations (anisotropy). The characterization is crucial for proper interpretation of past (Voyager) and future (Cassini) ring, occultation observations in terms of physical ring properties, and is needed to address outstanding puzzles in the interpretation of the Voyager radio occultation data sets; (2) to continue the development of spectral analysis techniques to identify and characterize the power scattered by all features of Saturn's rings that can be resolved in the Voyager radio occultation observations, and to use the results to constrain the maximum particle size and its abundance. Characterization of the variability of surface mass density among the main ring, features and within individual features is important for constraining the ring mass and is relevant to investigations of ring dynamics and origin. We completed the developed of the stochastic geometry (random screen) model for the interaction of electromagnetic waves with of planetary ring models; used the model to relate the oblique optical depth and the angular spectrum of the near forward scattered signal to statistical averages of the stochastic geometry of the randomly blocked area. WE developed analytical results based on the assumption of Poisson statistics for particle positions, and investigated the dependence of the oblique optical depth and angular spectrum on the fractional area blocked, vertical ring profile, and incidence angle when the volume fraction is small. Demonstrated agreement with the classical radiative transfer predictions for oblique incidence. Also developed simulation procedures to generate statistical realizations of random screens corresponding to uniformly packed ring models, and used the results to characterize dependence of the extinction and near-forward scattering on ring thickness, packing fraction, and the ring opening angle.
NASA Astrophysics Data System (ADS)
Zenoni, A.; Bignotti, F.; Donzella, A.; Donzella, G.; Ferrari, M.; Pandini, S.; Andrighetto, A.; Ballan, M.; Corradetti, S.; Manzolaro, M.; Monetti, A.; Rossignoli, M.; Scarpa, D.; Alloni, D.; Prata, M.; Salvini, A.; Zelaschi, F.
2017-11-01
Materials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test. One EPDM is rated as radiation resistant in gamma fields, while the other elastomers are general purpose products. Particular care has been devoted to dosimetry calculations, since absorbed dose in neutron fields, unlike pure gamma fields, is strongly dependent on the material composition and, in particular, on the hydrogen content. The products have been tested up to about 2 MGy absorbed dose. The FPM based elastomer, in spite of its lower dose absorption in fast neutron fields, features the largest variations of properties, with a dramatic increase in stiffness and brittleness. Out of the three EPDM based compounds, one shows large and rapid changes in the main mechanical properties, whereas the other two feature more stable behaviors. The performance of the EPDM rated as radiation resistant in pure gamma fields does not appear significantly better than that of the standard product. The predictive capability of the accelerated irradiation tests performed as well as the applicable concepts of threshold of radiation damage is discussed in view of the use of the examined products in the selective production of exotic species facility, now under construction at the Legnaro National Laboratories of the Italian Istituto Nazionale di Fisica Nucleare. It results that a careful account of dose rate effects and oxygen penetration in the material, both during test irradiations and in operating conditions, is needed to obtain reliable predictions.
Zenoni, A; Bignotti, F; Donzella, A; Donzella, G; Ferrari, M; Pandini, S; Andrighetto, A; Ballan, M; Corradetti, S; Manzolaro, M; Monetti, A; Rossignoli, M; Scarpa, D; Alloni, D; Prata, M; Salvini, A; Zelaschi, F
2017-11-01
Materials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test. One EPDM is rated as radiation resistant in gamma fields, while the other elastomers are general purpose products. Particular care has been devoted to dosimetry calculations, since absorbed dose in neutron fields, unlike pure gamma fields, is strongly dependent on the material composition and, in particular, on the hydrogen content. The products have been tested up to about 2 MGy absorbed dose. The FPM based elastomer, in spite of its lower dose absorption in fast neutron fields, features the largest variations of properties, with a dramatic increase in stiffness and brittleness. Out of the three EPDM based compounds, one shows large and rapid changes in the main mechanical properties, whereas the other two feature more stable behaviors. The performance of the EPDM rated as radiation resistant in pure gamma fields does not appear significantly better than that of the standard product. The predictive capability of the accelerated irradiation tests performed as well as the applicable concepts of threshold of radiation damage is discussed in view of the use of the examined products in the selective production of exotic species facility, now under construction at the Legnaro National Laboratories of the Italian Istituto Nazionale di Fisica Nucleare. It results that a careful account of dose rate effects and oxygen penetration in the material, both during test irradiations and in operating conditions, is needed to obtain reliable predictions.
NASA catalogue of lunar nomenclature
NASA Technical Reports Server (NTRS)
Andersson, L. A.; Whitaker, E. A.
1982-01-01
Lunar nomenclature is cataloged. It includes letter designations for subsidiary craters, and uses a more familiar spelling from eight names. The listed features are divided into three main groups for cataloging purposes, namely: (1) craters, (2) noncrater features; and (3) minor and miscellaneous features.
Maas, Marjo J M; van Dulmen, Simone A; Sagasser, Margaretha H; Heerkens, Yvonne F; van der Vleuten, Cees P M; Nijhuis-van der Sanden, Maria W G; van der Wees, Philip J
2015-11-12
Clinical practice guidelines are intended to improve the process and outcomes of patient care. However, their implementation remains a challenge. We designed an implementation strategy, based on peer assessment (PA) focusing on barriers to change in physical therapy care. A previously published randomized controlled trial showed that PA was more effective than the usual strategy "case discussion" in improving adherence to a low back pain guideline. Peer assessment aims to enhance knowledge, communication, and hands-on clinical skills consistent with guideline recommendations. Participants observed and evaluated clinical performance on the spot in a role-play simulating clinical practice. Participants performed three roles: physical therapist, assessor, and patient. This study explored the critical features of the PA program that contributed to improved guideline adherence in the perception of participants. Dutch physical therapists working in primary care (n = 49) organized in communities of practice (n = 6) participated in the PA program. By unpacking the program we identified three main tasks and eleven subtasks. After the program was finished, a questionnaire was administered in which participants were asked to rank the program tasks from high to low learning value and to describe their impact on performance improvement. Overall ranking results were calculated. Additional semi-structured interviews were conducted to elaborate on the questionnaires results and were transcribed verbatim. Questionnaires comments and interview transcripts were analyzed using template analysis. Program tasks related to performance in the therapist role were perceived to have the highest impact on learning, although task perceptions varied from challenging to threatening. Perceptions were affected by the role-play format and the time schedule. Learning outcomes were awareness of performance, improved attitudes towards the guideline, and increased self-efficacy beliefs in managing patients with low back pain. Learning was facilitated by psychological safety and the quality of feedback. The effectiveness of PA can be attributed to the structured and performance-based design of the program. Participants showed a strong cognitive and emotional commitment to performing the physical therapist role. That might have contributed to an increased awareness of strength and weakness in clinical performance and a motivation to change routine practice.
Lee, Christine K; Hofer, Ira; Gabel, Eilon; Baldi, Pierre; Cannesson, Maxime
2018-04-17
The authors tested the hypothesis that deep neural networks trained on intraoperative features can predict postoperative in-hospital mortality. The data used to train and validate the algorithm consists of 59,985 patients with 87 features extracted at the end of surgery. Feed-forward networks with a logistic output were trained using stochastic gradient descent with momentum. The deep neural networks were trained on 80% of the data, with 20% reserved for testing. The authors assessed improvement of the deep neural network by adding American Society of Anesthesiologists (ASA) Physical Status Classification and robustness of the deep neural network to a reduced feature set. The networks were then compared to ASA Physical Status, logistic regression, and other published clinical scores including the Surgical Apgar, Preoperative Score to Predict Postoperative Mortality, Risk Quantification Index, and the Risk Stratification Index. In-hospital mortality in the training and test sets were 0.81% and 0.73%. The deep neural network with a reduced feature set and ASA Physical Status classification had the highest area under the receiver operating characteristics curve, 0.91 (95% CI, 0.88 to 0.93). The highest logistic regression area under the curve was found with a reduced feature set and ASA Physical Status (0.90, 95% CI, 0.87 to 0.93). The Risk Stratification Index had the highest area under the receiver operating characteristics curve, at 0.97 (95% CI, 0.94 to 0.99). Deep neural networks can predict in-hospital mortality based on automatically extractable intraoperative data, but are not (yet) superior to existing methods.
