Science.gov

Sample records for main sequence mass

  1. Main-sequence mass loss and the lithium dip

    NASA Technical Reports Server (NTRS)

    Schramm, David N.; Steigman, Gary; Dearborn, David S. P.

    1990-01-01

    The significant dip in observed lithium abundances for Population I stars near M about 1.3 solar mass is discussed. It is noted that this dip occurs near where the instability strip crosses the main sequence on the lower edge of the Delta Scuti stars and that stellar pulsations are expected to give rise to mass loss. A total mass loss of 0.05 solar mass over the main-sequence lifetime of these stars would be sufficient to explain the observations of lithium depletion. The absence of a dip in the Pleiades and of significant depletion of beryllium in the Hyades places tight constraints on the rate of mass loss. These constraints make unlikely the high main-sequence mass-loss rates which would significantly affect globular cluster ages.

  2. On the POST main sequence expansion of low mass stars

    NASA Astrophysics Data System (ADS)

    Deinzer, W.

    1999-02-01

    The post main sequence expansion of stars is investigated by means of a simple composite configuration: an isothermal He-core (allowing for non-relativistic electron degeneracy) is surrounded by a H-envelope of constant density (polytrope \\(n=0 \\)). Solving the equations of hydrostatic equilibrium for fixed values of total mass and temperature at the interface a one dimensional sequence of models is obtained with the mass of the core as parameter. As soon as the main part of the core becomes fully degenerate, the model stars expand rapidly. This behaviour is in good agreement with that of models obtained by numerical simulations. The expansion is caused by an intermediate non-degenerate layer of large extension (but of very small mass content) just below the interface. It shifts the envelope to larger distances from the center and thus reduces the gravitational pull on it due to the highly contracted part of the core. Without this layer the thermal forces of the envelope - determined by the hydrogen burning temperatures at the interface - would be much too small to balance gravity. Such a loosely bound envelope extends to the large radii in question. Hence, the model suggests the fixed temperature required by hydrogen burning to be the ultimate reason for the post main sequence expansion.

  3. Main sequence mass loss and the ages of stars

    NASA Technical Reports Server (NTRS)

    Willson, L. A.

    1989-01-01

    The potentially observable consequences of the pulsation/rotation-induced mass loss from main-sequence A and F stars proposed by Willson et al. (1987) are discussed, reviewing the results of recent investigations. Particular attention is given to (1) evidence for a deficiency in A stars and an excess of F and G stars, as predicted by the theory, (2) cluster HR diagrams and age estimates, and (3) modifications to standard models of solar-system evolution. It is pointed out that the time scales and mass-loss rates required to explain the observed properties of clusters and field stars in this theory are the same as those needed to account for the early development of the solar system.

  4. The circumstellar environments of intermediate mass main sequence stars

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1993-01-01

    Analysis of archival Infrared Astronomy Satellite (IRAS) and International Ultraviolet Explorer (IUE) data resulted in identification of accreting gas toward a 2.8 Myr post-Herbig Be star in the R CrA star formation region, and identification of accreting gas toward HD 93563, previously identified as a classical Be star. Accreting gas was also detected toward two B(e) stars of previously controversial evolutionary state, resulting in identification of these systems as pre-Main Sequence Herbig Be stars viewed edge-on to their circumstellar disks. In parallel with this effort, accreting gas was detected toward the Herbig Ae star HR 5999, resulting in development of identification criteria for edge-on PMS proto-planetary disk systems. The work on individual stars is described.

  5. Dust discs around low-mass main-sequence stars

    NASA Technical Reports Server (NTRS)

    Wolstencroft, R. D.; Walker, Helen J.

    1988-01-01

    The current understanding of the formation of circumstellar disks as a natural accompaniment to the process of low-mass star formation is examined. Models of the thermal emission from the dust disks around the prototype stars Alpha Lyr, Alpha PsA, Beta Pic, and Epsilon Eri are discussed, which indicate that the central regions of three of these disks are almost devoid of dust within radii ranging between 17 and 26 AU, with the temperature of the hottest zone lying between about 115 and 210 K. One possible explanation of the dust-free zones is the presence of a planet at the inner boundary of each cloud which sweeps up grains crossing its orbit.

  6. An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne A.; White, Russel J.

    2004-04-01

    We have assembled a database of stars having both masses determined from measured orbital dynamics and sufficient spectral and photometric information for their placement on a theoretical H-R diagram. Our sample consists of 115 low-mass (M<2.0 Msolar) stars, 27 pre-main-sequence and 88 main-sequence. We use a variety of available pre-main-sequence evolutionary calculations to test the consistency of predicted stellar masses with dynamically determined masses. Despite substantial improvements in model physics over the past decade, large systematic discrepancies still exist between empirical and theoretically derived masses. For main-sequence stars, all models considered predict masses consistent with dynamical values above 1.2 Msolar and some models predict consistent masses at solar or slightly lower masses, but no models predict consistent masses below 0.5 Msolar, with all models systematically underpredicting such low masses by 5%-20%. The failure at low masses stems from the poor match of most models to the empirical main sequence below temperatures of 3800 K, at which molecules become the dominant source of opacity and convection is the dominant mode of energy transport. For the pre-main-sequence sample we find similar trends. There is generally good agreement between predicted and dynamical masses above 1.2 Msolar for all models. Below 1.2 Msolar and down to 0.3 Msolar (the lowest mass testable), most evolutionary models systematically underpredict the dynamically determined masses by 10%-30%, on average, with the Lyon group models predicting marginally consistent masses in the mean, although with large scatter. Over all mass ranges, the usefulness of dynamical mass constraints for pre-main-sequence stars is in many cases limited by the random errors caused by poorly determined luminosities and especially temperatures of young stars. Adopting a warmer-than-dwarf temperature scale would help reconcile the systematic pre-main-sequence offset at the lowest masses

  7. Main-Sequence Effective Temperatures from a Revised Mass-Luminosity Relation Based on Accurate Properties

    NASA Astrophysics Data System (ADS)

    Eker, Z.; Soydugan, F.; Soydugan, E.; Bilir, S.; Yaz Gökçe, E.; Steer, I.; Tüysüz, M.; Şenyüz, T.; Demircan, O.

    2015-04-01

    The mass-luminosity (M-L), mass-radius (M-R), and mass-effective temperature (M-{{T}eff}) diagrams for a subset of galactic nearby main-sequence stars with masses and radii accurate to ≤slant 3% and luminosities accurate to ≤slant 30% (268 stars) has led to a putative discovery. Four distinct mass domains have been identified, which we have tentatively associated with low, intermediate, high, and very high mass main-sequence stars, but which nevertheless are clearly separated by three distinct break points at 1.05, 2.4, and 7 {{M}⊙ } within the studied mass range of 0.38-32 {{M}⊙ }. Further, a revised mass-luminosity relation (MLR) is found based on linear fits for each of the mass domains identified. The revised, mass-domain based MLRs, which are classical (L\\propto {{M}α }), are shown to be preferable to a single linear, quadratic, or cubic equation representing an alternative MLR. Stellar radius evolution within the main sequence for stars with M\\gt 1 {{M}⊙ } is clearly evident on the M-R diagram, but it is not clear on the M-{{T}eff} diagram based on published temperatures. Effective temperatures can be calculated directly using the well known Stephan-Boltzmann law by employing the accurately known values of M and R with the newly defined MLRs. With the calculated temperatures, stellar temperature evolution within the main sequence for stars with M\\gt 1 {{M}⊙ } is clearly visible on the M-{{T}eff} diagram. Our study asserts that it is now possible to compute the effective temperature of a main-sequence star with an accuracy of ˜6%, as long as its observed radius error is adequately small (\\lt 1%) and its observed mass error is reasonably small (\\lt 6%).

  8. Masses of Pre-Main Sequence Binary Stars-Part 2

    NASA Astrophysics Data System (ADS)

    Simon, Michal

    1991-07-01

    There are still no pre-main sequence stars with reliably known masses. This represents a serious gap in our understanding of low-mass star formation. The goal of this long-term program is to measure the masses of pre-main sequence binaries selected from our survey (ref. 3) of the Taurus star forming region by IR lunar occultation and imaging. We propose to use the Fine Guide Sensors in the Transfer Function Mode to determine the apparent orbits of the binaries. Since the distance to the region is known, the apparent orbits will yield the total masses of the binaries. THIS PROPOSAL CONTAINS ONE FOLLOW-UP VISIT TO HV-TAU-C ONLY. THE REST OF THE EXPOSURES ARE IN 3842.

  9. Effects of main-sequence mass loss on the turnoff ages of globular clusters

    SciTech Connect

    Guzik, J.A.

    1989-01-01

    Willson, Bowen, and Struck-Marcell have proposed that globular cluster main-sequence turnoff ages can be reconciled with the lower ages of the Galaxy and universe deduced from other methods by incorporating an epoch of early main-sequence mass-loss by stars of spectral types A through early-F. The proposed mass loss is pulsation-driven, and facilitated by rapid rotation. This paper presents stellar evolution calculations of Pop. II (Z = 0.001) mass-losing stars of initial mass 0.8 to 1.6 M/sub /circle dot//, with exponentially-decreasing mass loss rates of e-folding times 0.5 to 2.0 Gyr, evolving to a final mass of 0.7 M/sub /circle dot//. The calculations indicate that a globular cluster with apparent turnoff age 18 Gyr could have an actual age as low as /approximately/12 Gyr. Observational implications that may help to verify the hypothesis, e.g. low C/N abundance ratios among red giants following first dredge-up, blue stragglers, red giant deficiencies, and signatures in cluster mass/luminosity functions, are also discussed.25 refs., 4 figs., 3 tabs.

  10. Dynamical Estimate of Post-main-sequence Stellar Masses in 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Parada, Javiera; Richer, Harvey; Heyl, Jeremy; Kalirai, Jason; Goldsbury, Ryan

    2016-07-01

    We use the effects of mass segregation on the radial distribution of different stellar populations in the core of 47 Tucanae to find estimates for the masses of stars at different post-main-sequence evolutionary stages. We take samples of main-sequence (MS) stars from the core of 47 Tucanae, at different magnitudes (i.e., different masses), and use the effects of this dynamical process to develop a relation between the radial distance (RD) at which the cumulative distribution reaches the 20th and 50th percentile and stellar mass. From these relations we estimate the masses of different post-MS populations. We find that mass remains constant for stars going through the evolutionary stages from the upper MS up to the horizontal branch (HB). By comparing RDs of the HB stars with stars of lower masses, we can exclude a mass loss greater than 0.09 {M}⊙ during the red giant branch (RGB) stage at nearly the 3σ level. The slightly higher mass estimates for the asymptotic giant branch (AGB) are consistent with the AGB having evolved from somewhat more massive stars. The AGB also exhibits evidence of contamination by more massive stars, possibly blue straggler stars (BSSs), going through the RGB phase. We do not include the BSSs in this paper due to the complexity of these objects; instead, the complete analysis of this population is left for a companion paper. The process to estimate the masses described in this paper is exclusive to the core of 47 Tuc.

  11. The coronal temperatures of low-mass main-sequence stars

    NASA Astrophysics Data System (ADS)

    Johnstone, C. P.; Güdel, M.

    2015-06-01

    Aims: We study the X-ray emission of low-mass main-sequence stars to derive a reliable general scaling law between coronal temperature and the level of X-ray activity. Methods: We collect ROSAT measurements of hardness ratios and X-ray luminosities for a large sample of stars to derive which stellar X-ray emission parameter is most closely correlated with coronal temperature. We calculate average coronal temperatures for a sample of 24 low-mass main-sequence stars with measured emission measure distributions (EMDs) collected from the literature. These EMDs are based on high-resolution X-ray spectra measured by XMM-Newton and Chandra. Results: We confirm that there is one universal scaling relation between coronal average temperature and surface X-ray flux, FX, that applies to all low-mass main-sequence stars. We find that coronal temperature is related to FX by T̅cor = 0.11 FX0.26, where T̅cor is in MK and FX is in erg s-1 cm-2.

  12. BEYOND THE MAIN SEQUENCE: TESTING THE ACCURACY OF STELLAR MASSES PREDICTED BY THE PARSEC EVOLUTIONARY TRACKS

    SciTech Connect

    Ghezzi, Luan; Johnson, John Asher

    2015-10-20

    Characterizing the physical properties of exoplanets and understanding their formation and orbital evolution requires precise and accurate knowledge of their host stars. Accurately measuring stellar masses is particularly important because they likely influence planet occurrence and the architectures of planetary systems. Single main-sequence stars typically have masses estimated from evolutionary tracks, which generally provide accurate results due to their extensive empirical calibration. However, the validity of this method for subgiants and giants has been called into question by recent studies, with suggestions that the masses of these evolved stars could have been overestimated. We investigate these concerns using a sample of 59 benchmark evolved stars with model-independent masses (from binary systems or asteroseismology) obtained from the literature. We find very good agreement between these benchmark masses and the ones estimated using evolutionary tracks. The average fractional difference in the mass interval ∼0.7–4.5 M{sub ⊙} is consistent with zero (−1.30 ± 2.42%), with no significant trends in the residuals relative to the input parameters. A good agreement between model-dependent and -independent radii (−4.81 ± 1.32%) and surface gravities (0.71 ± 0.51%) is also found. The consistency between independently determined ages for members of binary systems adds further support for the accuracy of the method employed to derive the stellar masses. Taken together, our results indicate that determination of masses of evolved stars using grids of evolutionary tracks is not significantly affected by systematic errors, and is thus valid for estimating the masses of isolated stars beyond the main sequence.

  13. Calibrating the Mass-Luminosity Relation at the End of the Main Sequence

    NASA Astrophysics Data System (ADS)

    Henry, Todd

    2000-07-01

    This is a continuation of GO 6047/6566/7493/8282. We use HST-FGS3/1R to calibrate the mass-luminosity relation {MLR} for stars less massive than 0.2 Msun, with special emphasis on objects near the stellar/brown dwarf border. Our goals are to determine Mv values to 0.10 magnitude, masses to 5%, and more than double the number of objects with masses determined to be less than 0.20 Msun. This program uses the combination of HST-FGS3/1R at optical wavelengths and ground-based infrared speckle work to examine nearby, subarcsecond binary systems. Several of the objects included have M < 0.1 Msun, placing them at the very end of the stellar main sequence, and making them brown dwarf candidates.

  14. Calibrating the Mass-Luminosity Relation at the End of the Main Sequence

    NASA Astrophysics Data System (ADS)

    Henry, Todd

    1999-07-01

    This is a continuation request for GO 6047/6566/7493. We will use HST-FGS1R to calibrate the mass-luminosity relation {MLR} for stars less massive than 0.2 Msun, with special emphasis on objects near the stellar/brown dwarf border. Our goals are to determine M_V values to 0.10 magnitude, masses to 5%, and more than double the number of objects with masses determined to be less than 0.20 Msun. This program uses the combination of HST-FGS3/FGS1R at optical wavelengths and ground-based infrared speckle work to examine nearby, subarcsecond binary systems. Several of the objects included have M < 0.1 Msun, placing them at the very end of the stellar main sequence, and making them brown dwarf candidates.

  15. The effect of starspots on the radii of low-mass pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Jackson, R. J.; Jeffries, R. D.

    2014-07-01

    A polytropic model is used to investigate the effects of dark photospheric spots on the evolution and radii of magnetically active, low-mass (M < 0.5 M⊙), pre-main-sequence (PMS) stars. Spots slow the contraction along Hayashi tracks and inflate the radii of PMS stars by a factor of (1 - β)-N compared to unspotted stars of the same luminosity, where β is the equivalent covering fraction of dark starspots and N ≃ 0.45 ± 0.05. This is a much stronger inflation than predicted by Spruit & Weiss for main-sequence stars with the same β, where N ˜ 0.2-0.3. These models have been compared to radii determined for very magnetically active K- and M-dwarfs in the young Pleiades and NGC 2516 clusters, and the radii of tidally locked, low-mass eclipsing binary components. The binary components and zero-age main-sequence K-dwarfs have radii inflated by ˜10 per cent compared to an empirical radius-luminosity relation that is defined by magnetically inactive field dwarfs with interferometrically measured radii; low-mass M-type PMS stars, that are still on their Hayashi tracks, are inflated by up to ˜40 per cent. If this were attributable to starspots alone, we estimate that an effective spot coverage of 0.35 < β < 0.51 is required. Alternatively, global inhibition of convective flux transport by dynamo-generated fields may play a role. However, we find greater consistency with the starspot models when comparing the loci of active young stars and inactive field stars in colour-magnitude diagrams, particularly for the highly inflated PMS stars, where the large, uniform temperature reduction required in globally inhibited convection models would cause the stars to be much redder than observed.

  16. Mass functions for globular cluster main sequences based on CCD photometry and stellar models

    NASA Astrophysics Data System (ADS)

    McClure, Robert D.; Vandenberg, Don A.; Smith, Graeme H.; Fahlman, Gregory G.; Richer, Harvey B.; Hesser, James E.; Harris, William E.; Stetson, Peter B.; Bell, R. A.

    1986-08-01

    Main-sequence luminosity functions constructed from CCD observations of globular clusters reveal a strong trend in slope with metal abundance. Theoretical luminosity functions constructed from VandenBerg and Bell's (1985) isochrones have been fitted to the observations and reveal a trend between x, the power-law index of the mass function, and metal abundance. The most metal-poor clusters require an index of about x = 2.5, whereas the most metal-rich clusters exhibit an index of x of roughly -0.5. The luminosity functions for two sparse clusters, E3 and Pal 5, are distinct from those of the more massive clusters, in that they show a turndown which is possibly a result of mass loss or tidal disruption.

  17. The Impact of Starspots on Mass and Age Estimates for Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Somers, Garrett; Pinsonneault, Marc H.

    2016-01-01

    We investigate the impact of starspots on the evolution of late-type stars during the pre-main sequence (pre-MS). We find that heavy spot coverage increases the radii of stars by 4-10%, consistent with inflation factors in eclipsing binary systems, and suppresses the rate of pre-MS lithium depletion, leading to a dispersion in zero-age MS Li abundance (comparable to observed spreads) if a range of spot properties exist within clusters from 3-10 Myr. This concordance with data implies that spots induce a range of radii at fixed mass during the pre-MS. These spots decrease the luminosity and T eff of stars, leading to a displacement on the HR diagram. This displacement causes isochrone derived masses and ages to be systematically under-estimated, and can lead to the spurious appearance of an age spread in a co-eval population.

  18. Angular momentum transport efficiency in post-main sequence low-mass stars

    NASA Astrophysics Data System (ADS)

    Spada, F.; Gellert, M.; Arlt, R.; Deheuvels, S.

    2016-05-01

    Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (≈1.1-1.5 M⊙) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims: We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods: We model the rotational evolution of a 1.25M⊙ star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotation. Results: We find that models including a dependence of the angular momentum transport efficiency on the radial rotational shear reproduce very well the observations. The best fit of the data is obtained with an angular momentum transport coefficient scaling with the ratio of the rotation rate of the radiative interior over that of the convective envelope of the star as a power law of exponent ≈3. This scaling is consistent with the predictions of recent numerical simulations of the Azimuthal Magneto-Rotational Instability. Conclusions: We show that an angular momentum transport process whose efficiency varies during the stellar evolution through a dependence on the level of internal differential rotation is required to explain the observed post-main sequence rotational evolution of low-mass stars.

  19. MASS LOSS IN PRE-MAIN-SEQUENCE STARS VIA CORONAL MASS EJECTIONS AND IMPLICATIONS FOR ANGULAR MOMENTUM LOSS

    SciTech Connect

    Aarnio, Alicia N.; Matt, Sean P.

    2012-11-20

    We develop an empirical model to estimate mass-loss rates via coronal mass ejections (CMEs) for solar-type pre-main-sequence (PMS) stars. Our method estimates the CME mass-loss rate from the observed energies of PMS X-ray flares, using our empirically determined relationship between solar X-ray flare energy and CME mass: log (M {sub CME}[g]) = 0.63 Multiplication-Sign log (E {sub flare}[erg]) - 2.57. Using masses determined for the largest flaring magnetic structures observed on PMS stars, we suggest that this solar-calibrated relationship may hold over 10 orders of magnitude in flare energy and 7 orders of magnitude in CME mass. The total CME mass-loss rate we calculate for typical solar-type PMS stars is in the range 10{sup -12}-10{sup -9} M {sub Sun} yr{sup -1}. We then use these CME mass-loss rate estimates to infer the attendant angular momentum loss leading up to the main sequence. Assuming that the CME outflow rate for a typical {approx}1 M {sub Sun} T Tauri star is <10{sup -10} M {sub Sun} yr{sup -1}, the resulting spin-down torque is too small during the first {approx}1 Myr to counteract the stellar spin-up due to contraction and accretion. However, if the CME mass-loss rate is {approx}> 10{sup -10} M {sub Sun} yr{sup -1}, as permitted by our calculations, then the CME spin-down torque may influence the stellar spin evolution after an age of a few Myr.

  20. Is main-sequence galaxy star formation controlled by halo mass accretion?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Puebla, Aldo; Primack, Joel R.; Behroozi, Peter; Faber, S. M.

    2016-01-01

    The galaxy stellar-to-halo mass relation (SHMR) is nearly time-independent for z < 4. We therefore construct a time-independent SHMR model for central galaxies, wherein the in situ star formation rate (SFR) is determined by the halo mass accretion rate (MAR), which we call stellar halo accretion rate coevolution (SHARC). We show that the ˜0.3 dex dispersion of the halo MAR matches the observed dispersion of the SFR on the star formation main sequence (MS). In the context of `bathtub'-type models of galaxy formation, SHARC leads to mass-dependent constraints on the relation between SFR and MAR. Despite its simplicity and the simplified treatment of mass growth from mergers, the SHARC model is likely to be a good approximation for central galaxies with M* = 109-1010.5 M⊙ that are on the MS, representing most of the star formation in the Universe. SHARC predictions agree with observed SFRs for galaxies on the MS at low redshifts, agree fairly well at z ˜ 4, but exceed observations at z ≳ 4. Assuming that the interstellar gas mass is constant for each galaxy (the `equilibrium condition' in bathtub models), the SHARC model allows calculation of net mass loading factors for inflowing and outflowing gas. With assumptions about preventive feedback based on simulations, SHARC allows calculation of galaxy metallicity evolution. If galaxy SFRs indeed track halo MARs, especially at low redshifts, that may help explain the success of models linking galaxy properties to haloes (including age-matching) and the similarities between two-halo galaxy conformity and halo mass accretion conformity.

  1. Hot subdwarfs in (eclipsing) binaries with brown dwarf or low-mass main-sequence companions

    NASA Astrophysics Data System (ADS)

    Schaffenroth, Veronika; Geier, Stephan; Heber, Uli

    2014-09-01

    The formation of hot subdwarf stars (sdBs), which are core helium-burning stars located on the extended horizontal branch, is not yet understood. Many of the known hot subdwarf stars reside in close binary systems with short orbital periods of between a few hours and a few days, with either M-star or white-dwarf companions. Common-envelope ejection is the most probable formation channel. Among these, eclipsing systems are of special importance because it is possible to constrain the parameters of both components tightly by combining spectroscopic and light-curve analyses. They are called HW Virginis systems. Soker (1998) proposed that planetary or brown-dwarf companions could cause the mass loss necessary to form an sdB. Substellar objects with masses greater than >10 M_J were predicted to survive the common-envelope phase and end up in a close orbit around the stellar remnant, while planets with lower masses would entirely evaporate. This raises the question if planets can affect stellar evolution. Here we report on newly discovered eclipsing or not eclipsing hot subdwarf binaries with brown-dwarf or low-mass main-sequence companions and their spectral and photometric analysis to determine the fundamental parameters of both components.

  2. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    SciTech Connect

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F.; SchottelKotte, James; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-06-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  3. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    NASA Technical Reports Server (NTRS)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  4. Standard pre-main sequence models of low-mass stars

    SciTech Connect

    Prada Moroni, P. G.; Degl'Innocenti, S.; Tognelli, E.

    2014-05-09

    The main characteristics of standard pre-main sequence (PMS) models are described. A discussion of the uncer-tainties affecting the current generation of PMS evolutionary tracks and isochrones is also provided. In particular, the impact of the uncertainties in the adopted equation of state, radiative opacity, nuclear cross sections, and initial chemical abundances are analysed.

  5. A theoretical study of acoustic glitches in low-mass main-sequence stars

    SciTech Connect

    Verma, Kuldeep; Antia, H. M.; Basu, Sarbani; Mazumdar, Anwesh E-mail: antia@tifr.res.in E-mail: anwesh@tifr.res.in

    2014-10-20

    There are regions in stars, such as ionization zones and the interface between radiative and convective regions, that cause a localized sharp variation in the sound speed. These are known as 'acoustic glitches'. Acoustic glitches leave their signatures on the oscillation frequencies of stars, and hence these signatures can be used as diagnostics of these regions. In particular, the signatures of these glitches can be used as diagnostics for the position of the second helium ionization zone and that of the base of the envelope convection zone. With the help of stellar models, we study the properties of these acoustic glitches in main-sequence stars. We find that the acoustic glitch due to the helium ionization zone does not correspond to the dip in the adiabatic index Γ{sub 1} caused by the ionization of He II, but to the peak in Γ{sub 1} between the He I and He II ionization zones. We find that it is easiest to study the acoustic glitch that is due to the helium ionization zone in stars with masses in the range 0.9-1.2 M {sub ☉}.

  6. Ionization Structure and Mass-Loss for Rapidly-Rotating Near Main-Sequence B Stars

    NASA Astrophysics Data System (ADS)

    Bjorkman, J. E.; Abbott, B. P.

    1999-05-01

    Ultraviolet resonance line profiles of rapidly-rotating near main-sequence B stars indicate that the two-dimensional ionization structure of the circumstellar envelope can be crucial to our understanding of the mass-loss rate. We investigate these two-dimensional effects through the use of a radiation transfer model to construct piece-wise spherical ionization fractions for the wind-compressed disk model of a rotating stellar wind. Using these ionization fractions, we generate theoretical line profiles using a two-dimensional Monte Carlo simulation of the radiation transport for the UV resonance lines of Si iii, Si iv, C iii, C iv, and N v. For the B2.5 IV star chosen for this study, we find the mass-loss rate to be on the order of a few times 10(-9) Msuntextrm { yr}(-1) and the X-ray emission measure log EM_X ~ 52.5 cm(-3) . This result is consistent with observed X-ray luminosities as well as UV resonance line profiles. Our mass-loss rate is higher by a factor of 5--10 over those predicted theoretically (via spherically symmetric radiation-driven wind theory) and observationally (due to uncertainties in the ionization fractions). In addition, we also examine the effects of a latitudinal density gradient on the line profiles. We find that the line profiles are sensitive to two-dimensional effects, showing disproportionate amounts of emission versus absorption as the viewing location changes from pole to equator. Specifically, N v, which is abundant in the polar regions and depleted in the equator, shows enhanced emission for an observer looking edge-on to the equatorial wind-compressed disk. We show that spherically symmetric models cannot account for the anomalously strong emission or absorption resulting from a latitudinal ionization gradient in the wind. This work has been supported under NASA grants NAG5-3447 (BPA) and NAG5-3248 (JEB) to the University of Toledo.

  7. The naked T Tauri stars - The low-mass pre-main sequence unveiled

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.

    1987-01-01

    The search for low-mass premain-sequence (PMS) stars associated with X-ray sources in regions of star formation is discussed. The survey to date has revealed at least 30 low-mass PMS stars in the Tau-Aur region, and a comparable number in Oph. These stars are the naked T Tau stars, unveiled versions of the well-known classical T Tau stars. The properties of these newly discovered PMS stars and their relation to the classical T Tau stars are discussed, and it is concluded that the naked T Tau stars are the true low-mass PMS stars, and that the observable characteristics defining the classical T Tau stars are due to the interaction of an underlying, fairly normal star with a dominant circumstellar environment. The impact the naked T Tau stars are likely to have on models of the PMS evolution of low-mass stars is considered.

  8. A New Semi-Empirical Technique For Computing Effective Temperatures For Main Sequence Stars From Their Mass And Radii

    NASA Astrophysics Data System (ADS)

    Aslan, Gürkan; Soydugan, Faruk; Eker, Zeki; Bilir, Selçuk; Bakış, Volkan

    2016-07-01

    A semi-empirical technique of improving effective temperature for main sequence stars from their observed mass and radius based on the Stefan-Boltzmann law, was introduced and applied to 450 main-sequence stars with accurate parameters. The method requires a mass-luminosity relation (MLR) and theoretical predictions of radius and effective temperature for stars at zero age main-sequence and at terminal age main-sequence. The MLRs, which act as if a catalyst, are necessary but have no effect on the final result. The present sample of main-sequence stars, which are members of the detached double-lined eclipsing binaries in the solar neighborhood chosen from Eker et al. (2014), have an error histogram for the observed effective temperatures with a peak at 2-3%. Errors of refined effective temperatures by the present method are the propagated errors of the observed masses and radii, that is, the refined temperatures and associated errors are independent of the observational temperatures and their associated errors. The histogram of the refined temperature errors shows a peak at less than 1%. A refined sample of stars (270 out of 450) with masses and radii accurate up to 3% and their refined effective temperatures has been used in this study to improve the classical MLRs. One may prefer, however, to use improved classical MLRs, which allows one to compute effective temperatures as accurate as 3.5%.

  9. ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH

    SciTech Connect

    Ge, Hongwei; Chen, Xuefei; Han, Zhanwen; Webbink, Ronald F. E-mail: rwebbink@illinois.edu

    2015-10-10

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M{sub ⊙}–100 M{sub ⊙} from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q{sub ad} (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ M{sub donor}/M{sub accretor}) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q{sub ad} plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q{sub ad} declining with decreasing mass, and asymptotically approaching q{sub ad} = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated q{sub ad} values agree well with the behavior of time-dependent models by Chen and Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems

  10. Mass loss from pre-main-sequence accretion disks. I - The accelerating wind of FU Orionis

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Kenyon, Scott J.

    1993-01-01

    We present evidence that the wind of the pre-main-sequence object FU Orionis arises from the surface of the luminous accretion disk. A disk wind model calculated assuming radiative equilibrium explains the differential behavior of the observed asymmetric absorption-line profiles. The model predicts that strong lines should be asymmetric and blueshifted, while weak lines should be symmetric and double-peaked due to disk rotation, in agreement with observations. We propose that many blueshifted 'shell' absorption features are not produced in a true shell of material, but rather form in a differentially expanding wind that is rapidly rotating. The inference of rapid rotation supports the proposal that pre-main-sequence disk winds are rotationally driven.

  11. New Neighbors from 2MASS: Activity and Kinematics at the Bottom of the Main Sequence

    NASA Astrophysics Data System (ADS)

    Gizis, John E.; Monet, David G.; Reid, I. Neill; Kirkpatrick, J. Davy; Liebert, James; Williams, Rik J.

    2000-08-01

    We have combined 2MASS and POSS II data in a search for nearby ultracool (later than M6.5) dwarfs with Ks<12. Spectroscopic follow-up observations identify 53 M7-M9.5 dwarfs and seven L dwarfs. The observed space density is 0.0045+/-0.0008 M8-M9.5 dwarfs per cubic parsec, without accounting for biases, consistent with a mass function that is smooth across the stellar/substellar limit. We show the observed frequency of Hα emission peaks at ~100% for M7 dwarfs and then decreases for cooler dwarfs. In absolute terms, however, as measured by the ratio of Hα to bolometric luminosity, none of the ultracool M dwarfs can be considered very active compared to earlier M dwarfs, and we show that the decrease that begins at spectral type M6 continues to the latest L dwarfs. We find that flaring is common among the coolest M dwarfs and estimate the frequency of flares at 7% or higher. We show that the kinematics of relatively active (EW>6 Å) ultracool M dwarfs are consistent with an ordinary old disk stellar population, while the kinematics of inactive ultracool M dwarfs are more typical of a 0.5 Gyr old population. The early L dwarfs in the sample have kinematics consistent with old ages, suggesting that the hydrogen-burning limit is near spectral types L2-L4. We use the available data on M and L dwarfs to show that chromospheric activity drops with decreasing mass and temperature and that at a given (M8 or later) spectral type, the younger field (brown) dwarfs are less active than many of the older, more massive field stellar dwarfs. Thus, contrary to the well-known stellar age-activity relationship, low activity in field ultracool dwarfs can be an indication of comparative youth and substellar mass.

  12. HLIMIT 2.0: Towards a Deeper Understanding of the Low Mass End of the Main Sequence

    NASA Astrophysics Data System (ADS)

    Dieterich, Sergio B.; Boss, Alan P.; Weinberger, Alycia J.; Henry, Todd J.; Winters, Jennifer G.; Jao, Wei-Chun; Recons

    2015-01-01

    We describe the observing strategies and scientific goals of a project aimed at providing a deeper understanding of the low mass end of the stellar main sequence. The work outlined here will expand upon the results presented in Dieterich et al. 2014, where radius trends in the local M and L dwarf population were used to gain insight about the stellar/substellar boundary, with evidence for the end of the stellar main sequence at spectral type L2. We now discuss our plans to make the sample volume-complete so that population properties can be studied in a non-biased manner. We also plan to analyze the effects of variations in metallicity using spectroscopy, and link observational properties to known dynamical masses. This work is made possible by the NSF Astronomy and Astrophysics Postdoctoral Fellowship Program through grant AST-1400680. Additional support comes from NSF grants AST-0908402, AST-1109445, AST-1412026, and from the Carnegie Institution for Science. Observations are made possible in part by the SMARTS Consortium.

  13. Measuring the mass of a pre-main sequence binary star through the orbit of TWA5A

    SciTech Connect

    Konopacky, Q; Ghez, A; Duchene, G; McCabe, C; Macintosh, B

    2007-01-18

    We present the results of a five year monitoring campaign of the close binary TWA 5Aab in the TW Hydrae association, using speckle and adaptive optics on the W.M. Keck 10 m telescopes. These measurements were taken as part of our ongoing monitoring of pre-main sequence (PMS) binaries in an effort to increase the number of dynamically determined PMS masses and thereby calibrate the theoretical PMS evolutionary tracks. Our observations have allowed us to obtain the first determination of this system's astrometric orbit. We find an orbital period of 5.94 {+-} 0.09 years and a semi-major axis of 0.''066 {+-} 0.''005. Combining these results with a kinematic distance, we calculate a total mass of 0.71 {+-} 0.14 M{sub {circle_dot}} (D/44 pc){sup 3}. for this system. This mass measurement, as well as the estimated age of this system, are consistent to within 2{sigma} of all theoretical models considered. In this analysis, we properly account for correlated uncertainties, and show that while these correlations are generally ignored, they increase the formal uncertainties by up to a factor of five and therefore are important to incorporate. With only a few more years of observation, this type of measurement will allow the theoretical models to be distinguished.

  14. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. IV. RECENT STAR FORMATION IN NGC 602

    SciTech Connect

    De Marchi, Guido; Beccari, Giacomo; Panagia, Nino E-mail: gbeccari@eso.org

    2013-09-20

    We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Hα bands. We have identified about 300 pre-main-sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass, and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognize at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100'' north of the center of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of the two episodes appears to be comparable, but the episodes occurring more than 30 Myr ago might have been even stronger than the current one. We have investigated the evolution of the mass accretion rate, M-dot{sub acc}, as a function of the stellar parameters finding that log M-dot{sub acc}≅-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a decreasing function of the metallicity.

  15. Older and colder: The impact of starspots on stellar masses, ages, and lithium during the pre-main sequence

    NASA Astrophysics Data System (ADS)

    Somers, Garrett

    2016-01-01

    Starspots are ubiquitously found on young, active stars on the pre-main sequence (pre-MS), and may cover up to ~50% of their surfaces, but their effects on early stellar evolution have never been fully explored. I study the impact of such extreme spot coverage on pre-MS stellar evolution by modifying an existing stellar evolution code to account for spot effects on both the surface boundary conditions and the transport of energy in the interior. I show that heavy spot coverage systematically increases the radii of young stars, while reducing their luminosity and average surface temperature. Such increased radii may underlie the well-known radius inflation of some young, active stars, while the decreased luminosity and effective temperature displace stars on the HR diagram, leading to systematic under-estimation of stellar masses by up to 2x, and of stellar ages by up to 10x, if spotted stars are interpreted with un-spotted isochrones. The inhomogeneous surfaces of spotted stars also distort the emission spectrum, and can thus explain the anomalous colors of the rapidly rotating K dwarfs of the Pleiades, a young open cluster. I further find that spots reduce the central temperature of stars, leading to a suppression of lithium burning during the pre-MS. As a result, pre-MS stars of equal mass but differing spot properties reach the zero-age main sequence with different surface lithium abundances. I show that this effect can account for the previously unexplained lithium abundance dispersions observed at fixed Teff in the Pleiades, and other young clusters.Synthesizing these results, I argue that the inclusion of spots, a prominent phenomenon on the pre-MS, can explain several outstanding mysteries associated with young stars: inflated radii, age spreads in young clusters, the anomalous colors of rapid rotators, and the lithium abundance dispersions in young star clusters. I discuss implications of under-estimated masses and ages for measuring age spreads in young

  16. The Connection Between Rotation, Circumstellar Disks, and Accretion Among Low-Mass Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan Guadalupe

    2000-07-01

    Circumstellar disks have come to be seen as dominant players in the rotational evolution of low-mass stars during the pre-main-sequence (PMS) phase. In fact, most rotational evolution models today rely chiefly on magnetic disk-locking to successfully connect the rotational properties of T Tauri stars (TTS) to those of zero-age main sequence (ZAMS) stars. The principal aim of this dissertation is to summarize recent observations (Stassun et al. 1999; Stassun et al. 2000) that challenge this picture of disk-regulated PMS rotational evolution. We present photometrically derived rotation periods for 254 stars in an area 40 × 80 arcmin centered on the Orion Nebula. We show that these stars are likely members of the young (~106 yr) Orion OBIc/d association. The rotation period distribution we determine, sensitive to periods 0.1 < Prot < 8 days, shows a sharp cutoff for periods Prot < 0.5 days, corresponding to breakup velocity for these stars; a population of stars rotating near breakup is already present at 1 Myr. Above 0.5 days the distribution is consistent with a uniform distribution; we do not find evidence for a ``gap" of periods at 4--5 days. We find signatures of active accretion among stars at all periods; active accretion does not occur preferentially among slow rotators in our sample. We find no correlation between rotation period and the presence of near-infrared signatures of circumstellar disks. We do not find compelling agreement between our observations and the requirements of the disk-locking hypothesis. We use near-IR photometry to argue that inner cavities in TTS disks are typically much smaller than allowed by theory for the regulation of stellar angular momentum. We further use mid-IR (primarily 10 microns) photometry to confirm that TTS lacking near-IR excesses do not harbor disks with large inner truncation radii. With a few exceptions, stars in our sample lacking near-IR excesses do not possess disks, truncated or otherwise. Evidently, many young

  17. ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster

    NASA Astrophysics Data System (ADS)

    Bontemps, S.; André, P.; Kaas, A. A.; Nordh, L.; Olofsson, G.; Huldtgren, M.; Abergel, A.; Blommaert, J.; Boulanger, F.; Burgdorf, M.; Cesarsky, C. J.; Cesarsky, D.; Copet, E.; Davies, J.; Falgarone, E.; Lagache, G.; Montmerle, T.; Pérault, M.; Persi, P.; Prusti, T.; Puget, J. L.; Sibille, F.

    2001-06-01

    We present the results of the first extensive mid-infrared (IR) imaging survey of the rho Ophiuchi embedded cluster, performed with the ISOCAM camera on board the ISO satellite. The main rho Ophiuchi molecular cloud L1688, as well as the two secondary clouds L1689N and L1689S, have been completely surveyed for point sources at 6.7 mu m and 14.3 mu m. A total of 425 sources are detected in ~ 0.7 deg2, including 16 Class I, 123 Class II, and 77 Class III young stellar objects (YSOs). Essentially all of the mid-IR sources coincide with near-IR sources, but a large proportion of them are recognized for the first time as YSOs. Our dual-wavelength survey allows us to identify essentially all the YSOs with IR excess in the embedded cluster down to Fnu ~ 10-15 mJy. It more than doubles the known population of Class II YSOs and represents the most complete census to date of newly formed stars in the rho Ophiuchi central region. There are, however, reasons to believe that several tens of Class III YSOs remain to be identified below Lstar ~ 0.2 Lsolar. The mid-IR luminosities of most ( ~ 65%) Class II objects are consistent with emission from purely passive circumstellar disks. The stellar luminosity function of the complete sample of Class II YSOs is derived with good accuracy down to Lstar ~ 0.03 Lsolar. It is basically flat (in logarithmic units) below Lstar ~ 2 Lsolar, exhibits a possible local maximum at Lstar ~ 1.5 Lsolar, and sharply falls off at higher luminosities. A modeling of the luminosity function, using available pre-main sequence tracks and plausible star formation histories, allows us to derive the mass distribution of the Class II YSOs which arguably reflects the initial mass function (IMF) of the embedded cluster. After correction for the presence of unresolved binary systems, we estimate that the IMF in rho Ophiuchi is well described by a two-component power law with a low-mass index of -0.35+/-0.25, a high-mass index of -1.7 (to be compared with the

  18. Calibrating convective-core overshooting with eclipsing binary systems. The case of low-mass main-sequence stars

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2016-03-01

    Context. Double-lined eclipsing binaries have often been adopted in literature to calibrate the extension of the convective-core overshooting beyond the border defined by the Schwarzschild criterion. Aims: In a robust statistical way, we quantify the magnitude of the uncertainty that affects the calibration of the overshooting efficiency parameter β that is owing to the uncertainty on the observational data. We also quantify the biases on the β determination that is caused by the lack of constraints on the initial helium content and on the efficiencies of the superadiabatic convection and microscopic diffusion. Methods: We adopted a modified grid-based SCEPtER pipeline to recover the β parameter from synthetic stellar data. Our grid spans the mass range [1.1; 1.6] M⊙ and evolutionary stages from the zero-age main sequence (MS) to the central hydrogen depletion. The β estimates were obtained by generalising the maximum likelihood technique described in our previous works. As observational constraint, we adopted the effective temperatures, [Fe/H], masses, and radii of the two stars. Results: By means of Monte Carlo simulations, adopting a reference scenario of mild overshooting β = 0.2 for the synthetic data, and taking typical observational errors into account, we found both large statistical uncertainties and biases on the estimated values of β. For the first 80% of the MS evolution, β is biased by about -0.04, with the 1σ error practically unconstrained in the whole explored range [0.0; 0.4]. In the last 5% of the evolution the bias vanishes and the 1σ error is about 0.05. The 1σ errors are similar when adopting different reference values of β. Interestingly, for synthetic data computed without convective-core overshooting, the estimated β is biased by about 0.12 in the first 80% of the MS evolution, and by 0.05 afterwards. Assuming an uncertainty of ±1 in the helium-to-metal enrichment ratio ΔY/ ΔZ, we found a large systematic uncertainty in the

  19. Magnetic inhibition of convection and the fundamental properties of low-mass stars. II. Fully convective main-sequence stars

    SciTech Connect

    Feiden, Gregory A.; Chaboyer, Brian E-mail: brian.chaboyer@dartmouth.edu

    2014-07-01

    We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.

  20. Erratum: From the Top to the Bottom of the Main Sequence: A Complete Mass Function of the Young Open Cluster M35

    NASA Astrophysics Data System (ADS)

    Barrado y Navascués, David; Stauffer, John R.; Bouvier, Jerôme; Martín, Eduardo L.

    2001-07-01

    In the paper ``From the Top to the Bottom of the Main Sequence: A Complete Mass Function of the Young Open Cluster M35'' by David Barrado y Navascués, John R. Stauffer, Jerôme Bouvier, and Eduardo L. Martín (ApJ, 546, 1006 [2001]), Table 3 contains several typographical errors. These errors affect neither the discussion and conclusions nor the figures. The corrected Table 3 is presented below.

  1. Testing the companion hypothesis for the origin of the X-ray emission from intermediate-mass main-sequence stars

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Huélamo, N.; Micela, G.; Hubrig, S.

    2006-06-01

    Context: .The X-ray emission from B-type main-sequence stars is a longstanding mystery in stellar coronal research. Since there is no theory at hand that explains intrinsic X-ray emission from intermediate-mass main-sequence stars, the observations have often been interpreted in terms of (unknown) late-type magnetically active companion stars. Aims: .Resolving the hypothesized companions requires high spatial resolution observations in the infrared and in X-rays. We use Chandra imaging observations to spatially resolve a sample of main-sequence B-type stars with recently discovered companions at arcsecond separation. Methods: .Our strategy is to search for X-ray emission at the position of both the B-type primary and the faint companion. Results: .We find that all spatially resolved companions are X-ray emitters, but seven out of eleven intermediate-mass stars are also X-ray sources. If this emission is interpreted in terms of additional sub-arcsecond or spectroscopic companions, this implies a high multiplicity of B-type stars. Firm results on B star multiplicity pending, the alternative, that B stars produce intrinsic X-rays, cannot be discarded. An appropriate scenario would be a magnetically confined wind, as suggested for the X-ray emission of the magnetic Ap star IQ Aur. However, the only Ap star in the Chandra sample is not detected in X-rays, and therefore does not support this picture.

  2. Migration and Growth of Protoplanetary Embryos. III. Mass and Metallicity Dependence for FGKM Main-sequence Stars

    NASA Astrophysics Data System (ADS)

    Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.

    2016-06-01

    Radial velocity and transit surveys have found that the fraction of FGKM stars with close-in super-Earth(s) (η ⊕) is around 30%–50%, independent of the stellar mass M * and metallicity Z *. In contrast, the fraction of solar-type stars harboring one or more gas giants (η J) with masses M p > 100 M ⊕ is nearly 10%–15%, and it appears to increase with both M * and Z *. Regardless of the properties of their host stars, the total mass of some multiple super-Earths systems exceeds the core mass of Jupiter and Saturn. We suggest that both super-Earths and supercritical cores of gas giants were assembled from a population of embryos that underwent convergent type I migration from their birthplaces to a transition location between viscously heated and irradiation-heated disk regions. We attribute the cause for the η ⊕–η J dichotomy to conditions required for embryos to merge and to acquire supercritical core mass ({M}{{c}}˜ 10 {M}\\oplus ) for the onset of efficient gaseous envelope accretion. We translate this condition into a critical disk accretion rate, and our analysis and simulation results show that it weakly depends on M * and decreases with metallicity of disk gas Z d. We find that embryos are more likely to merge into supercritical cores around relatively massive and metal-rich stars. This dependence accounts for the observed η J–M *. We also consider the {Z}{{d}}{--}{Z}* dispersed relationship and reproduce the observed η J–Z * correlation.

  3. Migration and Growth of Protoplanetary Embryos. III. Mass and Metallicity Dependence for FGKM Main-sequence Stars

    NASA Astrophysics Data System (ADS)

    Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.

    2016-06-01

    Radial velocity and transit surveys have found that the fraction of FGKM stars with close-in super-Earth(s) (η ⊕) is around 30%-50%, independent of the stellar mass M * and metallicity Z *. In contrast, the fraction of solar-type stars harboring one or more gas giants (η J) with masses M p > 100 M ⊕ is nearly 10%-15%, and it appears to increase with both M * and Z *. Regardless of the properties of their host stars, the total mass of some multiple super-Earths systems exceeds the core mass of Jupiter and Saturn. We suggest that both super-Earths and supercritical cores of gas giants were assembled from a population of embryos that underwent convergent type I migration from their birthplaces to a transition location between viscously heated and irradiation-heated disk regions. We attribute the cause for the η ⊕-η J dichotomy to conditions required for embryos to merge and to acquire supercritical core mass ({M}{{c}}˜ 10 {M}\\oplus ) for the onset of efficient gaseous envelope accretion. We translate this condition into a critical disk accretion rate, and our analysis and simulation results show that it weakly depends on M * and decreases with metallicity of disk gas Z d. We find that embryos are more likely to merge into supercritical cores around relatively massive and metal-rich stars. This dependence accounts for the observed η J-M *. We also consider the {Z}{{d}}{--}{Z}* dispersed relationship and reproduce the observed η J-Z * correlation.

  4. IRAS observations of Delta Scuti variables - Implications for main-sequence mass loss and an IR period-luminosity relation

    SciTech Connect

    King, J.R. )

    1990-06-01

    The far-infrared detections of Delta Scuti variables in The Bright Star Catalog by the IRAS satellite are investigated; 52 percent of the sample was detected at 12 microns. The 12 micron luminosity is correlated with L(Bol) and ranges from about 3 x 10 to the 31st to about 6 x 10 to the 32nd erg/s. Comparable numbers of Delta Sct variables and A-F nonvariables show infrared excesses in at least one IRAS passband. Further considerations show that contributions to these excesses due to mass loss are minimal. This investigation suggests that the pulsating variables are not losing mass at higher rates than nonvariable A and F stars which themselves do not appear to be losing mass at a rate above an expected level. The existence of a Period-12 micron luminosity relation of small dispersion, quite surprising in light of the uncertainties in these data is reported. It is demonstrated that such relations also exist at the J, H, and K bands. The possibility of using such relations for distance determinations is discussed in light of good distance estimates to three clusters using the P-L relation. 20 refs.

  5. Are Post-Main Sequence Planets Doomed?

    NASA Astrophysics Data System (ADS)

    Villaver, E.

    2014-04-01

    Post-main sequence evolution directly affects the survival of planetary and sub-planetary mass bodies. Planets orbiting evolved stars undergo orbital evolution under the influence of tides and mass-loss, can be ejected, evaporated, and suffer multiple-body instabilities. The conditions on the planet surface are expected to be modified as well as the result of the evolution of the star. I will discuss the new limits that the theoretical studies allow us to set on the survival and habitability of planets as the star runs out of its hydrogen fuel.

  6. Empirical L-M, R-M, and M-Teff relations for main-sequence stars: Components of close binary systems and low-mass stars

    NASA Astrophysics Data System (ADS)

    Gorda, S. Yu.; Svechnikov, M. A.

    1999-08-01

    A new catalog of photometric, geometric, and absolute elements of 112 detached main-sequence eclipsing variables with known photometric and spectroscopic orbital elements has been combined with speckle-interferometry data for low-mass stars to yield new mass-luminosity, mass-radius, and mass-spectrum relations: M_bol = 4.46 - 9.52 - (lg M > -0.4), M_bol = 6.18 - 5.91 lg M (lg M <= -0.4); lg R = 0.096 + 0.652 lg M (lg M > 0.14), lg R = 0.10 + 1.03 lg M (lg M <= 0.14); lg M = - 5.60 + 1.504 lg T_eff (lg T_eff > 3.6), and lg M = - 29.4 + 8.2 lg T_eff (lg T_eff <= 3.6). In most cases, the component masses and radii used are accurate to 2-3 and 2-4%, respectively; the errors for low-mass stars are larger by factors of 3-4. The coefficients in the relations were derived using linear least squares fitting with corrections for noise in the independent variable.

  7. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. II. NGC 346 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    De Marchi, Guido; Sirianni, Marco; Panagia, Nino; Sabbi, Elena; Romaniello, Martino; Prada Moroni, Pier Giorgio; Degl'Innocenti, Scilla E-mail: panagia@stsci.edu

    2011-10-10

    We have studied the properties of the stellar populations in the field of the NGC 346 cluster in the Small Magellanic Cloud, using a novel self-consistent method that allows us to reliably identify pre-main-sequence (PMS) objects actively undergoing mass accretion, regardless of their age. The method does not require spectroscopy and combines broadband V and I photometry with narrowband H{alpha} imaging to identify all stars with excess H{alpha} emission and derive the accretion luminosity L{sub acc} and mass accretion rate M-dot{sub acc} for all of them. The application of this method to existing Hubble Space Telescope (HST)/Advanced Camera for Surveys photometry of the NGC 346 field has allowed us to identify and study 680 bona fide PMS stars with masses from {approx}0.4 M{sub sun} to {approx}4 M{sub sun} and ages in the range from {approx}1 Myr to {approx}30 Myr. Previous investigations of this region, based on the same data, had identified young ({approx}3 Myr old) candidate PMS stars on the basis of their broadband colors. In this study, we show that there are at least two, almost equally numerous, young populations with distinct ages of, respectively, {approx}1 and {approx}20 Myr. We provide accurate physical parameters for all of them. We take advantage of the unprecedented size of our PMS sample and of its spread in mass and age to study the evolution of the mass accretion rate as a function of stellar parameters. We find that, regardless of stellar mass, the mass accretion rate decreases with roughly the square root of the age, or about three times slower than predicted by current models of viscous disk evolution, and that more massive stars systematically have a higher mass accretion rate in proportion to their mass. A multivariate linear regression fit reveals that log M-dot{sub acc}{approx_equal}-0.6 log t + log m + c, where t is the age of the star, m is its mass, and c is a quantity that is higher at lower metallicity. This result is consistent with

  8. X-Ray Properties of Low-mass Pre-main Sequence Stars in the Orion Trapezium Cluster

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Huenemoerder, David P.; Günther, Moritz; Testa, Paola; Canizares, Claude R.

    2015-09-01

    The Chandra HETG Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster that provides high-resolution X-ray spectra of very young stars over a wide mass range (0.7-2.3 {M}⊙ ). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts that are well-characterized at optical and infrared wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction, indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above 1031 erg s-1, in some cases exceeding 1032 erg s-1 for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latter dominates the flux by a ratio 6:1 on average. The total emission measures range between 3-8 × 1054 cm-3 and are comparable to active coronal sources. The fits to the Ne ix He-Like K-shell lines indicate forbidden to inter-combination line ratios consistent with the low-density limit. Observed abundances compare well with active coronal sources underlying the coronal nature of these sources. The surface flux in this sample of 0.6-2.3 {M}⊙ classical T Tauri stars shows that coronal activity increases significantly between ages 0.1 and 10 Myr. The results demonstrate the power of X-ray line diagnostics to study coronal properties of T Tauri stars in young stellar clusters.

  9. Main sequence stars with asymmetric dark matter.

    PubMed

    Iocco, Fabio; Taoso, Marco; Leclercq, Florent; Meynet, Georges

    2012-02-10

    We study the effects of feebly or nonannihilating weakly interacting dark matter (DM) particles on stars that live in DM environments denser than that of our Sun. We find that the energy transport mechanism induced by DM particles can produce unusual conditions in the cores of main sequence stars, with effects which can potentially be used to probe DM properties. We find that solar mass stars placed in DM densities of ρ(χ)≥10(2) GeV/cm(3) are sensitive to spin-dependent scattering cross section σ(SD)≥10(-37) cm(2) and a DM particle mass as low as m(χ)=5 GeV, accessing a parameter range weakly constrained by current direct detection experiments.

  10. Accretion onto Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Herczeg, Gregory; Calvet, Nuria

    2016-09-01

    Accretion through circumstellar disks plays an important role in star formation and in establishing the properties of the regions in which planets form and migrate. The mechanisms by which protostellar and protoplanetary disks accrete onto low-mass stars are not clear; angular momentum transport by magnetic fields is thought to be involved, but the low-ionization conditions in major regions of protoplanetary disks lead to a variety of complex nonideal magnetohydrodynamic effects whose implications are not fully understood. Accretion in pre-main-sequence stars of masses ≲1M⊙ (and in at least some 2–3-M⊙ systems) is generally funneled by the stellar magnetic field, which disrupts the disk at scales typically of order a few stellar radii. Matter moving at near free-fall velocities shocks at the stellar surface; the resulting accretion luminosities from the dissipation of kinetic energy indicate that mass addition during the T Tauri phase over the typical disk lifetime ˜3 Myr is modest in terms of stellar evolution, but is comparable to total disk reservoirs as estimated from millimeter-wave dust emission (˜10‑2 M⊙). Pre-main-sequence accretion is not steady, encompassing timescales ranging from approximately hours to a century, with longer-timescale variations tending to be the largest. Accretion during the protostellar phase—while the protostellar envelope is still falling onto the disk—is much less well understood, mostly because the properties of the central obscured protostar are difficult to estimate. Kinematic measurements of protostellar masses with new interfometric facilities should improve estimates of accretion rates during the earliest phases of star formation.

  11. A Near-Infrared Imaging Survey of the Lupus 3 Dark Cloud: A Modest Cluster of Low-Mass, Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Nakajima, Yasushi; Tamura, Motohide; Oasa, Yumiko; Nakajima, Tadashi

    2000-02-01

    We present the first report on results of a near-infrared imaging survey of the Lupus 3 dark cloud. This cloud is known to be associated with a modest cluster of T Tauri stars from a previous optical Hα emission-line star survey. The survey covers 7'x11', which corresponds to a projected area of ~0.35x0.55 pc at a distance of 150 pc. Mapping was carried out at J, H, and Ks, to 10 σ limiting magnitudes of J=17.0, H=16.5, and Ks=15.5. A total of 229 sources brighter than Ks<15.8 were detected at all bands with a 90% completeness limit. Source classification is performed based on the near-infrared colors. Ten sources are candidates of Lada's Class II pre-main-sequence (PMS) stars, as they have a color excess that cannot be explained by reddening resulting from interstellar dust. We also identified 11 Class I-like candidates that were not detected at J and have a large color excess (H-Ks>=2), which is unlikely to arise from extinction in the Lupus dark cloud. There are four subclusters in this survey area of which three are embedded and mainly consist of the Class I-like candidates. The average density of PMS stars is around 500 pc-3, suggesting the presence of a modest cluster of embedded PMS stars. We estimate masses of the Class II candidates with aid of an evolutionary model of PMS stars. Ten of them have masses less than 0.08 Msolar if we assume their age to be 106 yr. Hence, we consider them to be young brown dwarf (YBD) candidates. The relative population of YBDs in the Lupus 3 dark cloud is larger than in the Taurus.

  12. PHOTOMETRIC DETERMINATION OF THE MASS ACCRETION RATES OF PRE-MAIN-SEQUENCE STARS. I. METHOD AND APPLICATION TO THE SN 1987A FIELD

    SciTech Connect

    De Marchi, Guido; Panagia, Nino; Romaniello, Martino E-mail: panagia@stsci.ed

    2010-05-20

    We have developed and successfully tested a new self-consistent method to reliably identify pre-main-sequence (PMS) objects actively undergoing mass accretion in a resolved stellar population, regardless of their age. The method does not require spectroscopy and combines broadband V and I photometry with narrowband H{alpha} imaging to (1) identify all stars with excess H{alpha} emission, (2) convert the excess H{alpha} magnitude into H{alpha} luminosity L(H{alpha}), (3) estimate the H{alpha} emission equivalent width, (4) derive the accretion luminosity L{sub acc} from L(H{alpha}), and finally (5) obtain the mass accretion rate M-dot{sub acc} from L{sub acc} and the stellar parameters (mass and radius). By selecting stars with an accuracy of 15% or better in the H{alpha} photometry, the statistical uncertainty on the derived M-dot{sub acc} is typically {approx_lt}17% and is dictated by the precision of the H{alpha} photometry. Systematic uncertainties, of up to a factor of 3 on the value of M-dot{sub acc}, are caused by our incomplete understanding of the physics of the accretion process and affect all determinations of the mass accretion rate, including those based on a spectroscopic H{alpha} line analysis. As an application of our method, we study the accretion process in a field of 9.16 arcmin{sup 2} around SN 1987A, using existing Hubble Space Telescope photometry. We identify as bona fide PMS stars a total of 133 objects with a H{alpha} excess above the 4{sigma} level and a median age of 13.5 Myr. Their median mass accretion rate of 2.6 x 10{sup -8} M{sub sun} yr{sup -1} is in excellent agreement with previous determinations based on the U-band excess of the stars in the same field, as well as with the value measured for G-type PMS stars in the Milky Way. The accretion luminosity of these PMS objects shows a strong dependence on their distance from a group of hot massive stars in the field and suggests that the ultraviolet radiation of the latter is rapidly

  13. The Mass Function of Main-Sequence Stars in NGC 6397 from Near-Infrared and Optical High-Resolution Hubble Space Telescope Observations

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Paresce, Francesco; Pulone, Luigi

    2000-02-01

    We have investigated the properties of the stellar mass function in the globular cluster NGC 6397 through the use of a large set of Hubble Space Telescope (HST) observations. The latter include existing WFPC 2 images in the V and I bands, obtained at ~4.5‧ and 10' radial distances, as well as a series of deep images in the J and H bands obtained with the NIC 2 and NIC 3 cameras of the NICMOS instrument pointed, respectively, to regions located ~4.5‧ and ~3.2‧ from the center. These observations span the region from ~1 to ~3 times the cluster's half-light radius (rhl~=3') and have been subjected to the same, homogeneous data processing so as to guarantee that the ensuing results could be directly compared to one another. We have built color-magnitude diagrams that we use to measure the luminosity function of main-sequence stars extending from just below the turnoff all the way down to the hydrogen-burning limit. All luminosity functions derived in this way show the same, consistent behavior in that they all increase with decreasing luminosity up to a peak at MI~=8.5 or MH~=7 and then drop precipitously well before photometric incompleteness becomes significant. Within the observational uncertainties, at MI~=12 or MH~=10.5 (~0.09 Msolar) the luminosity functions are compatible with zero. The direct comparison of our NIC 2 field with previous WFPC 2 observations of the same area shows that down to MH~=11 there are no more faint, red stars than those already detected by the WFPC 2, thus excluding a significant population of faint, low-mass stars at the bottom of the main sequence. By applying the best available mass-luminosity relation appropriate to the metallicity of NGC 6397 and consistent with our color-magnitude diagrams to both the optical and the IR data, we obtain a mass function that shows a break in slope at ~0.3 Msolar. No single-exponent power-law distribution is compatible with these data, regardless of the value of the exponent. We find that a

  14. Submillimeter studies of main-sequence stars

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Becklin, E. E.

    1993-01-01

    JCMT maps of the 800-micron emission from Vega, Fomalhaut, and Beta Pictoris are interpreted to indicate that they are not ringed by large reservoirs of distant orbiting dust particles that are too cold to have been detected by IRAS. A search for 800-micron emission from stars in the Pleiades and Ursa Majoris open clusters is reported. In comparison with the mass of dust particles near T Tauri and Herbig Ae stars, the JCMT data indicate a decline in dust mass during the initial 3 x 10 exp 8 yr that a star spends on the main sequence that is at least as rapid as (time) exp -2. It is estimated that in the Kuiper belt the ratio of total mass carried by small particles to that carried by comets is orders of magnitude smaller than this ratio is 1 AU from the sun. If 800-micron opacities calculated by Pollack et al. (1993) are correct, then the particles with radii less than 100 microns that dominate the FIR fluxes measured by IRAS cannot entirely account for the measured 800-micron fluxes at Vega, Beta Pic, and Fomalhaut; larger particles must be present as well.

  15. STAR FORMATION HISTORY OF A YOUNG SUPER-STAR CLUSTER IN NGC 4038/39: DIRECT DETECTION OF LOW-MASS PRE-MAIN SEQUENCE STARS

    SciTech Connect

    Greissl, Julia; Meyer, Michael R.; Christopher, Micol H.; Scoville, Nick Z.

    2010-02-20

    We present an analysis of the near-infrared spectrum of a young massive star cluster in the overlap region of the interacting galaxies NGC 4038/39 using population synthesis models. Our goal is to model the cluster population as well as provide rough constraints on its initial mass function (IMF). The cluster shows signs of youth, such as thermal radio emission and strong hydrogen emission lines in the near-infrared. Late-type absorption lines are also present which are indicative of late-type stars in the cluster. The strength and ratio of these absorption lines cannot be reproduced through either late-type pre-main sequence (PMS) stars or red supergiants alone. Thus, we interpret the spectrum as a superposition of two star clusters of different ages, which is feasible since the 1'' spectrum encompasses a physical region of {approx}90 pc and radii of super-star clusters (SSCs) are generally measured to be a few parsecs. One cluster is young (<= 3 Myr) and is responsible for part of the late-type absorption features, which are due to PMS stars in the cluster, and the hydrogen emission lines. The second cluster is older (6 Myr-18 Myr) and is needed to reproduce the overall depth of the late-type absorption features in the spectrum. Both are required to accurately reproduce the near-infrared spectrum of the object. Thus, we have directly detected PMS objects in an unresolved SSC for the first time using a combination of population synthesis models and PMS tracks. This analysis serves as a testbed of our technique to constrain the low-mass IMF in young SSCs as well as an exploration of the star formation history of young UC H II regions.

  16. A High-resolution Multiband Survey of Westerlund 2 with the Hubble Space Telescope. II. Mass Accretion in the Pre-main-sequence Population

    NASA Astrophysics Data System (ADS)

    Zeidler, Peter; Grebel, Eva K.; Nota, Antonella; Sabbi, Elena; Pasquali, Anna; Tosi, Monica; Bonanos, Alceste Z.; Christian, Carol

    2016-10-01

    We present a detailed analysis of the pre-main-sequence (PMS) population of the young star cluster Westerlund 2 (Wd2), the central ionizing cluster of the H ii region RCW 49, using data from a high-resolution multiband survey with the Hubble Space Telescope. The data were acquired with the Advanced Camera for Surveys in the F555W, F814W, and F658N filters and with the Wide Field Camera 3 in the F125W, F160W, and F128N filters. We find a mean age of the region of 1.04 ± 0.72 Myr. The combination of dereddened F555W and F814W photometry in combination with F658N photometry allows us to study and identify stars with Hα excess emission. With a careful selection of 240 bona-fide PMS Hα excess emitters we were able to determine their Hα luminosity, which has a mean value L({{H}}α )=1.67× {10}-31 {{erg}} {{{s}}}-1. Using the PARSEC 1.2S isochrones to obtain the stellar parameters of the PMS stars, we determined a mean mass accretion rate {\\dot{M}}{{acc}}=4.43× {10}-8 {M}⊙ {{{yr}}}-1 per star. A careful analysis of the spatial dependence of the mass accretion rate suggests that this rate is ˜25% lower in the center of the two density peaks of Wd2 in close proximity to the luminous OB stars, compared to the Wd2 average. This rate is higher with increasing distance from the OB stars, indicating that the PMS accretion disks are being rapidly destroyed by the far-ultraviolet radiation emitted by the OB population.

  17. Magnetic main sequence stars as progenitors of blue supergiants

    NASA Astrophysics Data System (ADS)

    Petermann, I.; Castro, N.; Langer, N.

    2015-01-01

    Blue supergiants (BSGs) to the right the main sequence band in the HR diagram can not be reproduced by standard stellar evolution calculations. We investigate whether a reduced convective core mass due to strong internal magnetic fields during the main sequence might be able to recover this population of stars. We perform calculations with a reduced mass of the hydrogen burning convective core of stars in the mass range 3-30 M ⊙ in a parametric way, which indeed lead to BSGs. It is expected that these BSGs would still show large scale magnetic fields in the order of 10 G.

  18. Distributions of Quasar Hosts on the Galaxy Main Sequence Plane

    NASA Astrophysics Data System (ADS)

    Zhang, Zhoujian; Shi, Yong; Rieke, George H.; Xia, Xiaoyang; Wang, Yikang; Sun, Bingqing; Wan, Linfeng

    2016-03-01

    The relation between star formation rates (SFRs) and stellar masses, i.e., the galaxy main sequence, is a useful diagnostic of galaxy evolution. We present the distributions relative to the main sequence of 55 optically selected PG and 12 near-IR-selected Two Micron All Sky Survey (2MASS) quasars at z ≤ 0.5. We estimate the quasar host stellar masses from Hubble Space Telescope or ground-based AO photometry, and the SFRs through the mid-infrared aromatic features and far-IR photometry. We find that PG quasar hosts more or less follow the main sequence defined by normal star-forming galaxies while 2MASS quasar hosts lie systematically above the main sequence. PG and 2MASS quasars with higher nuclear luminosities seem to have higher specific SFRs (sSFRs), although there is a large scatter. No trends are seen between sSFRs and SMBH masses, Eddington ratios, or even morphology types (ellipticals, spirals, and mergers). Our results could be placed in an evolutionary scenario with quasars emerging during the transition from ULIRGs/mergers to ellipticals. However, combined with results at higher redshift, they suggest that quasars can be widely triggered in normal galaxies as long as they contain abundant gas and have ongoing star formation.

  19. The ultracool dwarf DENIS-P J104814.7-395606. Chromospheres and coronae at the low-mass end of the main-sequence

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Alcalá, J.; Biazzo, K.; Ercolano, B.; Crespo-Chacón, I.; López-Santiago, J.; Martínez-Arnáiz, R.; Schmitt, J. H. M. M.; Rigliaco, E.; Leone, F.; Cupani, G.

    2012-01-01

    Context. Several diagnostics ranging from the radio to the X-ray band are suitable for investigating the magnetic activity of late-type stars. Empirical connections between the emission at different wavelengths place constraints on the nature and efficiency of the emission mechanism and the physical conditions in different atmospheric layers. The activity of ultracool dwarfs, at the low-mass end of the main-sequence, is poorly understood. Aims: We perform a multi-wavelength study of one of the nearest M9 dwarfs, DENIS-P J104814.7-395606 (4 pc), to examine its position within the group of magnetically active ultracool dwarfs, and, in general, advance our understanding of these objects by comparing them to early-M type dwarf stars and the Sun. Methods: We obtained an XMM-Newton observation of DENIS-P J104814.7-395606 and a broad-band spectrum from the ultraviolet to the near-infrared with X-Shooter. From this dataset, we derive the X-ray properties, stellar parameters, kinematics, and the emission-line spectrum tracing chromospheric activity. We integrate these data by compiling the activity parameters of ultracool dwarfs from the literature. Results: Our deep XMM-Newton observation provides the first X-ray detection of DENIS-P J104814.7-395606 (log Lx = 25.1), as well as the first measurement of its V band brightness (V = 17.35 mag). The flux-flux relations between X-ray and chromospheric activity indicators are here for the first time extended into the regime of the ultracool dwarfs. The approximate agreement of DENIS-P J104814.7-395606 and other ultracool dwarfs with flux-flux relations for early-M dwarfs suggests that the same heating mechanisms work in the atmospheres of ultracool dwarfs, albeit weaker as judged from their lower fluxes. The observed Balmer decrements of DENIS 1048-3956 are compatible with optically thick plasma in local thermal equilibrium (LTE) at low, nearly photospheric temperature or optically thin LTE plasma at 20 000 K. Describing the

  20. Habitable zones around main sequence stars.

    PubMed

    Kasting, J F; Whitmire, D P; Reynolds, R T

    1993-01-01

    A one-dimensional climate model is used to estimate the width of the habitable zone (HZ) around our Sun and around other main sequence stars. Our basic premise is that we are dealing with Earth-like planets with CO2/H2O/N2 atmospheres and that habitability requires the presence of liquid water on the planet's surface. The inner edge of the HZ is determined in our model by loss of water via photolysis and hydrogen escape. The outer edge of the HZ is determined by the formation of CO2 clouds, which cool a planet's surface by increasing its albedo and by lowering the convective lapse rate. Conservative estimates for these distances in our own Solar System are 0.95 and 1.37 AU, respectively; the actual width of the present HZ could be much greater. Between these two limits, climate stability is ensured by a feedback mechanism in which atmospheric CO2 concentrations vary inversely with planetary surface temperature. The width of the HZ is slightly greater for planets that are larger than Earth and for planets which have higher N2 partial pressures. The HZ evolves outward in time because the Sun increases in luminosity as it ages. A conservative estimate for the width of the 4.6-Gyr continuously habitable zone (CHZ) is 0.95 to 1.15 AU. Stars later than F0 have main sequence lifetimes exceeding 2 Gyr and, so, are also potential candidates for harboring habitable planets. The HZ around an F star is larger and occurs farther out than for our Sun; the HZ around K and M stars is smaller and occurs farther in. Nevertheless, the widths of all of these HZs are approximately the same if distance is expressed on a logarithmic scale. A log distance scale is probably the appropriate scale for this problem because the planets in our own Solar System are spaced logarithmically and because the distance at which another star would be expected to form planets should be related to the star's mass. The width of the CHZ around other stars depends on the time that a planet is required to

  1. Quenching star formation: insights from the local main sequence

    NASA Astrophysics Data System (ADS)

    Leslie, S. K.; Kewley, L. J.; Sanders, D. B.; Lee, N.

