[Analysis of chemical constituents of volatile components from Jia Ga Song Tang by GC-MS].
Tan, Qing-long; Xiong, Tian-qin; Liao, Jia-yi; Yang, Tao; Zhao, Yu-min; Lin, Xi; Zhang, Cui-xian
2014-10-01
To analyze the chemical components of volatile components from Jia Ga Song Tang. The volatile oils were extracted by water steam distillation. The chemical components of essential oil were analyzed by GC-MS and quantitatively determined by a normalization method. 103 components were separated and 87 components were identified in the volatile oil of Zingiberis Rhizoma. 58 components were separated and 38 components were identified in the volatile oil of Myristicae Semen. 49 components were separated and 38 components were identified in the volatile oil of Amomi Rotundus Fructus. 89 components were separated and 63 components were identified in the volatile oil of Jia Ga Song Tang. Eucalyptol, β-phellandrene and other terpenes were the main compounds in the volatile oil of Jia Ga Song Tang. Changes in the kinds and content of volatile components can provide evidences for scientific and rational compatibility for Jia Ga Song Tang.
[Chemical components of Vetiveria zizanioides volatiles].
Huang, Jinghua; Li, Huashou; Yang, Jun; Chen, Yufen; Liu, Yinghu; Li, Ning; Nie, Chengrong
2004-01-01
The chemical components of the volatiles from Vetiveria zizanioides were analyzed by SPME and GC-MS. In the roots, the main component was valencene (30.36%), while in the shoots and leaves, they were 9-octadecenamide (33.50%), 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene (27.46%), and 1,2-benzendicarboxylic acid, diisooctyl ester(18.29%). The results showed that there were many terpenoids in the volatils. In shoot volatiles, there existed 3 monoterpenes, 2 sequiterpenes and 1 triterpene. Most of the volatiles in roots were sesquiterpenes.
Characterization of volatile aroma compounds from red and black rice bran.
Sukhonthara, Sukhontha; Theerakulkait, Chockchai; Miyazawa, Mitsuo
2009-01-01
The volatile oils from red and black rice bran were obtained by hydrodistillation using diethyl ester and the components of that oil were analyzed by capillary GC-MS. The volatile components of essential oil from red and black rice bran were analyzed by GC and GC-MS. One hundred twenty-nine (129) of volatile compounds were identified in red and black rice bran. Myristic acid, nonanal, (E)-beta-ocimene and 6, 10, 14-trimethyl-2-pentadecanone were main compounds in red rice bran, whereas myristic acid, nonanal, caproic acid, pentadecanal and pelargonic acid were main compounds in black rice bran. Guaiacol, presented at 0.81 mg/100 g in black rice bran, is responsible for the characteristic component in black rice.
Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui
2016-04-01
Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Galassi, F G; Fronza, G; Toloza, A C; Picollo, M I; González-Audino, P
2018-05-04
The head louse Pediculus humanus capitis (De Geer) (Phthiraptera: Pediculidae) is a cosmopolitan human ectoparasite causing pediculosis, one of the most common arthropod parasitic conditions of humans. The mechanisms and/or chemicals involved in host environment recognition by head lice are still unknown. In this study, we evaluated the response of head lice to volatiles that emanate from the human scalp. In addition, we identified the volatile components of the odor and evaluated the attractive or repellent activity of their pure main components. The volatiles were collected by means of Solid Phase microextraction and the extract obtained was chemically analyzed by gas chromatograph-mass spectrometer. Twenty-four volatile were identified in the human scalp odor, with the main compounds being the following: nonanal, sulcatone, geranylacetone, and palmitic acid. Head lice were highly attracted by the blend human scalp volatiles, as well as by the individual major components. A significant finding of our study was to demonstrate that nonanal activity depends on the mass of the compound as it is repellent at high concentrations and an attractant at low concentrations. The results of this study indicate that head lice may use chemical signals in addition to other mechanisms to remain on the host.
Liu, Cui-Ting; Zhang, Min; Yan, Ping; Liu, Hai-Chan; Liu, Xing-Yun; Zhan, Ruo-Ting
2016-01-01
Zhengtian pills (ZTPs) are traditional Chinese medicine (TCM) which have been commonly used to treat headaches. Volatile components of ZTPs extracted by ethyl acetate with an ultrasonic method were analyzed by gas chromatography mass spectrometry (GC-MS). Twenty-two components were identified, accounting for 78.884% of the total components of volatile oil. The three main volatile components including protocatechuic acid, ferulic acid, and ligustilide were simultaneously determined using ultra-high performance liquid chromatography coupled with diode array detection (UHPLC-DAD). Baseline separation was achieved on an XB-C18 column with linear gradient elution of methanol-0.2% acetic acid aqueous solution. The UHPLC-DAD method provided good linearity (R (2) ≥ 0.9992), precision (RSD < 3%), accuracy (100.68-102.69%), and robustness. The UHPLC-DAD/GC-MS method was successfully utilized to analyze volatile components, protocatechuic acid, ferulic acid, and ligustilide, in 13 batches of ZTPs, which is suitable for discrimination and quality assessment of ZTPs.
Cho, In Hee; Choi, Hyung-Kyoon; Kim, Young-Suk
2006-06-28
The differences in volatile components of pine-mushrooms (Tricholoma matsutake Sing.) according to their grades were observed by applying multivariate statistical methods to GC-MS data sets. A total of 35 and 37 volatile components were identified in raw and cooked pine-mushrooms, respectively. The volatile components in pine-mushrooms were primarily composed of C8 species, such as 3-octanol, 1-octen-3-ol, 1-octanol, (E)-2-octen-1-ol, 3-octanone, 1-octen-3-one, (E)-2-octenal, and octanoic acid. The levels of ethyl octanoate, junipene, and 3-methyl-3-buten-2-one were much higher in raw pine-mushroom of higher grades, whereas the reverse was true for C8 components. On the other hand, furfuryl alcohol, benzyl alcohol, phenylethyl alcohol, dihydro-5-methyl-2(3H)-furanone, 2(5H)-furanone, (E)-2-methyl-2-butenal, furfural, phenylacetaldehyde, benzoic acid methyl ester, camphene, and beta-pinene were the major components of cooked mushrooms. These volatile components formed by various thermal reactions could be mainly responsible for the difference in volatile components of cooked pine-mushrooms according to their grades.
Chemical Composition Analysis of Extracts from Ficus Hirta Using Supercritical Fluid
NASA Astrophysics Data System (ADS)
Deng, S. B.; Chen, J. P.; Chen, Y. Z.; Yu, C. Q.; Yang, Y.; Wu, S. H.; Chen, C. Z.
2018-05-01
Ficus hirta was extracted by supercritical carbon dioxide. The volatile chemical components of extracts were analyzed using gas chromatography-mass spectrometry (GC-MS). The percentage of products extracted by Supercritical Fluid Extraction(SFE) was 2.5%. Nineteen volatile compounds were identified. The main volatile components were Elemicin, Psoralen, Palmitic acid, Bergapten, α-Linolenic acid, Medicarpin, Retinoic Acid, Maackiain, and Squalene. The method is simple and quick, and can be used for the preliminary analysis of chemical constituents of supercritical extracts of Ficus hirta.
Torres-González, Ahira; López-Rivera, Paulina; Duarte-Lisci, Georgina; López-Ramírez, Ángel; Correa-Benítez, Adriana; Rivero-Cruz, J Fausto
2016-01-01
A head space solid-phase microextraction method combined with gas chromatography-mass spectrometry was developed and optimised to extract and analyse volatile compounds of Melipona beecheii geopropolis. Seventy-three constituents were identified using this technique in the sample of geopropolis collected. The main compounds detected include β-fenchene (14.53-15.45%), styrene (8.72-9.98%), benzaldehyde (7.44-7.82%) and the most relevant volatile components presents at high level in the geopropolis were terpenoids (58.17%).
[Analysis of the chemical constituents of volatile oils of Metasequoia glyptostroboides leave].
Shong, E; Lui, R
1997-10-01
The chemical constituents of volatile oils of Metasequoia glyptostroboides leave were analyzed by GC-MS-DS. 27 constituents were identified, alpha-pinene (70.65%) and caryophyllene (10.38%) of them are main components.
Regalado-González, Carlos; Vázquez-Landaverde, Pedro; Guerrero-Legarreta, Isabel; García-Almendárez, Blanca E.