Kim, Sunwook; Barker, Linsey M; Jia, Bochen; Agnew, Michael J; Nussbaum, Maury A
2009-03-01
Work-related musculoskeletal disorders (WMSDs) are prevalent among healthcare workers worldwide. While existing research has focused on patient-handling techniques during activities which require direct patient contact (e.g., patient transfer), nursing tasks also involve other patient-handling activities, such as engaging bed brakes and transporting patients in beds, which could render healthcare workers at risk of developing WMSDs. Effectiveness of hospital bed design features (brake pedal location and steering-assistance) was evaluated in terms of physical demands and usability during brake engagement and patient transportation tasks. Two laboratory-based studies were conducted. In simulated brake engagement tasks, three brake pedal locations (head-end vs. foot-end vs. side of a bed) and two hands conditions (hands-free vs. hands-occupied) were manipulated. Additionally, both in-room and corridor patient transportation tasks were simulated, in which activation of steering-assistance features (5th wheel and/or front wheel caster lock) and two patient masses were manipulated. Nine novice participants were recruited from the local student population and community for each study. During brake engagement, trunk flexion angle, task completion time, and questionnaires were used to quantify postural comfort and usability. For patient transportation, dependent measures were hand forces and questionnaire responses. Brake pedal locations and steering-assistance features in hospital beds had significant effects on physical demands and usability during brake engagement and patient transportation tasks. Specifically, a brake pedal at the head-end of a bed increased trunk flexion by 74-224% and completion time by 53-74%, compared to other pedal locations. Participants reported greater overall perceived difficulty and less postural comfort with the brake pedal at the head-end. During in-room transportation, participants generally reported "Neither Low nor High" physical demands with the 5th wheel activated, compared to "Moderately High" physical demands when the 5th wheel was deactivated. Corridor transportation was similarly reported to be easier when a steering-assistance feature (the 5th wheel or front caster lock) was activated. Braking and steering-assistance features of hospital beds can have important effects on task efficiency and physical demands placed on healthcare workers. Selection of specific designs may thus be able to improve productivity and contribute to a reduction in WMSDs risk among healthcare workers.
NASA Astrophysics Data System (ADS)
Nagai, Hiroto; Watanabe, Manabu; Tomii, Naoya
2016-04-01
A major earthquake, measuring 7.8 Mw, occurred on April 25, 2015, in Lamjung district, central Nepal, causing more than 9,000 deaths and 23,000 injuries. During the event, termed the 2015 Gorkha earthquake, the most catastrophic collapse of the mountain side was reported in the Langtang Valley, located 60 km north of Kathmandu. In this collapse, a huge boulder-rich avalanche and a sudden air pressure wave traveled from a steep south-facing slope to the bottom of a U-shaped valley, resulting in more than 170 deaths. Accurate in-situ surveys are necessary to investigate such events, and to find out ways to avoid similar catastrophic events in the future. Geospatial information obtained from multiple satellite observations is invaluable for such surveys in remote mountain regions. In this study, we (1) identify the collapsed sediment using synthetic aperture radar, (2) conduct detailed mapping using high-resolution optical imagery, and (3) estimate sediment volumes from digital surface models in order to quantify the immediate situation of the avalanched sediment. (1) Visual interpretation and coherence calculations using Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) images give a consistent area of sediment cover. Emergency observation was carried out the day after the earthquake, using the PALSAR-2 onboard the Advanced Land Observing Satellite-2 (ALOS-2, "DAICHI-2"). Visual interpretation of orthorectified backscatter amplitude images revealed completely altered surface features, over which the identifiable sediment cover extended for 0.73 km2 (28°13'N, 85°30'E). Additionally, measuring the decrease in normalized coherence quantifies the similarity between the pre- and post-event surface features, after the removal of numerous noise patches by focal statistics. Calculations within the study area revealed high-value areas corresponding to the visually identified sediment area. Visual interpretation of the amplitude images and the coherence calculations thus produce similar extractions of collapse sediment. (2) Visual interpretation of high-resolution satellite imagery suggests multiple layers of sediment with different physical properties. A DigitalGlobe satellite, WorldView-3, observed the Langtang Valley on May 8, 2015, using a panchromatic sensor with a spatial resolution of 0.3 m. Identification and mapping of avalanche-induced surface features were performed manually. The surface features were classified into 15 segments on the basis of sediment features, including darkness, the dominance of scattering or flowing features, and the recognition of boulders. Together, these characteristics suggest various combinations of physical properties, such as viscosity, density, and ice and snow content. (3) Altitude differences between the pre- and post-quake digital surface models (DSM) suggest the deposition of 5.2×105 m3 of sediment, mainly along the river bed. A 5 m-grid pre-event DSM was generated from PRISM stereo-pair images acquired on October 12, 2008. A 2 m-grid post-event DSM was generated from WorldView-3 images acquired on May 8, 2015. Comparing the two DSMs, a vertical difference of up to 22±13 m is observed, mainly along the river bed. Estimates of the total avalanched volume reach 5.2×105 m^3, with a possible range of 3.7×105 to 10.7×105 m^3.
Familiarizing Students with the Basics of a Smartphone's Internal Sensors
NASA Astrophysics Data System (ADS)
Countryman, Colleen Lanz
2014-12-01
The Physics Teacher's "iPhysicsLabs" column has been dedicated to the implementation of smartphones in instructional physics labs as data collection devices. In order to understand any data set, however, one should first understand how it is obtained. This concern regarding the inclusion of smartphones in lab activities has arisen in response to the creation of this column1 as well as to a paper in a recent issue of Physics Today.2 The majority of the labs featured in the "iPhysicsLabs" column to date make use of the internal accelerometer, common to nearly all smartphones on the market today. In order to glean meaningful conclusions from their data, students should first understand how the sensor works, as was pointed out in the first article to be featured in that column.3 We attempt to elucidate this "iBlackBox" using a simple ball-and-spring model.
CLIC CDR - physics and detectors: CLIC conceptual design report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, E.; Demarteau, M.; Repond, J.
This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximizemore » the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but considered feasible following a realistic future R&D program.« less
NASA Astrophysics Data System (ADS)
Kustusch, Mary Bridget
2011-12-01
Students in introductory physics struggle with vector algebra and with cross product direction in particular. Some have suggested that this may be due to misapplied right-hand rules, but there are few studies that have had the resolution to explore this. Additionally, previous research on student understanding has noted several kinds of representation-dependence of student performance with vector algebra in both physics and non-physics (or math) contexts (e.g. Hawkins et al., 2009; Van Deventer, 2008). Yet with few exceptions (e.g. Scaife and Heckler, 2010), these findings have not been applied to cross product direction questions or the use of right-hand rules. Also, the extensive work in spatial cognition is particularly applicable to cross product direction due to the spatial and kinesthetic nature of the right-hand rule. A synthesis of the literature from these various fields reveals four categories of problem features likely to impact the understanding of cross product direction: (1) the type of reasoning required, (2) the orientation of the vectors, (3) the need for parallel transport, and (4) the physics context and features (or lack thereof). These features formed the basis of the present effort to systematically explore the context-dependence and representation- dependence of student performance on cross product direction questions. This study used a mix of qualitative and quantitative techniques to analyze twenty-seven individual think-aloud interviews. During these interviews, second semester introductory physics students answered 80-100 cross product direction questions in different contexts and with varying problem features. These features were then used as the predictors in regression analyses for correctness and response time. In addition, each problem was coded for the methods used and the errors made to gain a deeper understanding of student behavior and the impact of these features. The results revealed a wide variety of methods (including six different right-hand rules), many different types of errors, and significant context-dependence and representation-dependence for the features mentioned above. Problems that required reasoning backward to find A⃗ (for C⃗=A⃗ xB⃗ ) presented the biggest challenge for students. Participants who recognized the non-commutativity of the cross product would often reverse the order ( B⃗xA⃗ ) on these problems. Also, this error occurred less frequently when a Guess and Check method was used in addition to the right-hand rule. Three different aspects of orientation had a significant impact on performance: (1) the physical discomfort of using a right-hand rule, (2) the plane of the given vectors, and to a lesser extent, (3) the angle between the vectors. One participant was more likely to switch the order of the vectors for the physically awkward orientations than for the physically easy orientations; and there was evidence that some of the difficulty with vector orientations that were not in the xy-plane was due to misinterpretations of the into and out of the page symbols. The impact of both physical discomfort and the plane of the vectors was reduced when participants rotated the paper. Unlike other problem features, the issue of parallel transport did not appear to be nearly as prevalent for cross product direction as it is for vector addition and subtraction. In addition to these findings, this study confirmed earlier findings regarding physics difficulties with magnetic field and magnetic force, such as differences in performance based on the representation of magnetic field (Scaife and Heckler, 2010) and confusion between electric and magnetic fields (Maloney et al., 2001). It also provided evidence of physics difficulties with magnetic field and magnetic force that have been suspected but never explored, specifically the impact of the sign of the charge and the observation location. This study demonstrated that student difficulty with cross product direction is not as simple as misapplied right-hand rules, although this is an issue. Student behavior on cross product direction questions is significantly dependent on both the context of the question and the representation of various problem features. Although more research is necessary, particularly in regard to individual differences, this study represents a significant step forward in our understanding of student difficulties with cross product direction.
ERIC Educational Resources Information Center
Poulin, David; Martinez, David; Aenchbacher, Amy; Aiello, Rocco; Doyle, Mike; Hilgenbrinck, Linda; Busse, Sean; Cappuccio, Jim
2013-01-01
In Part III of the feature, physical educators and adapted physical educators offer current best practices as models of implementation for readers. Contributions included are: (1) Answer to the Dear Colleague Letter from the Anchorage School District's Adapted Sport Program (David Poulin); (2) Georgia's Adapted Physical Educators Response to the…
Research-based active-learning instruction in physics
NASA Astrophysics Data System (ADS)
Meltzer, David E.; Thornton, Ronald K.