    2016-01-01

    The so-called star-forming main sequence of galaxies is the apparent tight relationship between the star formation rate and stellar mass of a galaxy. Many studies exclude galaxies which are not strictly `star forming' from the main sequence, because they do not lie on the same tight relation. Using local galaxies in the Sloan Digital Sky Survey, we have classified galaxies according to their emission line ratios, and studied their location on the star formation rate-stellar mass plane. We find that galaxies form a sequence from the `blue cloud' galaxies which are actively forming stars, through a combination of composite, Seyfert, and low-ionization nuclear emission-line region galaxies, ending as `red-and-dead' galaxies. The sequence supports an evolutionary pathway for galaxies in which star formation quenching by active galactic nuclei plays a key role.

  2. Post-main-sequence planetary system evolution.

    PubMed

    Veras, Dimitri

    2016-02-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  3. Post-main-sequence planetary system evolution

    PubMed Central

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  4. Post-main-sequence planetary system evolution.

    PubMed

    Veras, Dimitri

    2016-02-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries.

  5. The Infrared Eye of the Wide-Field Camera 3 on the Hubble Space Telescope Reveals Multiple Main Sequences of Very Low Mass Stars in NGC 2808

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Marino, A. F.; Cassisi, S.; Piotto, G.; Bedin, L. R.; Anderson, J.; Allard, F.; Aparicio, A.; Bellini, A.; Buonanno, R.; Monelli, M.; Pietrinferni, A.

    2012-08-01

    We use images taken with the infrared channel of the Wide Field Camera 3 on the Hubble Space Telescope to study the multiple main sequences (MSs) of NGC 2808. Below the turnoff, the red, the middle, and the blue MS, previously detected from visual-band photometry, are visible over an interval of about 3.5 F160W magnitudes. The three MSs merge together at the level of the MS bend. At fainter magnitudes, the MS again splits into two components containing ~65% and ~35% of stars, with the most-populated MS being the bluest one. Theoretical isochrones suggest that the latter is connected to the red MS discovered in the optical color-magnitude diagram (CMD) and hence corresponds to the first stellar generation, having primordial helium and enhanced carbon and oxygen abundances. The less-populated MS in the faint part of the near-IR CMD is helium-rich and poor in carbon and oxygen, and it can be associated with the middle and the blue MS of the optical CMD. The finding that the photometric signature of abundance anti-correlation is also present in fully convective MS stars reinforces the inference that they have a primordial origin. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  6. THE INFRARED EYE OF THE WIDE-FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE REVEALS MULTIPLE MAIN SEQUENCES OF VERY LOW MASS STARS IN NGC 2808

    SciTech Connect

    Milone, A. P.; Aparicio, A.; Monelli, M. E-mail: aparicio@iac.es; and others

    2012-08-01

    We use images taken with the infrared channel of the Wide Field Camera 3 on the Hubble Space Telescope to study the multiple main sequences (MSs) of NGC 2808. Below the turnoff, the red, the middle, and the blue MS, previously detected from visual-band photometry, are visible over an interval of about 3.5 F160W magnitudes. The three MSs merge together at the level of the MS bend. At fainter magnitudes, the MS again splits into two components containing {approx}65% and {approx}35% of stars, with the most-populated MS being the bluest one. Theoretical isochrones suggest that the latter is connected to the red MS discovered in the optical color-magnitude diagram (CMD) and hence corresponds to the first stellar generation, having primordial helium and enhanced carbon and oxygen abundances. The less-populated MS in the faint part of the near-IR CMD is helium-rich and poor in carbon and oxygen, and it can be associated with the middle and the blue MS of the optical CMD. The finding that the photometric signature of abundance anti-correlation is also present in fully convective MS stars reinforces the inference that they have a primordial origin.

  7. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10‑2 M ⊙ yr‑1 for solar type stars, and up to ≈ 1 M ⊙ yr‑1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  8. Binary interactions with high accretion rates onto main sequence stars

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  9. Blue supergiants as descendants of magnetic main sequence stars

    NASA Astrophysics Data System (ADS)

    Petermann, I.; Langer, N.; Castro, N.; Fossati, L.

    2015-12-01

    About 10% of the massive main sequence stars have recently been found to host a strong, large scale magnetic field. Both, the origin and the evolutionary consequences of these fields are largely unknown. We argue that these fields may be sufficiently strong in the deep interior of the stars to suppress convection near the outer edge of their convective core. We performed parametrised stellar evolution calculations and assumed a reduced size of the convective core for stars in the mass range 16M⊙ to 28M⊙ from the zero age main sequence until core carbon depletion. We find that such models avoid the coolest part of the main sequence band, which is usually filled by evolutionary models that include convective core overshooting. Furthermore, our "magnetic" models populate the blue supergiant region during core helium burning, i.e., the post-main sequence gap left by ordinary single star models, and some of them end their life in a position near that of the progenitor of Supernova 1987A in the Hertzsprung-Russell diagram. Further effects include a strongly reduced luminosity during the red supergiant stage, and downward shift of the limiting initial mass for white dwarf and neutron star formation.

  10. Main sequence models for massive zero-metal stars

    NASA Technical Reports Server (NTRS)

    Cary, N.

    1974-01-01

    Zero-age main-sequence models for stars of 20, 10, 5, and 2 solar masses with no heavy elements are constructed for three different possible primordial helium abundances: Y=0.00, Y=0.23, and Y=0.30. The latter two values of Y bracket the range of primordial helium abundances cited by Wagoner. With the exceptions of the two 20 solar mass models that contain helium, these models are found to be self-consistent in the sense that the formation of carbon through the triple-alpha process during premain sequence contraction is not sufficient to bring the CN cycle into competition with the proton-proton chain on the ZAMS. The zero-metal models of the present study have higher surface and central temperatures, higher central densities, smaller radii, and smaller convective cores than do the population I models with the same masses.

  11. TIME-SERIES PHOTOMETRY OF STARS IN AND AROUND THE LAGOON NEBULA. I. ROTATION PERIODS OF 290 LOW-MASS PRE-MAIN-SEQUENCE STARS IN NGC 6530

    SciTech Connect

    Henderson, Calen B.; Stassun, Keivan G.

    2012-03-01

    We have conducted a long-term, wide-field, high-cadence photometric monitoring survey of {approx}50,000 stars in the Lagoon Nebula H II region. This first paper presents rotation periods for 290 low-mass stars in NGC 6530, the young cluster illuminating the nebula, and for which we assemble a catalog of infrared and spectroscopic disk indicators, estimated masses and ages, and X-ray luminosities. The distribution of rotation periods we measure is broadly uniform for 0.5 days < P < 10 days; the short-period cutoff corresponds to breakup. We observe no obvious bimodality in the period distribution, but we do find that stars with disk signatures rotate more slowly on average. The stars' X-ray luminosities are roughly flat with rotation period, at the saturation level (log L{sub X} /L{sub bol} Almost-Equal-To -3.3). However, we find a significant positive correlation between L{sub X} /L{sub bol} and corotation radius, suggesting that the observed X-ray luminosities are regulated by centrifugal stripping of the stellar coronae. The period-mass relationship in NGC 6530 is broadly similar to that of the Orion Nebula Cluster (ONC), but the slope of the relationship among the slowest rotators differs from that in the ONC and other young clusters. We show that the slope of the period-mass relationship for the slowest rotators can be used as a proxy for the age of a young cluster, and we argue that NGC 6530 may be slightly younger than the ONC, making it a particularly important touchstone for models of angular momentum evolution in young, low-mass stars.

  12. Stellar evolution from the zero-age main sequence

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Demarque, P.; Sweigart, A. V.; Gross, P. G.

    1979-01-01

    A consistent set of 247 evolutionary sequences extending from the ZAMS to the red-giant branch is presented for Y from 0.10 to 0.40, Z from 0.00001 to 0.10, and masses of 0.55 to 6.90 solar masses. Each sequence is started from a homogeneous ZAMS model, and almost all are evolved to the base of the red-giant branch. It is shown that: (1) the relative position of the main sequence can be determined as a function of composition; (2) theoretical luminosity functions can be derived from the relative evolutionary time scales; (3) a dip in luminosity sometimes occurs at the base of the red-giant branch and is most pronounced at larger Z values; (4) metal-poor stars evolve farther up along the main sequence before turning off toward the red-giant branch; and (5) the onset of helium burning halts the evolution across the Hertzsprung gap for the most massive and most metal-poor models, so that the star remains blue during its phase of core-helium burning.

  13. Dusty debris clouds around main sequence and post-main sequence stars

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.

    1993-01-01

    During the past decade, infrared observations by IRAS and from the ground have revealed that many stars are orbited by dusty debris disks. Somewhat more indirect arguments indicate that many of these systems also contain asteroids, comets, and/or planets, thereby suggesting that planetary systems may be quite common in the Milky Way. Dust clouds at the main sequence K5 star HD 98800 and the white dwarf Giclas 29-38 are particularly noteworthy and mysterious.

  14. High-precision Radio and Infrared Astrometry of LSPM J1314+1320AB. II. Testing Pre-main-sequence Models at the Lithium Depletion Boundary with Dynamical Masses

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Forbrich, Jan; Rizzuto, Aaron; Mann, Andrew W.; Aller, Kimberly; Liu, Michael C.; Kraus, Adam L.; Berger, Edo

    2016-08-01

    We present novel tests of pre-main-sequence models based on individual dynamical masses for the M7 binary LSPM J1314+1320AB. Joint analysis of Keck adaptive optics astrometric monitoring along with Very Long Baseline Array radio data from a companion paper yield component masses of 92.8 ± 0.6 M Jup (0.0885 ± 0.0006 M ⊙) and 91.7 ± 1.0 M Jup (0.0875 ± 0.0010 M ⊙) and a parallactic distance of 17.249 ± 0.013 pc. We find component luminosities consistent with the system being coeval at 80.8 ± 2.5 Myr, according to BHAC15 evolutionary models. The presence of lithium is consistent with model predictions, marking the first test of the theoretical lithium depletion boundary using ultracool dwarfs of known mass. However, we find that the evolutionary model-derived average effective temperature (2950 ± 5 K) is 180 K hotter than that given by a spectral type-{T}{eff} relation based on BT-Settl models (2770 ± 100 K). We suggest that the dominant source of this discrepancy is model radii being too small by ≈13%. In a test mimicking the typical application of models by observers, we derive masses on the H-R diagram using luminosity and BT-Settl temperature. The estimated masses are lower by {46}-19+16 % (2.0σ) than we measure dynamically and would imply that this is a system of ≈50 M Jup brown dwarfs, highlighting the large systematic errors possible in H-R diagram properties. This is the first time masses have been measured for ultracool (≥M6) dwarfs displaying spectral signatures of low gravity. Based on features in the infrared, LSPM J1314+1320AB appears to have higher gravity than typical Pleiades and AB Dor members, opposite the expectation given its younger age. The components of LSPM J1314+1320AB are now the nearest, lowest mass pre-main-sequence stars with direct mass measurements. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the

  15. High-precision Radio and Infrared Astrometry of LSPM J1314+1320AB. II. Testing Pre-main-sequence Models at the Lithium Depletion Boundary with Dynamical Masses

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Forbrich, Jan; Rizzuto, Aaron; Mann, Andrew W.; Aller, Kimberly; Liu, Michael C.; Kraus, Adam L.; Berger, Edo

    2016-08-01

    We present novel tests of pre-main-sequence models based on individual dynamical masses for the M7 binary LSPM J1314+1320AB. Joint analysis of Keck adaptive optics astrometric monitoring along with Very Long Baseline Array radio data from a companion paper yield component masses of 92.8 ± 0.6 M Jup (0.0885 ± 0.0006 M ⊙) and 91.7 ± 1.0 M Jup (0.0875 ± 0.0010 M ⊙) and a parallactic distance of 17.249 ± 0.013 pc. We find component luminosities consistent with the system being coeval at 80.8 ± 2.5 Myr, according to BHAC15 evolutionary models. The presence of lithium is consistent with model predictions, marking the first test of the theoretical lithium depletion boundary using ultracool dwarfs of known mass. However, we find that the evolutionary model-derived average effective temperature (2950 ± 5 K) is 180 K hotter than that given by a spectral type–{T}{eff} relation based on BT-Settl models (2770 ± 100 K). We suggest that the dominant source of this discrepancy is model radii being too small by ≈13%. In a test mimicking the typical application of models by observers, we derive masses on the H-R diagram using luminosity and BT-Settl temperature. The estimated masses are lower by {46}-19+16 % (2.0σ) than we measure dynamically and would imply that this is a system of ≈50 M Jup brown dwarfs, highlighting the large systematic errors possible in H-R diagram properties. This is the first time masses have been measured for ultracool (≥M6) dwarfs displaying spectral signatures of low gravity. Based on features in the infrared, LSPM J1314+1320AB appears to have higher gravity than typical Pleiades and AB Dor members, opposite the expectation given its younger age. The components of LSPM J1314+1320AB are now the nearest, lowest mass pre-main-sequence stars with direct mass measurements. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the

  16. Are blue supergiants descendants of magnetic main sequence stars?

    NASA Astrophysics Data System (ADS)

    Petermann, Ilka; Langer, Norbert

    2013-06-01

    Red and blue supergiants are, together with luminous blue variables and Wolf-Rayet stars, evolved phases of massive (OB) stars. The position of blue supergiants (BSG) near the main sequence band cannot be reproduced by standard stellar evolution calculations. However, the assumption of a reduced convective core mass during the main sequence (MS) due to strong internal magnetic fields, established in roughly 10% of all stars on the upper MS, can recover this BSG population. For our calculations of the (non-rotating) massive stars at solar metallicity we used the 1D stellar evolution code MESA and compare their evolutionary tracks with positions from stars obtained from the VLT Flames survey of massive stars.

  17. ON THE DIFFERENTIAL ROTATION OF MASSIVE MAIN-SEQUENCE STARS

    SciTech Connect

    Rogers, T. M.

    2015-12-20

    To date, asteroseismology has provided core-to-surface differential rotation measurements in eight main-sequence stars. These stars, ranging in mass from ∼1.5–9 M{sub ⊙}, show rotation profiles ranging from uniform to counter-rotation. Although they have a variety of masses, these stars all have convective cores and overlying radiative regions, conducive to angular momentum transport by internal gravity waves (IGWs). Using two-dimensional numerical simulations, we show that angular momentum transport by IGWs can explain all of these rotation profiles. We further predict that, should high mass, faster rotating stars be observed, the core-to-envelope differential rotation will be positive, but less than one.

  18. Pre-main sequence multiple systems

    NASA Astrophysics Data System (ADS)

    Bouy, Hervé

    2011-04-01

    It is now well established that the majority of young stars are found in multiple systems, so that any theory of stellar formation must account for their existence and properties. Studying the properties of multiple star systems therefore represents a very powerful approach to place observational constraints on star formation theories. Additionally, multiple systems offer other advantages. They provide the most accurate and unambiguous way to measure masses, using orbital fitting and Kepler's laws, and even the stellar radius in the special case of eclipsing binaries. They also allow to compare the properties of 2 coeval objects with different masses, providing important tests for the evolutionary models.

  19. Detecting Mass Loss in Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Sandberg, Erik; Rajagopal, Jayadev; Ridgway, Susan E.; Kotulla, Ralf C.; Valdes, Francisco; Allen, Lori

    2016-01-01

    Sandberg, E., Rajagopal, J., Ridgway, S.E, Kotulla, R., Valdes, F., Allen, L.The Dark Energy Camera (DECam) on the 4m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) is being used for a survey of Near Earth Objects (NEOs). Here we attempt to identify mass loss in main belt asteroids (MBAs) from these data. A primary motivation is to understand the role that asteroids may play in supplying dust and gas for debris disks. This work focuses on finding methods to automatically pick out asteroids that have qualities indicating possible mass loss. Two methods were chosen: looking for flux above a certain threshold in the asteroid's radial profile, and comparing its PSF to that of a point source. After sifting through 490 asteroids, several have passed these tests and should be followed up with a more rigorous analysis.Sandberg was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829)

  20. Orbital motion in pre-main sequence binaries

    SciTech Connect

    Schaefer, G. H.; Prato, L.; Simon, M.; Patience, J.

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five other binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.

  1. Condition for Convective Cores in Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Monteiro, M. J. P. F. G.

    1990-09-01

    The aim of this work is to find the condition for the existence of convective cores in homogenous main sequence stars where the opacity per unit mass is $k=k_0ρα T-β and the energy generation rate per unit mass is ɛ=ɛ0ρ Tη (ρ and T being the density and the temperature, respectively). Numerical models of stars with different values of α, β and η are constructed and the condition for the existence of a convective core in terms of the relation between α, β and η determined. Forty points η=η(α,β) are determined for αin[0,2] and βin[0,4] and the condition is found to be η = - 3.3294; α + 2.0243; β + 1.8393

  2. Dissecting the Quasar Main Sequence: Insight from Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Sun, Jiayi; Shen, Yue

    2015-05-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/LEdd) of the black hole (BH) accretion. Shen & Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ* (hence, the BH mass via the M-σ* relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ* systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ* on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.

  3. DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES

    SciTech Connect

    Sun, Jiayi; Shen, Yue

    2015-05-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L{sub Edd}) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ{sub *} (hence, the BH mass via the M–σ{sub *} relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ{sub *} systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ{sub *} on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.

  4. Spatially Resolved Star Formation Main Sequence of Galaxies

    NASA Astrophysics Data System (ADS)

    Cano-Díaz, M.; Sánchez, S. F.; Zibetti, S.; Ascaribar, Y.; Bland-Hawthorn, J.; Ziegler, B.; González-Delgado, R. M.; Walcher, C. J.; García-Benito, R.; Mast, D.; Mendoza-Pérez, M. A.; Falcón-Barroso, J.; Galbany, L.; Husemann, B.; Kehring, C.; Marino, R. A.; Sánchez-Blázquez, P.; López-Cobá, C.; López-Sánchez, A. R.; Vilchez, J. M.

    2016-06-01

    The relation known as Star Formation Main Sequence (SFMS) of galaxies is defined in terms of stellar mass and star formation rate. This approximately linear relation has been proven to be tight and holds for several star formation indicators at local and at high redshifts. In this talk I will show recent results about our first attempts to study the Spatially Resolved SFMS, using integral field spectroscopic data, coming primarily from the CALIFA survey. I will present as a main result that a local SFMS is found with a slope and zero point of 0.72 +/ 0.04, and -7.95 +/ 0.29 respectively. I will also discuss the influence of characteristics such as environment and morphology in the relation. Finally I will present some extensions of these results for data com in from the MaNGA survey.

  5. The ages of globular cluster stars - Effects of rotation on pre-main-sequence, main-sequence, and turnoff evolution

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre; Pinsonneault, Marc H.

    1989-01-01

    Evolutionary sequences for low-metallicity stars (Z ranging from 0.001 to 0.0001) to study the effects of internal stellar rotation on the evolutionary time scales in the pre-main sequence, the main sequence (MS), and around the MS turnoff. Although a substantial amount of angular momentum remains in the interior, rotation is only a minor perturbation on the structure and ages of globular cluster stars. Even models with large initial angular momenta have MS lifetimes that are within 1 percent of those of standard models of the same mass and composition. Therefore, rotation does not affect age estimates of globular clusters from isochrone fitting. Furthermore, the models suggest that because rotation is not likely to affect horizontal-branch (HB) morphology, it does not affect significantly age estimates from the Delta-V method. Nevertheless, the internal angular momentum in the models is consistent with observations of surface rotational velocities on the HB, which require the preservation of a large reservoir of internal angular momentum.

  6. Atomic masses from (mainly) experimental data

    SciTech Connect

    Wapstra, A.H.; Audi, G.; Hoekstra, R.

    1988-07-01

    The present list of atomic masses is an update from the 1983 Atomic Mass Table. Two categories of mass values are represented in the tabulation: those derived purely from experimental data, and those calculated with the help of systematic trends also. In order to improve the reliability of the mass values of the latter category, a novel method of extrapolation has been added capitalizing on new formulas for neutron and proton pairing energies. copyright 1988 Academic Press, Inc.

  7. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  8. Massive main-sequence stars evolving at the Eddington limit

    NASA Astrophysics Data System (ADS)

    Sanyal, D.; Grassitelli, L.; Langer, N.; Bestenlehner, J. M.

    2015-08-01

    Context. Massive stars play a vital role in the Universe, however, their evolution even on the main-sequence is not yet well understood. Aims: Because of the steep mass-luminosity relation, massive main-sequence stars become extremely luminous. This brings their envelopes very close to the Eddington limit. We analyse stellar evolutionary models in which the Eddington limit is reached and exceeded, explore the rich diversity of physical phenomena that take place in their envelopes, and investigate their observational consequences. Methods: We use published grids of detailed stellar models, computed with a state-of-the-art, one-dimensional hydrodynamic stellar evolution code using LMC composition, to investigate the envelope properties of core hydrogen burning massive stars. Results: We find that the Eddington limit is almost never reached at the stellar surface, even for stars up to 500 M⊙. When we define an appropriate Eddington limit locally in the stellar envelope, we can show that most stars more massive than ~40 M⊙ actually exceed this limit, in particular, in the partial ionisation zones of iron, helium, or hydrogen. While most models adjust their structure such that the local Eddington limit is exceeded at most by a few per cent, our most extreme models do so by a factor of more than seven. We find that the local violation of the Eddington limit has severe consequences for the envelope structure, as it leads to envelope inflation, convection, density inversions, and, possibly to, pulsations. We find that all models with luminosities higher than 4 × 105L⊙, i.e. stars above ~40 M⊙ show inflation, with a radius increase of up to a factor of about 40. We find that the hot edge of the S Dor variability region coincides with a line beyond which our models are inflated by more than a factor of two, indicating a possible connection between S Dor variability and inflation. Furthermore, our coolest models show highly inflated envelopes with masses of up to

  9. Stellar winds on the main-sequence. I. Wind model

    NASA Astrophysics Data System (ADS)

    Johnstone, C. P.; Güdel, M.; Lüftinger, T.; Toth, G.; Brott, I.

    2015-05-01

    Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 M⊙ and 1.1 M⊙ at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run a grid of 1200 wind models to derive relations for the wind properties as a function of stellar mass, radius, and wind temperature. Using these results, we explore how wind properties depend on stellar mass and rotation. Conclusions: Based on our two assumptions about the scaling of the wind temperature, we argue that there is still significant uncertainty in how these properties should be determined. Resolution of this uncertainty will probably require both the application of solar wind physics to other stars and detailed observational constraints on the properties of stellar winds. In the final section of this paper, we give step by step instructions for how to apply our results to calculate the stellar wind conditions far from the stellar surface.

  10. Infrared Mapping of the Dust Around Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Heinrichsen, I.; Walker, H.; Klaas, U.; Sylvester, R.

    1998-01-01

    The photopolarimeter on ISO (ISOPHOT) has been used to investigate the dust discs around the four prototype Vega-like stars and several main sequence stars with excess infrared emission from IRAS data.

  11. Habitable Zones of Post-Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2016-05-01

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3700 to 10,000 K (˜M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons to super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.

  12. THE HABITABLE ZONES OF PRE-MAIN-SEQUENCE STARS

    SciTech Connect

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2014-12-20

    We calculate the pre-main-sequence habitable zone (HZ) for stars of spectral classes F-M. The spatial distribution of liquid water and its change during the pre-main-sequence phase of protoplanetary systems is important for understanding how planets become habitable. Such worlds are interesting targets for future missions because the coolest stars could provide habitable conditions for up to 2.5 billion years post-accretion. Moreover, for a given star type, planetary systems are more easily resolved because of higher pre-main-sequence stellar luminosities, resulting in larger planet-star separation for cool stars than is the case for the traditional main-sequence (MS) HZ. We use one-dimensional radiative-convective climate and stellar evolutionary models to calculate pre-main-sequence HZ distances for F1-M8 stellar types. We also show that accreting planets that are later located in the traditional MS HZ orbiting stars cooler than a K5 (including the full range of M stars) receive stellar fluxes that exceed the runaway greenhouse threshold, and thus may lose substantial amounts of water initially delivered to them. We predict that M-star planets need to initially accrete more water than Earth did, or, alternatively, have additional water delivered later during the long pre-MS phase to remain habitable. Our findings are also consistent with recent claims that Venus lost its water during accretion.

  13. Submillimeter Imaging of Dust Around Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to image circumstellar dust disks surrounding main-sequence stars. The delivery of the SCUBA detector we had planned to use for this work was delayed repeatedly, leading us to undertake a majority of the observations with the UKT14 submillimeter detector at the JCMT (James Clerk Maxwell Telescope) and optical imagers and a coronagraph at the University of Hawaii 2.2-m telescope. Major findings under this grant include: (1) We discovered 5 asymmetries in the beta Pictoris regenerated dust disk. The discovery of these asymmetries was a surprise, since smearing due to Keplerian shear should eliminate most such features on timescales of a few thousand years. One exception is the "wing tilt" asymmetry, which we interpret as due to the scattering phase function of dust disk particles. From the wing tilt and a model of the phase function, we find a disk plane inclination to the line of sight of < 5 degrees. Other asymmetries (e.g. the butterfly asymmetry) suggest a disk that has been recently disturbed. We searched for possible nearby perturbers but found no clear candidates. Low mass stars (M dwarfs) and brown dwarfs would have fallen beneath the sensitivity threshhold of our survey, however. (2) We calculated a set of disk models to assess the detectability of dust disks around stars as a function of (a) distance, (b) disk, inclination (c) dust optical depth/mass, and (d) imaging resolution. These models guided our observational strategy on Mauna Kea. (3) We performed a coronagraphic survey of approx. 100 main-sequence stars in search of additional examples of circumstellar disks. The best new candidate disk, around the 5 M(sun) star BD+31deg.643, is distinguished by its large extent (few x 10( exp 3) AU). This disk, if real, cannot be rotationally supported. We suggest that the dust particles are ejected from a smaller, unseen disk (Kuiper Belt?) by strong radiation pressure forces due to the high luminosity central star. (4) SCUBA images of

  14. DNA sequence analysis by MALDI mass spectrometry.

    PubMed Central

    Kirpekar, F; Nordhoff, E; Larsen, L K; Kristiansen, K; Roepstorff, P; Hillenkamp, F

    1998-01-01

    Conventional DNA sequencing is based on gel electrophoretic separation of the sequencing products. Gel casting and electrophoresis are the time limiting steps, and the gel separation is occasionally imperfect due to aberrant mobility of certain fragments, leading to erroneous sequence determination. Furthermore, illegitimately terminated products frequently cannot be distinguished from correctly terminated ones, a phenomenon that also obscures data interpretation. In the present work the use of MALDI mass spectrometry for sequencing of DNA amplified from clinical samples is implemented. The unambiguous and fast identification of deletions and substitutions in DNA amplified from heterozygous carriers realistically suggest MALDI mass spectrometry as a future alternative to conventional sequencing procedures for high throughput screening for mutations. Unique features of the method are demonstrated by sequencing a DNA fragment that could not be sequenced conventionally because of gel electrophoretic band compression and the presence of multiple non-specific termination products. Taking advantage of the accurate mass information provided by MALDI mass spectrometry, the sequence was deduced, and the nature of the non-specific termination could be determined. The method described here increases the fidelity in DNA sequencing, is fast, compatible with standard DNA sequencing procedures, and amenable to automation. PMID:9592136

  15. The main sequences of NGC 2808: constraints on the early disc accretion scenario

    NASA Astrophysics Data System (ADS)

    Cassisi, Santi; Salaris, Maurizio

    2014-03-01

    A new scenario - early disc accretion - has been proposed very recently to explain the origin of the multiple population phenomenon in Galactic globular clusters. It envisages the possibility that a fraction of low- and very low-mass cluster stars may accrete the ejecta of interacting massive binary (and possibly also fast rotating massive) stars during the fully convective, pre-main sequence stage, to reproduce the CN and ONa anticorrelations observed among stars in individual clusters. This scenario is assumed to be able to explain the presence (and properties) of the multiple populations in the majority of globular clusters in the Milky Way. Here we have considered the well studied cluster NGC 2808, which displays a triple main sequence with well defined and separate He abundances. Knowledge of these abundances allowed us to put strong constraints on the He mass fraction and amount of matter to be accreted by low-mass pre-main sequence stars. We find that the minimum He mass fraction in the accreted gas has to be ~0.44 to produce the observed sequences and that at fixed initial mass of the accreting star, different efficiencies for the accretion are required to produce stars placed onto the multiple main sequences. This may be explained by differences in the orbital properties of the progenitors and/or different spatial distribution of intracluster gas with varying He abundances. Both O-Na and C-N anticorrelations appear naturally along the main sequences, once considering the predicted relationship between He and CNONa abundances in the ejecta of the polluters. As a consequence of the accretion, we predict no discontinuity between the abundance ranges covered by intermediate and blue main sequence stars, but we find a sizeable (several 0.1 dex) discontinuity of the N and Na abundances between objects on the intermediate and red main sequences. There is in principle enough polluting gas with the right He abundances to explain the observed main sequences by early

  16. A DOUBLE MAIN SEQUENCE IN THE GLOBULAR CLUSTER NGC 6397

    SciTech Connect

    Milone, A. P.; Aparicio, A.; Marino, A. F.; Piotto, G.; Bedin, L. R.; Anderson, J.; Cassisi, S.; Rich, R. M. E-mail: aparicio@iac.es E-mail: giampaolo.piotto@unipd.it E-mail: bedin@stsci.edu E-mail: rmr@astro.ucla.edu

    2012-01-20

    High-precision multi-band Hubble Space Telescope (HST) photometry reveals that the main sequence of the globular cluster NGC 6397 splits into two components, containing {approx}30% and {approx}70% of the stars. This double sequence is consistent with the idea that the cluster hosts two stellar populations: (1) a primordial population that has a composition similar to field stars, containing {approx}30% of the stars, and (2) a second generation with enhanced sodium and nitrogen, depleted carbon and oxygen, and a slightly enhanced helium abundance ({Delta}Y {approx} 0.01). We examine the color difference between the two sequences across a variety of color baselines and find that the second sequence is anomalously faint in m{sub F336W}. Theoretical isochrones indicate that this could be due to NH depletion.

  17. A Turn-over in the Galaxy Main Sequence of Star Formation at M* ~ 1010 Msun

    NASA Astrophysics Data System (ADS)

    Lee, Nicholas; Cosmos Team

    2015-01-01

    The relationship between galaxy star formation rates (SFR) and stellar masses (M*) is re-examined using a mass-selected sample of ~62,000 star-forming galaxies at z < 1.3 in the COSMOS 2 deg2 field. We measure infrared luminosities and SFRs using photometry from Herschel-PACS and SPIRE, Spitzer 24 μm, and the NRK method based on galaxies' locations in the restframe color-color diagram (NUV-r) vs. (r-K). Using these new SFRs, we find that the relationship between median SFR and M* follows a power-law at low stellar masses, but flattens to nearly constant SFR at high stellar masses. We describe a new parameterization that provides the best fit to the main sequence and charaterizes the low mass power-law slope, turnover mass, and overall scaling of the relationship. The turnover in the main sequence occurs at a characteristic mass of about M0 ~ 1010 Msun at all redshifts. The low mass power-law slope ranges from 0.9-1.3 and the overall scaling of the main sequence rises as a function of (1+z)4.2±0.10. A broken power-law fit below and above the turnover mass gives relationships of SFR ∝ M*0.88±0.06 below the turnover mass and SFR ∝ M*0.27±0.04 above the turnover mass. On average, galaxies more massive than M* > 1010 Msun have a much lower specfic star formation rate (SSFR = SFR/M*) than would be expected by simply extrapolating the traditional linear fit to the main sequence found for less massive galaxies.

  18. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    PubMed Central

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  19. Pulsating pre-main sequence stars as possible Eddington targets

    NASA Astrophysics Data System (ADS)

    Zwintz, K.; Weiss, W. W.

    2004-01-01

    PMS stars lie between the birthline and the zero-age main sequence (ZAMS) in the Hertzsprung-Russell (HR) diagram. They show photometric and spectroscopic variability on time scales of minutes to years, indicating that photospheric activity begins in the earliest phases of stellar evolution. The fact that they move across the instability region during their evolution to the main sequence suggests that at least part of their activity is due to stellar pulsations. δ Scuti-like PMS stars are ideal targets for the Eddington mission. First, their location in open clusters provides the simultaneous observations of numerous objects as a photometric reference. Second, the PMS variables lie in a magnitude range between V = 8 and V = 15, which meets the requirements of the mission. Third, the analysis of these stars by means of asteroseismological methods provides the unique chance to distinguish between young and evolved stars and hence leads to a better fundamental understanding of stellar structure and evolution.

  20. Finding the Onset of Convection in Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2003-01-01

    The primary goal of the work performed under this grant was to locate, if possible, the onset of subphotospheric convection zones in normal main sequence stars by using the presence of emission in high temperature lines in far ultraviolet spectra from the FUSE spacecraft as a proxy for convection. The change in stellar structure represented by this boundary between radiative and convective stars has always been difficult to find by other empirical means. A search was conducted through observations of a sample of A-type stars, which were somewhat hotter and more massive than the Sun, and which were carefully chosen to bridge the theoretically expected radiative/convective boundary line along the main sequence.

  1. An observational approach to convection in main sequence stars

    NASA Astrophysics Data System (ADS)

    Régulo, C.; Vázquez Ramió, H.; Roca Cortés, T.

    2005-12-01

    Observational results concerning possible changes in the granulation of Main Sequence stars were found by analysing their seismic power spectra obtained from photometric microvariability. We analysed as many as 178 stars with spectral types F, G, K, and M observed for 54 days. We present evidence of changes in the lifetime and contrast of the granulation, which both increase from F to M stars, although within the limit of resolution.

  2. Nearby main sequence stars with cool circumstellar material

    NASA Technical Reports Server (NTRS)

    Backman, Dana E.; Paresce, Francesco

    1991-01-01

    The discovery of the so-called Vega phenomenon was one of the most important and unexpected results of the IRAS mission. Several nearby main sequence stars were found to possess clouds of solid grains emitting strongly in the far-IR. Three of these objects were marginally resolved by IRAS. This phenomenon appears to be widespread and not limited to proto-planetary epochs. Possible connection of this phenomenon to the existing of planets is discussed.

  3. 21. General oblique view of main central building mass looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. General oblique view of main central building mass looking to southeast, showing meeting of north and central building elements. - Fort Ord, Soldiers' Club, California State Highway 1 near Eighth Street, Seaside, Monterey County, CA

  4. Primordial stellar evolution - The pre-main-sequence phase

    NASA Technical Reports Server (NTRS)

    Stahler, S. W.; Palla, F.; Salpeter, E. E.

    1986-01-01

    The quasi-static contraction of primordial stars composed of pure hydrogen and helium gas is studied by following numerically the evolution of a star of five solar masses from the end of protostellar accretion to the onset of hydrogen burning. Although the protostellar core of this mass is radiatively stable and undergoing nonhomologous contraction, its large surface area and luminosity force the star to a partially convective, homologously contracting state within only 100 yr. Deuterium later ignites at an off-center temperature maximum but fails to produce interior convection. The star follows a conventional premain sequence track in the HR diagram, reaching the ZAMS after 1.2 million yr, with a luminosity of 880 solar luminosities and a radius of 1.2 solar radii.

  5. Ultraviolet emission from main-sequence companions of AGB stars

    NASA Astrophysics Data System (ADS)

    Ortiz, Roberto; Guerrero, Martín A.

    2016-09-01

    Although the majority of known binary asymptotic giant branch (AGB) stars are symbiotic systems (i.e. with a white dwarf as a secondary star), main-sequence companions of AGB stars can be more numerous, even though they are more difficult to find because the primary high luminosity hampers the detection of the companion at visual wavelengths. However, in the ultraviolet the flux emitted by a secondary with Teff > 5500 ˜ 6000 K may prevail over that of the primary, and then it can be used to search for candidates to binary AGB stars. In this work, theoretical atmosphere models are used to calculate the UV excess in the GALEX near- and far-UV bands due to a main-sequence companion. After analysing a sample of confirmed binary AGB stars, we propose as a criterium for binarity: (1) the detection of the AGB star in the GALEX far-UV band and/or (2) a GALEX near-UV observed-to-predicted flux ratio >20. These criteria have been applied to a volume-limited sample of AGB stars within 500 pc of the Sun; 34 out of the sample of 58 AGB stars (˜60 per cent) fulfill them, implying to have a main-sequence companion of spectral type earlier than K0. The excess in the GALEX near- and far-UV bands cannot be attributed to a single temperature companion star, thus suggesting that the UV emission of the secondary might be absorbed by the extended atmosphere and circumstellar envelope of the primary or that UV emission is produced in accretion flows.

  6. Stochastically excited oscillations in the upper main sequence

    NASA Astrophysics Data System (ADS)

    Antoci, Victoria

    2014-02-01

    Convective envelopes in stars on the main sequence are usually connected only with stars of spectral types F5 or later. However, observations as well as theory indicate that the convective outer layers in hotter stars, despite being shallow, are still effective and turbulent enough to stochastically excite oscillations. Because of the low amplitudes, exploring stochastically excited pulsations became possible only with space missions such as Kepler and CoRoT. Here I review the recent results and discuss among others, pulsators such as δ Scuti, γ Doradus, roAp, β Cephei, Slowly Pulsating B and Be stars, all in the context of solar-like oscillations.

  7. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2003-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  8. Environmental impact analysis for the main accidental sequences of ignitor

    SciTech Connect

    Carpignano, A.; Francabandiera, S.; Vella, R.; Zucchetti, M.

    1996-12-31

    A safety analysis study has been applied to the Ignitor machine using Probabilistic Safety Assessment. The main initiating events have been identified, and accident sequences have been studied by means of traditional methods such as Failure Mode and Effect Analysis (FMEA), Fault Trees (FT) and Event Trees (ET). The consequences of the radioactive environmental releases have been assessed in terms of Effective Dose Equivalent (EDEs) to the Most Exposed Individuals (MEI) of the chosen site, by means of a population dose code. Results point out the low enviromental impact of the machine. 13 refs., 1 fig., 3 tabs.

  9. Cool circumstellar matter around nearby main-sequence stars

    NASA Technical Reports Server (NTRS)

    Walker, H. J.; Wolstencroft, R. D.

    1988-01-01

    Stars are presented which have characteristics similar to Vega and other main-sequence stars with cool dust disks, based on the IRAS Point Source Catalog fluxes. The objects are selected to have a 60-micron/100-micron ratio similar to Vega, Beta Pic, Alpha PsA, and Epsilon Eri, and they are also required to show evidence of extension in the IRAS Working Survey Database. The fluxes are modeled using a blackbody energy distribution. The temperatures derived range from 50 to 650 K. The diameters of the dust disks observed by IRAS are estimated.

  10. MAIN-SEQUENCE STAR POPULATIONS IN THE VIRGO OVERDENSITY REGION

    SciTech Connect

    Jerjen, H.; Da Costa, G. S.; Tisserand, P.; Willman, B.; Arimoto, N.; Okamoto, S.; Mateo, M.; Saviane, I.; Walsh, S.; Geha, M.; Jordan, A.; Zoccali, M.; Olszewski, E.; Walker, M.; Kroupa, P.

    2013-05-20

    We present deep color-magnitude diagrams (CMDs) for two Subaru Suprime-Cam fields in the Virgo Stellar Stream (VSS)/Virgo Overdensity (VOD) and compare them to a field centered on the highest concentration of Sagittarius (Sgr) Tidal Stream stars in the leading arm, Branch A of the bifurcation. A prominent population of main-sequence stars is detected in all three fields and can be traced as faint as g Almost-Equal-To 24 mag. Using theoretical isochrone fitting, we derive an age of 9.1{sup +1.0}{sub -1.1} Gyr, a median abundance of [Fe/H] = -0.70{sup +0.15}{sub -0.20} dex, and a heliocentric distance of 30.9 {+-} 3.0 kpc for the main sequence of the Sgr Stream Branch A. The dominant main-sequence populations in the two VSS/VOD fields ({Lambda}{sub Sun} Almost-Equal-To 265 Degree-Sign , B{sub Sun} Almost-Equal-To 13 Degree-Sign ) are located at a mean distance of 23.3 {+-} 1.6 kpc and have an age of {approx}8.2 Gyr, and an abundance of [Fe/H] = -0.67{sup +0.16}{sub -0.12} dex, similar to the Sgr Stream stars. These statistically robust parameters, derived from the photometry of 260 main-sequence stars, are also in good agreement with the age of the main population in the Sgr dwarf galaxy (8.0 {+-} 1.5 Gyr). They also agree with the peak in the metallicity distribution of 2-3 Gyr old M giants, [Fe/H] Almost-Equal-To -0.6 dex, in the Sgr north leading arm. We then compare the results from the VSS/VOD fields with the Sgr Tidal Stream model by Law and Majewski based on a triaxial Galactic halo shape that is empirically calibrated with Sloan Digital Sky Survey Sgr A-branch and Two Micron All Sky Survey M-giant stars. We find that the most prominent feature in the CMDs, the main-sequence population at 23 kpc, is not explained by the model. Instead the model predicts in these directions a low-density filamentary structure of Sgr debris stars at {approx}9 kpc and a slightly higher concentration of Sgr stars spread over a heliocentric distance range of 42-53 kpc. At best

  11. Protein Sequencing with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ziady, Assem G.; Kinter, Michael

    The recent introduction of electrospray ionization techniques that are suitable for peptides and whole proteins has allowed for the design of mass spectrometric protocols that provide accurate sequence information for proteins. The advantages gained by these approaches over traditional Edman Degradation sequencing include faster analysis and femtomole, sometimes attomole, sensitivity. The ability to efficiently identify proteins has allowed investigators to conduct studies on their differential expression or modification in response to various treatments or disease states. In this chapter, we discuss the use of electrospray tandem mass spectrometry, a technique whereby protein-derived peptides are subjected to fragmentation in the gas phase, revealing sequence information for the protein. This powerful technique has been instrumental for the study of proteins and markers associated with various disorders, including heart disease, cancer, and cystic fibrosis. We use the study of protein expression in cystic fibrosis as an example.

  12. Pre-Main-Sequence Star Candidates in the Bar of the Large Magellanic Cloud

    PubMed

    Beaulieu; Lamers; Grison; Julien; Lanciaux; Ferlet; Vidal-Madjar; Bertin; Maurice; Prevot; Gry; Guibert; Moreau; Tajhmady; Aubourg; Bareyre; de Kat J; Gros; Laurent; Lachieze-Rey; Lesquoy; Magneville; Milsztajn; Moscoso; Queinnec; Renault; Rich; Spiro; Vigroux; Zylberajch; Ansari; Cavalier; Moniez

    1996-05-17

    Candidate pre-main-sequence stars were observed in the bar of the Large Magellanic Cloud during the search for dark matter in the galactic halo. Seven blue stars of apparent visual magnitude 15 to 17 had irregular photometric variations and hydrogen emission lines in their optical spectra, which suggested that these stars are pre-main-sequence stars of about 10 solar masses. These stars are slightly more massive and definitely more luminous than are Herbig AeBe pre-main-sequence stars in our own galaxy. Continued observations of these very young stars from another galaxy, which are probably at the pre-hydrogen-burning stage, should provide important clues about early stages of star formation.

  13. W134: A new pre-main-sequence double-lined spectroscopic binary

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah L.; Stapelfeldt, Karl R.

    1994-01-01

    We report the discovery that the pre-main-sequence star Walker 134 in the young cluster NGC 2264 is a double-lined spectroscopic binary. Both components are G stars with strong Li I 6708 A absorption lines. Twenty radial velocity measurements have been used to determined the orbital elements of this system. The orbit has a period of 6.3532 +/- 0.0012 days and is circular within the limits of our velocity resolution; e less than 0.01. The total system mass is stellar mass sin(exp 3) i = 3.16 solar mass with a mass ratio of 1.04. Estimates for the orbit inclination angle and stellar radii place the system near the threshold for eclipse observability; howerver, no decrease in brightness was seen during two attempts at photometric monitoring. The circular orbit of W 134 fills an important gap in the period distribution of pre-main-sequence binaries and thereby constrains the effectiveness of tidal orbital circularization during the pre-main sequence.

  14. Pre- and main-sequence evolution of solar activity

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Barry, Don C.

    1991-01-01

    The magnetic activity on single solarlike stars declines with stellar age. This has important consequences for the influence of the sun on the early solar system. What is meant by stellar activity, and how it is measured, is reviewed. Stellar activity on the premain-sequence phase of evolution is discussed; the classical T Tauri stars do not exhibit solarlike activity, while the naked T Tauri stars do. The emission surface fluxes of the naked T Tauri stars are similar to those of the youngest main-sequence G stars. The best representation for solarlike stars is a decay proportional to exp(A x t exp 0.5), where A is a function of line excitation temperature. From these decay laws, one can determine the interdependences of the activity, age, and rotation periods. The fluxes of ionizing photons at the earth early in its history are discussed; there was sufficient fluence to account for the observed isotopic ratios of the noble gases.

  15. Possible evidence for metal accretion onto the surfaces of metal-poor main-sequence stars

    SciTech Connect

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2014-04-01

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parameterized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.

  16. Multiple main sequence of globular clusters as a result of inhomogeneous big bang nucleosynthesis

    SciTech Connect

    Moriya, Takashi; Shigeyama, Toshikazu

    2010-02-15

    A new mechanism for enhancing the helium abundance in the blue main sequence stars of {omega} Centauri and NGC 2808 is investigated. We suggest that helium enhancement was caused by the inhomogeneous big bang nucleosynthesis. Regions with extremely high baryon-to-photon ratios are assumed to be caused by the baryogenesis. Its mass scale is also assumed to be 10{sup 6}M{sub {center_dot}.} An example of the mechanisms to realize these two things was already proposed as the Affleck-Dine baryogenesis. As the baryon-to-photon ratio becomes larger, the primordial helium abundance is enhanced. We calculated the big bang nucleosynthesis and found that there exists a parameter region yielding enough helium to account for the split of the main sequence in the aforementioned globular clusters while keeping the abundance of other elements compatible with observations. Our mechanism predicts that heavy elements with the mass number of around 100 is enhanced in the blue main sequence stars. We estimate the time scales of diffusion of the enhanced helium and mass accretion in several stages after the nucleosynthesis to investigate whether these processes diminish the enhancement of helium. We found that the diffusion does not influence the helium content. A cloud with a sufficiently large baryon-to-photon ratio to account for the multiple main sequence collapsed immediately after the recombination. Subsequently, the cloud accreted the ambient matter with the normal helium content. If the star formation occurred both in the collapsed core and the accreted envelope, then the resultant star cluster has a double main sequence.

  17. Constraints on pre-main-sequence evolution from stellar pulsations

    NASA Astrophysics Data System (ADS)

    Casey, M. P.; Zwintz, K.; Guenther, D. B.

    2014-02-01

    Pulsating pre-main-sequence (PMS) stars afford the earliest opportunity in the lifetime of a star to which the concepts of asteroseismology can be applied. PMS stars should be structurally simpler than their evolved counterparts, thus (hopefully!) making any asteroseismic analysis relatively easier. Unfortunately, this isn't necessarily the case. The majority of these stars (around 80) are δ Scuti pulsators, with a couple of γ Doradus, γ Doradus - δ Scuti hybrids, and slowly pulsating B stars thrown into the mix. The majority of these stars have only been discovered within the last ten years, with the community still uncovering the richness of phenomena associated with these stars, many of which defy traditional asteroseismic analysis. A systematic asteroseismic analysis of all of the δ Scuti PMS stars was performed in order to get a better handle on the properties of these stars as a group. Some strange results have been found, including one star pulsating up to the theoretical acoustic cut-off frequency of the star, and a number of stars in which the most basic asteroseismic analysis suggests problems with the stars' positions in the Hertzsprung-Russell diagram. From this we get an idea of the\\break constraints - or lack thereof - that these results can put on PMS stellar evolution.

  18. COMMON WARM DUST TEMPERATURES AROUND MAIN-SEQUENCE STARS

    SciTech Connect

    Morales, Farisa Y.; Werner, M. W.; Bryden, G.; Stapelfeldt, K. R.; Rieke, G. H.; Su, K. Y. L.

    2011-04-01

    We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-K0) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures ({approx}190 K and {approx}60 K for the inner and outer dust components, respectively)-slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at {approx}150 K can deposit particles into an inner/warm belt, where the small grains are heated to T{sub dust} {approx} 190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-K0 stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon.

  19. Planetary Systems Associated with Main-Sequence Stars.

    PubMed

    Brown, H

    1964-09-11

    The luminosity function is used to estimate the number of invisible planet-like objects in the neighborhood of the sun, taking into account the likely chemical composition of planets in relation to the composition of main-sequence stars. There may be about 60 objects more massive than Mars for every visible star. An attempt is made to estimate the distribution of these planet-like cold bodies in relation to stars. It is suggested that stars, together with cold objects, were formed in clusters of bodies of random size distribution. Clusters averaging about 50 bodies each account for the observed distribution of frequencies of double and triple star systems relative to single stars. On this basis, virtually every star should have a planetary system associated with it. As a corollary, systems of cold bodies in which there are no luminous stars should be abundant. The possible distribution of planets around such stars has been studied, making use of the observed orbital characteristics of double star systems. It is concluded that favorable conditions for life processes may be far more abundant than has generally been thought possible.

  20. Planetary Systems Associated with Main-Sequence Stars.

    PubMed

    Brown, H

    1964-09-11

    The luminosity function is used to estimate the number of invisible planet-like objects in the neighborhood of the sun, taking into account the likely chemical composition of planets in relation to the composition of main-sequence stars. There may be about 60 objects more massive than Mars for every visible star. An attempt is made to estimate the distribution of these planet-like cold bodies in relation to stars. It is suggested that stars, together with cold objects, were formed in clusters of bodies of random size distribution. Clusters averaging about 50 bodies each account for the observed distribution of frequencies of double and triple star systems relative to single stars. On this basis, virtually every star should have a planetary system associated with it. As a corollary, systems of cold bodies in which there are no luminous stars should be abundant. The possible distribution of planets around such stars has been studied, making use of the observed orbital characteristics of double star systems. It is concluded that favorable conditions for life processes may be far more abundant than has generally been thought possible. PMID:17743661

  1. Main-Sequence Binary Stars in the Core of NGC 6397

    NASA Astrophysics Data System (ADS)

    Bolton, A. S.; Cool, A. M.; Anderson, J.

    1999-12-01

    Using HST WFPC2 data, we isolate main-sequence binary candidates in the central region of the globular cluster NGC 6397 based on their locations in an I vs. V - I color--magnitude diagram. We have largely eliminated field stars from the sample beforehand based on proper motions determined from two sets of position data separated by approximately three years. Binary candidates are fit to models based on the empirically derived main-sequence ridge line for the cluster, and component masses are determined using theoretical mass--luminosity relations appropriate to the cluster. Preliminary results suggest an upper limit of 3% on the binary fraction for stars in the apparent magnitude range 17.0 <= V555 <= 20.7 ( 0.8 to 0.5 Msun) and binary mass ratios greater than approximately 0.45. We also present preliminary results for the distribution of binaries as a function of primary mass and mass ratio, as well as a comparison of these results to previously published findings for field stars.

  2. Evidence of magnetic field decay in massive main-sequence stars

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Schneider, F. R. N.; Castro, N.; Langer, N.; Simón-Díaz, S.; Müller, A.; de Koter, A.; Morel, T.; Petit, V.; Sana, H.; Wade, G. A.

    2016-08-01

    A significant fraction of massive main-sequence stars show strong, large-scale magnetic fields. The origin of these fields, their lifetimes, and their role in shaping the characteristics and evolution of massive stars are currently not well understood. We compile a catalogue of 389 massive main-sequence stars, 61 of which are magnetic, and derive their fundamental parameters and ages. The two samples contain stars brighter than magnitude 9 in the V-band and range in mass between 5 and 100 M⊙. We find that the fractional main-sequence age distribution of all considered stars follows what is expected for a magnitude limited sample, while that of magnetic stars shows a clear decrease towards the end of the main sequence. This dearth of old magnetic stars is independent of the choice of adopted stellar evolution tracks, and appears to become more prominent when considering only the most massive stars. We show that the decreasing trend in the distribution is significantly stronger than expected from magnetic flux conservation. We also find that binary rejuvenation and magnetic suppression of core convection are unlikely to be responsible for the observed lack of older magnetic massive stars, and conclude that its most probable cause is the decay of the magnetic field, over a time span longer than the stellar lifetime for the lowest considered masses, and shorter for the highest masses. We then investigate the spin-down ages of the slowly rotating magnetic massive stars and find them to exceed the stellar ages by far in many cases. The high fraction of very slowly rotating magnetic stars thus provides an independent argument for a decay of the magnetic fields.

  3. Mass arsenic poisoning and the public health response in Maine.

    PubMed

    Mills, Dora A; Tomassoni, Anthony J; Tallon, Lindsay A; Kade, Kristy A; Savoia, Elena S

    2013-06-01

    Created in the wake of the September 11, 2001 terrorist attacks, Maine's Office of Public Health Emergency Preparedness within the Maine Center for Disease Control and Prevention undertook a major reorganization of epidemiology and laboratory services and began developing relationships with key partners and stakeholders, and a knowledgeable and skilled public health emergency preparedness workforce. In 2003, these newly implemented initiatives were tested extensively during a mass arsenic poisoning at the Gustav Adolph Lutheran Church in the rural northern community of New Sweden, Maine. This episode serves as a prominent marker of how increased preparedness capabilities, as demonstrated by the rapid identification and administration of antidotes and effective collaborations between key partners, can contribute to the management of broader public health emergencies in rural areas.

  4. Mass arsenic poisoning and the public health response in Maine.

    PubMed

    Mills, Dora A; Tomassoni, Anthony J; Tallon, Lindsay A; Kade, Kristy A; Savoia, Elena S

    2013-06-01

    Created in the wake of the September 11, 2001 terrorist attacks, Maine's Office of Public Health Emergency Preparedness within the Maine Center for Disease Control and Prevention undertook a major reorganization of epidemiology and laboratory services and began developing relationships with key partners and stakeholders, and a knowledgeable and skilled public health emergency preparedness workforce. In 2003, these newly implemented initiatives were tested extensively during a mass arsenic poisoning at the Gustav Adolph Lutheran Church in the rural northern community of New Sweden, Maine. This episode serves as a prominent marker of how increased preparedness capabilities, as demonstrated by the rapid identification and administration of antidotes and effective collaborations between key partners, can contribute to the management of broader public health emergencies in rural areas. PMID:21270320

  5. Dust around main-sequence and supergiant stars

    NASA Astrophysics Data System (ADS)

    Sylvester, Roger James

    This thesis is a study of the properties of the dust around two rather different types of star. The first part is concerned with the mid-infrared emission from a sample of 16 M-type supergiants. As well as silicate emission features, seven of the stars showed the UIR (unidentified infrared) emission bands, associated with carbonaceous material. According to standard theory, all the carbon in the outflows from these oxygen-rich stars should be bound up in CO molecules, preventing the formation of carbonaceous dust. The results were interpreted in terms of a non-equilibrium chemical model, which invoked chromospheric UV photons to dissociate CO, allowing carbonaceous material to form, and to excite the observed UIR-band emission. The larger part of the thesis considers Vega-excess stars - main sequence stars with excess infrared emission from circumstellar dust discs. Photometric and spectroscopic observations were carried out. A number of the stars displayed excess near-IR emission, indicating the presence of hot material. Mid-infrared spectroscopy enabled the grain composition to be identified: both silicates and carbonaceous species were detected. Millimetre and submillimetre photometry indicated that large grains are present around many of our sources, implying that significant grain coagulation has occurred. Most of the sources were modelled using a radiative transfer code, with disc geometry and multiple grain sizes. Two grain materials, astronomical silicate and amorphous carbon, were considered. Successful fits to the spectral energy distributions at mid-IR and longer wavelengths were found. The temperatures needed to produce near-IR excess emission were too high for grains in thermal equilibrium to survive. A model was therefore developed with very small grains undergoing thermal spiking due to single-photon absorption, which provided satisfactory fits for the hottest stars; the others had insufficient UV flux to excite the small grains.

  6. On the Eccentricity Excitation in Post-main-sequence Binaries

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-10-01

    Several classes of stellar binaries with post-main-sequence (post-MS) components—millisecond pulsars with the white dwarf companions (MSP+WD) and periods of {P}b∼ 30 days, binaries hosting post-asymptotic giant branch stars, or barium stars with {P}b ∼ several years—feature high eccentricities (up to 0.4) despite the expectation of their efficient tidal circularization during their post-MS evolution. It was suggested that the eccentricities of these binaries can be naturally excited by their tidal coupling to the circumbinary disk, formed by the material ejected from the binary. Here we critically reassess this idea using simple arguments rooted in the global angular momentum conservation of the disk+binary system. Compared to previous studies, we (1) fully account for the viscous spreading of the circumbinary disk, (2) consider the possibility of reaccretion from the disk onto the binary (in agreement with simulations and empirical evidence), and (3) allow for the reduced viscosity after the disk expands, cools, and forms dust. These ingredients conspire to significantly lower the efficiency of eccentricity excitation by the disk tides. We find that explaining eccentricities of the post-MS binaries is difficult and requires massive (≳ {10}-2 {M}ȯ ), long-lived (≳ {10}5 years) circumbinary disks that do not reaccrete. While disk tides may account for the eccentricities of the MSP+WD binaries, we show reaccretion to also be detrimental for these systems. Reduced efficiency of the disk-driven excitation motivates the study of alternative mechanisms for producing the peculiar eccentricities of the post-MS binaries.

  7. Habitable zone lifetimes of exoplanets around main sequence stars.

    PubMed

    Rushby, Andrew J; Claire, Mark W; Osborn, Hugh; Watson, Andrew J

    2013-09-01

    The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.

  8. Habitable zone lifetimes of exoplanets around main sequence stars.

    PubMed

    Rushby, Andrew J; Claire, Mark W; Osborn, Hugh; Watson, Andrew J

    2013-09-01

    The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns. PMID:24047111

  9. The Solar Neighborhood. XXXVII: The Mass–Luminosity Relation for Main-sequence M Dwarfs

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; Henry, T. J.; Franz, O. G.; McArthur, B. E.; Wasserman, L. H.; Jao, Wei-Chun; Cargile, P. A.; Dieterich, S. B.; Bradley, A. J.; Nelan, E. P.; Whipple, A. L.

    2016-11-01

    We present a mass–luminosity relation (MLR) for red dwarfs spanning a range of masses from 0.62 {{ M }}ȯ to the end of the stellar main sequence at 0.08 {{ M }}ȯ . The relation is based on 47 stars for which dynamical masses have been determined, primarily using astrometric data from Fine Guidance Sensors (FGS) 3 and 1r, white-light interferometers on the Hubble Space Telescope (HST), and radial velocity data from McDonald Observatory. For our HST/FGS sample of 15 binaries, component mass errors range from 0.4% to 4.0% with a median error of 1.8%. With these and masses from other sources, we construct a V-band MLR for the lower main sequence with 47 stars and a K-band MLR with 45 stars with fit residuals half of those of the V band. We use GJ 831 AB as an example, obtaining an absolute trigonometric parallax, π abs = 125.3 ± 0.3 mas, with orbital elements yielding {{ M }}{{A}}=0.270+/- 0.004 {{ M }}ȯ and {{ M }}{{B}}=0.145+/- 0.002 {{ M }}ȯ . The mass precision rivals that derived for eclipsing binaries. A remaining major task is the interpretation of the intrinsic cosmic scatter in the observed MLR for low-mass stars in terms of physical effects. In the meantime, useful mass values can be estimated from the MLR for the ubiquitous red dwarfs that account for 75% of all stars, with applications ranging from the characterization of exoplanet host stars to the contribution of red dwarfs to the mass of the universe. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  10. Lithium in lower-main-sequence stars of the Alpha Persei cluster

    NASA Technical Reports Server (NTRS)

    Balachandran, Suchitra; Lambert, David L.; Stauffer, John R.

    1988-01-01

    Lithium abundances are presented for main-sequence stars of spectral types F, G, and K in the young open cluster Alpha Per. For 46 cluster members, a correlation between Li abundance and projected rotational velocity v sin i is found: all of the Li-poor stars are slow rotators. Two explanations are proposed to account for the correlation: (1) that the Li depletion is introduced following a rapid spin-down phase experienced by young low-mass stars, and that this episode of Li depletion may be the dominant one determining the spread of Li abundances among young low-mass main-sequence stars, and (2) that star formation has occurred over a finite period such that the older stars have undergone a spin-down and depletion of Li by a means that may or may not depend on rotation. The Li abundance in the warm and rapidly rotating stars appears to be undepleted, as is predicted by recent models of pre-main-sequence stars. The depletion observed in the cool stars exceeds the level predicted by these models.

  11. The Main Sequence Luminosity Function of Palomar 5

    NASA Astrophysics Data System (ADS)

    Smith, Graeme

    1996-07-01

    Palomar 5 appears to represent an extreme in the dynamical evolution of globular clusters. A low mass, large core radius, and a low central concentration suggest that Pal 5 has lost a large fraction of it's initial mass and has expanded as a consequence. If the dynamical evolution of Pal 5 has been dominated by the effects of star loss, then theoretical arguments suggest that the stellar mass function should be deficient in low-mass stars. From a dynamical study of NGC 5466 Pryor et al. concluded that the best fitting King-Michie models for that cluster are those which have a cutoff in the stellar mass function at about 0.4 solar masses. A similar or even more extreme truncation in the Pal 5 mass function is possible. We propose to directly test this conclusion by determining the stellar luminosity function of Pal 5 down to V = 27.0 from WFPC2 F555W and F814W frames. Two fields within Pal 5 will be observed, one located near the cluster center and the other just within the half-light radius. A magnitude of V = 27.0 in Pal 5 corresponds to a stellar mass of about 0.3 solar masses, which is fainter than the predicted truncation mass.

  12. Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander; Marshall, Jonathan; Villaver, Eva; Veras, Dimitri; Davis, Philip; Horner, Jonathan; Witenmyer, Robert

    2013-07-01

    Recent observations of the NN Serpentis post-common envelope binary system have revealed eclipse timing variations that have been attributed to the presence of two Jovian-mass exo-planets. Under the assumption that these planets are real and survived from the binary's Main-Sequence state, we reconstruct initial binaries that give rise to the present NN Ser configuration and test the dynamical stability of the original system. Under standard assumptions regarding binary evolution, we find that survival of the planets through the entire Main-Sequence life-time is very unlikely. Hence, we conclude that the planets are not survivors from before the Common Envelope phase, implying that either they formed recently out of material ejected from the primary, or that the observed signals are of non-planetary origin.

  13. Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander J.; Marshall, Jonathan P.; Villaver, Eva; Veras, Dimitri; Davis, Philip J.; Horner, Jonathan; Wittenmyer, Robert A.

    2013-12-01

    Recent observations of the NN Serpentis post-common envelope binary system have revealed eclipse timing variations that have been attributed to the presence of two Jovian-mass exo-planets. Under the assumption that these planets are real and survived from the binary's main-sequence state, we reconstruct initial binaries that give rise to the present NN Ser configuration and test the dynamical stability of the original system. Under standard assumptions about binary evolution, we find that survival of the planets through the entire main-sequence lifetime is very unlikely. Hence, we conclude that the planets are not survivors from before the common envelope phase, implying that either they formed recently out of material ejected from the primary or that the observed signals are of non-planetary origin.

  14. Pre-main-sequence isochrones - II. Revising star and planet formation time-scales

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.; Naylor, Tim; Mayne, N. J.; Jeffries, R. D.; Littlefair, S. P.

    2013-09-01

    We have derived ages for 13 young (<30 Myr) star-forming regions and find that they are up to a factor of 2 older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (≃ 10-12 Myr) and that the average Class I lifetime is greater (≃1 Myr) than currently believed. For each star-forming region, we derived two ages from colour-magnitude diagrams. First, we fitted models of the evolution between the zero-age main sequence and terminal-age main sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr), we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour-Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: ˜2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8) and NGC 2244 (Rosette Nebula); ˜6 Myr for σ Ori, Cep OB3b and IC 348; ≃10 Myr for λ Ori (Collinder 69); ≃11 Myr for NGC 2169; ≃12 Myr for NGC 2362; ≃13 Myr for NGC 7160; ≃14 Myr for χ Per (NGC 884); and ≃20 Myr for NGC 1960 (M 36).

  15. Absolute Properties of the Pre-main-sequence Eclipsing Binary Star NP Persei

    NASA Astrophysics Data System (ADS)

    Lacy, Claud H. Sandberg; Fekel, Francis C.; Pavlovski, Krešimir; Torres, Guillermo; Muterspaugh, Matthew W.

    2016-07-01

    NP Per is a well-detached, 2.2 day eclipsing binary whose components are both pre-main-sequence stars that are still contracting toward the main-sequence phase of evolution. We report extensive photometric and spectroscopic observations with which we have determined their properties accurately. Their surface temperatures are quite different: 6420 ± 90 K for the larger F5 primary star and 4540 ± 160 K for the smaller K5e star. Their masses and radii are 1.3207 ± 0.0087 solar masses and 1.372 ± 0.013 solar radii for the primary, and 1.0456 ± 0.0046 solar masses and 1.229 ± 0.013 solar radii for the secondary. The orbital period is variable over long periods of time. A comparison of the observations with current stellar evolution models from MESA indicates that the stars cannot be fit at a single age: the secondary appears significantly younger than the primary. If the stars are assumed to be coeval and to have the age of the primary (17 Myr), then the secondary is larger and cooler than predicted by current models. The Hα spectral line of the secondary component is completely filled by, presumably, chromospheric emission due to a magnetic activity cycle.

  16. Theory of winds in late-type evolved and pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.

    1983-01-01

    Recent observational results confirm that many of the physical processes which are known to occur in the Sun also occur among late-type stars in general. One such process is the continuous loss of mass from a star in the form of a wind. There now exists an abundance of either direct or circumstantial evidence which suggests that most (if not all) stars in the cool portion of the HR diagram possess winds. An attempt is made to assess the current state of theoretical understanding of mass loss from two distinctly different classes of late-type stars: the post-main-sequence giant/supergiant stars and the pre-main-sequence T Tauri stars. Toward this end, the observationally inferred properties of the wind associated with each of the two stellar classes under consideration are summarized and compared against the predictions of existing theoretical models. Although considerable progress has been made in attempting to identify the mechanisms responsible for mass loss from cool stars, many fundamental problems remain to be solved.

  17. Theoretical study of γ Doradus pulsations in pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Bouabid, M.-P.; Montalbán, J.; Miglio, A.; Dupret, M.-A.; Grigahcène, A.; Noels, A.

    2010-12-01

    The question of the existence of the pre-main sequence (PMS) γ Doradus (γ Dor) pulsators has been raised by observations of young clusters such as NGC 884 hosting γ Dor members. We have explored the properties of γ Dor-type pulsations with a grid of PMS models covering the mass range {1.2 < M_*/M_⊙ < 2.5} and we derive the theoretical instability strip (IS) for the PMS γ Dor pulsators. We explore the possibility of distinguishing between PMS and MS γ Dor by the behaviour of the period spacing of their high order gravity modes (g-modes).

  18. Radio quiet quasar main sequence - a hidden parameter behind it

    NASA Astrophysics Data System (ADS)

    Czerny, B.; Du, P.; Wang, J.-M.; Wildy, C.

    2016-08-01

    The existence of the hidden parameter behind the properties of the radio-quiet type 1 AGN is known since the work by Boroson & Green. The concept gains importance with an increase in the number of sources in catalogs. It has been recently argued that a single observational parameter R_Fe actually catches the most important AGN properties. However, it still leaves an open issue what this parameter is in the context of basic theoretical parameters of AGN: black hole mass, Eddington ratio, spin and the inclination. We propose that the hidden parameter is the position of the maximum of the AGN broad band band spectrum. This, in the case of the simplest Shakura-Sunyaev disk is equivalent to the maximum temperature of the accretion disk, and is fully determined by the ratio of the Eddington ratio to the mass. This qualitatively explains a decrease of R_Fe with mass and an increase with L/L_Edd. Using the recent values of the black hole masses from Lijiang monitoring of high L/L_Edd objects and the quasars from SDSS catalog we try to produce a conversion between R_Fe and the basic accretion disk parameters.

  19. Accreting pre-main-sequence models and abundance anomalies in globular clusters

    NASA Astrophysics Data System (ADS)

    Tognelli, E.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2015-12-01

    We investigated the possibility of producing helium-enhanced stars in globular clusters by accreting polluted matter during the pre-main-sequence phase. We followed the evolution of two different classes of pre-main-sequence accreting models, one which neglects and the other that takes into account the protostellar evolution. We analysed the dependence of the final central helium abundance, of the tracks position in the HR diagram and of the surface lithium abundance evolution on the age at which the accretion of polluted material begins and on the main physical parameters that govern the protostellar evolution. The later is the beginning of the late accretion and the lower are both the central helium and the surface lithium abundances at the end of the accretion phase and in Zero Age Main Sequence (ZAMS). In order to produce a relevant increase of the central helium content the accretion of polluted matter should start at ages lower than 1 Myr. The inclusion of the protostellar evolution has a strong impact on the ZAMS models too. The adoption of a very low seed mass (i.e. 0.001 M⊙) results in models with the lowest central helium and surface lithium abundances. The higher is the accretion rate and the lower is the final helium content in the core and the residual surface lithium. In the worst case - i.e. seed mass 0.001 M⊙ and accretion rate ≥10-5 M⊙ yr-1 - the central helium is not increased at all and the surface lithium is fully depleted in the first few million years.

  20. Confronting uncertainties in stellar physics. II. Exploring differences in main-sequence stellar evolution tracks

    NASA Astrophysics Data System (ADS)

    Stancliffe, R. J.; Fossati, L.; Passy, J.-C.; Schneider, F. R. N.