2014-01-01
The effect of solvent polarity (methanol and pentane) on the chemical composition of hydrodistilled essential oils (EO's) of Lippia graveolens H.B.K. (MXO) and Origanum vulgare L. (EUO) was studied by GC-MS. Composition of modified starch microencapsulated EO's was conducted by headspace-solid-phase microextraction (HS-SPME). The antimicrobial activity of free and microencapsulated EO's was evaluated. They were tested against Salmonella sp., Brochothrix thermosphacta, Pseudomonas fragi, Lactobacillus plantarum, and Micrococcus luteus. Thymol and carvacrol were among the main components of EO's and their free and microencapsulated inhibitory activity was tested against M. luteus, showing an additive combined effect. Chemical composition of EO's varied according to the solvent used for GC analysis and to volatile fraction as evaluated by HS-SPME. Thymol (both solvents) was the main component in essential oil of MXO, while carvacrol was the main component of the volatile fraction. EUO showed α-pinene (methanol) and γ-terpinene (pentane) as major constituents, the latter being the main component of the volatile fraction. EO's showed good stability after 3 months storage at 4°C, where antimicrobial activity of microencapsulated EO's remained the same, while free EO's decreased 41% (MXO) and 67% (EUO) from initial activity. Microencapsulation retains most antimicrobial activity and improves stability of EO's from oregano. PMID:25177730
Hernández-Hernández, Elvia; Regalado-González, Carlos; Vázquez-Landaverde, Pedro; Guerrero-Legarreta, Isabel; García-Almendárez, Blanca E
2014-01-01
The effect of solvent polarity (methanol and pentane) on the chemical composition of hydrodistilled essential oils (EO's) of Lippia graveolens H.B.K. (MXO) and Origanum vulgare L. (EUO) was studied by GC-MS. Composition of modified starch microencapsulated EO's was conducted by headspace-solid-phase microextraction (HS-SPME). The antimicrobial activity of free and microencapsulated EO's was evaluated. They were tested against Salmonella sp., Brochothrix thermosphacta, Pseudomonas fragi, Lactobacillus plantarum, and Micrococcus luteus. Thymol and carvacrol were among the main components of EO's and their free and microencapsulated inhibitory activity was tested against M. luteus, showing an additive combined effect. Chemical composition of EO's varied according to the solvent used for GC analysis and to volatile fraction as evaluated by HS-SPME. Thymol (both solvents) was the main component in essential oil of MXO, while carvacrol was the main component of the volatile fraction. EUO showed α-pinene (methanol) and γ-terpinene (pentane) as major constituents, the latter being the main component of the volatile fraction. EO's showed good stability after 3 months storage at 4°C, where antimicrobial activity of microencapsulated EO's remained the same, while free EO's decreased 41% (MXO) and 67% (EUO) from initial activity. Microencapsulation retains most antimicrobial activity and improves stability of EO's from oregano.
Feng, Xiao-Liang; He, Yun-biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei
2013-01-01
Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria. PMID:24286016
Feng, Xiao-Liang; He, Yun-Biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei
2013-01-01
Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria.
Stashenko, Elena E; Jaramillo, Beatriz E; Martínez, Jairo René
2004-01-30
Hydrodistillation (HD), simultaneous distillation-solvent extraction (SDE), microwave-assisted hydrodistillation (MWHD), and supercritical fluid (CO2) extraction (SFE), were employed to isolate volatile secondary metabolites from Colombian Xylopia aromatica (Lamarck) fruits. Static headspace (S-HS), simultaneous purge and trap (P&T) in solvent (CH2Cl2), and headspace (HS) solid-phase microextraction (SPME) were utilised to obtain volatile fractions from fruits of X. aromatica trees, which grow wild in Central and South America, and are abundant in Colombia. Kováts indices, mass spectra or standard compounds, were used to identify more than 50 individual components in the various volatile fractions. beta-Phellandrene was the main component found in the HD and MWHD essential oils, SDE and SFE extracts (61, 65, 57, and ca. 40%, respectively), followed by beta-myrcene (9.1, 9.3, 8.2 and 5.1%), and alpha-pinene (8.1, 7.3, 8.1 and 5.9%). The main components present in the volatile fractions of the X. aromatica fruits, isolated by S-HS, P&T and HS-SPME were beta-phellandrene (53.8, 35.7 and 39%), beta-myrcene (13.3, 12.3 and 10.1%), p-mentha-1(7),8-diene (7.1, 10.6 and 10.4%), alpha-phellandrene (2.2, 5.0 and 6.4%), and p-cymene (2.2,4.7 and 4.4%), respectively.
Selective enrichment of volatiles confirmed
NASA Astrophysics Data System (ADS)
de Pater, Imke
2018-04-01
Hydrogen sulfide gas is detected above Uranus's main cloud deck, confirming the prevalence of H2S ice particles as the main cloud component and a strongly unbalanced nitrogen/sulfur ratio in the planet's deep atmosphere.
Selective enrichment of volatiles confirmed
NASA Astrophysics Data System (ADS)
de Pater, Imke
2018-05-01
Hydrogen sulfide gas is detected above Uranus's main cloud deck, confirming the prevalence of H2S ice particles as the main cloud component and a strongly unbalanced nitrogen/sulfur ratio in the planet's deep atmosphere.
El-Zaeddi, Hussein; Martínez-Tomé, Juan; Calín-Sánchez, Ángel; Burló, Francisco; Carbonell-Barrachina, Ángel A.
2016-01-01
Volatile composition of essential oils from dill, parsley, coriander, and mint were investigated at different harvest dates to determine the most suitable harvest time for each these herbs. Hydrodistillation (HD), using a Deryng system, was used for isolating the essential oils. Isolation and identification of the volatile compounds were performed using gas chromatography-mass spectrometry (GC-MS) instrument. The results of gas chromatography-flame ionization detector (GC-FID) analysis (quantification) showed that the main components in the essential oil of dill shoots were α-phellandrene, dill ether, and β-phellandrene, and the optimal harvest date was D2 (second harvest, fourth week of February 2015). For parsley shoots, the main compounds were 1,3,8-p-menthatriene, β-phellandrene, and P1 (first harvest, third week of November 2014) was the sample with the highest essential oil. For coriander, the main compounds were E-2-dodecenal, dodecanal, and octane and the highest contents were found at C2 (second harvest, 5 February 2015); while, the main two components of mint essential oil were carvone and limonene, and the highest contents were found at M1 (first harvest, second week of December 2014). The present study was the first one reporting data on descriptive sensory analysis of aromatic herbs at this optimal harvest date according to the content of volatile compounds of their essential oils. PMID:28231136
Genetic diversity of volatile components in Xinjiang Wild Apple (Malus sieversii).
Chen, Xuesen; Feng, Tao; Zhang, Yanmin; He, Tianming; Feng, Jianrong; Zhang, Chunyu
2007-02-01
To evaluate genetic relationships using qualitative and/or quantitative differentiation of volatile components in Xinjiang Wild Apple (Malus sieversii (Lebed.) Roem.) and to acquire basic data for the conservation and utilization of the species, aroma components in ripe fruit of M. sieversii obtained from 30 seedlings at Mohe, Gongliu County, Xinjiang Autonomic Region, China, and in ripe fruit of 4 M. pumila cultivars ('Ralls', 'Delicious', 'Golden Delicious', and 'Fuji') were analyzed using head space-solid phase microextraction and gas chromatography-mass spectrometry. The results indicated that the values of similarity coefficient concerning volatile types between the two species were in accordance with the evolution of M. pumila cultivars (forms), and that M. sieversii seedlings showed considerable genetic variations in these aspects: the total content of volatile components, the classes and contents of each compound classes, the segregation ratio, and content of main components. The results showed significant difference among seedlings and wide genetic diversity within the populations. Comparison of the volatile components in M. sieversii with those in M. pumila cultivars showed that the common compounds whose number were larger than five with the contents over 0.04 mg/L simultaneously between M. sieversii and M. pumila cultivars belonged to esters, alcohols, aldehydes or ketones. This suggests fundamental identity in main volatile components of M. sieversii and M. pumila cultivars. The results above sustained the conclusion "M. sieversii is probably the ancestor of M. pumila". However, there were 48 compounds present in M. pumila that were not detected in M. sieversii, including 6 character impact components (i.e., propyl acetate, (Z)-3-hexenal, 2-methyl-1-butanol acetate, pentyl acetate, 3-furanmethanol, and benzene acetaldehyde). This suggested that in the domestication of M. pumila, introgression of other apple species, except for M. sieversii, by interspecies hybridization was possible. There were 177 compounds in total belonging to 11 classes detected in 30 M. sieversii seedlings, including esters, alcohols, ketones, aldehydes, acids, benzene ramifications, terpenes, heterocycles, hydrocarbon derivates, acetals, and lactones. Among them, acetals and lactones were not detected in M. pumila cultivars, 90 compounds were unique to M. sieversii, and 7 components (1-butanol, ethyl butanoate, 1-hexanol, ethyl hexanoate, 3-octen-1-ol, ethyl octanoate, and damascenone) belonged to character impact odors. Thus, the potential of M. sieversii in "utilization conservation" is enormous as a rare germplasm on genetic improvement of M. pumila cultivars.