2013-04-01
The development of research-based active-learning instructional methods in physics has significantly altered the landscape of U.S. physics education during the past 20 years. Based on a recent review [D.E. Meltzer and R.K. Thornton, Am. J. Phys. 80, 478 (2012)], we define these methods as those (1) explicitly based on research in the learning and teaching of physics, (2) that incorporate classroom and/or laboratory activities that require students to express their thinking through speaking, writing, or other actions that go beyond listening and the copying of notes, or execution of prescribed procedures, and (3) that have been tested repeatedly in actual classroom settings and have yielded objective evidence of improved student learning. We describe some key features common to methods in current use. These features focus on (a) recognizing and addressing students' physics ideas, and (b) guiding students to solve problems in realistic physical settings, in novel and diverse contexts, and to justify or explain the reasoning they have used.
Method and apparatus for automatically detecting patterns in digital point-ordered signals
Brudnoy, David M.
1998-01-01
The present invention is a method and system for detecting a physical feature of a test piece by detecting a pattern in a signal representing data from inspection of the test piece. The pattern is detected by automated additive decomposition of a digital point-ordered signal which represents the data. The present invention can properly handle a non-periodic signal. A physical parameter of the test piece is measured. A digital point-ordered signal representative of the measured physical parameter is generated. The digital point-ordered signal is decomposed into a baseline signal, a background noise signal, and a peaks/troughs signal. The peaks/troughs from the peaks/troughs signal are located and peaks/troughs information indicating the physical feature of the test piece is output.
Method and apparatus for automatically detecting patterns in digital point-ordered signals
Brudnoy, D.M.
1998-10-20
The present invention is a method and system for detecting a physical feature of a test piece by detecting a pattern in a signal representing data from inspection of the test piece. The pattern is detected by automated additive decomposition of a digital point-ordered signal which represents the data. The present invention can properly handle a non-periodic signal. A physical parameter of the test piece is measured. A digital point-ordered signal representative of the measured physical parameter is generated. The digital point-ordered signal is decomposed into a baseline signal, a background noise signal, and a peaks/troughs signal. The peaks/troughs from the peaks/troughs signal are located and peaks/troughs information indicating the physical feature of the test piece is output. 14 figs.
EVALUATION AND DIAGNOSIS OF THE DYSMORPHIC INFANT
Jones, Kelly L.; Adam, Margaret P.
2015-01-01
SYNOPSIS Neonatologists often have the unique opportunity to be the first to identify abnormalities in the neonate. In this review, multiple anomalies and physical features are discussed along with the potential associated genetic syndromes. The anomalies and physical features that are discussed include birth parameters, aplasia cutis congenita, holoprosencephaly, asymmetric crying facies, preauricular ear tags and pits, cleft lip with or without cleft palate, esophageal atresia/tracheoesophageal fistula, congenital heart defects, ventral wall defects, and polydactyly. PMID:26042903
Physical activity classification with dynamic discriminative methods.
Ray, Evan L; Sasaki, Jeffer E; Freedson, Patty S; Staudenmayer, John
2018-06-19
A person's physical activity has important health implications, so it is important to be able to measure aspects of physical activity objectively. One approach to doing that is to use data from an accelerometer to classify physical activity according to activity type (e.g., lying down, sitting, standing, or walking) or intensity (e.g., sedentary, light, moderate, or vigorous). This can be formulated as a labeled classification problem, where the model relates a feature vector summarizing the accelerometer signal in a window of time to the activity type or intensity in that window. These data exhibit two key characteristics: (1) the activity classes in different time windows are not independent, and (2) the accelerometer features have moderately high dimension and follow complex distributions. Through a simulation study and applications to three datasets, we demonstrate that a model's classification performance is related to how it addresses these aspects of the data. Dynamic methods that account for temporal dependence achieve better performance than static methods that do not. Generative methods that explicitly model the distribution of the accelerometer signal features do not perform as well as methods that take a discriminative approach to establishing the relationship between the accelerometer signal and the activity class. Specifically, Conditional Random Fields consistently have better performance than commonly employed methods that ignore temporal dependence or attempt to model the accelerometer features. © 2018, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Walz, Michael; Leckebusch, Gregor C.
2016-04-01
Extratropical wind storms pose one of the most dangerous and loss intensive natural hazards for Europe. However, due to only 50 years of high quality observational data, it is difficult to assess the statistical uncertainty of these sparse events just based on observations. Over the last decade seasonal ensemble forecasts have become indispensable in quantifying the uncertainty of weather prediction on seasonal timescales. In this study seasonal forecasts are used in a climatological context: By making use of the up to 51 ensemble members, a broad and physically consistent statistical base can be created. This base can then be used to assess the statistical uncertainty of extreme wind storm occurrence more accurately. In order to determine the statistical uncertainty of storms with different paths of progression, a probabilistic clustering approach using regression mixture models is used to objectively assign storm tracks (either based on core pressure or on extreme wind speeds) to different clusters. The advantage of this technique is that the entire lifetime of a storm is considered for the clustering algorithm. Quadratic curves are found to describe the storm tracks most accurately. Three main clusters (diagonal, horizontal or vertical progression of the storm track) can be identified, each of which have their own particulate features. Basic storm features like average velocity and duration are calculated and compared for each cluster. The main benefit of this clustering technique, however, is to evaluate if the clusters show different degrees of uncertainty, e.g. more (less) spread for tracks approaching Europe horizontally (diagonally). This statistical uncertainty is compared for different seasonal forecast products.
The North Atlantic Oscillation and the ITCZ in a climate simulation
NASA Astrophysics Data System (ADS)
Cavalcanti, I. F. A.; Souza, P.
2009-04-01
The North Atlantic Oscillation (NAO) and the Atlantic Intertropical Convergence Zone (ITCZ) features are analyzed in a climate simulation with the CPTEC/COLA AGCM. The CPTEC/COLA AGCM reproduces the ITCZ seasonal north-south displacement as well as the seasonal east-west intensity, but the model overestimates the convection. The two phases of NAO are well simulated in the four seasons and also the largest intensity in DJF. The main mode of atmospheric variability considering the North and South Atlantic region, which displays a shifting of the NAO centers and a center of action over South Atlantic to the south of Africa is also reproduced. This mode, in DJF, is associated with the north-south ITCZ displacement in April, in the observed data. The displacement of the NAO centers southwestward allows the increase of pressure over the tropical North Atlantic Ocean and the increase of trade winds and displacement of the confluence and convergence zone southwards. The opposite occurs when the centers are displaced northeastward. The model Atlantic ITCZ position in April is associated with the anomalous (observed) Atlantic SST and the southward displacement of the confluence zone, but the simulated atmospheric features in DJF does not display the main mode of variability, as in the observations. This occurs due to the lack of interaction between the atmosphere and ocean in the atmospheric model. While in the observations the physical mechanism that links the NAO centers of action to the ITCZ position is the ocean-atmosphere interaction, from DJF to April, the atmospheric model responds to the prescribed SST at the same month, in April.
An assessment of the current municipal solid waste management system in Lahore, Pakistan.
Masood, Maryam; Barlow, Claire Y; Wilson, David C
2014-09-01
The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable. © The Author(s) 2014.
Detection of silicate emission features in the 8- to 13-micron spectra of main belt asteroids
NASA Technical Reports Server (NTRS)
Feierberg, M. A.; Witteborn, F. C.; Lebofsky, L. A.
1983-01-01
A presentation is given of 8.0-13.0 micron spectra (Delta lambda/lambda = 0.02-0.03) for six main belt asteroids, which range from 58 to 220 km in diameter and sample the five principal taxonomic classes (C, S, M, R and E). Narrow, well-defined silicate emission features are present on two of the asteroids, the C-type 19 Fortuna and the M-type 21 Lutetia. No comparable emission features are observed on the S-types 11 Parthenope and 14 Irene, the R-type 349 Dembowska or the E-type 64 Angelina.
NASA Astrophysics Data System (ADS)
Kuwatani, T.; Toriumi, M.
2009-12-01
Recent advances in methodologies of geophysical observations, such as seismic tomography, seismic reflection method and geomagnetic method, provide us a large amount and a wide variety of data for physical properties of a crust and upper mantle (e.g. Matsubara et al. (2008)). However, it has still been difficult to specify a rock type and its physical conditions, mainly because (1) available data usually have a lot of error and uncertainty, and (2) physical properties of rocks are greatly affected by fluid and microstructures. The objective interpretation and quantitative evaluation for lithology and fluid-related structure require the statistical analyses of integrated geophysical and geological data. Self-Organizing Maps (SOMs) are unsupervised artificial neural networks that map the input space into clusters in a topological form whose organization is related to trends in the input data (Kohonen 2001). SOMs are powerful neural network techniques to classify and interpret multiattribute data sets. Results of SOM classifications can be represented as 2D images, called feature maps which illustrate the complexity and interrelationships among input data sets. Recently, some works have used SOM in order to interpret multidimensional, non-linear, and highly noised geophysical data for purposes of geological prediction (e.g. Klose 2006; Tselentis et al. 2007; Bauer et al. 2008). This paper describes the application of SOM to the 3D velocity structure beneath the whole Japan islands (e.g. Matsubara et al. 2008). From the obtained feature maps, we can specify the lithology and qualitatively evaluate the effect of fluid-related structures. Moreover, re-projection of feature maps onto the 3D velocity structures resulted in detailed images of the structures within the plates. The Pacific plate and the Philippine Sea plate subducting beneath the Eurasian plate can be imaged more clearly than the original P- and S-wave velocity structures. In order to understand more precise prediction of lithology and its structure, we will use the additional input data sets, such as tomographic images of random velocity fluctuation (Takahashi et al. 2009) and b-value mapping data. Additionally, different kinds of data sets, including the experimental and petrological results (e.g. Christensen 1991; Hacker et al. 2003) can be applied to our analyses.