    2016-02-01

    We assess the systematic uncertainties in stellar evolutionary calculations for low- to intermediate-mass, main-sequence stars. We compare published stellar tracks from several different evolution codes with our own tracks computed using the stellar codes stars and mesa. In particular, we focus on tracks of 1 and 3 M⊙ at solar metallicity. We find that the spread in the available 1 M⊙ tracks (computed before the recent solar composition revision) can be covered by tracks between 0.97-1.01 M⊙ computed with the stars code. We assess some possible causes of the origin of this uncertainty, including how the choice of input physics and the solar constraints used to perform the solar calibration affect the tracks. We find that for a 1 M⊙ track, uncertainties of around 10% in the initial hydrogen abundance and initial metallicity produce around a 2% error in mass. For the 3 M⊙ tracks, there is very little difference between the tracks from the various different stellar codes. The main difference comes in the extent of the main sequence, which we believe results from the different choices of the implementation of convective overshooting in the core. Uncertainties in the initial abundances lead to a 1-2% error in the mass determination. These uncertainties cover only part of the total error budget, which should also include uncertainties in the input physics (e.g., reaction rates, opacities, convective models) and any missing physics (e.g., radiative levitation, rotation, magnetic fields). Uncertainties in stellar surface properties such as luminosity and effective temperature will further reduce the accuracy of any potential mass determinations.

  1. ORBITS, MASSES, AND EVOLUTION OF MAIN BELT TRIPLE (87) SYLVIA

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc; Rojo, Patricio

    2012-08-15

    Sylvia is a triple asteroid system located in the main belt. We report new adaptive optics observations of this system that extend the baseline of existing astrometric observations to a decade. We present the first fully dynamical three-body model for this system by fitting to all available astrometric measurements. This model simultaneously fits for individual masses, orbits, and primary oblateness. We find that Sylvia is composed of a dominant central mass surrounded by two satellites orbiting at 706.5 {+-} 2.5 km and 1357 {+-} 4.0 km, i.e., about 5 and nearly 10 primary radii. We derive individual masses of 1.484{sup +0.016}{sub -0.014} Multiplication-Sign 10{sup 19} kg for the primary (corresponding to a density of 1.29 {+-} 0.39 g cm{sup -3}), 7.33{sup +4.7}{sub -2.3} Multiplication-Sign 10{sup 14} kg for the inner satellite, and 9.32{sup +20.7}{sub -8.3} Multiplication-Sign 10{sup 14} kg for the outer satellite. The oblateness of the primary induces substantial precession and the J{sub 2} value can be constrained to the range of 0.0985-0.1. The orbits of the satellites are relatively circular with eccentricities less than 0.04. The spin axis of the primary body and the orbital poles of both satellites are all aligned within about 2 deg of each other, indicating a nearly coplanar configuration and suggestive of satellite formation in or near the equatorial plane of the primary. We also investigate the past orbital evolution of the system by simulating the effects of a recent passage through 3:1 mean-motion eccentricity-type resonances. In some scenarios this allow us to place constraints on interior structure and past eccentricities.

  2. Water Masses and Nutrient Sources to the Gulf of Maine

    PubMed Central

    Townsend, David W.; Pettigrew, Neal R.; Thomas, Maura A.; Neary, Mark G.; McGillicuddy, Dennis J.; O’Donnell, James

    2016-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also

  3. A survey for rapid variability among early main sequence A-stars

    NASA Astrophysics Data System (ADS)

    Schutt, Randy L.

    This thesis is a survey of non-peculiar early (A0 to A5) main sequence A-stars for rapid (4 to 30 minutes), low amplitude (less than 10 millimagnitudes) variability. Peculiar stars (roAp stars) are presently the only objects known to exhibit this behavior on or near the main sequence. There are also reasons for suspecting variability in normal stars; survey objects are in close proximity, in an Hertzsprung-Russell (HR) diagram, to the cepheid instability strip where many pulsational variables are found (i.e. the delta Scuti and roAp stars), and there is evidence of pulsational variability (at slightly longer periods) in the non-peculiar delta Scuti stars. The survey is also an independent test of the main sequence mass-loss theory proposed by Wilson et al. 1986. Finally, surveys of this type may produce objects of asteroseismological interest. The purpose of the survey is to detect variability, not to resolve all frequencies that may be involved. All observations were gathered with the University of Wisconsin Two-Star Photometer. This instrument coupled with computerized high-speed data collection used the small (16 to 24 in.) telescopes at Pine Bluff Observatory and Table Mountain Observatory. Several period-searching methods were used to analyze time series of differential photometric data. The survey produced a few stars suspected of variability, however, there is no evidence for large scale rapid variability among the non-peculiar main sequence A-stars. The survey also produced several low-amplitude delta Scuti stars, which are in or blueward of the recognized instability strip. These stars verify predictions that delta Scuti stars exist at lower amplitudes, and may also indicate they are present at earlier spectral types.

  4. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  5. Lithium evolution from Pre-Main Sequence to the Spite plateau: an environmental solution to the cosmological lithium problem

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Bressan, Alessandro; Molaro, Paolo; Marigo, Paola

    2016-08-01

    Lithium abundance derived in metal-poor main sequence stars is about three times lower than the primordial value of the standard Big Bang nucleosynthesis prediction. This disagreement is referred to as the lithium problem. We reconsider the stellar Li evolution from the pre-main sequence to the end of main sequence phase by introducing the effects of overshooting and residual mass accretion. We show that 7Li could be significantly depleted by convective overshooting in the pre-main sequence phase and then partially restored in the stellar atmosphere by residual accretion which follows the Li depletion phase and could be regulated by EUV photo-evaporation. By considering the conventional nuclear burning and diffusion along the main sequence we can reproduce the Spite plateau for stars with initial mass m 0=0.62-0.80 M ⊙, and the Li declining branch for lower mass dwarfs, e.g, m 0=0.57-0.60 M ⊙, for a wide range of metallicities (Z=0.00001 to Z=0.0005), starting from an initial Li abundance A(Li) = 2.72.

  6. NEW X-RAY-SELECTED PRE-MAIN-SEQUENCE MEMBERS OF THE SERPENS MOLECULAR CLOUD

    SciTech Connect

    Oliveira, Isa; Van der Laan, Margriet; Brown, Joanna M.

    2013-11-01

    The study of young stars no longer surrounded by disks can greatly add to our understanding of how protoplanetary disks evolve and planets form. We have used VLT/FLAMES optical spectroscopy to confirm the youth and membership of 19 new young diskless stars in the Serpens Molecular Cloud, identified at X-ray wavelengths. Spectral types, effective temperatures, and stellar luminosities were determined using optical spectra and optical/near-infrared photometry. Stellar masses and ages were derived based on pre-main-sequence evolutionary tracks. The results yield remarkable similarities for age and mass distribution between the diskless and disk-bearing stellar populations in Serpens. We discuss the important implications these similarities may have on the standard picture of disk evolution.

  7. Equilibrium model prediction for the scatter in the star-forming main sequence

    NASA Astrophysics Data System (ADS)

    Mitra, Sourav; Davé, Romeel; Simha, Vimal; Finlator, Kristian

    2016-10-01

    The analytic "equilibrium model" for galaxy evolution using a mass balance equation is able to reproduce mean observed galaxy scaling relations between stellar mass, halo mass, star formation rate (SFR) and metallicity across the majority of cosmic time with a small number of parameters related to feedback. Here we aim to test this data-constrained model to quantify deviations from the mean relation between stellar mass and SFR, i.e. the star-forming galaxy main sequence (MS). We implement fluctuation in halo accretion rates parameterised from merger-based simulations, and quantify the intrinsic scatter introduced into the MS under the assumption that fluctuations in star formation follow baryonic inflow fluctuations. We predict the 1-σ MS scatter to be ˜0.2 - 0.25 dex over the stellar mass range 108M⊙ to 1011M⊙ and a redshift range 0.5⪉ z⪉ 3 for SFRs averaged over 100 Myr. The scatter increases modestly at z⪆ 3, as well as by averaging over shorter timescales. The contribution from merger-induced star formation is generally small, around 5% today and 10 - 15% during the peak epoch of cosmic star formation. These results are generally consistent with available observations, suggesting that deviations from the MS primarily reflect stochasticity in the inflow rate owing to halo mergers.

  8. Magnetic Activity of Pre-main Sequence Stars near the Stellar-Substellar Boundary

    NASA Astrophysics Data System (ADS)

    Principe, David; Kastner, Joel. H.; Rodriguez, David

    2016-01-01

    X-ray observations of pre-main sequence (pre-MS) stars of M-type probe coronal emission and offer a means to investigate magnetic activity at the stellar-substellar boundary. Recent observations of main sequence (MS) stars at this boundary display a decrease in fractional X-ray luminosity (L X /L bol ) by almost two orders of magnitude for spectral types M7 and later. We investigate magnetic activity and search for a decrease in X-ray emission in the pre-MS progenitors of these MS stars. We present XMM-Newton X-ray observations and preliminary results for ~10 nearby (30-70 pc), very low mass pre-MS stars in the relatively unexplored age range of 10-30 Myr. We compare the fractional X-ray luminosities of these 10-30 Myr old stars to younger (1-3 Myr) pre-MS brown dwarfs and find no dependence on spectral type or age suggesting that X-ray activity declines at an age later than ~30 Myr in these very low-mass stars.

  9. ACCRETION RATES ON PRE-MAIN-SEQUENCE STARS IN THE YOUNG OPEN CLUSTER NGC 6530

    SciTech Connect

    Gallardo, Jose; Del Valle, Luciano; Ruiz, Maria Teresa E-mail: ldelvall@das.uchile.cl

    2012-01-15

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first {approx}1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the H{sub {alpha}} emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad H{sub {alpha}} emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR.

  10. Winds in hot main-sequence stars near the static limit

    NASA Technical Reports Server (NTRS)

    Morrison, Nancy D.

    1995-01-01

    This project began with the acquisition of short-wavelength, high-dispersion IUE spectra of selected late O- and early B-type stars that are near the main sequence in open clusters and associations. The profiles of the resonance lines of N(V), Si(IV), and C(IV) were studied, and we found that the C(IV) lines are the most sensitive indicators of mass loss (stellar winds) in stars of this type. The mass loss manifests itself as an extension of the short-wavelength absorption wing of the doublet, while there is no P Cygni-type emission on the long-wavelength side of the line profile. We investigated whether the short-wavelength extension could be caused by blended lines of other ionic species formed in the photosphere. Although blending is present and introduces uncertainty into the estimation of the precise location on the main sequence of the onset of the mass-loss signature, it is a crucial issue only in a few marginal cases. Mass loss certainly overwhelms blending in its influence on the spectrum between spectral types B0 and B1 (effective temperatures in the range 25,000-27,000 K). We defined a parameter called P(sub w), to describe the degree of asymmetry of the C(IV) resonance-line profile, and we studied the dependence of this parameter on the fundamental stellar parameters. For this purpose, we derived new estimates of the stellar T(eff) and log g from a non-LTE, line-blanketed model-atmosphere analysis of these stars (Grigsby, Morrison, and Anderson 1992). In order to estimate the stellar luminosities, we performed an exhaustive search of the literature for the most reliable available estimates of the distances of the clusters and associations to which the program stars belong. The dependence of P(sub w) on stellar temperature and luminosity is also studied.

  11. Gravity dependence at the bottom of the main sequence

    NASA Astrophysics Data System (ADS)

    Viti, Serena; Jones, Hugh R. A.

    1999-11-01

    We investigate the effects of gravity on the infrared spectra of objects around the M dwarf to brown dwarf transition. We focus on observations of the very low-mass objects TVLM 513-46546 and GJ 569B from 1 to 2.5 mu m. These objects have very similar spectral types and colours but they differ by more than a magnitude in luminosity; this indicates that their surface gravities differ by around 0.5 dex. We compare their spectra and present line identifications in the infrared. We investigate at low resolution the sensitivity of some of the atomic features to changes in surface gravities and make comparisons with recent atmospheric models. We identify seven surface gravity sensitive features. We find that the difference in surface gravity between the spectra are consistent with GJ 569B having a lower surface gravity than TVLM by at least 0.5 dex which suggests GJ 569B is a brown dwarf. Because of the relatively few surface gravity features which can be identified at low resolution, confirmation of this result should be made with observations at higher resolution which would enable more gravity sensitive features to be identified with better precision.

  12. The magnetic field of the pre-main sequence Herbig Ae star HD 190073

    NASA Astrophysics Data System (ADS)

    Catala, C.; Alecian, E.; Donati, J.-F.; Wade, G. A.; Landstreet, J. D.; Böhm, T.; Bouret, J.-C.; Bagnulo, S.; Folsom, C.; Silvester, J.

    2007-01-01

    Context: The general context of this paper is the study of magnetic fields in the pre-main sequence intermediate mass Herbig Ae/Be stars. Magnetic fields are likely to play an important role in pre-main sequence evolution at these masses, in particular in controlling the gains and losses of stellar angular momentum. Aims: The particular aim of this paper is to announce the detection of a structured magnetic field in the Herbig Ae star HD 190073, and to discuss various scenarii for the geometry of the star, its environment and its magnetic field. Methods: We have used the ESPaDOnS spectropolarimeter at CFHT in 2005 and 2006 to obtain high-resolution, high signal-to-noise circular polarization spectra which demonstrate unambiguously the presence of a magnetic field in the photosphere of this star. Results: Nine circular polarization spectra were obtained, each one showing a clear Zeeman signature. This signature is suggestive of a magnetic field structured on large scales. The signature, which corresponds to a longitudinal magnetic field of 74± 10 G, does not vary detectably on a one-year timeframe, indicating either an azimuthally symmetric field, a zero inclination angle between the rotation axis and the line of sight, or a very long rotation period. The optical spectrum of HD 190073 exhibits a large number of emission lines. We discuss the formation of these emission lines in the framework of a model involving a turbulent heated region at the base of the stellar wind, possibly powered by magnetic accretion. Conclusions: .This magnetic detection contributes an important new observational discovery which will aid our understanding of stellar magnetism at intermediate masses. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  13. Main-Sequence CMEs as Magnetic Explosions: Compatibility with Observed Kinematics

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2004-01-01

    We examine the kinematics of 26 CMEs of the morphological main sequence of CMEs, those having the classic three-part bubble structure of (1) a bright front eveloping (2) a dark cavity within which rides (3) a bright blob/filamentary feature. Each CME is observed in Yohkoh/SXT images to originate from near the limb (> or equal to 0.7 R(sub Sun) from disk center). The basic data (from the SOHO LASCO CME Catalog) for the kinematics of each CME are the sequence of LASCO images of the CME, the time of each image, the measured radial distance of the front edge of the CME in each image, and the measured angular extent of the CME. About half of our CMEs (12) occur with a flare, and the rest (14) occur without a flare. While the average linear-fit speed of the flare CMEs (1000 km/s) is twice that of the non-flare CMEs (510 km/s), the flare CMEs and the non-flare CMEs are similar in that some have nearly flat velocity-height (radial extent) profiles (little acceleration), some have noticeably falling velocity profiles (noticeable deceleration), and the rest have velocity profiles that rise considerably through the outer corona (blatant acceleration). This suggests that in addition to sharing similar morphology, main-sequence CMEs all have basically the same driving mechanism. The observed radial progression of each of our 26 CMEs is fit by a simple model magnetic plasmoid that is in pressure balance with the radial magnetic field in the outer corona and that propels itself outward by magnetic expansion, doing no net work on its surroundings. On average over the 26 CMEs, this model fits the observations as well as the assumption of constant acceleration. This is compatible with main-sequence CMEs being magnetically driven, basically magnetic explosions, with the velocity profile in the outer corona being largely dictated by the initial Alfien speed in the CME (when the front is at approx. 3 (sub Sun), analogous to the mass of a main-sequence star dictating the luminosity.

  14. A Search for Planets and Brown Dwarfs around Post Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Otani, Tomomi; Oswalt, Terry D.

    2016-06-01

    The most promising current theory for the origin of subdwarf B (sdB) stars is that they were formed during binary star evolution. This project was conducted to test this hypothesis by searching for companions around six sdB pulsators using the Observed-minus-Calculated (O-C) method. A star’s position in space will wobble due to the gravitational forces of any companion. If it is emitting a periodic signal, the orbital motion of the star around the system’s center of mass causes periodic changes in the light pulse arrival times. O-C diagrams for six sdB pulsators were constructed from several years’ observations, providing useful limits on suspected companions’ minimum masses and semimajor axes. The results were constrained by “period vs. amplitude” and “mass vs. semimajor axis” models to quantify companion masses and semimajor axes that are consistent with the observational data, if any. Two of our targets, V391 Peg and HS0702+6043, are noted in previous publications to have substellar companions. These were used to validate the method used in this research. The results of this study yielded the same masses and semimajor axes for these two stars as the published values, within the uncertainties. Another of the targets, EC20117-4014, is noted in the literature as a binary system containing an sdB and F5V star, however the orbital period and separation were unknown. The new data obtained in this study contain the signal of a companion candidate with a period of 158.01 days. Several possible mass and semimajor axis combinations for the companion are consistent with the observations. One of the other targets in this study displayed preliminary evidence for a companion that will require further observation. Though still a small sample, these results suggest that planets often survive the post-main-sequence evolution of their parent stars.

  15. Age-rotation relationship for late-type main-sequence stars

    NASA Technical Reports Server (NTRS)

    Rengarajan, T. N.

    1984-01-01

    With advancing spectral type and increasing age, late main-sequence stars exhibit monotonic decrease in rotational velocity. It is of great interest to extend the rotation-age relationship to stars of later spectral type. In recent times it has become possible to measure directly the rotational periods from the photometric modulation by Ca II H and K line emission. There have also been successful attempts to relate the chromospheric activity as manifested through Ca II H and K lines to the rotation period, and it was shown that the fraction of total stellar luminosity in Ca II H and K lines, corrected for photospheric contribution, is a function of a single parameter related to P and B-V. In the present investigation, this rotation-activity relation is utilized to infer the rotation periods as a function of spectral type. The period versus B-V plot is employed as a basis to infer that the rotational period of main-sequence stars is a single-valued function of mass (B-V color) and age.

  16. Estimating the Radius of the Convective Core of Main-sequence Stars from Observed Oscillation Frequencies

    NASA Astrophysics Data System (ADS)

    Yang, Wuming

    2016-10-01

    The determination of the size of the convective core of main-sequence stars is usually dependent on the construction of models of stars. Here we introduce a method to estimate the radius of the convective core of main-sequence stars with masses between about 1.1 and 1.5 M ⊙ from observed frequencies of low-degree p-modes. A formula is proposed to achieve the estimation. The values of the radius of the convective core of four known stars are successfully estimated by the formula. The radius of the convective core of KIC 9812850 estimated by the formula is 0.140 ± 0.028 R ⊙. In order to confirm this prediction, a grid of evolutionary models was computed. The value of the convective-core radius of the best-fit model of KIC 9812850 is 0.149 R ⊙, which is in good agreement with that estimated by the formula from observed frequencies. The formula aids in understanding the interior structure of stars directly from observed frequencies. The understanding is not dependent on the construction of models.

  17. Theoretical seismic properties of pre-main sequence γ Doradus pulsators

    NASA Astrophysics Data System (ADS)

    Bouabid, M.-P.; Montalbán, J.; Miglio, A.; Dupret, M.-A.; Grigahcène, A.; Noels, A.

    2011-07-01

    Context. The late A and F-type γ Doradus (γ Dor) stars pulsate with high-order gravity modes (g-modes). The existence of different evolutionary phases crossing the γ Dor instability strip raises the question whether pre-main sequence (PMS) γ Dor stars exist. Aims: We intend to study the differences between the asteroseismic behaviour of PMS and main sequence (MS) γ Dor pulsators as predicted by the current theory of stellar evolution and stability. Methods: We explore the adiabatic and non-adiabatic properties of high-order g-modes in a grid of PMS and MS models covering the mass range 1.2 M⊙ < M∗ < 2.5 M⊙. Results: We have derived the theoretical instability strip (IS) for the PMS γ Dor pulsators. This IS covers the same effective temperature range as the MS γ Dor one. Nevertheless, the frequency domain of unstable modes in PMS models with a fully radiative core is greater than in MS models, even if they present the same number of unstable modes. Moreover, the differences between MS and PMS internal structures are reflected in the average values of the period spacing, as well as in the dependence of the period spacing on the radial order of the modes, opening the window to determination of the evolutionary phase of γ Dor stars from their pulsation spectra.

  18. Main-sequence of star-formation, between universality and tension

    NASA Astrophysics Data System (ADS)

    Elbaz, David

    2015-08-01

    We will present a new method to push the deepest Herschel surveys even deeper in sensitivity and redshift range. A comparison to UV techniques such as the Lyman break technique will be given showing that a population of M*>5x10^10 Msun galaxies is systematically missed by this standard approach at high z. We will discuss how SFR estimates of starbursting galaxies can be wrongly estimated when using the UV corrected for extinction. A discussion of the relative growth of disks and bulges will be presented.We will show that at least 2/3 of the star-formation history of galaxies took place in a main-sequence mode, i.e. with a characteristic specific SFR +/- 0.3 dex, suggesting that star-formation at the scale of galaxies over the Hubble time is a relatively universal process. This result matches surprisingly well the cold flow paradigm which states that at least 2/3 of the mass growth of galaxies came from smooth accretion of intergalactic matter suggesting that the main-sequence is a direct result of smooth gas accretion. However we will also show that both paradigms lead to a major tension in their relative growth rates as a function of cosmic time showing that either a major regulatory process of star-formation is still missing or that we misunderstand the behavior of baryons at large scales.

  19. Galaxy Zoo: spiral galaxy morphologies and their relation to the star-forming main sequence

    NASA Astrophysics Data System (ADS)

    Willett, Kyle; Schawinski, Kevin; Masters, Karen; Melvin, Tom; Skibba, Ramin A.; Nichol, Robert; Cheung, Edmond; Lintott, Chris; Simmons, Brooke D.; Kaviraj, Sugata; Keel, William C.; Fortson, Lucy; Galaxy Zoo volunteers

    2015-01-01

    We examine the relationship between stellar mass and star formation rate in disk galaxies at z<0.085, measuring different populations of spirals as classified by their kiloparsec-scale structure. The morphologies of disk galaxies are obtained from the Galaxy Zoo 2 project, which includes the number of spiral arms, the arm pitch angle, and the presence of strong galactic bars. We show that both the slope and dispersion of the star-forming main sequence (SFMS) is constant no matter what the morphology of the spiral disk. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by 0.3 dex; this is a significant reduction over the increase seen in merging systems at higher redshifts (z > 1). Of the galaxies that do lie significantly above the SFMS in the local Universe, more than 50% are mergers, with a large contribution from the compact green pea galaxies. We interpret our results as evidence that the number and pitch angle of spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms for star formation or are completely overwhelmed by the combination of outflows and feedback.

  20. The Discovery of Solar-like Activity Cycles Beyond the End of the Main Sequence?

    NASA Astrophysics Data System (ADS)

    Route, Matthew

    2016-10-01

    The long-term magnetic behavior of objects near the cooler end of the stellar main sequence is poorly understood. Most theoretical work on the generation of magnetism in these ultracool dwarfs (spectral type ≥M7 stars and brown dwarfs) suggests that their magnetic fields should not change in strength and direction. Using polarized radio emission measurements of their magnetic field orientations, I demonstrate that these cool, low-mass, fully convective objects appear to undergo magnetic polarity reversals analogous to those that occur on the Sun. This powerful new technique potentially indicates that the patterns of magnetic activity displayed by the Sun continue to exist, despite the fully convective interiors of these objects, in contravention of several leading theories of the generation of magnetic fields by internal dynamos.

  1. Pre-main-sequence stars in the young cluster IC 2391

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Hartmann, Lee W.; Jones, Burton F.; Mcnamara, Brian R.

    1989-01-01

    Seven or eight new, late-type members of the poor open cluster IC 2391 are identified, and membership is confirmed for two other stars. The new members fall approximately along a 3 x 10 to the 7th yr isochrone, which is the age estimated for the cluster on the basis of it super main-seqence turnoff. Echelle spectra were obtained for the most probable cluster members. Most show H-alpha in emission and a strong Li 6707 A absorption line, and a few are rapid rotators. The Li abundances for cluster stars cooler than the sun are considerably less than the primordial Li abundance, providing the first direct evidence for substantial premain-sequence Li burning. The rotational velocities show a range from about 15 to 150 km/s, with a distribution of rotational velocities not significantly different from that observed for low-mass stars in the Pleiades.

  2. A Population Study of Wide-Separation Brown Dwarf Companions to Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey J.

    2005-01-01

    Increased interest in infrared astronomy has opened the frontier to study cooler objects that shed significant light on the formation of planetary systems. Brown dwarf research provides a wealth of information useful for sorting through a myriad of proposed formation theories. Our study combines observational data from 2MASS with rigorous computer simulations to estimate the true population of long-range (greater than 1000 AU) brown dwarf companions in the solar neighborhood (less than 25 pc from Earth). Expanding on Gizis et al. (2001), we have found the margin of error in previous estimates to be significantly underestimated after we included orbit eccentricity, longitude of pericenter, angle of inclination, field star density, and primary and secondary luminosities as parameters influencing the companion systems in observational studies. We apply our simulation results to current L- and T-dwarf catalogs to provide updated estimates on the frequency of wide-separation brown dwarf companions to main sequence stars.

  3. V4046 Sgr: Touchstone to Investigate Spectral Type Discrepancies for Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Rapson, Valerie; Sargent, Benjamin; Smith, C. T.; Rayner, John

    2015-01-01

    Determinations of the fundamental properties (e.g., masses and ages) of late-type, pre-main sequence (pre-MS) stars are complicated by the potential for significant discrepancies between the spectral types of such stars as ascertained via optical vs. near-infrared observations. To address this problem, we have obtained near-IR spectroscopy of the nearby, close binary T Tauri system V4046 Sgr AB with the NASA Infrared Telescope Facility (IRTF) SPEX spectrometer. The V4046 Sgr close binary (and circumbinary disk) system provides an important test case for spectral type determination thanks to the stringent observational constraints on its component stellar masses (i.e., ˜0.9 M_⊙ each) as well as on its age (12--21 Myr) and distance (73 pc). Analysis of the IRTF data indicates that the composite near-IR spectral type for V4046 Sgr AB lies in the range M0--M1, i.e., significantly later than the K5+K7 composite type previously determined from optical spectroscopy. However, the K5+K7 composite type is in better agreement with theoretical pre-MS evolutionary tracks, given the well-determined properties of V4046 Sgr AB. These results serve as a cautionary tale for studies that rely on near-infrared spectroscopy as a primary means to infer the ages and masses of pre-MS stars.

  4. Molecular and atomic gas along and across the main sequence of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Saintonge, Amelie; Catinella, Barbara; Cortese, Luca; Genzel, Reinhard; Giovanelli, Riccardo; Haynes, Martha P.; Janowiecki, Steven; Kramer, Carsten; Lutz, Katharina A.; Schiminovich, David; Tacconi, Linda J.; Wuyts, Stijn; Accurso, Gioacchino

    2016-10-01

    We use spectra from the ALFALFA, GASS and COLD GASS surveys to quantify variations in the mean atomic and molecular gas mass fractions throughout the SFR-M* plane and along the main sequence (MS) of star-forming galaxies. Although galaxies well below the MS tend to be undetected in the Arecibo and IRAM observations, reliable mean atomic and molecular gas fractions can be obtained through a spectral stacking technique. We find that the position of galaxies in the SFR-M* plane can be explained mostly by their global cold gas reservoirs as observed in the H I line, with in addition systematic variations in the molecular-to-atomic ratio and star formation efficiency. When looking at galaxies within ±0.4 dex of the MS, we find that as stellar mass increases, both atomic and molecular gas mass fractions decrease, stellar bulges become more prominent, and the mean stellar ages increase. Both star formation efficiency and molecular-to-atomic ratios vary little for massive MS galaxies, indicating that the flattening of the MS is due to the global decrease of the cold gas reservoirs of galaxies rather than to bottlenecks in the process of converting cold atomic gas to stars.

  5. Fundamental Parameters of Main-Sequence Stars in an Instant with Machine Learning

    NASA Astrophysics Data System (ADS)

    Bellinger, Earl P.; Angelou, George C.; Hekker, Saskia; Basu, Sarbani; Ball, Warrick H.; Guggenberger, Elisabeth

    2016-10-01

    Owing to the remarkable photometric precision of space observatories like Kepler, stellar and planetary systems beyond our own are now being characterized en masse for the first time. These characterizations are pivotal for endeavors such as searching for Earth-like planets and solar twins, understanding the mechanisms that govern stellar evolution, and tracing the dynamics of our Galaxy. The volume of data that is becoming available, however, brings with it the need to process this information accurately and rapidly. While existing methods can constrain fundamental stellar parameters such as ages, masses, and radii from these observations, they require substantial computational effort to do so. We develop a method based on machine learning for rapidly estimating fundamental parameters of main-sequence solar-like stars from classical and asteroseismic observations. We first demonstrate this method on a hare-and-hound exercise and then apply it to the Sun, 16 Cyg A and B, and 34 planet-hosting candidates that have been observed by the Kepler spacecraft. We find that our estimates and their associated uncertainties are comparable to the results of other methods, but with the additional benefit of being able to explore many more stellar parameters while using much less computation time. We furthermore use this method to present evidence for an empirical diffusion–mass relation. Our method is open source and freely available for the community to use.6

  6. A comprehensive set of simulations of high-velocity collisions between main-sequence stars

    NASA Astrophysics Data System (ADS)

    Freitag, Marc; Benz, Willy

    2005-04-01

    We report on a very large set of simulations of collisions between two main-sequence (MS) stars. These computations were carried out with the smoothed particle hydrodynamics method. Realistic stellar structure models for evolved MS stars were used. In order to sample an extended domain of initial parameters space (masses of the stars, relative velocity and impact parameter), more than 14000 simulations were carried out. We considered stellar masses ranging between 0.1 and 75 Msolar and relative velocities up to a few thousand km s-1. To limit the computational burden, a resolution of 1000-32000 particles per star was used. The primary goal of this study was to build a complete data base from which the result of any collision can be interpolated. This allows us to incorporate the effects of stellar collisions with an unprecedented level of realism into dynamical simulations of galactic nuclei and other dense stellar clusters. We make the data describing the initial condition and outcome (mass and energy loss, angle of deflection) of all our simulations available on the Internet. We find that the outcome of collisions depends sensitively on the stellar structure and that, in most cases, using polytropic models is inappropriate. Published fitting formulae for the collision outcomes, established from a limited set of collisions, prove of limited use because they do not allow robust extrapolation to other stellar structures or relative velocities.

  7. STELLAR DIAMETERS AND TEMPERATURES. I. MAIN-SEQUENCE A, F, AND G STARS

    SciTech Connect

    Boyajian, Tabetha S.; McAlister, Harold A.; Gies, Douglas R.; O'Brien, David; Parks, J. Robert; Richardson, Noel D.; Touhami, Yamina; White, Russel; Van Belle, Gerard; Ten Brummelaar, Theo A.; Farrington, Chris; Goldfinger, P. J.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Von Braun, Kaspar; Ridgway, Stephen

    2012-02-10

    We have executed a survey of nearby, main-sequence A-, F-, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars with an average precision of {approx}1.5%. We present new measures of the bolometric flux, which in turn leads to an empirical determination of the effective temperature for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale model isochrones to constrain the masses and ages of the stars. These results are compared to indirect estimates of these quantities obtained by collecting photometry of the stars and applying them to model atmospheres and evolutionary isochrones. We find that for most cases, the models overestimate the effective temperature by {approx}1.5%-4% when compared to our directly measured values. The overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star's surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than {approx}1.3 M{sub Sun }. Additionally, we compare our measurements to a large sample of eclipsing binary stars, and excellent agreement is seen within both data sets. Finally, we present temperature relations with respect to (B - V) and (V - K) colors as well as spectral type, showing that calibration of effective temperatures with errors {approx}1% is now possible from interferometric angular diameters of stars.

  8. Characterizing Pre-Main Sequence Populations in Stellar Associations of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios

    2007-07-01

    The Large Magellanic Cloud {LMC} offers an extremely rich sample of resolved low-mass stars {below 1 Solar Mass} in the act of formation that has not been explored sufficiently yet. These pre-main sequence {PMS} stars provide a unique snapshot of the star formation process, as it is being recorded for the last 20 Myr, and they give important information on the low-mass Initial Mass Function {IMF} of their host stellar systems. Studies of young, rich LMC clusters like 30 Doradus are crowding limited, even at the angular resolution facilitated by HST in the optical. To learn more about low-mass PMS stars in the LMC, one has to study less crowded regions like young stellar assocations. We propose to employ WFPC2 to obtain deep photometry {V 25.5 mag} of four selected LMC stellar associations in order to perform an original optical analysis of their red PMS and blue bright MS stellar populations. With these observations we aim at a comprehensive study, which will add substantial information on the most recent star formation and the IMF in the LMC. The data reduction and analysis will be performed with a 2D photometry software package especially developped by us for WFPC2 imaging of extended stellar associations with variable background. Our targets have been selected optimizing a combination of criteria, namely spatial resolution, crowding, low extinction, nebular contamination, and background confusion in comparison to other regions in the Local Group. Parallel NICMOS imaging will provide additional information on near-infrared properties of the stellar population in the regions surrounding these systems.

  9. Accretion Rates on Pre-main-sequence Stars in the Young Open Cluster NGC 6530

    NASA Astrophysics Data System (ADS)

    Gallardo, José; del Valle, Luciano; Ruiz, María Teresa

    2012-01-01

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first ~1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the Hα emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad Hα emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva

  10. The Star-Forming Main Sequence as a Natural Consequence of the Central Limit Theorem

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel David

    2015-08-01

    Star-formation rates (SFR) of disk galaxies correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here I demonstrate that such a correlation arises naturally from the central limit theorem. The derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk, where the expectation of SFR at any time is equal to the SFR at the previous time. The SFRs of real galaxies, however, do not experience wholly random stochastic changes over time, but change in a highly correlated fashion due to the long reach of gravity and the correlation of structure in the universe. We therefore generalize the results for star-formation as a stochastic process that has random correlations over random and potentially infinite timescales. For unbiased samples of (disk) galaxies we derive expectation values for SSFR and its scatter, such that =2/T, and Sig[SFR/M]=. Note that this relative scatter is independent of mass and time. This derived correlation between SFR and stellar mass, and its evolution, matches published data to z=10 with sufficient accuracy to constrain cosmological parameters from the data. This statistical approach to the diversity of star-formation histories reproduces several important observables, including: the scatter in SSFR at fixed mass; the forms of SFHs of nearby dwarf galaxies and the Milky Way. At least one additional process beyond a single one responsible for in situ stellar mass growth will be required to match the evolution of the stellar mass function, and we discuss ways to generalize the framework. The implied dispersion in SFHs, and the SFMS's insensitivity to timescales of stochasticity, thus substantially limits the ability to connect massive galaxies to their progenitors over long cosmic baselines. Such analytical work shows promise for

  11. The Evolution of Main-Sequence and Starburst Galaxies Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Aravena, Manuel

    2015-08-01

    In the last decade, significant progress has been achieved in the understanding of the evolution of star formation in galaxies as a function of redshift. Its is now clear that the majority of galaxies at z<3 form a nearly linear correlation between their stellar mass and star formation rates and appear to create most of their stars in timescales of ~1 Gyr. At the highest luminosities, a significant fraction of galaxies deviate from this ‘main-sequence’, showing short duty cycles and thus producing most of their stars in a single burst of star formation (‘starburst’) within a few 100 Myr, being likely driven by major merger activity. Despite the large luminosities of starbursts, main-sequence galaxies appear to dominate the star formation density of the Universe at its peak.While progress has been impressive, a number of questions are still unanswered. In this talk, I will review our current observational understanding of this ‘main-sequence’ vs ‘starburst’ galaxy paradigm, and will address how future observations (e.g. with ALMA) will help us to have better insights into the fundamental properties of these galaxies.

  12. Sensitivity studies for the main r process: nuclear masses

    SciTech Connect

    Aprahamian, A.; Mumpower, M.; Bentley, I.; Surman, R.

    2014-04-15

    The site of the rapid neutron capture process (r process) is one of the open challenges in all of physics today. The r process is thought to be responsible for the creation of more than half of all elements beyond iron. The scientific challenges to understanding the origin of the heavy elements beyond iron lie in both the uncertainties associated with astrophysical conditions that are needed to allow an r process to occur and a vast lack of knowledge about the properties of nuclei far from stability. One way is to disentangle the nuclear and astrophysical components of the question. On the nuclear physics side, there is great global competition to access and measure the most exotic nuclei that existing facilities can reach, while simultaneously building new, more powerful accelerators to make even more exotic nuclei. On the astrophysics side, various astrophysical scenarios for the production of the heaviest elements have been proposed but open questions remain. This paper reports on a sensitivity study of the r process to determine the most crucial nuclear masses to measure using an r-process simulation code, several mass models (FRDM, Duflo-Zuker, and HFB-21), and three potential astrophysical scenarios.

  13. The effect of disc inclination on the main sequence of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Morselli, L.; Renzini, A.; Popesso, P.; Erfanianfar, G.

    2016-11-01

    We use the Sloan Digital Sky Survey (York et al.) data base to explore the effect of the disc inclination angle on the derived star formation rate (SFR), hence on the slope and width of the main-sequence (MS) relation for star-forming galaxies. We find that SFRs for nearly edge-on discs are underestimated by factors ranging from ˜0.2 dex for low-mass galaxies up to ˜0.4 dex for high-mass galaxies. This results in a substantially flatter MS relation for high-inclination discs compared to that for less inclined ones, though the global effect over the whole sample of star-forming galaxies is relatively minor, given the small fraction of high-inclination discs. However, we also find that galaxies with high-inclination discs represent a non-negligible fraction of galaxies populating the so-called green valley, with derived SFRs intermediate between the MS and those of quenched, passively evolving galaxies.

  14. Variations of the ISM Compactness Across the Main Sequence of Star Forming Galaxies: Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Martínez-Galarza, J. R.; Smith, H. A.; Lanz, L.; Hayward, Christopher C.; Zezas, A.; Rosenthal, L.; Weiner, A.; Hung, C.; Ashby, M. L. N.; Groves, B.

    2016-01-01

    The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M*) plane, of the form {{SFR}}\\propto {M}*α , usually referred to as the star formation main sequence (MS). The physics that sets the properties of the MS is currently a subject of debate, and no consensus has been reached regarding the fundamental difference between members of the sequence and its outliers. Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present Chiburst, a Markov Chain Monte Carlo spectral energy distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, SFRs, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate, and the compactness parameter { C }, that parametrizes this geometry and hence the evolution of dust temperature ({T}{{dust}}) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of luminous infrared galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.

  15. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    SciTech Connect

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  16. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.

    1997-05-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  17. An M Dwarf Companion to an F-type Star in a Young Main-sequence Binary

    NASA Astrophysics Data System (ADS)

    Eigmüller, Ph.; Eislöffel, J.; Csizmadia, Sz.; Lehmann, H.; Erikson, A.; Fridlund, M.; Hartmann, M.; Hatzes, A.; Pasternacki, Th.; Rauer, H.; Tkachenko, A.; Voss, H.

    2016-03-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M⊙ and a radius of (1.474 ± 0.040) R⊙. The companion is an M dwarf with a mass of (0.188 ± 0.014) M⊙ and a radius of (0.234 ± 0.009) R⊙. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ˜250 Myr. The mass-radius relation of both components are in agreement with this finding.

  18. ROTATION PERIODS OF 34,030 KEPLER MAIN-SEQUENCE STARS: THE FULL AUTOCORRELATION SAMPLE

    SciTech Connect

    McQuillan, A.; Mazeh, T.; Aigrain, S.

    2014-04-01

    We analyzed three years of data from the Kepler space mission to derive rotation periods of main-sequence stars below 6500 K. Our automated autocorrelation-based method detected rotation periods between 0.2 and 70 days for 34,030 (25.6%) of the 133,030 main-sequence Kepler targets (excluding known eclipsing binaries and Kepler Objects of Interest), making this the largest sample of stellar rotation periods to date. In this paper we consider the detailed features of the now well-populated period-temperature distribution and demonstrate that the period bimodality, first seen by McQuillan et al. in the M-dwarf sample, persists to higher masses, becoming less visible above 0.6 M {sub ☉}. We show that these results are globally consistent with the existing ground-based rotation-period data and find that the upper envelope of the period distribution is broadly consistent with a gyrochronological age of 4.5 Gyr, based on the isochrones of Barnes, Mamajek, and Hillenbrand and Meibom et al. We also performed a detailed comparison of our results to those of Reinhold et al. and Nielsen et al., who measured rotation periods of field stars observed by Kepler. We examined the amplitude of periodic variability for the stars with detection rotation periods, and found a typical range between ∼950 ppm (5th percentile) and ∼22,700 ppm (95th percentile), with a median of ∼5600 ppm. We found typically higher amplitudes for shorter periods and lower effective temperatures, with an excess of low-amplitude stars above ∼5400 K.

  19. A candidate infrared companion in the pre-main sequence multiple system V773 Tau

    NASA Astrophysics Data System (ADS)

    Duchene, G.; Ghez, A. M.; McCabe, C.

    2001-12-01

    We present new near-infrared (1.6 and 2.2 micron) adaptive optics images with the 10m-Keck II telescope of the low-mass pre-main sequence multiple system V773 Tau. In addition to the already known unresolved double-lined spectroscopic binary and its 83 milliarcsec companion, our images reveal a fourth star located only 0.21'' (projected distance: 30 AU) away from the brightest component. This object appears to be much redder than the other stars in the system. We also obtained a medium-resolution (R=3500) long-slit spectrum of this object which covers the 2.0-2.4 micron wavelength range. The spectrum of this dim fourth component in the system shows no photospheric feature but has a small Brγ emission line (equivalent width of about 0.5Å). If this object is not an extincted background giant, which the hydrogen emission line seems to exclude, it is very reminiscent of a small class of objects known as "infrared companions" to T Tauri stars. The tight visual binary has been followed over the last years through speckle interferometry technique, and these data indicate a strange behaviour with a large "jump" in position angle. This may reveal some strong photometric variability in the candidate IRC, which would reinforce its status. We also emphasize that such a quadruple system, with four stars located within 30 AU or so, is extremely rare among main sequence solar-type objects while many T Tauri binaries in Taurus turned out to have additionalcompanions when observed with higher resolution and/or sensitivity. This may indicate that this region is all but typical of star formation in the Galaxy.

  20. A probable pre-main sequence chemically peculiar star in the open cluster Stock 16

    NASA Astrophysics Data System (ADS)

    Netopil, M.; Fossati, L.; Paunzen, E.; Zwintz, K.; Pintado, O. I.; Bagnulo, S.

    2014-08-01

    We used the Ultraviolet and Visual Echelle Spectrograph of the ESO-Very Large Telescope to obtain a high resolution and high signal-to-noise ratio spectrum of Stock 16-12, an early-type star which previous Δa photometric observations suggest being a chemically peculiar (CP) star. We used spectral synthesis to perform a detailed abundance analysis obtaining an effective temperature of 8400 ± 400 K, a surface gravity of 4.1 ± 0.4, a microturbulence velocity of 3.4^{+0.7}_{-0.3} km s-1, and a projected rotational velocity of 68 ± 4 km s-1. We provide photometric and spectroscopic evidence showing the star is most likely a member of the young Stock 16 open cluster (age 3-8 Myr). The probable cluster membership, the star's position in the Hertzsprung-Russell diagram, and the found infrared excess strongly suggest the star is still in the pre-main-sequence (PMS) phase. We used PMS evolutionary tracks to determine the stellar mass, which ranges between 1.95 and 2.3 M⊙, depending upon the adopted spectroscopic or photometric data results. Similarly, we obtained a stellar age ranging between 4 and 6 Myr, in agreement with that of the cluster. Because the star's chemical abundance pattern resembles well that known of main sequence CP metallic line (Am) stars, the object sets important constraints to the diffusion theory. Additional spectroscopic and spectropolarimetric data allowed us to conclude that the object is probably a single non-magnetic star.

  1. PRE-MAIN-SEQUENCE STELLAR POPULATIONS ACROSS SHAPLEY CONSTELLATION III. I. PHOTOMETRIC ANALYSIS AND IDENTIFICATION ,

    SciTech Connect

    Gouliermis, Dimitrios A.; Gennaro, Mario; Henning, Thomas; Da Rio, Nicola; Brandner, Wolfgang; Dolphin, Andrew E.; Robberto, Massimo; Panagia, Nino; Gruendl, Robert A.; Chu, You-Hua; Rosa, Michael; Romaniello, Martino; De Marchi, Guido; Zinnecker, Hans

    2011-09-10

    We present our investigation of pre-main-sequence (PMS) stellar populations in the Large Magellanic Cloud (LMC) from imaging with Hubble Space Telescope Wide-Field Planetary Camera 2. Our targets of interest are four star-forming regions located at the periphery of the super-giant shell LMC 4 (Shapley Constellation III). The PMS stellar content of the regions is revealed through the differential Hess diagrams and the observed color-magnitude diagrams (CMDs). Further statistical analysis of stellar distributions along cross sections of the faint part of the CMDs allowed the quantitative assessment of the PMS stars census, and the isolation of faint PMS stars as the true low-mass stellar members of the regions. These distributions are found to be well represented by a double-Gaussian function, the first component of which represents the main-sequence field stars and the second the native PMS stars of each region. Based on this result, a cluster membership probability was assigned to each PMS star according to its CMD position. The higher extinction in the region LH 88 did not allow the unambiguous identification of its native stellar population. The CMD distributions of the PMS stars with the highest membership probability in the regions LH 60, LH 63, and LH 72 exhibit an extraordinary similarity among the regions, suggesting that these stars share common characteristics, as well as common recent star formation history. Considering that the regions are located at different areas of the edge of LMC 4, this finding suggests that star formation along the super-giant shell may have occurred almost simultaneously.

  2. AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES

    SciTech Connect

    Renzini, Alvio; Peng, Ying-jie E-mail: y.peng@mrao.cam.ac.uk

    2015-03-10

    The main sequence (MS) of star-forming (SF) galaxies plays a fundamental role in driving galaxy evolution and our efforts to understand it. However, different studies find significant differences in the normalization, slope, and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate SF galaxies, which may include or exclude galaxies with a specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of SF galaxies. Constructing the 3D SFR–mass–number plot, the MS is then defined as the ridge line of the SF peak, as illustrated with various figures. The advantages of such a definition are manifold. If generally adopted, it will facilitate the inter-comparison of results from different groups using the same SFR and stellar mass diagnostics, or it will highlight the relative systematics of different diagnostics. All of this could help to understand MS galaxies as systems in a quasi-steady state equilibrium and would also provide a more objective criterion for identifying quenching galaxies.

  3. The Angular Momentum Evolution of 0.1-10 Msolar Stars from the Birth Line to the Main Sequence

    NASA Astrophysics Data System (ADS)

    Wolff, S. C.; Strom, S. E.; Hillenbrand, L. A.

    2004-02-01

    Projected rotational velocities (vsini) have been measured for a sample of 145 stars with masses between 0.4 and greater than 10 Msolar (median mass 2.1 Msolar) located in the Orion star-forming complex. These measurements have been supplemented with data from the literature for Orion stars with masses as low as 0.1 Msolar. The primary finding from analysis of these data is that the upper envelope of the observed values of angular momentum per unit mass (J/M) varies as M0.25 for stars on convective tracks having masses in the range ~0.1 to ~3 Msolar. This power law extends smoothly into the domain of more massive stars (3-10 Msolar), which in Orion are already on the zero-age main sequence. This result stands in sharp contrast to the properties of main-sequence stars, which show a break in the power law and a sharp decline in J/M with decreasing mass for stars with M<2 Msolar. A second result of our study is that this break is seen already among the pre-main-sequence stars in our Orion sample that are on radiative tracks, even though these stars are only a few million years old. A comparison of rotation rates seen for stars on either side of the convective-radiative boundary shows that stars do not rotate as solid bodies during the transition from convective to radiative tracks. As a preliminary demonstration of how observations can be used to constrain the processes that control early stellar angular momentum, we show that the broad trends in the data can be accounted for by simple models that posit that stars (1) lose angular momentum before they are deposited on the birth line, plausibly through star-disk interactions; (2) undergo additional braking as they evolve down their convective tracks; and (3) are subject to core-envelope decoupling during the convective-radiative transition.

  4. Pre main sequence stars as UV sources for the World Space Observatory-UV mission

    NASA Astrophysics Data System (ADS)

    Gomez de Castro, Ana I.; Lamzin, Sergei A.

    2011-09-01

    Pre-main sequence stars are bright UV (UV) sources compared with their main sequence analogues. The source of this excess is the high energy processes associated with the physics of accretion/outflow during early stellar evolution. In this review, the main sources of UV excess are described as well as the most significant "unknowns" in the field. Special emphasis is made on the results from the last observations carried out with the Hubble Space Telescope and on the relevance of future dedicated monitoring programs with the World Space Observatory-UV.

  5. Coronagraphic imaging of pre-main-sequence stars: Remnant evvelopes of star formation seen in reflection

    NASA Technical Reports Server (NTRS)

    Nakajima, Tadashi; Golimowski, David A.

    1995-01-01

    We have obtained R- and I-band coronagraphic images of the vicinities of 11 pre-main sequence (PMS) stars to search for faint, small-scale reflection nebulae. The inner radius of the search and the field of view are 1.9 arcsec and 1x1 arcmin, respectively. Reflection nebulae were imaged around RY Tau, T Tau,DG Tau, SU Aur, AB Aur, FU Ori, and Z CMa. No nebulae were detected around HBC 347, GG Tau, V773 Tau, and V830 Tau. Categorically speaking, most of the classical T Tauri program stars and all the FU Orionis-type program stars are associated with the reflection nebulae, while none of the weak-line T Tauri program stars are associated with nebulae. The detected nebulae range in size from 250 to 37 000 AU. From the brightness ratios of the stars and nebulae, we obtain a lower limit to the visual extinction of PMS star light through the nebulae of (A(sub V))(sub neb) = 0.1. The lower limits of masses and volume densities of the nebulae associated with the classical T Tauri stars are 10(exp-6) Solar mass and N(sub H) = 10(exp 5)/cu cm, respectively. Lower limits for the nebulae around FU Orionis stars are 10(exp -5) Solar mass and n(sub H) = 10 (exp 5)/cu cm, respectively. Some reflection nebulae may trace the illuminated surfaces of the optically thick dust nebulae, so these mass estimates are not stringent. All the PMS stars with associated nebulae are strong far-infrared emitters. Both the far-infrared emission and the reflection nebulae appear to originate from the remnant envelopes of star formation. The 100 micrometers emitting regions of SU Aur and FU Ori are likely to be cospatial with the reflection nebulae. A spatial discontinuity between FU Ori and its reflection nebula may explain the dip in the far-infrared spectral energy distribution at 60 micrometers. The warped, disk-like nebulae around T Tau and Z CMa are aligned with and embrace the inner star/circumstellar disk systems. The arc-shaped nebula around DG Tau may be in contact with the coaligned inner

  6. A Relationship between Mean Rotation Period in Lower Main-Sequence Stars and Its Observed Range

    NASA Astrophysics Data System (ADS)

    Donahue, Robert A.; Saar, Steven H.; Baliunas, Sallie L.

    1996-07-01

    Chromospheric Ca II H and K fluxes have been measured in a sample of ~100 stars on or near the main sequence at Mount Wilson Observatory. Observations were made several times a week and span more than ten years. Within an observing season, many stars show periodic variations due to rotation. Thirty-six of the stars have highly-significant periods in at least five seasons. We compute the range in the observed period, Delta P, and suggest that it is a measure of, and a lower limit to, the surface differential rotation (SDR). Several physical and selection effects can affect the measured Delta P value. An analysis of the cumulative variance distribution at various time scales, however, demonstrates that Ca II variations due to active region growth and decay are of longer period and smaller amplitude than those due to rotation. We argue that other effects (e.g., multiple active regions, latitude bands) are either small, or primarily act to reduce the measured Delta P relative to its true value. Including results for the Sun, we find that Delta P depends on the mean seasonal rotation period , such that Delta P is proportional to to the power of 1.3 +/- 0.1, independent of mass. We briefly discuss this in the context of dynamo models, and other observations of surface differential rotation and active region structure.

  7. WHITE-DWARF-MAIN-SEQUENCE BINARIES IDENTIFIED FROM THE LAMOST PILOT SURVEY

    SciTech Connect

    Ren Juanjuan; Luo Ali; Li Yinbi; Wei Peng; Zhao Jingkun; Zhao Yongheng; Song Yihan; Zhao Gang E-mail: lal@nao.cas.cn

    2013-10-01

    We present a set of white-dwarf-main-sequence (WDMS) binaries identified spectroscopically from the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) pilot survey. We develop a color selection criteria based on what is so far the largest and most complete Sloan Digital Sky Survey (SDSS) DR7 WDMS binary catalog and identify 28 WDMS binaries within the LAMOST pilot survey. The primaries in our binary sample are mostly DA white dwarfs except for one DB white dwarf. We derive the stellar atmospheric parameters, masses, and radii for the two components of 10 of our binaries. We also provide cooling ages for the white dwarf primaries as well as the spectral types for the companion stars of these 10 WDMS binaries. These binaries tend to contain hot white dwarfs and early-type companions. Through cross-identification, we note that nine binaries in our sample have been published in the SDSS DR7 WDMS binary catalog. Nineteen spectroscopic WDMS binaries identified by the LAMOST pilot survey are new. Using the 3{sigma} radial velocity variation as a criterion, we find two post-common-envelope binary candidates from our WDMS binary sample.

  8. Evidence of accretion triggered oscillations in the pre-main-sequence interacting binary AK Sco

    NASA Astrophysics Data System (ADS)

    Gómez, de Castro, Ana I.; López-Santiago, Javier; Talavera, Antonio

    2013-02-01

    Pre-main sequence (PMS) binaries are surrounded by circumbinary discs from which matter falls on to both components. The material dragged from the circumbinary disc flows on to each star through independent streams channelled by the variable gravitational field. The action of the bar-like potential is most prominent in high eccentricity systems made of two equal mass stars. AK Sco is a unique PMS system composed of two F5 stars in an orbit with e = 0.47. Henceforth, it is an ideal laboratory to study matter infall in binaries and its role in orbit circularization. In this Letter, we report the detection of a 1.3 mHz ultra low-frequency oscillation in the ultraviolet light curve at periastron passage. This oscillation lasts 7 ks being most likely fed by the gravitational energy released when the stream's tails spiralling on to each star get in contact at periastron passage enhancing the accretion flow; this unveils a new mechanism for angular momentum loss during PMS evolution and a new type of interacting binary.

  9. YSOVAR: SIX PRE-MAIN-SEQUENCE ECLIPSING BINARIES IN THE ORION NEBULA CLUSTER

    SciTech Connect

    Morales-Calderon, M.; Stauffer, J. R.; Rebull, L. M.; Stassun, K. G.; Vrba, F. J.; Prato, L.; Hillenbrand, L. A.; Carpenter, J. M.; Terebey, S.; Angione, J.; Covey, K. R.; Terndrup, D. M.; Gutermuth, R.; Song, I.; Plavchan, P.; Marchis, F.; Garcia, E. V.; Margheim, S.; Luhman, K. L.; Irwin, J. M.

    2012-07-10

    Eclipsing binaries (EBs) provide critical laboratories for empirically testing predictions of theoretical models of stellar structure and evolution. Pre-main-sequence (PMS) EBs are particularly valuable, both due to their rarity and the highly dynamic nature of PMS evolution, such that a dense grid of PMS EBs is required to properly calibrate theoretical PMS models. Analyzing multi-epoch, multi-color light curves for {approx}2400 candidate Orion Nebula Cluster (ONC) members from our Warm Spitzer Exploration Science Program YSOVAR, we have identified 12 stars whose light curves show eclipse features. Four of these 12 EBs are previously known. Supplementing our light curves with follow-up optical and near-infrared spectroscopy, we establish two of the candidates as likely field EBs lying behind the ONC. We confirm the remaining six candidate systems, however, as newly identified ONC PMS EBs. These systems increase the number of known PMS EBs by over 50% and include the highest mass ({theta}{sup 1} Ori E, for which we provide a complete set of well-determined parameters including component masses of 2.807 and 2.797 M{sub Sun }) and longest-period (ISOY J053505.71-052354.1, P {approx} 20 days) PMS EBs currently known. In two cases ({theta}{sup 1} Ori E and ISOY J053526.88-044730.7), enough photometric and spectroscopic data exist to attempt an orbit solution and derive the system parameters. For the remaining systems, we combine our data with literature information to provide a preliminary characterization sufficient to guide follow-up investigations of these rare, benchmark systems.

  10. Hypervelocity Stars. III. The Space Density and Ejection History of Main-Sequence Stars from the Galactic Center

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Kurtz, Michael J.; Bromley, Benjamin C.

    2007-12-01

    We report the discovery of three new unbound hypervelocity stars (HVSs), stars traveling with such extreme velocities that dynamical ejection from a massive black hole (MBH) is their only suggested origin. We also detect a population of possibly bound HVSs. The significant asymmetry we observe in the velocity distribution-we find 26 stars with vrf>275 km s-1 and one star with vrf<-275 km s-1-shows that HVSs must be short-lived, probably 3-4 Msolar main-sequence stars. Any population of hypervelocity post-main-sequence stars should contain stars falling back onto the Galaxy, contrary to the observations. The spatial distribution of HVSs also supports the main-sequence interpretation: longer lived 3 Msolar HVSs fill our survey volume; shorter lived 4 Msolar HVSs are missing at faint magnitudes. We infer that there are 96+/-10 HVSs of mass 3-4 Msolar within R<100 kpc, possibly enough HVSs to constrain ejection mechanisms and potential models. Depending on the mass function of HVSs, we predict that SEGUE may find up to 5-15 new HVSs. The travel times of our HVSs favor a continuous ejection process, although a ~120 Myr old burst of HVSs is also allowed.

  11. INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS

    SciTech Connect

    Pecaut, Mark J.; Mamajek, Eric E.

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVI{sub C} , 2MASS JHK{sub S} and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T {sub eff}) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T {sub eff} and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T {sub eff} scale for pre-MS stars is within ≅100 K of dwarfs at a given spectral type for stars sequence for O9V-M9V MS stars based on an extensive literature survey, (2) a revised Q-method relation for dereddening UBV photometry of OB-type stars, and (3) introduce two candidate spectral standard stars as representatives of spectral types K8V and K9V.

  12. Intrinsic Colors, Temperatures, and Bolometric Corrections of Pre-main-sequence Stars

    NASA Astrophysics Data System (ADS)

    Pecaut, Mark J.; Mamajek, Eric E.

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVIC , 2MASS JHKS and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T eff) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T eff and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T eff scale for pre-MS stars is within sime100 K of dwarfs at a given spectral type for stars sequence for O9V-M9V MS stars based on an extensive literature survey, (2) a revised Q-method relation for dereddening UBV photometry of OB-type stars, and (3) introduce two candidate spectral standard stars as representatives of spectral types K8V and K9V.

  13. STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS

    SciTech Connect

    Boyajian, Tabetha S.; McAlister, Harold A.; Jones, Jeremy; White, Russel; Henry, Todd; Gies, Douglas; Jao, Wei-Chun; Parks, J. Robert; Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David; Van Belle, Gerard; Ten Brummelaar, Theo A.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit; Muirhead, Philip S.; Lopez-Morales, Mercedes; Ridgway, Stephen; Rojas-Ayala, Barbara; and others

    2012-10-01

    We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the star's bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for {approx}K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B - V), (V - R), (V - I), (V - J), (V - H), and (V - K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = -0.5 to +0.1 dex and are accurate to {approx}2%, {approx}5%, and {approx}4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the star's observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by {approx}3%, and underestimate the radii of stars with radii <0.7 R{sub Sun} by {approx}5%. These conclusions additionally suggest that

  14. Empirical tests of pre-main-sequence stellar evolution models with eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan G.; Feiden, Gregory A.; Torres, Guillermo

    2014-06-01

    We examine the performance of standard pre-main-sequence (PMS) stellar evolution models against the accurately measured properties of a benchmark sample of 26 PMS stars in 13 eclipsing binary (EB) systems having masses 0.04-4.0 M⊙ and nominal ages ≈1-20 Myr. We provide a definitive compilation of all fundamental properties for the EBs, with a careful and consistent reassessment of observational uncertainties. We also provide a definitive compilation of the various PMS model sets, including physical ingredients and limits of applicability. No set of model isochrones is able to successfully reproduce all of the measured properties of all of the EBs. In the H-R diagram, the masses inferred for the individual stars by the models are accurate to better than 10% at ≳1 M⊙, but below 1 M⊙ they are discrepant by 50-100%. Adjusting the observed radii and temperatures using empirical relations for the effects of magnetic activity helps to resolve the discrepancies in a few cases, but fails as a general solution. We find evidence that the failure of the models to match the data is linked to the triples in the EB sample; at least half of the EBs possess tertiary companions. Excluding the triples, the models reproduce the stellar masses to better than ∼10% in the H-R diagram, down to 0.5 M⊙, below which the current sample is fully contaminated by tertiaries. We consider several mechanisms by which a tertiary might cause changes in the EB properties and thus corrupt the agreement with stellar model predictions. We show that the energies of the tertiary orbits are comparable to that needed to potentially explain the scatter in the EB properties through injection of heat, perhaps involving tidal interaction. It seems from the evidence at hand that this mechanism, however it operates in detail, has more influence on the surface properties of the stars than on their internal structure, as the lithium abundances are broadly in good agreement with model predictions. The

  15. Laser Desorption Mass Spectrometry for DNA Sequencing and Analysis

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Golovlev, V. V.; Isola, N. R.; Allman, S. L.

    1998-03-01

    Rapid DNA sequencing and/or analysis is critically important for biomedical research. In the past, gel electrophoresis has been the primary tool to achieve DNA analysis and sequencing. However, gel electrophoresis is a time-consuming and labor-extensive process. Recently, we have developed and used laser desorption mass spectrometry (LDMS) to achieve sequencing of ss-DNA longer than 100 nucleotides. With LDMS, we succeeded in sequencing DNA in seconds instead of hours or days required by gel electrophoresis. In addition to sequencing, we also applied LDMS for the detection of DNA probes for hybridization LDMS was also used to detect short tandem repeats for forensic applications. Clinical applications for disease diagnosis such as cystic fibrosis caused by base deletion and point mutation have also been demonstrated. Experimental details will be presented in the meeting. abstract.

  16. MAIN-SEQUENCE STARS MASQUERADING AS YOUNG STELLAR OBJECTS IN THE CENTRAL MOLECULAR ZONE

    SciTech Connect

    Koepferl, Christine M.; Robitaille, Thomas P.; Morales, Esteban F. E.; Johnston, Katharine G.

    2015-01-20

    In contrast to most other galaxies, star formation rates in the Milky Way can be estimated directly from young stellar objects (YSOs). In the central molecular zone the star formation rate calculated from the number of YSOs with 24 μm emission is up to an order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 μm. However, we show that in some cases the main-sequence models can be marginally resolved at 24 μm, whereas the YSO models are always unresolved. Based on the fraction of resolved MIPS 24 μm sources in the sample of YSOs previously used to compute the star formation rate, we estimate the fraction of misclassified ''YSOs'' to be at least 63%, which suggests that the star formation rate previously determined from YSOs is likely to be at least a factor of three too high.

  17. Exploring pre-main-sequence variables of the ONC: the new variables

    NASA Astrophysics Data System (ADS)

    Parihar, Padmakar; Messina, Sergio; Distefano, Elisa; Shantikumar, N. S.; Medhi, Biman J.

    2009-12-01

    Since 2004, we have been engaged in a long-term observing programme to monitor young stellar objects (YSOs) in the Orion Nebula Cluster (ONC). We have collected about 2000 frames in V, R and I broad-band filters on more than 200 nights distributed over five consecutive observing seasons. The high-quality and time-extended photometric data give us an opportunity to address various phenomena associated with young stars. The prime motivations of this project are (i) to explore various manifestations of stellar magnetic activity in very young low-mass stars, (ii) to search for new pre-main-sequence eclipsing binaries and (iii) to look for any EXor and FUor-like transient activities associated with YSOs. Since this is the first paper on this programme, we give a detailed description of the science drivers, the observation and the data reduction strategies as well. In addition to these, we also present a large number of new periodic variables detected from our first 5 yr of time-series photometric data. Our study reveals that about 72 per cent of classical T Tauri stars (CTTS) in our field of view are periodic, whereas only 32 per cent of weak-lined T Tauri stars (WTTS) are periodic. This indicates that inhomogeneity patterns on the surface of CTTS of the ONC stars are much more stable than on WTTS. From our multiyear monitoring campaign, we found that the photometric surveys based on single season are incapable of identifying all periodic variables. And any study on evolution of angular momentum based on single-season surveys must be carried out with caution.

  18. X-ray Emission from Pre-Main-Sequence Stars - Testing the Solar Analogy

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2000-01-01

    This LTSA award funded my research on the origin of stellar X-ray emission and the validity of the solar-stellar analogy. This research broadly addresses the relevance of our current understanding of solar X-ray physics to the interpretation of X-ray emission from stars in general. During the past five years the emphasis has been on space-based X-ray observations of very young stars in star-forming regions (T Tauri stars and protostars), cool solar-like G stars, and evolved high-mass Wolf-Rayet (WR) stars. These observations were carried out primarily with the ASCA and ROSAT space-based observatories (and most recently with Chandra), supplemented by ground-based observations. This research has focused on the identification of physical processes that are responsible for the high levels of X-ray emission seen in pre-main-sequence (PMS) stars, active cool stars, and WR stars. A related issue is how the X-ray emission of such stars changes over time, both on short timescales of days to years and on evolutionary timescales of millions of years. In the case of the Sun it is known that magnetic fields play a key role in the production of X-rays by confining the coronal plasma in loop-like structures where it is heated to temperatures of several million K. The extent to which the magnetically-confined corona interpretation can be applied to other X-ray emitting stars is the key issue that drives the research summarized here.

  19. Pre-main-sequence population in NGC 1893 region: X-ray properties

    NASA Astrophysics Data System (ADS)

    Pandey, A. K.; Samal, M. R.; Yadav, Ram Kesh; Richichi, Andrea; Lata, Sneh; Pandey, J. C.; Ojha, D. K.; Chen, W. P.

    2014-05-01

    Continuing the attempt to understand the properties of the stellar content in the young cluster NGC 1893 we have carried out a comprehensive multi-wavelength study of the region. The present study focuses on the X-ray properties of T-Tauri Stars (TTSs) in the NGC 1893 region. We found a correlation between the X-ray luminosity, LX, and the stellar mass (in the range 0.2-2.0 M) of TTSs in the NGC 1893 region, similar to those reported in some other young clusters, however the value of the power-law slope obtained in the present study (∼0.9) for NGC 1893 is smaller than those (∼1.4-3.6) reported in the case of TMC, ONC, IC 348 and Chameleon star forming regions. However, the slope in the case of Class III sources (Weak line TTSs) is found to be comparable to that reported in the case of NGC 6611 (∼1.1). It is found that the presence of circumstellar disks has no influence on the X-ray emission. The X-ray luminosity for both CTTSs and WTTSs is found to decrease systematically with age (in the range ∼0.4-5 Myr). The decrease of the X-ray luminosity of TTSs (slope ∼-0.6) in the case of NGC 1893 seems to be faster than observed in the case of other star-forming regions (slope -0.2 to -0.5). There is indication that the sources having relatively large NIR excess have relatively lower LX values. TTSs in NGC 1893 do not follow the well established X-ray activity - rotation relation as in the case of main-sequence stars.

  20. Do C/O > 1 main-sequence stars build carbon planets?

    NASA Astrophysics Data System (ADS)

    Bergfors, Carolina; Farihi, Jay

    2015-12-01

    The existence of rocky yet carbon-dominated planets is predicated on a C-dominated (rather than O-dominated) nebular birthplace. Planet-forming stars with unusually high C/O > 0.8 could provide such a favourable environment. Therefore the highest C/O ratios in potential host stars is of interest, as it has a direct impact on the frequency of C-dominated planetary systems.Interestingly, C/O > 1 main-sequence stars are relatively common, and have distinctive optical spectra dominated by strong molecular carbon features. These dwarf carbon (dC) stars are even more numerous than carbon giants, but their origins may be fundamentally tied to binarity -- where the C/O ratio is increased by C-rich material accreted from an AGB star (now a white dwarf). We are undertaking a survey of dC stars to measure their binary fraction, and to ascertain if any C/O > 1 stars are single and thus favourable to C-rich planet formation.We present first results from our ongoing search for radial velocity companions to dC stars. Multi-epoch observations of 22 systems show clear RV variability for > 70% of targets, suggesting that most, if not all, dC stars are in binary systems. The presence of a formerly more massive companion suggests their C/O > 1 is an enhancement via mass transfer, and not primordial. If correct, C/O > 1 stars may host oxygen-dominated (possibly circumbinary) planets, significantly reducing the Galactic real estate available for carbon planets.

  1. Analysis of flares in the chromosphere and corona of main- and pre-main-sequence M-type stars

    NASA Astrophysics Data System (ADS)

    Crespo-Chacón, I.

    2015-11-01

    This Ph.D. Thesis revolves around flares on main- and pre-main-sequence M-type stars. We use observations in different wavelength ranges with the aim of analysing the effects of flares at different layers of stellar atmospheres. In particular, optical and X-ray observations are used so that we can study how flares affect, respectively, the chromosphere and the corona of stars. In the optical range we carry out a high temporal resolution spectroscopic monitoring of UV Ceti-type stars aimed at detecting non-white-light flares (the most typical kind of solar flares) in stars other than the Sun. With these data we confirm that non-white-light flares are a frequent phenomenon in UV Ceti-type stars, as observed in the Sun. We study and interpret the behaviour of different chromospheric lines during the flares detected on AD Leo. By using a simplified slab model of flares (Jevremović et al. 1998), we are able to determine the physical parameters of the chromospheric flaring plasma (electron density and electron temperature), the temperature of the underlying source, and the surface area covered by the flaring plasma. We also search for possible relationships between the physical parameters of the flaring plasma and other properties such as the flare duration, area, maximum flux and released energy. This work considerably extends the existing sample of stellar flares analysed with good quality spectroscopy in the optical range. In X-rays we take advantage of the great sensitivity, wide energy range, high energy resolution, and continuous time coverage of the EPIC detectors - on-board the XMMNewton satellite - in order to perform time-resolved spectral analysis of coronal flares. In particular, in the UV Ceti-type star CC Eri we study two flares that are weaker than those typically reported in the literature (allowing us to speculate about the role of flares as heating agents of stellar atmospheres); while in the pre-main-sequence M-type star TWA 11B (with no signatures of

  2. Comparison of the main sequence of reflexive saccades and the quick phases of optokinetic nystagmus

    PubMed Central

    Garbutt, S.; Harwood, M.; Harris, C.