Sun, Shi-Hao; Chai, Guo-Bi; Li, Peng; Xie, Jian-Ping; Su, Yue
2017-10-13
Jujube extract is commonly used as a food additive and flavoring. The unique jujube aroma and the mild sweet aroma of the extract are critical factors that determine product quality and affect consumer acceptability. The aroma changes with changes in the extraction condition, which is typically dependent on the characteristics of volatile oils in the extract. Despite their importance, the volatile oils of jujube extract have received less attention compared with the soluble components. So, an appropriate qualitative and quantitative method for determination of the volatile oils is vitally important for quality control of the product. A method coupling steam distillation/drop-by-drop extraction with gas chromatography-mass spectrometry (S3DE/GC-MS) was developed to determine the volatile components of jujube extract. Steam distillation was coupled with solvent extraction; the resulting condensate containing volatile components from jujube extract was drop-by-drop extracted using 2 mL of methyl tertiary butyl ether. The solvent served two purposes. First, the solvent extracted the volatile components from the condensate. Second, the volatile components were pre-concentrated by drop-by-drop accumulation in the solvent. As a result, the extraction, separation, and concentration of analytes in the sample were simultaneously completed in one step. The main parameters affecting the S3DE procedure, such as the water steam bubbling rate, extraction solvent volume, sample weight and S3DE time, were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R 2 ≥ 0.9887) and good repeatability (RSDs ≤ 10.35%, n = 5) for 16 analytes in spiked standard analyte samples were achieved. With the S3DE/GC-MS method, seventy-six volatile compounds from jujube extract were identified and the content of 16 compounds was measured. The results were similar to those from simultaneous distillation extraction. The developed method was simple, fast, effective, sensitive, and provided an overall profile of the volatile components in jujube extract. Thus, this method can be used to determine the volatile components of extracts. Graphical abstract The diagram of steam distillation/drop-by-drop extraction device.
Welke, Juliane Elisa; Zanus, Mauro; Lazzarotto, Marcelo; Pulgati, Fernando Hepp; Zini, Cláudia Alcaraz
2014-12-01
The main changes in the volatile profile of base wines and their corresponding sparkling wines produced by traditional method were evaluated and investigated for the first time using headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection (GC×GC/TOFMS) and chemometric tools. Fisher ratios helped to find the 119 analytes that were responsible for the main differences between base and sparkling wines and principal component analysis explained 93.1% of the total variance related to the selected 78 compounds. It was also possible to observe five subclusters in base wines and four subclusters in sparkling wines samples through hierarchical cluster analysis, which seemed to have an organised distribution according to the regions where the wines came from. Twenty of the most important volatile compounds co-eluted with other components and separation of some of them was possible due to GC×GC/TOFMS performance. Copyright © 2014. Published by Elsevier Ltd.
Stashenko, Elena E; Jaramillo, Beatriz E; Martínez, Jairo René
2004-01-30
Hydrodistillation (HD), simultaneous distillation solvent extraction (SDE), microwave-assisted hydrodistillation (MWHD), and supercritical fluid (CO2) extraction (SFE) were employed to isolate volatile secondary metabolites from fresh leaves and stems of Colombian Lippia alba (Mill.) N.E. Brown. Kovàts indices, mass spectra or standard compounds were used to identify around 40 components in the various volatile fractions. Carvone (40-57%) was the most abundant component, followed by limonene (24-37%), bicyclosesquiphellandrene (5-22%), piperitenone (1-2%), piperitone (ca. 1.0%), and beta-bourbonene (0.6-1.5%), in the HD, SDE, MWHD, and SFE volatile fractions. Static headspace (S-HS), simultaneous purge and trap in solvent (CH2Cl2) (P&T), and headspace solid-phase microextraction (HS-SPME) were used to sample volatiles from fresh L. alba stems and leaves. The main components isolated from the headspace of the fresh plant material were limonene (27-77%), carvone (14-30%), piperitone (0.3-0.5%), piperitenone (ca. 0.4%), and beta-bourbonene (0.5-6.5%). The in vitro antioxidant activity of L. alba essential oil, obtained by hydrodistillation was evaluated by determination of hexanal, the main carbonyl compound released by linoleic acid subjected to peroxidation (1 mm Fe2+, 37 degrees C, 12 h), and by quantification of this acid as its methyl ester. Under the same conditions, L. alba HD-essential oil and Vitamin E exhibited similar antioxidant effects.
Qin, Yan; Pang, Yingming; Cheng, Zhihong
2016-11-01
The needle trap device (NTD) technique is a new microextraction method for sampling and preconcentration of volatile organic compounds (VOCs). Previous NTD studies predominantly focused on analysis of environmental volatile compounds in the gaseous and liquid phases. Little work has been done on its potential application in biological samples and no work has been reported on analysis of bioactive compounds in essential oils from herbal medicines. The main purpose of the present study is to develop a NTD sampling method for profiling VOCs in biological samples using herbal medicines as a case study. A combined method of NTD sample preparation and gas chromatography-mass spectrometry was developed for qualitative analysis of VOCs in Viola tianschanica. A 22-gauge stainless steel, triple-bed needle packed with Tenax, Carbopack X and Carboxen 1000 sorbents was used for analysis of VOCs in the herb. Furthermore, different parameters affecting the extraction efficiency and capacity were studied. The peak capacity obtained by NTDs was 104, more efficient than those of the static headspace (46) and hydrodistillation (93). This NTD method shows potential to trap a wide range of VOCs including the lower and higher volatile components, while the static headspace and hydrodistillation only detects lower volatile components, and semi-volatile and higher volatile components, respectively. The developed NTD sample preparation method is a more rapid, simpler, convenient, and sensitive extraction/desorption technique for analysis of VOCs in herbal medicines than the conventional methods such as static headspace and hydrodistillation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Jordán, María J; Quílez, María; Luna, María C; Bekhradi, Farzaneh; Sotomayor, José A; Sánchez-Gómez, Pedro; Gil, María I
2017-04-15
The main goal of the present study was to describe the volatile profile of three different basil genotypes (Genovese and Green and Purple Iranian), and the impact that water stress (75% and 50% field capacity) and storage time (up to 7days) have under mild refrigerated conditions. The chromatographic profile pointed to three different chemotypes: linalool/eugenol, neral/geranial, and estragol, for Genovese, Green, and Purple genotypes, respectively. Water stress depleted the volatile profile of these three landraces, due to a reduction in the absolute concentrations of some of the components related to fresh aroma (linalool, nerol, geraniol and eugenol). The stability of the basil volatile profile during storage varied depending on the water stress that had been applied. Concentration reductions of close to 50% were quantified for most of the components identified in the Purple genotype. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ando, H; Kurata, A; Kishimoto, N
2015-04-01
To evaluate the antimicrobial properties of the main Ginjo-flavour components of sake, volatile isoamyl acetate and isoamyl alcohol. Volatile isoamyl acetate and isoamyl alcohol both inhibited growth of the five yeast and 10 bacterial test strains. The minimum inhibitory dose and minimum bactericidal (fungicidal) dose of isoamyl acetate were higher than those of isoamyl alcohol. Escherichia coli and Acetobacter aceti were markedly sensitive to isoamyl acetate and isoamyl alcohol. In E. coli exposed to isoamyl acetate for 5 h, changes in expression were noted in proteins involved in sugar metabolism (MalE, MglB, TalB and PtsI), tricarboxylic acid cycle (AceA, Pfl and AcnB) and protein synthesis (EF-Tu, EF-G, and GlyS). Expression of acid and alcohol stress-response proteins was altered in E. coli exposed to isoamyl acetate. Esterase activity was detected in E. coli, suggesting that isoamyl acetate was hydrolyzed to acetic acid and isoamyl alcohol. Acetic acid and isoamyl alcohol damaged E. coli cell membranes and inactivated membrane proteins, impairing respiration. Volatile isoamyl acetate and isoamyl alcohol were effective in inactivating various micro-organisms, and antimicrobial mechanism of volatile isoamyl acetate against E. coli was clarified based on proteome analysis. To the best of our knowledge, this is the first report to examine the antimicrobial mechanism of volatile organic compound using proteome analysis combining two-dimensional difference gel electrophoresis with peptide mass fingerprinting. © 2015 The Society for Applied Microbiology.
Advances in fruit aroma volatile research.
El Hadi, Muna Ahmed Mohamed; Zhang, Feng-Jie; Wu, Fei-Fei; Zhou, Chun-Hua; Tao, Jun
2013-07-11
Fruits produce a range of volatile compounds that make up their characteristic aromas and contribute to their flavor. Fruit volatile compounds are mainly comprised of esters, alcohols, aldehydes, ketones, lactones, terpenoids and apocarotenoids. Many factors affect volatile composition, including the genetic makeup, degree of maturity, environmental conditions, postharvest handling and storage. There are several pathways involved in volatile biosynthesis starting from lipids, amino acids, terpenoids and carotenoids. Once the basic skeletons are produced via these pathways, the diversity of volatiles is achieved via additional modification reactions such as acylation, methylation, oxidation/reduction and cyclic ring closure. In this paper, we review the composition of fruit aroma, the characteristic aroma compounds of several representative fruits, the factors affecting aroma volatile, and the biosynthetic pathways of volatile aroma compounds. We anticipate that this review would provide some critical information for profound research on fruit aroma components and their manipulation during development and storage.