ERIC Educational Resources Information Center
Overlock, Terrence H., Sr.
To determine the effect of collaborative learning methods on the success rate of physics students at Northern Maine Technical College (NMTC), a study was undertaken to compare the mean final exam scores of a students in a physics course taught by traditional lecture/lab methods to those in a group taught by collaborative techniques. The…
Xia, Jiang-Bao; Liu, Yu-Ting; Zhu, Jin-Fang; Xu, Jing-Wei; Lu, Zhao-Hua; Liu, Jing-Tao; Liu, Qing
2013-06-01
Taking the Tamarix chinensis secondary shrubs in Laizhou Bay of Yellow River Delta as test objects, and by using synthetic factor method, this paper studied the main factors causing the lowly efficiency of T. chinensis secondary shrubs as well as the main parameters for the classification of lowly efficient T. chinensis secondary shrubs. A total of 24 indices including shrubs growth and soil physical and chemical properties were selected to determine the main affecting factors and parameters in evaluating and classifying the lowly efficient shrubs. There were no obvious correlations between the indices reflecting the shrubs growth and soil quality, and thus, only using shrub growth index to reflect the lowly efficiency level of T. chinensis was not enough, and it would be necessary to combine with soil quality factors to make a comprehensive evaluation. The principal factors reflecting the quality level of lowly efficient T. chinensis shrubs included soil salt content and moisture content, stand age, single tree's aboveground stem, leaf biomass, and basal diameter, followed by soil density, porosity, and soil nutrient status. The lowly efficient T. chinensis shrubs in the Bay could be classified into five types, namely, shrub with growth potential, slightly low quality shrub, moderately lowly efficient shrub, moderately low quality and lowly efficient shrub, and seriously low quality and lowly efficient shrub. The main features, low efficiency causes, and management measures of these shrubs were discussed based on the mean cluster value.
A pilot randomized, controlled trial of an active video game physical activity intervention.
Peng, Wei; Pfeiffer, Karin A; Winn, Brian; Lin, Jih-Hsuan; Suton, Darijan
2015-12-01
Active video games (AVGs) transform the sedentary screen time of video gaming into active screen time and have great potential to serve as a "gateway" tool to a more active lifestyle for the least active individuals. This pilot randomized trial was conducted to explore the potential of theory-guided active video games in increasing moderate-to-vigorous physical activity (MVPA) among young adults. In this pilot 4-week intervention, participants were randomly assigned to 1 of the following groups: an AVG group with all the self determination theory (SDT)-based game features turned off, an AVG group with all the SDT-based game features turned on, a passive gameplay group with all the SDT-based game features turned on, and a control group. Physical activity was measured using ActiGraph GT3X accelerometers. Other outcomes included attendance and perceived need satisfaction of autonomy, competence and relatedness. It was found that playing the self-determination theory supported AVG resulted in greater MVPA compared with the control group immediately postintervention. The AVG with the theory-supported features also resulted in greater attendance and psychological need satisfaction than the non-theory-supported one. An AVG designed with motivation theory informed features positively impacted attendance and MVPA immediately postintervention, suggesting that including AVG features guided with motivation theory may be a method of addressing common problems with adherence and increasing effectiveness of active gaming. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Nelson, David A; Coyne, Sarah M; Swanson, Savannah M; Hart, Craig H; Olsen, Joseph A
2014-08-01
Crick, Murray-Close, and Woods (2005) encouraged the study of relational aggression as a developmental precursor to borderline personality features in children and adolescents. A longitudinal study is needed to more fully explore this association, to contrast potential associations with physical aggression, and to assess generalizability across various cultural contexts. In addition, parenting is of particular interest in the prediction of aggression or borderline personality disorder. Early aggression and parenting experiences may differ in their long-term prediction of aggression or borderline features, which may have important implications for early intervention. The currrent study incorporated a longitudinal sample of preschool children (84 boys, 84 girls) living in intact, two-parent biological households in Voronezh, Russia. Teachers provided ratings of children's relational and physical aggression in preschool. Mothers and fathers also self-reported their engagement in authoritative, authoritarian, permissive, and psychological controlling forms of parenting with their preschooler. A decade later, 70.8% of the original child participants consented to a follow-up study in which they completed self-reports of relational and physical aggression and borderline personality features. The multivariate results of this study showed that preschool relational aggression in girls predicted adolescent relational aggression. Preschool aversive parenting (i.e., authoritarian, permissive, and psychologically controlling forms) significantly predicted aggression and borderline features in adolescent females. For adolescent males, preschool authoritative parenting served as a protective factor against aggression and borderline features, whereas authoritarian parenting was a risk factor for later aggression.
Van Hecke, Linde; Deforche, Benedicte; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Veitch, Jenny; Van Cauwenberg, Jelle
2016-01-01
Most previous studies examining physical activity in Public Open Spaces (POS) focused solely on the physical environment. However, according to socio-ecological models the social environment is important as well. The aim of this study was to determine which social and physical environmental factors affect adolescents' visitation and physical activity in POS in low-income neighbourhoods. Since current knowledge on this topic is limited, especially in Europe, qualitative walk-along interviews were used to obtain detailed and context-specific information. Participants (n = 30, aged 12-16 years, 64% boys) were recruited in POS in low-income neighbourhoods in Brussels, Ghent and Antwerp (Belgium). Participants were interviewed while walking in the POS with the interviewer. Using this method, the interviewer could observe and ask questions while the participant was actually experiencing the environment. All audio-recorded interviews were transcribed and analysed using Nvivo 10 software and thematic analysis was used to derive categories and subcategories using a grounded theory approach. The most important subcategories that were supportive of visiting POS and performing physical activity in POS were; accessibility by foot/bicycle/public transport, located close to home/school, presence of (active) friends and family, cleanliness of the POS and features, availability of sport and play facilities, large open spaces and beautiful sceneries. The most important subcategories that were unsupportive of visiting POS and physical activity in POS were; presence of undesirable users (drug users, gangs and homeless people), the behaviour of other users and the cleanliness of the POS and features. Social factors appeared often more influential than physical factors, however, it was the combination of social and physical factors that affected adolescents' behaviour in POS. Easily accessible POS with high quality features in the proximity of adolescents' home or school may stimulate physical activity, if adolescents also experience a safe and familiar social environment.
Van Hecke, Linde; Deforche, Benedicte; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Veitch, Jenny; Van Cauwenberg, Jelle
2016-01-01
Most previous studies examining physical activity in Public Open Spaces (POS) focused solely on the physical environment. However, according to socio-ecological models the social environment is important as well. The aim of this study was to determine which social and physical environmental factors affect adolescents’ visitation and physical activity in POS in low-income neighbourhoods. Since current knowledge on this topic is limited, especially in Europe, qualitative walk-along interviews were used to obtain detailed and context-specific information. Participants (n = 30, aged 12–16 years, 64% boys) were recruited in POS in low-income neighbourhoods in Brussels, Ghent and Antwerp (Belgium). Participants were interviewed while walking in the POS with the interviewer. Using this method, the interviewer could observe and ask questions while the participant was actually experiencing the environment. All audio-recorded interviews were transcribed and analysed using Nvivo 10 software and thematic analysis was used to derive categories and subcategories using a grounded theory approach. The most important subcategories that were supportive of visiting POS and performing physical activity in POS were; accessibility by foot/bicycle/public transport, located close to home/school, presence of (active) friends and family, cleanliness of the POS and features, availability of sport and play facilities, large open spaces and beautiful sceneries. The most important subcategories that were unsupportive of visiting POS and physical activity in POS were; presence of undesirable users (drug users, gangs and homeless people), the behaviour of other users and the cleanliness of the POS and features. Social factors appeared often more influential than physical factors, however, it was the combination of social and physical factors that affected adolescents’ behaviour in POS. Easily accessible POS with high quality features in the proximity of adolescents’ home or school may stimulate physical activity, if adolescents also experience a safe and familiar social environment. PMID:27214385
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, R.N.; Wessemann, H.; Benyon, P.R.
1998-12-31
Planning consent was applied for in 1997 to extract coal from the Stanley Main seam beneath Skipwith Common, North Yorkshire in the United Kingdom. The 293ha Common is of national importance for its dwarf shrub ericoid heath communities, and has statutory protection under UK law as a Site of Special Scientific Interest (SSSI). Current planning guidance requires the effects of the mining proposals to be rigorously examined. The distribution of the heath vegetation is largely determined by the surface topography and sub-surface clay features, these determine relative site subsidence on drainage, and hence soil wetness and heath vegetation. Up tomore » date topographical, soil and vegetation surveys were undertaken. This data was used in conjunction with the mining company`s subsidence predictions to model the effects of the mining of the previous and deeper Barnsley seam, as well as the proposed extraction of the Stanley Main seam. Overall, the model predicted there would be no adverse effect of subsidence from the mining of the Barnsley seam or cumulative effects following the extraction of the Stanley Main seam on the site features which determine relative wetness and heath distribution. The prediction for the Barnsley seam was tested using past and current vegetation and soil wetness records. On a broad scale, there was no field evidence that the previous mining has resulted in a reduction in the extent of ericiod heath communities within the SSSI. On a local scale, there was some evidence for a very small effect at the one location where a potential effect was predicted. As the principal physical changes to the SSSI are induced by the previous mining of the Barnsley seam, no further effects were predicted for extracting the Stanley Main seam. The modelling approach has proved to be valuable, both technically and as a means of explaining the potential effects of mining on a nationally important nature conservation site to various interested parties, including the regulatory bodies.« less
Unraveling the Molecular Requirements for Macroscopic Silk Supercontraction.