    2001-01-01

    BACKGROUND/AIMS—Abnormalities in the saccadic main sequence are an important finding and may indicate pathology of the ocular motor periphery or central neurological disorders. In young or uncooperative patients it can be difficult eliciting a sufficient number of saccades to measure the main sequence. It is often assumed that the quick phases of optokinetic nystagmus (OKN) are identical to saccades. If this were the case, it would be feasible to use OKN, an involuntary response that is easily evoked, as a simple way of eliciting many saccades. The aim of this study was to determine whether reflexive saccades and the quick phases of OKN are indeed identical, and whether OKN quick phases could have a clinical role in identifying patients with slow saccades.
METHODS—OKN and reflexive saccades were recorded from 10 healthy adults using an infrared limbus eye tracker and bitemporal DC electro-oculography simultaneously. OKN was stimulated by rotating a full field patterned curtain around the subject at 10-50°/s. Reflexive saccades were elicited to red LED targets at 5-20° eccentricity.
RESULTS—OKN quick phases tended to have a longer duration compared to saccades, but these differences were not significant. OKN quick phases had a slightly lower peak velocity compared to saccades, which was statistically significant (p<0.05).
CONCLUSION—The main sequence for duration is the same for reflexive saccades and OKN quick phases. The main sequence for peak velocity is slightly faster for reflexive saccades than OKN quick phases, but the difference is unlikely to be of clinical significance. As an illustration of the potential of this technique, the authors demonstrate that OKN quick phases show similar slowness to saccades in a child with brainstem pathology caused by Gaucher disease type III. It is concluded that recording OKN may be a simple clinical means for approximating the main sequence.

 PMID:11734524

  3. STELLAR AGES AND CONVECTIVE CORES IN FIELD MAIN-SEQUENCE STARS: FIRST ASTEROSEISMIC APPLICATION TO TWO KEPLER TARGETS

    SciTech Connect

    Silva Aguirre, V.; Christensen-Dalsgaard, J.; Chaplin, W. J.; Basu, S.; Deheuvels, S.; Brandao, I. M.; Cunha, M. S.; Sousa, S. G.; Dogan, G.; Metcalfe, T. S.; Serenelli, A. M.; Garcia, R. A.; Ballot, J.; Weiss, A.; Appourchaux, T.; Casagrande, L.; Cassisi, S.; Creevey, O. L.; Lebreton, Y.; Noels, A.; and others

    2013-06-01

    Using asteroseismic data and stellar evolution models we obtain the first detection of a convective core in a Kepler field main-sequence star, putting a stringent constraint on the total size of the mixed zone and showing that extra mixing beyond the formal convective boundary exists. In a slightly less massive target the presence of a convective core cannot be conclusively discarded, and thus its remaining main-sequence lifetime is uncertain. Our results reveal that best-fit models found solely by matching individual frequencies of oscillations corrected for surface effects do not always properly reproduce frequency combinations. Moreover, slightly different criteria to define what the best-fit model is can lead to solutions with similar global properties but very different interior structures. We argue that the use of frequency ratios is a more reliable way to obtain accurate stellar parameters, and show that our analysis in field main-sequence stars can yield an overall precision of 1.5%, 4%, and 10% in radius, mass, and age, respectively. We compare our results with those obtained from global oscillation properties, and discuss the possible sources of uncertainties in asteroseismic stellar modeling where further studies are still needed.

  4. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    SciTech Connect

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A.; Arlinghaus, H.F.

    1993-06-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  5. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    SciTech Connect

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A. ); Arlinghaus, H.F. )

    1993-01-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  6. BVI CCD photometry of the broad main-sequence globular cluster NGC 1851

    SciTech Connect

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E. )

    1990-03-01

    Three-color CCD C-M diagrams are presented for the globular cluster NGC 1851, showing an extreme breadth of the main-sequence, similar to that of Omega Centauri. It is found that the main-sequence turnoff points are located at V(TO) = 19.44 + or - 0.10, with colors at B-V = 0.54 + or - 0.02, V-I = 0.61 + or - 0.02, and B-I = 1.15 + or - 0.03. The best fit to the VandenBerg and Bell (1985) isochrones is shown to be all C-M diagrams with Y = 0.20, Fe/H abundance ratio = -1.27, and (m-M)v = 15.45. It is concluded that NGC 1851 has a Delta V(TO - HB) = 3.34 + or - 0.10 and an age of 16 + or - 2 Gyr. 29 refs.

  7. Spectral class distribution of circumstellar material in main-sequence stars

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1988-01-01

    A detailed statistical evaluation of IRAS survey data of main-sequence stars within 25 pc indicates that the presence of cool shells around A, F, and G main-sequence stars is the rule, rather than the exception. While luminosity bias favors A and F stars, the typical G star still appears to have almost three orders of magnitude more excess than the excess of the solar system due to known zodiacal dust and all planets combined. The Vega effect is thus not restricted to stars of particularly young age. The finding that the 'archetypical' solar system appears to have much less far-IR excess than the majority of G stars supports a speculation that the sun could have a cloud of cold particles beyond the outer planets, undetected by IRAS viewing from earth.

  8. JUPITER WILL BECOME A HOT JUPITER: CONSEQUENCES OF POST-MAIN-SEQUENCE STELLAR EVOLUTION ON GAS GIANT PLANETS

    SciTech Connect

    Spiegel, David S.; Madhusudhan, Nikku E-mail: Nikku.Madhusudhan@yale.edu

    2012-09-10

    When the Sun ascends the red giant branch (RGB), its luminosity will increase and all the planets will receive much greater irradiation than they do now. Jupiter, in particular, might end up more highly irradiated than the hot Neptune GJ 436b and, hence, could appropriately be termed a 'hot Jupiter'. When their stars go through the RGB or asymptotic giant branch stages, many of the currently known Jupiter-mass planets in several-AU orbits will receive levels of irradiation comparable to the hot Jupiters, which will transiently increase their atmospheric temperatures to {approx}1000 K or more. Furthermore, massive planets around post-main-sequence stars could accrete a non-negligible amount of material from the enhanced stellar winds, thereby significantly altering their atmospheric chemistry as well as causing a significant accretion luminosity during the epochs of most intense stellar mass loss. Future generations of infrared observatories might be able to probe the thermal and chemical structure of such hot Jupiters' atmospheres. Finally, we argue that, unlike their main-sequence analogs (whose zonal winds are thought to be organized in only a few broad, planetary-scale jets), red-giant hot Jupiters should have multiple, narrow jets of zonal winds and efficient day-night redistribution.

  9. TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

    SciTech Connect

    Huber, D.; Bedding, T. R.; Stello, D.; Hekker, S.; Mathur, S.; Mosser, B.; Verner, G. A.; Elsworth, Y. P.; Hale, S. J.; Chaplin, W. J.; Bonanno, A.; Buzasi, D. L.; Campante, T. L.; Kallinger, T.; Silva Aguirre, V.; De Ridder, J.; Garcia, R. A.; Frandsen, S.; Houdek, G.; and others

    2011-12-20

    We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen and Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.

  10. Mathematical Assessment of Physical and Chemical Processes from the middle B to the early F Type Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Yuce, Kutluay; Adelman, Saul J.

    2016-07-01

    The middle B to the early F main sequence stars are thought to have some of the most quiet atmospheres. In this part of the HR diagram we find stars with atmospheres in radiative equilibrium. They lack the convective circulations of the middle F and cooler stars and the massive stellar winds of hotter stars. Diffusion theory requires the Chemically Peculiar stars to have relatively quiet atmospheres and if there are no magnetic fields they should lack abundance spots. If we look at stars evolving off the Main Sequence in this part of the HR diagram, we see that the evolutionary paths of stars of different mass do not cross. So if we compare stars with the same effective temperature and surface gravity, we are studying stars of the same luminosity and mass. By comparing their elemental abundances, we might be able to identify physical processes which cause their abundances to be different. In this work we begin with stars whose effective temperatures and surface gravities are similar, and which has been analyzed by us using spectra obtained from the Dominion Astrophysical Observatory.

  11. Evolution and detectability of comet clouds during post-main-sequence stellar evolution

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Brandt, John C.; Shull, J. Michael

    1990-01-01

    The destruction of volatile-rich comet disks and Oort-type clouds around luminous post-main-sequence stars is modeled. The models are in agreement with several aspects of existing observations of water and complex molecules in the envelopes of giant and supergiant stars. If confirmed, these results would establish the common existence of Oort-type clouds around other stars and would constitute indirect evidence for sites of past planetary formation.

  12. The mass balance of earthquakes and earthquake sequences

    NASA Astrophysics Data System (ADS)

    Marc, O.; Hovius, N.; Meunier, P.

    2016-04-01

    Large, compressional earthquakes cause surface uplift as well as widespread mass wasting. Knowledge of their trade-off is fragmentary. Combining a seismologically consistent model of earthquake-triggered landsliding and an analytical solution of coseismic surface displacement, we assess how the mass balance of single earthquakes and earthquake sequences depends on fault size and other geophysical parameters. We find that intermediate size earthquakes (Mw 6-7.3) may cause more erosion than uplift, controlled primarily by seismic source depth and landscape steepness, and less so by fault dip and rake. Such earthquakes can limit topographic growth, but our model indicates that both smaller and larger earthquakes (Mw < 6, Mw > 7.3) systematically cause mountain building. Earthquake sequences with a Gutenberg-Richter distribution have a greater tendency to lead to predominant erosion, than repeating earthquakes of the same magnitude, unless a fault can produce earthquakes with Mw > 8 or more.

  13. Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol

    1995-01-01

    We present Goddard High Resolution Spectrograph observations of the M8 Ve star VB 10 (equal to G1 752B), located very near the end of the stellar main sequence, and its dM3.5 binary companion G1 752A. These coeval stars provide a test bed for studying whether the outer atmospheres of stars respond to changes in internal structure as stars become fully convective near mass 0.3 solar mass (about spectral type M5), where the nature of the stellar magnetic dynamo presumably changes, and near the transition from red to brown dwarfs near mass 0.08 solar mass (about spectral type M9), when hydrogen burning ceases at the end of the main sequence. We obtain upper limits for the quiescent emission of VB 10 but observe a transition region spectrum during a large flare, which indicates that some type of magnetic dynamo must be present. Two indirect lines of evidence-scaling from the observed X-ray emission and scaling from a time-resolved flare on AD Leo suggest that the fraction of the stellar bolometric luminosity that heats the transition region of VB 10 outside of obvious flares is comparable to, or larger than, that for G1 752A. This suggests an increase in the magnetic heating rates, as measured by L(sub line)/L(sub bol) ratios, across the radiative/convective core boundary and as stars approach the red/brown dwarf boundary. These results provide new constraints for dynamo models and models of coronal and transition-region heating in late-type stars.

  14. 76 FR 55161 - Boston and Maine Corporation-Abandonment Exemption-Middlesex County, Mass.; Springfield Terminal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Boston and Maine Corporation--Abandonment Exemption--Middlesex County, Mass... Middlesex County, Mass. The line traverses United States Postal Service Zip Codes 02471 and...

  15. Deep CCD photometry in globular clusters. I. The Main sequence of M4

    SciTech Connect

    Richer, H.B.; Fahlman, G.G.

    1984-02-01

    From deep UBV CCD images obtained with CTIO 4 m telescope, we have constructed color-magnitude and color-color diagrams in a 4' x 3' field of the globular cluster M4. Inspection of the color-magnitude diagram indicates that the main sequence down to almost 3 mag below the turnoff has an intrinsic width no wider than +- 0.02 magnitudes in (B--V) implying that the variation in helium abundance (..delta..Y) in these stars must be less than +- 0.07 (..delta..Z = 0) or that the fractional variation in metallicity (..delta..Z/Z) is no larger than +- 0.22 (..delta..Y = 0). To a similar limit on the main sequence, the binary frequency in the field studied must be very small and does not exceed 3% of all main-sequence stars (and may be zero). The luminosity function of M4 is rather flat and definitely turns over by V = 20 (M/sub v/ = 7.5).

  16. Exo-Planetary Phoenix: Rebirth of Planetary Systems Beyond the Main Sequence

    NASA Astrophysics Data System (ADS)

    Marengo, M.

    2014-04-01

    Mounting evidence suggests that planetary systems may be a common feature of stars that have evolved beyond the main sequence. Warm debris disks around white dwarfs and "pulsar" planets orbiting a neutron star are a strong indication that planetary systems may, at least in same cases, survive the dramatic phenomena leading to stellar death. A close look at these late evolutionary stages, however, suggests that these systems may be more than mere survivors of doomed pre-existing exo-planetary systems. The circumstellar environment of post-main sequence stars bears surprising similarities to the conditions leading to pre-main sequence planetary formation: a metal-rich environment often characterized by the presence of circumstellar or circumbinary disks. Are these conditions conducive to the birth of a second-generation planetary system, like a phoenix rising from the ashes of ancient worlds? In this talk we will discuss how the physical conditions in the winds of dusty giant stars may be favorable for renewed planetary formation, with particular emphasis on the effects of enhanced metallicity, binarity and the timescales available for the formation of a new generation of planets.

  17. The Chromospheric Activity and Age Relation among Main Sequence Stars in Wide Binaries

    NASA Astrophysics Data System (ADS)

    Oswalt, Terry D.; Zhao, J.

    2011-05-01

    We present a study of the chromospheric activity levels in 36 wide binary systems. Thirty one of the binaries contain a white dwarf component. In such binaries the total age can be estimated by adding the cooling age of the white dwarf to an estimate of the progenitor's main sequence lifetime. To better understand how activity correlates to stellar age, 14 cluster member stars were also observed. Our observations confirm the expectation derived from studies of single main sequence stars that activity decays with age. However, for the first time we demonstrate that this relation extends from 50 Myr to at least 8 Gyr for stars with 1.0 < V-I < 2.4 color index. We also find that little change in activity occurs for stars with V-I < 1.0 and ages between 1 Gyr and 5 Gyr. The slope of constant age lines in the activity vs. V-I plane for young stars is relatively steep, while for old stars it appears to be flatter. In addition, our sample includes five wide binaries consisting of two main sequence stars. These pairs provide a useful reality check on our activity vs. age relation. Support for this project from NSF grant AST-0807919 to Florida Institute of Technology is gratefully acknowledged.

  18. Main-sequence stars with circumstellar solid material - The Vega phenomenon

    NASA Technical Reports Server (NTRS)

    Backman, Dana E.; Paresce, Francesco

    1993-01-01

    The detection of solid grains with temperatures of 50 to 125 K and fractional bolometric luminosities in the range 10 exp -5 to 10 exp -3 early in the IRAS mission around three nearby A main-sequence stars, Alpha Lyrae (Vega), Alpha Piscis Austrinus (Fomalhaut), and Beta Pictoris, is discussed. Spatial resolution of the emission indicates that: the grains are larger than interstellar grains, the material probably lies in disks in the stellar equatorial planes, the disks extend to distances of 100 to 1000 AU from the stars, and zones a few tens of AU in radius around the central stars are relatively empty. Subsequent surveys of IRAS data reveal more than 100 main-sequence stars of all spectral classes having unresolved excesses with similar temperatures and fractional luminosities to the three prototypes. Some stars with excesses have estimated ages of 1 to 5 Gyr. Thus, main-sequence FIR excesses appear to be widespread and are present in systems old enough to be probably past the stage of active planet formation.

  19. A buried marine depositional sequence (Presumpscot FM. ) N. of the marine limit, Waterboro, Maine

    SciTech Connect

    Morency, R.E. )

    1993-03-01

    Subsurface investigations conducted in Waterboro, ME (York Co.) in connection with studies of two hazardous waste sites and a municipal water supply exploration project, have demonstrated that a laterally extensive sequence of marine deposits underlies surficial sediments mapped as non-esker ice contact glacio-fluvial deposits. The marine deposits consist of a fining-downwards sequence of grey, micaceous sands (fine to medium, grading down to a silty-fine sand), which grade downward into a thick ([plus minus] 30 feet) grey silt/clay unit, which itself shows a fining-downward trend. The stratigraphy is likely correlative to the Presumpscot Formation, as described by Bloom (1963). The bottom of the regressive marine sequence is marked at several locations by a thin layer of sand-sized biotite mica. Lodgement till was encountered only at scattered localities (in boreholes) at each site. The bedrock surface is of considerable relief, with changes of 200--300 feet over short distances detected. The sequence appears to be the record of a rapidly transgressing sea which inundated a valley where outwash had been deposited by meltwater ahead of retreating ice. As the sea retreated, up to 70 feet of sediment was deposited in a continuous, coarsening-upwards sequence. Subsequent to the marine regression, the sediments were reworked in a subaerial (braided stream) environment. The Surficial Geologic Map of Maine shows that the inland limit of late-glacial marine submergence is located approximately 8 miles southwest of Waterboro, in Alfred, Maine. The marine limit in Alfred takes the form of a NNE trending, blunt-ended embayment. The results of this study suggest that the marine embayment once extended northward from Alfred, and is now a buried feature, possibly representing a preglacial valley, which hosted an estuary in late Wisconsonian time.

  20. A Turnover in the Galaxy Main Sequence of Star Formation at M * ~ 1010 M ⊙ for Redshifts z < 1.3

    NASA Astrophysics Data System (ADS)

    Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.; Toft, Sune; Scoville, N. Z.; Hung, Chao-Ling; Le Floc'h, Emeric; Ilbert, Olivier; Zahid, H. Jabran; Aussel, Hervé; Capak, Peter; Kartaltepe, Jeyhan S.; Kewley, Lisa J.; Li, Yanxia; Schawinski, Kevin; Sheth, Kartik; Xiao, Quanbao

    2015-03-01

    The relationship between galaxy star formation rates (SFRs) and stellar masses (M *) is reexamined using a mass-selected sample of ~62,000 star-forming galaxies at z <= 1.3 in the COSMOS 2 deg2 field. Using new far-infrared photometry from Herschel-PACS and SPIRE and Spitzer-MIPS 24 μm, along with derived infrared luminosities from the NRK method based on galaxies' locations in the restframe color-color diagram (NUV - r) versus (r - K), we are able to more accurately determine total SFRs for our complete sample. At all redshifts, the relationship between median SFR and M * follows a power law at low stellar masses, and flattens to nearly constant SFR at high stellar masses. We describe a new parameterization that provides the best fit to the main sequence and characterizes the low mass power-law slope, turnover mass, and overall scaling. The turnover in the main sequence occurs at a characteristic mass of about M 0 ~ 1010 M ⊙ at all redshifts. The low mass power-law slope ranges from 0.9-1.3 and the overall scaling rises in SFR as a function of (1 + z)4.12 ± 0.10. A broken power-law fit below and above the turnover mass gives relationships of SFR \\propto M*0.88 +/- 0.06 below the turnover mass and SFR \\propto M*0.27 +/- 0.04 above the turnover mass. Galaxies more massive than M * >~ 1010 M ⊙ have a much lower average specific star formation rate (sSFR) than would be expected by simply extrapolating the traditional linear fit to the main sequence found for less massive galaxies.

  1. The age rank of the nearest pre-main-sequence groups

    NASA Astrophysics Data System (ADS)

    Lawson, Warrick A.; Lyo, A.-Ran; Bessell, M. S.

    2009-11-01

    We address the age rank of the nearest pre-main-sequence (PMS) associations, using low-resolution spectrophotometry to measure gravity-sensitive indices in these stars. We compare spectral index-colour sequences for the PMS populations and rank them according to the strength of their gravity-sensitive features. The age rank using the gravity method is in general agreement with the ranking of these groups suggested by colour-magnitude (CM) diagram placement. Several of the groups have a kinematic origin in the Oph-Sco-Cen OB association. For three of them, their age rank is also in agreement with epochs resulting from a formation scenario for the OB association.

  2. BVRI main-sequence photometry of the globular cluster M4

    SciTech Connect

    Alcaino, G.; Liller, W.

    1984-09-01

    We present BV and RI photographic photometry of 1421 and 189 stars, respectively, in the intermediate metallicity globular cluster M4 (NGC 6121). This investigation includes the first results of RI main-sequence photometry of a globular cluster. The use of longer wavelengths and longer color baselines provides the potential of improved isochrone fittings and underscores the urgent need for calculations of RI synthetic isochrones to be compared with observations. The Pickering-Racine wedge was used with the ESO 3.6 m telescope, the Las Campanas 2.5 m du Pont telescope, and the CTIO 1 m Yale telescope to extend the photoelectric limit from Vroughly-equal16.1 to Vroughly-equal19.1. We have determined the position of the main-sequence turnoff to lie at V = 16.6 +- 0.2 (m.e.) and B-V = 0.80 +- 0.03 (m.e.). A comparison of our BV observations with the CCD data of Richer and Fahlman shows excellent agreement: the two fifucial main sequences agree at all points to within 0.025 mag and, on average, to 0.013 mag. For the cluster we derive a distance modulus (m-M)/sub V/ = 12.52 +- 0.2 and reddening E(B-V) = 0.44 +- 0.03, results which confirm that at a distance of 2 kpc, M4 is the closest globular clusters to the Sun. Using the isochrones of VandenBerg, we deduce an age 13 +- 2 Gyr. As noted in several other investigations, there is a striking deficiency of stars in certain parts of the color-magnitude diagram; in M4 we find a pronounced gap over approx.0.6 mag at the base of the subgiant branch.

  3. The mosaic multiple stellar populations in ω Centauri: the horizontal branch and the main sequence

    NASA Astrophysics Data System (ADS)

    Tailo, M.; Di Criscienzo, M.; D'Antona, F.; Caloi, V.; Ventura, P.

    2016-04-01

    We interpret the stellar population of ω Centauri by means of a population synthesis analysis, following the most recent observational guidelines for input metallicities, helium and [(C+N+O)/Fe] contents. We deal at the same time with the main sequences, sub-giant and horizontal branch (HB) data. The reproduction of the observed colour-magnitude features is very satisfying and bears interesting hints concerning the evolutionary history of this peculiar stellar ensemble. Our main results are: (1) no significant spread in age is required to fit the colour-magnitude diagram. Indeed, we can use coeval isochrones for the synthetic populations, and we estimate that the ages fall within a ˜0.5 Gyr time interval; in particular the most metal-rich population can be coeval (in the above meaning) with the others, if its stars are very helium-rich (Y ˜ 0.37) and with the observed CNO enhancement ([(C+N+O)/Fe] = +0.7); (2) a satisfactory fit of the whole HB is obtained, consistent with the choice of the populations providing a good reproduction of the main sequence and sub-giant data; (3) the split in magnitude observed in the red HB is well reproduced assuming the presence of two stellar populations in the two different sequences observed: a metal-poor population made of stars evolving from the blue side (luminous branch) and a metal richer one whose stars are in a stage closer to the zero age HB (dimmer branch). This modelization also fits satisfactorily the period and the [Fe/H] distribution of the RR Lyrae stars.

  4. Can rotation explain the multiple main-sequence turn-offs of Magellanic Cloud star clusters?

    NASA Astrophysics Data System (ADS)

    Girardi, Léo; Eggenberger, Patrick; Miglio, Andrea

    2011-03-01

    Many intermediate-age star clusters in the Magellanic Clouds present multiple main-sequence turn-offs (MMSTOs), which challenge the classical idea that star formation in such objects took place over short time-scales. It has been recently suggested that the presence of fast rotators among main-sequence stars could be the cause of such features, hence relaxing the need for extended periods of star formation. In this Letter, we compute evolutionary tracks and isochrones of models with and without rotation. We find that, for the same age and input physics, both kinds of models present turn-offs with an almost identical position in the colour-magnitude diagrams (CMDs). As a consequence, a dispersion of rotational velocities in coeval ensembles of stars could not explain the presence of MMSTOs. We construct several synthetic CMDs for the different kinds of tracks and combinations of them. The models that best reproduce the morphology of observed MMSTOs are clearly those assuming a significant spread in the stellar ages - as long as ˜400 Myr - added to a moderate amount of convective core overshooting. Only these models produce the detailed ‘golf club’ shape of observed MMSTOs. A spread in rotational velocities alone cannot do anything similar. We also discuss models involving a mixture of stars with and without overshooting, as an additional scenario to producing MMSTOs with coeval populations. We find that they produce turn-offs with a varying extension in the CMD direction perpendicular to the lower main sequence, which are clearly not present in observed MMSTOs.

  5. Kinematic Distances of Pre-main Sequence Stars in the Lupus Star-Forming Region

    NASA Astrophysics Data System (ADS)

    Galli, P. A. B.; Teixeira, R.; Ducourant, C.; Bertout, C.

    2014-06-01

    The problem of the determination of distances has always played a central role in astronomy. However, little recent progress has been made in the distance determination of faint young stellar objects such as pre-main sequence (PMS) stars. Many of the PMS stars were neither observed by the Hipparcos satellite due to their magnitude nor have any trigonometric parallax measured from the ground due to their distance. Here we investigate the kinematic properties of the Lupus moving group with the primary objective of deriving individual parallaxes for each group member of this star-forming region.

  6. X-rays from Pre-Main Sequence Stars: Recent Results and Future Challenges

    NASA Astrophysics Data System (ADS)

    Skinner, S.

    2016-08-01

    I will summarize recent results of X-ray observations of pre-main sequence (PMS) stars, focusing on XMM-Newton RGS and Chandra HETG observations of RY Tau. These observations provide the best grating spectra obtained so far of a jet-driving T Tauri star. I will also identify key questions regarding the origin and nature of X-ray emission from PMS stars that have emerged from 16 years of XMM-Newton and Chandra observations and which present challenges for the next decade.

  7. Analysis of C II resonance lines in some main sequence early-type stars

    NASA Technical Reports Server (NTRS)

    Cugier, H.; Hardorp, J.

    1988-01-01

    IUE data are used to investigate C II resonance lines at 1335 A in eight main-sequence stars of spectral types from A0 to B3, and both LTE and non-LTE line profiles have been computed. In stars with low rotational velocities (such as Vega, Pi Cet, and Tau Her), logarithmic carbon abundances log N(C/H) of -3.55 to -3.45 are obtained for the non-LTE case. The LTE analysis reveals lower carbon abundances by about 0.1 dex. Significant differences among the fast rotating stars are pointed out.

  8. Upper limits on extreme ultraviolet radiation from nearby main sequence and subgiant stars

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Linsky, J. L.; Margon, B.; Bowyer, S.

    1978-01-01

    Flux upper limits for 44-800 A radiation were measured in a sample of nearby main sequence stars and one subgiant star with the aid of the Apollo-Soyuz grazing incidence telescope. Comparisons of emission measure upper limits with three different methods for predicting coronal properties cannot yet determine which, if any, are valid. Data for Alpha Centauri A and B are consistent with recent HEAO-1 soft X-ray measurements which suggest that the surface flux of coronal emission from the Alpha Cen system is comparable to that of the 'normal' sun.

  9. Hunting for millimeter flares from magnetic reconnection in pre-main sequence spectroscopic binaries

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Salter, D. M.; Hogerheijde, M. R.; Moór, A.; Blake, G. A.

    2011-03-01

    Context. Recent observations of the low-mass pre-main sequence (PMS), eccentric spectroscopic binaries DQ Tau and V773 Tau A reveal that their millimeter spectrum is occasionally dominated by flares from non-thermal emission processes. The transient activity is believed to be synchrotron in nature, resulting from powerful magnetic reconnection events when the separate magnetic structures of the binary components are briefly capable of interacting and forced to reorganize, typically near periastron. Aims: We conducted the first systematic study of the millimeter variability toward a sample of 12 PMS spectroscopic binaries with the aim to characterize the proliferation of flares amongst sources likely to experience similar interbinary reconnection events. The source sample consists entirely of short-period, close-separation binaries that possess either a high orbital eccentricity (e > 0.1) or a circular orbit (e ≈ 0). Methods: Using the MAMBO2 array on the IRAM 30 m telescope, we carried out continuous monitoring at 1.25 mm (240 GHz) over a 4-night period during which all of the high-eccentricity binaries approached periastron. We also obtained simultaneous optical VRI measurements, since a strong link is often observed between stellar reconnection events (traced via X-rays) and optical brightenings. Results: UZ Tau E is the only source to be detected at millimeter wavelengths, and it exhibited significant variation (F1.25mm = 87-179 mJy); it is also the only source to undergo strong simultaneous optical variability (ΔR ≈ 0.9 mag). The binary possesses the largest orbital eccentricity in the current sample, a predicted factor in star-star magnetic interaction events. With orbital parameters and variable accretion activity similar to DQ Tau, the millimeter behavior of UZ Tau E draws many parallels to the DQ Tau model for colliding magnetospheres. However, on the basis of our observations alone, we cannot determine whether the variability is repetitive, or if it

  10. X-ray sources in regions of star formation. II - The pre-main-sequence G star HDE 283572

    NASA Technical Reports Server (NTRS)

    Walter, F. M.; Brown, A.; Linsky, J. L.; Rydgren, A. E.; Vrba, F.

    1987-01-01

    This paper reports the detection of HDE 283572, a ninth-magnitude G star 8 arcmin south of RY Tau, as a bright X-ray source. The observations reveal this object to be a fairly massive (about 2 solar masses) pre-main-sequence star associated with the Taurus-Auriga star formation complex. It exhibits few of the characteristics of the classical T Tauri stars and is a good example of a 'naked' T Tauri star. The star is a mid-G subgiant, of about three solar radii and rotates with a period of 1.5 d. The coronal and chromospheric surface fluxes are similar to those of the most active late type stars (excluding T Tauri stars). The X-ray and UV lines most likely arise in different atmospheric structures. Radiative losses are some 1000 times the quiet solar value and compare favorably with those of T Tauri stars.

  11. Quantifying the contamination by old main-sequence stars in young moving groups: the case of the Local Association

    NASA Astrophysics Data System (ADS)

    López-Santiago, J.; Micela, G.; Montes, D.

    2009-05-01

    Context: The associations and moving groups of young stars are excellent laboratories for investigating stellar formation in the solar neighborhood. Previous results have confirmed that a non-negligible fraction of old main-sequence stars is present in the lists of possible members of young stellar kinematic groups. A detailed study of the properties of these samples is needed to separate the young stars from old main-sequence stars with similar space motion, and identify the origin of these structures. Aims: Our intention is to characterize members of the young moving groups, determine their age distribution, and quantify the contamination by old main-sequence stars, in particular, for the Local Association. Methods: We used stars possible members of the young (~10-650 Myr) moving groups from the literature. To determine the age of the stars, we used several suitable age indicators for young main sequence stars, i.e., X-ray fluxes from the Rosat All-sky Survey database, photometric data from the Tycho-2, Hipparcos, and 2MASS database. We also used spectroscopic data, in particular the equivalent width of the lithium line Li i λ6707.8 Å and Hα, to constrain the range of ages of the stars. Results: By combining photometric and spectroscopic data, we were able to separate the young stars (10-650 Myr) from the old (>1 Gyr) field ones. We found, in particular, that the Local Association is contaminated by old field stars at the level of ~30%. This value must be considered as the contamination for our particular sample, and not of the entire Local Association. For other young moving groups, it is more difficult to estimate the fraction of old stars among possible members. However, the level of X-ray emission can, at least, help to separate two age populations: stars with <200 Myr and stars older than this. Conclusions: Among the candidate members of the classical moving groups, there is a non-negligible fraction of old field stars that should be taken into account

  12. An IUE Atlas of Pre-Main-Sequence Stars. II. Far-Ultraviolet Accretion Diagnostics in T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Johns-Krull, Christopher M.; Valenti, Jeff A.; Linsky, Jeffrey L.

    2000-08-01

    We use our ultraviolet (UV) atlas of pre-main-sequence stars constructed from all useful, short-wavelength, low-resolution spectra in the International Ultraviolet Explorer (IUE) satellite Final Archive to analyze the short-wavelength UV properties of 49 T Tauri stars (TTSs). We compare the line and continuum fluxes in these TTSs with each other and with previously published parameters of these systems, including rotation rate, infrared excess, and mass accretion rate. The short-wavelength continuum in the classical TTSs (CTTSs) appears to originate in a ~10,000 K optically thick plasma, while in the naked TTSs (NTTSs-stars without dusty disks) the continuum appears to originate in the stellar atmosphere. We show that all of the TTSs in our sample lie in the regime of ``saturated'' magnetic activity due to their small Rossby numbers. However, while some of the TTSs show emission line surface fluxes consistent with this saturation level, many CTTSs show significantly stronger emission than predicted by saturation. In these stars, the emission line luminosity in the high ionization lines present in the spectrum between 1200 and 2000 Å correlates well with the mass accretion rate. Therefore, we conclude that the bulk of the short-wavelength emission seen in CTTSs results from accretion related processes and not from dynamo-driven magnetic activity. Using CTTSs with known mass accretion rates, we calibrate the relationship between M and LC IV to derive the mass accretion rate for some CTTSs which for various reasons have never had their mass accretion rates measured. Finally, several of the CTTSs show strong emission from molecular hydrogen. While emission from H2 cannot form in gas at a temperature of ~105 K, the strength of the molecular hydrogen emission is nevertheless well correlated with all the other emissions displayed in the IUE short-wavelength bandpass. This suggests that the H2 emission is in fact fluorescent emission pumped by the emission (likely Ly

  13. LESSONS IN DE NOVO PEPTIDE SEQUENCING BY TANDEM MASS SPECTROMETRY

    PubMed Central

    Medzihradszky, Katalin F.; Chalkley, Robert J.

    2015-01-01

    Mass spectrometry has become the method of choice for the qualitative and quantitative characterization of protein mixtures isolated from all kinds of living organisms. The raw data in these studies are MS/MS spectra, usually of peptides produced by proteolytic digestion of a protein. These spectra are “translated” into peptide sequences, normally with the help of various search engines. Data acquisition and interpretation have both been automated, and most researchers look only at the summary of the identifications without ever viewing the underlying raw data used for assignments. Automated analysis of data is essential due to the volume produced. However, being familiar with the finer intricacies of peptide fragmentation processes, and experiencing the difficulties of manual data interpretation allow a researcher to be able to more critically evaluate key results, particularly because there are many known rules of peptide fragmentation that are not incorporated into search engine scoring. Since the most commonly used MS/MS activation method is collision-induced dissociation (CID), in this article we present a brief review of the history of peptide CID analysis. Next, we provide a detailed tutorial on how to determine peptide sequences from CID data. Although the focus of the tutorial is de novo sequencing, the lessons learned and resources supplied are useful for data interpretation in general. PMID:25667941

  14. Evolution of X-ray activity of 1-3 Msun late-type stars in early post-main-sequence phases

    NASA Astrophysics Data System (ADS)

    Pizzolato, N.; Maggio, A.; Sciortino, S.

    2000-09-01

    We have investigated the variation of coronal X-ray emission during early post-main-sequence phases for a sample of 120 late-type stars within 100 pc, and with estimated masses in the range 1-3 Msun, based on Hipparcos parallaxes and recent evolutionary models. These stars were observed with the ROSAT/PSPC, and the data processed with the Palermo-CfA pipeline, including detection and evaluation of X-ray fluxes (or upper limits) by means of a wavelet transform algorithm. We have studied the evolutionary history of X-ray luminosity and surface flux for stars in selected mass ranges, including stars with inactive A-type progenitors on the main sequence and lower mass solar-type stars. Our stellar sample suggests a trend of increasing X-ray emission level with age for stars with masses M > 1.5 Msun, and a decline for lower-mass stars. A similar behavior holds for the average coronal temperature, which follows a power-law correlation with the X-ray luminosity, independently of their mass and evolutionary state. We have also studied the relationship between X-ray luminosity and surface rotation rate for stars in the same mass ranges, and how this relationships departs from the Lx ~ vrot2 law followed by main-sequence stars. Our results are interpreted in terms of a magnetic dynamo whose efficiency depends on the stellar evolutionary state through the mass-dependent changes of the stellar internal structure, including the properties of envelope convection and the internal rotation profile.

  15. ON THE MULTIPLICITY OF THE ZERO-AGE MAIN-SEQUENCE O STAR HERSCHEL 36

    SciTech Connect

    Arias, Julia I.; Barba, Rodolfo H.; Gamen, Roberto C.; Apellaniz, Jesus MaIz; Alfaro, Emilio J.; Sota, Alfredo; Bidin, Christian Moni

    2010-02-10

    We present the analysis of high-resolution optical spectroscopic observations of the zero-age main-sequence O star Herschel 36 spanning six years. This star is definitely a multiple system, with at least three components detected in its spectrum. Based on our radial-velocity (RV) study, we propose a picture of a close massive binary and a more distant companion, most probably in wide orbit about each other. The orbital solution for the binary, whose components we identify as O9 V and B0.5 V, is characterized by a period of 1.5415 {+-} 0.0006 days. With a spectral type O7.5 V, the third body is the most luminous component of the system and also presents RV variations with a period close to 498 days. Some possible hypotheses to explain the variability are briefly addressed and further observations are suggested.

  16. Post Main Sequence Orbital Circularization of Binary Stars in the Large and Small Magellanic Clouds.

    SciTech Connect

    Faccioli, L; Alcock, C; Cook, K

    2007-11-20

    We present results from a study of the orbits of eclipsing binary stars (EBs) in the Magellanic Clouds. The samples comprise 4510 EBs found in the Large Magellanic Cloud (LMC) by the MACHO project, 2474 LMC EBs found by the OGLE-II project (of which 1182 are also in the MACHO sample), 1380 in the Small Magellanic Cloud (SMC) found by the MACHO project, and 1317 SMC EBs found by the OGLE-II project (of which 677 are also in the MACHO sample); we also consider the EROS sample of 79 EBs in the bar of the LMC. Statistics of the phase differences between primary and secondary minima allow us to infer the statistics of orbital eccentricities within these samples. We confirm the well-known absence of eccentric orbit in close binary stars. We also find evidence for rapid circularization in longer period systems when one member evolves beyond the main sequence, as also found by previous studies.

  17. Thermal infrared imaging of GGD27-IRS. The active pre-main sequence star revealed

    NASA Astrophysics Data System (ADS)

    Aspin, C.; Puxley, P. J.; Blanco, P. R.; Pina, R. K.; Pickup, D. A.; Paterson, M. J.; Sylvester, J.; Laird, D. C.; Bridger, A.; Daly, P. N.; Griffin, J. L.

    1994-12-01

    We present near-IR (NIR) 2.2-4.7 micrometer imaging of the core region of the pre-main sequence bipolar CO outflow source GGD27-IRS. Indirect evidence from earlier imaging polarimetry and long-slit spectroscopy suggested that the true young active star in the region, GGD27-ILL, is heavily embedded and completely obscured even at 2 micrometers. Our new 4.7 micrometer images directly detect this source for the first time locating it at 2.0 sec west, 1.3 sec south of the bright NIR source IRS2. This position is 0.2 sec from the position derived from our earlier NIR polarization maps. New mid-IR images of the core region show three point-like sources which are identified as GGD27-ILL, IRS7 and IRS8. We discuss the morphological composition of the core region in light of our discovery.

  18. ASCA X-ray observations of pre-main-sequence stars

    NASA Technical Reports Server (NTRS)

    Skinner, S. L.; Walter, F. M.; Yamauchi, S.

    1996-01-01

    The results of recent Advanced Satellite for Cosmology and Astrophysics (ASCA) X-ray observations of two pre-main sequence stars are presented: the weak emission line T Tauri star HD 142361, and the Herbig Ae star HD 104237. The solid state imaging spectrometer spectra for HD 142361 shows a clear emission line from H-like Mg 7, and spectral fits reveal a multiple temperature plasma with a hot component of at least 16 MK. The spectra of HD 104237 show a complex temperature structure with the hottest plasma at temperatures of greater than 30 MK. It is concluded that mechanisms that predict only soft X-ray emission can be dismissed for Herbig Ae stars.

  19. Possibility that the far ultraviolet excess in M31 is due to main sequence stars

    NASA Technical Reports Server (NTRS)

    Tinsley, B. M.

    1972-01-01

    The far ultraviolet excess in the central region of M31, observed by OAO-2, could be due to young main sequence stars. More than enough such stars are present in the model for the M31 inner disk population derived by Tinsley and Spinrad (1971) to match line- and color-indices at longer wavelengths. If the far ultraviolet radiation of typical galaxies arises from young stars, the theoretical ultraviolet background is enhanced greatly by evolutionary effects. For evolution at the rate of Tinsley and Spinrad's model for M31, or of Arnett's (1971) linear model for our galaxy, the enhancement is a factor 2.5 to 14, depending on the Hubble constant and the spectrum at wavelengths below 1700 A.

  20. Far-infrared observations of main sequence stars surrounded by dust shells

    NASA Technical Reports Server (NTRS)

    Harvey, Paul M.; Smith, Beverly J.; Difrancesco, J.

    1995-01-01

    We have used a 20-channel bolometer array on NASA's Kuiper Airborne Observatory to obtain photometry and size information for several main sequence stars surrounded by dust shells. The observations were made at 50 and/or 100 micrometers on flights based in Christchurch, New Zealand, in 1992, 1993. The stars include the 'Vega-like' star, Beta Pic, as well as two stars, HD 135344 and HD 139614, suggested by subsequent studies to belong possibly to the same class. The results of our observations are best interpreted as upper limits to the far-infrared sizes of the dust clouds around these stars. In addition to the basic size and flux measurements, we have fit simple, optically thin models to the Beta Pic data to explore the range of shell parameters consistent with our limits and with previous observations.

  1. Pre-main-sequence isochrones - III. The Cluster Collaboration isochrone server

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.; Rees, Jon M.; Naylor, Tim; Mayne, N. J.; Jeffries, R. D.; Mamajek, Eric E.; Rowe, John

    2014-12-01

    We present an isochrone server for semi-empirical pre-main-sequence model isochrones in the following systems: Johnson-Cousins, Sloan Digital Sky Survey, Two-Micron All-Sky Survey, Isaac Newton Telescope (INT) Wide-Field Camera and INT Photometric Hα Survey (IPHAS)/UV-Excess Survey (UVEX). The server can be accessed via the Cluster Collaboration webpage http://www.astro.ex.ac.uk/people/timn/isochrones/. To achieve this, we have used the observed colours of member stars in young clusters with well-established age, distance and reddening to create fiducial loci in the colour-magnitude diagram. These empirical sequences have been used to quantify the discrepancy between the models and data arising from uncertainties in both the interior and atmospheric models, resulting in tables of semi-empirical bolometric corrections (BCs) in the various photometric systems. The model isochrones made available through the server are based on existing stellar interior models coupled with our newly derived semi-empirical BCs. As part of this analysis, we also present new cluster parameters for both the Pleiades and Praesepe, yielding ages of 135^{+20}_{-11} and 665^{+14}_{-7} {Myr} as well as distances of 132 ± 2 and 184 ± 2 pc, respectively (statistical uncertainty only).

  2. Global Multilocus Sequence Typing Analysis of Mycoplasma bovis Isolates Reveals Two Main Population Clusters

    PubMed Central

    Churchward, C. P.; Schnee, C.; Sachse, K.; Lysnyansky, I.; Catania, S.; Iob, L.; Ayling, R. D.; Nicholas, R. A. J.

    2014-01-01

    Mycoplasma bovis is a major bovine pathogen associated with bovine respiratory disease complex and is responsible for substantial economic losses worldwide. M. bovis is also associated with other clinical presentations in cattle, including mastitis, otitis, arthritis, and reproductive disorders. To gain a better understanding of the genetic diversity of this pathogen, a multilocus sequence typing (MLST) scheme was developed and applied to the characterization of 137 M. bovis isolates from diverse geographical origins, obtained from healthy or clinically infected cattle. After in silico analysis, a final set of 7 housekeeping genes was selected (dnaA, metS, recA, tufA, atpA, rpoD, and tkt). MLST analysis demonstrated the presence of 35 different sequence types (STs) distributed in two main clonal complexes (CCs), defined at the double-locus variant level, namely, CC1, which included most of the British and German isolates, and CC2, which was a more heterogeneous and geographically distant group of isolates, including European, Asian, and Australian samples. Index of association analysis confirmed the clonal nature of the investigated M. bovis population, based on MLST data. This scheme has demonstrated high discriminatory power, with the analysis showing the presence of genetically distant and divergent clusters of isolates predominantly associated with geographical origins. PMID:25540400

  3. EXOZODIACAL DUST LEVELS FOR NEARBY MAIN-SEQUENCE STARS: A SURVEY WITH THE KECK INTERFEROMETER NULLER

    SciTech Connect

    Millan-Gabet, R.; Serabyn, E.; Mennesson, B.; Traub, W. A.; Stapelfeldt, K.; Bryden, G.; Colavita, M. M.; Booth, A. J.; Barry, R. K.; Danchi, W. C.; Kuchner, M.; Stark, C. C.; Ragland, S.; Hrynevych, M.; Woillez, J.

    2011-06-10

    The Keck Interferometer Nuller (KIN) was used to survey 25 nearby main-sequence stars in the mid-infrared, in order to assess the prevalence of warm circumstellar (exozodiacal) dust around nearby solar-type stars. The KIN measures circumstellar emission by spatially blocking the star but transmitting the circumstellar flux in a region typically 0.1-4 AU from the star. We find one significant detection ({eta} Crv), two marginal detections ({gamma} Oph and {alpha} Aql), and 22 clear non-detections. Using a model of our own solar system's zodiacal cloud, scaled to the luminosity of each target star, we estimate the equivalent number of target zodis needed to match our observations. Our three zodi detections are {eta} Crv (1250 {+-} 260), {gamma} Oph (200 {+-} 80), and {alpha} Aql (600 {+-} 200), where the uncertainties are 1{sigma}. The 22 non-detected targets have an ensemble weighted average consistent with zero, with an average individual uncertainty of 160 zodis (1{sigma}). These measurements represent the best limits to date on exozodi levels for a sample of nearby main-sequence stars. A statistical analysis of the population of 23 stars not previously known to contain circumstellar dust (excluding {eta} Crv and {gamma} Oph) suggests that, if the measurement errors are uncorrelated (for which we provide evidence) and if these 23 stars are representative of a single class with respect to the level of exozodi brightness, the mean exozodi level for the class is <150 zodis (3{sigma} upper limit, corresponding to 99% confidence under the additional assumption that the measurement errors are Gaussian). We also demonstrate that this conclusion is largely independent of the shape and mean level of the (unknown) true underlying exozodi distribution.

  4. VizieR Online Data Catalog: White dwarf main-sequence binaries (Rebassa-Mansergas+, 2013)

    NASA Astrophysics Data System (ADS)

    Rebassa-Mansergas, A.; Agurto-Gangas, C.; Schreiber, M. R.; Gansicke, B. T.; Koester, D.

    2014-07-01

    The spectroscopic catalogue of white dwarf main-sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS) is the largest and most homogeneous sample of compact binary stars currently known. However, because of selection effects, the current sample is strongly biased against systems containing cool white dwarfs and/or early-type companions, which are predicted to dominate the intrinsic population. In this study, we present colour selection criteria that combines optical (ugriz DR8 SDSS) plus infrared (yjhk DR9 UKIRT Infrared Sky Survey, JHK Two Micron All Sky Survey and/or W1W2 Wide-Field Infrared Survey Explorer) magnitudes to select 3419 photometric candidates of harbouring cool white dwarfs and/or dominant (M dwarf) companions. We demonstrate that 84 percent of our selected candidates are very likely genuine WDMS binaries, and that the white dwarf effective temperatures and secondary star spectral types of 71 percent of our selected sources are expected to be below <~10000-15000K, and concentrated at ~M2-3, respectively. We also present an updated version of the spectroscopic SDSS WDMS binary catalogue, which incorporates 47 new systems from SDSS DR8. The bulk of the DR8 spectroscopy is made up of main-sequence stars and red giants that were targeted as part of the Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey, therefore the number of new spectroscopic WDMS binaries in DR 8 is very small compared to previous SDSS data releases. Despite their low number, DR8 WDMS binaries are found to be dominated by systems containing cool white dwarfs and therefore represent an important addition to the spectroscopic sample. The updated SDSS DR8 spectroscopic catalogue of WDMS binaries consists of 2316 systems. We compare our updated catalogue with recently published lists of WDMS binaries and conclude that it currently represents the largest, most homogeneous and cleanest sample of spectroscopic WDMS binaries from SDSS. (5 data files).

  5. The evolution of angular momentum among zero-age main-sequence solar-type stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Stauffer, John R.; Macgregor, Keith B.; Jones, Burton F.

    1993-01-01

    We consider a survey of rotation among F, G, and K dwarfs of the Pleiades in the context of other young clusters (Alpha Persei and the Hyades) and pre-main-sequence (PMS) stars (in Taurus-Auriga and Orion) in order to examine how the angular momentum of a star like the sun evolves during its early life on the main sequence. The rotation of PMS stars can be evolved into distributions like those seen in the young clusters if there is only modest, rotation-independent angular momentum loss prior to the ZAMS. Even then, the ultrafast rotators (UFRs, or ZAMS G and K dwarfs with v sin i equal to or greater than 30 km/s) must owe their extra angular momentum to their conditions of formation and to different angular momentum loss rates above a threshold velocity, for it is unlikely that these stars had angular momentum added as they neared the ZAMS, nor can a spread in ages within a cluster account for the range of rotation seen. Only a fraction of solar-type stars are thus capable of becoming UFRs, and it is not a phase that all stars experience. Simple scaling relations (like the Skumanich relation) applied to the observed surface rotation rates of young solar-type stars cannot reproduce the way in which the Pleiades evolve into the Hyades. We argue that invoking internal differential rotation in these ZAMS stars can explain several aspects of the observations and thus can provide a consistent picture of ZAMS angular momentum evolution.

  6. The slowly pulsating B-star 18 Pegasi: A testbed for upper main sequence stellar evolution

    NASA Astrophysics Data System (ADS)

    Irrgang, A.; Desphande, A.; Moehler, S.; Mugrauer, M.; Janousch, D.

    2016-06-01

    The predicted width of the upper main sequence in stellar evolution models depends on the empirical calibration of the convective overshooting parameter. Despite decades of discussions, its precise value is still unknown and further observational constraints are required to gauge it. Based on a photometric and preliminary asteroseismic analysis, we show that the mid B-type giant 18 Peg is one of the most evolved members of the rare class of slowly pulsating B-stars and, thus, bears tremendous potential to derive a tight lower limit for the width of the upper main sequence. In addition, 18 Peg turns out to be part of a single-lined spectroscopic binary system with an eccentric orbit that is greater than 6 years. Further spectroscopic and photometric monitoring and a sophisticated asteroseismic investigation are required to exploit the full potential of this star as a benchmark object for stellar evolution theory. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 265.C-5038(A), 069.C-0263(A), and 073.D-0024(A). Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), proposals H2005-2.2-016 and H2015-3.5-008. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, proposal W15BN015. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  7. Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: The effects of including recombination energy

    NASA Astrophysics Data System (ADS)

    Zorotovic, M.; Schreiber, M. R.; García-Berro, E.; Camacho, J.; Torres, S.; Rebassa-Mansergas, A.; Gänsicke, B. T.

    2014-08-01

    Context. Detached white dwarf + main sequence (WD+MS) post-common-envelope binaries (PCEBs) are perhaps the most suitable objects for testing predictions of close-compact binary-star evolution theories, in particular, common-envelope (CE) evolution. Consequently, the population of WD+MS PCEBs has been simulated by several authors in the past and the predictions have been compared with the observations. However, most of those theoretical predictions did not take into account the possible contributions to the envelope ejection from additional sources of energy (mostly recombination energy) stored in the envelope. Aims: Here we update existing binary population models of WD+MS PCEBs by assuming that in addition to a fraction αCE of the orbital energy, a fraction αrec of the recombination energy available within the envelope contributes to ejecting the envelope. Methods: We performed Monte Carlo simulations of 107 MS+MS binaries for 9 different combinations of αCE and αrec using standard assumptions for the initial primary mass function, binary separations, and initial-mass-ratio distribution and evolved these systems using the publicly available binary star evolution (BSE) code. Results: Including a fraction of the recombination energy leads to a clear prediction of a large number of long orbital period (≳10 days) systems mostly containing high-mass WDs. The fraction of systems with He-core WD primaries (MWD ≲ 0.5 M⊙) increases with the CE efficiency and the existence of very low-mass He WDs (≲0.3 M⊙) is only predicted for high values of the CE efficiency, i.e. αCE ≳ 0.5. All models predict on average longer orbital periods for PCEBs containing C/O-core WDs (MWD ≳ 0.5 M⊙) than for PCEBs containing He WDs. This effect increases with increasing values of both efficiencies, i.e., αCE and αrec. Longer periods after the CE phase are also predicted for systems containing more massive secondary stars. The initial-mass-ratio distribution affects the

  8. Identification of novel Arabidopsis thaliana upstream open reading frames that control expression of the main coding sequences in a peptide sequence-dependent manner

    PubMed Central

    Ebina, Isao; Takemoto-Tsutsumi, Mariko; Watanabe, Shun; Koyama, Hiroaki; Endo, Yayoi; Kimata, Kaori; Igarashi, Takuya; Murakami, Karin; Kudo, Rin; Ohsumi, Arisa; Noh, Abdul Latif; Takahashi, Hiro; Naito, Satoshi; Onouchi, Hitoshi

    2015-01-01

    Upstream open reading frames (uORFs) are often found in the 5′-leader regions of eukaryotic mRNAs and can negatively modulate the translational efficiency of the downstream main ORF. Although the effects of most uORFs are thought to be independent of their encoded peptide sequences, certain uORFs control translation of the main ORF in a peptide sequence-dependent manner. For genome-wide identification of such peptide sequence-dependent regulatory uORFs, exhaustive searches for uORFs with conserved amino acid sequences have been conducted using bioinformatic analyses. However, whether the conserved uORFs identified by these bioinformatic approaches encode regulatory peptides has not been experimentally determined. Here we analyzed 16 recently identified Arabidopsis thaliana conserved uORFs for the effects of their amino acid sequences on the expression of the main ORF using a transient expression assay. We identified five novel uORFs that repress main ORF expression in a peptide sequence-dependent manner. Mutational analysis revealed that, in four of them, the C-terminal region of the uORF-encoded peptide is critical for the repression of main ORF expression. Intriguingly, we also identified one exceptional sequence-dependent regulatory uORF, in which the stop codon position is not conserved and the C-terminal region is not important for the repression of main ORF expression. PMID:25618853

  9. Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity

    SciTech Connect

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Kalirai, Jason S.; Correnti, Matteo E-mail: verap@stsci.edu E-mail: correnti@stsci.edu; and others

    2014-12-10

    We present a color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1-2 Gyr old) star clusters in the Magellanic Clouds, including eight clusters for which new data were obtained. We find that all star clusters in our sample feature extended main-sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate the dynamical evolution of clusters with and without initial mass segregation. Our main results are (1) the fraction of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages of ≲1.35 Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity v {sub esc}, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects of interactive binary stars or a range of stellar rotation velocities. We therefore argue that the eMSTO phenomenon is mainly caused by extended star formation within the clusters; and (3) we find that v {sub esc} ≥ 15 km s{sup –1} out to ages of at least 100 Myr for all clusters featuring eMSTOs, and v {sub esc} ≤ 12 km s{sup –1} at all ages for two lower-mass clusters in the same age range that do not show eMSTOs. We argue that eMSTOs only occur for clusters whose early escape velocities are higher than the wind velocities of stars that provide material from which second-generation stars can form. The threshold of 12-15 km s{sup –1} is consistent with wind velocities of intermediate-mass asymptotic giant branch stars and massive binary stars in the literature.

  10. An Analysis of the Population of Extended Main Sequence Turn-off Clusters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.; Bastian, Nate

    2016-08-01

    We combine a number of recent studies of the extended main sequence turn-off (eMSTO) phenomenon in intermediate age stellar (1 - 2 Gyr) clusters in the Large Magellanic Cloud (LMC) in order to investigate its origin. By employing the largest sample of eMSTO LMC clusters so far used, we show that cluster core radii, masses, and dynamical state are not related to the genesis of eMSTOs. Indeed, clusters in our sample have core radii, masses and age-relaxation time ratios in the range ≈ 2-6 pc, 3.35- 5.50 (log(Mcls/M⊙) and 0.2-8.0, respectively. These results imply that the eMSTO phenomenon is not caused by actual age spreads within the clusters. Furthermore, we confirm from a larger cluster sample recent results including young eMSTO LMC clusters, that the FWHM at the MSTOs correlates most strongly with cluster age, suggesting that a stellar evolutionary effect is the underlying cause.

  11. Delayed Gratification Habitable Zones: When Deep Outer Solar System Regions Become Balmy During Post-Main Sequence Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan

    2003-06-01

    Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >105 objects >=50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, ~109 Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy.

  12. Delayed gratification habitable zones: when deep outer solar system regions become balmy during post-main sequence stellar evolution.

    PubMed

    Stern, S Alan

    2003-01-01

    Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >10(5) objects > or =50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, approximately 10(9) Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy.

  13. Delayed gratification habitable zones: when deep outer solar system regions become balmy during post-main sequence stellar evolution.

    PubMed

    Stern, S Alan

    2003-01-01

    Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >10(5) objects > or =50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, approximately 10(9) Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy. PMID:14577880

  14. Post-common envelope binaries from SDSS - VII. A catalogue of white dwarf-main sequence binaries

    NASA Astrophysics Data System (ADS)

    Rebassa-Mansergas, A.; Gänsicke, B. T.; Schreiber, M. R.; Koester, D.; Rodríguez-Gil, P.

    2010-02-01

    We present a catalogue of 1602 white-dwarf-main-sequence (WDMS) binaries from the spectroscopic Sloan Digital Sky Survey Data Release 6 (SDSS DR6). Among these, we identify 440 as new WDMS binaries. We select WDMS binary candidates by template fitting all 1.27 million DR6 spectra, using combined constraints in both χ2 and signal-to-noise ratio. In addition, we use Galaxy Evolution Explorer (GALEX) and UKIRT Infrared Sky Survey (UKIDSS) magnitudes to search for objects in which one of the two components dominates the SDSS spectrum. We use a decomposition/fitting technique to measure the effective temperatures, surface gravities, masses and distances to the white dwarfs, as well as the spectral types and distances to the companions in our catalogue. Distributions and density maps obtained from these stellar parameters are then used to study both the general properties and the selection effects of WDMS binaries in the SDSS. A comparison between the distances measured to the white dwarfs and the main-sequence companions shows dsec > dwd for approximately one-fifth of the systems, a tendency already found in our previous work. The hypothesis that magnetic activity raises the temperature of the inter-spot regions in active stars that are heavily covered by cool spots, leading to a bluer optical colour compared to inactive stars, remains the best explanation for this behaviour. We also make use of SDSS-GALEX-UKIDSS magnitudes to investigate the distribution of WDMS binaries, as well as their white-dwarf effective temperatures and companion star spectral types, in ultraviolet to infrared colour space. We show that WDMS binaries can be very efficiently separated from single main-sequence stars and white dwarfs when using a combined ultraviolet, optical and infrared colour selection. Finally, we also provide radial velocities for 1068 systems measured from the NaI λλ8183.27, 8194.81 absorption doublet and/or the Hα emission line. Among the systems with multiple SDSS

  15. A search for pre-main sequence stars in the high-latitude molecular clouds. II - A survey of the Einstein database

    NASA Technical Reports Server (NTRS)

    Caillault, Jean-Pierre; Magnani, Loris

    1990-01-01

    The preliminary results are reported of a survey of every EINSTEIN image which overlaps any high-latitude molecular cloud in a search for X-ray emitting pre-main sequence stars. This survey, together with complementary KPNO and IRAS data, will allow the determination of how prevalent low mass star formation is in these clouds in general and, particularly, in the translucent molecular clouds.

  16. A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING ''MAIN SEQUENCE'' FROM z ∼ 0-6

    SciTech Connect

    Speagle, J. S.; Steinhardt, C. L.; Silverman, J. D.; Capak, P. L.

    2014-10-01

    Using a compilation of 25 studies from the literature, we investigate the evolution of the star-forming galaxy (SFG) main sequence (MS) in stellar mass and star formation rate (SFR) out to z ∼ 6. After converting all observations to a common set of calibrations, we find a remarkable consensus among MS observations (∼0.1 dex 1σ interpublication scatter). By fitting for time evolution of the MS in bins of constant mass, we deconvolve the observed scatter about the MS within each observed redshift bin. After accounting for observed scatter between different SFR indicators, we find the width of the MS distribution is ∼0.2 dex and remains constant over cosmic time. Our best fits indicate the slope of the MS is likely time-dependent, with our best-fit log SFR(M {sub *}, t) = (0.84 ± 0.02 – 0.026 ± 0.003 × t)log M {sub *} – (6.51 ± 0.24 – 0.11 ± 0.03 × t), where t is the age of the universe in Gyr. We use our fits to create empirical evolutionary tracks in order to constrain MS galaxy star formation histories (SFHs), finding that (1) the most accurate representations of MS SFHs are given by delayed-τ models, (2) the decline in fractional stellar mass growth for a ''typical'' MS galaxy today is approximately linear for most of its lifetime, and (3) scatter about the MS can be generated by galaxies evolving along identical evolutionary tracks assuming an initial 1σ spread in formation times of ∼1.4 Gyr.

  17. Near-Infrared Photometric Monitoring of the Pre-Main-Sequence Object KH 15D

    NASA Astrophysics Data System (ADS)

    Kusakabe, Nobuhiko; Tamura, Motohide; Nakajima, Yasushi; Kandori, Ryo; Ishihara, Akika; Nagata, Tetsuya; Nagayama, Takahiro; Nishiyama, Shogo; Baba, Daisuke; Sato, Shuji; Sugitani, Koji; Turner, Edwin L.; Abe, Lyu; Kimura, Hiroshi; Yamamoto, Tetsuo

    2005-10-01

    Extensive photometric monitoring of KH 15D, an enigmatic variable in the young star cluster NGC 2264, has been conducted. Simultaneous and accurate near-infrared photometry (JHKs bands) between 2003 December and 2005 March is presented, covering most of the variable phase. The infrared variability is characterized by a large-amplitude and long-lasting eclipse, as observed in the optical. The period of variability is 48.3+/-0.2 days, the maximum photometric amplitude of variability is ~4.2 mag, and the eclipse duration is ~0.5 in phase units. These are consistent with the most recent period, amplitude, and duration in the optical. The blueing of the J-H color (~0.16 mag) during eclipse, which has been suggested before, is unambiguously confirmed; a similar blueing at H-Ks is less clear but is probably present at a similar level. The overall shape of the JHKs light curves is very similar to the optical one, including a fair time symmetry and less stable flux during eclipse, with a slight hump near zero phase. Most of these variability features of KH 15D observed at near-infrared wavelengths can be explained with the recent model that employs an eclipse by an inclined, precessing disk and an outer scattering region around a pre-main-sequence binary.

  18. THE MULTIPLE PRE-MAIN-SEQUENCE SYSTEM HBC 515 IN L1622

    SciTech Connect

    Reipurth, Bo; Aspin, Colin; Herbig, George

    2010-04-15

    The bright pre-main-sequence star HBC 515 (HD 288313) located in the L1622 cometary cloud in Orion has been studied extensively with optical/infrared imaging and ultraviolet/optical/infrared spectroscopy. The spectra indicate that HBC 515 is a weakline T Tauri star (TTS) of spectral type K2V. Adaptive optics imaging in the K band reveals that HBC 515 is a binary with two equally bright components separated by 0.''5. A very faint third component is found 5'' to the northwest. Spitzer IRAC and MIPS observations show that at mid-infrared wavelengths this third source dominates the system, suggesting that it is a protostar still embedded in the nascent cloud of HBC 515. The close association of a weakline TTS with a newborn protostar in a multiple system is noteworthy. Two nearby TTSs are likely associated with the HBC 515 multiple system, and the dynamical evolution of the complex that would lead to such a configuration is considered.

  19. Soft X-ray observations of pre-main sequence stars in the chamaeleon dark cloud

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Kriss, Gerard A.

    1987-01-01

    Einstein IPC observations of the nearby Chamaeleon I star forming cloud show 22 well-resolved soft X-ray sources in a 1x2 deg region. Twelve are associated with H-alpha emission line pre-main sequence (PMS) stars, and four with optically selected PMS stars. Several X-ray sources have two or more PMS stars in their error circles. Optical spectra were obtained at CTIO of possible stellar counterparts of the remaining X-ray sources. They reveal 5 probable new cloud members, K7-MO stars with weak or absent emission lines. These naked X-ray selected PMS stars are similar to those found in the Taurus-Auriga cloud. The spatial distributions and H-R diagrams of the X-ray and optically selected PMS stars in the cloud are very similar. Luminosity functions indicate the Chamaeleon stars are on average approximately 5 times more X-ray luminous than Pleiad dwarfs. A significant correlation between L sub x and optical magnitude suggests this trend may continue within the PMS phase of stellar evolution. The relation of increasing X-ray luminosity with decreasing stellar ages is thus extended to stellar ages as young as 1 million years.

  20. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence.

    PubMed

    Hallinan, G; Littlefair, S P; Cotter, G; Bourke, S; Harding, L K; Pineda, J S; Butler, R P; Golden, A; Basri, G; Doyle, J G; Kao, M M; Berdyugina, S V; Kuznetsov, A; Rupen, M P; Antonova, A

    2015-07-30

    Aurorae are detected from all the magnetized planets in our Solar System, including Earth. They are powered by magnetospheric current systems that lead to the precipitation of energetic electrons into the high-latitude regions of the upper atmosphere. In the case of the gas-giant planets, these aurorae include highly polarized radio emission at kilohertz and megahertz frequencies produced by the precipitating electrons, as well as continuum and line emission in the infrared, optical, ultraviolet and X-ray parts of the spectrum, associated with the collisional excitation and heating of the hydrogen-dominated atmosphere. Here we report simultaneous radio and optical spectroscopic observations of an object at the end of the stellar main sequence, located right at the boundary between stars and brown dwarfs, from which we have detected radio and optical auroral emissions both powered by magnetospheric currents. Whereas the magnetic activity of stars like our Sun is powered by processes that occur in their lower atmospheres, these aurorae are powered by processes originating much further out in the magnetosphere of the dwarf star that couple energy into the lower atmosphere. The dissipated power is at least four orders of magnitude larger than what is produced in the Jovian magnetosphere, revealing aurorae to be a potentially ubiquitous signature of large-scale magnetospheres that can scale to luminosities far greater than those observed in our Solar System. These magnetospheric current systems may also play a part in powering some of the weather phenomena reported on brown dwarfs. PMID:26223623

  1. Main sequence of the metal-poor globular cluster M30 (NGC 7099)

    SciTech Connect

    Alcaino, G.; Liller, W.

    1980-10-01

    We present photographic photometry for 673 stars in the metal-poor globular cluster M30 (NGC 7099). The Racine wedge was used with the CTIO 1-m Yale telescope (..delta..m=3/sup m/.60), the CTIO 4-m telescope (..delta..m=6/sup m/.83), and the ESO 3.6-m telescope (..delta..m=4/sup m/.12) to extend the photoelectric limit from Vapprox. =16.3 to Vapprox. =20.4. For the main-sequence turn-off, we have determined its position to lie at V=18.4 +- 0.1 (m.e.) and B-V=0.49 +- 0.03 (m.e.). From these values, we calculate the intrinsic values M/sub v/ =3.87 and (B-V)/sub 0/=0.47. For the cluster as a whole, we derive a distance modulus (m-M)/sub V/=14.53 +- 0.15 and reddening E(B-V)=0.02 +- 0.02. Using the models of Iben and Rood (Astrophys. J. 159, 605 (1970)) and the isochrones of Demarque and McClure ((1977), in Evolution of Galaxies and Stellar Populations, edited by B. Tinsley and R. B. Larson (Yale University Observatory, New Haven), p. 199), we deduce the cluster's age to be 14.5( +- 4.0) x 10/sup 9/ yr. The large uncertainty in this value emphasizes the dire need for more work on cluster evolution.

  2. The Evolved Main-sequence Channel: HST and LBT Observations of CSS120422:111127+571239

    NASA Astrophysics Data System (ADS)

    Kennedy, M.; Garnavich, P.; Callanan, P.; Szkody, P.; Littlefield, C.; Pogge, R.

    2015-12-01

    The “evolved main-sequence (EMS)” channel is thought to contribute significantly to the population of AM CVn-type systems in the Galaxy, and also to the number of cataclysmic variables (CVs) detected below the period minimum for hydrogen rich systems. CSS 120422:J111127+571239 was discovered by the Catalina Sky Survey in 2012 April. Its period was found to be 56 minutes, well below the minimum, and the optical spectrum is clearly depleted in hydrogen relative to helium, but still has two orders of magnitude more hydrogen than AM CVn stars. Doppler tomography of the Hα line hinted at a spiral structure existing in the disk. Here we present spectroscopy of CSS 120422:J111127+571239 using the Cosmic Origins Spectrograph FUV instrument on the Hubble Space Telescope and using the MODS spectrograph on the Large Binocular Telescope. The UV spectrum shows Si iv, N v, and He ii, but no detectable C iv. The anomalous nitrogen/carbon ratio is seen in a small number of other CVs and confirms a unique binary evolution. We also present and compare the optical spectrum of V418 Ser and advocate that it is also an EMS system.

  3. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence.

    PubMed

    Hallinan, G; Littlefair, S P; Cotter, G; Bourke, S; Harding, L K; Pineda, J S; Butler, R P; Golden, A; Basri, G; Doyle, J G; Kao, M M; Berdyugina, S V; Kuznetsov, A; Rupen, M P; Antonova, A

    2015-07-30

    Aurorae are detected from all the magnetized planets in our Solar System, including Earth. They are powered by magnetospheric current systems that lead to the precipitation of energetic electrons into the high-latitude regions of the upper atmosphere. In the case of the gas-giant planets, these aurorae include highly polarized radio emission at kilohertz and megahertz frequencies produced by the precipitating electrons, as well as continuum and line emission in the infrared, optical, ultraviolet and X-ray parts of the spectrum, associated with the collisional excitation and heating of the hydrogen-dominated atmosphere. Here we report simultaneous radio and optical spectroscopic observations of an object at the end of the stellar main sequence, located right at the boundary between stars and brown dwarfs, from which we have detected radio and optical auroral emissions both powered by magnetospheric currents. Whereas the magnetic activity of stars like our Sun is powered by processes that occur in their lower atmospheres, these aurorae are powered by processes originating much further out in the magnetosphere of the dwarf star that couple energy into the lower atmosphere. The dissipated power is at least four orders of magnitude larger than what is produced in the Jovian magnetosphere, revealing aurorae to be a potentially ubiquitous signature of large-scale magnetospheres that can scale to luminosities far greater than those observed in our Solar System. These magnetospheric current systems may also play a part in powering some of the weather phenomena reported on brown dwarfs.

  4. Iron-group Abundances in the Metal-poor Main-Sequence Turnoff Star HD~84937

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Cowan, John J.; Kobayashi, Chiaki; Pignatari, Marco; Lawler, James E.; Den Hartog, Elizabeth A.; Wood, Michael P.