Stability Study of Algerian Nigella sativa Seeds Stored under Different Conditions
Ahamad Bustamam, Muhammad Safwan; Hadithon, Kamarul Arifin; Rukayadi, Yaya; Lajis, Nordin
2017-01-01
In a study to determine the stability of the main volatile constituents of Nigella sativa seeds stored under several conditions, eight storage conditions were established, based on the ecological abiotic effects of air, heat, and light. Six replicates each were prepared and analyzed with Headspace-Gas Chromatography-Mass Spectrometry (HS-GC-MS) for three time points at the initial (1st day (0)), 14th (1), and 28th (2) day of storage. A targeted multivariate analysis of Principal Component Analysis revealed that the stability of the main volatile constituents of the whole seeds was better than that of the ground seeds. Exposed seeds, whole or ground, were observed to experience higher decrement of the volatile composition. These ecofactors of air, heat, and light are suggested to be directly responsible for the loss of volatiles in N. sativa seeds, particularly of the ground seeds. PMID:28255502
Usami, Atsushi; Nakaya, Satoshi; Nakahashi, Hiroshi; Miyazawa, Mitsuo
2014-01-01
This study is focused on the volatile oils from the fruiting bodies of Pleurotus salmoneostramineus (PS) and P. sajor-caju (PSC), which was extracted by hydrodistillation (HD) and solvent-assisted flavor evaporation (SAFE) methods. The oils are analyzed by gas chromatography-mass spectrometry (GC-MS), GC-olfactometry (GC-O), and aroma extract dilution analysis (AEDA). A total of 31, 31, 45, and 15 components were identified in PS (HD and SAFE) and PSC (HD and SAFE), representing about 80.3%, 92.2%, 88.9%, and 83.0% of the oils, respectively. Regarding the aroma-active components, 13, 12, 13, and 5 components were identified in PS (HD and SAFE) and PSC (HD and SAFE), respectively, by the GC-O analyses. The results of the sniffing test, odor activity value (OAV) and flavor dilution (FD) factor indicate that 1-octen-3-ol and 3-octanone are the main aroma-active components of PS oils. On the other hands, methional and 1-octen-3-ol were estimated as the main aroma-active components of PSC oils.
Volatile components of grape pomaces from different cultivars of Sicilian Vitis vinifera L.
Ruberto, Giuseppe; Renda, Agatino; Amico, Vincenzo; Tringali, Corrado
2008-01-01
The volatile components of grape pomace coming from the processing of some of the most important varieties of grape (Vitis vinifera L.) cultivated in Sicily, namely Nero d'Avola, Nerello Mascalese, Frappato and Cabernet Sauvignon, have been determined by gas-chromatography (GC) and gas-chromatography-mass spectrometry (GC-MS). According to the winemaking procedure that entails the removal of stalks before fermentation, two kinds of grape pomace are obtained. The first consists of skins, pulp residues and seeds, the proper grape pomace, which is partially used for grappa, a typical Italian spirit, and alcohol production, the second consists almost exclusively of stalks. On the whole, 38 components have been characterized in the samples of grape pomaces, with Frappato cv. showing the richest composition; instead, 88 components have been detected in the stalks of Frappato, Nero d'Avola, Nerello Mascalese and Cabernet Sauvignon varieties. In order to make a comparison between the grape varieties easier, the volatile components detected in the two sets of samples (grape pomaces and stalks) have been grouped in different classes. Significant differences among varieties have been detected and statistical treatment of data is also reported. This study is part of a wider project aimed at the possible exploitation of the main agro-industrial by-products. At the same time it is one of the first reports on the volatile components of this waste material.
Acevedo, Francisca; Torres, Paulina; Oomah, B Dave; de Alencar, Severino Matias; Massarioli, Adna Prado; Martín-Venegas, Raquel; Albarral-Ávila, Vicenta; Burgos-Díaz, César; Ferrer, Ruth; Rubilar, Mónica
2017-04-01
Ulmo honey originating from Eucryphia cordifolia tree, known locally in the Araucania region as the Ulmo tree is a natural product with valuable nutritional and medicinal qualities. It has been used in the Mapuche culture to treat infections. This study aimed to identify the volatile and non-volatile/semi-volatile compounds of Ulmo honey and elucidate its in vitro biological properties by evaluating its antioxidant, antibacterial, antiproliferative and hemolytic properties and cytotoxicity in Caco-2 cells. Headspace volatiles of Ulmo honey were isolated by solid-phase microextraction (SPME); non-volatiles/semi-volatiles were obtained by removing all saccharides with acidified water and the compounds were identified by GC/MS analysis. Ulmo honey volatiles consisted of 50 compounds predominated by 20 flavor components. Two of the volatile compounds, lyrame and anethol have never been reported before as honey compounds. The non-volatile/semi-volatile components of Ulmo honey comprised 27 compounds including 13 benzene derivatives accounting 75% of the total peak area. Ulmo honey exhibited weak antioxidant activity but strong antibacterial activity particularly against gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), the main strain involved in wounds and skin infections. At concentrations >0.5%, Ulmo honey reduced Caco-2 cell viability, released lactate dehydrogenase (LDH) and increased reactive oxygen species (ROS) production in a dose dependent manner in the presence of foetal bovine serum (FBS). The wide array of volatile and non-volatile/semi-volatile constituents of Ulmo honey rich in benzene derivatives may partly account for its strong antibacterial and antiproliferative properties important for its therapeutic use. Our results indicate that Ulmo honey can potentially inhibit cancer growth at least partly by modulating oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of volatile metabolites in biological fluids as indicators of prodromal disease condition
NASA Technical Reports Server (NTRS)
Zlatkis, A.
1982-01-01
The volatile profile cannot be defined as a single class of substances, rather it is a broad spectrum of materials of different polarities characterized by having a boiling-point in the low to medium range (up to approximately 300 C) and the fact that the compounds are suitable for gas chromatography without derivatization. The organic volatile profiles are very complex mixtures of metabolic byproducts, intermediates, and terminal products of enzymatic degradations composed mainly of alcohols, ketones, aldehydes, pyrazines, sulfides, isothiocyanates, pyrroles, and furans. The concentration of organic volatiles in biological fluids covers a wide range with many important components present at trace levels. The complexity of the organic volatile fraction requires the use of capillary columns for their separation.
Valero, E; Sanz, J; Martínez-Castro, I
2001-06-01
Direct thermal desorption (DTD) has been used as a technique for extracting volatile components of cheese as a preliminary step to their gas chromatographic (GC) analysis. In this study, it is applied to different cheese varieties: Camembert, blue, Chaumes, and La Serena. Volatiles are also extracted using other techniques such as simultaneous distillation-extraction and dynamic headspace. Separation and identification of the cheese components are carried out by GC-mass spectrometry. Approximately 100 compounds are detected in the examined cheeses. The described results show that DTD is fast, simple, and easy to automate; requires only a small amount of sample (approximately 50 mg); and affords quantitative information about the main groups of compounds present in cheeses.
Deng, Jie; Yu, Hong-Jun; Li, Yun-Yun; Zhang, Xiao-Meng; Liu, Peng; Li, Qiang; Jiang, Wei-Jie
2016-01-01
Nitrogen (N) is an important macronutrient for plant growth and development, but the regulatory mechanism of volatile compounds in response to N deficiency is not well understood, especially in cucumber, which consumes excessive N during growth. In this study, the major volatile compounds from cucumber leaves subjected to N deficiency were analyzed by GC-MS. A total of 24 volatile components were identified including 15 aldehydes, two ketones, two alkenes, and five other volatile compounds in 9930 leaves. Principal component analysis using volatile compounds from cucumber leaves provided good separation between N-sufficient and N-deficient treatments. The main volatiles in cucumber leaves were found to be C6 and C9 aldehydes, especially (E)-2-hexanal and (E,Z)-2,6-nonadienal. (E)-2-hexanal belonged to the C6 aldehyde and was the most abundant compound, whereas (E,Z)-2,6-nonadienal was the chief component of C9 aldehydes. During N-deficient treatment, short-chain volatile content was significantly improved at 5 day, other volatiles displayed significant reduction or no significantly changes in all sampling points. Improvement of short-chain volatiles was confirmed in the six other inbred lines at 5 day after N-deficient treatments. The expression analysis of 12 cucumber LOX genes and two HPL genes revealed that CsLOX19, CsLOX20, and CsLOX22 had common up-regulated expression patterns in response to N-deficient stress in most inbred lines; meanwhile, most sample points of CsHPL1 also had significant up-regulated expression patterns. This research focused on the relationship between volatiles in cucumber and different nitrogen environments to provide valuable insight into the effect of cultivation and management of the quality of cucumber and contributes to further research on volatile metabolism in cucumber. PMID:27827841
An Efficient Extraction Method for Fragrant Volatiles from Jasminum sambac (L.) Ait.