Giesa, Tristan; Schuetz, Roman; Fratzl, Peter; Buehler, Markus J; Masic, Admir
2017-10-24
Spider dragline silk is a protein material that has evolved over millions of years to achieve finely tuned mechanical properties. A less known feature of some dragline silk fibers is that they shrink along the main axis by up to 50% when exposed to high humidity, a phenomenon called supercontraction. This contrasts the typical behavior of many other materials that swell when exposed to humidity. Molecular level details and mechanisms of the supercontraction effect are heavily debated. Here we report a molecular dynamics analysis of supercontraction in Nephila clavipes silk combined with in situ mechanical testing and Raman spectroscopy linking the reorganization of the nanostructure to the polar and charged amino acids in the sequence. We further show in our in silico approach that point mutations of these groups not only suppress the supercontraction effect, but even reverse it, while maintaining the exceptional mechanical properties of the silk material. This work has imminent impact on the design of biomimetic equivalents and recombinant silks for which supercontraction may or may not be a desirable feature. The approach applied is appropriate to explore the effect of point mutations on the overall physical properties of protein based materials.
The role of fission on neutron star mergers and its impact on the r-process peaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichler, M., E-mail: marius.eichler@unibas.ch; Thielemann, F.-K.; Arcones, A.
2016-06-21
The comparison between observational abundance features and those obtained from nucleosynthesis predictions of stellar evolution and/or explosion simulations can scrutinize two aspects: (a) the conditions in the astrophysical production site and (b) the quality of the nuclear physics input utilized. Here we test the abundance features of r-process nucleosynthesis calculations using four different fission fragment distribution models. Furthermore, we explore the origin of a shift in the third r-process peak position in comparison with the solar r-process abundances which has been noticed in a number of merger nucleosynthesis predictions. We show that this shift occurs during the r-process freeze-out whenmore » neutron captures and β-decays compete and an (n,γ)-(γ,n) equilibrium is not maintained anymore. During this phase neutrons originate mainly from fission of material above A = 240. We also investigate the role of β-decay half-lives from recent theoretical advances, which lead either to a smaller amount of fissioning nuclei during freeze-out or a faster (and thus earlier) release of fission neutrons, which can (partially) prevent this shift and has an impact on the second and rare-earth peak as well.« less
Surgeon Training in Telerobotic Surgery via a Hardware-in-the-Loop Simulator
Alemzadeh, Homa; Chen, Daniel; Kalbarczyk, Zbigniew; Iyer, Ravishankar K.; Kesavadas, Thenkurussi
2017-01-01
This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors in ensuring patient safety and efficiency in operation. In this work, we propose a hardware-in-the-loop simulator directly introducing these two features. The proposed simulator is built upon the Raven-II™ open source surgical robot, integrated with a physics engine and a safety hazard injection engine. Also, a Fast Marching Tree-based motion planning algorithm is used to help trainee learn the optimal instrument motion patterns. The main contributions of this work are (1) reproducing safety hazards events, related to da Vinci™ system, reported to the FDA MAUDE database, with a novel haptic feedback strategy to provide feedback to the operator when the underlying dynamics differ from the real robot's states so that the operator will be aware and can mitigate the negative impact of the safety-critical events, and (2) using motion planner to generate semioptimal path in an interactive robotic surgery training environment. PMID:29065635
Nevada National Security Site Environmental Report 2011 Attachment A: Site Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathy Wills, ed.
2012-09-12
This attachment expands on the general description of the Nevada National Security Site (NNSS) presented in the Introduction to the Nevada National Security Site Environmental Report 2011. Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting and the cultural resources of the NNSS. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NNSS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operationsmore » on the public residing in the vicinity of the NNSS. The NNSS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NNSS operations. These key features include the general remote location of the NNSS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.« less
Functional Utrastructure of Genlisea (Lentibulariaceae) Digestive Hairs
Płachno, Bartosz Jan; Kozieradzka-Kiszkurno, Małgorzata; Świątek, Piotr
2007-01-01
Background and Aims Digestive structures of carnivorous plants produce external digestive enzymes, and play the main role in absorption. In Lentibulariaceae, the ultrastructure of digestive hairs has been examined in some detail in Pinguicula and Utricularia, but the sessile digestive hairs of Genlisea have received very little attention so far. The aim of this study was to fill this gap by expanding their morphological, anatomical and histochemical characterization. Methods Several imaging techniques were used, including light, confocal and electron microscopy, to reveal the structure and function of the secretory hairs of Genlisea traps. This report demonstrates the application of cryo-SEM for fast imaging of whole, physically fixed plant secretory structures. Key Results and Conclusion The concentration of digestive hairs along vascular bundles in subgenus Genlisea is a primitive feature, indicating its basal position within the genus. Digestive hairs of Genlisea consist of three compartments with different ultrastructure and function. In subgenus Tayloria the terminal hair cells are transfer cells, but not in species of subgenus Genlisea. A digestive pool of viscous fluid occurs in Genlisea traps. In spite of their similar architecture, the digestive-absorptive hairs of Lentibulariaceae feature differences in morphology and ultrastructure. PMID:17550910
A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST
NASA Astrophysics Data System (ADS)
Liu, Yong; Stefan, Schmuck; Zhao, Hailin; John, Fessey; Paul, Trimble; Liu, Xiang; Zhu, Zeying; Zang, Qing; Hu, Liqun
2016-12-01
A Michelson interferometer, on loan from EFDA-JET (Culham, United Kingdom) has recently been commissioned on the experimental advanced superconducting tokamak (EAST, ASIPP, Hefei, China). Following a successful in-situ absolute calibration the instrument is able to measure the electron cyclotron emission (ECE) spectrum, from 80 GHz to 350 GHz in extraordinary mode (X-mode) polarization, with high accuracy. This allows the independent determination of the electron temperature profile from observation of the second harmonic ECE and the possible identification of non-Maxwellian features by comparing higher harmonic emission with numerical simulations. The in-situ calibration results are presented together with the initial measured temperature profiles. These measurements are then discussed and compared with other independent temperature profile measurements. This paper also describes the main hardware features of the diagnostic and the associated commissioning test results. supported by National Natural Science Foundation of China (Nos. 11405211, 11275233), and the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106002, 2015GB101000), and the RCUK Energy Programme (No. EP/I501045), partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (NSFC: No. 11261140328)
A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions
Nazmi, Nurhazimah; Abdul Rahman, Mohd Azizi; Yamamoto, Shin-Ichiroh; Ahmad, Siti Anom; Zamzuri, Hairi; Mazlan, Saiful Amri
2016-01-01
In recent years, there has been major interest in the exposure to physical therapy during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical and human machine interface (HMI) applications. An automated system will guide the user to perform the training during rehabilitation independently. Advances in engineering have extended electromyography (EMG) beyond the traditional diagnostic applications to also include applications in diverse areas such as movement analysis. This paper gives an overview of the numerous methods available to recognize motion patterns of EMG signals for both isotonic and isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who would like to select the most appropriate methodology in classifying motion patterns, especially during different types of contractions. For feature extraction, the probability density function (PDF) of EMG signals will be the main interest of this study. Following that, a brief explanation of the different methods for pre-processing, feature extraction and classifying EMG signals will be compared in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:27548165
Physical self-esteem of adolescents with regard to physical activity and pubertal status.
Altintaş, Atahan; Aşçi, F Hülya
2008-05-01
The purpose of this study was to examine the physical activity and pubertal status differences in the multiple dimensions of physical self-esteem of Turkish adolescents. The current study also aimed to investigate the gender differences in the physical self-esteem. The pubertal status of participants was determined by a self-report questionnaire. The Children and Youth Physical Self-Perception Profile and a weekly activity checklist were administered to 803 adolescents (Mage = 13.10 +/- 0.93). Analysis revealed significant main effects of physical activity on the multiple dimensions of physical self-esteem for both boys and girls. Follow-up analysis indicated that physically active boys and girls scored higher on almost all subscales of physical self-esteem than less active counterparts. The main effect of pubertal status and physical activity x pubertal status interaction were not significant either for boys or girls. Analysis also revealed significant gender differences in perceived body attractiveness, physical strength, physical condition, and physical self-worth subscales in favor of boys (p < .05).
Response of Phlebotomus papatasi to visual, physical and chemical attraction features in the field.