    2016-01-01

    We have derived new, very accurate abundances of the Fe-group elements Sc through Zn (Z = 21-30) in the bright main-sequence turnoff star HD 84937 based on high-resolution spectra covering the visible and ultraviolet spectral regions. New or recent laboratory transition data for 14 species of seven elements have been used. Abundances from more than 600 lines of non-Fe species have been combined with about 550 Fe lines in HD 84937 to yield abundance ratios of high precision. The abundances have been determined from both neutral and ionized transitions, which generally are in agreement with each other. We find no substantial departures from the standard LTE Saha ionization balance in this [Fe/H] = -2.32 star. Noteworthy among the abundances are [Co/Fe] = +0.14 and [Cu/Fe] = -0.83, in agreement with past studies of abundance trends in this and other low-metallicity stars, and < [{{Sc,Ti,V/Fe}}]> = +0.31, which has not been noted previously. A detailed examination of scandium, titanium, and vanadium abundances in large-sample spectroscopic surveys reveals that they are positively correlated in stars with [Fe/H] < -2 HD 84937 lies at the high end of this correlation. These trends constrain the synthesis mechanisms of Fe-group elements. We also examine the Galactic chemical evolution abundance trends of the Fe-group elements, including a new nucleosynthesis model with jet-like explosion effects.

  5. A DETAILED FAR-ULTRAVIOLET SPECTRAL ATLAS OF MAIN-SEQUENCE B STARS

    SciTech Connect

    Smith, Myron A.

    2010-02-01

    We have constructed a detailed spectral atlas covering the wavelength region 930-1225 A for 10 sharp-lined B0-B9 stars near the main sequence. Most of the spectra we assembled are from the archives of the Far Ultraviolet Spectroscopic Explorer satellite, but for nine stars, wavelength coverage above 1188 A was taken from high-resolution International Ultraviolet Explorer or echelle Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra. To represent the tenth star at type B0.2 V, we used the Copernicus atlas of {tau} Sco. We made extensive line identifications in the region 949-1225 A of all atomic features having published oscillator strengths at types B0, B2, and B8. These are provided as a supplementary data product-hence the term detailed atlas. Our list of found features totals 2288, 1612, and 2469 lines, respectively. We were able to identify 92%, 98%, and 98% of these features with known atomic transitions with varying degrees of certainty in these spectra. The remaining lines do not have published oscillator strengths. Photospheric lines account for 94%, 87%, and 91%, respectively, of all our identifications, with the remainder being due to interstellar (usually molecular H{sub 2}) lines. We also discuss the numbers of lines with respect to the distributions of various ions for these three most studied spectral subtypes. A table is also given of 162 least blended lines that can be used as possible diagnostics of physical conditions in B star atmospheres.

  6. Phylogenetic reconstruction of Bantu kinship challenges Main Sequence Theory of human social evolution

    PubMed Central

    Opie, Christopher; Shultz, Susanne; Atkinson, Quentin D.; Currie, Thomas

    2014-01-01

    Kinship provides the fundamental structure of human society: descent determines the inheritance pattern between generations, whereas residence rules govern the location a couple moves to after they marry. In turn, descent and residence patterns determine other key relationships such as alliance, trade, and marriage partners. Hunter-gatherer kinship patterns are viewed as flexible, whereas agricultural societies are thought to have developed much more stable kinship patterns as they expanded during the Holocene. Among the Bantu farmers of sub-Saharan Africa, the ancestral kinship patterns present at the beginning of the expansion are hotly contested, with some arguing for matrilineal and matrilocal patterns, whereas others maintain that any kind of lineality or sex-biased dispersal only emerged much later. Here, we use Bayesian phylogenetic methods to uncover the history of Bantu kinship patterns and trace the interplay between descent and residence systems. The results suggest a number of switches in both descent and residence patterns as Bantu farming spread, but that the first Bantu populations were patrilocal with patrilineal descent. Across the phylogeny, a change in descent triggered a switch away from patrifocal kinship, whereas a change in residence triggered a switch back from matrifocal kinship. These results challenge “Main Sequence Theory,” which maintains that changes in residence rules precede change in other social structures. We also indicate the trajectory of kinship change, shedding new light on how this fundamental structure of society developed as farming spread across the globe during the Neolithic. PMID:25422461

  7. THE EVOLVED MAIN-SEQUENCE CHANNEL: HST AND LBT OBSERVATIONS OF CSS 120422:111127+571239

    SciTech Connect

    Kennedy, M.; Callanan, P.; Garnavich, P.; Littlefield, C.; Szkody, P.; Pogge, R.

    2015-12-20

    The “evolved main-sequence (EMS)” channel is thought to contribute significantly to the population of AM CVn-type systems in the Galaxy, and also to the number of cataclysmic variables (CVs) detected below the period minimum for hydrogen rich systems. CSS 120422:J111127+571239 was discovered by the Catalina Sky Survey in 2012 April. Its period was found to be 56 minutes, well below the minimum, and the optical spectrum is clearly depleted in hydrogen relative to helium, but still has two orders of magnitude more hydrogen than AM CVn stars. Doppler tomography of the Hα line hinted at a spiral structure existing in the disk. Here we present spectroscopy of CSS 120422:J111127+571239 using the Cosmic Origins Spectrograph FUV instrument on the Hubble Space Telescope and using the MODS spectrograph on the Large Binocular Telescope. The UV spectrum shows Si iv, N v, and He ii, but no detectable C iv. The anomalous nitrogen/carbon ratio is seen in a small number of other CVs and confirms a unique binary evolution. We also present and compare the optical spectrum of V418 Ser and advocate that it is also an EMS system.

  8. New pre-main-sequence stars in the Upper Scorpius subgroup of Sco-Cen

    NASA Astrophysics Data System (ADS)

    Rizzuto, A. C.; Ireland, M. J.; Kraus, A. L.

    2015-04-01

    We present 237 new spectroscopically confirmed pre-main-sequence K- and M-type stars in the young Upper Scorpius subgroup of the Sco-Cen association, the nearest region of recent massive star formation. Using the Wide-Field Spectrograph at the Australian National University 2.3 m telescope at Siding Spring, we observed 397 kinematically and photometrically selected candidate members of Upper Scorpius, and identified new members by the presence of lithium absorption. The HR-diagram of the new members shows a spread of ages, ranging from ˜3 to 20 Myr, which broadly agrees with the current age estimates of ˜5-10 Myr. We find a significant range of Li 6708 equivalent widths among the members, and a minor dependence of HR-diagram position on the measured equivalent width of the Li 6708 Å line, with members that appear younger having more lithium. This could indicate the presence of either populations of different age, or a spread of ages in Upper Scorpius. We also use Wide-Field Infrared Survey Explorer data to infer circumstellar disc presence in 25 of the members on the basis of infrared excesses, including two candidate transition discs. We find that 11.2 ± 3.4 per cent of the M0-M2 spectral type (0.4-0.8 M⊙) Upper Sco stars display an excess that indicates the presence of a gaseous disc.

  9. Effective Temperatures of Selected Main-Sequence Stars with the Most Accurate Parameters

    NASA Astrophysics Data System (ADS)

    Soydugan, F.; Eker, Z.; Soydugan, E.; Bilir, S.; Gökçe, E. Y.; Steer, I.; Tüysüz, M.; Šenyüz, T.; Demircan, O.

    2015-07-01

    In this study we investigate the distributions of the properties of detached double-lined binaries (DBs) in the mass-luminosity, mass-radius, and mass-effective temperature diagrams. We have improved the classical mass-luminosity relation based on the database of DBs by Eker et al. (2014a). Based on the accurate observational data available to us we propose a method for improving the effective temperatures of eclipsing binaries with accurate mass and radius determinations.

  10. Linear Relation for Wind-blown Bubble Sizes of Main-sequence OB Stars in a Molecular Environment and Implication for Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhou, Ping; Chu, You-Hua

    2013-05-01

    We find a linear relationship between the size of a massive star's main-sequence bubble in a molecular environment and the star's initial mass: R b ≈ 1.22 M/M ⊙ - 9.16 pc, assuming a constant interclump pressure. Since stars in the mass range of 8 to 25-30 M ⊙ will end their evolution in the red supergiant phase without launching a Wolf-Rayet wind, the main-sequence wind-blown bubbles are mainly responsible for the extent of molecular gas cavities, while the effect of the photoionization is comparatively small. This linear relation can thus be used to infer the masses of the massive star progenitors of supernova remnants (SNRs) that are discovered to evolve in molecular cavities, while few other means are available for inferring the properties of SNR progenitors. We have used this method to estimate the initial masses of the progenitors of eight SNRs: Kes 69, Kes 75, Kes 78, 3C 396, 3C 397, HC 40, Vela, and RX J1713-3946.

  11. LINEAR RELATION FOR WIND-BLOWN BUBBLE SIZES OF MAIN-SEQUENCE OB STARS IN A MOLECULAR ENVIRONMENT AND IMPLICATION FOR SUPERNOVA PROGENITORS

    SciTech Connect

    Chen Yang; Zhou Ping; Chu Youhua

    2013-05-20

    We find a linear relationship between the size of a massive star's main-sequence bubble in a molecular environment and the star's initial mass: R{sub b} Almost-Equal-To 1.22 M/M{sub Sun} - 9.16 pc, assuming a constant interclump pressure. Since stars in the mass range of 8 to 25-30 M{sub Sun} will end their evolution in the red supergiant phase without launching a Wolf-Rayet wind, the main-sequence wind-blown bubbles are mainly responsible for the extent of molecular gas cavities, while the effect of the photoionization is comparatively small. This linear relation can thus be used to infer the masses of the massive star progenitors of supernova remnants (SNRs) that are discovered to evolve in molecular cavities, while few other means are available for inferring the properties of SNR progenitors. We have used this method to estimate the initial masses of the progenitors of eight SNRs: Kes 69, Kes 75, Kes 78, 3C 396, 3C 397, HC 40, Vela, and RX J1713-3946.

  12. The environmental impacts on the star formation main sequence: An Hα study of the newly discovered rich cluster at z = 1.52

    SciTech Connect

    Koyama, Yusei; Kodama, Tadayuki; Tadaki, Ken-ichi; Hayashi, Masao; Tanaka, Ichi; Shimakawa, Rhythm

    2014-07-01

    We report the discovery of a strong over-density of galaxies in the field of a radio galaxy at z = 1.52 (4C 65.22) based on our broadband and narrow-band (Hα) photometry with the Subaru Telescope. We find that Hα emitters are located in the outskirts of the density peak (cluster core) dominated by passive red-sequence galaxies. This resembles the situation in lower-redshift clusters, suggesting that the newly discovered structure is a well-evolved rich galaxy cluster at z = 1.5. Our data suggest that the color-density and stellar mass-density relations are already in place at z ∼ 1.5, mostly driven by the passive red massive galaxies residing within r{sub c} ≲ 200 kpc from the cluster core. These environmental trends almost disappear when we consider only star-forming (SF) galaxies. We do not find SFR-density or SSFR-density relations amongst SF galaxies, and the location of the SF main sequence does not significantly change with environment. Nevertheless, we find a tentative hint that star-bursting galaxies (up-scattered objects from the main sequence) are preferentially located in a small group at ∼1 Mpc away from the main body of the cluster. We also argue that the scatter of the SF main sequence could be dependent on the distance to the nearest neighboring galaxy.

  13. Gaia-ESO Survey: Analysis of pre-main sequence stellar spectra

    NASA Astrophysics Data System (ADS)

    Lanzafame, A. C.; Frasca, A.; Damiani, F.; Franciosini, E.; Cottaar, M.; Sousa, S. G.; Tabernero, H. M.; Klutsch, A.; Spina, L.; Biazzo, K.; Prisinzano, L.; Sacco, G. G.; Randich, S.; Brugaletta, E.; Delgado Mena, E.; Adibekyan, V.; Montes, D.; Bonito, R.; Gameiro, J. F.; Alcalá, J. M.; González Hernández, J. I.; Jeffries, R.; Messina, S.; Meyer, M.; Gilmore, G.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J. E.; Feltzing, S.; Ferguson, A. M. N.; Micela, G.; Negueruela, I.; Prusti, T.; Rix, H.-W.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Hambly, N.; Irwin, M.; Koposov, S. E.; Korn, A. J.; Smiljanic, R.; Van Eck, S.; Walton, N.; Bayo, A.; Bergemann, M.; Carraro, G.; Costado, M. T.; Edvardsson, B.; Heiter, U.; Hill, V.; Hourihane, A.; Jackson, R. J.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Morbidelli, L.; Sbordone, L.; Worley, C. C.; Zaggia, S.

    2015-04-01

    Context. The Gaia-ESO Public Spectroscopic Survey is obtaining high-quality spectroscopy of some 100 000 Milky Way stars using the FLAMES spectrograph at the VLT, down to V = 19 mag, systematically covering all the main components of the Milky Way and providing the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. Observations of young open clusters, in particular, are giving new insights into their initial structure, kinematics, and their subsequent evolution. Aims: This paper describes the analysis of UVES and GIRAFFE spectra acquired in the fields of young clusters whose population includes pre-main sequence (PMS) stars. The analysis is applied to all stars in such fields, regardless of any prior information on membership, and provides fundamental stellar atmospheric parameters, elemental abundances, and PMS-specific parameters such as veiling, accretion, and chromospheric activity. Methods: When feasible, different methods were used to derive raw parameters (e.g. line equivalent widths) fundamental atmospheric parameters and derived parameters (e.g. abundances). To derive some of these parameters, we used methods that have been extensively used in the past and new ones developed in the context of the Gaia-ESO survey enterprise. The internal precision of these quantities was estimated by inter-comparing the results obtained by these different methods, while the accuracy was estimated by comparison with independent external data, such as effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. A validation procedure based on these comparisons was applied to discard spurious or doubtful results and produce recommended parameters. Specific strategies were implemented to resolve problems of fast rotation, accretion signatures, chromospheric activity, and veiling. Results: The analysis carried out on spectra acquired in young cluster fields during

  14. Pre-main-sequence stars older than 8 Myr in the Eagle nebula

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino; Guarcello, M. G.; Bonito, Rosaria

    2013-11-01

    Attention is given to a population of 110 stars in the NGC 6611 cluster of the Eagle nebula that have prominent near-infrared excess and optical colours typical of pre-main-sequence (PMS) stars older than 8 Myr. At least half of those for which spectroscopy exists have a Hα emission line profile revealing active accretion. In principle, the V - I colours of all these stars would be consistent with those of young PMS objects (<1 Myr) whose radiation is heavily obscured by a circumstellar disc seen at high inclination and in small part scattered towards the observer by the back side of the disc. However, using theoretical models it is shown here that objects of this type can only account for a few per cent of this population. In fact, the spatial distribution of these objects, their X-ray luminosities, their optical brightness, their positions in the colour-magnitude diagram and the weak Li absorption lines of the stars studied spectroscopically suggest that most of them are at least eight times older than the ˜1 Myr-old PMS stars already known in this cluster and could be as old as ˜30 Myr. This is the largest homogeneous sample to date of Galactic PMS stars considerably older than 8 Myr that are still actively accreting from a circumstellar disc and it allows us to set a lower limit of 7 per cent to the disc frequency at ˜16 Myr in NGC 6611. These values imply a characteristic exponential lifetime of ˜6 Myr for disc dissipation.

  15. THE QUADRUPLE PRE-MAIN-SEQUENCE SYSTEM LkCa 3: IMPLICATIONS FOR STELLAR EVOLUTION MODELS

    SciTech Connect

    Torres, Guillermo; Latham, David W.; Ruiz-Rodriguez, Dary; Prato, L.; Wasserman, Lawrence H.; Badenas, Mariona; Schaefer, G. H.; Mathieu, Robert D.

    2013-08-10

    We report the discovery that the pre-main-sequence (PMS) object LkCa 3 in the Taurus-Auriga star-forming region is a hierarchical quadruple system of M stars. It was previously known to be a close ({approx}0.''5) visual pair, with one component being a moderately eccentric 12.94 day single-lined spectroscopic binary. A re-analysis of archival optical spectra complemented by new near-infrared (NIR) spectroscopy shows both visual components to be double lined; the second one has a period of 4.06 days and a circular orbit. In addition to the orbital elements, we determine optical and NIR flux ratios, effective temperatures, and projected rotational velocities for all four stars. Using existing photometric monitoring observations of the system that had previously revealed the rotational period of the primary in the longer-period binary, we also detect the rotational signal of the primary in the 4.06 day binary, which is synchronized with the orbital motion. With only the assumption of coevality, a comparison of all of these constraints with current stellar evolution models from the Dartmouth series points to an age of 1.4 Myr and a distance of 133 pc, consistent with previous estimates for the region and suggesting that the system is on the near side of the Taurus complex. Similar comparisons of the properties of LkCa 3 and the well-known quadruple PMS system GG Tau with the widely used models from the Lyon series for a mixing length parameter of {alpha}{sub ML} = 1.0 strongly favor the Dartmouth models.

  16. Oscillation mode linewidths and heights of 23 main-sequence stars observed by Kepler

    NASA Astrophysics Data System (ADS)

    Appourchaux, T.; Antia, H. M.; Benomar, O.; Campante, T. L.; Davies, G. R.; Handberg, R.; Howe, R.; Régulo, C.; Belkacem, K.; Houdek, G.; García, R. A.; Chaplin, W. J.

    2014-06-01

    Context. Solar-like oscillations have been observed by Kepler and CoRoT in many solar-type stars, thereby providing a way to probe the stars using asteroseismology. Aims: We provide the mode linewidths and mode heights of the oscillations of various stars as a function of frequency and of effective temperature. Methods: We used a time series of nearly two years of data for each star. The 23 stars observed belong to the simple or F-like category. The power spectra of the 23 main-sequence stars were analysed using both maximum likelihood estimators and Bayesian estimators, providing individual mode characteristics such as frequencies, linewidths, and mode heights. We study the source of systematic errors in the mode linewidths and mode heights, and we present a way to correct these errors with respect to a common reference fit. Results: Using the correction, we can explain all sources of systematic errors, which could be reduced to less than ±15% for mode linewidths and heights, and less than ±5% for amplitude, when compared to the reference fit. The effect of a different estimated stellar background and a different estimated splitting will provide frequency-dependent systematic errors that might affect the comparison with theoretical mode linewidth and mode height, therefore affecting the understanding of the physical nature of these parameters. All other sources of relative systematic errors are less dependent upon frequency. We also provide the dependence of the so-called linewidth dip in the middle of the observed frequency range as a function of effective temperature. We show that the depth of the dip decreases with increasing effective temperature. The dependence of the dip on effective temperature may imply that the mixing length parameter α or the convective flux may increase with effective temperature. Tables 4-27 and Appendices are available in electronic form at http://www.aanda.org

  17. Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by Kepler

    NASA Astrophysics Data System (ADS)

    Appourchaux, T.; Chaplin, W. J.; García, R. A.; Gruberbauer, M.; Verner, G. A.; Antia, H. M.; Benomar, O.; Campante, T. L.; Davies, G. R.; Deheuvels, S.; Handberg, R.; Hekker, S.; Howe, R.; Régulo, C.; Salabert, D.; Bedding, T. R.; White, T. R.; Ballot, J.; Mathur, S.; Silva Aguirre, V.; Elsworth, Y. P.; Basu, S.; Gilliland, R. L.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Uddin, K.; Stumpe, M. C.; Barclay, T.

    2012-07-01

    Context. Solar-like oscillations have been observed by Kepler and CoRoT in several solar-type stars, thereby providing a way to probe the stars using asteroseismology Aims: We provide the mode frequencies of the oscillations of various stars required to perform a comparison with those obtained from stellar modelling. Methods: We used a time series of nine months of data for each star. The 61 stars observed were categorised in three groups: simple, F-like, and mixed-mode. The simple group includes stars for which the identification of the mode degree is obvious. The F-like group includes stars for which the identification of the degree is ambiguous. The mixed-mode group includes evolved stars for which the modes do not follow the asymptotic relation of low-degree frequencies. Following this categorisation, the power spectra of the 61 main-sequence and subgiant stars were analysed using both maximum likelihood estimators and Bayesian estimators, providing individual mode characteristics such as frequencies, linewidths, and mode heights. We developed and describe a methodology for extracting a single set of mode frequencies from multiple sets derived by different methods and individual scientists. We report on how one can assess the quality of the fitted parameters using the likelihood ratio test and the posterior probabilities. Results: We provide the mode frequencies of 61 stars (with their 1-σ error bars), as well as their associated échelle diagrams. Appendices are available in electronic form at http://www.aanda.org

  18. Time Variability of the Dust Sublimation Zones in Pre-Main Sequence Disk Systems

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Carpenter, W. J.; Grady, C. A.; Russel, R. W.; Lynch, D. K.; Rudy, R. J.; Mazuk, S. M.; Venturini, C. C.; Kimes, R. L.; Beerman, L. C.; Ablordeppey, K. E.; Puetter, R. C.; Wisnewski, P.; Brafford, S. M.; Polomski, E. R.; Hammel, H. B.; Perry, R. B.; Wilde, J. L.

    2007-01-01

    The dust sublimation zone (DSZ) is the region of pre-main sequence (PMS) disks where dust grains most easily anneal, sublime, and condense out of the gas. Because of this, it is a location where crystalline material may be enhanced and redistributed throughout the rest of the disk. A decade-long program to monitor the thermal emission of the grains located in this region demonstrates that large changes in emitted flux occur in many systems. Changes in the thermal emission between 3 and 13.5 microns were observed in HD 31648 (MWC 480), HD 163296 (MWC 275), and DG Tau. This emission is consistent with it being produced at the DSZ, where the transition from a disk of gas to one of gas+dust occurs. In the case of DG Tau, the outbursts were accompanied by increased emission on the 10 micron silicate band on one occasion, while on another occasion it went into absorption. This requires lofting of the material above the disk into the line of sight. Such changes will affect the determination of the inner disk structure obtained through interferometry measurements, and this has been confirmed in the case of HD 163296. Cyclic variations in the heating of the DSZ will lead to the annealing of large grains, the sublimation of smaller grains, possibly followed by re-condensation as the zone enters a cooling phase. Lofting of dust above the disk plane, and outward acceleration by stellar winds and radiation pressure, can re-distribute the processed material to cooler regions of the disk, where cometesimals form. This processing is consistent with the detection of the preferential concentration of large crystalline grains in the inner few AU of PMS disks using interferometric spectroscopy with the VLTI.

  19. Mid-IR observations of circumstellar disks. I. Pre-main sequence objects

    NASA Astrophysics Data System (ADS)

    Schütz, O.; Meeus, G.; Sterzik, M. F.

    2005-02-01

    We present new N-band photometry and spectroscopy for a sample of eight pre-main sequence stars including T Tauri, Herbig Ae/Be stars and FU Ori objects using the ESO TIMMI2 camera at the La Silla observatory (Chile). For some objects this is their first N-band spectroscopic observation ever. The FU Ori stars V 346 Nor, V 883 Ori and Z CMa show a broad absorption band which we attribute to silicates, while for BBW 76 we find silicate emission. A comparison with ISO-SWS spectra of V 346 Nor and Z CMa taken in 1996/1997 reveals no differences in spectral shape. All T Tauri and Herbig Ae/Be stars possess N-band emission features. We model the emission spectra with a mixture of silicates consisting of different grain sizes and composition. The Herbig Ae star HD 34282 shows strong features of PAHs but none of silicate, while the emission spectrum of the Herbig Ae star HD 72106 resembles those of solar-system comets and known Herbig sources of evolved dust. We demonstrate that HD 72106 is host to highly processed silicates and find evidence for enstatite, which is not common in young objects. Evolved dust is also seen in the T Tauri stars HD 98800 and MP Mus. We further detected MP Mus at 1200 μm with the bolometer array SIMBA at the SEST in La Silla. The findings of our analysis are given in the context of previous dust studies of young stellar objects. Based on observations collected at the European Southern Observatory, La Silla, Chile (69.C-0073, 70.C-0468, 71.C-0001, 73.C-0372).

  20. VLT/X-shooter spectroscopy of massive pre-main-sequence stars in M17

    NASA Astrophysics Data System (ADS)

    Ramirez-Tannus, Maria Claudia; Kaper, Lex

    2015-08-01

    The formation process of massive stars is still poorly understood. Formation timescales are short, the corresponding accretion rates very high, and the forming stars are hidden from view due to vast amounts of interstellar extinction. On top of that, massive stars are rare, are located at relatively large distances, and play a major role in shaping the interstellar medium due to their strong UV radiation fields and stellar winds. Although massive stars show most spectral features in the UV and optical range, so far only for a handful of massive Young Stellar Objects (mYSOs) optical and near-infrared spectra have been obtained. For some of these their pre-main-sequence (PMS) nature has now been firmly established (e.g. Ochsendorf et al. 2011, Ellerbroek et al. 2013). The objective of our project is to determine the physical properties of mYSOs, to search for signatures remnant of their formation process and to better understand the feedback on their environment.To this aim the optical to near-infrared (300-2500 nm) spectra of six candidate mYSOs (Hanson et al. 1997), deeply embedded in the massive star forming region M17, have been obtained with X-Shooter on the ESO Very Large Telescope. These mYSO candidates have been identified based on their infrared excess and spectral features (double-peaked emission lines, CO band-head emission) indicating the presence of a disk. In most cases, we detect a photospheric spectrum allowing us to measure the physical properties of the mYSO and to confirm its PMS nature. We also uncover many emission features, including forbidden lines, providing information on the (active) formation process of these young (massive) stars.

  1. EXTENDED MAGNETOSPHERES IN PRE-MAIN-SEQUENCE EVOLUTION: FROM T TAURI STARS TO THE BROWN DWARF LIMIT

    SciTech Connect

    Gomez de Castro, Ana I.; Marcos-Arenal, Pablo

    2012-04-20

    Low-mass pre-main-sequence stars, i.e., T Tauri stars (TTSs), strongly radiate at high energies, from X-rays to the ultraviolet (UV). This excess radiation with respect to main-sequence cool stars (MSCSs) is associated with the accretion process, i.e., it is produced in the extended magnetospheres, in the accretion shocks on the stellar surface, and in the outflows. Although evidence of accretion shocks and outflow contribution to the high-energy excess have been recently addressed, there is not an updated revision of the magnetospheric contribution. This article addresses this issue. The UV observations of the TTSs in the well-known Taurus region have been analyzed together with the XMM-Newton observations compiled in the XEST survey. For the first time the high sensitivity of the Hubble Space Telescope UV instrumentation has allowed measurement of the UV line fluxes of TTSs to M8 type. UV- and X-ray-normalized fluxes have been determined to study the extent and properties of the TTS magnetospheres as a class. They have been compared with the atmospheres of the MSCSs. The main results from this analysis are (1) the normalized fluxes of all the tracers are correlated; this correlation is independent of the broad mass range and the hardness of the X-ray radiation field; (2) the TTS correlations are different than the MSCS correlations; (3) there is a very significant excess emission in O I in the TTSs compared with MSCSs that seems to be caused by recombination radiation from the disk atmosphere after photoionization by extreme UV radiation; the Fe II/Mg II recombination continuum has also been detected in several TTSs and most prominently in AA Tau; and (4) the normalized flux of the UV tracers anticorrelates with the strength of the X-ray flux, i.e., the stronger the X-ray surface flux is, the weaker the observed UV flux. This last behavior is counterintuitive within the framework of stellar dynamo theory and suggests that UV emission can be produced in the

  2. Extended Magnetospheres in Pre-main-sequence Evolution: From T Tauri Stars to the Brown Dwarf Limit

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.; Marcos-Arenal, Pablo

    2012-04-01

    Low-mass pre-main-sequence stars, i.e., T Tauri stars (TTSs), strongly radiate at high energies, from X-rays to the ultraviolet (UV). This excess radiation with respect to main-sequence cool stars (MSCSs) is associated with the accretion process, i.e., it is produced in the extended magnetospheres, in the accretion shocks on the stellar surface, and in the outflows. Although evidence of accretion shocks and outflow contribution to the high-energy excess have been recently addressed, there is not an updated revision of the magnetospheric contribution. This article addresses this issue. The UV observations of the TTSs in the well-known Taurus region have been analyzed together with the XMM-Newton observations compiled in the XEST survey. For the first time the high sensitivity of the Hubble Space Telescope UV instrumentation has allowed measurement of the UV line fluxes of TTSs to M8 type. UV- and X-ray-normalized fluxes have been determined to study the extent and properties of the TTS magnetospheres as a class. They have been compared with the atmospheres of the MSCSs. The main results from this analysis are (1) the normalized fluxes of all the tracers are correlated; this correlation is independent of the broad mass range and the hardness of the X-ray radiation field; (2) the TTS correlations are different than the MSCS correlations; (3) there is a very significant excess emission in O I in the TTSs compared with MSCSs that seems to be caused by recombination radiation from the disk atmosphere after photoionization by extreme UV radiation; the Fe II/Mg II recombination continuum has also been detected in several TTSs and most prominently in AA Tau; and (4) the normalized flux of the UV tracers anticorrelates with the strength of the X-ray flux, i.e., the stronger the X-ray surface flux is, the weaker the observed UV flux. This last behavior is counterintuitive within the framework of stellar dynamo theory and suggests that UV emission can be produced in the

  3. The SDSS spectroscopic catalogue of white dwarf-main-sequence binaries: new identifications from DR 9-12

    NASA Astrophysics Data System (ADS)

    Rebassa-Mansergas, A.; Ren, J. J.; Parsons, S. G.; Gänsicke, B. T.; Schreiber, M. R.; García-Berro, E.; Liu, X.-W.; Koester, D.

    2016-06-01

    We present an updated version of the spectroscopic catalogue of white dwarf-main-sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS). We identify 938 WDMS binaries within the data releases (DR) 9-12 of SDSS plus 40 objects from DR 1-8 that we missed in our previous works, 646 of which are new. The total number of spectroscopic SDSS WDMS binaries increases to 3294. This is by far the largest and most homogeneous sample of compact binaries currently available. We use a decomposition/fitting routine to derive the stellar parameters of all systems identified here (white dwarf effective temperatures, surface gravities and masses, and secondary star spectral types). The analysis of the corresponding stellar parameter distributions shows that the SDSS WDMS binary population is seriously affected by selection effects. We also measure the Na I λλ 8183.27, 8194.81 absorption doublet and H α emission radial velocities (RV) from all SDSS WDMS binary spectra identified in this work. 98 objects are found to display RV variations, 62 of which are new. The RV data are sufficient enough to estimate the orbital periods of three close binaries.

  4. On the origin of the correlations between the accretion luminosity and emission line luminosities in pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Mendigutía, I.; Oudmaijer, R. D.; Rigliaco, E.; Fairlamb, J. R.; Calvet, N.; Muzerolle, J.; Cunningham, N.; Lumsden, S. L.

    2015-09-01

    Correlations between the accretion luminosity and emission line luminosities (Lacc and Lline) of pre-main-sequence (PMS) stars have been published for many different spectral lines, which are used to estimate accretion rates. Despite the origin of those correlations is unknown, this could be attributed to direct or indirect physical relations between the emission line formation and the accretion mechanism. This work shows that all (near-UV/optical/near-IR) Lacc-Lline correlations are the result of the fact that the accretion luminosity and the stellar luminosity (L*) are correlated, and are not necessarily related with the physical origin of the line. Synthetic and observational data are used to illustrate how the Lacc-Lline correlations depend on the Lacc-L* relationship. We conclude that because PMS stars show the Lacc-L* correlation immediately implies that Lacc also correlates with the luminosity of all emission lines, for which the Lacc-Lline correlations alone do not prove any physical connection with accretion but can only be used with practical purposes to roughly estimate accretion rates. When looking for correlations with possible physical meaning, we suggest that Lacc/L* and Lline/L* should be used instead of Lacc and Lline. Finally, the finding that Lacc has a steeper dependence on L* for T Tauri stars than for intermediate-mass Herbig Ae/Be stars is also discussed. That is explained from the magnetospheric accretion scenario and the different photospheric properties in the near-UV.

  5. Evidence for a Significant Intermediate-Age Population in the M31 Halo from Main Sequence Photometry

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M.; Ferguson, Henry C.; Smith, Ed; Kimble, Randy A.; Sweigart, Allen V.; Renzini, Alvio; Rich, R. Michael; Vandenberg, Don A.

    2003-01-01

    We present a color-magnitude diagram (CMD) for a minor-axis field in the halo of the Andromeda galaxy (M3l), 51 arcmin (11 kpc) from the nucleus. These observations, taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope, are the deepest optical images yet obtained, attaining 50% completeness at m(sub v) = 30.7 mag. The CMD, constructed from approx. 3 x 10(exp 5) stars, reaches more than 1.5 mag fainter than the old main-sequence turnoff. Our analysis is based on direct comparisons to ACS observations of four globular clusters through the same filters, as well as chi square fitting to a finely-spaced grid of calibrated stellar-population models. We find that the M31 halo contains a major (approx. 30% by mass) intermediate-age (6-8 Gyr) metal-rich ([Fe/H] greater than -0.5) population, as well as a significant globular-cluster age (11-13.5 Gyr) metal-poor population. These findings support the idea that galaxy mergers played an important role in the formation of the M31 halo.

  6. Long-term evolution of three-planet systems to the post-main sequence and beyond

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander J.; Veras, Dimitri; Villaver, Eva

    2014-01-01

    We study the stability of systems of three giant planets orbiting 3-8 M⊙ stars at orbital distances of >10 au as the host star ages through the main sequence (MS) and well into the white dwarf (WD) stage. Systems are stable on the MS if the planets are separated by more than ˜9 Hill radii. Most systems surviving the MS will remain stable until the WD phase, although planets scattered on to small pericentres in unstable systems can be swallowed by the expanding stellar envelope when the star ascends the giant branches. Mass-loss at the end of the asymptotic giant branch triggers delayed instability in many systems, leading to instabilities typically occurring at WD cooling ages of a few 100 Myr. This instability occurs both in systems that survived the star's previous evolution unscathed, and in systems that previously underwent scattering instabilities. The outcome of such instability around WDs is overwhelmingly the ejection of one of the planets from the system, with several times more ejections occurring during the WD phase than during the MS. Furthermore, few planets are scattered close to the WD, just outside the Roche limit, where they can be tidally circularized. Hence, we predict that planets in WD systems rarely dynamically evolve to become `hot Jupiters'. Nor does it appear that the observed frequency of metal pollution in WD atmospheres can be entirely explained by planetesimals being destabilized following instability in systems of multiple giant planets, although further work incorporating low-mass planets and planetesimals is needed.

  7. KEPLER-4b: A HOT NEPTUNE-LIKE PLANET OF A G0 STAR NEAR MAIN-SEQUENCE TURNOFF

    SciTech Connect

    Borucki, William J.; Koch, David G.; Caldwell, Douglas A.; Jenkins, Jon M.; Lissauer, Jack J.; Rowe, Jason F.; Basri, Gibor; Marcy, Geoffrey W.; Batalha, Natalie M.; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Gilliland, Ronald L.; Howell, Steve B.; Monet, David

    2010-04-20

    Early time-series photometry from NASA's Kepler spacecraft has revealed a planet transiting the star we term Kepler-4, at R.A. = 19{sup h}02{sup m}27.{sup s}68, {delta} = +50{sup 0}08'08.''7. The planet has an orbital period of 3.213 days and shows transits with a relative depth of 0.87 x 10{sup -3} and a duration of about 3.95 hr. Radial velocity (RV) measurements from the Keck High Resolution Echelle Spectrometer show a reflex Doppler signal of 9.3{sup +1.1} {sub -1.9} m s{sup -1}, consistent with a low-eccentricity orbit with the phase expected from the transits. Various tests show no evidence for any companion star near enough to affect the light curve or the RVs for this system. From a transit-based estimate of the host star's mean density, combined with analysis of high-resolution spectra, we infer that the host star is near turnoff from the main sequence, with estimated mass and radius of 1.223{sup +0.053} {sub -0.091} M {sub sun} and 1.487{sup +0.071} {sub -0.084} R {sub sun}. We estimate the planet mass and radius to be {l_brace}M {sub P}, R {sub P}{r_brace} = {l_brace}24.5 {+-} 3.8 M {sub +}, 3.99 {+-} 0.21 R {sub +}{r_brace}. The planet's density is near 1.9 g cm{sup -3}; it is thus slightly denser and more massive than Neptune, but about the same size.

  8. A Wide Angle Survey of Young Stellar Associations for Hot Jupiters and Pre-Main Sequence Binaries

    NASA Astrophysics Data System (ADS)

    Oelkers, Ryan J.; Macri, Lucas M.; Marshall, Jennifer L.; Depoy, Darren L.; Garcia Lambas, Diego

    2016-01-01

    The past two decades have seen a significant advancement in the detection, classification and understanding of exoplanets and binary star systems. The vast majority of these systems consist of objects on the main sequence or the giant branch, leading to a dearth of knowledge of properties at early times (<50 Myr). Only a dozen binaries and 1 possible transiting Hot Jupiter are known among pre-main sequence objects, yet these are the systems that can provide the best constraints on stellar formation and planetary migration models. The deficiency in the number of well characterized systems is driven by the inherent and aperiodic variability found in pre-main sequence objects which can mask and mimic eclipse signals. Nevertheless a dramatic increase in the total number of systems at early times is required to alleviate the conflict between theory and observation. I have recently completed a photometric survey of 3 nearby (<150 pc) and young (<50 Myr) moving groups with a small aperture telescope. I have discovered over 300 likely pre-main sequence binaries and have ruled out 7 possible transiting Hot Jupiters using techniques developed by reducing crowded, defocused images from an analogous system. I will present the photometric detection and follow-up for these systems, the spectroscopic measurements of pre-main sequence binary candidates and my lower bound on the Hot Jupiter migration timescale.

  9. Convection in the atmospheres and envelopes of Pre-Main Sequence stars

    NASA Astrophysics Data System (ADS)

    Montalbán, J.; D'Antona, F.; Kupka, F.; Heiter, U.

    2004-03-01

    The Teff location of Pre-Main Sequence (PMS) evolutionary tracks depends on the treatment of over-adiabaticity (D'Antona & Mazzitelli \\cite{Antona1994}, \\cite{Antona1998}). Since the convection penetrates into the stellar atmosphere, also the treatment of convection in the modeling of stellar atmospheres will affect the location of the Hayashi tracks. In this paper we present new non-grey PMS tracks for Teff,>4000 K. We compute several grids of evolutionary tracks varying: i) the treatment of convection: either the Mixing Length Theory (MLT) or Canuto et al. (\\cite{Canuto1996e}, CGM) formulation of a Full Spectrum of Turbulence; ii) the atmospheric boundary conditions: we use the new Vienna grids of ATLAS9 atmospheres (Heiter et al. \\cite{Heiter2002a}), which were computed using either MLT (with α=Λ/Hp=0.5) or CGM treatments. For comparison, we also compute grids of models with the NextGen (Allard & Hauschildt \\cite{Allard1997}, AH97) atmosphere models, and a 1 {M⊙} grey MLT evolutionary track using the α calibration based on 2D-hydrodynamical models (Ludwig et al. \\cite{Ludwig1999}). These different grids of models allow us to analyze the effects of convection modeling on the non-grey PMS evolutionary tracks. We disentangle the effect of the wavelength dependent opacity on a self-consistent treatment of convection in the atmosphere from the role of the convection model itself in the atmosphere and in the interior. While for some parts of the HR diagram (e.g., A stars) a low efficiency of atmospheric convection is clearly indicated by the data, for others the evidence is conflicting, showing the weaknesses of all the presently adopted local convection models. Nevertheless, the assumption of a low photospheric efficiency permits us to reproduce a larger amount of data and we have hence restricted our study to this case and draw the following conclusions for it: i) in spite of the solar calibration, if MLT convection is adopted a large uncertainty results

  10. A Wide Angle Search for Hot Jupiters and Pre-Main Sequence Binaries in Young Stellar Associations

    NASA Astrophysics Data System (ADS)

    Oelkers, Ryan J.; Macri, Lucas M.; Marshall, Jennifer L.; Depoy, Darren L.; Colazo, Carlos; Guzzo, Pablo; Lambas, Diego G.; Quiñones, Ceci; Stringer, Katelyn; Tapia, Luis; Wisdom, Colin

    2016-01-01

    The past two decades have seen a significant advancement in the detection, classification and understanding of exoplanets and binary star systems. The vast majority of these systems consist of stars on the main sequence or on the giant branch, leading to a dearth of knowledge of properties at early times (<50 Myr). Only one transiting planet candidate and a dozen eclipsing binaries are known among pre-main sequence objects, yet these are the systems that can provide the best constraints on stellar and planetary formation models. We have recently completed a photometric survey of 3 young (<50 Myr), nearby (D<150 pc) moving groups with a small-aperture instrument, nicknamed ``AggieCam''. We detected 7 candidate Hot Jupiters and over 200 likely pre-main sequence binaries, which are now being followed up photometrically and spectroscopically.

  11. A Planet in an 840 Day Orbit around a Kepler Main-sequence A Star Found from Phase Modulation of Its Pulsations

    NASA Astrophysics Data System (ADS)

    Murphy, Simon J.; Bedding, Timothy R.; Shibahashi, Hiromoto

    2016-08-01

    We have detected a 12 M {}{Jup} planet orbiting in or near the habitable zone of a main-sequence A star via the pulsational phase shifts induced by orbital motion. The planet has an orbital period of 840 ± 20 days and an eccentricity of 0.15. All known planets orbiting main-sequence A stars have been found via the transit method or by direct imaging. The absence of astrometric or radial velocity detections of planets around these hosts makes ours the first discovery using the orbital motion. It is also the first A star known to host a planet within 1σ of the habitable zone. We find evidence for planets in a large fraction of the parameter space where we are able to detect them. This supports the idea that A stars harbor high-mass planets in wide orbits.

  12. Full validation of therapeutic antibody sequences by middle-up mass measurements and middle-down protein sequencing.

    PubMed

    Resemann, Anja; Jabs, Wolfgang; Wiechmann, Anja; Wagner, Elsa; Colas, Olivier; Evers, Waltraud; Belau, Eckhard; Vorwerg, Lars; Evans, Catherine; Beck, Alain; Suckau, Detlev

    2016-01-01

    The regulatory bodies request full sequence data assessment both for innovator and biosimilar monoclonal antibodies (mAbs). Full sequence coverage is typically used to verify the integrity of the analytical data obtained following the combination of multiple LC-MS/MS datasets from orthogonal protease digests (so called "bottom-up" approaches). Top-down or middle-down mass spectrometric approaches have the potential to minimize artifacts, reduce overall analysis time and provide orthogonality to this traditional approach. In this work we report a new combined approach involving middle-up LC-QTOF and middle-down LC-MALDI in-source decay (ISD) mass spectrometry. This was applied to cetuximab, panitumumab and natalizumab, selected as representative US Food and Drug Administration- and European Medicines Agency-approved mAbs. The goal was to unambiguously confirm their reference sequences and examine the general applicability of this approach. Furthermore, a new measure for assessing the integrity and validity of results from middle-down approaches is introduced - the "Sequence Validation Percentage." Full sequence data assessment of the 3 antibodies was achieved enabling all 3 sequences to be fully validated by a combination of middle-up molecular weight determination and middle-down protein sequencing. Three errors in the reference amino acid sequence of natalizumab, causing a cumulative mass shift of only -2 Da in the natalizumab Fd domain, were corrected as a result of this work.

  13. Monte Carlo Simulations of the Post-Common-Envelope White-Dwarf Main-Sequence Binary Population

    SciTech Connect

    Camacho, Judit; Torres, Santiago; Garcia-Berro, Enrique; Schreiber, Matthias R.

    2010-12-22

    We present a detailed Monte Carlo simulator of the population of binary systems within the solar neighborhood. We have used the most up-to-date stellar evolutionary models, a complete treatment of the Roche lobe overflow episode, as well as a full implementation of the orbital evolution of the binary system. Preliminary results are presented for the population of white-dwarf main-sequence binaries, resulting from a common envelope episode. We also study the role played by the binding energy parameter, {lambda}, and by the common envelope efficiency, {alpha}{sub CE}. Finally, results are compared with the population of identified white-dwarf main-sequence binaries.

  14. Does the upper main sequence extend across the whole H-R diagram. [radiative opacities of stellar evolution models

    NASA Technical Reports Server (NTRS)

    Stothers, R.; Chin, C.-W.

    1977-01-01

    The effect of using Carson's (1976) radiative opacities in evolutionary sequences of stellar models has been studied over the mass range from 7 to 60 solar masses. The opacities are very large in the outer part of the envelope and induce such enormous radii for masses greater than about 30 solar masses for a heavy-element fraction of 0.02 or about 20 solar masses for a heavy-element fraction of 0.04 that the evolutionary tracks during the phase of core hydrogen burning extend across the whole H-R diagram. The choice of the Schwarschild or Ledoux criterion for convection makes very little difference for the behavior of the tracks. Evolution through the effective-temperature range (in logarithms) of 3.6 to 4.0 occurs in all cases on a rapid (secular) time scale. Core helium burning takes place exclusively in the red-supergiant configuration for stellar masses exceeding 8 solar masses (heavy-element fraction of 0.02) or 6 solar masses (heavy-element fraction of 0.04). These stellar models seem to be in significantly better agreement with the observed distribution of bright stars on the H-R diagram than are the older models based on the Cox-Stewart opacities. It can be inferred that a large envelope opacity (e.g., Carson's) exists and that substantial mass loss takes place in very massive late-type supergiants.

  15. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.

    PubMed

    Asara, John M; Schweitzer, Mary H; Freimark, Lisa M; Phillips, Matthew; Cantley, Lewis C

    2007-04-13

    Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon (Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic sequences are unlikely to be obtained.

  16. A detailed study of the main sequence of the globular cluster NGC 6397: can we derive constraints on the existence of multiple populations?

    NASA Astrophysics Data System (ADS)

    di Criscienzo, M.; D'Antona, F.; Ventura, P.

    2010-02-01

    Context. Globular clusters can no longer be regarded as examples of “simple stellar populations” as all those so far examined contain an important fraction of “second generation” stars, in which the light elements are processed through the hot CNO cycle, and helium variations may be present. Clusters apparently “simple” contain a majority of second generation stars. Aims: If NGC 6397 contains a large fraction of “second generation” stars (>70% according to recent analysis), the helium abundance of its stars might also be affected, show some star-to-star variation, and be larger than the standard Big Bang abundance Y ˜ 0.24. Can we derive constraints on this issue from the analysis of the main sequence width and from its luminosity function? Methods: We build up new models for the turnoff masses and the main sequence down to the hydrogen burning minimum mass, adopting two versions of an updated equation of state (EOS) including the OPAL EOS. Models consider different initial helium and CNO abundances to cover the range of possible variations between the first and second generation stars. We compare the models with the observational main sequence. We also make simulations of the theoretical luminosity function, for different choices of the mass function and of the mixture of first and second generation stars and compare them with the observed luminosity function by means of the Kolmogorov Smirnov - KS-test. Results: The new models for very low mass stars compare well with previous models and show that the OPAL EOS is a good description in all the region of temperature and densities of very low mass stars for which it is computable. The analysis of the main sequence width shows that any helium variation must be confined within Δ Y ~ 0.02 in the case of a CNO increase as suggested by literature, and we discuss the consequent implications for the model of self-enrichment. We also show that the KS test on the luminosity functions allows us to derive a

  17. A Wide-field Survey for Transiting Hot Jupiters and Eclipsing Pre-main-sequence Binaries in Young Stellar Associations

    NASA Astrophysics Data System (ADS)

    Oelkers, Ryan J.; Macri, Lucas M.; Marshall, Jennifer L.; DePoy, Darren L.; Lambas, Diego G.; Colazo, Carlos; Stringer, Katelyn

    2016-09-01

    The past two decades have seen a significant advancement in the detection, classification, and understanding of exoplanets and binaries. This is due, in large part, to the increase in use of small-aperture telescopes (<20 cm) to survey large areas of the sky to milli-mag precision with rapid cadence. The vast majority of the planetary and binary systems studied to date consists of main-sequence or evolved objects, leading to a dearth of knowledge of properties at early times (<50 Myr). Only a dozen binaries and one candidate transiting Hot Jupiter are known among pre-main-sequence objects, yet these are the systems that can provide the best constraints on stellar formation and planetary migration models. The deficiency in the number of well characterized systems is driven by the inherent and aperiodic variability found in pre-main-sequence objects, which can mask and mimic eclipse signals. Hence, a dramatic increase in the number of young systems with high-quality observations is highly desirable to guide further theoretical developments. We have recently completed a photometric survey of three nearby (<150 pc) and young (<50 Myr) moving groups with a small-aperture telescope. While our survey reached the requisite photometric precision, the temporal coverage was insufficient to detect Hot Jupiters. Nevertheless, we discovered 346 pre-main-sequence binary candidates, including 74 high-priority objects for further study. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  18. Chandra Spectroscopy of the Hot Star Beta Cru and the Discovery of a Pre-Main Sequence Companion

    NASA Astrophysics Data System (ADS)

    Kuhn, Michael A.; Cohen, D. H.; Jensen, E. L.; Gagne, M.

    2006-12-01

    Using a 75 ks Chandra grating observation, we have studied x-ray emission from the B0.5 III star beta Cru one of the four bright stars in the Southern Cross and a newly discovered companion. The companion is separated from beta Cru by 4" and it has about 3 times fewer x-ray counts. The flux contrast must be much greater in the optical, though, or the companion would have been discovered earlier. The system is a member of the Sco-Cen association, and is estimated to be 8 to 11 million years old; old enough for the B star primary to have evolved off the main sequence, but young enough that a coeval, late-type companion would still be descending to the main sequence. We marginally resolved individual line profiles of the primary in the grating spectra. The lines show slight broadening, suggesting an origin in a slow stellar wind rather than a corona. The secondary has a harder spectral energy distribution (temperatures > 20 million K) than the primary (< 4 million K), making it a probable pre-main-sequence star. The secondary is also more variable than the primary, consistent with the x-ray flaring seen in pre-main-sequence stars. We acknowledge grants GO2-3030A and AR5-6003X to Swarthmore College from the Chandra X-ray Center at the Smithsonian Astrophysical Observatory, and also support from Swarthmore College via a Eugene M. Lang Summer Research Fellowship.

  19. Pre-main-sequence accretion and the formation of multiple populations in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Antona, Francesca; Ventura, Paolo; Decressin, Thibaut; Vesperini, Enrico; D'Ercole, Annibale

    2014-10-01

    We investigate the viability of a model in which the chemical anomalies among globular cluster stars are due to accretion of gas on to the protostellar discs of low-mass stars. This model has been suggested as a way to reduce the large initial cluster masses required by other models for the formation of multiple stellar generations. We numerically follow the evolution of the accreting stars, and we show that the structure of the seed star does not remain fully convective for the whole duration of the accretion phase. Stellar populations showing discrete abundances of helium in the core, that seem to be present in some clusters, might be formed with this mechanism only if accretion occurs before the core of the stars become radiative (within 2-3 Myr) or if a thermohaline instability is triggered, to achieve full mixing after the accretion phase ends. We also show that the lithium abundances in accreted structures may vary by orders of magnitude in equal masses obtained by accreting different masses. In addition, the same thermohaline mixing which could provide a homogeneous helium distribution down to the stellar centre, would destroy any lithium surviving in the envelope, so that both helium homogeneity and lithium survival require that the accretion phase be limited to the first couple of million years of the cluster evolution. Such a short accretion phase strongly reduces the amount of processed matter available, and reintroduces the requirement of an extremely large initial mass for the protocluster.

  20. Statistical Study on Main and Residual Accelerations of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2006-05-01

    We present the results of a statistical study on the main and residual accelerations of coronal mass ejections (CMEs). This work is based on a laborious but careful visual search of about 100000 images taken by LASCO (Large Angle Spectrometric Coronagraph) C1 from 1996 Jan. to 1998 Jun. Among a large number of active phenomena seen in the inner corona from 1.1 to 3.0 Rs by C1, we have identified 74 CMEs, which all have counterparts seen by LASCO C2 and C3 from 2 to 30 Rs. Out of these 74 C1 CMEs, 50 CMEs are found to be suitable for a quantitative study on their main acceleration in the inner corona and their residual acceleration in the outer corona. We find that, for the 50 events, the magnitude of the main acceleration ranges from 2.8 m/s2 to 4464.0 m/s2 with a median (average) value of 170.1 (330.9 m/s2 ) and a standard deviation of 644.8 m/s2, whereas the magnitude of the residual acceleration ranges only from -131.0 m/s2 to 52.0 m/s2 with a median (average) value of 3.1 (0.9 m/s2) and a standard deviation of 25.3 m/s2, The distribution of the duration of the main acceleration is from 6 min to 1200 min, with a median (average) value of 54 (180 min) and a standard deviation of 286 min. Apparently, the main acceleration has a wide distribution over almost three orders of magnitude in terms of both magnitude and duration, representing a continuous spectrum of events from extremely gradual ones all the way to extremely impulsive ones. We also find an interesting scaling law between acceleration magnitude (A) and acceleration duration (T) over the entire parameter range, that is A (m/s2) = 10000 T-1 (min); in the logarithmic scale, there is a strong inverse linear correlation between the two parameters, with a correlation coefficient of 0.95.

  1. Deccan Volcanism: a main trigger of environmental changes leading to the KTB mass extinction?

    NASA Astrophysics Data System (ADS)

    Adatte, Thierry; Fantasia, Alicia; Samant, Bandana; Mohabey, Dhananjay; Keller, Gerta; Gertsch, Brian

    2014-05-01

    The nature and causes of mass extinctions in the geological past have remained topics of intense scientific debate for the past three decades. Central to this debate is the question of whether the eruption of large igneous provinces (LIP) was the primary mechanism driving the environmental changes that are commonly regarded as the proximate causes for four of the five major Phanerozoic extinction events. Model results predict that Deccan Traps emplacement was responsible for a strong increase in atmospheric pCO2 accompanied by rapid warming of 4°C that was followed by global cooling. During the warming phase, increased continental weathering of silicates associated with consumption of atmospheric CO2 likely resulted in the drawdown of greenhouse gases that reversed the warming trend leading to global cooling at the end of the Maastrichtian. Massive CO2 input together with massive release of SO2 may thus have triggered the mass extinctions in the marine realm as a result of ocean acidification leading to a carbon crisis and in the terrestrial realms due to acid rains. Global stress conditions related to these climatic changes are well known and documented in planktic foraminifera by a diversity decrease, species dwarfing, dominance of opportunistic species and near disappearance of specialized species. Deccan Traps erupted in three main phases with 6% total Deccan volume in phase-1 (base C30n), 80% in phase-2 (C29r) and 14% in phase-3 (C29n). Recent studies indicate that the bulk (80%) of Deccan trap eruptions (Phase-2) occurred over a relatively short time interval in magnetic polarity C29r, whereas multiproxy studies from central and southeastern India place the Cretaceous-Tertiary (KT) mass extinction near the end of this main phase of Deccan volcanism suggesting a cause-and-effect relationship. In India a strong floral response is observed as a direct response to Deccan volcanic phase-2. In Lameta (infratrappean) sediments preceding the volcanic eruptions

  2. On the interpretation of sub-giant branch morphologies of intermediate-age star clusters with extended main sequence turnoffs

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul; Girardi, Léo; Rosenfield, Philip; Bressan, Alessandro; Marigo, Paola; Correnti, Matteo; Puzia, Thomas H.

    2015-06-01

    High-quality photometry of many star clusters in the Magellanic Clouds with ages of 1-2 Gyr revealed main sequence turnoffs (MSTOs) that are significantly wider than can be accounted for by a simple stellar population (SSP). Such extended MSTOs (eMSTOs) are often interpreted in terms of an age spread of several 108 yr, challenging the traditional view of star clusters as being formed in a single star formation episode. Li et al. and Bastian & Niederhofer recently investigated the sub-giant branches (SGBs) of NGC 1651, NGC 1806, and NGC 1846, three star clusters in the Large Magellanic Cloud (LMC) that exhibit an eMSTO. They argued that the SGB of these star clusters can be explained only by an SSP. We study these and two other similar star clusters in the LMC, using extensive simulations of SSPs including unresolved binaries. We find that the shapes of the cross-SGB profiles of all star clusters in our sample are in fact consistent with their cross-MSTO profiles when the latter are interpreted as age distributions. Conversely, SGB morphologies of star clusters with eMSTOs are found to be inconsistent with those of simulated SSPs. Finally, we create PARSEC isochrones from tracks featuring a grid of convective overshoot levels and a very fine grid of stellar masses. A comparison of the observed photometry with these isochrones shows that the morphology of the red clump (RC) of such star clusters is also consistent with that implied by their MSTO in the age spread scenario. We conclude that the SGB and RC morphologies of star clusters featuring eMSTOs are consistent with the scenario in which the eMSTOs are caused by a distribution of stellar ages.

  3. The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment

    NASA Astrophysics Data System (ADS)

    Tacchella, Sandro; Dekel, Avishai; Carollo, C. Marcella; Ceverino, Daniel; DeGraf, Colin; Lapiner, Sharon; Mandelker, Nir; Primack Joel, R.

    2016-04-01

    Using cosmological simulations, we address the properties of high-redshift star-forming galaxies (SFGs) across their main sequence (MS) in the plane of star formation rate (SFR) versus stellar mass. We relate them to the evolution of galaxies through phases of gas compaction, depletion, possible replenishment, and eventual quenching. We find that the high-SFR galaxies in the upper envelope of the MS are compact, with high gas fractions and short depletion times (`blue nuggets'), while the lower SFR galaxies in the lower envelope have lower central gas densities, lower gas fractions, and longer depletion times, consistent with observed gradients across the MS. Stellar-structure gradients are negligible. The SFGs oscillate about the MS ridge on time-scales ˜0.4tHubble (˜1 Gyr at z ˜ 3). The propagation upwards is due to gas compaction, triggered, e.g. by mergers, counter-rotating streams, and/or violent disc instabilities. The downturn at the upper envelope is due to central gas depletion by peak star formation and outflows while inflow from the shrunken gas disc is suppressed. An upturn at the lower envelope can occur once the extended disc has been replenished by fresh gas and a new compaction can be triggered, namely as long as the replenishment time is shorter than the depletion time. The mechanisms of gas compaction, depletion, and replenishment confine the SFGs to the narrow (±0.3 dex) MS. Full quenching occurs in massive haloes (Mvir > 1011.5 M⊙) and/or at low redshifts (z < 3), where the replenishment time is long compared to the depletion time, explaining the observed bending down of the MS at the massive end.

  4. A Search for Radio Emission at the Bottom of the Main Sequence and Beyond

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, Anita; Leto, Giuseppe; Linsky, Jeffrey L.

    1999-09-01

    We have used the VLA to conduct a deep search for 3.6 cm radio emission from nearby very low mass stars and brown dwarfs. The Güdel-Benz relation is used to predict radio luminosities for some very low mass stars and candidate brown dwarfs with measured X-ray fluxes. The predicted radio fluxes are quite small, whereas the measured radio flux from the brown dwarf candidate GY 31 in the rho Oph cloud is relatively strong. In light of our new observations, this object remains an anomaly. We present upper limits for our measured radio fluxes at 3.6 cm for our targets.

  5. A high-throughput de novo sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry

    SciTech Connect

    Pan, Chongle; Park, Byung H; McDonald, W Hayes; Banfield, Jillian F.; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Samatova, Nagiza F

    2010-01-01

    High-resolution tandem mass spectra can now readily be acquired with hybrid instruments, such as LTQ-Orbitrap and LTQ-FT, in high-throughput shotgun proteomics workflows. In this study, a new de novo sequencing algorithm, Vonode, has been developed specifically for such high-resolution tandem mass spectra. To fully exploit the high mass accuracy, sparse noise, and low background of these spectra, a unique scoring system is used to evaluate sequence tags based mainly on mass accuracy information of fragment ions. Consensus sequence tags were inferred for 11,422 spectra with an average peptide length of 5.5 residues from a total of 40,297 input spectra acquired in a 24-hour proteomics measurement of Rhodopseudomonas palustris. The accuracy of inferred consensus sequence tags was 84%. The performance of Vonode was shown to be superior to the PepNovo v2.0 algorithm, especially in term of the number of de novo sequenced spectra.

  6. Pre-main sequence candidates in the very young open cluster NGC 6611

    NASA Astrophysics Data System (ADS)

    de Winter, D.; Koulis, C.; The, P. S.; van den Ancker, M. E.; Perez, M. R.; Bibo, E. A.

    1997-02-01

    For the search of Herbig Ae/Be objects in the extremely young open cluster NGC 6611 we have selected a sample of 52 pre-main sequence candidates, discovered by Walker (1961), Sagar & Joshi (1979), Chini & Wargau (1990) and The et al. (1990). We continue the approach of the last paper by studying each star individually with new and unpublished Walraven WULBV, Johnson/Cousins UBV(RI)_C and Johnson JHKLM photometric data as well as low resolution spectroscopy. Each object is shown to have its own extinction law, which is investigated using their spectral energy distribution (SED). There does not seem to be a clear relationship between the location of a star and the extinction law. This means that the extinction is generated locally and its correction must be taken individually. For each object accurate astrophysical parameters are then derived. Plotting the objects in an HR-diagram, together with the values for the E(B-V), the probability of membership value P and the extinction characteristics, helps to discriminate between cluster members and non-cluster members. Most foreground stars are of late spectral type and are labeled as Group III objects. Group I, to which most members of this cluster belong, contains objects of early spectral type. Part of them seem to be in their post-ZAMS phase and the other part in their pre-ZAMS stage. By comparing the evolutionary tracks of Palla & Stahler (1993) for pre-MS objects and of Maeder & Meyenet (1988) for post-MS stars we have concluded that the cluster contains objects of a few 0.1 Myr as well as objects of about 6 Myr. As most of the Group I objects do not show well-known Herbig Ae/Be characteristics, the time scale of clearing the disk material must be typically less than about 0.1 Myr for the more massive objects. Objects that show an IR-excess are found among the less luminous ones. They could still be in their pre-ZAMS phase, having an age of about 1 Myr. Such an age is appropriate for the Group II objects, which are

  7. V 3903 Sagittarii: a massive main-sequence (O7V+O9V) detached eclipsing binary

    NASA Astrophysics Data System (ADS)

    Vaz, L. P. R.; Cunha, N. C. S.; Vieira, E. F.; Myrrha, M. L. M.

    1997-11-01

    We present for the first time an analysis based on uvby light curves, Hβ indices and on new spectroscopic data of the massive detached double-lined O-type eclipsing binary V 3903Sgr. The uvby light curves are analysed with the WINK (initial solutions) and the Wilson-Devinney (WD, final solution) programs. Both codes were used in their extended versions, with stellar atmospheres and taking into account the geometric distortions and photometric effects caused by proximity of the components. The spectroscopic CCD observations were analysed with the harmonic ``Wilsing-Russell'' and the ``Lehman-Filhes'' methods. We conclude that V 3903Sgr is one of the rare O-type detached systems where both components are still on the initial phases of the main sequence, with an age of either 1.6x10(6) yrs or 2.5x10(6) yrs (depending on the evolutionary model adopted) at a distance of ~1500pc, the same as for the Lagoon Nebula (Messier8) complex, of which the system is probably a member. We determine the absolute dimensions: M_A=27.27+/-0.55, R_A=8.088+/-% 0.086, M_B=19.01+/-0.44 and R_B=6.125+/-0.060 (solar units). There is no evidence of mass transfer and the system is detached. The orbit is circular, and both components show synchronous rotation, despite their early evolutionary stage. The absolute dimensions determined should be representative for normal single stars. Amongst the massive systems (M>17Msun) with precise absolute dimensions (errors <2%), V 3903Sgr is that with the most massive primary, with the largest mass difference between the components, and it is the youngest one. Based on data collected with the 60$\\,$cm and 1.6$\\,$m telescopes at the Pico dos Dias Observatory, Na\\-tional Laboratory of Astrophysics, LNA-CNPq, Bra\\-só\\-polis, MG, Brazil and with the Danish 50$\\,$cm telescope (SAT) at the European Southern Observatory (ESO), La Silla, Chile

  8. A tale of two anomalies: Depletion, dispersion, and the connection between the stellar lithium spread and inflated radii on the pre-main sequence

    SciTech Connect

    Somers, Garrett; Pinsonneault, Marc H. E-mail: pinsono@astronomy.ohio-state.edu

    2014-07-20

    We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age, and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass-dependent, in the sense of more depletion at low mass. A dispersion in Li abundance at fixed T{sub eff} is nearly universal, and sets in by ∼200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispersion in stars of fixed mass and age, during the epoch of pre-MS Li destruction, is responsible for the spread in Li abundances and the correlation between rotation and Li in young cool stars, most well known in the Pleiades. We calculate stellar models, inflated to match observed radius anomalies in magnetically active systems, and the resulting range of Li abundances reproduces the observed patterns of young clusters. We discuss ramifications for pre-MS evolutionary tracks and age measurements of young clusters, and suggest an observational test.

  9. A Tale of Two Anomalies: Depletion, Dispersion, and the Connection between the Stellar Lithium Spread and Inflated Radii on the Pre-main Sequence

    NASA Astrophysics Data System (ADS)

    Somers, Garrett; Pinsonneault, Marc H.

    2014-07-01

    We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age, and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass-dependent, in the sense of more depletion at low mass. A dispersion in Li abundance at fixed T eff is nearly universal, and sets in by ~200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispersion in stars of fixed mass and age, during the epoch of pre-MS Li destruction, is responsible for the spread in Li abundances and the correlation between rotation and Li in young cool stars, most well known in the Pleiades. We calculate stellar models, inflated to match observed radius anomalies in magnetically active systems, and the resulting range of Li abundances reproduces the observed patterns of young clusters. We discuss ramifications for pre-MS evolutionary tracks and age measurements of young clusters, and suggest an observational test.

  10. The Structure of the Accretion Flow on pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Calvet, Nuria

    1999-07-01

    We propose to test an essential prediction of the magnetospheric accretion model for T Tauri stars. STIS echelle spectra will be used to search for the relatively narrow high-temperature emission lines that must result from the magnetospheric accretion shock, but are not expected in the previous, alternative boundary layer model. By combining the results from high temperature {10^5 K} lines, accessible only with HST, with optical lines and optical-UV continuum emission, we will develop physically self-consistent models of accretion shock structure. The geometrically distribution of the emitting gas as derived from our results will test theories of mass-loading of magnetic field lines at the magnetosphere-disk interface. Analysis of the UV emission lines will also provide improved calibrations between ultraviolet continuum emission and accretion luminosities, and thus improve estimates of mass accretion rates for T Tauri stars.

  11. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus

    PubMed Central

    2012-01-01

    Background Penicillium digitatum is a fungal necrotroph causing a common citrus postharvest disease known as green mold. In order to gain insight into the genetic bases of its virulence mechanisms and its high degree of host-specificity, the genomes of two P. digitatum strains that differ in their antifungal resistance traits have been sequenced and compared with those of 28 other Pezizomycotina. Results The two sequenced genomes are highly similar, but important differences between them include the presence of a unique gene cluster in the resistant strain, and mutations previously shown to confer fungicide resistance. The two strains, which were isolated in Spain, and another isolated in China have identical mitochondrial genome sequences suggesting a recent worldwide expansion of the species. Comparison with the closely-related but non-phytopathogenic P. chrysogenum reveals a much smaller gene content in P. digitatum, consistent with a more specialized lifestyle. We show that large regions of the P. chrysogenum genome, including entire supercontigs, are absent from P. digitatum, and that this is the result of large gene family expansions rather than acquisition through horizontal gene transfer. Our analysis of the P. digitatum genome is indicative of heterothallic sexual reproduction and reveals the molecular basis for the inability of this species to assimilate nitrate or produce the metabolites patulin and penicillin. Finally, we identify the predicted secretome, which provides a first approximation to the protein repertoire used during invasive growth. Conclusions The complete genome of P. digitatum, the first of a phytopathogenic Penicillium species, is a valuable tool for understanding the virulence mechanisms and host-specificity of this economically important pest. PMID:23171342

  12. Stars of type MS with evidence of white dwarf companions. [IUE, Main Sequence (MS)

    NASA Technical Reports Server (NTRS)

    Peery, Benjamin F., Jr.

    1986-01-01

    A search for white dwarf companions of MS-type stars was conducted, using IUE. The overendowments of these stars in typical S-process nuclides suggest that they, like the Ba II stars, may owe their peculiar compositions to earlier mass transfer. Short-wavelength IUE spectra show striking emission line variability in HD35155, HD61913, and 4 Ori; HD35155 and 4 Ori show evidence of white dwarf companions.

  13. The Dustiest Post-Main Sequence Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Jones, Olivia C.; Meixner, Margaret; Sargent, Benjamin A.; Boyer, Martha L.; Sewiło, Marta; Hony, Sacha; Roman-Duval, Julia

    2015-10-01

    Using observations from the Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds (MC), we have found 35 evolved stars and stellar end products that are bright in the far-infrared. These 28 (LMC) and 7 (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found 13 low- to intermediate-mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae, and a symbiotic star. We also identify 10 high mass stars, including 4 of the 15 known B[e] stars in the MC, 3 extreme red supergiants that are highly enshrouded by dust, a Luminous Blue Variable, a Wolf-Rayet star, and two supernova remnants. Further, we report the detection of 9 probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the MC. The Herschel emission may either be due to dust produced by the evolved star or it may arise from swept-up interstellar medium material.

  14. Detection of methamphetamine and its main metabolite in fingermarks by liquid chromatography-mass spectrometry.

    PubMed

    Zhang, Ting; Chen, Xueguo; Yang, Ruiqin; Xu, Yingjian

    2015-03-01

    A sensitive and efficient method applying liquid chromatography-mass spectrometry for the analysis of methamphetamine and its main metabolite in fingermark deposits was described. Using this method, good linear relationship of methamphetamine was obtained in the range of 0.005μg to 0.5μg per cotton swab, the limit of detection was 1.5ng per cotton swab, the limit of quantitation was 5.0ng per cotton swab and the average values of recovery ratios were above 70.1%. Moreover, the influence factors for the detection of methamphetamine in fingermarks, such as kinds of substrates, development methods and extraction methods, were all discussed in details. The results showed that good recovery ratios could be obtained on painted wood and smooth substrates surfaces. Development methods in commercial powder could not influence the quality of examination of exogenous drug in latent fingermark. Furthermore, the results indicated that the method mentioned here could be applied in the analysis of forensic trace evidences and samples obtained in clinically addicted cases. PMID:25576675

  15. Detection of methamphetamine and its main metabolite in fingermarks by liquid chromatography-mass spectrometry.

    PubMed

    Zhang, Ting; Chen, Xueguo; Yang, Ruiqin; Xu, Yingjian

    2015-03-01

    A sensitive and efficient method applying liquid chromatography-mass spectrometry for the analysis of methamphetamine and its main metabolite in fingermark deposits was described. Using this method, good linear relationship of methamphetamine was obtained in the range of 0.005μg to 0.5μg per cotton swab, the limit of detection was 1.5ng per cotton swab, the limit of quantitation was 5.0ng per cotton swab and the average values of recovery ratios were above 70.1%. Moreover, the influence factors for the detection of methamphetamine in fingermarks, such as kinds of substrates, development methods and extraction methods, were all discussed in details. The results showed that good recovery ratios could be obtained on painted wood and smooth substrates surfaces. Development methods in commercial powder could not influence the quality of examination of exogenous drug in latent fingermark. Furthermore, the results indicated that the method mentioned here could be applied in the analysis of forensic trace evidences and samples obtained in clinically addicted cases.