Ye, Qiuping; Jin, Xinyi; Zhu, Xinliang; Lin, Tongxiang; Hao, Zhilong; Yang, Qian
2015-01-01
The sweet smell of aroma of Jasminum sambac (L.) Ait. is releasing while the flowers are blooming. Although components of volatile oil have been extensively studied, there are problematic issues, such as low efficiency of yield, flavour distortion. Here, the subcritical fluid extraction (SFE) was performed to extract fragrant volatiles from activated carbon that had absorbed the aroma of jasmine flowers. This novel method could effectively obtain main aromatic compounds with quality significantly better than solvent extraction (SE). Based on the analysis data with response surface methodology (RSM), we optimized the extraction conditions which consisted of a temperature of 44°C, a solvent-to-material ratio of 3.5:1, and an extraction time of 53 min. Under these conditions, the extraction yield was 4.91%. Furthermore, the key jasmine essence oil components, benzyl acetate and linalool, increase 7 fold and 2 fold respectively which lead to strong typical smell of the jasmine oil. The new method can reduce spicy components which lead to the essential oils smelling sweeter. Thus, the quality of the jasmine essence oil was dramatically improved and yields based on the key component increased dramatically. Our results provide a new effective technique for extracting fragrant volatiles from jasmine flowers.
Kelebek, Hasim; Selli, Serkan
2011-08-15
Orange flavour is the results of a natural combination of volatile compounds in a well-balanced system including sugars, acids and phenolic compounds. This paper reports the results of the first determination of aroma, organic acids, sugars, and phenolic components in Dortyol yerli orange juices. A total of 58 volatile components, including esters (nine), terpenes (19), terpenols (13), aldehydes (two), ketones (three), alcohols (four) and acids (eight) were identified and quantified in Dortyol yerli orange juice by GC-FID and GC-MS. Organic acids, sugars and phenolic compositions were also determined by HPLC methods. The major organic acid and sugar found were citric acid and sucrose, respectively. With regard to phenolics, 14 compounds were identified and quantified in the orange juice. Terpenes and terpenols were found as the main types of volatile components in Dortyol yerli orange juice. In terms of aroma contribution to orange juice, 12 compounds were prominent based on the odour activity values (OAVs). The highest OAV values were recorded for ethyl butanoate, nootkatone, linalool and DL-limonene. When we compare the obtained results of cv. Dortyol orange juice with the other orange juice varieties, the composition of Dortyol orange juice was similar to Valencia and Navel orange juices. Copyright © 2011 Society of Chemical Industry.
Wianowska, Dorota
2014-01-01
The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.
HS-GC/MS volatile profile of different varieties of garlic and their behavior under heating.
Molina-Calle, María; Priego-Capote, Feliciano; de Castro, María D Luque
2016-05-01
Garlic is one of the most used seasonings in the world whose beneficial health effects, mainly ascribed to organosulfur compounds, are shared with the rest of the Allium family. The fact that many of these compounds are volatile makes the evaluation of the volatile profile of garlic interesting. For this purpose, three garlic varieties-White, Purple, and Chinese-cultivated in the South of Spain were analyzed by a method based on a headspace (HS) device coupled to a gas chromatograph and mass detector (HS-GC/MS). The main temperatures in the HS were optimized to achieve the highest concentration of volatiles. A total number of 45 volatiles were tentatively identified (among them 17 were identified for the first time in garlic); then, all were classified, also for the first time, and their relative concentration in three garlic varieties was used to evaluate differences among them and to study their profiles according to the heating time. Chinese garlic was found to be the richest variety in sulfur volatiles, while the three varieties presented a similar trend under preset heating times allowing differentiation between varieties and heating time using principal component analysis. Graphical Abstract HS-GC/MS analysis of the volatile profile of garlic.
Hu, Zenghui; Wang, Chunling; Shen, Hong; Zhang, Kezhong; Leng, Pingsheng
2017-12-01
This study aims to investigate the antioxidant effect of aromatic volatiles of three common aromatic plants, Lavandula dentata, Mentha spicata, and M. piperita. In this study, kunming mice subjected to low oxygen condition were treated with the volatiles emitted from these aromatic plants through inhalation administration. Then the blood cell counts, and the activities and gene expressions of antioxidant enzymes in different tissues were tested. The results showed that low oxygen increased the counts of red blood cells, white blood cells, and blood platelets of mice, and aromatic volatiles decreased their counts. Exposure to aromatic volatiles resulted in decreases in the malonaldehyde contents, and increases in the activities and gene expressions of superoxide dismutase, glutathione peroxidase, and catalase in different tissues under low oxygen. In addition, as the main component of aromatic volatiles, eucalyptol was the potential source that imparted positive antioxidant effect.
Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro
2013-01-01
We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408
Xu, Liang; Liu, Haiping; Ma, Yucui; Wu, Cui; Li, Ruiqi; Chao, Zhimao
2018-06-13
The differences of volatile components in male (MFB) and female flower buds (FFB) of Populus × tomentosa were analysed and compared by HS-SPME with GC-MS for the first time. A total of 34 compounds were identified. Two clusters were clearly divided into male and female by hierarchical clustering analysis. Both the male and female flower buds showed methyl salicylate (22.83 and 24.09%, respectively) and 2-hydroxy-benzaldehyde (10.05 and 12.41%, respectively) as the main volatile constituents. The content of 2-cyclohexen-1-one, benzyl benzoate, and methyl benzoate in FFB was remarkably higher than in MFB. In contrast, the content of ethyl benzoate in MFB was greater than that in FFB. The phenomena showed the characteristic differences between MFB and FFB of P. × tomentosa, which enriched the basic studies on dioecious plant.
Hu, Mingli; Bai, Mei; Ye, Wei; Wang, Yaling; Wu, Hong
2018-06-01
Dried flower buds of Magnolia biondii Pamp. are the main ingredient in "Xin-yi" in China, and the volatile oils of M. biondii flower buds are the principal medicinal component. Gas chromatographymass spectrometry (GC-MS) and microscopic techniques were employed to detect the volatile yields of M. biondii flowers at various growth stages. The volatile oil yields of M. biondii flowers differed significantly at different growth stages and were closely related to flower dry weight, oil cell density and degree of oil accumulation. In February 2016, flower buds had the highest dry weight, the maximum percentage of oil cells at the oil saturation stage and the highest density of oil cells, which coincided with the highest oil yield. In March 2016, flower buds had a lower dry weight, a higher percentage of oil cells at the oil-degrading stage and the lowest oil cell density, resulting in decreased oil yields. The total amounts of the major medicinal components in the M. biondii flower also showed regular changes at different growth stages. In January and February of 2016, M. biondii flowers had a higher dry weight, volatile oil yield and total content of medicinal ingredients, which was the best time for harvesting high-quality medicinal components. Our study reveals that volatile oil content and chemical composition are closely related to the growth stage of M. biondii flower buds. The results provide a scientific morphology and composition index for evaluating the medicinal value and harvesting of high-quality M. biondii medicinal herbs.
Zhang, Zhuo-Min; Wu, Wen-Wei; Li, Gong-Ke
2008-09-01
Mushrooms are very popular in the market for their nutritional and medicinal use. Mushroom volatiles are not only an important factor in the flavor, but also contain many antioxidant compounds. Antioxidant activity is a very important property for disease prevention. The volatile compositional characteristics of straw mushrooms (Volvariella volvacea [Bull. ex Fr.] Sing.) and oyster mushrooms (Pleurotus ostreatus [Jacq. ex Fr.] Kummer) during maturity and the mushroom antioxidant activity related to the non-volatiles and volatiles are studied by a chromatographic method in combination with a spectrophotometric method. The volatile compounds of straw and oyster mushrooms are sampled and identified by a combination sampling method, including headspace solid phase microextraction and steam distillation, followed by gas chromatography-mass spectrometry detection. Among all the volatile compounds identified, 1-octen-3-ol and 3-octanone are the two main compounds with the highest amounts in the volatile compositions of straw and oyster mushrooms. During maturity time of the straw mushrooms, the unsaturated 1-octen-3-ol peak area is reduced, whereas the saturated 3-octanone peak area is increased. However, during normal maturity time of oyster mushrooms, the peak areas of 1-octen-3-ol and 3-octanone remain at the same level. 1-Octen-3-ol has a different antioxidant activity from 3-octanone. Combining the results of antioxidant experiments of water extract and main volatile components by the use of a phosphomolybdenum spectrophotometric method, the conclusion is drawn that oyster mushrooms might possess stronger antioxidant activities than straw mushrooms.
Evaluation of the volatile profile of Tuber liyuanum by HS-SPME with GC-MS.
Liu, Changjiao; Li, Yu
2017-04-01
The volatile components of Tuber liyuanum were determined by HS-SPME with GC-MS for the first time. The effects of different fibre coating, extraction time, extraction temperature and sample amount were studied to get optimal extraction conditions. The optimal conditions were SPME fibre of Carboxen/PDMS, extraction time of 40 min, extraction temperature of 80 °C, sample amount of 2 g. Under these conditions 57 compounds in volatile of T. liyuanum were detected with a resemblance percentage above 80%. Aldehydes and aromatics were the main chemical families identified. The contribution of 3-Octanone(11.67%), phenylethyl alcohol (10.60%), isopentana (9.29%) and methylbutana (8.06%) for the total volatile profile were more significant in T. liyuanum than other compounds.