USDA-ARS?s Scientific Manuscript database
In this study, 27 CDC traps were modified with various attractive features and compared with a CDC trap with no light source or baits to evaluate the effects on attraction to Phlebotomus papatasi (Scopoli). Attractive features included CO2, lights, colored trap bodies, heat, moisture, chemical lures...
Characterizing underwater habitat and other features is difficult and costly, especially in the large St. Louis River Estuary. We are using side-scan sonar (SSS), first developed in the 1960s to remotely sense underwater habitat features from reflected acoustic signals (backscatt...
Costigan, Sarah A; Veitch, Jenny; Crawford, David; Carver, Alison; Timperio, Anna
2017-11-02
Parks in the US and Australia are generally underutilised, and park visitors typically engage in low levels of physical activity (PA). Better understanding park features that may encourage visitors to be active is important. This study examined the perceived importance of park features for encouraging park-based PA and examined differences by sex, age, parental-status and participation in PA. Cross-sectional surveys were completed by local residents ( n = 2775) living near two parks (2013/2015). Demographic variables, park visitation and leisure-time PA were self-reported, respondents rated the importance of 20 park features for encouraging park-based PA in the next fortnight. Chi-square tests of independence examined differences in importance of park features for PA among sub-groups of local residents (sex, age, parental-status, PA). Park features ranked most important for park-based PA were: well maintained (96.2%), feel safe (95.4%), relaxing atmosphere (91.2%), easy to get to (91.7%), and shady trees (90.3%). All subgroups ranked 'well maintained' as most important. Natural and built environment features of parks are important for promoting adults' park-based PA, and should be considered in park (re)design.
... News & Meetings Science Education About NIGMS NIGMS Home > Science Education > Physical Trauma Physical Trauma Tagline (Optional) Middle/Main Content Area PDF Version (420 KB) Other Fact Sheets What is physical trauma? Physical trauma is ...
eComLab: remote laboratory platform
NASA Astrophysics Data System (ADS)
Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David
2011-06-01
Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.
Heliophysics Science and the Moon: Potential Solar and Space Physics Science for Lunar Exploration
NASA Technical Reports Server (NTRS)
2007-01-01
This report addresses both these features new science enabled by NASAs exploration initiative and enabling science that is critical to ensuring a safe return to the Moon and onward to Mars. The areas of interest are structured into four main themes: Theme 1: Heliophysics Science of the Moon Studies of the Moons unique magnetodynamic plasma environment. Theme 2: Space Weather, Safeguarding the Journey Studies aimed at developing a predictive capability for space weather hazards. Theme 3: The Moon as a Historical Record Studies of the variation of the lunar regolith to uncover the history of the Sun, solar system, local interstellar medium, galaxy, and universe. Theme 4: The Moon as a Heliophysics Science Platform Using the unique environment of the lunar surface as a platform to provide observations beneficial to advancing heliophysics science.
CheckMATE 2: From the model to the limit
NASA Astrophysics Data System (ADS)
Dercks, Daniel; Desai, Nishita; Kim, Jong Soo; Rolbiecki, Krzysztof; Tattersall, Jamie; Weber, Torsten
2017-12-01
We present the latest developments to the CheckMATE program that allows models of new physics to be easily tested against the recent LHC data. To achieve this goal, the core of CheckMATE now contains over 60 LHC analyses of which 12 are from the 13 TeV run. The main new feature is that CheckMATE 2 now integrates the Monte Carlo event generation via MadGraph5_aMC@NLO and Pythia 8. This allows users to go directly from a SLHA file or UFO model to the result of whether a model is allowed or not. In addition, the integration of the event generation leads to a significant increase in the speed of the program. Many other improvements have also been made, including the possibility to now combine signal regions to give a total likelihood for a model.
[Selection criteria of mobile lifters in the hospital setting].
Ferriero, G; Ottonello, M; Franchignoni, F
2002-01-01
The manual handling of patients with limited mobility represents the major cause of musculoskeletal injury to the spine in paramedical health care workers. Within the hospital, the more complex procedures of patient transfer often require the use of mobile hoists. The aim of this paper is to describe the basic criteria for the selection of such hoists. The main characteristics of a hoist are its stability, the sling attachment, the speed of operation, range of movement of the spreader bar, safety of the operation being performed, patient comfort, the physical effort required on the part of the health care worker, manoeuvrability and simplicity of use. Important organizational-structural features to evaluate include: the type of patient normally present in the unit concerned, the specific movement to be performed, the structural characteristics of the environment, and the work organization of the personnel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaithakkal, A. J.; Riethmüller, T. L.; Solanki, S. K.
Spectropolarimetric observations from Sunrise/IMaX, obtained in 2013 June, are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity, with respect to the pore, are found to stream from its border at an average speed of 1.3 km s{sup −1} and 1.2 km s{sup −1}, respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blueshifted, whereas same-polarity MMFs do not show any preference for up- or downflows.more » Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of ∼1.2 × 10{sup 17} Mx.« less
Unraveling hadron structure with generalized parton distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrei Belitsky; Anatoly Radyushkin
2004-10-01
The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling andmore » QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.« less
Some unsung heroines (and a few heroes) of cosmic ray physics
NASA Astrophysics Data System (ADS)
Trimble, Virginia
2013-02-01
The women physicists whose work will be featured are Marietta Blau, Madelaine Forro Barnothy, Phyllis Freier, and Connie Dilworth. The "gluons" that connected their lives to each other (and to the author) included Georges Lemaitre, Manuel Sandoval Vallarta, Cecil Powell, Guiseppi Occhialini, Ken Greisen, Beatrice Tinsley, Hannelore Sexl, and perhaps Elizabeth Rona. Most of the stories are not entirely happy ones. For instance it was Sandoval Vallarta who offered Blau (and her mother) refuge in Mexico when they had to leave Vienna. Vallarta was also Lemaitre's collaborator in calculations of how cosmic rays got to us through the earth's magnetic field. The sad part there is that somehow Lemaitre was never disabused of the view that cosmic rays were direct remnants of his primordial atom and not primarily protons. The result was his gradual exile from main-stream scientific communities.
Marine polysaccharides in microencapsulation and application to aquaculture: "from sea to sea".
Borgogna, Massimiliano; Bellich, Barbara; Cesàro, Attilio
2011-12-01
This review's main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported.
Toward modeling wingtip vortices
NASA Technical Reports Server (NTRS)
Zeman, O.
1993-01-01
Wingtip vortices are generated by lifting airfoils; their salient features are compactness and relatively slow rate of decay. The principal motivation for studying the far field evolution of wingtip vortices is the need to understand and predict the extent of the vortex influence during aircraft take-off or landing. On submarines a wingtip vortex ingested into a propeller can be a source of undesirable noise. The main objectives of this research are (1) to establish theoretical understanding of the principal mechanisms that govern the later (diffusive) stages of a turbulent vortex, (2) to develop a turbulence closure model representing the basic physical mechanisms that control the vortex diffusive stage, and further (3) to investigate coupling between the near and far field evolutions; in other words, to study the effect of initial conditions on the vortex lifetime and the ultimate state.
Target development for 67Cu, 82Sr radionuclide production at the RIC-80 facility
NASA Astrophysics Data System (ADS)
Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Krotov, S. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Volkov, Yu. M.
2018-01-01
A high-current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed and commissioned at PNPI (Petersburg Nuclear Physics Institute). One of the main goals of cyclotron C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. To date, the project development of a radioisotope facility RIC-80 (radioisotopes at cyclotron C-80) has been completed. The feature of the project is the use of a mass-separator combined with the ion-target device for obtaining ion beams of radioisotopes with a high purity of separation that is especially important for medical applications. The first results of a new high-temperature method for extracting 82Sr and 67Cu radioisotopes from irradiated targets have been presented.
Simulations of Neon Pellets for Plasma Disruption Mitigation in Tokamaks
NASA Astrophysics Data System (ADS)
Bosviel, Nicolas; Samulyak, Roman; Parks, Paul
2017-10-01
Numerical studies of the ablation of neon pellets in tokamaks in the plasma disruption mitigation parameter space have been performed using a time-dependent pellet ablation model based on the front tracking code FronTier-MHD. The main features of the model include the explicit tracking of the solid pellet/ablated gas interface, a self-consistent evolving potential distribution in the ablation cloud, JxB forces, atomic processes, and an improved electrical conductivity model. The equation of state model accounts for atomic processes in the ablation cloud as well as deviations from the ideal gas law in the dense, cold layers of neon gas near the pellet surface. Simulations predict processes in the ablation cloud and pellet ablation rates and address the sensitivity of pellet ablation processes to details of physics models, in particular the equation of state.
ERIC Educational Resources Information Center
Ocak, Yucel
2016-01-01
Problem Statement: Student candidates who want to be a Physical Education Teacher in Turkey should take special ability exams of Physical Education and Sports Schools. In this exam, it is required to have a high physical capability apart from a high level of special branch skills. For this reason, the students who pass and start their education at…
The Apollo Missions and the Chemistry of the Moon
ERIC Educational Resources Information Center
Pacer, Richard A.; Ehmann, William D.