  16. Reconciling the Observed Star-forming Sequence with the Observed Stellar Mass Function

    NASA Astrophysics Data System (ADS)

    Leja, Joel; van Dokkum, Pieter G.; Franx, Marijn; Whitaker, Katherine E.

    2015-01-01

    We examine the connection between the observed star-forming sequence (SFR vprop M α) and the observed evolution of the stellar mass function in the range 0.2 < z < 2.5. We find that the star-forming sequence cannot have a slope α <~ 0.9 at all masses and redshifts because this would result in a much higher number density at 10 < log (M/M ⊙) < 11 by z = 1 than is observed. We show that a transition in the slope of the star-forming sequence, such that α = 1 at log (M/M ⊙) < 10.5 and α = 0.7-0.13z (Whitaker et al.) at log (M/M ⊙) > 10.5, greatly improves agreement with the evolution of the stellar mass function. We then derive a star-forming sequence that reproduces the evolution of the mass function by design. This star-forming sequence is also well described by a broken power law, with a shallow slope at high masses and a steep slope at low masses. At z = 2, it is offset by ~0.3 dex from the observed star-forming sequence, consistent with the mild disagreement between the cosmic star formation rate (SFR) and recent observations of the growth of the stellar mass density. It is unclear whether this problem stems from errors in stellar mass estimates, errors in SFRs, or other effects. We show that a mass-dependent slope is also seen in other self-consistent models of galaxy evolution, including semianalytical, hydrodynamical, and abundance-matching models. As part of the analysis, we demonstrate that neither mergers nor hidden low-mass quiescent galaxies are likely to reconcile the evolution of the mass function and the star-forming sequence. These results are supported by observations from Whitaker et al.

  17. RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION

    SciTech Connect

    Leja, Joel; Van Dokkum, Pieter G.; Franx, Marijn; Whitaker, Katherine E.

    2015-01-10

    We examine the connection between the observed star-forming sequence (SFR ∝ M {sup α}) and the observed evolution of the stellar mass function in the range 0.2 < z < 2.5. We find that the star-forming sequence cannot have a slope α ≲ 0.9 at all masses and redshifts because this would result in a much higher number density at 10 < log (M/M {sub ☉}) < 11 by z = 1 than is observed. We show that a transition in the slope of the star-forming sequence, such that α = 1 at log (M/M {sub ☉}) < 10.5 and α = 0.7-0.13z (Whitaker et al.) at log (M/M {sub ☉}) > 10.5, greatly improves agreement with the evolution of the stellar mass function. We then derive a star-forming sequence that reproduces the evolution of the mass function by design. This star-forming sequence is also well described by a broken power law, with a shallow slope at high masses and a steep slope at low masses. At z = 2, it is offset by ∼0.3 dex from the observed star-forming sequence, consistent with the mild disagreement between the cosmic star formation rate (SFR) and recent observations of the growth of the stellar mass density. It is unclear whether this problem stems from errors in stellar mass estimates, errors in SFRs, or other effects. We show that a mass-dependent slope is also seen in other self-consistent models of galaxy evolution, including semianalytical, hydrodynamical, and abundance-matching models. As part of the analysis, we demonstrate that neither mergers nor hidden low-mass quiescent galaxies are likely to reconcile the evolution of the mass function and the star-forming sequence. These results are supported by observations from Whitaker et al.

  18. Soft X-ray observations of pre-main-sequence stars in the Chamaeleon dark cloud

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Kriss, Gerard A.

    1989-01-01

    X-ray observations of the Chamaeleon I cloud, a star-forming region, are reported. A total of 22 distinct X-ray sources, most associated with previously identified premain sequence stars, are found. The spatial distributions and HR diagrams of the stars are very similar, suggesting that they are coeval. Luminosity functions suggest that the stars have an average X-ray luminosity (Lx) several times that of the Pleiades dwarfs. The value of Lx is significantly correlated with optical magnitude, though no relation between X-ray emission and any photometric or emission line characteristic is present. It is suggested that a Skumanich-type power-law relation may be present over the entire range of stellar ages between 10 to the 6th and 10 to the 10th yr.

  19. The main challenges that remain in applying high-throughput sequencing to clinical diagnostics.

    PubMed

    Loeffelholz, Michael; Fofanov, Yuriy

    2015-01-01

    Over the last 10 years, the quality, price and availability of high-throughput sequencing instruments have improved to the point that this technology may be close to becoming a routine tool in the diagnostic microbiology laboratory. Two groups of challenges, however, have to be resolved in order to move this powerful research technology into routine use in the clinical microbiology laboratory. The computational/bioinformatics challenges include data storage cost and privacy concerns, requiring analysis to be performed without access to cloud storage or expensive computational infrastructure. The logistical challenges include interpretation of complex results and acceptance and understanding of the advantages and limitations of this technology by the medical community. This article focuses on the approaches to address these challenges, such as file formats, algorithms, data collection, reporting and good laboratory practices. PMID:26394651

  20. High-resolution Imaging of PHIBSS z ˜ 2 Main-sequence Galaxies in CO J = 1 → 0

    NASA Astrophysics Data System (ADS)

    Bolatto, A. D.; Warren, S. R.; Leroy, A. K.; Tacconi, L. J.; Bouché, N.; Förster Schreiber, N. M.; Genzel, R.; Cooper, M. C.; Fisher, D. B.; Combes, F.; García-Burillo, S.; Burkert, A.; Bournaud, F.; Weiss, A.; Saintonge, A.; Wuyts, S.; Sternberg, A.

    2015-08-01

    We present Karl Jansky Very Large Array observations of the CO J=1-0 transition in a sample of four z˜ 2 main-sequence galaxies. These galaxies are in the blue sequence of star-forming galaxies at their redshift, and are part of the IRAM Plateau de Bure HIgh-z Blue Sequence Survey which imaged them in CO J=3-2. Two galaxies are imaged here at high signal-to-noise, allowing determinations of their disk sizes, line profiles, molecular surface densities, and excitation. Using these and published measurements, we show that the CO and optical disks have similar sizes in main-sequence galaxies, and in the galaxy where we can compare CO J=1-0 and J=3-2 sizes we find these are also very similar. Assuming a Galactic CO-to-H2 conversion, we measure surface densities of {{{Σ }}}{mol}˜ 1200 {M}⊙ pc-2 in projection and estimate {{{Σ }}}{mol}˜ 500-900 {M}⊙ pc-2 deprojected. Finally, our data yields velocity-integrated Rayleigh-Jeans brightness temperature line ratios r31 that are approximately at unity. In addition to the similar disk sizes, the very similar line profiles in J=1-0 and J=3-2 indicate that both transitions sample the same kinematics, implying that their emission is coextensive. We conclude that in these two main-sequence galaxies there is no evidence for significant excitation gradients or a large molecular reservoir that is diffuse or cold and not involved in active star formation. We suggest that r31 in very actively star-forming galaxies is likely an indicator of how well-mixed the star formation activity and the molecular reservoir are.

  1. OLD MAIN-SEQUENCE TURNOFF PHOTOMETRY IN THE SMALL MAGELLANIC CLOUD. II. STAR FORMATION HISTORY AND ITS SPATIAL GRADIENTS

    SciTech Connect

    Noel, Noelia E. D.; Gallart, Carme; Hidalgo, Sebastian L.; Aparicio, Antonio; Costa, Edgardo; Mendez, Rene A. E-mail: carme@iac.e E-mail: antapaj@iac.e E-mail: rmendez@das.uchile.c

    2009-11-10

    We present a quantitative analysis of the star formation history (SFH) of 12 fields in the Small Magellanic Cloud (SMC) based on unprecedented deep [(B - R), R] color-magnitude diagrams (CMDs). Our fields reach down to the oldest main-sequence turnoff with a high photometric accuracy, which is vital for obtaining accurate SFHs, particularly at intermediate and old ages. We use the IAC-pop code to obtain the SFH, using synthetic CMDs generated with IAC-star. We obtain the SFH as a function psi(t, z) of age and metallicity. We also consider several auxiliary functions: the initial mass function (IMF), phi(m), and a function accounting for the frequency and relative mass distribution of binary stars, beta(f, q). We find that there are several main periods of enhancement of star formation: a young one peaked at approx0.2-0.5 Gyr old, only present in the eastern and in the central-most fields; two at intermediate ages present in all fields: a conspicuous one peaked at approx4-5 Gyr, and a less significant one peaked at approx1.5-2.5; and an old one, peaked at approx10 Gyr in all fields but the western ones. In the western fields, this old enhancement splits into two, one peaked at approx8 Gyr old and another at approx12 Gyr old. This 'two-enhancement' zone is unaffected by our choice of stellar evolutionary library but more data covering other fields of the SMC are necessary in order to ascertain its significancy. Correlation between star formation rate enhancements and SMC-Milky Way encounters is not clear. Some correlation could exist with encounters taken from the orbit determination of Kallivayalil et al. But our results would also fit in a first pericenter passage scenario like the one claimed by Besla et al. For SMC-Large Magellanic Cloud encounters, we find a correlation only for the most recent encounter approx0.2 Gyr ago. This coincides with the youngest psi(t) enhancement peaked at these ages in our eastern fields. The population younger than 1 Gyr represents

  2. CCD photometry in the globular cluster NGC 288. I - Blue stragglers and main-sequence binary stars

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1992-01-01

    Photometry based on a mosaic of CCD images in B and V is presented for the globular cluster NGC 288. The spatial coverage ranges from the cluster core to about 6 core radii, and stars have been measured over the absolute visual magnitude range -1.2 to 8.4. The cluster is shown to contain a significant number of blue straggler stars in the central regions, and there is an excess of objects brighter and redder than the single-star main-sequence in the color-magnitude plane. These objects are interpreted as a population of main-sequence binary stars. With this interpretation, the explicity measured fraction of binary stars is 10 percent, which sets a lower limit for the total binary population.

  3. Deep water masses and sediments are main compartments for polychlorinated biphenyls in the Arctic Ocean.

    PubMed

    Sobek, Anna; Gustafsson, Örjan

    2014-06-17

    There is a wealth of studies of polychlorinated biphenyls (PCB) in surface water and biota of the Arctic Ocean. Still, there are no observation-based assessments of PCB distribution and inventories in and between the major Arctic Ocean compartments. Here, the first water column distribution of PCBs in the central Arctic Ocean basins (Nansen, Amundsen, and Makarov) is presented, demonstrating nutrient-like vertical profiles with 5-10 times higher concentrations in the intermediate and deep water masses than in surface waters. The consistent vertical profiles in all three Arctic Ocean basins likely reflect buildup of PCBs transported from the shelf seas and from dissolution and/or mineralization of settling particles. Combined with measurement data on PCBs in other Arctic Ocean compartments collected over the past decade, the total Arctic Ocean inventory of ∑7PCB was estimated to 182 ± 40 t (±1 standard error of the mean), with sediments (144 ± 40 t), intermediate (5 ± 1 t) and deep water masses (30 ± 2 t) storing 98% of the PCBs in the Arctic Ocean. Further, we used hydrographic and carbon cycle parametrizations to assess the main pathways of PCBs into and out of the Arctic Ocean during the 20th century. River discharge appeared to be the major pathway for PCBs into the Arctic Ocean with 115 ± 11 t, followed by ocean currents (52 ± 17 t) and net atmospheric deposition (30 ± 28 t). Ocean currents provided the only important pathway out of the Arctic Ocean, with an estimated cumulative flux of 22 ± 10 t. The observation-based inventory of ∑7PCB of 182 ± 40 t is consistent with the contemporary inventory based on cumulative fluxes for ∑7PCB of 173 ± 36 t. Information on the concentration and distribution of PCBs in the deeper compartments of the Arctic Ocean improves our understanding of the large-scale fate of POPs in the Arctic and may also provide a means to test and improve models used to assess the fate of organic pollutants in the Arctic. PMID

  4. Deep water masses and sediments are main compartments for polychlorinated biphenyls in the Arctic Ocean.

    PubMed

    Sobek, Anna; Gustafsson, Örjan

    2014-06-17

    There is a wealth of studies of polychlorinated biphenyls (PCB) in surface water and biota of the Arctic Ocean. Still, there are no observation-based assessments of PCB distribution and inventories in and between the major Arctic Ocean compartments. Here, the first water column distribution of PCBs in the central Arctic Ocean basins (Nansen, Amundsen, and Makarov) is presented, demonstrating nutrient-like vertical profiles with 5-10 times higher concentrations in the intermediate and deep water masses than in surface waters. The consistent vertical profiles in all three Arctic Ocean basins likely reflect buildup of PCBs transported from the shelf seas and from dissolution and/or mineralization of settling particles. Combined with measurement data on PCBs in other Arctic Ocean compartments collected over the past decade, the total Arctic Ocean inventory of ∑7PCB was estimated to 182 ± 40 t (±1 standard error of the mean), with sediments (144 ± 40 t), intermediate (5 ± 1 t) and deep water masses (30 ± 2 t) storing 98% of the PCBs in the Arctic Ocean. Further, we used hydrographic and carbon cycle parametrizations to assess the main pathways of PCBs into and out of the Arctic Ocean during the 20th century. River discharge appeared to be the major pathway for PCBs into the Arctic Ocean with 115 ± 11 t, followed by ocean currents (52 ± 17 t) and net atmospheric deposition (30 ± 28 t). Ocean currents provided the only important pathway out of the Arctic Ocean, with an estimated cumulative flux of 22 ± 10 t. The observation-based inventory of ∑7PCB of 182 ± 40 t is consistent with the contemporary inventory based on cumulative fluxes for ∑7PCB of 173 ± 36 t. Information on the concentration and distribution of PCBs in the deeper compartments of the Arctic Ocean improves our understanding of the large-scale fate of POPs in the Arctic and may also provide a means to test and improve models used to assess the fate of organic pollutants in the Arctic.

  5. A Simple Nonlinear Model for the Rotation of Main-sequence Cool Stars. I. Introduction, Implications for Gyrochronology, and Color-Period Diagrams

    NASA Astrophysics Data System (ADS)

    Barnes, Sydney A.

    2010-10-01

    We here introduce a simple nonlinear model to describe the rotational evolution of cool stars on the main sequence. It is formulated only in terms of the Rossby number (Ro = P/τ), its inverse, and two dimensionless constants which we specify using solar and open-cluster data. The model has two limiting cases of stellar rotation, previously called C and I, that correspond to two observed sequences of fast and slowly rotating stars in young open clusters. The model describes the evolution of stars from C-type, with particular mass and age dependencies, to I-type, with different mass and age dependencies, through the rotational gap, g, separating them. The proposed model explains various aspects of stellar rotation, and provides an exact expression for the age of a rotating cool star in terms of P and τ, thereby generalizing gyrochronology. Using it, we calculate the time interval required for stars to reach the rotational gap—a monotonically increasing, mildly nonlinear function of τ. Beginning with the range of initial periods indicated by observations, we show that the (mass-dependent) dispersion in rotation period initially increases, and then decreases rapidly with the passage of time. The initial dispersion in period contributes up to 128 Myr to the gyro-age errors of solar-mass field stars. Finally, we transform to color-period space, calculate appropriate isochrones, and show that this model explains some detailed features in the observed color-period diagrams of open clusters, including the positions and shapes of the sequences, and the observed density of stars across these diagrams.

  6. Searching for gas giant planets on Solar system scales - a NACO/APP L'-band survey of A- and F-type main-sequence stars

    NASA Astrophysics Data System (ADS)

    Meshkat, T.; Kenworthy, M. A.; Reggiani, M.; Quanz, S. P.; Mamajek, E. E.; Meyer, M. R.

    2015-11-01

    We report the results of a direct imaging survey of A- and F-type main-sequence stars searching for giant planets. A/F stars are often the targets of surveys, as they are thought to have more massive giant planets relative to solar-type stars. However, most imaging is only sensitive to orbital separations >30 au, where it has been demonstrated that giant planets are rare. In this survey, we take advantage of the high-contrast capabilities of the Apodizing Phase Plate coronagraph on NACO at the Very Large Telescope. Combined with optimized principal component analysis post-processing, we are sensitive to planetary-mass companions (2-12 MJup) at Solar system scales (≤30 au). We obtained data on 13 stars in the L' band and detected one new companion as part of this survey: an M6.0 ± 0.5 dwarf companion around HD 984. We re-detect low-mass companions around HD 12894 and HD 20385, both reported shortly after the completion of this survey. We use Monte Carlo simulations to determine new constraints on the low-mass (<80 MJup) companion frequency, as a function of mass and separation. Assuming solar-type planet mass and separation distributions, normalized to the planet frequency appropriate for A-stars, and the observed companion mass-ratio distribution for stellar companions extrapolated to planetary masses, we derive a truncation radius for the planetary mass companion surface density of <135 au at 95 per cent confidence.

  7. Some aspects of cool main sequence star ages derived from stellar rotation (gyrochronology)

    NASA Astrophysics Data System (ADS)

    Barnes, S. A.; Spada, F.; Weingrill, J.

    2016-09-01

    Rotation periods for cool stars can be measured with good precision by monitoring starspot light modulation. Observations have shown that the rotation periods of dwarf stars of roughly solar metallicity have such systematic dependencies on stellar age and mass that they can be used to derive reliable ages, a procedure called gyrochronology. We review the method and show illustrative cases, including recent ground- and space-based data. The age uncertainties approach 10 % in the best cases, making them a valuable complement to, and constraint on, asteroseismic or other ages. Edited, updated, and refereed version of a presentation at the WE-Heraeus-Seminar in Bad Honnef, Germany: Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models

  8. The age-metallicity relation in the solar neighbourhood from a pilot sample of white dwarf-main sequence binaries

    NASA Astrophysics Data System (ADS)

    Rebassa-Mansergas, A.; Anguiano, B.; García-Berro, E.; Freeman, K. C.; Cojocaru, R.; Manser, C. J.; Pala, A. F.; Gänsicke, B. T.; Liu, X.-W.

    2016-08-01

    The age-metallicity relation (AMR) is a fundamental observational constraint for understanding how the Galactic disc formed and evolved chemically in time. However, there is not yet an agreement on the observational properties of the AMR for the solar neighborhood, primarily due to the difficulty in obtaining accurate stellar ages for individual field stars. We have started an observational campaign for providing the much needed observational input by using wide white dwarf-main sequence (WDMS) binaries. White dwarfs are "natural" clocks and can be used to derive accurate ages. Metallicities can be obtained from the main sequence companions. Since the progenitors of white dwarfs and the main sequence stars were born at the same time, WDMS binaries provide a unique opportunity to observationally constrain in a robust way the properties of the AMR. In this work we present the AMR derived from analysing a pilot sample of 23 WDMS binaries and provide clear observational evidence for the lack of correlation between age and metallicity at young and intermediate ages (0-7 Gyrs).

  9. Rotating Stellar Models Can Account for the Extended Main-sequence Turnoffs in Intermediate-age Clusters

    NASA Astrophysics Data System (ADS)

    Brandt, Timothy D.; Huang, Chelsea X.

    2015-07-01

    We show that the extended main-sequence turnoffs seen in intermediate-age Large Magellanic Cloud (LMC) clusters, often attributed to age spreads of several 100 Myr, may be easily accounted for by variable stellar rotation in a coeval population. We compute synthetic photometry for grids of rotating stellar evolution models and interpolate them to produce isochrones at a variety of rotation rates and orientations. An extended main-sequence turnoff naturally appears in color-magnitude diagrams at ages just under 1 Gyr, peaks in extent between ˜1 and 1.5 Gyr, and gradually disappears by around 2 Gyr in age. We then fit our interpolated isochrones by eye to four LMC clusters with very extended main-sequence turnoffs: NGC 1783, 1806, 1846, and 1987. In each case, stellar populations with a single age and metallicity can comfortably account for the observed extent of the turnoff region. The new stellar models predict almost no correlation of turnoff color with rotational v{sin}i. The red part of the turnoff is populated by a combination of slow rotators and edge-on rapid rotators, while the blue part contains rapid rotators at lower inclinations.

  10. Gas and dust in the pre-main-sequence multiple system GG Tauri

    NASA Technical Reports Server (NTRS)

    Koerner, D. W.; Sargent, A. I.; Beckwith, S. V. W.

    1993-01-01

    We present 1.4 and 2.7 mm aperture synthesis maps of the gas and dust continuum emission around GG Tauri, a very young component of a premain-sequence multiple star system; both GG Tau and its apparent companion, GG Tau/c, at 1500 AU separation, are themselves binaries. At 1.4 mm, dust continuum emission of about 750 AU in extent is associated with GG Tau, and a secondary peak is near GG Tau/c. Spectral line images reveal gaseous structure around GG Tau, elongated along the GG Tau-GG Tau/c axis. There is some suggestion that the gas associated with GG Tau/c alone is extended in a different direction. Marked changes in the morphology and velocity structure of the molecular emission near GG Tau/c also indicate that this system is differently oriented. Clumps between the two systems may be vestiges of a connecting bar. GG Tau and GG Tau/c appear to have originated in a common cloud; their different systemic orientations suggest that they formed from an initially prolate cloud rather than from an extensive and highly flattened disk.

  11. Earthquake source parameters for the 2010 January Haiti main shock and aftershock sequence

    NASA Astrophysics Data System (ADS)

    Nettles, Meredith; Hjörleifsdóttir, Vala

    2010-10-01

    Previous analyses of geological and geodetic data suggest that the obliquely compressive relative motion across the Caribbean-North America plate boundary in Hispaniola is accommodated through strain partitioning between near-vertical transcurrent faults on land and low-angle thrust faults offshore. In the Dominican Republic, earthquake focal-mechanism geometries generally support this interpretation. Little information has been available about patterns of seismic strain release in Haiti, however, due to the small numbers of moderate-to-large earthquakes occurring in western Hispaniola during the modern instrumental era. Here, we analyse the damaging MW = 7.0 earthquake that occurred near Port au Prince on 2010 January 12 and aftershocks occurring in the four months following this event, to obtain centroid-moment-tensor (CMT) solutions for 50 earthquakes with magnitudes as small as MW = 4.0. While the 2010 January main shock exhibited primarily strike-slip motion on a steeply dipping nodal plane (strike=250°, dip=71° and rake=22°), we find that nearly all of the aftershocks show reverse-faulting motion, typically on high-angle (30°-45°) nodal planes. Two small aftershocks (MW 4.5 and 4.6), located very close to the main shock epicentre, show strike-slip faulting with geometries similar to the main shock. One aftershock located off the south coast of Haiti shows low-angle thrust faulting. We also examine earthquakes occurring in this region from 1977-2009 successful analysis of four such events provides evidence for both strike-slip and reverse faulting. The pattern of seismic strain release in southern Haiti thus indicates that partitioning of plate motion between transcurrent and reverse structures extends far west within Hispaniola. While we see limited evidence for low-angle underthrusting offshore, most reverse motion appears to occur on high-angle fault structures adjacent to the Enriquillo fault. Our results highlight the need to incorporate seismogenic

  12. The extended main-sequence turn-off cluster NGC 1856: rotational evolution in a coeval stellar ensemble

    NASA Astrophysics Data System (ADS)

    D'Antona, F.; Di Criscienzo, M.; Decressin, T.; Milone, A. P.; Vesperini, E.; Ventura, P.

    2015-11-01

    Multiple or extended turn-offs in young clusters in the Magellanic Clouds have recently received large attention. A number of studies have shown that they may be interpreted as the result of a significant age spread (several 108 yr in clusters aged 1-2 Gyr), while others attribute them to a spread in stellar rotation. We focus on the cluster NGC 1856, showing a splitting in the upper part of the main sequence, well visible in the colour mF336W - mF555W, and a very wide turn-off region. Using population synthesis available from the Geneva stellar models, we show that the cluster data can be interpreted as superposition of two main populations having the same age (˜350 Myr), composed for 2/3 of very rapidly rotating stars, defining the upper turn-off region and the redder main sequence, and for 1/3 of slowly/non-rotating stars. Since rapid rotation is a common property of the B-A type stars, the main question raised by this model concerns the origin of the slowly/non-rotating component. Binary synchronization is a possible process behind the slowly/non-rotating population; in this case, many slowly/non-rotating stars should still be part of binary systems with orbital periods in the range from 4 to 500 d. For these orbital periods, Roche lobe overflow occurs during the evolution of the primary off the main sequence, so most primaries may not be able to ignite core helium burning, consistently why the lack of a red clump progeny of the slowly rotating population.

  13. The threshold for stellar winds in hot main-sequence stars

    NASA Technical Reports Server (NTRS)

    Grigsby, James A.; Morrison, Nancy D.

    1995-01-01

    The profiles of ultraviolet resonance lines of C IV were surveyed in a sample of 29 cluster and association members in the spectral type range O9-B2 III-V, together with a few field stars of interest. The temperatures and gravities of the stars were taken from the model atmosphere analysis by Grigsby, Morrison, & Anderson (1992), and the luminosities were estimated on the basis of cluster and association distances from the recent literature. A parameter P(sub w) was defined in order to describe the degree and assymetry of the C IV profile. This parameter, together with total C IV equivalent width, was found to be well correlated with stellar luminosity and temperature. A few anomalous stars were noted: tau Sco, HD 66665, HD 13621, and the ON stars HD12323 and HD 201345. The results suggest a sudden onset of observable mass loss at T(effective) = 27,500 +/- 500 K, log (L/solar luminosity) = 4.4 +/- 0.12, in agreement with the previous study by Prinja (1989). At T(effective) = 28,000 K and log g = 4, our non-LTE model atmospheres show an enhancement in the ground-state population of C(+3) in their topmost layer, which could be responsible for initiation of the winds via radiation pressure on the C(+3) ions, or for the onset of visibility of C(+3) ions in the wind because of an increase in the optical depth in the C IV lines in the outermost layers.

  14. Medical Sequencing at the extremes of Human Body Mass

    SciTech Connect

    Ahituv, Nadav; Kavaslar, Nihan; Schackwitz, Wendy; Ustaszewski,Anna; Martin, Joes; Hebert, Sybil; Doelle, Heather; Ersoy, Baran; Kryukov, Gregory; Schmidt, Steffen; Yosef, Nir; Ruppin, Eytan; Sharan,Roded; Vaisse, Christian; Sunyaev, Shamil; Dent, Robert; Cohen, Jonathan; McPherson, Ruth; Pennacchio, Len A.

    2006-09-01

    Body weight is a quantitative trait with significantheritability in humans. To identify potential genetic contributors tothis phenotype, we resequenced the coding exons and splice junctions of58 genes in 379 obese and 378 lean individuals. Our 96Mb survey included21 genes associated with monogenic forms of obesity in humans or mice, aswell as 37 genes that function in body weight-related pathways. We foundthat the monogenic obesity-associated gene group was enriched for rarenonsynonymous variants unique to the obese (n=46) versus lean (n=26)populations. Computational analysis further predicted a significantlygreater fraction of deleterious variants within the obese cohort.Consistent with the complex inheritance of body weight, we did notobserve obvious familial segregation in the majority of the 28 availablekindreds. Taken together, these data suggest that multiple rare alleleswith variable penetrance contribute to obesity in the population andprovide a deep medical sequencing based approach to detectthem.

  15. Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Damiani, F.; Micela, G.; Peres, G.; Prisinzano, L.; Sciortino, S.

    2010-10-01

    Context. NGC 6611 and its parental cloud, the Eagle Nebula (M 16), are well-studied star-forming regions, thanks to their large content of both OB stars and stars with disks and the observed ongoing star formation. In our previous studies of the Eagle Nebula, we identified 834 disk-bearing stars associated with the cloud, after detecting their excesses in NIR bands from J band to 8.0 μ m. Aims: In this paper, we study in detail the nature of a subsample of disk-bearing stars that show peculiar characteristics. They appear older than the other members in the V vs. V-I diagram, and/or they have one or more IRAC colors at pure photospheric values, despite showing NIR excesses, when optical and infrared colors are compared. Methods: We confirm the membership of these stars to M 16 by a spectroscopic analysis. The physical properties of these stars with disks are studied by comparing their spectral energy distributions (SEDs) with the SEDs predicted by models of T Tauri stars with disks and envelopes. Results: We show that the age of these stars estimated from the V vs. V-I diagram is unreliable since their V-I colors are altered by the light scattered by the disk into the line of sight. Only in a few cases their SEDs are compatible with models with excesses in V band caused by optical veiling. Candidate members with disks and photospheric IRAC colors are selected by the used NIR disk diagnostic, which is sensitive to moderate excesses, such as those produced by disks with low masses. In 1/3 of these cases, scattering of stellar flux by the disks can also be invoked. Conclusions: The photospheric light scattered by the disk grains into the line of sight can affect the derivation of physical parameters of Class II stars from photometric optical and NIR data. Besides, the disks diagnostic we defined are useful for selecting stars with disks, even those with moderate excesses or whose optical colors are altered by veiling or photospheric scattered light. Table with the

  16. Duration of inverted metamorphic sequence formation across the Himalayan Main Central Thrust (MCT), Sikkim

    NASA Astrophysics Data System (ADS)

    Cioldi, Stefania; Moulas, Evangelos; Tajcmanová, Lucie; Burg, Jean-Pierre

    2016-04-01

    Collision between the Indian and Eurasian plates since the Eocene (50 Ma) caused the closure of the Neo-Tethys and the underthrusting of India beneath the Tibetan Plateau, generating the 2500 km extended Himalayan belt. The Main Central Thrust (MCT) marks the boundary of the underlying Midland Lower Himalaya metasediments zone (LH) in the south from the overlying high grade metamorphic Higher Himalaya (HH) in the north. Several models considering petrochronology, geothermobarometry and structural geology have been discussed to explain the inverted metamorphic gradient in the LH metasediments without reaching a common agreement. This study investigates the tectonic setting and the timescale of inverted isograds related to crustal-scale thrusting at the MCT in the Sikkim region, northeast India. The aim is to contribute to the understanding of the link between mechanical and thermal evolution of major thrust zones and to clarify the nature and the origin of orogenic heat applying garnet geospeedometry. Garnets provide a sensitive record of metamorphic conditions and are potential chronometer. Their compositional zoning is used as a gauge for rate estimates of element diffusion within the mineral and allows estimating the absolute time of the thermal evolution. Inverse-fitting numerical model considering FRactIonation and Diffusion in GarnEt (FRIDGE) calculates garnet composition profiles by introducing P-T-t paths and bulk-rock composition of a specific sample. P-T conditions were estimated by convectional geothermobarometry supported by phase equilibria modelling and measured garnet chemical compositions. Simulation were compared with measured garnet profiles. Simple step function and FRIDGE preliminary results of Fe-Mg - Ca - Mn garnet fractionation-diffusion modelling indicate very short timescale (between 3 and 6 Ma) for peak metamorphic conditions in the northeast Himalayan collisional system. This duration does not allow thermal re-equilibration. It is an

  17. The luminosity function at the end of the main sequence: Results of a deep, large-area, CCD survey for cool dwarfs

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. Davy; Mcgraw, John T.; Hess, Thomas R.; Liebert, James; Mccarthy, Donald W., Jr.

    1994-01-01

    late-type M dwarfs are substellar. The luminosity function data together with an empirical derivation of the mass-luminosity relation (from Henry & McCarthy) are used to compute a mass function independent of theory. This mass function increases toward the end of the main sequence, but the observed density of M dwarfs is still insufficient to account for the missing mass. If the increases seen in the luminosity and mass functions are indicative of a large, unseen, substellar population, brown dwarfs may yet add significantly to the mass of the Galaxy.

  18. Kepler observations of A-F pre-main-sequence stars in Upper Scorpius: discovery of six new δ Scuti and one γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Ripepi, V.; Balona, L.; Catanzaro, G.; Marconi, M.; Palla, F.; Giarrusso, M.

    2015-12-01

    We present light curves and periodograms for 27 stars in the young Upper Scorpius association (age = 11 ± 1 Myr) obtained with the Kepler spacecraft. This association is only the second stellar grouping to host several pulsating pre-main-sequence (PMS) stars which have been observed from space. From an analysis of the periodograms, we identify six δ Scuti variables and one γ Doradus star. These are most likely PMS stars or else very close to the zero-age main sequence. Four of the δ Scuti variables were observed in short-cadence mode, which allows us to resolve the entire frequency spectrum. For these four stars, we are able to infer some qualitative information concerning their ages. For the remaining two δ Scuti stars, only long-cadence data are available, which means that some of the frequencies are likely to be aliases. One of the stars appears to be a rotational variable in a hierarchical triple system. This is a particularly important object, as it allows the possibility of an accurate mass determination when radial velocity observations become available. We also report on new high-resolution echelle spectra obtained for some of the stars of our sample.

  19. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    SciTech Connect

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R.; Buat, V.; Charmandaris, V.; Magdis, G.; Ivison, R. J.; Borgne, D. Le; Lin, L.; Morrison, G. E.; and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  20. Late Diagenesis and Mass Transfer in Sandstone Shale Sequences

    NASA Astrophysics Data System (ADS)

    Milliken, K. L.

    2003-12-01

    , involving only compaction and dewatering of sedimentary materials. Detrital phases that survived weathering were seen as essentially inert to subsequent reaction during burial and prior to the onset of metamorphism. Metamorphism itself was viewed as isochemical and accomplished principally through solid-state reactions (see a brief summary in Ague, 1991). Notable exceptions to these views constitute the foundations of existing theory regarding the nature of late diagenesis. "Intrastratal solution" of chemically unstable detrital minerals (e.g., Pettijohn, 1941), apparent potassium metasomatism of shales (e.g., Weaver and Beck, 1971), and massive mineralogical changes during progressive burial (e.g., Coombs et al., 1959) are observations that established the directions of modern research in late diagenesis. Advances in petrographic imaging techniques (e.g., backscattered electron- and cathodoluminescence-imaging) and integration of petrographic observations with both bulk and spatially resolved chemical analyses have greatly accelerated the evolution of concepts about late diagenesis and early metamorphism.Today, basin-scale mass transfer of some materials (e.g., helium, water, and petroleum) is unquestioned (e.g., Hunt, 1996). Other materials (e.g., titanium and the REEs) are sufficiently mobile to appear within authigenic precipitates, but are likely to be "immobile" on the scale of a hand specimen. Mobilities of the major elements that make up sandstones and shales (silicon, aluminum, calcium, sodium, potassium) remain controversial. Conflicting notions about processes in rock suites across the wide range of burial conditions and alteration show that fundamental questions remain unanswered about the nature of the volumetrically significant processes within a major segment of the rock cycle. It is very likely that something is wrong, or at least inadequate, with the present concepts and/or data pertaining to the evolution of permeability, transport mechanisms, and timing

  1. What is the unusual material orbiting the dustiest main sequence A-type stars HD 131488 and HD 121191?

    NASA Astrophysics Data System (ADS)

    Melis, Carl

    2015-10-01

    Only a small percentage of main sequence stars exhibit excess mid-infrared emission indicative of substantial quantities of warm (T >~ 300 K), inner planetary system material that likely originated in recent transient collisional processes. Detailed study of these events can provide us with insight into how rocky terrestrial-like planets form and evolve through collisional pathways. We have identified two young A-type stars with mid-infrared luminosity brighter than and spectrally distinct from that at any other known main-sequence A-type star. T-ReCS N-band and IRTF SpeX spectroscopy combined with IRAS, Herschel, WISE, and T-ReCS photometric measurements indicate that these stars host two distinct infrared emitting regions, one with characteristic temperatures of >300 K (equivalent to temperatures inside 1 AU in the solar system) and a second of ~100 K (equivalent to the temperature near Saturn). The T-ReCS N-band spectra present an enigma: a putative emission feature with peak wavelength near 6-7 microns is not reproducible with common silicate species. SOFIA-FORCAST narrow-band imaging is the only means available to settling the identity of these strange emission features and hence clarify the nature of the inner planetary system material around these two stars.

  2. PRE-MAIN-SEQUENCE TURN-ON AS A CHRONOMETER FOR YOUNG CLUSTERS: NGC 346 AS A BENCHMARK

    SciTech Connect

    Cignoni, M.; Tosi, M.; Sabbi, E.; Nota, A.; Degl'Innocenti, S.; Moroni, P. G. Prada; Gallagher, J. S.

    2010-03-20

    We present a novel approach to deriving the age of very young star clusters, by using the Turn-On (TOn). The TOn is the point in the color-magnitude diagram (CMD) where the pre-main sequence (PMS) joins the main sequence (MS). In the MS luminosity function (LF) of the cluster, the TOn is identified as a peak followed by a dip. We propose that by combining the CMD analysis with the monitoring of the spatial distribution of MS stars it is possible to reliably identify the TOn in extragalactic star-forming regions. Compared to alternative methods, this technique is complementary to the turnoff dating and avoids the systematic biases affecting the PMS phase. We describe the method and its uncertainties and apply it to the star-forming region NGC 346, which has been extensively imaged with the Hubble Space Telescope (HST). This study extends the LF approach in crowded extragalactic regions and opens the way for future studies with HST/WFC3, the James Webb Space Telescope and from the ground with adaptive optics.

  3. A young cluster with an extended main-sequence turnoff: confirmation of a prediction of the stellar rotation scenario

    NASA Astrophysics Data System (ADS)

    Bastian, N.; Niederhofer, F.; Kozhurina-Platais, V.; Salaris, M.; Larsen, S.; Cabrera-Ziri, I.; Cordero, M.; Ekström, S.; Geisler, D.; Georgy, C.; Hilker, M.; Kacharov, N.; Li, C.; Mackey, D.; Mucciarelli, A.; Platais, I.

    2016-07-01

    We present Hubble Space Telescope photometry of NGC 1850, a ˜100 Myr, ˜105 M⊙ cluster in the Large Magellanic Cloud. The colour-magnitude diagram clearly shows the presence of an extended main-sequence turnoff (eMSTO). The use of non-rotating stellar isochrones leads to an age spread of ˜40 Myr. This is in good agreement with the age range expected when the effects of rotation in the main-sequence turnoff (MSTO) stars are wrongly interpreted in terms of age spread. We also do not find evidence for multiple, isolated episodes of star formation bursts within the cluster, in contradiction to scenarios that invoke actual age spreads to explain the eMSTO phenomenon. NGC 1850 therefore continues the trend of eMSTO clusters, where the inferred age spread is proportional to the age of the cluster. While our results confirm a key prediction of the scenario where stellar rotation causes the eMSTO feature, direct measurements of the rotational rate of MSTO stars is required to definitively confirm or refute whether stellar rotation is the origin of the eMSTO phenomenon or if it is due to an as yet undiscovered effect.

  4. Core-Halo Structure of a Chemically Homogeneous Massive Star and Bending of the Zero-Age Main Sequence

    NASA Astrophysics Data System (ADS)

    Ishii, Mie; Ueno, Munetaka; Kato, Mariko

    1999-08-01

    We have recalculated the interior structure of very massive stars of uniform chemical composition with the OPAL opacity. Very massive stars are found to develop a core-halo structure with an extended radiative-envelope. With the core-halo structure, because a more massive star has a more extended envelope, the track of the upper zero-age main-sequence (ZAMS) curves redward in the H-R diagram at > 100 MO (Z=0.02), >70 MO (Z=0.05), and > 15 MO for helium ZAMS (X=0, Z=0.02). Therefore, the effective temperatures of very massive ZAMS stars are rather low: e.g., for a 200 MO star, log T_eff=4.75 (Z=0.004), 4.60 (Z=0.02), 4.46 (Z=0.05), and 4.32 (Z=0.10). The effective temperatures of very luminous stars (> 120 MO ) found in the LMC, the SMC, and the Galaxy are discussed in relation to this metal dependence of a curving upper main-sequence.

  5. How Dusty Is Alpha Centauri? Excess or Non-excess over the Infrared Photospheres of Main-sequence Stars

    NASA Technical Reports Server (NTRS)

    Wiegert, J.; Liseau, R.; Thebault, P.; Olofsson, G.; Mora, A.; Bryden, G.; Marshall, J. P.; Eiroa, C.; Montesinos, B.; Ardila, D.; Augereau, J. C.; Aran, A. Bayo; Danchi, W. C.; del Burgo, C.; Ertel, S.; Fridlund, M. C. W.; Hajigholi, M.; Krivov, A. V.; Pilbratt, G. L.; Roberge, A.; White, G. J.; Wolf, S.

    2014-01-01

    Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims. We aim to determine the level of emission from debris around the stars in the Cen system. This requires knowledge of their photospheres.Having already detected the temperature minimum, Tmin, of CenA at far-infrared wavelengths, we here attempt to do the same for the moreactive companion Cen B. Using the Cen stars as templates, we study the possible eects that Tmin may have on the detectability of unresolveddust discs around other stars. Methods.We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in thefar infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunctionwith radiative transfer calculations, were used to estimate the amount of debris around these stars. Results. For solar-type stars more distant than Cen, a fractional dust luminosity fd LdustLstar 2 107 could account for SEDs that do not exhibit the Tmin eect. This is comparable to estimates of fd for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared,slight excesses at the 2:5 level are observed at 24 m for both CenA and B, which, if interpreted as due to zodiacal-type dust emission, wouldcorrespond to fd (13) 105, i.e. some 102 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dustgrains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the Cen stars, viz.4106 M$ of 4 to 1000 msize grains, distributed according to n(a) a3:5. Similarly, for filled-in Tmin

  6. Dependence of coronal X-ray emission on spot-induced brightness variations in cool main sequence stars

    NASA Astrophysics Data System (ADS)

    Messina, S.; Pizzolato, N.; Guinan, E. F.; Rodonò, M.

    2003-11-01

    The maximum amplitude (Amax) of spot-induced brightness variations from long-term V-band photometry and the ratio LX/Lbol between X-ray and bolometric luminosities are suitable indicators of the level of magnetic activity in the photosphere and in the corona of late-type stars, respectively. By using these activity indicators we investigate the dependence of coronal X-ray emission on the level of photospheric starspot activity in a homogeneous sample of low mass main sequence field and cluster stars of different ages (IC 2602, IC 4665, IC 2391, alpha Persei, Pleiades and Hyades). First, the activity-rotation connection at the photospheric level is re-analysed, as well as its dependence on spectral type and age. The upper envelope of Amax increases monotonically with decreasing rotational period (P) and Rossby number (R0) showing a break around 1.1 d that separates two rotation regimes where the starspot activity shows different behaviours. The Amax-P and Amax-R0 relations are fitted with linear, exponential and power laws to look for the function which best represents the trend of the data. The highest values of Amax are found among K-type stars and at the ages of alpha Persei and Pleiades. We also analyse the activity-rotation connection at the coronal level as well as its dependence on spectral type. The level of X-ray emission increases with increasing rotation rate up to a saturation level. The rotational period at which saturation occurs is colour-dependent and increases with advancing spectral type. Also the LX/Lbol-P and LX/Lbol-R0 relations are fitted with linear, exponential and power laws to look for the best fitting function. Among the fastest rotating stars (P<=0.3 d) there is evidence of super-saturation. Also the highest values of LXLbol are found among K-type stars. Finally, the photospheric-coronal activity connection is investigated by using for the first time the largest ever sample of light curve amplitudes as indicators of the magnetic filling

  7. The VLT-FLAMES Tarantula Survey. XVII. Physical and wind properties of massive stars at the top of the main sequence

    NASA Astrophysics Data System (ADS)

    Bestenlehner, J. M.; Gräfener, G.; Vink, J. S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C. J.; Crowther, P. A.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Schneider, F. R. N.; Simón-Díaz, S.; Taylor, W. D.; Walborn, N. R.

    2014-10-01

    The evolution and fate of very massive stars (VMS) is tightly connected to their mass-loss properties. Their initial and final masses differ significantly as a result of mass loss. VMS have strong stellar winds and extremely high ionising fluxes, which are thought to be critical sources of both mechanical and radiative feedback in giant H ii regions. However, how VMS mass-loss properties change during stellar evolution is poorly understood. In the framework of the VLT-Flames Tarantula Survey (VFTS), we explore the mass-loss transition region from optically thin O star winds to denser WNh Wolf-Rayet star winds, thereby testing theoretical predictions. To this purpose we select 62 O, Of, Of/WN, and WNh stars, an unprecedented sample of stars with the highest masses and luminosities known. We perform a spectral analysis of optical VFTS as well as near-infrared VLT/SINFONI data using the non-LTE radiative transfer code CMFGEN to obtain both stellar and wind parameters. For the first time, we observationally resolve the transition between optically thin O star winds and optically thick hydrogen-rich WNh Wolf-Rayet winds. Our results suggest the existence of a "kink" between both mass-loss regimes, in agreement with recent Monte Carlo simulations. For the optically thick regime, we confirm the steep dependence on the classical Eddington factor Γe from previous theoretical and observational studies. The transition occurs on the main sequence near a luminosity of 106.1L⊙, or a mass of 80 ... 90 M⊙. Above this limit, we find that - even when accounting for moderate wind clumping (with fv = 0.1) - wind mass-loss rates are enhanced with respect to standard prescriptions currently adopted in stellar evolution calculations. We also show that this results in substantial helium surface enrichment. Finally, based on our spectroscopic analyses, we are able to provide the most accurate ionising fluxes for VMS known to date, confirming the pivotal role of VMS in ionising and

  8. PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z {approx} 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES

    SciTech Connect

    Tacconi, L. J.; Genzel, R.; Wuyts, S.; Foerster Schreiber, N. M.; Gracia-Carpio, J.; Lutz, D.; Saintonge, A.; Neri, R.; Cox, P.; Combes, F.; Bolatto, A.; Cooper, M. C.; Bournaud, F.; Comerford, J.; Davis, M.; Newman, S.; Garcia-Burillo, S.; Naab, T.; Omont, A. E-mail: genzel@mpe.mpg.de; and others

    2013-05-01

    We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in massive, main-sequence star-forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z {approx} 1.2 and 2.2, with log(M{sub *}(M{sub Sun })) {>=} 10.4 and log(SFR(M{sub Sun }/yr)) {>=} 1.5. Including a correction for the incomplete coverage of the M{sub *} -SFR plane, and adopting a ''Galactic'' value for the CO-H{sub 2} conversion factor, we infer average gas fractions of {approx}0.33 at z {approx} 1.2 and {approx}0.47 at z {approx} 2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z {approx} 1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular-gas-star-formation relation for the z = 1-3 SFGs is near-linear, with a {approx}0.7 Gyr gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z {approx} 0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M{sub *}, gas fractions correlate strongly with the specific star formation rate (sSFR). The variation of sSFR between z {approx} 0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.

  9. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation

    PubMed Central

    Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.

    2016-01-01

    Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631

  10. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation

    NASA Astrophysics Data System (ADS)

    Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.

    2016-06-01

    Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.

  11. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation

    NASA Astrophysics Data System (ADS)

    Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.

    2016-06-01

    Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.

  12. The main properties and peculiarities of the Earth's motion relative to the center of mass

    NASA Astrophysics Data System (ADS)

    Klimov, D. M.; Akulenko, L. D.; Kumakshev, S. A.

    2014-10-01

    The methods of theoretical and celestial mechanics and mathematical statistics have been used to prove that the Earth's motion relative to the center of mass, the polar wobble, in the principal approximation is a combination of two circumferences with a slow trend in the mean position corresponding to the annual and Chandler components. It has been established that the parameters (amplitude and phase shift) of the annual wobble are stable, while those of the Chandler component are less stable and undergo significant variations over the observed time intervals. It has been proven that the behavior of these polar motion parameters is attributable to the gravitational-tidal mechanisms of their excitation.

  13. Detection of a dozen X-ray-emitting main-sequence B6-A3 stars in Orion

    NASA Technical Reports Server (NTRS)

    Caillault, Jean-Pierre; Zoonematkermani, Saeid

    1989-01-01

    The detection of 12 X-ray-emitting main-sequence B6-A3 stars in the Orion Nebula is reported. The luminosity of these stars in the 0.2-3.5 keV band is considerably in excess of field stars of the same spectral type. Consideration is given to the possibilities that these stars may not actually be the source of the X-rays, but that the emission may be attributable to T Tauri or 'naked' T Tauri star companions, or that these hot stars are indeed the sources of emission and that current theories of X-ray emission from early-type stars must be amended.

  14. X-ray emission from the pre-main sequence star ZCMa during a FUOri-type outburst

    NASA Astrophysics Data System (ADS)

    Stelzer, Beate

    2007-09-01

    We propose for the first X-ray spectrum of an FUOri object during outburst. The FUOR phenomenon is associated with a sudden increase of the accretion rate in some pre-main sequence (PMS) stars, possibly due to changes in the magnetic field. In the first X-ray survey of FUORs Skinner et al. (2007) have detected two of four targets. None of them was in outburst at the time. The typical two-temperature spectrum of a PMS star requires in the case of FUOri different absorptions for the soft and hard components (Skinner et al. 2006). Our target ZCMa is a young F-type FUOR. In Feb 2008 ZCMa started its so far largest outburst, with a further enhancement ~2 weeks ago. In May 2008 we have detected its magnetic field. Now we aim at an X-ray detection of ZCMa in its `super-outburst'.

  15. THE EFFECTS OF ROTATION ON THE MAIN-SEQUENCE TURNOFF OF INTERMEDIATE-AGE MASSIVE STAR CLUSTERS

    SciTech Connect

    Yang, Wuming; Bi, Shaolan; Liu, Zhie; Meng, Xiangcun E-mail: yangwuming@ynao.ac.cn

    2013-10-20

    The double or extended main-sequence turnoffs (MSTOs) in the color-magnitude diagram (CMD) of intermediate-age massive star clusters in the Large Magellanic Cloud are generally interpreted as age spreads of a few hundred Myr. However, such age spreads do not exist in younger clusters (i.e., 40-300 Myr), which challenges this interpretation. The effects of rotation on the MSTOs of star clusters have been studied in previous works, but the results obtained are conflicting. Compared with previous works, we consider the effects of rotation on the main-sequence lifetime of stars. Our calculations show that rotating models have a fainter and redder MSTO with respect to non-rotating counterparts with ages between about 0.8 and 2.2 Gyr, but have a brighter and bluer MSTO when age is larger than 2.4 Gyr. The spread of the MSTO caused by a typical rotation rate is equivalent to the effect of an age spread of about 200 Myr. Rotation could lead to the double or extended MSTOs in the CMD of the star clusters with ages between about 0.8 and 2.2 Gyr. However, the extension is not significant, and it does not even exist in younger clusters. If the efficiency of the mixing were high enough, the effects of the mixing would counteract the effect of the centrifugal support in the late stage of evolution, and the rotationally induced extension would disappear in the old intermediate-age star clusters, but younger clusters would have an extended MSTO. Moreover, the effects of rotation might aid in understanding the formation of some 'multiple populations' in globular clusters.

  16. PS1-10jh: The disruption of a main-sequence star of near-solar composition

    SciTech Connect

    Guillochon, James; Manukian, Haik; Ramirez-Ruiz, Enrico

    2014-03-01

    When a star comes within a critical distance to a supermassive black hole (SMBH), immense tidal forces disrupt the star, resulting in a stream of debris that falls back onto the SMBH and powers a luminous flare. In this paper, we perform hydrodynamical simulations of the disruption of a main-sequence star by an SMBH to characterize the evolution of the debris stream after a tidal disruption. We demonstrate that this debris stream is confined by self-gravity in the two directions perpendicular to the original direction of the star's travel and as a consequence has a negligible surface area and makes almost no contribution to either the continuum or line emission. We therefore propose that any observed emission lines are not the result of photoionization in this unbound debris, but are produced in the region above and below the forming elliptical accretion disk, analogous to the broad-line region (BLR) in steadily accreting active galactic nuclei. As each line within a BLR is observationally linked to a particular location in the accretion disk, we suggest that the absence of a line indicates that the accretion disk does not yet extend to the distance required to produce that line. This model can be used to understand the spectral properties of the tidal disruption event PS1-10jh, for which He II lines are observed, but the Balmer series and He I are not. Using a maximum likelihood analysis, we show that the disruption of a main-sequence star of near-solar composition can reproduce this event.

  17. Evidence for Chemical Processing of Precometary Icy Grains In Circumstellar Environments of Pre-Main-Sequence Stars

    NASA Technical Reports Server (NTRS)

    Teglier, Stephen C.; Weintraub, David A.; Rettig, Terrence W.; Pendleton, Yvonne J.; Whittet, Douglas C.; Kulesa, Craig A.

    1995-01-01

    We report the detection of a broad absorption feature near 2166 cm-1 in the spectrum of the Taurus cloud source Elias 18. This pre-main-sequence source is the second in Taurus, the third in our survey, and the fifth known in the sky to show the broad 2166 cm-1 absorption feature. Of equal importance, this feature is not seen toward several other embedded sources in our survey, nor is it seen toward the source Elias 16, located behind the Taurus cloud. Laboratory experiments with interstellar ice analogs show that such a feature is associated with a complex C=-N containing compound [called X(C=-N)] that results from high-energy processing (ultraviolet irradiation or ion bombardment) of simple ice components into more complex, organic components, We find a nonlinear anticorrelation between the abundance of X(C=-N) and frozen CO in non- polar lattices. We find no correlation between the abundance of X(C=-N) and frozen CO in polar lattices. Because the abundances of frozen CO and H20 are strongly correlated with each other and with visual extinction toward sources embedded in and located behind the Taurus molecular cloud, these ice components usually are associated with intracloud material. Our results indicate that X(C=-N) molecules result from chemical processing of dust grains dominated by nonpolar icy mantles in the local environments of pre-main- sequence stars. Such processing of icy grains in the early solar system may be an important source of organic compounds observed in minor solar system bodies. The delivery of these organic compounds to the surface of the primitive Earth through comet impacts may have provided the raw materials for prebiotic chemistry.

  18. Optimizing sequence coverage for a moderate mass protein in nano-electrospray ionization quadrupole time-of-flight mass spectrometry.

    PubMed

    Matsuda, Ryan; Kolli, Venkata; Woods, Megan; Dodds, Eric D; Hage, David S

    2016-09-15

    Sample pretreatment was optimized to obtain high sequence coverage for human serum albumin (HSA, 66.5 kDa) when using nano-electrospray ionization quadrupole time-of-flight mass spectrometry (nESI-Q-TOF-MS). Use of the final method with trypsin, Lys-C, and Glu-C digests gave a combined coverage of 98.8%. The addition of peptide fractionation resulted in 99.7% coverage. These results were comparable to those obtained previously with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The sample pretreatment/nESI-Q-TOF-MS method was also used with collision-induced dissociation to analyze HSA digests and to identify peptides that could be employed as internal mass calibrants in future studies of modifications to HSA.

  19. New clues to the cause of extended main-sequence turnoffs in intermediate-age star clusters in the Magellanic Clouds

    SciTech Connect

    Correnti, Matteo; Goudfrooij, Paul; Kalirai, Jason S.; Girardi, Leo; Puzia, Thomas H.; Kerber, Leandro E-mail: goudfroo@stsci.edu E-mail: leo.girardi@oapd.inaf.it E-mail: lkerber@gmail.com

    2014-10-01

    We use the Wide Field Camera 3 on board the Hubble Space Telescope (HST) to obtain deep, high-resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass (≈10{sup 4} M {sub ☉}) and significantly different core radii, namely NGC 2209 and NGC 2249. For comparison purposes, we also reanalyzed archival HST images of NGC 1795 and IC 2146, two other relatively low-mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main-sequence turnoff (MSTO) regions in NGC 2209 and NGC 2249 are significantly wider than that derived from simulations of simple stellar populations, while those in NGC 1795 and IC 2146 are not. We determine the evolution of the clusters' masses and escape velocities from an age of 10 Myr to the present age. We find that differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC 2209 and IC 2146) experienced stronger levels of initial mass segregation than the currently compact ones (NGC 2249 and NGC 1795). Under this assumption, we find that NGC 2209 and NGC 2249 have estimated escape velocities, V {sub esc} ≳ 15 km s{sup –1} at an age of 10 Myr, large enough to retain material ejected by slow winds of first-generation stars, while the two clusters that do not feature extended MSTOs have V {sub esc} ≲ 12 km s{sup –1} at that age. These results suggest that the extended MSTO phenomenon can be better explained by a range of stellar ages rather than a range of stellar rotation velocities or interacting binaries.

  20. Mid-IR spectra of pre-main sequence Herbig stars: An explanation for the non-detections of water lines

    NASA Astrophysics Data System (ADS)

    Antonellini, S.; Kamp, I.; Lahuis, F.; Woitke, P.; Thi, W.-F.; Meijerink, R.; Aresu, G.; Spaans, M.; Güdel, M.; Liebhart, A.

    2016-01-01

    Context. The mid-IR detection rate of water lines in disks around Herbig stars disks is about 5%, while it is around 50% for disks around T Tauri stars. The reason for this is still unclear. Aims: In this study, we want to find an explanation for the different detection rates between low mass and high mass pre-main-sequence stars in the mid-IR regime. Methods: We ran disk models with stellar parameters adjusted to spectral types B9 through M2, using the radiation thermo-chemical disk modelling code ProDiMo. We explored also a small parameter space around a standard disk model, considering dust-to-gas mass ratio, disk gas mass, mixing coefficient for dust settling, flaring index, dust maximum size, and size power law distribution index. We produced convolved spectra at the resolution of Spitzer, IRS, JWST MIRI, and VLT VISIR spectrographs. We applied random noise derived from typical Spitzer spectra for a direct comparison with observations. Results: The strength of the mid-IR water lines correlates directly with the luminosity of the central star. The models show that it is possible to suppress the water emission; however, current observations are not sensitive enough to detect mid-IR lines in disks for most of the explored parameters. The presence of noise in the spectra, combined with the high continuum flux (noise level is proportional to the continuum flux), is the most likely explanation for the non-detections towards Herbig stars. Conclusions: Mid-IR spectra with resolution higher than 20 000 are needed to investigate water in protoplanetary disks. Intrinsic differences in disk structure, such as inner gaps, gas-to-dust ratio, dust size and distribution, and inner disk scale height, between Herbig and T Tauri star disks are able to explain a lower water detection rate in disks around Herbig stars.

  1. The SCUBA-2 Cosmology Legacy Survey: galaxies in the deep 850 μm survey, and the star-forming `main sequence'

    NASA Astrophysics Data System (ADS)

    Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Roseboom, I.; Geach, J. E.; Cirasuolo, M.; Aretxaga, I.; Bowler, R. A. A.; Banerji, M.; Bourne, N.; Coppin, K. E. K.; Chapman, S.; Hughes, D. H.; Jenness, T.; McLure, R. J.; Symeonidis, M.; Werf, P. van der

    2016-06-01

    We investigate the properties of the galaxies selected from the deepest 850-μm survey undertaken to date with (Submillimetre Common-User Bolometer Array 2) SCUBA-2 on the James Clerk Maxwell Telescope as part of the SCUBA-2 Cosmology Legacy Survey. A total of 106 sources (>5σ) were uncovered at 850 μm from an area of ≃150 arcmin2 in the centre of the COSMOS/UltraVISTA/Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field, imaged to a typical depth of σ850 ≃ 0.25 mJy. We utilize the available multifrequency data to identify galaxy counterparts for 80 of these sources (75 per cent), and to establish the complete redshift distribution for this sample, yielding bar{z} = 2.38± 0.09. We have also been able to determine the stellar masses of the majority of the galaxy identifications, enabling us to explore their location on the star formation rate:stellar mass (SFR:M*) plane. Crucially, our new deep 850-μm-selected sample reaches flux densities equivalent to SFR ≃ 100 M⊙ yr-1, enabling us to confirm that sub-mm galaxies form the high-mass end of the `main sequence' (MS) of star-forming galaxies at z > 1.5 (with a mean specific SFR of sSFR = 2.25 ± 0.19 Gyr-1 at z ≃ 2.5). Our results are consistent with no significant flattening of the MS towards high masses at these redshifts. However, our results add to the growing evidence that average sSFR rises only slowly at high redshift, resulting in log10sSFR being an apparently simple linear function of the age of the Universe.

  2. Preliminary Results of Aerosol Chemical Composition Measurements in the Gulf of Maine with an Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Canagaratna, M. R.; Worsnop, D. R.

    2002-12-01

    The New England Air Quality Study is a multi-institutional research project to improve understanding of the atmospheric processes that control the production and distribution of air pollutants in the New England region. During July-August, 2002 a large, collaborative, intensive period of atmospheric measurement and model comparisons took place. As part of this study, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN in the Gulf of Maine. The AMS measures semi-volatile components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm. During this study, the AMS collected 2-minute averaged particle mass spectra as well as speciated organic, sulfate, and nitrate size distributions. Sodium chloride, sodium sulfate, and sodium nitrate components of the aerosol, which are relatively non-volatile at the AMS heater temperature, were not detected with the AMS. A wide variety of air masses were sampled during the intensive period, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of nitrate. Furthermore, particle mass loadings typically peaked around 400-600 nm in aerodynamic diameter. Several events with high aerosol organic, sulfate, and/or nitrate mass loadings were observed and the atmospheric processes that cause them will be discussed.

  3. Identification of main-sequence stars with mid-infrared excesses: Frequency of beta Pictoris analogs and transition disk systems

    NASA Astrophysics Data System (ADS)

    Uzpen, Brian Robert

    There is solid evidence of life on only one planet in the Universe: Earth. Since current technologies are not capable of directly observing planets, we must rely on secondary indicators, such as circumstellar disks to detect them. Circumstellar disks are commonplace around pre-main-sequence stars; it is believed these disks are a natural byproduct of star formation where planets can form. The general theoretical evolutionary sequence from the optically thick pre-main-sequence stars (T-Tauri and Herbig AeBe) to optically thin "debris disks", is as follows: After particles grow through condensation, they reach a critical value and form planetary cores; these cores accrete the gas around them and form planets. As the available circumstellar material decreases, the inner disk will develop a hole. Circumstellar material dissipates in the outer disk, while particles collide creating a population of grains that re-radiate stellar energy in the far-IR, a characteristic of debris disks. These debris disks represent a final stage of planet formation. Given that most stars originally have circumstellar disks, it is likely that planetary systems are common. Material similar in temperature to Earth emits primarily at ~10 mm (mid-IR wavelengths). By identifying stars with circumstellar material that emits in the mid-IR, it may be possible to locate Earth-like planetary systems; mid-IR excesses may also be an indicator of disks undergoing clearing processes with inner disk holes of a few AU. The purpose of this work is to identify and characterize a large sample of stellar sources with circumstellar disks that re-radiate energy at mid-IR wavelengths and place them in the greater context of disk evolution and planet formation. To achieve this goal, a large number of stellar sources with mid-IR excesses are identified through wide-area Galactic surveys. Far-IR photometry is utilized to confirm the mid-IR excess in a majority of the newly identified sources. Follow-up optical

  4. Main-Chain and Side-Chain Sequence-Regulated Vinyl Copolymers by Iterative Atom Transfer Radical Additions and 1:1 or 2:1 Alternating Radical Copolymerization.

    PubMed

    Soejima, Takamasa; Satoh, Kotaro; Kamigaito, Masami

    2016-01-27

    Main- and side-chain sequence-regulated vinyl copolymers were prepared by a combination of iterative atom transfer radical additions (ATRAs) of vinyl monomers for side-chain control and 1:1 or 2:1 alternating radical copolymerization of the obtained side-chain sequenced "oligomonomers" and vinyl comonomers for main-chain control. A complete set of sequence-regulated trimeric vinyl oligomers of styrene (S) and/or methyl acrylate (A) were first synthesized via iterative ATRAs of these monomers to a halide of monomeric S or A unit (X-S or X-A) under optimized conditions with appropriate ruthenium or copper catalysts, which were selected depending on the monomers and halides. The obtained halogen-capped oligomers were then converted into a series of maleimide (M)-ended oligomonomers with different monomer compositions and sequences (M-SSS, M-ASS, M-SAS, M-AAS, M-SSA, M-ASA, M-SAA, M-AAA) by a substitution reaction of the halide with furan-protected maleimide anion followed by deprotection of the furan units. These maleimide-ended oligomonomers were then radically copolymerized with styrene or limonene to enable the 1:1 or 2:1 monomer-sequence regulation in the main chain and finally result in the main- and side-chain sequence-regulated vinyl copolymers with high molecular weights in high yield. The properties of the sequence-regulated vinyl copolymers depended on not only the monomer compositions but also the monomer sequences. The solubility was highly affected by the outer monomer units in the side chains whereas the glass transition temperatures were primarily affected by the two successive monomer sequences. PMID:26761148

  5. GenoMass software: a tool based on electrospray ionization tandem mass spectrometry for characterization and sequencing of oligonucleotide adducts

    PubMed Central

    Sharma, Vaneet K; Glick, James; Liao, Qing; Shen, Chang; Vouros, Paul

    2012-01-01

    The analysis of DNA adducts is of importance in understanding DNA damage, and in the last few years mass spectrometry (MS) has emerged as the most comprehensive and versatile tool for routine characterization of modified oligonucleotides. The structural analysis of modified oligonucleotides, although routinely analyzed using mass spectrometry, is followed by a large amount of data, and a significant challenge is to locate the exact position of the adduct by computational spectral interpretation, which still is a bottleneck. In this report, we present an additional feature of the in-house developed GenoMass software, which determines the exact location of an adduct in modified oligonucleotides by connecting tandem mass spectrometry (MS/MS) to a combinatorial isomer library generated in silico for nucleic acids. The performance of this MS/MS approach using GenoMass software was evaluated by MS/MS data interpretation for an unadducted and its corresponding N-acetylaminofluorene (AAF) adducted 17-mer (5′OH-CCT ACC CCT TCC TTG TA-3′OH) oligonucleotide. Further computational screening of this AAF adducted 17-mer oligonucleotide (5′OH-CCT ACC CCT TCC TTG TA-3′OH) from a complex oligonucleotide mixture was performed using GenoMass. Finally, GenoMass was also used to identify the positional isomers of the AAF adducted 15-mer oligonucleotide (5′OH-ATGAACCGGAGGCCC-3′OH). GenoMass is a simple, fast, data interpretation software that uses an in silico constructed library to relate the MS/MS sequencing approach to identify the exact location of adduct on oligonucleotides. PMID:22689626

  6. The 1997 Umbria-Marche, Italy, Earthquake Sequence: A first look at the main shocks and aftershocks

    NASA Astrophysics Data System (ADS)

    Amato, A.; Azzara, R.; Chiarabba, C.; Cimini, G. B.; Cocco, M.; Di Bona, M.; Margheriti, L.; Mazza, S.; Mele, F.; Selvaggi, G.; Basili, A.; Boschi, E.; Courboulex, F.; Deschamps, A.; Gaffet, S.; Bittarelli, G.; Chiaraluce, L.; Piccinini, D.; Ripepe, M.

    A long sequence of earthquakes, six with magnitudes between 5 and 6, struck Central Italy starting on September 26, 1997, causing severe damages and loss of human lives. The seismogenic structure consists of a NW-SE elongated fault zone extending for about 40 km. The focal mechanisms of the largest shocks reveal normal faulting with NE-SW extension perpendicular to the trend of the Apennines, consistently with the Quaternary tectonic setting of the internal sector of the belt and with previous earthquakes in adjacent regions. Preliminary data on the main shocks and aftershocks show that extension in this region of the Apennines is accomplished by normal faults dipping at low angle (∼40°) to the southwest, and confined in the upper ∼8 km of the crust. These normal faults might have reactivated thrust planes of the Pliocene compressional tectonics. The aftershock distribution and the damage patterns also suggest that the three main shocks ruptured distinct 5 to 15 km-long fault segments, adjacent and slightly offset from one another.

  7. Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray).

    PubMed

    Kooken, Jennifer; Fox, Karen; Fox, Alvin; Altomare, Diego; Creek, Kim; Wunschel, David; Pajares-Merino, Sara; Martínez-Ballesteros, Ilargi; Garaizar, Javier; Oyarzabal, Omar; Samadpour, Mansour

    2014-02-01

    This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.

  8. THE MOLECULAR GAS CONTENT OF z = 3 LYMAN BREAK GALAXIES: EVIDENCE OF A NON-EVOLVING GAS FRACTION IN MAIN-SEQUENCE GALAXIES AT z > 2

    SciTech Connect

    Magdis, Georgios E.; Rigopoulou, D.; Daddi, E.; Sargent, M.; Elbaz, D.; Gobat, R.; Tan, Q.; Aussel, H.; Feruglio, C.; Charmandaris, V.; Dickinson, M.; Reddy, N.

    2012-10-10

    We present observations of the CO[J = 3 {yields} 2] emission toward two massive and infrared luminous Lyman break galaxies (LBGs) at z = 3.21 and z = 2.92, using the IRAM Plateau de Bure Interferometer, placing first constraints on the molecular gas masses (M{sub gas}) of non-lensed LBGs. Their overall properties are consistent with those of typical (main-sequence) galaxies at their redshifts, with specific star formation rates {approx}1.6 and {approx}2.2 Gyr{sup -1}, despite their large infrared luminosities (L{sub IR} Almost-Equal-To (2-3) Multiplication-Sign 10{sup 12} L{sub Sun }) derived from Herschel. With one plausible CO detection (spurious detection probability of 10{sup -3}) and one upper limit, we investigate the evolution of the molecular gas-to-stellar mass ratio (M{sub gas}/M{sub *}) with redshift. Our data suggest that the steep evolution of M{sub gas}/M{sub *} of normal galaxies up to z {approx} 2 is followed by a flattening at higher redshifts, providing supporting evidence for the existence of a plateau in the evolution of the specific star formation rate at z > 2.5.

  9. DNA sequencing with capillary electrophoresis and single cell analysis with mass spectrometry

    SciTech Connect

    Fung, N.

    1998-03-27

    Since the first demonstration of the laser in the 1960`s, lasers have found numerous applications in analytical chemistry. In this work, two different applications are described, namely, DNA sequencing with capillary gel electrophoresis and single cell analysis with mass spectrometry. Two projects are described in which high-speed DNA separations with capillary gel electrophoresis were demonstrated. In the third project, flow cytometry and mass spectrometry were coupled via a laser vaporization/ionization interface and individual mammalian cells were analyzed. First, DNA Sanger fragments were separated by capillary gel electrophoresis. A separation speed of 20 basepairs per minute was demonstrated with a mixed poly(ethylene oxide) (PEO) sieving solution. In addition, a new capillary wall treatment protocol was developed in which bare (or uncoated) capillaries can be used in DNA sequencing. Second, a temperature programming scheme was used to separate DNA Sanger fragments. Third, flow cytometry and mass spectrometry were coupled with a laser vaporization/ionization interface.

  10. The properties and environment of primitive solar nebulae as deduced from observations of solar-type pre-main sequence stars

    NASA Technical Reports Server (NTRS)

    Strom, Stephen E.; Edwards, Suzan; Strom, Karen M.

    1991-01-01

    The following topics were discussed: (1) current observation evidence for the presence of circumstellar disks associated with solar type pre-main sequence (PMS) stars; (2) the properties of such disks; and (3) the disk environment.