Hachicha Hbaieb, Rim; Kotti, Faten; Gargouri, Mohamed; Msallem, Monji; Vichi, Stefania
2016-07-15
The distinctive aroma of virgin olive oil is mainly attributed to its volatile profile including components responsible for positive attributes and others for sensory defects resulting from chemical oxidation and exogenous enzymes. For this reason, the evolution of volatile compounds from Chétoui and Arbequina virgin olive oils during olive ripening and storage (at 4 and 25 °C during 4 weeks) was investigated. The profile of volatile phenols during olive storage was also studied. Quantitative differences in the volatile compounds during olive storage at 4 and 25 °C according to olive cultivar was determined. Concerning the volatile phenols, the Arbequina olives were the most affected by high storage temperature, as the formation of these compounds, especially 4-ethyl and 4-vinyl derivatives of phenol and guaiacol were more noticeable in Arbequina oils extracted from stored fruits at 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Study on volatile components from flowers of Gymnema sylvestre].
Qiu, Qin; Zhen, Han-Shen; Huang, Pei-Qian
2013-04-01
To analyze the volatile components from flowers of Gymnema sylvestre. Volatile components of flowers of Gymnema sylvestre were extracted by water vapor distilling, and the components were separated and identified by GC-MS. 55 components were separated and 33 components were identified, accounting for 88.73% of all quantity. The principal volatile components are Phytol, Pentacosane, 10-Heneicosene (c, t), 3-Eicosene, (E) -and 2-Methyl-Z-2-docosane. The research can pro-vide scientific basis for chemical component research of flowers of Gymnema sylvestre.
Cao, Gang; Cai, Hao; Cong, Xiaodong; Liu, Xiao; Ma, Xiaoqing; Lou, Yajing; Qin, Kunming; Cai, Baochang
2012-08-21
The sulfur-fumigation process can induce changes in the contents of volatile compounds and the chemical transformation of herbal medicines. Although literature has reported many methods for analyzing volatile target compounds from herbal medicine, all of them are largely limited to target compounds and sun-dried samples. This study provides a comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOF/MS) method based on a chemical profiling approach to identify non-target and target volatile compounds from sun-dried and sulfur-fumigated herbal medicine. Using Chrysanthemum morifolium as a model herbal medicine, the combined power of this approach is illustrated by the identification of 209 and 111 volatile compounds with match quality >80% from sun-dried and sulfur-fumigated Chrysanthemum morifolium, respectively. The study has also shown that sulfur-fumigated samples showed a significant loss of the main active compounds and a more destructive fingerprint profile compared to the sun-dried ones. 50 volatile compounds were lost in the sulfur-fumigated Chrysanthemum morifolium sample. The approach and methodology reported in this paper would be useful for identifying complicated target and non-target components from various complex mixtures such as herbal medicine and its preparations, biological and environmental samples. Furthermore, it can be applied for the intrinsic quality control of herbal medicine and its preparations.
Erping, Li; Haoyun, Chen; Yanyang, Shang; Jun, Pan; Qing, Hu
2017-11-01
In this paper, the pyrolysis characteristics of six typical components in municipal solid waste (MSW) were investigated through a TG-FTIR combined technique and it was concluded that the main pyrolysis process of the biomass components (including food residues, sawdust and paper) occurred at 150-600°C. The main volatiles were multi-component gas including H 2 O, CO 2 , and CO. The main pyrolysis temperatures of three artificial products (PP, PVC and leather) was ranged from 200to 500°C. The wavelength of small molecule gases (CH 4 , CO 2 and CO) and the the chemical bonds (CO and CC) were observed in the infrared spectrum Based on the pyrolysis temperature interval and volatile constituent, a new "double-solution" process of pyrolysis and oxygen-enrichment decomposition MSW was designed. To achieve this process, a double-solution project was built for the direct treatment of MSW (10t/d). The complete setup of equipment and analysis of the byproducts has been reported in this paper to indicate the performance of this process. Energy balance and economic benefits were analysed for the process supporting. It was successfully demonstrated that the double-solution process was the environmentally friendly alternative method for MSW treatment in Chinese rural areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Tahir, Haroon Elrasheid
2017-10-01
The present study was undertaken to assess accelerating aging effects of high pressure, ultrasound and manosonication on the aromatic profile and sensorial attributes of aged mulberry wines (AMW). A total of 166 volatile compounds were found amongst the AMW. The outcomes of the investigation were presented by means of geometric mean (GM), cluster analysis (CA), principal component analysis (PCA), partial least squares regressions (PLSR) and principal component regression (PCR). GM highlighted 24 organoleptic attributes responsible for the sensorial profile of the AMW. Moreover, CA revealed that the volatile composition of the non-thermal accelerated aged wines differs from that of the conventional aged wines. Besides, PCA discriminated the AMW on the basis of their main sensorial characteristics. Furthermore, PLSR identified 75 aroma compounds which were mainly responsible for the olfactory notes of the AMW. Finally, the overall quality of the AMW was noted to be better predicted by PLSR than PCR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Small-Maturity Asymptotics for the At-The-Money Implied Volatility Slope in Lévy Models
Gerhold, Stefan; Gülüm, I. Cetin; Pinter, Arpad
2016-01-01
ABSTRACT We consider the at-the-money (ATM) strike derivative of implied volatility as the maturity tends to zero. Our main results quantify the behaviour of the slope for infinite activity exponential Lévy models including a Brownian component. As auxiliary results, we obtain asymptotic expansions of short maturity ATM digital call options, using Mellin transform asymptotics. Finally, we discuss when the ATM slope is consistent with the steepness of the smile wings, as given by Lee’s moment formula. PMID:27660537
Qin, Kunming; Zheng, Lijuan; Cai, Hao; Cao, Gang; Lou, Yajing; Lu, Tulin; Shu, Yachun; Zhou, Wei; Cai, Baochang
2013-01-01
Pericarpium Citri Reticulatae (Chenpi in Chinese) has been widely used as an herbal medicine in Korea, China, and Japan. Chenpi extracts are used to treat indigestion and inflammatory syndromes of the respiratory tract such as bronchitis and asthma. This thesis will analyze chemical compositions of Chenpi volatile oil, which was performed by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HR-TOFMS). One hundred and sixty-seven components were tentatively identified, and terpene compounds are the main components of Chenpi volatile oil, a significant larger number than in previous studies. The majority of the eluted compounds, which were identified, were well separated as a result of high-resolution capability of the GC × GC method, which significantly reduces, the coelution. β -Elemene is tentatively qualified by means of GC × GC in tandem with high-resolution TOFMS detection, which plays an important role in enhancing the effects of many anticancer drugs and in reducing the side effects of chemotherapy. This study suggests that GC × GC-HR-TOFMS is suitable for routine characterization of chemical composition of volatile oil in herbal medicines.
Nishanbaev, Sabir; Bobakulov, Khayrulla; Okhundedaev, Bakhodir; Sasmakov, Sobirdjan; Yusupova, Elvira; Azimova, Shakhnoz; Abdullaev, Nasrulla
2018-05-17
The volatile compounds of hexane, benzene extracts and essential oils (EOs) isolated by steam- and hydrodistillation methods from aerial part of Alhagi canescens were studied by GC-MS analysis. Seventeen components were found in the hexane and benzene extracts, among them palmitic acid (25.2 and 22.1%), neophytadiene (7.3 and 22.3%), cis-chrysanthenyl acetate (11.0% in benzene), cis-geranyl acetate (7.8% in benzene) were major components. The first time fifty-six volatile compounds were identified in the EOs and camphor (5.9 and 27.8%), bicyclogermacrene (13.4 and 4.0%), α-copaene (6.1 and 2.6%), (-)-germacrene D (10.8 and 3.6%) and eucalyptol (3.7 and 8.1%) were the main components. The benzene, hexane extracts and EOs were screened for their antibacterial and antifungal activity. The benzene extract possess the highest antibacterial activity against Bacillus subtilis (12.12 ± 0.20) and Staphylococcus aureus (10.04 ± 0.10).
Fernandes, Yanne S; Trindade, Luma M P; Rezende, Maria Helena; Paula, José R; Gonçalves, Letícia A
2016-03-01
Trichogonia cinerea is endemic to Brazil and occurs in areas of cerrado and campo rupestre. In this study, we characterized the glandular and non-glandular trichomes on the aerial parts of this species, determined the principal events in the development of the former, and identified the main constituents of the volatile oil produced in its aerial organs. Fully expanded leaves, internodes, florets, involucral bracts, and stem apices were used for the characterization of trichomes. Leaves, internodes, florets, and involucral bracts were examined by light microscopy and scanning electron microscopy, whereas stem apices were examined only by light microscopy. Branches in the reproductive phase were used for the extraction and determination of the composition of the volatile oil. The species has three types of glandular trichomes, biseriate vesicular, biseriate pedunculate, and multicellular uniseriate, which secrete volatile oils and phenolic compounds. The major components identified in the volatile oil were 3,5-muuroladiene (39.56%) and butylated hydroxytoluene (13.07%).