1975-01-01
Presents the principle chemical features of the moon obtained by analyzing lunar samples gathered on the Apollo missions. Outlines the general physical features of the moon and presents theories on its origin. (GS)
WE-D-204-00: Session in Memory of Franca Kuchnir: Excellence in Medical Physics Residency Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Speakers in this session will present overview and details of a specific rotation or feature of their Medical Physics Residency Program that is particularly exceptional and noteworthy. The featured rotations include foundational topics executed with exceptional acumen and innovative educational rotations perhaps not commonly found in Medical Physics Residency Programs. A site-specific clinical rotation will be described, where the medical physics resident follows the physician and medical resident for two weeks into patient consultations, simulation sessions, target contouring sessions, planning meetings with dosimetry, patient follow up visits, and tumor boards, to gain insight into the thought processes of the radiationmore » oncologist. An incident learning rotation will be described where the residents learns about and practices evaluating clinical errors and investigates process improvements for the clinic. The residency environment at a Canadian medical physics residency program will be described, where the training and interactions with radiation oncology residents is integrated. And the first month rotation will be described, where the medical physics resident rotates through the clinical areas including simulation, dosimetry, and treatment units, gaining an overview of the clinical flow and meeting all the clinical staff to begin the residency program. This session will be of particular interest to residency programs who are interested in adopting or adapting these curricular ideas into their programs and to residency candidates who want to learn about programs already employing innovative practices. Learning Objectives: To learn about exceptional and innovative clinical rotations or program features within existing Medical Physics Residency Programs. To understand how to adopt/adapt innovative curricular designs into your own Medical Physics Residency Program, if appropriate.« less
Horizons of cybernetical physics
2017-01-01
The subject and main areas of a new research field—cybernetical physics—are discussed. A brief history of cybernetical physics is outlined. The main areas of activity in cybernetical physics are briefly surveyed, such as control of oscillatory and chaotic behaviour, control of resonance and synchronization, control in thermodynamics, control of distributed systems and networks, quantum control. This article is part of the themed issue ‘Horizons of cybernetical physics’. PMID:28115620
Polymer Physics of the Large-Scale Structure of Chromatin.
Bianco, Simona; Chiariello, Andrea Maria; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario
2016-01-01
We summarize the picture emerging from recently proposed models of polymer physics describing the general features of chromatin large scale spatial architecture, as revealed by microscopy and Hi-C experiments.
High-resolution modeling of a marine ecosystem using the FRESCO hydroecological model
NASA Astrophysics Data System (ADS)
Zalesny, V. B.; Tamsalu, R.
2009-02-01
The FRESCO (Finnish Russian Estonian Cooperation) mathematical model describing a marine hydroecosystem is presented. The methodology of the numerical solution is based on the method of multicomponent splitting into physical and biological processes, spatial coordinates, etc. The model is used for the reproduction of physical and biological processes proceeding in the Baltic Sea. Numerical experiments are performed with different spatial resolutions for four marine basins that are enclosed into one another: the Baltic Sea, the Gulf of Finland, the Tallinn-Helsinki water area, and Tallinn Bay. Physical processes are described by the equations of nonhydrostatic dynamics, including the k-ω parametrization of turbulence. Biological processes are described by the three-dimensional equations of an aquatic ecosystem with the use of a size-dependent parametrization of biochemical reactions. The main goal of this study is to illustrate the efficiency of the developed numerical technique and to demonstrate the importance of a high spatial resolution for water basins that have complex bottom topography, such as the Baltic Sea. Detailed information about the atmospheric forcing, bottom topography, and coastline is very important for the description of coastal dynamics and specific features of a marine ecosystem. Experiments show that the spatial inhomogeneity of hydroecosystem fields is caused by the combined effect of upwelling, turbulent mixing, surface-wave breaking, and temperature variations, which affect biochemical reactions.
Allen, Kate
2018-05-02
Kate Allen speaks to Roshaine Wijayatunga, Managing Commissioning Editor. Dr Kate Allen works as an Executive Director in Science and Public Affairs at World Cancer Research Fund International ( http://wcrf.org ), an NGO and leading authority in the field of cancer prevention through diet, weight and physical activity. Kate is responsible for the organization's scientific, policy and conference programs in the areas of food, nutrition, physical activity and weight management. An important aspect of her role is helping to create collaborative relationships and activities across the WCRF national charities (in Europe, America and Asia) in these areas, as well as maintaining and creating external partnerships. Previously, Kate worked at the Institute of Cancer Research, where she set up an award-winning Interactive Education Unit to develop learning materials for scientists, healthcare professionals, students, patients and the general public. Before that she worked at Medi Cine International, a medical education agency, where she developed educational materials across all media, mainly for specialist physician audiences. Kate has a PhD in neuroscience, carried out at the Institute of Neurology and the National Hospital for Neurology and Neurosurgery at Queen Square, London and the Royal College of Surgeons of England. The Third Expert Report that Kate mentions in the interview, featuring the updated World Cancer Research Fund Cancer Prevention Recommendations is launched 24 May 2018. For more information see http://wcrf.org .
The Deep Underground Neutrino Experiment: The precision era of neutrino physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, E.
The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known, and we have the elements to plan a judicious exploration of new scenarios that are opened by these recent advances. With precise measurements, we can test the three-neutrino paradigm, neutrino mass hierarchy, and charge conjugation parity (CP) asymmetry in the lepton sector. The future long-baseline experiments are considered to be a fundamental tool to deepen our knowledge of electroweak interactions. The Deep Underground Neutrino Experimentmore » (DUNE) will detect a broadband neutrino beam from Fermilab in an underground massive liquid argon time-projection chamber at an L/E of about 103 km GeV-1 to reach good sensitivity for CP-phase measurements and the determination of the mass hierarchy. The dimensions and the depth of the far detector also create an excellent opportunity to look for rare signals like proton decay to study violation of the baryonic number, as well as supernova neutrino bursts, broadening the scope of the experiment to astrophysics and associated impacts in cosmology. In this paper, we discuss the physics motivations and the main experimental features of the DUNE project required to reach its scientific goals.« less
Flow reversal, convection, and modeling in the DIII-D divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boedo, J.A.; Porter, G.D.; Schaffer, M.J.
1998-12-01
Measurements of the parallel Mach number of background plasma in the DIII-D tokamak divertor [M. A. Mahdavi {ital et al.} in {ital Proceedings, 16th International Conference}, Montreal, 1996 (International Atomic Energy Agency, Vienna, 1997) Vol. I, p. 397] were performed using a fast scanning Mach probe. The parallel particle flow shows evidence of complex behavior such as reverse flow, i.e., flow away from the target plate, stagnant flow, and large scale convection. For detached discharges, measurements confirm predictions of convective flow towards the divertor target plate at near sound speed over large regions in the divertor. The resulting convected heatmore » flux is a dominant heat transport mechanism in the divertor. For attached discharges with high recycling, particle flow reversal in a thin region at or near the outer separatrix, thereby confirming the existence of a mechanism by which impurities can be transported away from the divertor target plates. Modeling results from the two-dimensional fluid code UEDGE [G. D. Porter and the DIII-D Team, {open_quotes}Divertor characterization experiments and modelling in DIII-D,{close_quotes} in {ital Proceedings of the 23rd European Conference on Controlled Fusion and Plasma Physics}, 24{endash}28 June 1996, Kiev, Ukraine (European Physical Society, Petit-Lancy, Switzerland, 1996), Vol. 20C, Part II, p. 699] can reproduce the main features of the experimental observations. {copyright} {ital 1998 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Hwang, Yong Seok
It has been found during the last decade that a nanoscale melting of metal has very distinctive features compared to its microscale counterpart. It has been observed that a highly non-equilibrium state can result in extreme superheating of a solid state, which cannot be explained well by thermodynamic theories based on equilibrium or nucleation. An endeavor to find the superheating limit and mechanisms of melting and superheating becomes more complicated when various physical phenomena are involved at the similar scales. The main goal of this research is to establish a multiphysics model and to reveal the mechanism of melting and kinetic superheating of a metal nanostructure at high heating rates. The model includes elastodynamics, a fast heating of metal considering a delayed heat transfer between electron gas and lattice phonon and couplings among physical phenomena, and phase transformation incorporated with thermal fluctuation. The model successfully reproduces two independent experiments and several novel nanoscale physical phenomena are discovered. For example, the depression of the melting temperature of Al nanolayer under plane stress condition, the threshold heating rate, 1011 K/s, for kinetic superheating, a large temperature drop in a 5 nm collision region of the two solid-melt interfaces, and a strong effect of geometry on kinetic superheating in Al core-shell nanostructure at high heating rate.
Effect of innovative building design on physical activity.
Nicoll, Gayle; Zimring, Craig
2009-01-01
Stair climbing can be a low-cost and relatively accessible way to add everyday physical activity, but many building stairwells are inaccessible or unpleasant and elevators are far more convenient. This study explores the use of and attitude toward stairs in an innovative office building where the main elevators for able-bodied users stop only at every third floor ("skip-stop" elevators). These users are expected to walk up or down nearby stairs that have been made open and appealing ("skip-stop" stairs). The study takes advantage of a natural experiment. Some workers' offices were clustered around the skip-stop elevator and the stairs, whereas others had access to a traditional elevator core, that is, an elevator that stopped at each floor with nearby fire exit stairs. Stair use on the open skip-stop stairs and enclosed fire stairs was measured using infrared monitors and card-reader activity logs. An online survey of employees (N=299, a 17.4% response rate) gathered information on stair use and attitudes and behaviors toward physical activity; interviews with key personnel identified major implementation issues. The skip-stop stair was used 33 times more than the enclosed stair of the traditional elevator core, with 72% of survey participants reporting daily stair use. Although implementation issues related to organizational objectives, costs, security, barrier-free accessibility, and building codes exist, the skip-stop feature offers a successful strategy for increasing stair use in workplaces.