  11. Searching for faint companions with VLTI/PIONIER. II. 92 main sequence stars from the Exozodi survey

    NASA Astrophysics Data System (ADS)

    Marion, L.; Absil, O.; Ertel, S.; Le Bouquin, J.-B.; Augereau, J.-C.; Blind, N.; Defrère, D.; Lebreton, J.; Milli, J.

    2014-10-01

    Context. The Exozodi survey aims to determine the occurrence rate of bright exozodiacal discs around nearby main sequence stars using infrared interferometry. Although the Exozodi survey targets have been carefully selected to avoid the presence of binary stars, the results of this survey can still be biased by the presence of unidentified stellar companions. Aims: Using the PIONIER data set collected within the Exozodi survey in 2012, we aim to search for the signature of point-like companions around the Exozodi target stars. Methods: We make use of both the closure phases and squared visibilities collected by PIONIER to search for companions within the ~100 mas interferometric field of view. The presence of a companion is assessed by computing the goodness of fit to the data for a series of binary models with various separations and contrasts. Results: Five stellar companions are resolved for the first time around five A-type stars: HD 4150, HD 16555, HD 29388, HD 202730, and HD 224392 (although the companion to HD 16555 was independently resolved by speckle interferometry while we were carrying out the survey). In the most likely case of main sequence companions, their spectral types range from A5V to K4V. Three of these stars were already suspected to be binaries from Hipparcos astrometric measurements, although no information was available on the companions themselves so far. In addition to debiasing the statistics of the Exozodi survey, these results can also be used to revise the fraction of visual binaries among A-type stars, suggesting that an extra ~13% A-type stars are visual binaries in addition to the ones detected in previous direct imaging surveys. Conclusions: We estimate that about half the population of nearby A-type stars could be resolved as visual binaries using a combination of state-of-the-art interferometry and single-aperture imaging, and we suggest that a significant fraction of these binaries remains undetected to date. Based on

  12. Dusty OB Stars in the Small Magellanic Cloud. I. Optical Spectroscopy Reveals Predominantly Main-sequence OB Stars

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Bolatto, Alberto D.; van Loon, Jacco Th.; Sandstrom, Karin; Simon, Joshua D.; Oliveira, Joana M.; Barbá, Rodolfo H.

    2013-07-01

    We present the results of optical spectroscopic follow-up of 125 candidate main sequence OB stars in the Small Magellanic Cloud (SMC) that were originally identified in the S3MC infrared imaging survey as showing an excess of emission at 24 μm indicative of warm dust, such as that associated with a transitional or debris disks. We use these long-slit spectra to investigate the origin of the 24 μm emission and the nature of these stars. A possible explanation for the observed 24 μm excess, that these are emission line stars with dusty excretion disks, is disproven for the majority of our sources. We find that 88 of these objects are normal stars without line emission, with spectral types mostly ranging from late-O to early-B; luminosity classes from the literature for a sub-set of our sample indicate that most are main-sequence stars. We further identify 17 emission-line stars, 7 possible emission-line stars, and 5 other objects with forbidden-line emission in our sample. We discover a new O6 Iaf star; it exhibits strong He II 4686 Å emission but relatively weak N III 4640 Å emission which we attribute to the lower nitrogen abundance in the SMC. Two other objects are identified with planetary nebulae, one with a young stellar object, and two with X-ray binaries. To shed additional light on the nature of the observed 24 μm excess we use optical and infrared photometry to estimate the dust properties of the objects with normal O and B star spectra and compare these properties to those of a sample of hot spots in the Galactic interstellar medium (ISM). We find that the dust properties of the dusty OB star sample resemble the properties of the Galactic sample of hot spots. Some may be runaway systems with bow-shocks resulting from a large velocity difference between star and ISM. We further investigate the nature of these dusty OB stars in a companion paper presenting mid-infrared spectroscopy and additional imaging.

  13. Asteroseismology of the Hyades with K2: first detection of main-sequence solar-like oscillations in an open cluster

    NASA Astrophysics Data System (ADS)

    Lund, Mikkel N.; Basu, Sarbani; Silva Aguirre, Víctor; Chaplin, William J.; Serenelli, Aldo M.; García, Rafael A.; Latham, David W.; Casagrande, Luca; Bieryla, Allyson; Davies, Guy R.; Viani, Lucas S.; Buchhave, Lars A.; Miglio, Andrea; Soderblom, David R.; Valenti, Jeff A.; Stefanik, Robert P.; Handberg, Rasmus

    2016-08-01

    The Hyades open cluster was targeted during Campaign 4 (C4) of the NASA K2 mission, and short-cadence data were collected on a number of cool main-sequence stars. Here, we report results on two F-type stars that show detectable oscillations of a quality that allows asteroseismic analyses to be performed. These are the first ever detections of solar-like oscillations in main-sequence stars in an open cluster.

  14. Multiple stellar populations in Magellanic Cloud clusters - IV. The double main sequence of the young cluster NGC 1755

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Marino, A. F.; D'Antona, F.; Bedin, L. R.; Da Costa, G. S.; Jerjen, H.; Mackey, A. D.

    2016-06-01

    Nearly all the star clusters with ages of ˜1-2 Gyr in both Magellanic Clouds exhibit an extended main-sequence turn-off (eMSTO) whose origin is under debate. The main scenarios suggest that the eMSTO could be either due to multiple generations of stars with different ages or to coeval stellar populations with different rotation rates. In this paper we use Hubble Space Telescope images to investigate the ˜80-Myr old cluster NGC 1755 in the LMC. We find that the MS is split with the blue and the red MS hosting about the 25 per cent and the 75 per cent of the total number of MS stars, respectively. Moreover, the MSTO of NGC 1755 is broadened in close analogy with what is observed in the ˜300-Myr-old NGC 1856 and in most intermediate-age Magellanic-Cloud clusters. We demonstrate that both the split MS and the eMSTO are not due to photometric errors, field-stars contamination, differential reddening, or non-interacting binaries. These findings make NGC 1755 the youngest cluster with an eMSTO. We compare the observed CMD with isochrones and conclude that observations are not consistent with stellar populations with difference in age, helium, or metallicity only. On the contrary, the split MS is well reproduced by two stellar populations with different rotation, although the fit between the observed eMSTO and models with different rotation is not fully satisfactory. We speculate whether all stars in NGC 1755 were born rapidly rotating, and a fraction has slowed down on a rapid time-scale, or the dichotomy in rotation rate was present already at star formation. We discuss the implication of these findings on the interpretation of eMSTO in young and intermediate-age clusters.

  15. SEARCHING FOR YOUNG JUPITER ANALOGS AROUND AP COL: L-BAND HIGH-CONTRAST IMAGING OF THE CLOSEST PRE-MAIN-SEQUENCE STAR

    SciTech Connect

    Quanz, Sascha P.; Avenhaus, Henning; Meyer, Michael R.; Crepp, Justin R.; Hillenbrand, Lynne A.; Janson, Markus

    2012-08-01

    The nearby M-dwarf AP Col was recently identified by Riedel et al. as a pre-main-sequence star (age 12-50 Myr) situated only 8.4 pc from the Sun. The combination of its youth, distance, and intrinsically low luminosity make it an ideal target to search for extrasolar planets using direct imaging. We report deep adaptive optics observations of AP Col taken with VLT/NACO and Keck/NIRC2 in the L band. Using aggressive speckle suppression and background subtraction techniques, we are able to rule out companions with mass m {>=} 0.5-1 M{sub Jup} for projected separations a > 4.5 AU, and m {>=} 2 M{sub Jup} for projected separations as small as 3 AU, assuming an age of 40 Myr using the COND theoretical evolutionary models. Using a different set of models, the mass limits increase by a factor of {approx}>2. The observations presented here are the deepest mass-sensitivity limits yet achieved within 20 AU on a star with direct imaging. While Doppler radial velocity surveys have shown that Jovian bodies with close-in orbits are rare around M-dwarfs, gravitational microlensing studies predict that 17{sup +6}{sub -9}% of these stars host massive planets with orbital separations of 1-10 AU. Sensitive high-contrast imaging observations, like those presented here, will help to validate results from complementary detection techniques by determining the frequency of gas giant planets on wide orbits around M-dwarfs.

  16. Evaluating gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the Kelt-South survey

    SciTech Connect

    Cargile, P. A.; Pepper, J.; Siverd, R.; Stassun, K. G.; James, D. J.; Kuhn, R. B.

    2014-02-10

    We report periods for 33 members of Blanco 1 as measured from Kilodegree Extremely Little Telescope-South light curves, the first reported rotation periods for this benchmark zero-age-main-sequence open cluster. The distribution of these stars spans from late-A or early-F dwarfs to mid-K with periods ranging from less than a day to ∼8 days. The rotation period distribution has a morphology similar to the coeval Pleiades cluster, suggesting the universal nature of stellar rotation distributions. Employing two different gyrochronology methods, we find an age of 146{sub −14}{sup +13} Myr for the cluster. Using the same techniques, we infer an age of 134{sub −10}{sup +9} Myr for the Pleiades measured from existing literature rotation periods. These rotation-derived ages agree with independently determined cluster ages based on the lithium depletion boundary technique. Additionally, we evaluate different gyrochronology models and quantify levels of agreement between the models and the Blanco 1/Pleiades rotation period distributions, including incorporating the rotation distributions of clusters at ages up to 1.1 Gyr. We find the Skumanich-like spin-down rate sufficiently describes the rotation evolution of stars hotter than the Sun; however, we find cooler stars rotating faster than predicted by a Skumanich law, suggesting a mass dependence in the efficiency of stellar angular momentum loss rate. Finally, we compare the Blanco 1 and Pleiades rotation period distributions to available nonlinear angular momentum evolution models. We find they require a significant mass dependence on the initial rotation rate of solar-type stars to reproduce the observed range of rotation periods at a given stellar mass and are furthermore unable to predict the observed over-density of stars along the upper envelope of the clusters' rotation distributions.

  17. GOODS-Herschel: Star Formation, Dust Attenuation, and the FIR-radio Correlation on the Main Sequence of Star-forming Galaxies up to z ≃4

    NASA Astrophysics Data System (ADS)

    Pannella, M.; Elbaz, D.; Daddi, E.; Dickinson, M.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Buat, V.; Charmandaris, V.; Cibinel, A.; Juneau, S.; Ivison, R. J.; Le Borgne, D.; Le Floc'h, E.; Leiton, R.; Lin, L.; Magdis, G.; Morrison, G. E.; Mullaney, J.; Onodera, M.; Renzini, A.; Salim, S.; Sargent, M. T.; Scott, D.; Shu, X.; Wang, T.

    2015-07-01

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate-M* correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR-radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5-4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts. Based on observations collected at the Herschel, Spitzer, Keck, NRAO-VLA, Subaru, KPNO, and CFHT observatories. Herschel is an European Space Agency Cornerstone Mission with science instruments provided by European-led Principal Investigator consortia and

  18. Discovery of 15 Myr Old pre-Main Sequence Stars with Active Accretion and Sizeable Discs in NGC 6611

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, N.; Guarcello, M. G.; Bonito, R.

    2012-01-01

    Attention is given to a population of 110 stars with prominent near-infrared (NIR) excess in the NGC 6611 cluster of the Eagle Nebula that have optical colours typical of pre-main sequence (PMS) stars older than 10 Myr. In principle, their V-I colours would be consistent with those of young PMS objects (< 1 Myr), whose radiation is heavily obscured by a circumstellar disc seen at high inclination and in small part scattered towards the observer by the back side of the disc. However, using theoretical models it is shown here that objects of this type can only account for a few percent of this population. In fact, the spatial distribution of these objects, their X-ray luminosities, their optical brightness and their positions in the colour-magnitude diagram unambiguously indicate that most of these stars are intrinsically older than 10 Myr. Ages range from 8 to 30 Myr with a median value of 15 Myr. This is the largest homogeneous sample to date of Galactic PMS stars considerably older than 10 Myr that are still actively accreting from a circumstellar disc and it allows us to set a lower limit of 5% to the disc frequency at 15 Myr in NGC 6611. These values imply a characteristic exponential lifetime of 5 Myr for disc dissipation.

  19. Using A New Model for Main Sequence Turnoff Absolute Magnitudes to Measure Stellar Streams in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Weiss, Jake; Newberg, Heidi Jo; Arsenault, Matthew; Bechtel, Torrin; Desell, Travis; Newby, Matthew; Thompson, Jeffery M.

    2016-01-01

    Statistical photometric parallax is a method for using the distribution of absolute magnitudes of stellar tracers to statistically recover the underlying density distribution of these tracers. In previous work, statistical photometric parallax was used to trace the Sagittarius Dwarf tidal stream, the so-called bifurcated piece of the Sagittaritus stream, and the Virgo Overdensity through the Milky Way. We use an improved knowledge of this distribution in a new algorithm that accounts for the changes in the stellar population of color-selected stars near the photometric limit of the Sloan Digital Sky Survey (SDSS). Although we select bluer main sequence turnoff stars (MSTO) as tracers, large color errors near the survey limit cause many stars to be scattered out of our selection box and many fainter, redder stars to be scattered into our selection box. We show that we are able to recover parameters for analogues of these streams in simulated data using a maximum likelihood optimization on MilkyWay@home. We also present the preliminary results of fitting the density distribution of major Milky Way tidal streams in SDSS data. This research is supported by generous gifts from the Marvin Clan, Babette Josephs, Manit Limlamai, and the MilkyWay@home volunteers.

  20. First discovery of a magnetic field in a main-sequence δ Scuti star: the Kepler star HD 188774

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Lampens, P.

    2015-11-01

    The Kepler space mission provided a wealth of δ Sct-γ Dor hybrid candidates. While some may be genuine hybrids, others might be misclassified due to the presence of a binary companion or to rotational modulation caused by magnetism and related surface inhomogeneities. In particular, the Kepler δ Sct-γ Dor hybrid candidate HD 188774 shows a few low frequencies in its light and radial velocity curves, whose origin is unclear. In this work, we check for the presence of a magnetic field in HD 188774. We obtained two spectropolarimetric measurements with an Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) at Canada-France-Hawaii Telescope. The data were analysed with the least-squares deconvolution (LSD) method. We detected a clear magnetic signature in the Stokes V LSD profiles. The origin of the low frequencies detected in HD 188774 is therefore most probably the rotational modulation of surface spots possibly related to the presence of a magnetic field. Consequently, HD 188774 is not a genuine hybrid δ Sct-γ Dor star, but the first known magnetic main-sequence δ Sct star. This makes it a prime target for future asteroseismic and spot modelling. This result casts new light on the interpretation of the Kepler results for other δ Sct-γ Dor hybrid candidates.

  1. THE EXTENDED MAIN-SEQUENCE TURNOFF CLUSTERS OF THE LARGE MAGELLANIC CLOUD-MISSING LINKS IN GLOBULAR CLUSTER EVOLUTION

    SciTech Connect

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2011-04-10

    Recent observations of intermediate-age (1-3 Gyr) massive star clusters in the Large Magellanic Cloud have revealed that the majority possess bifurcated or extended main-sequence turnoff (EMSTO) morphologies. This effect can be understood to arise from subsequent star formation among the stellar population with age differences between constituent stars amounting to 50-300 Myr. Age spreads of this order are similarly invoked to explain the light-element abundance variations witnessed in ancient globular clusters (GCs). In this paper, we explore the proposition that the clusters exhibiting the EMSTO phenomenon are a general phase in the evolution of massive clusters, one that naturally leads to the particular chemical properties of the ancient GC population. We show that the isolation of EMSTO clusters to intermediate ages is the consequence of observational selection effects. In our proposed scenario, the EMSTO phenomenon is identical to that which establishes the light-element abundance variations that are ubiquitous in the ancient GC population. Our scenario makes a strong prediction: EMSTO clusters will exhibit abundance variations in the light-elements characteristic of the ancient GC population.

  2. From CoRoT 102899501 to the Sun. A time evolution model of chromospheric activity on the main sequence

    NASA Astrophysics Data System (ADS)

    Gondoin, P.; Gandolfi, D.; Fridlund, M.; Frasca, A.; Guenther, E. W.; Hatzes, A.; Deeg, H. J.; Parviainen, H.; Eigmüller, P.; Deleuil, M.

    2012-12-01

    Aims: The present study reports measurements of the rotation period of a young solar analogue, estimates of its surface coverage by photospheric starspots and of its chromospheric activity level, and derivations of its evolutionary status. Detailed observations of many young solar-type stars, such as the one reported in the present paper, provide insight into rotation and magnetic properties that may have prevailed on the Sun in its early evolution. Methods: Using a model based on the rotational modulation of the visibility of active regions, we analysed the high-accuracy CoRoT lightcurve of the active star CoRoT 102899501. Spectroscopic follow-up observations were used to derive its fundamental parameters. We compared the chromospheric activity level of Corot 102899501 with the R'HK index distribution vs age established on a large sample of solar-type dwarfs in open clusters. We also compared the chromospheric activity level of this young star with a model of chromospheric activity evolution established by combining relationships between the R'HK index and the Rossby number with a recent model of stellar rotation evolution on the main sequence. Results: We measure the spot coverage of the stellar surface as a function of time and find evidence for a tentative increase from 5 - 14% at the beginning of the observing run to 13-29% 35 days later. A high level of magnetic activity on Corot 102899501 is corroborated by a strong emission in the Balmer and Ca ii H and K lines (R'HK ~ -4). The starspots used as tracers of the star rotation constrain the rotation period to 1.625 ± 0.002 days and do not show evidence for differential rotation. The effective temperature (Teff = 5180 ± 80 K), surface gravity (log g = 4.35 ± 0.1), and metallicity ([M/H] = 0.05 ± 0.07 dex) indicate that the object is located near the evolutionary track of a 1.09 ± 0.12 M⊙ pre-main sequence star at an age of 23 ± 10 Myr. This value is consistent with the "gyro-age" of about 8-25 Myr

  3. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry.

    PubMed

    Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin

    2015-02-01

    We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing.

  4. Method and apparatus for enhanced sequencing of complex molecules using surface-induced dissociation in conjunction with mass spectrometric analysis

    DOEpatents

    Laskin, Julia [Richland, WA; Futrell, Jean H [Richland, WA

    2008-04-29

    The invention relates to a method and apparatus for enhanced sequencing of complex molecules using surface-induced dissociation (SID) in conjunction with mass spectrometric analysis. Results demonstrate formation of a wide distribution of structure-specific fragments having wide sequence coverage useful for sequencing and identifying the complex molecules.

  5. Amino acid sequence of a protease inhibitor isolated from Sarcophaga bullata determined by mass spectrometry.

    PubMed

    Papayannopoulos, I A; Biemann, K

    1992-02-01

    The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.

  6. Design of CID-Cleavable Protein Cross-linkers: Identical Mass Modifications for Simpler Sequence Analysis

    PubMed Central

    Kandur, Wynne V.; Kao, Athit; Vellucci, Danielle; Huang, Lan; Rychnovsky, Scott D.

    2015-01-01

    The cross-linking Mass Spectrometry (XL-MS) technique has enormous potential for studying the interactions between proteins, and it can provide detailed structural information about the interaction interfaces in large protein complexes. Such information has been difficult to obtain by conventional structural methods. One of the primary impediments to the wider use of the XL-MS technique is the extreme challenge in sequencing cross-linked peptides because of their complex fragmentation patterns in MS. A recent innovation is the development of MS-cleavable cross-linkers, which allows direct sequencing of component peptides for facile identification. Sulfoxides are an intriguing class of thermally-cleavable compounds that have been shown to fragment selectively during low-energy collisional induced dissociation (CID) analysis. Current CID-cleavable cross-linkers create fragmentation patterns in MS2 of multiple peaks for each cross-linked peptide. Reducing the complexity of the fragmentation pattern in MS2 facilitates subsequent MS3 sequencing of the cross-linked peptides. The first authentic identical mass linker (IML) has now been designed, prepared, and evaluated. Multistage tandem mass spectrometry (MSn) analysis has demonstrated that the IML cross-linked peptides indeed yield one peak per peptide constituent in MS2 as predicted, thus allowing effective and sensitive MS3 analysis for unambiguous identification. Selective fragmentation for IML cross-linked peptides from the 19S proteasome complex was observed, providing a proof-of-concept demonstration for XL-MS studies on protein complexes. PMID:26269432

  7. Facile Analysis and Sequencing of Linear and Branched Peptide Boronic Acids by MALDI Mass Spectrometry

    PubMed Central

    Crumpton, Jason; Zhang, Wenyu; Santos, Webster

    2011-01-01

    Interest in peptides incorporating boronic acid moieties is increasing due to their potential as therapeutics/diagnostics for a variety of diseases such as cancer. The utility of peptide boronic acids may be expanded with access to vast libraries that can be deconvoluted rapidly and economically. Unfortunately, current detection protocols using mass spectrometry are laborious and confounded by boronic acid trimerization, which requires time consuming analysis of dehydration products. These issues are exacerbated when the peptide sequence is unknown, as with de novo sequencing, and especially when multiple boronic acid moieties are present. Thus, a rapid, reliable and simple method for peptide identification is of utmost importance. Herein, we report the identification and sequencing of linear and branched peptide boronic acids containing up to five boronic acid groups by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Protocols for preparation of pinacol boronic esters were adapted for efficient MALDI analysis of peptides. Additionally, a novel peptide boronic acid detection strategy was developed in which 2,5-dihydroxybenzoic acid (DHB) served as both matrix and derivatizing agent in a convenient, in situ, on-plate esterification. Finally, we demonstrate that DHB-modified peptide boronic acids from a single bead can be analyzed by MALDI-MSMS analysis, validating our approach for the identification and sequencing of branched peptide boronic acid libraries. PMID:21449540

  8. Bidirectional Direct Sequencing of Noncanonical RNA by Two-Dimensional Analysis of Mass Chromatograms.

    PubMed

    Björkbom, Anders; Lelyveld, Victor S; Zhang, Shenglong; Zhang, Weicheng; Tam, Chun Pong; Blain, J Craig; Szostak, Jack W

    2015-11-18

    Mass spectrometry (MS) is a powerful technique for characterizing noncanonical nucleobases and other chemical modifications in small RNAs, yielding rich chemical information that is complementary to high-throughput indirect sequencing. However, mass spectra are often prohibitively complex when fragment ions are analyzed following either solution phase hydrolysis or gas phase fragmentation. For all but the simplest cases, ions arising from multiple fragmentation events, alternative fragmentation pathways, and diverse salt adducts frequently obscure desired single-cut fragment ions. Here we show that it is possible to take advantage of predictable regularities in liquid chromatographic (LC) separation of optimized RNA digests to greatly simplify the interpretation of complex MS data. A two-dimensional analysis of extracted compound chromatograms permits straightforward and robust de novo sequencing, using a novel Monte Carlo algorithm that automatically generates bidirectional paired-end reads, pinpointing the position of modified nucleotides in a sequence. We demonstrate that these advances permit routine LC-MS sequencing of RNAs containing noncanonical nucleotides, and we furthermore examine the applicability of this approach to the study of oligonucleotides containing artificial modifications as well as those commonly observed in post-transcriptionally modified RNAs.

  9. The pre-main-sequence star V1184 Tauri (CB 34V) at the end of prolonged eclipse

    NASA Astrophysics Data System (ADS)

    Semkov, E. H.; Peneva, S. P.; Ibryamov, S. I.

    2015-10-01

    Aims: V1184 Tau (CB 34V) lies in the field of the Bok globule CB 34 and was discovered as a large amplitude variable in 1993. According to the first hypothesis of the variability of the star, it is a FU Orionis candidate erupted between 1951 and 1993. During subsequent observations, the star manifests large amplitude variability interpreted as obscuration from circumstellar clouds of dust. We included V1184 Tau (CB 34V) in our target list of highly variable pre-main-sequence stars to determine the reasons for the variations in the brightness of this object. Methods: Data from BVRI photometric observations of the young stellar object V1184 Tau, obtained in the period 2008-2015, are presented in the paper. These data are a continuation of our optical photometric monitoring of the star began in 2000 and continuing to date. The photometric observations of V1184 Tau were performed in two observatories with two medium-sized and two small telescopes. Results: Our results indicate that during periods of maximum light the star shows characteristics typical of T Tauri stars. During the observed deep minimum in brightness, however, V1184 Tau is rather similar to UX Orionis objects. The deep drop in brightness began in 2003 ended in 2015 as the star has returned to maximum light. The light curve during the drop is obviously asymmetric as the decrease in brightness lasts two times longer than the rise. The observed colour reverse on the colour-magnitude diagrams is also confirmation of obscuration from circumstellar clouds of dust as a reason for the large amplitude variability in the brightness. Appendix A is available in electronic form at http://www.aanda.org

  10. Polarimetric Variations of Binary Stars. IV. Pre-Main-Sequence Spectroscopic Binaries Located in Taurus, Auriga, and Orion

    NASA Astrophysics Data System (ADS)

    Manset, N.; Bastien, P.

    2002-08-01

    We present polarimetric observations of 14 pre-main-sequence (PMS) binaries located in the Taurus, Auriga, and Orion star-forming regions. The majority of the average observed polarizations are below 0.5%, and none are above 0.9%. After removal of estimates of the interstellar polarization, about half the binaries have an intrinsic polarization above 0.5%, even though most of them do not present other evidences for the presence of circumstellar dust. Various tests reveal that 77% of the PMS binaries have or possibly have a variable polarization. LkCa 3, Par 1540, and Par 2494 present detectable periodic and phase-locked variations. The periodic polarimetric variations are noisier and of a lesser amplitude (~0.1%) than for other types of binaries, such as hot stars. This could be due to stochastic events that produce deviations in the average polarization, a nonfavorable geometry (circumbinary envelope), or the nature of the scatterers (dust grains are less efficient polarizers than electrons). Par 1540 is a weak-line T Tauri star but nonetheless has enough dust in its environment to produce detectable levels of polarization and variations. A fourth interesting case is W134, which displays rapid changes in polarization that could be due to eclipses. We compare the observations with some of our numerical simulations and also show that an analysis of the periodic polarimetric variations with the Brown, McLean, & Emslie (BME) formalism to find the orbital inclination is for the moment premature: nonperiodic events introduce stochastic noise that partially masks the periodic low-amplitude variations and prevents the BME formalism from finding a reasonable estimate of the orbital inclination.

  11. Accretion and Magnetic Reconnection in the Pre-Main Sequence Binary DQ Tau as Revealed through High-Cadence Optical Photometry

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto

    2016-01-01

    Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential

  12. Helium-abundance and other composition effects on the properties of stellar surface convection in solar-like main-sequence stars

    SciTech Connect

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2013-12-01

    We investigate the effect of helium abundance and α-element enhancement on the properties of convection in envelopes of solar-like main-sequence stars using a grid of three-dimensional radiation hydrodynamic simulations. Helium abundance increases the mean molecular weight of the gas and alters opacity by displacing hydrogen. Since the scale of the effect of helium may depend on the metallicity, the grid consists of simulations with three helium abundances (Y = 0.1, 0.2, 0.3), each with two metallicities (Z = 0.001, 0.020). We find that changing the helium mass fraction generally affects structure and convective dynamics in a way opposite to that of metallicity. Furthermore, the effect is considerably smaller than that of metallicity. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular weight. A simple model for spectral line formation suggests that the bisectors and absolute Doppler shifts of spectral lines depend on the helium abundance. We look at the effect of α-element enhancement and find that it has a considerably smaller effect on the convective dynamics in the superadiabatic layer compared to that of helium abundance.

  13. Estimation of submarine mass failure probability from a sequence of deposits with age dates

    USGS Publications Warehouse

    Geist, Eric L.; Chaytor, Jason D.; Parsons, Thomas E.; ten Brink, Uri S.

    2013-01-01

    The empirical probability of submarine mass failure is quantified from a sequence of dated mass-transport deposits. Several different techniques are described to estimate the parameters for a suite of candidate probability models. The techniques, previously developed for analyzing paleoseismic data, include maximum likelihood and Type II (Bayesian) maximum likelihood methods derived from renewal process theory and Monte Carlo methods. The estimated mean return time from these methods, unlike estimates from a simple arithmetic mean of the center age dates and standard likelihood methods, includes the effects of age-dating uncertainty and of open time intervals before the first and after the last event. The likelihood techniques are evaluated using Akaike’s Information Criterion (AIC) and Akaike’s Bayesian Information Criterion (ABIC) to select the optimal model. The techniques are applied to mass transport deposits recorded in two Integrated Ocean Drilling Program (IODP) drill sites located in the Ursa Basin, northern Gulf of Mexico. Dates of the deposits were constrained by regional bio- and magnetostratigraphy from a previous study. Results of the analysis indicate that submarine mass failures in this location occur primarily according to a Poisson process in which failures are independent and return times follow an exponential distribution. However, some of the model results suggest that submarine mass failures may occur quasiperiodically at one of the sites (U1324). The suite of techniques described in this study provides quantitative probability estimates of submarine mass failure occurrence, for any number of deposits and age uncertainty distributions.

  14. Zodiacal Exoplanets in Time (ZEIT). III. A Short-period Planet Orbiting a Pre-main-sequence Star in the Upper Scorpius OB Association

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Newton, Elisabeth R.; Rizzuto, Aaron C.; Irwin, Jonathan; Feiden, Gregory A.; Gaidos, Eric; Mace, Gregory N.; Kraus, Adam L.; James, David J.; Ansdell, Megan; Charbonneau, David; Covey, Kevin R.; Ireland, Michael J.; Jaffe, Daniel T.; Johnson, Marshall C.; Kidder, Benjamin; Vanderburg, Andrew

    2016-09-01

    We confirm and characterize a close-in ({P}{{orb}} = 5.425 days), super-Neptune sized ({5.04}-0.37+0.34 {R}\\oplus ) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main-sequence (11 Myr old) star in the Upper Scorpius subgroup of the Scorpius–Centaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (\\lt 20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planet’s properties and constrain the host star’s density. We determine K2-33’s bolometric flux and effective temperature from moderate-resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise radius (6%–7%) and mass (16%) for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscopy confirm that the transiting object is not a stellar companion or a background eclipsing binary blended with the target. The shape of the transit, the constancy of the transit depth and periodicity over 1.5 yr, and the independence with wavelength rule out stellar variability or a dust cloud or debris disk partially occulting the star as the source of the signal; we conclude that it must instead be planetary in origin. The existence of K2-33b suggests that close-in planets can form in situ or migrate within ˜10 Myr, e.g., via interactions with a disk, and that long-timescale dynamical migration such as by Lidov–Kozai or planet–planet scattering is not responsible for all short-period planets.

  15. Zodiacal Exoplanets in Time (ZEIT). III. A Short-period Planet Orbiting a Pre-main-sequence Star in the Upper Scorpius OB Association

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Newton, Elisabeth R.; Rizzuto, Aaron C.; Irwin, Jonathan; Feiden, Gregory A.; Gaidos, Eric; Mace, Gregory N.; Kraus, Adam L.; James, David J.; Ansdell, Megan; Charbonneau, David; Covey, Kevin R.; Ireland, Michael J.; Jaffe, Daniel T.; Johnson, Marshall C.; Kidder, Benjamin; Vanderburg, Andrew

    2016-09-01

    We confirm and characterize a close-in ({P}{{orb}} = 5.425 days), super-Neptune sized ({5.04}-0.37+0.34 {R}\\oplus ) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main-sequence (11 Myr old) star in the Upper Scorpius subgroup of the Scorpius-Centaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (\\lt 20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planet’s properties and constrain the host star’s density. We determine K2-33’s bolometric flux and effective temperature from moderate-resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise radius (6%-7%) and mass (16%) for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscopy confirm that the transiting object is not a stellar companion or a background eclipsing binary blended with the target. The shape of the transit, the constancy of the transit depth and periodicity over 1.5 yr, and the independence with wavelength rule out stellar variability or a dust cloud or debris disk partially occulting the star as the source of the signal; we conclude that it must instead be planetary in origin. The existence of K2-33b suggests that close-in planets can form in situ or migrate within ˜10 Myr, e.g., via interactions with a disk, and that long-timescale dynamical migration such as by Lidov-Kozai or planet-planet scattering is not responsible for all short-period planets.

  16. Delayed Gratification Habitable Zones (DG-HZs): When Deep Outer Solar System Regions Become Balmy During Post-Main Sequence Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Stern, S. A.

    2002-09-01

    Late in the Sun's evolution it, like all low and moderate mass stars, it will burn as a red giant, generating 1000s of solar luminosities for a few tens of millions of years. A dozen years ago this stage of stellar evolution was predicted to create observable sublimation signatures in systems where Kuiper Belts (KBs) are extant (Stern et al. 1990, Nature, 345, 305); recently, the SWAS spacecraft detected such systems (Melnick et al. 2001, 412, 160). During the red giant phase, the habitable zone of our solar system will lie in the region where Triton, Pluto-Charon, and KBOs orbit. Compared to the 1 AU habitable zone where Earth resided early in the solar system's history, this "delayed gratification habitable zone (DG-HZ)" will enjoy a far less biologically hazardous environment-- with far lower harmful UV radiation levels from the Sun, and a far quieter collisional environment. Objects like Triton, Pluto-Charon, and KBOs, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Sun's DG-HZ may only be of academic interest owing to its great separation from us in time. However, several 108 approximately solar-type Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our solar system (and as inferred in numerous main sequence stellar disk systems), then DG-HZs form a kind of niche habitable zone that is likely to be numerically common in the galaxy. I will show the calculated temporal evolution of DG-HZs around various stellar types using modern stellar evolution luminosity tracks, and then discuss various aspects of DG-HZs, including the effects of stellar pulsations and mass loss winds. This work was supported by NASA's Origins of Solar Systems Program.

  17. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport

    NASA Astrophysics Data System (ADS)

    Winther, Morten; Kousgaard, Uffe; Ellermann, Thomas; Massling, Andreas; Nøjgaard, Jacob Klenø; Ketzel, Matthias

    2015-01-01

    This paper presents a detailed emission inventory for NOx, particle mass (PM) and particle numbers (PN) for aircraft main engines, APU's and handling equipment at Copenhagen Airport (CPH) based on time specific activity data and representative emission factors for the airport. The inventory has a high spatial resolution of 5 m × 5 m in order to be suited for further air quality dispersion calculations. Results are shown for the entire airport and for a section of the airport apron area ("inner apron") in focus. The methodology presented in this paper can be used to quantify the emissions from aircraft main engines, APU and handling equipment in other airports. For the entire airport, aircraft main engines is the largest source of fuel consumption (93%), NOx, (87%), PM (61%) and PN (95%). The calculated fuel consumption [NOx, PM, PN] shares for APU's and handling equipment are 5% [4%, 8%, 5%] and 2% [9%, 31%, 0%], respectively. At the inner apron area for handling equipment the share of fuel consumption [NOx, PM, PN] are 24% [63%, 75%, 2%], whereas APU and main engines shares are 43% [25%, 19%, 54%], and 33% [11%, 6%, 43%], respectively. The inner apron NOx and PM emission levels are high for handling equipment due to high emission factors for the diesel fuelled handling equipment and small for aircraft main engines due to small idle-power emission factors. Handling equipment is however a small PN source due to the low number based emission factors. Jet fuel sulphur-PM sensitivity calculations made in this study with the ICAO FOA3.0 method suggest that more than half of the PM emissions from aircraft main engines at CPH originate from the sulphur content of the fuel used at the airport. Aircraft main engine PN emissions are very sensitive to the underlying assumptions. Replacing this study's literature based average emission factors with "high" and "low" emission factors from the literature, the aircraft main engine PN emissions were estimated to change with a

  18. Modeling of water masses exchange between Brepolen and the main fjord in the Western Svalbard fjord - Hornsund

    NASA Astrophysics Data System (ADS)

    Jakacki, Jaromir; Przyborska, Anna; Sunfjord, Arild; Albertsen, Jon; Białoskórski, Michał; Pliszka, Bartosz

    2016-04-01

    Hornsund is the southernmost fjord of the Svalbard archipelago island - Spitsbergen. It is under the influence of two main currents - the coastal Sørkapp Current (SC) carrying fresher and colder water masses from the Barents Sea and the West Spitsbergen Current (WSC), which is the branch of the Norwegian Atlantic Current (NwAC) and carries warm and salty waters from the North Atlantic. The main local forcing, which is tidal motion, brings shelf waters into the central fjord basin and then the transformed masses are carried into the easternmost part of the fjord, Brepolen. For the purpose of studying circulation and water exchange in this area a three-dimensional hydrodynamic model has been implemented and validated. The model is based on MIKE by DHI product and covers the Hornsund fjord with the shelf area, which is the fjord foreground. It is sigma a coordinate model (in our case 35 vertical levels) with variable horizontal resolution (mesh grid). The smallest cell has a horizontal dimension less than one hundred meters and the largest cells about 5 km. In spite of model limitations, the model reproduces the main circulation and water pathways in the Brepolen area. Seasonal and annual volume, heat and salt exchanges have been also estimated. The influence of freshwater discharge on shelf-fjord exchange will be also analyzed. The model results allow to study full horizontal and vertical fields of physical parameters (temperature, salinity, sea level variations and currents). The model integration covers only years 2005-2010 and the presented results will be based on this simulation. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018

  19. "Polymeromics": Mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review.

    PubMed

    Altuntaş, Esra; Schubert, Ulrich S

    2014-01-15

    Mass spectrometry (MS) is the most versatile and comprehensive method in "OMICS" sciences (i.e. in proteomics, genomics, metabolomics and lipidomics). The applications of MS and tandem MS (MS/MS or MS(n)) provide sequence information of the full complement of biological samples in order to understand the importance of the sequences on their precise and specific functions. Nowadays, the control of polymer sequences and their accurate characterization is one of the significant challenges of current polymer science. Therefore, a similar approach can be very beneficial for characterizing and understanding the complex structures of synthetic macromolecules. MS-based strategies allow a relatively precise examination of polymeric structures (e.g. their molar mass distributions, monomer units, side chain substituents, end-group functionalities, and copolymer compositions). Moreover, tandem MS offer accurate structural information from intricate macromolecular structures; however, it produces vast amount of data to interpret. In "OMICS" sciences, the software application to interpret the obtained data has developed satisfyingly (e.g. in proteomics), because it is not possible to handle the amount of data acquired via (tandem) MS studies on the biological samples manually. It can be expected that special software tools will improve the interpretation of (tandem) MS output from the investigations of synthetic polymers as well. Eventually, the MS/MS field will also open up for polymer scientists who are not MS-specialists. In this review, we dissect the overall framework of the MS and MS/MS analysis of synthetic polymers into its key components. We discuss the fundamentals of polymer analyses as well as recent advances in the areas of tandem mass spectrometry, software developments, and the overall future perspectives on the way to polymer sequencing, one of the last Holy Grail in polymer science.

  20. The intrinsic scatter along the main sequence of star-forming galaxies at z ∼ 0.7

    SciTech Connect

    Guo, Kexin; Zhong Zheng, Xian; Fu, Hai E-mail: xzzheng@pmo.ac.cn

    2013-11-20

    A sample of 12,614 star-forming galaxies (SFGs) with stellar mass >10{sup 9.5} M {sub ☉} between 0.6 < z < 0.8 from COSMOS is selected to study the intrinsic scatter of the correlation between star formation rate (SFR) and stellar mass. We derive SFR from ultraviolet (UV) and infrared (IR) luminosities. A stacking technique is adopted to measure IR emission for galaxies undetected at 24 μm. We confirm that the slope of the mass-SFR relation is close to unity. We examine the distributions of specific SFRs (SSFRs) in four equally spaced mass bins from 10{sup 9.5} M {sub ☉} to 10{sup 11.5} M {sub ☉}. Different models are used to constrain the scatter of SSFR for lower mass galaxies that are mostly undetected at 24 μm. The SFR scatter is dominated by the scatter of UV luminosity and gradually that of IR luminosity at increasing stellar mass. We derive SSFR dispersions of 0.18, 0.21, 0.26, and 0.31 dex with a typical measurement uncertainty of ≲ 0.01 dex for the four mass bins. Interestingly, the scatter of the mass-SFR relation seems not constant in the sense that the scatter in SSFR is smaller for SFGs of stellar mass <10{sup 10.5} M {sub ☉}. If confirmed, this suggests that the physical processes governing star formation become systematically less violent for less massive galaxies. The SSFR distribution for SFGs with intermediate mass 10{sup 10}-10{sup 10.5} M {sub ☉} is characterized by a prominent excess of intense starbursts in comparison with other mass bins. We argue that this feature reflects that both violent (e.g., major/minor mergers) and quiescent processes are important in regulating star formation in this intermediate-mass regime.

  1. A multi-wavelength study of pre-main sequence stars in the Taurus-Auriga star-forming region

    NASA Astrophysics Data System (ADS)

    Guenther, E. W.; Stelzer, B.; Neuhäuser, R.; Hillwig, T. C.; Durisen, R. H.; Menten, K. M.; Greimel, R.; Barwig, H.; Englhauser, J.; Robb, R. M.

    2000-05-01

    Although many lowmass pre-main sequence stars are strong X-ray sources, the origin of the X-ray emission is not well known. Since these objects are variable at all frequencies, simultaneous observations in X-rays and in other wavelengths are able to constrain the properties of the X-ray emitting regions. In this paper, we report quasi-simultaneous observations in X-rays, the optical, and the radio regime for classical and weak-line T Tauri stars from the Taurus-Auriga star-forming region. We find that all detected T Tauri stars show significant night-to-night variations of the X-ray emission. For three of the stars, FM Tau and CW Tau, both classical T Tauri stars, and V773 Tau, a weak-line T Tauri star, the variations are especially large. From observations taken simultaneously, we also find that there is some correspondence between the strength of Hα and the X-ray brightness in V773 Tau. The lack of a strong correlation leads us to conclude that the X-ray emission of V773 Tau is not a superposition of flares. However, we suggest that a weak correlation occurs because chromospherically active regions and regions of strong X-ray emission are generally related. V773 Tau was detected at 8.46 GHz as a weakly circularly polarised but highly variable source. We also find that the X-ray emission and the equivalent width of Hα remained unchanged, while large variations of the flux density in the radio regime were observed. This clearly indicates that the emitting regions are different. Using optical spectroscopy we detected a flare in Hα and event which showed a flare-like light-curve of the continuum brightness in FM Tau. However, ROSAT did not observe the field at the times of these flares. Nevertheless, an interesting X-ray event was observed in V773 Tau, during which the flux increased for about 8 hours and then decreased back to the same level in 5 hours. We interpret this as a long-duration event similar to those seen on the sun and other active stars. In the

  2. CONSTRAINING THE EXOZODIACAL LUMINOSITY FUNCTION OF MAIN-SEQUENCE STARS: COMPLETE RESULTS FROM THE KECK NULLER MID-INFRARED SURVEYS

    SciTech Connect

    Mennesson, B.; Serabyn, E.; Colavita, M. M.; Bryden, G.; Doré, O.; Traub, W.; Millan-Gabet, R.; Absil, O.; Wyatt, M.; Danchi, W.; Kuchner, M.; Stapelfeldt, K.; Defrère, D.; Hinz, P.; Ragland, S.; Scott, N.; Woillez, J.

    2014-12-20

    Forty-seven nearby main-sequence stars were surveyed with the Keck Interferometer mid-infrared Nulling instrument (KIN) between 2008 and 2011, searching for faint resolved emission from exozodiacal dust. Observations of a subset of the sample have already been reported, focusing essentially on stars with no previously known dust. Here we extend this previous analysis to the whole KIN sample, including 22 more stars with known near- and/or far-infrared excesses. In addition to an analysis similar to that of the first paper of this series, which was restricted to the 8-9 μm spectral region, we present measurements obtained in all 10 spectral channels covering the 8-13 μm instrumental bandwidth. Based on the 8-9 μm data alone, which provide the highest signal-to-noise measurements, only one star shows a large excess imputable to dust emission (η Crv), while four more show a significant (>3σ) excess: β Leo, β UMa, ζ Lep, and γ Oph. Overall, excesses detected by KIN are more frequent around A-type stars than later spectral types. A statistical analysis of the measurements further indicates that stars with known far-infrared (λ ≥ 70 μm) excesses have higher exozodiacal emission levels than stars with no previous indication of a cold outer disk. This statistical trend is observed regardless of spectral type and points to a dynamical connection between the inner (zodi-like) and outer (Kuiper-Belt-like) dust populations. The measured levels for such stars are clustering close to the KIN detection limit of a few hundred zodis and are indeed consistent with those expected from a population of dust that migrated in from the outer belt by Poynting-Robertson drag. Conversely, no significant mid-infrared excess is found around sources with previously reported near-infrared resolved excesses, which typically have levels of the order of 1% over the photospheric flux. If dust emission is really at play in these near-infrared detections, the absence of a strong mid

  3. Constraining the Exozodiacal Luminosity Function of Main-sequence Stars: Complete Results from the Keck Nuller Mid-infrared Surveys

    NASA Astrophysics Data System (ADS)

    Mennesson, B.; Millan-Gabet, R.; Serabyn, E.; Colavita, M. M.; Absil, O.; Bryden, G.; Wyatt, M.; Danchi, W.; Defrère, D.; Doré, O.; Hinz, P.; Kuchner, M.; Ragland, S.; Scott, N.; Stapelfeldt, K.; Traub, W.; Woillez, J.

    2014-12-01

    Forty-seven nearby main-sequence stars were surveyed with the Keck Interferometer mid-infrared Nulling instrument (KIN) between 2008 and 2011, searching for faint resolved emission from exozodiacal dust. Observations of a subset of the sample have already been reported, focusing essentially on stars with no previously known dust. Here we extend this previous analysis to the whole KIN sample, including 22 more stars with known near- and/or far-infrared excesses. In addition to an analysis similar to that of the first paper of this series, which was restricted to the 8-9 μm spectral region, we present measurements obtained in all 10 spectral channels covering the 8-13 μm instrumental bandwidth. Based on the 8-9 μm data alone, which provide the highest signal-to-noise measurements, only one star shows a large excess imputable to dust emission (η Crv), while four more show a significant (>3σ) excess: β Leo, β UMa, ζ Lep, and γ Oph. Overall, excesses detected by KIN are more frequent around A-type stars than later spectral types. A statistical analysis of the measurements further indicates that stars with known far-infrared (λ >= 70 μm) excesses have higher exozodiacal emission levels than stars with no previous indication of a cold outer disk. This statistical trend is observed regardless of spectral type and points to a dynamical connection between the inner (zodi-like) and outer (Kuiper-Belt-like) dust populations. The measured levels for such stars are clustering close to the KIN detection limit of a few hundred zodis and are indeed consistent with those expected from a population of dust that migrated in from the outer belt by Poynting-Robertson drag. Conversely, no significant mid-infrared excess is found around sources with previously reported near-infrared resolved excesses, which typically have levels of the order of 1% over the photospheric flux. If dust emission is really at play in these near-infrared detections, the absence of a strong mid

  4. Polarimetric Variations of Binary Stars. V. Pre-Main-Sequence Spectroscopic Binaries Located in Ophiuchus and Scorpius

    NASA Astrophysics Data System (ADS)

    Manset, N.; Bastien, P.

    2003-06-01

    We present polarimetric observations of seven pre-main-sequence (PMS) spectroscopic binaries located in the ρ Ophiuchus and Upper Scorpius star-forming regions (SFRs). The average observed polarizations at 7660 Å are between 0.5% and 3.5%. After estimates of the interstellar polarization are removed, all binaries have an intrinsic polarization above 0.4%, even though most of them do not present other evidences for circumstellar dust. Two binaries, NTTS 162814-2427 and NTTS 162819-2423S, present high levels of intrinsic polarization between 1.5% and 2.1%, in agreement with the fact that other observations (photometry, spectroscopy) indicate the presence of circumstellar dust. Tests reveal that all seven PMS binaries have a statistically variable or possibly variable polarization. Combining these results with our previous sample of binaries located in the Taurus, Auriga, and Orion SFRs, 68% of the binaries have an intrinsic polarization above 0.5%, and 90% of the binaries are polarimetrically variable or possibly variable. NTTS 160814-1857, 162814-2427, and 162819-2423S are clearly polarimetrically variable. The first two also exhibit phase-locked variations over ~10 and ~40 orbits, respectively. Statistically, NTTS 160905-1859 is possibly variable, but it shows periodic variations not detected by the statistical tests; those variations are not phased locked and only present for short intervals of time. The amplitudes of the variations reach a few tenths of a percent, greater than for the previously studied PMS binaries located in the Taurus, Orion, and Auriga SFRs. The high-eccentricity system NTTS 162814-2427 shows single-periodic variations, in agreement with our previous numerical simulations. We compare the observations with some of our numerical simulations and also show that an analysis of the periodic polarimetric variations with the Brown, McLean, & Emslie (BME) formalism to find the orbital inclination is for the moment premature: nonperiodic events

  5. De novo sequencing of peptides from top-down tandem mass spectra

    SciTech Connect

    Vyatkina, Kira; Wu, Si; Dekker, Leendert J.; vanDuijn, Martijn M.; Liu, Xiaowen; Tolic, Nikola; Dvorkin, Mikhail; Alexandrova, Sonya; Luider, Theo N.; Pasa-Tolic, Ljiljana; Pevzner, Pavel A.

    2015-09-28

    De novo sequencing of proteins and peptides is one of the most important problems in mass spectrometry-driven proteomics. A variety of methods have been developed to accomplish this task from a set of bottom-up tandem (MS/MS) mass spectra. However, a more recently emerged top-down technology, now gaining more and more popularity, opens new perspectives for protein analysis and characterization, implying a need in efficient algorithms for processing this kind of MS/MS data. Here we describe a method that allows to retrieve from a set of top-down MS/MS spectra long and accurate sequence fragments of the proteins contained in a sample. To this end, we outline a strategy for generating high-quality sequence tags from top-down spectra, and introduce the concept of a T-Bruijn graph by adapting to the case of tags the notion of an A-Bruijn graph widely used in genomics. The output of the proposed approach represents the set of amino acid strings spelled out by optimal paths in the connected components of a T-Bruijn graph. We illustrate its performance on top-down datasets acquired from carbonic anhydrase 2 (CAH2) and the Fab region of alemtuzumab.

  6. THE CLUSTERED NATURE OF STAR FORMATION. PRE-MAIN-SEQUENCE CLUSTERS IN THE STAR-FORMING REGION NGC 602/N90 IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Gouliermis, Dimitrios A.; Gennaro, Mario; Schmeja, Stefan; Dolphin, Andrew E.; Tognelli, Emanuele; Prada Moroni, Pier Giorgio

    2012-03-20

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC 602/N90 is characterized by the H II nebular ring N90 and the young cluster of pre-main-sequence (PMS) and early-type main-sequence stars NGC 602, located in the central area of the ring. We present a thorough cluster analysis of the stellar sample identified with Hubble Space Telescope/Advanced Camera for Surveys in the region. We show that apart from the central cluster low-mass PMS stars are congregated in 13 additional small, compact sub-clusters at the periphery of NGC 602, identified in terms of their higher stellar density with respect to the average background density derived from star counts. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction ({approx}60%) of the total population being clustered, while the remaining is diffusely distributed in the intercluster area, covering the whole central part of the region. From the corresponding color-magnitude diagrams we disentangle an age difference of {approx}2.5 Myr between NGC 602 and the compact sub-clusters, which appear younger, on the basis of comparison of the brighter PMS stars with evolutionary models, which we accurately calculated for the metal abundance of the SMC. The diffuse PMS population appears to host stars as old as those in NGC 602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings, we propose a scenario according to which the region NGC 602/N90 experiences an active clustered star formation for the last {approx}5 Myr. The central cluster NGC 602 was

  7. Chandra Observation of the Trifid Nebula: X-ray emission from the exciting O star complex and Pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Rho, J.; Ramirez, S.; Corcoran, M.; Hamaguchi, K.; Lefloch, B.

    2003-12-01

    The Trifid Nebula, one of the youngest star-forming HII regions, was observed for 16 hours by the ACIS-I detector on board of the Chandra X-ray Observatory. We detected 304 X-ray sources, thirty percent of which are hard sources, with near-infrared counterparts for two-thirds of the X-ray sources. Chandra resolved the HD164492 multiple system into a number of discrete X-ray sources. X-ray emission is detected from components HD164492A (an O7.5III star which ionizes the nebula), B and C (a B6V star), and possibly D (a Be star). Component C is blended with an unidentified source (we called Component C2, hereafter). HD164492A has a soft spectrum (kT 0.5 keV) while the component C blend shows much harder emission (kT 6 keV). This blend and other hard sources are responsible for the hard emission and Fe K line seen by the ASCA, which was previously attributed entirely to HD 164492A. The soft spectrum of the O star is similar to emission seen from other single O stars and is probably produced by shocks within its massive stellar wind. Lack of hard emission suggests that neither a magnetically confined wind shock nor colliding wind emission is important in HD164492A. A dozen stars are found to have flares in the field and most of them are pre-main sequence stars (PMS). Six sources with flares have both optical and 2MASS counterparts. These counterparts are not embedded and thus it is likely that these sources are in later stage of PMS evolution, possibly Class II or III. Two flare sources did not have any near-IR, optical, or radio counterparts. We suggest these X-ray flare stars are in an early pre-main sequence stage (Class I or earlier). We also detected X-ray sources apparently associated with two massive star forming cores, TC1 and TC4. The spectra of these sources show high extinction and X-ray luminosities of 2 - 5x 1031 erg s-1. If these source are Class 0 objects, it is unclear if their X-ray emission is due to solar-type magnetic activities as in Class I objects

  8. Tracking down a critical halo mass for killing galaxies through the growth of the red sequence

    NASA Astrophysics Data System (ADS)

    Gilbank, David G.; Balogh, Michael L.

    2008-03-01

    Red-sequence galaxies record the history of terminated star formation in the Universe and can thus provide important clues to the mechanisms responsible for this termination. We construct composite samples of published cluster and field galaxy photometry in order to study the build-up of galaxies on the red sequence, as parametrized by the dwarf-to-giant ratio (DGR). We find that the DGR in clusters is higher than that of the field at all redshifts, implying that the faint end of the red sequence was established first in clusters. We find that the DGR evolves with redshift for both samples, consistent with the `down-sizing' picture of star formation. We examine the predictions of semi-analytic models for the DGR and find that neither the magnitude of its environmental dependence nor its evolution is correctly predicted in the models. Red-sequence DGRs are consistently too high in the models, the most likely explanation being that the strangulation mechanism used to remove hot gas from satellite galaxies is too efficient. Finally, we present a simple toy model including a threshold mass, below which galaxies are not strangled, and show that this can predict the observed evolution of the field DGR.

  9. Relative Stability of Peptide Sequence Ions Generated by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Hendrickson, Christopher L.; Marshall, Alan G.

    2012-04-01

    We report the use of unimolecular dissociation by infrared radiation for gaseous multiphoton energy transfer to determine relative activation energy (Ea,laser) for dissociation of peptide sequence ions. The sequence ions of interest are mass-isolated; the entire ion cloud is then irradiated with a continuous wave CO2 laser, and the first order rate constant, kd, is determined for each of a series of laser powers. Provided these conditions are met, a plot of the natural logarithm of kd versus the natural logarithm of laser power yields a straight line, whose slope provides a measure of Ea,laser. This method reproduces the Ea values from blackbody radiative dissociation (BIRD) for the comparatively large, singly and doubly protonated bradykinin ions (nominally y 9 and y 9 2+ ). The comparatively small sequence ion systems produce Ea,laser values that are systematic underestimates of theoretical barriers calculated with density functional theory (DFT). However, the relative Ea,laser values are in qualitative agreement with the mobile proton model and available theory. Additionally, novel protonated cyclic-dipeptide (diketopiperazine) fragmentation reactions are analyzed with DFT. FT-ICR MS provides access to sequence ions generated by electron capture dissociation, infrared multiphoton dissociation, and collisional activation methods (i.e., b n , y m , c n , z m • ions).

  10. Observation and modelling of main-sequence star chromospheres - XII. Two-component model chromospheres for five active dM1e stars

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.

    2009-08-01

    We aim to constrain the Hα, CaII H and CaII K profiles from quiescent and active regions on active dM1e stars. A preliminary analysis of all the data available for dM1e stars shows that the Hα/CaII equivalent width (EW) ratio varies by up to a factor of 7 for different stars in our sample. We find that spectroscopic binaries have a significantly smaller ratio than single dM1e stars. We also find that the pre-main-sequence stars Gl 616.2, GJ 1264 and Gl 803 have a ratio lower than main-sequence single dM1e stars. These differences imply that different chromospheric structures are present on different stars, notably the temperature minimum must decrease with an increasing Hα/CaII EW ratio. For these reasons, it is impossible to reproduce all observations with only one grid of model chromospheres. We show that the grid of model chromospheres of Paper VI is adequate to describe the physical conditions that prevail in the chromospheres of spectroscopic binaries and pre-main-sequence M1e stars, but not for the conditions in single dM1e stars. One or more additional grids of model chromospheres will be necessary to reproduce all observations. We use the method developed in Paper XI in this series, in order to build two-component model chromospheres for five M1e field stars: FF And A, FF And B, GJ 1264, AU Mic and Gl 815A. Our solutions provide an exact match of the Hα and the mean CaII H & K EWs within measurement uncertainties. We compare the theoretical profiles and the observed profiles of Hα and the CaII H & K resonance lines. On the one hand, our fits to the CaII lines are reasonably good. On the other hand, our models tend to produce Hα profiles with a central absorption that is too deep. This suggests that the column mass at the transition region for plages is underestimated, but this would imply that the contrast factor between quiescent and active regions in the CaII lines is larger than 5. We find that, except in the cases of FF And A and AU Mic, the total

  11. False sugar sequence ions in electrospray tandem mass spectrometry of underivatized sialyl-Lewis-type oligosaccharides

    NASA Astrophysics Data System (ADS)

    Ernst, Beat; Müller, Dieter R.; Richter, Wilhelm J.

    1997-01-01

    Formation of "false" sugar sequence ions from branched tetrasaccharides of the sialyl-Lewis-type by migration of fucose towards sialic acid residues is shown to occur in [M + H]+ and [M + NH4]+ ions produced by electrospray ionization and subjected to low energy collision induced dissociation (CID). For the verification of their composition and sequence, such irregular ions were produced in the orifice region of the ion source, mass selected in Q1, and subjected to a second CID step in Q2 of a triple quadrupole analyser. When produced and analysed in the same "double CID" fashion, the branched B3 ions still containing all four sugar subunits show such migration to only a minor extent. The analysis of Bn fragment ions with high numbers for n may thus have advantages over the analysis of M-like species

  12. DNA sequence variability of IGHG3 alleles associated to the main G3m haplotypes in human populations.

    PubMed

    Dard, P; Lefranc, M P; Osipova, L; Sanchez-Mazas, A

    2001-10-01

    The present study investigates the molecular basis of the G3m polymorphism expressed by the heavy constant domains of human immunoglobulins gamma 3 chains. By using a new protocol allowing the specific cloning of IGHG3 genes, a total of 51 full-length IGHG3 genomic sequences (about 2 kb) isolated from African, Siberian, West Asian and European population samples were sequenced. IGHG3 sequences were assigned precise G3m haplotypes on the basis of specific associations between G3m allotypes and IGHG3 RFLPs. Specific DNA substitutions involved in the expression of G3m(5), G3m(6), G3m(15), G3m(16), G3m(21), G3m(24) and G3m(28) allotypes were then deduced, elucidating almost completely the determination of the G3m polymorphism at the DNA level. The molecular evolution of G3m haplotypes was investigated by a maximum likelihood phylogeny of IGHG3 sequences. Sequence clusters are shown to be G3m haplotype-specific, corroborating the Gm molecular model deduced from serology, and showing that populations differentiation is much more recent than G3m haplotypes differentiation. The widely distributed G3m(5,10,11,13,14) haplotype is likely to be ancestral to the other G3m haplotypes presently found at high frequencies in different continental areas.

  13. A high-throughput de novo sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry

    SciTech Connect

    Pan, Chongle; Park, Byung H; McDonald, W Hayes; Carey, Patricia A; Banfield, Jillian F.; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Samatova, Nagiza F

    2010-01-01

    Background High-resolution tandem mass spectra can now be readily acquired with hybrid instruments, such as LTQ-Orbitrap and LTQ-FT, in high-throughput shotgun proteomics workflows. The improved spectral quality enables more accurate de novo sequencing for identification of post-translational modifications and amino acid polymorphisms. Results In this study, a new de novo sequencing algorithm, called Vonode, has been developed specifically for analysis of such high-resolution tandem mass spectra. To fully exploit the high mass accuracy of these spectra, a unique scoring system is proposed to evaluate sequence tags based primarily on mass accuracy information of fragment ions. Consensus sequence tags were inferred for 11,422 spectra with an average peptide length of 5.5 residues from a total of 40,297 input spectra acquired in a 24-hour proteomics measurement of Rhodopseudomonas palustris. The accuracy of inferred consensus sequence tags was 84%. According to our comparison, the performance of Vonode was shown to be superior to the PepNovo v2.0 algorithm, in terms of the number of de novo sequenced spectra and the sequencing accuracy. Conclusions Here, we improved de novo sequencing performance by developing a new algorithm specifically for high-resolution tandem mass spectral data. The Vonode algorithm is freely available for download at http://compbio.ornl.gov/Vonode.

  14. A Machine Learning Based Approach to de novo Sequencing of Glycans from Tandem Mass Spectrometry Spectrum.

    PubMed

    Kumozaki, Shotaro; Sato, Kengo; Sakakibara, Yasubumi

    2015-01-01

    Recently, glycomics has been actively studied and various technologies for glycomics have been rapidly developed. Currently, tandem mass spectrometry (MS/MS) is one of the key experimental tools for identification of structures of oligosaccharides. MS/MS can observe MS/MS peaks of fragmented glycan ions including cross-ring ions resulting from internal cleavages, which provide valuable information to infer glycan structures. Thus, the aim of de novo sequencing of glycans is to find the most probable assignments of observed MS/MS peaks to glycan substructures without databases. However, there are few satisfiable algorithms for glycan de novo sequencing from MS/MS spectra. We present a machine learning based approach to de novo sequencing of glycans from MS/MS spectrum. First, we build a suitable model for the fragmentation of glycans including cross-ring ions, and implement a solver that employs Lagrangian relaxation with a dynamic programming technique. Then, to optimize scores for the algorithm, we introduce a machine learning technique called structured support vector machines that enable us to learn parameters including scores for cross-ring ions from training data, i.e., known glycan mass spectra. Furthermore, we implement additional constraints for core structures of well-known glycan types including N-linked glycans and O-linked glycans. This enables us to predict more accurate glycan structures if the glycan type of given spectra is known. Computational experiments show that our algorithm performs accurate de novo sequencing of glycans. The implementation of our algorithm and the datasets are available at http://glyfon.dna.bio.keio.ac.jp/. PMID:26671799

  15. Proceedings of the relevance of mass spectrometry to DNA sequence determination: Research needs for the Human Genome Program

    SciTech Connect

    Edmonds, C.G.; Smith, R.D. ); Smith, L.M. )

    1990-11-01

    A workshop was sponsored for the US Department of Energy (DOE), Office of Health and Environmental Research by Pacific Northwest Laboratory, April 4--5, 1990, in Seattle, Washington, to examine the potential role of mass spectrometry in the joint DOE/National Institutes of Health (NIH) Human Genome Program. The workshop was occasioned by recent developments in mass spectrometry that are providing new levels for selectivity, sensitivity, and, in particular, new methods of ionization appropriate for large biopolymers such as DNA. During discussions, three general mass spectrometric approaches to the determination of DNA sequence were considered: (1) the mass spectrometric detection of isotopic labels from DNA sequencing mixtures separated using gel electrophoresis, (2) the direct mass spectrometric analysis from direct ionization of unfractionated sequencing mixtures where the measured mass of the constituents functions to identify and order the base sequence (replacing separation by gel electrophoresis), and (3) an approach in which a single highly charged molecular ion of a large DNA segment produced is rapidly sequenced in an ion cyclotron resonance ion trap. The consensus of the workshop was that, on the basis of the new developments, mass spectrometry has the potential to provide the substantial increases in sequencing speed required for the Human Genome Program. 66 refs., 3 tabs.

  16. Automated Glycan Sequencing from Tandem Mass Spectra of N-Linked Glycopeptides.

    PubMed

    Yu, Chuan-Yih; Mayampurath, Anoop; Zhu, Rui; Zacharias, Lauren; Song, Ehwang; Wang, Lei; Mechref, Yehia; Tang, Haixu

    2016-06-01

    Mass spectrometry has become a routine experimental tool for proteomic biomarker analysis of human blood samples, partly due to the large availability of informatics tools. As one of the most common protein post-translational modifications (PTMs) in mammals, protein glycosylation has been observed to alter in multiple human diseases and thus may potentially be candidate markers of disease progression. While mass spectrometry instrumentation has seen advancements in capabilities, discovering glycosylation-related markers using existing software is currently not straightforward. Complete characterization of protein glycosylation requires the identification of intact glycopeptides in samples, including identification of the modification site as well as the structure of the attached glycans. In this paper, we present GlycoSeq, an open-source software tool that implements a heuristic iterated glycan sequencing algorithm coupled with prior knowledge for automated elucidation of the glycan structure within a glycopeptide from its collision-induced dissociation tandem mass spectrum. GlycoSeq employs rules of glycosidic linkage as defined by glycan synthetic pathways to eliminate improbable glycan structures and build reasonable glycan trees. We tested the tool on two sets of tandem mass spectra of N-linked glycopeptides cell lines acquired from breast cancer patients. After employing enzymatic specificity within the N-linked glycan synthetic pathway, the sequencing results of GlycoSeq were highly consistent with the manually curated glycan structures. Hence, GlycoSeq is ready to be used for the characterization of glycan structures in glycopeptides from MS/MS analysis. GlycoSeq is released as open source software at https://github.com/chpaul/GlycoSeq/ . PMID:27111718

  17. Correction: Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis.

    PubMed

    Alqahtani, Norah; Porwal, Suheel K; James, Elle D; Bis, Dana M; Karty, Jonathan A; Lane, Amy L; Viswanathan, Rajesh

    2015-09-21

    Correction for 'Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis' by Norah Alqahtani et al., Org. Biomol. Chem., 2015, 13, 7177-7192.

  18. DeNovoGUI: an open source graphical user interface for de novo sequencing of tandem mass spectra.

    PubMed

    Muth, Thilo; Weilnböck, Lisa; Rapp, Erdmann; Huber, Christian G; Martens, Lennart; Vaudel, Marc; Barsnes, Harald

    2014-02-01

    De novo sequencing is a popular technique in proteomics for identifying peptides from tandem mass spectra without having to rely on a protein sequence database. Despite the strong potential of de novo sequencing algorithms, their adoption threshold remains quite high. We here present a user-friendly and lightweight graphical user interface called DeNovoGUI for running parallelized versions of the freely available de novo sequencing software PepNovo+, greatly simplifying the use of de novo sequencing in proteomics. Our platform-independent software is freely available under the permissible Apache2 open source license. Source code, binaries, and additional documentation are available at http://denovogui.googlecode.com .

  19. EFFECT OF METALLICITY ON THE EVOLUTION OF THE HABITABLE ZONE FROM THE PRE-MAIN SEQUENCE TO THE ASYMPTOTIC GIANT BRANCH AND THE SEARCH FOR LIFE

    SciTech Connect

    Danchi, William C.; Lopez, Bruno E-mail: bruno.lopez@oca.eu

    2013-05-20

    During the course of stellar evolution, the location and width of the habitable zone changes as the luminosity and radius of the star evolves. The duration of habitability for a planet located at a given distance from a star is greatly affected by the characteristics of the host star. A quantification of these effects can be used observationally in the search for life around nearby stars. The longer the duration of habitability, the more likely it is that life has evolved. The preparation of observational techniques aimed at detecting life would benefit from the scientific requirements deduced from the evolution of the habitable zone. We present a study of the evolution of the habitable zone around stars of 1.0, 1.5, and 2.0 M{sub Sun} for metallicities ranging from Z = 0.0001 to Z = 0.070. We also consider the evolution of the habitable zone from the pre-main sequence until the asymptotic giant branch is reached. We find that metallicity strongly affects the duration of the habitable zone for a planet as well as the distance from the host star where the duration is maximized. For a 1.0 M{sub Sun} star with near solar metallicity, Z = 0.017, the duration of the habitable zone is >10 Gyr at distances 1.2-2.0 AU from the star, whereas the duration is >20 Gyr for high-metallicity stars (Z = 0.070) at distances of 0.7-1.8 AU, and {approx}4 Gyr at distances of 1.8-3.3 AU for low-metallicity stars (Z = 0.0001). Corresponding results have been obtained for stars of 1.5 and 2.0 solar masses.

  20. Three-Site Photometric Monitoring of the δ Sct-Type Pulsating Star V1162 Orionis: Period Change and its Implications for Pre-Main Sequence Evolution

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Lee; Cha, Sang-Mok; Lim, Beomdu; Lee, Jae Woo; Lee, Chung-Uk; Lee, Yongseok; Kim, Dong-Jin; Lee, Dong-Joo; Koo, Jae-Rim; Hong, Kyeongsoo; Ryu, Yoon-Hyun; Park, Byeong-Gon

    2016-10-01

    We present photometric results of the δ Sct star V1162 Ori, which is extensively monitored for a total of 49 nights from mid-December 2014 to early-March 2015. The observations are made with three KMTNet (Korea Microlensing Telescope Network) 1.6 m telescopes installed in Chile, South Africa, and Australia. Multiple frequency analysis is applied to the data and resulted in clear detection of seven frequencies without an alias problem: five known frequencies and two new ones with small amplitudes of 1.2-1.7 mmag. The amplitudes of all but one frequency are significantly different from previous results, confirming the existence of long-term amplitude changes. We examine the variations in pulsation timings of V1162 Ori for about 30 years by using the times of maximum light obtained from our data and collected from the literatures. The O-C (Observed minus Calculated) timing diagram shows a combination of a downward parabolic variation with a period decreasing rate of (1/P)dP/dt = -4.22 × 10^{-6} year^{-1} and a cyclic change with a period of about 2780 days. The most probable explanation for this cyclic variation is the light-travel-time effect caused by an unknown binary companion, which has a minimum mass of 0.69 M_⊙. V1162 Ori is the first δ Sct-type pulsating star of which the observed fast period decrease can be interpreted as an evolutionary effect of a pre-main sequence star, considering its membership of the Orion OB 1c association.}

  1. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    SciTech Connect

    Silverman, J. D.; Rujopakarn, W.; Daddi, E.; Liu, D.; Sargent, M.; Renzini, A.; Feruglio, C.; Kashino, D.; Sanders, D.; Kartaltepe, J.; Nagao, T.; Arimoto, N.; Berta, S.; Lutz, D.; Béthermin, M.; Koekemoer, A.; and others

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  2. On the nature of Hα emitters at z ˜ 2 from the HiZELS survey: physical properties, Lyα escape fraction and main sequence

    NASA Astrophysics Data System (ADS)

    Oteo, I.; Sobral, D.; Ivison, R. J.; Smail, I.; Best, P. N.; Cepa, J.; Pérez-García, A. M.