In-situ continuous water analyzing module
Thompson, Cyril V.; Wise, Marcus B.
1998-01-01
An in-situ continuous liquid analyzing system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectometer and the volatile components are continuously analyzed by the mass spectrometer.
Volatility of organic aerosol and its components in the Megacity of Paris
NASA Astrophysics Data System (ADS)
Paciga, A.; Karnezi, E.; Kostenidou, E.; Hildebrandt, L.; Psichoudaki, M.; Engelhart, G. J.; Lee, B.-H.; Crippa, M.; Prévôt, A. S. H.; Baltensperger, U.; Pandis, S. N.
2015-08-01
Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 μg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the evolution of atmospheric OA.
PRODUCTION AND LOSS OF DISSOLVED GASEOUS MERCURY IN COASTAL SEAWATER (R824778)
The formation of dissolved gaseous mercury (DGM, mainly
composed of elemental mercury, Hg0) in the surface
ocean
and its subsequent removal through volatilization is an
important component of the global mercury (Hg) cycle.
We studied DGM production an...
Analysis of chemical constituents in Cistanche species.
Jiang, Yong; Tu, Peng-Fei
2009-03-13
Species of the genus of Cistanche (Rou Cong Rong in Chinese) are perennial parasite herbs, and are mainly distributed in arid lands and warm deserts. As a superior tonic for the treatment of kidney deficiency, impotence, female infertility, morbid leucorrhea, profuse metrorrhagia and senile constipation, Cistanche herbs earned the honor of "Ginseng of the desert". Recently, there has been increasing scientific attention on Herba Cistanche for its remarkable bioactivities including antioxidation, neuroprotection, and anti-aging. The chemical constituents of Cistanche plants mainly include volatile oils and non-volatile phenylethanoid glycosides (PhGs), iridoids, lignans, alditols, oligosaccharides and polysaccharides. Pharmacological studies show that PhGs are the main active components for curing kidney deficiency, antioxidation and neuroprotection; galactitol and oligosaccharides are the representatives for the treatment of senile constipation, while polysaccharides are responsible for improving body immunity. In this paper, the advances on the chemical constituents of Cistanche plants and their corresponding analyses are reviewed.
Rapid Detection of Volatile Oil in Mentha haplocalyx by Near-Infrared Spectroscopy and Chemometrics.
Yan, Hui; Guo, Cheng; Shao, Yang; Ouyang, Zhen
2017-01-01
Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . The effects of data pre-processing methods on the accuracy of the PLSR calibration models were investigated. The performance of the final model was evaluated according to the correlation coefficient ( R ) and root mean square error of prediction (RMSEP). For PLSR model, the best preprocessing method combination was first-order derivative, standard normal variate transformation (SNV), and mean centering, which had of 0.8805, of 0.8719, RMSEC of 0.091, and RMSEP of 0.097, respectively. The wave number variables linking to volatile oil are from 5500 to 4000 cm-1 by analyzing the loading weights and variable importance in projection (VIP) scores. For SVM model, six LVs (less than seven LVs in PLSR model) were adopted in model, and the result was better than PLSR model. The and were 0.9232 and 0.9202, respectively, with RMSEC and RMSEP of 0.084 and 0.082, respectively, which indicated that the predicted values were accurate and reliable. This work demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in M. haplocalyx . The quality of medicine directly links to clinical efficacy, thus, it is important to control the quality of Mentha haplocalyx . Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . For SVM model, 6 LVs (less than 7 LVs in PLSR model) were adopted in model, and the result was better than PLSR model. It demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in Mentha haplocalyx . Abbreviations used: 1 st der: First-order derivative; 2 nd der: Second-order derivative; LOO: Leave-one-out; LVs: Latent variables; MC: Mean centering, NIR: Near-infrared; NIRS: Near infrared spectroscopy; PCR: Principal component regression, PLSR: Partial least squares regression; RBF: Radial basis function; RMSEC: Root mean square error of cross validation, RMSEC: Root mean square error of calibration; RMSEP: Root mean square error of prediction; SNV: Standard normal variate transformation; SVM: Support vector machine; VIP: Variable Importance in projection.
Liu, Zhibin; Wang, Zhiyao; Lv, Xucong; Zhu, Xiaoping; Chen, Liling; Ni, Li
2018-02-01
Hong Qu, which mainly contains Monascus sp. and other microorganisms, as well as numerous microbial metabolites, is used as the fermentation starter of Hong Qu glutinous rice wine, a traditional alcoholic beverage. Two widely-used types of Hong Qu, namely Wuyi Qu (WYQ) and Gutian Qu (GTQ), were thoroughly compared for their fermentation properties, volatile profiles, and microbiota structures in this study. Significantly higher color value, glucoamylase and α-amylase activities were discovered in WYQ. And substantial variation in volatile components and microbial communities were also observed between them. It was identified that bacterial genus Burkholderia dominated GTQ (71.62%) and Bacillus dominated WYQ (44.73%), while Monascus purpureus was the most abundant fungal species in both types of starters (76.99%). In addition, 213 bacterial genera and 150 fungal species with low-abundance were also detected. Since the Linear Discriminant Analysis Effect Size algorithm, 14 genus-level bacterial taxa and 10 species-level fungal taxa could be utilized to distinguish these two types of starters. Moreover, the potential correlation of the volatile components and microbiota within WYQ and GTQ were further analyzed, by utilizing Partial Least Squares Discriminant Analysis. Ultimately, this study provides detailed insight into the volatile profiles and microbial communities presented in Hong Qu. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anfora, Gianfranco; Vitagliano, Silvia; Larsson, Mattias C; Witzgall, Peter; Tasin, Marco; Germinara, Giacinto S; De Cristofaro, Antonio
2014-04-01
Phthorimaea operculella is a key pest of potato. The authors characterised the P. operculella olfactory system, selected the most bioactive host plant volatiles and evaluated their potential application in pest management. The electrophysiological responses of olfactory receptor neurons (ORNs) housed in long sensilla trichodea of P. operculella to plant volatiles and the two main sex pheromone components were evaluated by the single-cell recording (SCR) technique. The four most SCR-active volatiles were tested in a laboratory oviposition bioassay and under storage warehouse conditions. The sensitivity of sensilla trichodea to short-chained aldehydes and alcohols and the existence of ORNs tuned to pheromones in females were characterised. Male recordings revealed at least two types of ORN, each of which typically responded to one of the two pheromone components. Hexanal, octanal, nonanal and 1-octen-3-ol significantly disrupted the egg-laying behaviour in a dose-dependent manner. Octanal reduced the P. operculella infestation rate when used under storage conditions. This work provides new information on the perception of plant volatiles and sex pheromones by P. operculella. Laboratory and warehouse experiments show that the use of hexanal, octanal, nonanal and 1-octen-3-ol as host recognition disruptants and/or oviposition deterrents for P. operculella control appears to be a promising strategy. © 2013 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Volatility of organic aerosol and its components in the megacity of Paris
NASA Astrophysics Data System (ADS)
Paciga, Andrea; Karnezi, Eleni; Kostenidou, Evangelia; Hildebrandt, Lea; Psichoudaki, Magda; Engelhart, Gabriella J.; Lee, Byong-Hyoek; Crippa, Monica; Prévôt, André S. H.; Baltensperger, Urs; Pandis, Spyros N.
2016-02-01
Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 µg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs with effective saturation concentrations C* of 10-3-0.1 µg m-3 and ELVOCs C* less or equal than 10-4 µg m-3, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low-volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* in the 1-100 µg m-3 range) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the bulk average O : C ratios and volatility distributions of the various factors, our results are placed into the two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components.
In-situ continuous water monitoring system
Thompson, Cyril V.; Wise, Marcus B.
1998-01-01
An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.
In-situ continuous water monitoring system
Thompson, C.V.; Wise, M.B.
1998-03-31
An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.
Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H
2007-03-01
Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.
System for loading executable code into volatile memory in a downhole tool
Hall, David R.; Bartholomew, David B.; Johnson, Monte L.
2007-09-25
A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.