Perceived Causalities of Physical Events Are Influenced by Social Cues
ERIC Educational Resources Information Center
Zhou, Jifan; Huang, Xiang; Jin, Xinyi; Liang, Junying; Shui, Rende; Shen, Mowei
2012-01-01
In simple mechanical events, we can directly perceive causal interactions of the physical objects. Physical cues (especially spatiotemporal features of the display) are found to associate with causal perception. Here, we demonstrate that cues of a completely different domain--"social cues"--also impact the causal perception of…
The Influence of Sport Education on Student Motivation in Physical Education
ERIC Educational Resources Information Center
Spittle, Michael; Byrne, Kate
2009-01-01
Background: Physical educators are faced with trying to provide motivating and enjoyable experiences in physical education. Sport Education is an instructional model that aims to provide positive motivational sport experiences by simulating the features of authentic sport. Research support for Sport Education is positive, however, the effects on…
ERIC Educational Resources Information Center
Carson, Russell L.; Castelli, Darla M.; Kulinna, Pamela Hodges
2017-01-01
As comprehensive school physical activity program (CSPAP) professional development becomes increasingly available to current K-12 physical education teachers, this special feature shifts attention to the preparation of future PE teachers and teacher educators for CSPAP. The purpose of this concluding article is to summarize the undergraduate- and…
Teaching about Impulse and Momentum
ERIC Educational Resources Information Center
Franklin, Bill
2004-01-01
This American Association of Physics Teachers/Physics Teaching Resource Agents (APPT/PTRA) spiral-bound manual features labs and demos physics teachers can use to give students hands-on opportunities to learn about impulse and momentum. "Make-and-take activities" include AAPT Apparatus Contest winners "An Air Impulse Rocket," "A Fan Driven…
Profiles of Change: Lessons for Improving High School Physical Education
ERIC Educational Resources Information Center
Doolittle, Sarah
2014-01-01
This feature has told stories of high school physical educators who have refused to accept the status quo of high school physical education programs. They have identified problems, initiated innovations in their own classes, implemented changes beyond their classes, and moved toward institutionalizing improvements throughout their programs and…
A GUIDE FOR PLANNING PHYSICAL EDUCATION AND ATHLETIC FACILITIES.
ERIC Educational Resources Information Center
New Jersey State Dept. of Education, Trenton.
THIS STUDY EXAMINES PHYSICAL EDUCATION FACILITIES, THEIR PHYSICAL NEEDS, AND RELATED DESIGN CONSIDERATIONS. A SYSTEM OF DETERMINING THE TOTAL NUMBER OF TEACHING STATIONS NEEDED IS GIVEN TO AID INITIAL REQUIREMENT ANALYSIS. INDOOR FACILITIES ANALYZED INCLUDE--(1) THE GYMNASIUM, IN TERMS OF LOCATION, SIZE, DESIGN FEATURES, AND RELATED COMPONENTS,…
Self-Consciousness, Evaluation of Physical Characteristics, and Physical Attractiveness.
ERIC Educational Resources Information Center
Turner, Robert G.; Gilliland, LuNell
1981-01-01
Investigated the relationship between public self-consciousness and speed of processing information about self. Results indicated that high public self-conciousness subjects required less time to report evaluations of their physical features. In a second study high public self-conciousness was shown to be positively related to judged physical…
[Features of organization of nutrition for young athletes].
Korosteleva, M M; Nikitiuk, D B; Volkova, L Iu
2013-01-01
Organization of nutrition for young athletes implied a regime, which includes the distribution of meals throughout the day, the multiplicity of power an nutrients that must be strictly consistent with the mode of the training process. Athletes' requirements in energy and nutrients vary considerably depending on the sport discipline and the amount of intense of physical activity. In the Institute of Nutrition of Russian Academy of Medical Sciences the recommended average daily sets of products, which are based on daily energy expenditure of young athletes, depending on the duration and intensity of physical activity in diverse kinds sports has been developed, these kits provide young athletes the necessary nutrients and micronutrients. In precompetitive period athletes must be given high physical activity and the diet should be mainly protein and fat-containing, with a high level of fiber. The training process should be intense for three days, then the athlete is advised to transfer to the carbohydrate-rich diet that is combined with a significant reduction in the intensity of trainings--glycogen super compensation. During competition period meal should be well digestible and low-volume. It must contain proteins of high biological values and carbohydrates in the required quantity. During this period the inclusion of new dishes and products in the menu for athletes is not desirable. During marathon the main aim is to recover the energy, water, mineral resources, and to maintain normal blood glucose concentrations. This is achieved in the following ways: carbohydrate intake with a relatively small amount of liquid, high product content of vitamins and minerals that helps to maintain the water-salt metabolism at the appropriate level, taking food in liquid form, in small portions. In the recovery period adequate nutrition should achieve the following objectives: to restore the acid-base and fluid and electrolyte balance, eliminate the effect of metabolic products (urea, lactic acid, ammonia, etc) associated with high physical activity; restore carbohydrate stores, provide plastic exchange, synthesis processes. The article also contains the basic sanitary and epidemiological requirements for the catering departments, selection of products and sports doctors.
2016-01-01
Purpose: To determine the agreement among the items of the Korean physical therapist licensing examination, learning objectives of class subjects, and physical therapists’ job descriptions. Methods: The main tasks of physical therapists were classified, and university courses related to the main tasks were also classified. Frequency analysis was used to determine the proportions of credits for the classified courses out of the total credits of major subjects, exam items related to the classified courses out of the total number of exam items, and universities that offer courses related to the Korean physical therapist licensing examination among the surveyed universities. Results: The proportions of credits for clinical decision making and physical therapy diagnosis-related courses out of the total number credits for major subjects at universities were relatively low (2.06% and 2.58%, respectively). Although the main tasks of physical therapists are related to diagnosis and evaluation, the proportion of physiotherapy intervention-related items (35%) was higher than that of examination and evaluation-related items (25%) on the Korean physical therapist licensing examination. The percentages of universities that offer physical therapy diagnosis and clinical decision making-related courses were 58.62% and 68.97%, respectively. Conclusion: Both the proportion of physiotherapy diagnosis and evaluation-related items on the Korean physical therapist licensing examination, and the number of subjects related to clinical decision making and physical therapy diagnosis in the physical therapy curriculum, should be increased to ensure that the examination items and physical therapy curriculum reflect the practical tasks of physical therapists. PMID:26767720
Kang, Min-Hyeok; Kwon, Oh-Yun; Kim, Yong-Wook; Kim, Ji-Won; Kim, Tae-Ho; Oh, Tae-Young; Weon, Jong-Hyuk; Lee, Tae-Sik; Oh, Jae-Seop
2016-01-01
To determine the agreement among the items of the Korean physical therapist licensing examination, learning objectives of class subjects, and physical therapists' job descriptions. The main tasks of physical therapists were classified, and university courses related to the main tasks were also classified. Frequency analysis was used to determine the proportions of credits for the classified courses out of the total credits of major subjects, exam items related to the classified courses out of the total number of exam items, and universities that offer courses related to the Korean physical therapist licensing examination among the surveyed universities. The proportions of credits for clinical decision making and physical therapy diagnosis-related courses out of the total number credits for major subjects at universities were relatively low (2.06% and 2.58%, respectively). Although the main tasks of physical therapists are related to diagnosis and evaluation, the proportion of physiotherapy intervention-related items (35%) was higher than that of examination and evaluation-related items (25%) on the Korean physical therapist licensing examination. The percentages of universities that offer physical therapy diagnosis and clinical decision making-related courses were 58.62% and 68.97%, respectively. Both the proportion of physiotherapy diagnosis and evaluation-related items on the Korean physical therapist licensing examination, and the number of subjects related to clinical decision making and physical therapy diagnosis in the physical therapy curriculum, should be increased to ensure that the examination items and physical therapy curriculum reflect the practical tasks of physical therapists.
Tsai, Chin-Chung
2006-01-01
Many educational psychologists believe that students' beliefs about the nature of knowledge, called epistemological beliefs, play an essential role in their learning process. Educators also stress the importance of helping students develop a better understanding of the nature of knowledge. The tentative and creative nature of science is often highlighted by contemporary science educators. However, few previous studies have investigated students' views of more specific knowledge domains, such as biology and physics. Consequently, this study developed a questionnaire to assess students' views specifically about the tentative and creative nature of biology and physics. From a survey of 428 Taiwanese high school adolescents, this study found that although students showed an understanding of the tentative and creative nature of biology and physics, they expressed stronger agreement as to the tentativeness of biology than that of physics. In addition, male students tended to agree more than did females that physics had tentative and creative features and that biology had tentative features. Also, students with more years of science education tended to show more agreement regarding the creative nature of physics and biology than those with fewer years.