    2015-09-01

    We present a detailed multiwavelength study (from rest-frame ultraviolet to far-infrared) of narrow-band selected, star-forming (SF) Hα emitters (HAEs) at z ˜ 2.23 taken from the High-Redshift(Z) Emission Line Survey (HiZELS). We find that HAEs have similar properties and colours derived from spectral energy distributions as sBzK galaxies, and probe a well-defined portion of the SF population at z ˜ 2. This is not true for Lyα emitters (LAEs), which are strongly biased towards blue, less massive galaxies (missing a significant percentage of the SF population). Combining our Hα observations with matched, existing Lyα data, we determine that the Lyα escape fraction (fesc) is low (only ˜4.5 per cent of HAEs show Lyα emission) and decreases with increasing dust attenuation, ultraviolet continuum slope, stellar mass and star formation rate (SFR). This suggests that Lyα preferentially escapes from blue galaxies with low dust attenuation. However, a small population of red and massive LAEs is also present, in agreement with previous works and indicating that dust and Lyα are not mutually exclusive. Using different and completely independent measures of the total SFR, we show that the Hα emission is an excellent tracer of star formation at z ˜ 2 with deviations typically lower than 0.3 dex for individual galaxies. We find that the slope and zero-point of the HAE main sequence at z ˜ 2 strongly depend on the dust-correction method used to recover the SFR, although they are consistent with previous works when similar assumptions are made.

  3. The Distances to Open Clusters from Main-sequence Fitting. V. Extension of Color Calibration and Test Using Cool and Metal-rich Stars in NGC 6791

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Terndrup, Donald M.; Pinsonneault, Marc H.; Lee, Jae-Woo

    2015-09-01

    We extend our effort to calibrate stellar isochrones in the Johnson-Cousins ({{BVI}}C) and the 2MASS ({{JHK}}s) filter systems based on observations of well-studied open clusters. Using cool main-sequence (MS) stars in Praesepe, we define empirical corrections to the Lejeune et al. color-effective temperature ({T}{eff}) relations down to {T}{eff}˜ 3600 {{K}}, complementing our previous work based on the Hyades and the Pleiades. We apply empirically corrected isochrones to existing optical and near-infrared photometry of cool ({T}{eff}≲ 5500 {{K}}) and metal-rich ([{Fe}/{{H}}]= +0.37) MS stars in NGC 6791. The current methodology relies on an assumption that color-{T}{eff} corrections are independent of metallicity, but we find that estimates of color excess and distance from color-magnitude diagrams with different color indices converge on each other at the precisely known metallicity of the cluster. Along with a satisfactory agreement with eclipsing binary data in the cluster, we view the improved internal consistency as a validation of our calibrated isochrones at super-solar metallicities. For very cool stars ({T}{eff}≲ 4800 {{K}}), however, we find that B - V colors of our models are systematically redder than the cluster photometry by ˜0.02 mag. We use color-{T}{eff} transformations from the infrared flux method and alternative photometry to examine a potential color-scale error in the input cluster photometry. After excluding B - V photometry of these cool MS stars, we derive E(B\\-\\V)=0.105+/- 0.014, [M/H]\\=\\+0.42+/- 0.07, {(m\\-\\M)}0=13.04+/- 0.08, and the age of 9.5 ± 0.3 Gyr for NGC 6791.

  4. XMM-Newton Monitoring of the Close Pre-main-sequence Binary AK Sco. Evidence of Tide-driven Filling of the Inner Gap in the Circumbinary Disk

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.; López-Santiago, Javier; Talavera, Antonio; Sytov, A. Yu.; Bisikalo, D.

    2013-03-01

    AK Sco stands out among pre-main-sequence binaries because of its prominent ultraviolet excess, the high eccentricity of its orbit, and the strong tides driven by it. AK Sco consists of two F5-type stars that get as close as 11 R * at periastron passage. The presence of a dense (ne ~ 1011 cm-3) extended envelope has been unveiled recently. In this article, we report the results from an XMM-Newton-based monitoring of the system. We show that at periastron, X-ray and UV fluxes are enhanced by a factor of ~3 with respect to the apastron values. The X-ray radiation is produced in an optically thin plasma with T ~ 6.4 × 106 K and it is found that the N H column density rises from 0.35 × 1021 cm-2 at periastron to 1.11 × 1021 cm-2 at apastron, in good agreement with previous polarimetric observations. The UV emission detected in the Optical Monitor band seems to be caused by the reprocessing of the high-energy magnetospheric radiation on the circumstellar material. Further evidence of the strong magnetospheric disturbances is provided by the detection of line broadening of 278.7 km s-1 in the N V line with Hubble Space Telescope/Space Telescope Imaging Spectrograph. Numerical simulations of the mass flow from the circumbinary disk to the components have been carried out. They provide a consistent scenario with which to interpret AK Sco observations. We show that the eccentric orbit acts like a gravitational piston. At apastron, matter is dragged efficiently from the inner disk border, filling the inner gap and producing accretion streams that end as ring-like structures around each component of the system. At periastron, the ring-like structures come into contact, leading to angular momentum loss, and thus producing an accretion outburst.

  5. CycloBranch: De Novo Sequencing of Nonribosomal Peptides from Accurate Product Ion Mass Spectra

    NASA Astrophysics Data System (ADS)

    Novák, Jiří; Lemr, Karel; Schug, Kevin A.; Havlíček, Vladimír

    2015-07-01

    Nonribosomal peptides have a wide range of biological and medical applications. Their identification by tandem mass spectrometry remains a challenging task. A new open-source de novo peptide identification engine CycloBranch was developed and successfully applied in identification or detailed characterization of 11 linear, cyclic, branched, and branch-cyclic peptides. CycloBranch is based on annotated building block databases the size of which is defined by the user according to ribosomal or nonribosomal peptide origin. The current number of involved nonisobaric and isobaric building blocks is 287 and 521, respectively. Contrary to all other peptide sequencing tools utilizing either peptide libraries or peptide fragment libraries, CycloBranch represents a true de novo sequencing engine developed for accurate mass spectrometric data. It is a stand-alone and cross-platform application with a graphical and user-friendly interface; it supports mzML, mzXML, mgf, txt, and baf file formats and can be run in parallel on multiple threads. It can be downloaded for free from http://ms.biomed.cas.cz/cyclobranch/, where the User's manual and video tutorials can be found.

  6. Atomic diffusion in metal poor stars. The influence on the Main Sequence fitting distance scale, subdwarfs ages and the value of Delta Y/ Delta Z

    NASA Astrophysics Data System (ADS)

    Salaris, M.; Groenewegen, M. A. T.; Weiss, A.

    2000-03-01

    The effect of atomic diffusion on the Main Sequence (MS) of metal-poor low mass stars is investigated. Since diffusion alters the stellar surface chemical abundances with respect to their initial values, one must ensure - by calibrating the initial chemical composition of the theoretical models - that the surface abundances of the models match the observed ones of the stellar population under scrutiny. When properly calibrated, our models with diffusion reproduce well within the errors the Hertzsprung-Russell diagram of Hipparcos subdwarfs with empirically determined T_eff values and high resolution spectroscopical [Fe/H] determinations. Since the observed surface abundances of subdwarfs are different from the initial ones due to the effect of diffusion, while the globular clusters stellar abundances are measured in Red Giants, which have practically recovered their initial abundances after the dredge-up, the isochrones to be employed for studying globular clusters and Halo subdwarfs with the same observational value of [Fe/H] are different and do not coincide. This is at odds with the basic assumption of the MS-fitting technique for distance determinations. However, the use of the rather large sample of Hipparcos lower MS subdwarfs with accurate parallaxes keeps at minimum the effect of these differences, for two reasons. First, it is possible to use subdwarfs with observed [Fe/H] values close to the cluster one; this minimizes the colour corrections (which are derived from the isochrones) needed to reduce all the subdwarfs to a mono-metallicity sequence having the same [Fe/H] than the cluster. Second, one can employ objects sufficiently faint so that the differences between the subdwarfs and cluster MS with the same observed value of [Fe/H] are small (they increase for increasing luminosity). We find therefore that the distances based on standard isochrones are basically unaltered when diffusion is taken properly into account. On the other hand, the absolute ages

  7. Tidal mass exchange between a submersed aquatic vegetation bed and the main channel of the Potomac River

    USGS Publications Warehouse

    Jenter, Harry L.; Rybicki, Nancy B.; Baltzer, Robert A.; Carter, Virginia; ,

    1991-01-01

    Tidal mass exchange between a submersed aquatic vegetation (SAV) bed and the main channel of the Potomac River was investigated. Water levels were recorded at 5 minute intervals from August (when plants were present) through December (when plants were absent). Velocities were measured during individual tidal cycles both in the presence and absence of plants. Flow patterns were found to be altered significantly when plants were present. SAV impeded flow onto the shoal causing a water level phase lag between the bed and the channel, a reduction in flow speed and a change in flow direction. The phase lag was enhanced when the low frequency (subtidal) water level in the channel was below normal. The phase lag was further enhanced during spring tides. Ebb flow in the presence of plants was perpendicular to the edge of the SAV bed in the direction of the pressure gradient established by the lagging water level. Flood flow did not follow such a predictable pattern despite the strongest pressure gradients occurring during flood tides. In the absence of plants the flow speed increased by nearly an order of magnitude and the water-level phase lag disappeared.

  8. Negative thermal ionization mass spectrometry of main group elements Part 2. 6th group: sulfur, selenium and tellurium

    NASA Astrophysics Data System (ADS)

    Wachsmann, M.; Heumann, K. G.

    1992-05-01

    A systematic investigation of the formation of negative ions for the 6th main group elements using negative thermal ionization mass spectrometry (NTI-MS) is presented. A double-filament ion source with BaO on the ionization filament has been applied to reduce the work function of the rhenium filament material. S[radical sign]-, Se[radical sign]- and Te[radical sign]- were produced as most abundant ions. Low intensities of SeO[radical sign]-, SeO[radical sign]-2, TeO[radical sign]- and TeO[radical sign]-2 have also been detected. Although the electron affinity of SO2 is low, high ion currents of SO[radical sign]-2 have been observed from BaSo4 samples. This may be due to an electron capture process of this molecule rather than to a thermal ionization process. A silica gel suspension mixed with the sample enhanced the Se[radical sign]- ion current by a factor of about 40 and the Te[radical sign]- intensity by a factor of about 10. However, the silica gel showed no enhancing effect on the S[radical sign]- ion current. An improvement in the precision of the selenium and tellurium isotope ratio measurements by a factor of up to 10 was obtained when using the silica gel technique as compared with previous NTI investigations. The data of the selenium isotope abundance measurements were accepted as "best measurements" by the IUPAC.

  9. Three-dimensional simulations of near-surface convection in main-sequence stars. III. The structure of small-scale magnetic flux concentrations

    NASA Astrophysics Data System (ADS)

    Beeck, B.; Schüssler, M.; Cameron, R. H.; Reiners, A.

    2015-09-01

    Context. The convective envelopes of cool main-sequence stars harbour magnetic fields with a complex global and local structure. These fields affect the near-surface convection and the outer stellar atmospheres in many ways and are responsible for the observable magnetic activity of stars. Aims: Our aim is to understand the local structure in unipolar regions with moderate average magnetic flux density. These correspond to plage regions covering a substantial fraction of the surface of the Sun (and likely also the surface of other Sun-like stars) during periods of high magnetic activity. Methods: We analyse the results of 18 local-box magnetohydrodynamics simulations covering the upper layers of the convection zones and the photospheres of cool main-sequence stars of spectral types F to early M. The average vertical field in these simulations ranges from 20 to 500 G. Results: We find a substantial variation of the properties of the surface magnetoconvection between main-sequence stars of different spectral types. As a consequence of a reduced efficiency of the convective collapse of flux tubes, M dwarfs lack bright magnetic structures in unipolar regions of moderate field strength. The spatial correlation between velocity and the magnetic field as well as the lifetime of magnetic structures and their sizes relative to the granules vary significantly along the model sequence of stellar types. Movies associated to Fig. A.1 are available in electronic form at http://www.aanda.org

  10. Hydrodynamic simulations of the interaction between an AGB star and a main-sequence companion in eccentric orbits

    NASA Astrophysics Data System (ADS)

    Staff, Jan E.; De Marco, Orsola; Macdonald, Daniel; Galaviz, Pablo; Passy, Jean-Claude; Iaconi, Roberto; Low, Mordecai-Mark Mac

    2016-02-01

    The Rotten Egg Nebula has at its core a binary composed of a Mira star and an A-type companion at a separation >10 au. It has been hypothesized to have formed by strong binary interactions between the Mira and a companion in an eccentric orbit during periastron passage ˜800 yr ago. We have performed hydrodynamic simulations of an asymptotic giant branch (AGB) star interacting with companions with a range of masses in orbits with a range of initial eccentricities and periastron separations. For reasonable values of the eccentricity, we find that Roche lobe overflow can take place only if the periods are ≪100 yr. Moreover, mass transfer causes the system to enter a common envelope phase within several orbits. Since the central star of the Rotten Egg nebula is an AGB star, we conclude that such a common envelope phase must have lead to a merger, so the observed companion must have been a tertiary companion of a binary that merged at the time of nebula ejection. Based on the mass and time-scale of the simulated disc formed around the companion before the common envelope phase, we analytically estimate the properties of jets that could be launched. Allowing for super-Eddington accretion rates, we find that jets similar to those observed are plausible, provided that the putative lost companion was relatively massive.

  11. Mass spectrometric detection of the amino acid sequence polymorphism of the hepatitis C virus antigen.

    PubMed

    Kaysheva, A L; Ivanov, Yu D; Frantsuzov, P A; Krohin, N V; Pavlova, T I; Uchaikin, V F; Konev, V А; Kovalev, O B; Ziborov, V S; Archakov, A I

    2016-03-01

    A method for detection and identification of the hepatitis C virus antigen (HCVcoreAg) in human serum with consideration for possible amino acid substitutions is proposed. The method is based on a combination of biospecific capturing and concentrating of the target protein on the surface of the chip for atomic force microscope (AFM chip) with subsequent protein identification by tandem mass spectrometric (MS/MS) analysis. Biospecific AFM-capturing of viral particles containing HCVcoreAg from serum samples was performed by use of AFM chips with monoclonal antibodies (anti-HCVcore) covalently immobilized on the surface. Biospecific complexes were registered and counted by AFM. Further MS/MS analysis allowed to reliably identify the HCVcoreAg in the complexes formed on the AFM chip surface. Analysis of MS/MS spectra, with the account taken of the possible polymorphisms in the amino acid sequence of the HCVcoreAg, enabled us to increase the number of identified peptides.

  12. A search for pre-main-sequence stars in high-latitude molecular clouds. 3: A survey of the Einstein database

    NASA Technical Reports Server (NTRS)

    Caillault, Jean-Pierre; Magnani, Loris; Fryer, Chris

    1995-01-01

    In order to discern whether the high-latitude molecular clouds are regions of ongoing star formation, we have used X-ray emission as a tracer of youthful stars. The entire Einstein database yields 18 images which overlap 10 of the clouds mapped partially or completely in the CO (1-0) transition, providing a total of approximately 6 deg squared of overlap. Five previously unidentified X-ray sources were detected: one has an optical counterpart which is a pre-main-sequence (PMS) star, and two have normal main-sequence stellar counterparts, while the other two are probably extragalactic sources. The PMS star is located in a high Galactic latitude Lynds dark cloud, so this result is not too suprising. The translucent clouds, though, have yet to reveal any evidence of star formation.

  13. Proteomics of Soil and Sediment: Protein Identification by De Novo Sequencing of Mass Spectra Complements Traditional Database Searching

    NASA Astrophysics Data System (ADS)

    Miller, S.; Rizzo, A. I.; Waldbauer, J.

    2014-12-01

    Proteomics has the potential to elucidate the metabolic pathways and taxa responsible for in situ biogeochemical transformations. However, low rates of protein identification from high resolution mass spectra have been a barrier to the development of proteomics in complex environmental samples. Much of the difficulty lies in the computational challenge of linking mass spectra to their corresponding proteins. Traditional database search methods for matching peptide sequences to mass spectra are often inadequate due to the complexity of environmental proteomes and the large database search space, as we demonstrate with soil and sediment proteomes generated via a range of extraction methods. One alternative to traditional database searching is de novo sequencing, which identifies peptide sequences without the need for a database. BLAST can then be used to match de novo sequences to similar genetic sequences. Assigning confidence to putative identifications has been one hurdle for the implementation of de novo sequencing. We found that accurate de novo sequences can be screened by quality score and length. Screening criteria are verified by comparing the results of de novo sequencing and traditional database searching for well-characterized proteomes from simple biological systems. The BLAST hits of screened sequences are interrogated for taxonomic and functional information. We applied de novo sequencing to organic topsoil and marine sediment proteomes. Peak-rich proteomes, which can result from various extraction techniques, yield thousands of high-confidence protein identifications, an improvement over previous proteomic studies of soil and sediment. User-friendly software tools for de novo metaproteomics analysis have been developed. This "De Novo Analysis" Pipeline is also a faster method of data analysis than constructing a tailored sequence database for traditional database searching.

  14. Proteomics of Soil and Sediment: Protein Identification by De Novo Sequencing of Mass Spectra Complements Traditional Database Searching

    NASA Astrophysics Data System (ADS)

    Miller, S.; Rizzo, A. I.; Waldbauer, J.

    2015-12-01

    Proteomics has the potential to elucidate the metabolic pathways and taxa responsible for in situ biogeochemical transformations. However, low rates of protein identification from high resolution mass spectra have been a barrier to the development of proteomics in complex environmental samples. Much of the difficulty lies in the computational challenge of linking mass spectra to their corresponding proteins. Traditional database search methods for matching peptide sequences to mass spectra are often inadequate due to the complexity of environmental proteomes and the large database search space, as we demonstrate with soil and sediment proteomes generated via a range of extraction methods. One alternative to traditional database searching is de novo sequencing, which identifies peptide sequences without the need for a database. BLAST can then be used to match de novo sequences to similar genetic sequences. Assigning confidence to putative identifications has been one hurdle for the implementation of de novo sequencing. We found that accurate de novo sequences can be screened by quality score and length. Screening criteria are verified by comparing the results of de novo sequencing and traditional database searching for well-characterized proteomes from simple biological systems. The BLAST hits of screened sequences are interrogated for taxonomic and functional information. We applied de novo sequencing to organic topsoil and marine sediment proteomes. Peak-rich proteomes, which can result from various extraction techniques, yield thousands of high-confidence protein identifications, an improvement over previous proteomic studies of soil and sediment. User-friendly software tools for de novo metaproteomics analysis have been developed. This "De Novo Analysis" Pipeline is also a faster method of data analysis than constructing a tailored sequence database for traditional database searching.

  15. THE CONTRIBUTIONS OF INTERACTIVE BINARY STARS TO DOUBLE MAIN-SEQUENCE TURNOFFS AND DUAL RED CLUMP OF INTERMEDIATE-AGE STAR CLUSTERS

    SciTech Connect

    Yang Wuming; Bi Shaolan; Tian Zhijia; Li Tanda; Liu Kang; Meng Xiangcun E-mail: woomyang@gmail.com

    2011-04-20

    Double or extended main-sequence turnoffs (DMSTOs) and dual red clump (RC) were observed in intermediate-age clusters, such as in NGC 1846 and 419. The DMSTOs are interpreted as that the cluster has two distinct stellar populations with differences in age of about 200-300 Myr but with the same metallicity. The dual RC is interpreted as a result of a prolonged star formation. Using a stellar population-synthesis method, we calculated the evolution of a binary-star stellar population. We found that binary interactions and merging can reproduce the dual RC in the color-magnitude diagrams of an intermediate-age cluster, whereas in actuality only a single population exists. Moreover, the binary interactions can lead to an extended main-sequence turnoff (MSTO) rather than DMSTOs. However, the rest of the main sequence, subgiant branch, and first giant branch are hardly spread by the binary interactions. Part of the observed dual RC and extended MSTO may be the results of binary interactions and mergers.

  16. Peptide sequencing using a patchwork approach and surface-induced dissociation in sector-TOF and dual quadrupole mass spectrometers.

    PubMed

    Fernández, Facundo M; Smith, Lori L; Kuppannan, Krishnamoorthy; Yang, Xi; Wysocki, Vicki H

    2003-12-01

    Surface-induced ion activation in combination with a database search strategy based on the Patchwork concept is applied to the determination of peptide sequences. Surface-induced dissociation (SID) is performed in a tandem quadrupole mass spectrometer and in a hybrid sector/time-of-flight mass spectrometer in order to evaluate the importance of accurate mass analysis of the SID fragment ions for peptide identification. The modified Patchwork approach is based on piecing together the peptide blocks in a bidirectional way, simultaneously using low-mass fragments originating from the C-terminus and N-terminus of the molecule, and relying on the measurement of the peptide's molecular weight with moderate mass accuracy. The results from this analysis are used as search filters in MASCOT's (http://www.matrixscience.com) Sequence Query search engine, with the simultaneous addition of the full MS/MS peak list. SID is performed with collision targets coated with pure and mixed composition self-assembled monolayers produced by fluorocarbon and hydrocarbon alkanethiolate solutions of varying chemical composition. The resulting MS/MS spectra produced on pure and mixed hydrocarbon SAMs are submitted to the modified version of Patchwork sequencing. It is found that hydrocarbon surfaces improve the relative abundance of larger fragments. Under the moderate mass accuracy conditions (+/-0.3 u) offered by our linear-TOF-SID instrument, it is found that increasing the abundance of larger fragments dramatically improves the sequencing scores.

  17. The Pietra Grande thrust (Brenta Dolomites, Italy): looking for co-seismic indicators along a main fault in carbonate sequences

    NASA Astrophysics Data System (ADS)

    Viganò, Alfio; Tumiati, Simone; Martin, Silvana; Rigo, Manuel

    2013-04-01

    At present, pseudotachylytes (i.e. solidified frictional melts) are the only unambiguous geological record of seismic faulting. Even if pseudotachylytes are frequently observed along faults within crystalline rocks they are discovered along carbonate faults in very few cases only, suggesting that other chemico-physical processes than melting could occur (e.g. thermal decomposition). In order to investigate possible co-seismic indicators we study the Pietra Grande thrust, a carbonate fault in the Brenta Dolomites (Trentino, NE Italy), to analyse field structure, microtextures and composition of rocks from the principal slip plane, the fault core and the damage zone. The Pietra Grande thrust is developed within limestones and dolomitic limestones of Late Triassic-Early Jurassic age (Calcari di Zu and Monte Zugna Formations). The thrust, interpreted as a north-vergent décollement deeply connected with the major Cima Tosa thrust, is a sub-horizontal fault plane gently dipping to the North that mainly separates the massive Monte Zugna Fm. limestones (upper side) from the stratified Calcari di Zu Fm. limestones with intercalated marls (lower side). On the western face of the Pietra Grande klippe the thrust is continuously well-exposed for about 1 km. The main fault plane shows reddish infillings, which form veins with thicknesses between few millimetres to several decimetres. These red veins lie parallel to the thrust plane or in same cases inject lateral fractures and minor high-angle faults departing from the main fault plane. Veins have carbonate composition and show textures characterized by fine-grained reddish matrix with embedded carbonate clasts of different size (from few millimetres to centimetres). In some portions carbonate boulders (dimension of some decimetres) are embedded in the red matrix, while clast content generally significantly decreases at the vein borders (chilled margins). Red veins are typically associated with cohesive cataclasites and

  18. SImulator of GAlaxy Millimetre/submillimetre Emission (SÍGAME): CO emission from massive z = 2 main-sequence galaxies

    NASA Astrophysics Data System (ADS)

    Olsen, Karen P.; Greve, Thomas R.; Brinch, Christian; Sommer-Larsen, Jesper; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew

    2016-04-01

    We present SÍGAME (SImulator of GAlaxy Millimetre/submillimetre Emission), a new numerical code designed to simulate the 12CO rotational line spectrum of galaxies. Using sub-grid physics recipes to post-process the outputs of smoothed particle hydrodynamics (SPH) simulations, a molecular gas phase is condensed out of the hot and partly ionized SPH gas. The gas is subjected to far-UV radiation fields and cosmic ray ionization rates which are set to scale with the local star formation rate volume density. Level populations and radiative transport of the CO lines are solved with the 3D radiative transfer code LIME. We have applied SÍGAME to cosmological SPH simulations of three disc galaxies at z = 2 with stellar masses in the range ˜0.5-2 × 1011 M⊙ and star formation rates ˜40-140 M⊙ yr-1. Global CO luminosities and line ratios are in agreement with observations of disc galaxies at z ˜ 2 up to and including J = 3-2 but falling short of the few existing J=5-4 observations. The central 5 kpc regions of our galaxies have CO 3 - 2/1 - 0 and 7 - 6/1 - 0 brightness temperature ratios of ˜0.55-0.65 and ˜0.02-0.08, respectively, while further out in the disc the ratios drop to more quiescent values of ˜0.5 and <0.01. Global CO-to-H2 conversion (αCO) factors are {˜eq } 1.5 {{M_{⊙}} pc^{-2} (K km s^{-1})^{-1}}, i.e. ˜2-3 times below the typically adopted values for disc galaxies, and αCO increases with radius, in agreement with observations of nearby galaxies. Adopting a top-heavy Giant Molecular Cloud (GMC) mass spectrum does not significantly change the results. Steepening the GMC density profiles leads to higher global line ratios for Jup ≥ 3 and CO-to-H2 conversion factors [{˜eq } 3.6 {{M_{⊙}} pc^{-2} (K km s^{-1})^{-1}}].

  19. XMM-NEWTON MONITORING OF THE CLOSE PRE-MAIN-SEQUENCE BINARY AK SCO. EVIDENCE OF TIDE-DRIVEN FILLING OF THE INNER GAP IN THE CIRCUMBINARY DISK

    SciTech Connect

    Gomez de Castro, Ana Ines; Lopez-Santiago, Javier; Talavera, Antonio; Sytov, A. Yu.; Bisikalo, D.

    2013-03-20

    AK Sco stands out among pre-main-sequence binaries because of its prominent ultraviolet excess, the high eccentricity of its orbit, and the strong tides driven by it. AK Sco consists of two F5-type stars that get as close as 11 R{sub *} at periastron passage. The presence of a dense (n{sub e} {approx} 10{sup 11} cm{sup -3}) extended envelope has been unveiled recently. In this article, we report the results from an XMM-Newton-based monitoring of the system. We show that at periastron, X-ray and UV fluxes are enhanced by a factor of {approx}3 with respect to the apastron values. The X-ray radiation is produced in an optically thin plasma with T {approx} 6.4 Multiplication-Sign 10{sup 6} K and it is found that the N{sub H} column density rises from 0.35 Multiplication-Sign 10{sup 21} cm{sup -2} at periastron to 1.11 Multiplication-Sign 10{sup 21} cm{sup -2} at apastron, in good agreement with previous polarimetric observations. The UV emission detected in the Optical Monitor band seems to be caused by the reprocessing of the high-energy magnetospheric radiation on the circumstellar material. Further evidence of the strong magnetospheric disturbances is provided by the detection of line broadening of 278.7 km s{sup -1} in the N V line with Hubble Space Telescope/Space Telescope Imaging Spectrograph. Numerical simulations of the mass flow from the circumbinary disk to the components have been carried out. They provide a consistent scenario with which to interpret AK Sco observations. We show that the eccentric orbit acts like a gravitational piston. At apastron, matter is dragged efficiently from the inner disk border, filling the inner gap and producing accretion streams that end as ring-like structures around each component of the system. At periastron, the ring-like structures come into contact, leading to angular momentum loss, and thus producing an accretion outburst.

  20. Variable extinction in HD 45677 and the evolution of dust grains in pre-main-sequence disks

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Halbedel, Elaine M.; Lawrence, Geoffrey F.; Smith, J. Allyn; Yanow, Ken

    1994-01-01

    Changes in the UV extinction and IR emission were sought in the Herbig Ae/Be star candidate HD 45677 (= FS CMa) by comparing UV, optical, and IR observations made approximately 10 yr apart. HD 45677 varied significantly, becoming more than 50% brighter in the UV and optical than it was a decade ago. A comparison of the observations between epochs indicates that if the variations are due to changes in dust obscuration, the dust acts as a gray absorber into the near-IR and must be depleted in grains smaller than 1 micron. This is similar to the results obtained on the circumstellar disks of stars like Vega and Beta Pic, and suggests that radiation pressure may be responsible for the small-grain depletion. In addition, the total IR flux seems to have declined, indicating a decrease in the total mass of the dust envelope that contributes to the IR emission in this part of the spectrum. Due to the anomalous nature of the extinction, the use of normal extinction curves to deredden the spectral energy distributions of stars with circumstellar dust may lead to significant errors and should be used with great caution.

  1. The Evolutionary State of the Pre-main Sequence Population in Ophiuchus: A Large Infrared Spectrograph Survey

    NASA Astrophysics Data System (ADS)

    McClure, M. K.; Furlan, E.; Manoj, P.; Luhman, K. L.; Watson, D. M.; Forrest, W. J.; Espaillat, C.; Calvet, N.; D'Alessio, P.; Sargent, B.; Tobin, J. J.; Chiang, Hsin-Fang

    2010-05-01

    Variations in molecular cloud environments have the potential to affect the composition and structure of the circumstellar disks therein. To this end, comparative analyses of nearby star-forming regions are essential to informing theoretical work. In particular, the Ophiuchus molecular clouds are ideal for comparison as they are more compact with much higher extinction than Taurus, the low-mass exemplar, and experience a moderate amount of external radiation. We have carried out a study of a collection of 136 young stellar objects in the <1 Myr old Ophiuchus star-forming region, featuring Spitzer Infrared Spectrograph spectra from 5 to 36 μm, supplemented with photometry from 0.3 μm to 1.3 mm. By classifying these objects using the McClure new molecular cloud extinction law to establish an extinction-independent index, we arrive at a ~10% embedded objects fraction, producing an embedded lifetime of 0.2 Myr, similar to that in Taurus. We analyze the degree of dust sedimentation and dust grain processing in the disks, finding that the disks are highly settled with signs of significant dust processing even at ~0.3 Myr. Finally, we discuss the wealth of evidence for radial gap structures which could be evidence for disk-planet interactions and explore the effects of stellar multiplicity on the degree of settling and radial structure.

  2. THE EVOLUTIONARY STATE OF THE PRE-MAIN SEQUENCE POPULATION IN OPHIUCHUS: A LARGE INFRARED SPECTROGRAPH SURVEY

    SciTech Connect

    McClure, M. K.; Espaillat, C.; Calvet, N.; Tobin, J. J. E-mail: ccespa@umich.ed E-mail: jjtobin@umich.ed

    2010-05-15

    Variations in molecular cloud environments have the potential to affect the composition and structure of the circumstellar disks therein. To this end, comparative analyses of nearby star-forming regions are essential to informing theoretical work. In particular, the Ophiuchus molecular clouds are ideal for comparison as they are more compact with much higher extinction than Taurus, the low-mass exemplar, and experience a moderate amount of external radiation. We have carried out a study of a collection of 136 young stellar objects in the <1 Myr old Ophiuchus star-forming region, featuring Spitzer Infrared Spectrograph spectra from 5 to 36 {mu}m, supplemented with photometry from 0.3 {mu}m to 1.3 mm. By classifying these objects using the McClure new molecular cloud extinction law to establish an extinction-independent index, we arrive at a {approx}10% embedded objects fraction, producing an embedded lifetime of 0.2 Myr, similar to that in Taurus. We analyze the degree of dust sedimentation and dust grain processing in the disks, finding that the disks are highly settled with signs of significant dust processing even at {approx}0.3 Myr. Finally, we discuss the wealth of evidence for radial gap structures which could be evidence for disk-planet interactions and explore the effects of stellar multiplicity on the degree of settling and radial structure.

  3. A Canis Major Overdensity Imaging Survey. I. Stellar Content and Star-Count Maps: A Distinctly Elongated Body of Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Butler, D. J.; Martínez-Delgado, D.; Rix, H.-W.; Peñarrubia, J.; de Jong, J. T. A.

    2007-05-01

    We present the first results from a large-area (~80deg×20deg), sparsely sampled, two-filter (B and R) imaging survey toward the Canis Major stellar overdensity, which is claimed to be a disrupting Milky Way satellite galaxy. Using stellar color-magnitude diagrams reaching to B~22 mag, we provide a first delineation of its surface density distribution using main-sequence stars. It is located below the Galactic midplane, and can be discerned to at least b=-15deg. Its projected shape is highly elongated, nearly parallel to the Galactic plane, with an axis ratio of at least 5:1, substantially more so than what Martin and coworkers originally found. We also provide a first map of a prominent overdensity of blue, presumably younger main-sequence stars, which extends in latitude to b~-10deg. We estimate an upper limit on the line-of-sight depth σlos of the old population based on the main-sequence width, obtaining σlos<1.8+/-0.3 kpc at an adopted Dsolar=7.5+/-1 kpc. For the young stellar population, we find σlos<1.5 kpc. The overall picture presented is one of a young stellar population that is less extended, both in terms of its line-of-sight depth and angular size, than the older population. While the data provide no firm arguments against an out-of-plane spiral arm interpretation, the data provide clear implications for others: (1) We infer from the strong elongation of the overdensity in longitude, and simulations in the literature, that the CMa overdensity is unlikely to be a gravitationally bound system at the present epoch, but may well be just a recently disrupted satellite remnant. The possible ``flattening'' of the young main-sequence population may, however, be a complexity for the satellite origin. (2) Based on modeling, the line-of-sight depth of the main-sequence overdensity in old stars is clearly inconsistent with published locally axisymmetric descriptions of the warped Galactic disk, such as those considered by Momany and coworkers. Without detailed

  4. CONSTRUCTING A ONE-SOLAR-MASS EVOLUTIONARY SEQUENCE USING ASTEROSEISMIC DATA FROM KEPLER

    SciTech Connect

    Silva Aguirre, V.; Weiss, A.; Casagrande, L.; Chaplin, W. J.; Verner, G. A.; Miglio, A.; Broomhall, A. M.; Elsworth, Y.; Ballot, J.; Basu, S.; Bedding, T. R.; Serenelli, A. M.; Monteiro, M. J. P. F. G.; Campante, T. L.; Appourchaux, T.; Gaulme, P.; Bonanno, A.; Corsaro, E.; Bruntt, H.; GarcIa, R. A.

    2011-10-10

    Asteroseismology of solar-type stars has entered a new era of large surveys with the success of the NASA Kepler mission, which is providing exquisite data on oscillations of stars across the Hertzsprung-Russell diagram. From the time-series photometry, the two seismic parameters that can be most readily extracted are the large frequency separation ({Delta}{nu}) and the frequency of maximum oscillation power ({nu}{sub max}). After the survey phase, these quantities are available for hundreds of solar-type stars. By scaling from solar values, we use these two asteroseismic observables to identify for the first time an evolutionary sequence of 1 M{sub sun} field stars, without the need for further information from stellar models. Comparison of our determinations with the few available spectroscopic results shows an excellent level of agreement. We discuss the potential of the method for differential analysis throughout the main-sequence evolution and the possibility of detecting twins of very well-known stars.

  5. The power and the limitations of cross-species protein identification by mass spectrometry-driven sequence similarity searches.

    PubMed

    Habermann, Bianca; Oegema, Jeffrey; Sunyaev, Shamil; Shevchenko, Andrej

    2004-03-01

    Mass spectrometry-driven BLAST (MS BLAST) is a database search protocol for identifying unknown proteins by sequence similarity to homologous proteins available in a database. MS BLAST utilizes redundant, degenerate, and partially inaccurate peptide sequence data obtained by de novo interpretation of tandem mass spectra and has become a powerful tool in functional proteomic research. Using computational modeling, we evaluated the potential of MS BLAST for proteome-wide identification of unknown proteins. We determined how the success rate of protein identification depends on the full-length sequence identity between the queried protein and its closest homologue in a database. We also estimated phylogenetic distances between organisms under study and related reference organisms with completely sequenced genomes that allow substantial coverage of unknown proteomes.

  6. Mapping stellar content to dark matter haloes - II. Halo mass is the main driver of galaxy quenching

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Mandelbaum, Rachel

    2016-04-01

    We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in Sloan Digital Sky Survey. Building on the iHOD framework developed by Zu & Mandelbaum, we consider two quenching scenarios: (1) a `halo' quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and (2) a `hybrid' quenching model in which the quenched fraction of galaxies depends on their stellar mass, while the satellite quenching has an extra dependence on halo mass. The two best-fitting models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above 1011 h-2 M⊙. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed M*, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (˜1.5 × 1012 h-1 M⊙), hinting at a uniform quenching mechanism for both, e.g. the virial shock heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter haloes rather than the properties of their stellar components.

  7. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases.

    PubMed

    Henzel, W J; Billeci, T M; Stults, J T; Wong, S C; Grimley, C; Watanabe, C

    1993-06-01

    A rapid method for the identification of known proteins separated by two-dimensional gel electrophoresis is described in which molecular masses of peptide fragments are used to search a protein sequence database. The peptides are generated by in situ reduction, alkylation, and tryptic digestion of proteins electroblotted from two-dimensional gels. Masses are determined at the subpicomole level by matrix-assisted laser desorption/ionization mass spectrometry of the unfractionated digest. A computer program has been developed that searches the protein sequence database for multiple peptides of individual proteins that match the measured masses. To ensure that the most recent database updates are included, a theoretical digest of the entire database is generated each time the program is executed. This method facilitates simultaneous processing of a large number of two-dimensional gel spots. The method was applied to a two-dimensional gel of a crude Escherichia coli extract that was electroblotted onto poly(vinylidene difluoride) membrane. Ten randomly chosen spots were analyzed. With as few as three peptide masses, each protein was uniquely identified from over 91,000 protein sequences. All identifications were verified by concurrent N-terminal sequencing of identical spots from a second blot. One of the spots contained an N-terminally blocked protein that required enzymatic cleavage, peptide separation, and Edman degradation for confirmation of its identity.

  8. Oligosaccharide sequences in Quillaja saponins by electrospray ionization ion trap multiple-stage mass spectrometry.

    PubMed

    Broberg, Susanna; Nord, Lars I; Kenne, Lennart

    2004-06-01

    Ten different samples with 13 previously identified saponin structures from Quillaja saponaria Molina were investigated by electrospray ionization ion trap multiple-stage mass spectrometry (ESI-ITMS(n)) in positive and negative ion modes. Both positive and negative ion mode MS(1)-MS(4) spectra were analyzed, showing that structural information on the two oligosaccharide parts in the saponin can be obtained from positive ion mode spectra whereas negative ion mode spectra mainly gave information on one of the oligosaccharide parts. Analysis of MS(1)-MS(4) spectra identified useful key fragment ions important for the structural elucidation of Quillaja saponins. A flowchart involving a stepwise procedure based on key fragments from MS(1)-MS(3) spectra was constructed for the identification of structural elements in the saponin. Peak intensity ratios in MS(3) spectra were found to be correlated with structural features of the investigated saponins and are therefore of value for the identification of terminal monosaccharide residues.

  9. Direct N-terminal sequencing of polypeptides using a thermostable bacterial aminopeptidase and MALDI-TOF mass spectrometry.

    PubMed

    Kishor, Nitin; Guptasarma, Purnananda

    2015-11-01

    Mass spectrometry-based amino acid sequencing is currently based almost entirely on collision-induced peptide fragmentation and analyses. Here, we describe a single-stage MS-based technique for amino acid sequencing involving partial, heterogenous digestion of a peptide by a processive, non-specific, heat-loving Bacillus subtilis-derived aminopeptidase (BsuAP), which acts optimally at 70 °C and allows 'single-shot' sequencing to be carried out through simultaneous accumulation, and detection of sub-populations of peptides of progressively reducing length.

  10. Low-resolution spectroscopy of main sequence stars belonging to 12 Galactic globular clusters. I. CH and CN band strength variations

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Rejkuba, M.; Zoccali, M.; Carrera, R.

    2010-12-01

    Context. Globular clusters show star-to-star abundance variations for light elements that are not yet well understood. The preferred explanation involves a self-enrichment scenario, within which two subsequent generations of stars co-exist in globular clusters. Observations of chemical abundances in the main sequence and sub-giant branch stars allow us to investigate the signature of this chemically processed material without the complicating effects caused by stellar evolution and internal mixing. Aims: Our main goal is to investigate the carbon-nitrogen anti-correlation with low-resolution spectroscopy of 20-50 stars fainter than the first dredge-up in seven Galactic globular clusters (NGC 288, NGC 1851, NGC 5927, NGC 6352, NGC 6388, and Pal 12) with different properties. We complemented our observations with 47 Tuc archival data, with four additional clusters from the literature (M 15, M 22, M 55, NGC 362), and with additional literature data on NGC 288. Methods: In this first paper, we measured the strengh of the CN and CH band indices, which correlate with the N and C abundances, and we investigated the anti-correlation and bimodality of these indices. We compared rCN, the ratio of stars belonging to the CN-strong and weak groups, with 15 different cluster parameters. Results: We clearly see bimodal anti-correlation of the CH and CN band stregths in the metal-rich clusters (Pal 12, 47 Tuc, NGC 6352, NGC 5927). Only M 15 among the metal-poor clusters shows a clearly bimodal anti-correlation. We found weak correlations (sligthly above 1σ) of rCN with the cluster orbital parameters, present-day total mass, cluster concentration, and age. Conclusions: Our findings support the self-enrichment scenario, and suggest that the occurrence of more than two major generations of stars in a GGC should be rare. Small additional generations (<10-20% of the total) would be difficult to detect with our samples. The first generation, which corresponds to the CN-weak stars

  11. Observation and modelling of main-sequence star chromospheres - XIV. Rotation of dM1 stars

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.

    2010-09-01

    We have measured v sin i for a selected sample of dM1-type stars. We give 114 measurements of v sin i for 88 different stars, and six upper detection limits. These are the first measurements of v sin i for most of the stars studied here. This represents the largest sample of v sin i measurements for M dwarfs at a given spectral type. For these measurements, we used four different spectrographs: HARPS (ESO), SOPHIE (OHP), ÉLODIE (OHP) and UVES (ESO). Two of these spectrographs (HARPS and SOPHIE) are particularly stable in wavelength since they were designed for exoplanet searches. We measured v sin i down to an accuracy of 0.3kms-1 for the highest resolution spectrographs and a detection limit of about 1kms-1. We show that this unprecedented accuracy for M dwarfs in our data set is possible because all the targets have the same spectral type. This is an advantage and it facilitates the determination of the narrowest line profiles for v sin i ~ 0. Although it is possible to derive the zero-point profiles using several spectral types at a time. These values were combined with other measurements taken from the literature. The total sample represents detected rotation for 100 stars (10 dM1e and 90 dM1 stars). We confirm our finding of Paper VII that the distribution of the projected rotation period is bimodal for dM1 stars with a much larger sample, i.e. there are two groups of stars: the fast rotators with P/sin i ~ 4.5d and the slow rotators with P/sin i ~ 14.4d. There is a gap between these two groups. We find that the distribution of stars as a function of P/sin i has two very abrupt cuts, below 10d and above 18d. There are very few stars observed out of this range 10-18d. We also observe that the distribution increases slightly from 18 to 10d. We find that the M1 subdwarfs (very low metallicity dwarfs) rotate with an average period of P/sin i ~ 7.2d, which is about twice faster as the main group of normal M1 dwarfs. We also find a correlation for P/sin i to

  12. Evidence for Clonal Expansion After Antibiotic Selection Pressure: Pneumococcal Multilocus Sequence Types Before and After Mass Azithromycin Treatments

    PubMed Central

    Keenan, Jeremy D.; Klugman, Keith P.; McGee, Lesley; Vidal, Jorge E.; Chochua, Sopio; Hawkins, Paulina; Cevallos, Vicky; Gebre, Teshome; Tadesse, Zerihun; Emerson, Paul M.; Jorgensen, James H.; Gaynor, Bruce D.; Lietman, Thomas M.

    2015-01-01

    Background. A clinical trial of mass azithromycin distributions for trachoma created a convenient experiment to test the hypothesis that antibiotic use selects for clonal expansion of preexisting resistant bacterial strains. Methods. Twelve communities in Ethiopia received mass azithromycin distributions every 3 months for 1 year. A random sample of 10 children aged 0–9 years from each community was monitored by means of nasopharyngeal swab sampling before mass azithromycin distribution and after 4 mass treatments. Swab specimens were tested for Streptococcus pneumoniae, and isolates underwent multilocus sequence typing. Results. Of 82 pneumococcal isolates identified before treatment, 4 (5%) exhibited azithromycin resistance, representing 3 different sequence types (STs): 177, 6449, and 6494. The proportion of isolates that were classified as one of these 3 STs and were resistant to azithromycin increased after 4 mass azithromycin treatments (14 of 96 isolates [15%]; P = .04). Using a classification index, we found evidence for a relationship between ST and macrolide resistance after mass treatments (P < .0001). The diversity of STs—as calculated by the unbiased Simpson index—decreased significantly after mass azithromycin treatment (P = .045). Conclusions. Resistant clones present before mass azithromycin treatments increased in frequency after treatment, consistent with the theory that antibiotic selection pressure results in clonal expansion of existing resistant strains. PMID:25293366

  13. The local mass density

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.

    1974-01-01

    An improved mass-luminosity relation for faint main-sequence stars derived from recently revised masses for some faint double stars is presented. The total local mass density is increased to nearly 0.2 solar masses per cu pc. This estimate is as large as the mass density required by Oort's (1965) dynamical analysis of stellar motions perpendicular to the galactic plane if the mass is concentrated in a narrow layer.

  14. STELLAR DIAMETERS AND TEMPERATURES. III. MAIN-SEQUENCE A, F, G, AND K STARS: ADDITIONAL HIGH-PRECISION MEASUREMENTS AND EMPIRICAL RELATIONS

    SciTech Connect

    Boyajian, Tabetha S.; Jones, Jeremy; White, Russel; McAlister, Harold A.; Gies, Douglas; Von Braun, Kaspar; Van Belle, Gerard; Farrington, Chris; Schaefer, Gail; Ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm; Ridgway, Stephen

    2013-07-01

    Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR{sub J} I{sub J} JHK), Cousins (R{sub C} I{sub C}), Kron (R{sub K} I{sub K}), Sloan (griz), and WISE (W{sub 3} W{sub 4}) photometric systems. These relations have an average standard deviation of {approx}3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T{sub eff} > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only {approx}2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.

  15. Probability-Based Pattern Recognition and Statistical Framework for Randomization: Modeling Tandem Mass Spectrum/Peptide Sequence False Match Frequencies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating and controlling the frequency of false matches between a peptide tandem mass spectrum and candidate peptide sequences is an issue pervading proteomics research. To solve this problem, we designed an unsupervised pattern recognition algorithm for detecting patterns with various lengths fr...

  16. Impact of Saturn Main Ring Mass on interpretation of Pioneer 11 and Cassini SOI Radiation Measurements Across the Rings

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Sturner, Steven J.; Sittler, Edward C., Jr.; Kollmann, Peter; Roussos, Elias; Johnson, Robert E.

    2015-11-01

    The Pioneer 11 (1979) and Cassini Orbiter (2004) missions measured the energetic particle and gamma ray flux environments across the A, B, and outer C rings of Saturn. This radiation originates as secondary proton, neutron, electron, and gamma ray emissions from the interaction of high-energy (> 20 GeV) galactic cosmic ray protons and other ions with bulk ice material in the rings and is sensitive to the surface mass density of the rings. The Pioneer 11 analysis from the University of Chicago High Energy Telescope, published in 1985, was consistent with a average surface density of about 50 g/cm2, assuming pure water ice, and a total ring mass of 2.7x10-8 Saturn masses (MS). This independently-derived value confirmed the post-Voyager result of 3x10-8 MS from radio and stellar occultations, and from observed damping of density waves in the rings. Although some later ring models in the Cassini mission era (2004 - present) allow for a greater mass by an order of magnitude, the latest density wave analysis from Cassini indicates that the Pioneer-Voyager value may be correct. GEANT radiation transport simulations have been performed to update the ring radiation model and enable ongoing assessments of the Pioneer 11 HET and Cassini MIMI/LEMMS responses to this radiation. The O2 gas production by radiation chemistry within the ring material is also estimated as a function of ring mass for comparison to Cassini and earlier measurements of the ring atmosphere and ionosphere. More massive rings would produce more O2.

  17. A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing

    NASA Astrophysics Data System (ADS)

    Poston, Chloe N.; Higgs, Richard E.; You, Jinsam; Gelfanova, Valentina; Hale, John E.; Knierman, Michael D.; Siegel, Robert; Gutierrez, Jesus A.

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  18. Viridans Group Streptococci Clinical Isolates: MALDI-TOF Mass Spectrometry versus Gene Sequence-Based Identification

    PubMed Central

    Angeletti, Silvia; Dicuonzo, Giordano; Avola, Alessandra; Crea, Francesca; Dedej, Etleva; Vailati, Francesca; Farina, Claudio; De Florio, Lucia

    2015-01-01

    Viridans Group Streptococci (VGS) species-level identification is fundamental for patients management. Matrix-assisted laser desorption ionization—time of flight mass spectrometry (MALDI-TOF MS) has been used for VGS identification but discrimination within the Mitis group resulted difficult. In this study, VGS identifications with two MALDI-TOF instruments, the Biotyper (Bruker) and the VITEK MS (bioMérieux) have been compared to those derived from tuf, soda and rpoB genes sequencing. VGS isolates were clustered and a dendrogram constructed using the Biotyper 3.0 software (Bruker). RpoB gene sequencing resulted the most sensitive and specific molecular method for S. pneumonia identification and was used as reference method. The sensitivity and the specificity of the VITEK MS in S. pneumonia identification were 100%, while the Biotyper resulted less specific (92.4%). In non pneumococcal VGS strains, the group-level correlation between rpoB and the Biotyper was 100%, while the species-level correlation was 61% after database upgrading (than 37% before upgrading). The group-level correlation between rpoB and the VITEK MS was 100%, while the species-level correlation was 36% and increases at 69% if isolates identified as S. mitis/S. oralis are included. The less accurate performance of the VITEK MS in VGS identification within the Mitis group was due to the inability to discriminate between S. mitis and S. oralis. Conversely, the Biotyper, after the release of the upgraded database, was able to discriminate between the two species. In the dendrogram, VGS strains from the same group were grouped into the same cluster and had a good correspondence with the gene-based clustering reported by other authors, thus confirming the validity of the upgraded version of the database. Data from this study demonstrated that MALDI-TOF technique can represent a rapid and cost saving method for VGS identification even within the Mitis group but improvements of spectra database are

  19. Stress rotations due to the M6.5 foreshock and M7.3 main shock in the 2016 Kumamoto, SW Japan, earthquake sequence

    NASA Astrophysics Data System (ADS)

    Yoshida, Keisuke; Hasegawa, Akira; Saito, Tatsuhiko; Asano, Youichi; Tanaka, Sachiko; Sawazaki, Kaoru; Urata, Yumi; Fukuyama, Eiichi

    2016-10-01

    A shallow M7.3 event with a M6.5 foreshock occurred along the Futagawa-Hinagu fault zone in Kyushu, SW Japan. We investigated the spatiotemporal variation of the stress orientations in and around the source area of this 2016 Kumamoto earthquake sequence by inverting 1218 focal mechanisms. The results show that the σ3 axis in the vicinity of the fault plane significantly rotated counterclockwise after the M6.5 foreshock and rotated clockwise after the M7.3 main shock in the Hinagu fault segment. This observation indicates that a significant portion of the shear stress was released both by the M6.5 foreshock and M7.3 main shock. It is estimated that the stress release by the M6.5 foreshock occurred in the shallower part of the Hinagu fault segment, which brought the stress concentration in its deeper part. This might have caused the M7.3 main shock rupture mainly along the deeper part of the Hinagu fault segment after 28 h.

  20. Genotyping-by-sequencing approach indicates geographic distance as the main factor affecting genetic structure and gene flow in Brazilian populations of Grapholita molesta (Lepidoptera, Tortricidae).

    PubMed

    Silva-Brandão, Karina Lucas; Silva, Oscar Arnaldo Batista Neto E; Brandão, Marcelo Mendes; Omoto, Celso; Sperling, Felix A H

    2015-06-01

    The oriental fruit moth Grapholita molesta is one of the major pests of stone and pome fruit species in Brazil. Here, we applied 1226 SNPs obtained by genotyping-by-sequencing to test whether host species associations or other factors such as geographic distance structured populations of this pest. Populations from the main areas of occurrence of G. molesta were sampled principally from peach and apple orchards. Three main clusters were recovered by neighbor-joining analysis, all defined by geographic proximity between sampling localities. Overall genetic structure inferred by a nonhierarchical amova resulted in a significant ΦST value = 0.19109. Here, we demonstrate for the first time that SNPs gathered by genotyping-by-sequencing can be used to infer genetic structure of a pest insect in Brazil; moreover, our results indicate that those markers are very informative even over a restricted geographic scale. We also demonstrate that host plant association has little effect on genetic structure among Brazilian populations of G. molesta; on the other hand, reduced gene flow promoted by geographic isolation has a stronger impact on population differentiation. PMID:26029261

  1. Genotyping-by-sequencing approach indicates geographic distance as the main factor affecting genetic structure and gene flow in Brazilian populations of Grapholita molesta (Lepidoptera, Tortricidae)

    PubMed Central

    Silva-Brandão, Karina Lucas; Silva, Oscar Arnaldo Batista Neto e; Brandão, Marcelo Mendes; Omoto, Celso; Sperling, Felix A H

    2015-01-01

    The oriental fruit moth Grapholita molesta is one of the major pests of stone and pome fruit species in Brazil. Here, we applied 1226 SNPs obtained by genotyping-by-sequencing to test whether host species associations or other factors such as geographic distance structured populations of this pest. Populations from the main areas of occurrence of G. molesta were sampled principally from peach and apple orchards. Three main clusters were recovered by neighbor-joining analysis, all defined by geographic proximity between sampling localities. Overall genetic structure inferred by a nonhierarchical amova resulted in a significant ΦST value = 0.19109. Here, we demonstrate for the first time that SNPs gathered by genotyping-by-sequencing can be used to infer genetic structure of a pest insect in Brazil; moreover, our results indicate that those markers are very informative even over a restricted geographic scale. We also demonstrate that host plant association has little effect on genetic structure among Brazilian populations of G. molesta; on the other hand, reduced gene flow promoted by geographic isolation has a stronger impact on population differentiation. PMID:26029261

  2. Detection of the Main-Sequence Turnoff of a Newly Discovered Milky Way Halo Structure in the Triangulum-Andromeda Region

    NASA Astrophysics Data System (ADS)

    Majewski, Steven R.; Ostheimer, James C.; Rocha-Pinto, Helio J.; Patterson, Richard J.; Guhathakurta, Puragra; Reitzel, David

    2004-11-01

    An upper main sequence (MS) and main-sequence turnoff (MSTO) feature appears in the color-magnitude diagram (CMD) of a large-area photometric survey of the southern half of M31 stretching to M33. Imaging in the Washington M, T2, DDO51 system allows us to remove the background M31/M33 giants from our CMD and more clearly see the dwarf star feature, which has an MSTO near M~20.5. The corresponding stellar population shows little density variation over the 12deg×6deg area of the sky sampled and is of very low surface brightness, Σ>32 mag arcsec-2. We show that this feature is not the same as a previously identified MS+MSTO in the foreground of the Andromeda galaxy that has been associated with the tidal stream ringing the Milky Way disk at less than half the distance. Thus, the new stellar system is a separate, more distant entity, perhaps a segment of tidal debris from a disrupted satellite galaxy. It is most likely related to the structure with similar distance, location, and density uniformity seen as an excess of K and M giants in the Two Micron All Sky Survey reported in the companion paper by Rocha-Pinto and coworkers.

  3. Genotyping-by-sequencing approach indicates geographic distance as the main factor affecting genetic structure and gene flow in Brazilian populations of Grapholita molesta (Lepidoptera, Tortricidae).

    PubMed

    Silva-Brandão, Karina Lucas; Silva, Oscar Arnaldo Batista Neto E; Brandão, Marcelo Mendes; Omoto, Celso; Sperling, Felix A H

    2015-06-01

    The oriental fruit moth Grapholita molesta is one of the major pests of stone and pome fruit species in Brazil. Here, we applied 1226 SNPs obtained by genotyping-by-sequencing to test whether host species associations or other factors such as geographic distance structured populations of this pest. Populations from the main areas of occurrence of G. molesta were sampled principally from peach and apple orchards. Three main clusters were recovered by neighbor-joining analysis, all defined by geographic proximity between sampling localities. Overall genetic structure inferred by a nonhierarchical amova resulted in a significant ΦST value = 0.19109. Here, we demonstrate for the first time that SNPs gathered by genotyping-by-sequencing can be used to infer genetic structure of a pest insect in Brazil; moreover, our results indicate that those markers are very informative even over a restricted geographic scale. We also demonstrate that host plant association has little effect on genetic structure among Brazilian populations of G. molesta; on the other hand, reduced gene flow promoted by geographic isolation has a stronger impact on population differentiation.

  4. Fluid mass and thermal loading effects on the modal characteristics of space shuttle main engine liquid oxygen inlet splitter vanes

    NASA Technical Reports Server (NTRS)

    Panossian, H. V.; Boehnlein, J. J.

    1987-01-01

    An analysis and evaluation of experimental modal survey test data on the variations of modal characteristics induced by pressure and thermal loading events are presented. Extensive modal survey tests were carried out on a Space Shuttle Main Engine (SSME) test article using liquid nitrogen under cryogenic temperatures and high pressures. The results suggest that an increase of pressure under constant cryogenic temperature or a decrease of temperature under high pressure induces an upward shift of frequencies of various modes of the structures.

  5. Imaging the high-frequency energy radiation process of a main shock and its early aftershock sequence: The case of the 2008 Iwate-Miyagi Nairiku earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Sawazaki, Kaoru; Enescu, Bogdan

    2014-06-01

    To understand the energy release process that operates at the end of the main shock rupture and start of the aftershock activity, we propose an inversion method that uses continuous high-frequency seismogram envelopes of the main shock and early aftershocks (i.e., events that occur at short times after the main shock). In our approach, the aftershock sequence is regarded as a continuous energy release process, rather than a discrete time series of events. To correct for the contribution of coda wave energy excited by multiple scattering, we use the theoretical envelope synthesized on the basis of the radiative transfer theory as a Green's function. The site amplification factors are corrected considering the conservation of energy flux and using the coda normalization method. The inverted temporal energy release rate for the 2008 MW 6.9 Iwate-Miyagi Nairiku earthquake, Japan, decays following t-1.1, at the lapse time t of 40-900 s after the main shock origin time. This exponent of the decay rate is similar to the p value of the modified Omori law. The amount of estimated energy release is consistent with that calculated from the magnitude listed in the aftershock catalog. Although the uncertainty is large, the location of large energy release at the lapse times of 40-900 s approximately overlaps to that of the aftershocks, which surrounds the large energy release area during the main shock faulting. The maxima of the energy release rate normalized by the average decay rate distributes following a power law, similar to the Gutenberg-Richter law.

  6. Controversial age spreads from the main sequence turn-off and red clump in intermediate-age clusters in the LMC

    NASA Astrophysics Data System (ADS)

    Niederhofer, F.; Bastian, N.; Kozhurina-Platais, V.; Hilker, M.; de Mink, S. E.; Cabrera-Ziri, I.; Li, C.; Ercolano, B.

    2016-02-01

    Most star clusters at an intermediate age (1-2 Gyr) in the Large and Small Magellanic Clouds show a puzzling feature in their color-magnitude diagrams (CMD) that is not in agreement with a simple stellar population. The main sequence turn-off of these clusters is much broader than expected from photometric uncertainties. One interpretation of this feature is that age spreads of the order of 200-500 Myr exist within individual clusters, although this interpretation is highly debated. Such large age spreads should affect other parts of the CMD, which are sensitive to age, as well. In this study, we analyze the CMDs of a sample of 12 intermediate-age clusters in the Large Magellanic Cloud that all show an extended turn-off using archival optical data taken with the Hubble Space Telescope. We fit the star formation history of the turn-off region and the red clump region independently. We find that in most cases, the age spreads inferred from the red clumps are smaller than those that result from the turn-off region. However, the age ranges that result from the red clump region are broader than expected for a single age. Only two out of 12 clusters in our sample show a red clump which seems to be consistent with a single age. As our results are ambiguous, by fitting the star formation histories to the red clump regions, we cannot ultimately tell if the extended main sequence turn-off feature is the result of an age spread or not. However, we do find that the width of the extended main sequence turn-off feature is correlated with the age of the clusters in a way which would be unexplained in the so-called age spread interpretation, but which may be expected if stellar rotation is the cause of the spread at the turn-off. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST

  7. Statistical physics inspired methods to assign statistical significance in bioinformatics and proteomics: From sequence comparison to mass spectrometry based peptide sequencing

    NASA Astrophysics Data System (ADS)

    Alves, Gelio

    After the sequencing of many complete genomes, we are in a post-genomic era in which the most important task has changed from gathering genetic information to organizing the mass of data as well as under standing how components interact with each other. The former is usually undertaking using bioinformatics methods, while the latter task is generally termed proteomics. Success in both parts demands correct statistical significance assignments for results found. In my dissertation. I study two concrete examples: global sequence alignment statistics and peptide sequencing/identification using mass spectrometry. High-performance liquid chromatography coupled to a mass spectrometer (HPLC/MS/MS), enabling peptide identifications and thus protein identifications, has become the tool of choice in large-scale proteomics experiments. Peptide identification is usually done by database searches methods. The lack of robust statistical significance assignment among current methods motivated the development of a novel de novo algorithm, RAId, whose score statistics then provide statistical significance for high scoring peptides found in our custom, enzyme-digested peptide library. The ease of incorporating post-translation modifications is another important feature of RAId. To organize the massive protein/DNA data accumulated, biologists often cluster proteins according to their similarity via tools such as sequence alignment. Homologous proteins share similar domains. To assess the similarity of two domains usually requires alignment from head to toe, ie. a global alignment. A good alignment score statistics with an appropriate null model enable us to distinguish the biologically meaningful similarity from chance similarity. There has been much progress in local alignment statistics, which characterize score statistics when alignments tend to appear as a short segment of the whole sequence. For global alignment, which is useful in domain alignment, there is still much room for

  8. Whole-Genome Sequence Analysis Reveals the Enterovirus D68 Isolates during the United States 2014 Outbreak Mainly Belong to a Novel Clade

    PubMed Central

    Huang, Weihua; Wang, Guiqing; Zhuge, Jian; Nolan, Sheila M.; Dimitrova, Nevenka; Fallon, John T.

    2015-01-01

    In the late summer and the fall of 2014, the United States experienced an unprecedented outbreak of enterovirus D68 (EV-D68) infections. During the outbreak, we collected nasopharyngeal swab specimens from patients in the Lower Hudson Valley of New York. Here, we conduct a retrospective study on the genomic diversity of EV-D68 strains. We first employ a metagenomic shotgun sequencing protocol on a total of 93 clinical samples, including 21 negative controls, the results of which allow assembly of 20 EV-D68 genomes, six complete and 14 near-complete. We then investigate their genetic relationships, along with additional 20 EV-D68 strains having whole-genome sequences publicly available. Our comparative genomic analysis uncovers that the majority (26/29) of EV-D68 strains circulating in the 2014 outbreak differ significantly from prior ones, have a main feature of three variables, C1817T, C3277A, and A4020G, and belong to a new clade. C3277A causes amino acid substitution T860N in the protease 2Apro cleavage site between VP1 and 2A, whereas A4020G causes S1108G in a 3Cpro cleavage site between 2B and 2C. The two functional mutations may alter the proteases’ cleavage efficiency, leading to increased rate of viral replication and transmission. These provide insights into the evolution of epidemic EV-D68 strains. PMID:26469882

  9. Homology-driven assembly of NOn-redundant protEin sequence sets (NOmESS) for mass spectrometry

    PubMed Central

    Temu, Tikira; Mann, Matthias; Räschle, Markus; Cox, Jürgen

    2016-01-01

    Summary: To enable mass spectrometry (MS)-based proteomic studies with poorly characterized organisms, we developed a computational workflow for the homology-driven assembly of a non-redundant reference sequence dataset. In the automated pipeline, translated DNA sequences (e.g. ESTs, RNA deep-sequencing data) are aligned to those of a closely related and fully sequenced organism. Representative sequences are derived from each cluster and joined, resulting in a non-redundant reference set representing the maximal available amino acid sequence information for each protein. We here applied NOmESS to assemble a reference database for the widely used model organism Xenopus laevis and demonstrate its use in proteomic applications. Availability and implementation: NOmESS is written in C#. The source code as well as the executables can be downloaded from http://www.biochem.mpg.de/cox. Execution of NOmESS requires BLASTp and cd-hit in addition. Contact: cox@biochem.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26743511

  10. Sequence analysis of phosphorothioate oligonucleotides via matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Schuette, J M; Pieles, U; Maleknia, S D; Srivatsa, G S; Cole, D L; Moser, H E; Afeyan, N B

    1995-09-01

    Modification of the natural phosphodiester backbone of deoxyribooligonucleotides can impart increased biostability via nuclease resistance. Further, uniform incorporation of phosphorothioate linkages renders oligonucleotides highly resistant to reagents traditionally used in sequencing reactions. As a consequence, analytical tests crucial for establishing the identity of such oligonucleotide drugs are less informative. To circumvent this problem, chemical oxidation has been employed for converting the phosphorothioate to the uniform phosphodiester, thereby facilitating enzymatic degradation. Following oxidation, exonucleases which sequentially cleave individual bases from the 3' or 5' terminus of the oligonucleotide or base-specific cleavage chemicals were used to facilitate sequence identification of the oligonucleotide. Matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS), previously used to sequence natural phosphodiester DNA, was then used to sequence the chemically oxidized phosphorothioate. Sequential enzymatic cleavage of desulphurized phosphorothioates in combination with MALDI analysis not only provides a viable alternative to radiolabeling as used in conventional sequencing approaches (e.g. Maxam-Gilbert), but also enables rapid sequencing of phosphorothioate oligonucleotides, for routine drug analysis. PMID:8562591

  11. Qualitative and quantitative determination of 15 main active constituents in Fructus Sophorae pill by liquid chromatography tandem mass spectrometry

    PubMed Central

    Zhi, Xu-ran; Zhang, Zhi-yong; Jia, Pei-pei; Zhang, Xiao-xu; Yuan, Lin; Sheng, Ning; Zhang, Lan-tong

    2015-01-01

    Background: Fructus Sophorae pill, one of the traditional Chinese medicine, was widely used for hemorrhoids, hypertension and odontalgia. This paper describes a sensitive and specific assay for the determination of the 15 active constituents (sophoricoside, genistin, genistein, rutin, quercetin, kaempferol, baicalein, baicalin, naringin, naringenin, hesperidin, neohesperidin, wogonin and cimifugin, prim-O-glucosylcimifugin) in Fructus Sophorae pill. Materials and Methods: Chromatographic separation was performed on a C18 column with acidified aqueous methanol gradients at a flow rate of 0.8 mL/min. The identification and quantification of the analytes were achieved by use of a hybrid quadrupole linear ion trap mass spectrometer. Multiple-reaction monitoring scanning was applied to quantification with switching electrospray ion source polarity between positive and negative modes. Results: The proposed method was used to analyze 40 batches of samples with good linearity (r, 0.9990-0.9999), intraday precisions (RSD, 0.14-2.55%), interday precisions (RSD, 0.51-2.81%), stability (RSD, 0.31-2.65%), and recovery (RSD, 1.29-2.95%) of the 15 compounds. In addition, the hierarchical cluster analysis, including a method called furthest neighbor and nearest neighbor, was employed to classify samples according to characteristics of the 15 constituents. Conclusion: The results indicated that the analytical method was rapid, reliable, simple and suitable for the quality evaluation of Fructus Sophorae pill. PMID:25709233

  12. Microheterogeneity of odorant-binding proteins in the porcupine revealed by N-terminal sequencing and mass spectrometry.

    PubMed

    Ganni, M; Garibotti, M; Scaloni, A; Pucci, P; Pelosi, P

    1997-06-01

    Several odorant-binding proteins (OBP) have been previously purified from the nasal mucosa of the old world porcupine Hystrix cristata. In this paper, we report their N-terminal amino-acid sequences and accurate molecular weights, as measured by electrospray mass spectrometry. The partial amino acid sequences reveal significant similarity with OBPs of other mammalian species and segregate the eight proteins purified into two subclasses. Mass spectrometry has revealed microheterogeneity among the proteins belonging to each of these two groups, suggesting a total number of OBPs of at least nine. The molecular weight differences between OBPs cannot be readily accounted for by common post-translation modifications and indicate different gene products. Such a large number of different OBPs may represent further support to an odour discriminating role for these proteins.

  13. Population Parameters of Intermediate-age Star Clusters in the Large Magellanic Cloud. III. Dynamical Evidence for a Range of Ages Being Responsible for Extended Main-sequence Turnoffs

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul; Puzia, Thomas H.; Chandar, Rupali; Kozhurina-Platais, Vera

    2011-08-01

    We present a new analysis of 11 intermediate-age (1-2 Gyr) star clusters in the Large Magellanic Cloud based on Hubble Space Telescope imaging data. Seven of the clusters feature main-sequence turnoff (MSTO) regions that are wider than can be accounted for by a simple stellar population, whereas their red giant branches (RGBs) indicate a single value of [Fe/H]. The star clusters cover a range in present-day mass from about 1 × 104 M sun to 2 × 105 M sun. We compare radial distributions of stars in the upper and lower parts of the MSTO region, and calculate cluster masses and escape velocities from the present time back to a cluster age of 10 Myr. Our main result is that for all clusters in our sample with estimated escape velocities v esc >~ 15 km s-1 at an age of 10 Myr, the stars in the brightest half of the MSTO region are significantly more centrally concentrated than the stars in the faintest half and more massive RGB and asymptotic giant branch stars. This is not the case for clusters with v esc <~ 10 km s-1 at an age of 10 Myr. We argue that the wide MSTO region of such clusters is caused mainly by a ~200-500 Myr range in the ages of cluster stars due to extended star formation within the cluster from material shed by first-generation stars featuring slow stellar winds. Dilution of this enriched material by accretion of ambient interstellar matter is deemed plausible if the spread of [Fe/H] in this ambient gas was very small when the second-generation stars were formed in the cluster. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  14. Reprint of "Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray)".

    PubMed

    Kooken, Jennifer; Fox, Karen; Fox, Alvin; Altomare, Diego; Creek, Kim; Wunschel, David; Pajares-Merino, Sara; Martínez-Ballesteros, Ilargi; Garaizar, Javier; Oyarzabal, Omar; Samadpour, Mansour

    2014-01-01

    This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.

  15. Mass balances of mercury and nitrogen in burned and unburned forested watersheds at Acadia National Park, Maine, USA.

    PubMed