Chen, Qinqin; Song, Jianxin; Bi, Jinfeng; Meng, Xianjun; Wu, Xinye
2018-03-01
Volatile profile of ten different varieties of fresh jujubes was characterized by HS-SPME/GC-MS (headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry) and E-nose (electronic nose). GC-MS results showed that a total of 51 aroma compounds were identified in jujubes, hexanoic acid, hexanal, (E)-2-hexenal, (Z)-2-heptenal, benzaldehyde and (E)-2-nonenal were the main aroma components with contributions that over 70%. Differentiation of jujube varieties was conducted by cluster analysis of GC-MS data and principal component analysis & linear discriminant analysis of E-nose data. Both results showed that jujubes could be mainly divided into two groups: group A (JZ, PDDZ, JSXZ and LWZZ) and group B (BZ, YZ, MZ, XZ and DZ). There were significant differences in contents of alcohols, acids and aromatic compounds between group A and B. GC-MS coupled with E-nose could be a fast and accurate method to identify the general flavor difference in different varieties of jujubes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tu, Hongtao; Qin, Yuchuan
2017-06-01
Y-tube olfactometer and net cages experiments were used to investigate the repellent effects of different celery varieties in biotype Q of sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), on cucumber, Cucumis sativus L. (Cucurbitaceae). Y-tube olfactometer tests showed that whiteflies have strong repellent behavior to different celery varieties. Intercropping different celery varieties with cucumbers had significant repellent effects and oviposition deterrent effects in whiteflies. Results obtained demonstrated that the Western Europe celery varieties, Juventus and Ventura, and the Chinese celery variety, Jinnan, had good repellent efficacy against the whitefly. D-Limonene, β-myrcene, and (E)-β-ocimene might be the main active components in celery that affected the selection behavior of B. tabaci. In Western Europe celery varieties, D-limonene was the main volatile component for the repellent effects in B. tabaci; however, the two Chinese celery varieties that showed repellent effects had relatively higher volatilization quantities of β-myrcene than of D-limonene. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Miluch, C E; Dosdall, L M; Evenden, M L
2014-12-01
Optimization of male moth trapping rates in sex pheromone-baited traps plays a key role in managing Plutella xylostella (L.). We investigated various ways to increase the attractiveness of pheromone-baited traps to P. xylostella in canola agroecosystems in AB, Canada. Factors tested included pheromone blend and dose, addition of a green leaf volatile to the pheromone at different times during the season, lure type, trap color, and height. The industry standard dose of 100 μg of pheromone (four-component blend) per lure (ConTech Enterprises Inc., Delta, British Columbia [BC], Canada) captured the most moths in the two lure types tested. Traps baited with pheromone released from gray rubber septa captured more males than those baited with red rubber septa. Traps baited with lures in which Z11-16: Ac is the main component attracted significantly more moths than those in which Z11-16: Ald is the main component. The addition of the green leaf volatile, (Z)-3-hexenyl acetate, to pheromone at a range of doses, did not increase moth capture at any point during the canola growing season. Unpainted white traps captured significantly more male moths than pheromone-baited traps that were painted yellow. Trap height had no significant effect on moth capture. Recommendations for monitoring P. xylostella in canola agroecosystems of western Canada include using a pheromone blend with Z11-16: Ac as the main component released from gray rubber septa at a dose of 100 μg. © 2014 Entomological Society of America.
Soltani, M; Sahingil, D; Gokce, Y; Hayaloglu, A A
2016-10-01
The effect of using various combinations of Rhizomucor miehei protease and camel chymosin (100:0, 75:25, 50:50, 25:75, and 0:100, respectively) on volatile composition and sensory scores in Iranian ultrafiltered white cheese was studied during 90d of ripening. A solid-phase microextraction-gas chromatography-mass spectrometric method was used for determining the volatile compounds of the cheeses. Forty compounds including esters (12), acids (6), ketones (9), alcohols (3), and miscellaneous compounds (10) were identified. The main classes of volatile components in the cheeses are esters, miscellaneous compounds, and ketones. The type and concentration of the coagulants influenced both volatile composition and sensory scores of the cheeses. Principal component analysis separated the cheeses based on the use of 2 coagulants in various combinations and ripening time. The cheeses produced using higher concentrations of R. miehei were separately located on the plot compared with the cheeses produced using higher concentrations of camel chymosin. Sensory evaluation of the cheeses showed that, in general, the cheeses produced using higher concentrations of camel chymosin received higher body and texture and odor and flavor scores than the cheese produced using higher concentrations of R. miehei. In conclusion, 2 combinations of R. miehei and camel chymosin (75:25 and 25:75, respectively) can be successfully used for the production of Iranian ultrafiltered white cheese, considering the results of volatile composition and sensory analysis. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kawata, Jyunichi; Kameda, Munekazu; Miyazawa, Mitsuo
2008-04-01
The composition of the volatile oil from Lithospermi Radix, the dried roots of Lithospermum erythrorhizon (Boraginaceae), has been investigated by capillary GC and GC-MS. To investigate the anti-inflammatory activity of the oil, in-vitro inhibition of ovine cyclooxygenase-1 and 2 (COX-1 and COX-2) activity by the oil was studied. Fifty-four components of the oil were identified, representing 92.74% of the oil. The main components were 2-methylbutanoic acid (21.50%), 3-methylbutanoic acid (12.61%), 2-methylpropanoic acid (8.99%), methyl linoleate (8.76%), methyl oleate (6.27%), methyl palmitate (6.06%), and 2-methyl-2-butenoic acid (5.74%). Highly selective COX-2 inhibition was observed; at 50 microg/ml the oil inhibited 38.8% of COX-2 activity.
Wright, Cynthia R; Setzer, William N
2014-01-01
The essential oils from the cladodes of Opuntia littoralis, Opuntia ficus-indica and Opuntia prolifera growing wild on Santa Catalina Island, California, were obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry (GC-MS). Terpenoids were the dominant class of volatiles in O. littoralis, with the two main components being the furanoid forms of cis-linalool oxide (10.8%) and trans-linalool oxide (8.8%). Fatty acid-derived compounds dominated the essential oil of O. ficus-indica with linoleic acid (22.3%), palmitic acid (12.7%), lauric acid (10.5%) and myristic acid (4.2%) as major fatty acids. O. prolifera oil was composed of 46.6% alkanes and the primary hydrocarbon component was heptadecane (19.2%). Sixteen compounds were common to all the three Opuntia species.
Kinetics of scrap tyre pyrolysis under vacuum conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Gartzen; Aguado, Roberto; Olazar, Martin
2009-10-15
Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies themore » kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.« less
Kinetics of scrap tyre pyrolysis under vacuum conditions.
Lopez, Gartzen; Aguado, Roberto; Olazar, Martín; Arabiourrutia, Miriam; Bilbao, Javier
2009-10-01
Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12K in the reaction starting temperature. The kinetic constant at 503K for devolatilization of volatile additives at 0.25atm is 1.7 times higher than that at 1atm, and that corresponding to styrene-butadiene rubber at 723K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.
Agarwal, Jessica; Jewitt, David; Mutchler, Max; Weaver, Harold; Larson, Stephen
2017-09-20
Asteroids are primitive Solar System bodies that evolve both collisionally and through disruptions arising from rapid rotation. These processes can lead to the formation of binary asteroids and to the release of dust, both directly and, in some cases, through uncovering frozen volatiles. In a subset of the asteroids called main-belt comets, the sublimation of excavated volatiles causes transient comet-like activity. Torques exerted by sublimation measurably influence the spin rates of active comets and might lead to the splitting of bilobate comet nuclei. The kilometre-sized main-belt asteroid 288P (300163) showed activity for several months around its perihelion 2011 (ref. 11), suspected to be sustained by the sublimation of water ice and supported by rapid rotation, while at least one component rotates slowly with a period of 16 hours (ref. 14). The object 288P is part of a young family of at least 11 asteroids that formed from a precursor about 10 kilometres in diameter during a shattering collision 7.5 million years ago. Here we report that 288P is a binary main-belt comet. It is different from the known asteroid binaries in its combination of wide separation, near-equal component size, high eccentricity and comet-like activity. The observations also provide strong support for sublimation as the driver of activity in 288P and show that sublimation torques may play an important part in binary orbit evolution.
NASA Astrophysics Data System (ADS)
Gerasimov, Mikhail
Introduction: The discovery of noticeable hydrogen concentration (believed to be in the form of water) in the polar regions was among the most exciting recent events in the exploration of the Moon. Concentration of water in polar regolith was estimated at a level of 4-6 wt.% [1,2]. Such high concentration of water in polar regolith on volatiles depleted Moon is probably a result of migration of water molecules from its hot equatorial latitudes to cold traps of the northern and southern polar regions. These depositions of volatiles on one hand contain important information on the evolution of the Moon and on the other hand their utilization can be a bases for the future human exploration. The question about diversity and source of the volatiles is still open. Sources of lunar volatiles: Three main possible sources of the Lunar polar volatiles are: Degassing of the interior. Endogenous source of volatiles is provided by degassing of heated interior of planetary bodies. In this case chemical composition of released gases reflects thermodynamic equilibrium of gases over typical magmas at temperatures around 1000°C. The composition of such gas mixtures is characterized by domination of H2O, CO2, and SO2 over other H, C, and S containing components. CO/CO2 ratio here is typically far below 0.1 level. Hydrocarbons are mainly aromatic hydrocarbons, alkanes, and cycloalkanes. Sulfur containing gases are mainly SO2, H2S, and Sx. Isotopic ratios of volatile elements should be the same as for the bulk Moon. Interaction of solar wind protons with surface rocks. Energetic solar wind protons with the absence of an atmospheric shield can react with oxygen of surface rocks and produce water molecules as end product. Such a mechanism provides a source of mainly water on the Moon with solar hydrogen isotopes and Moon rocks oxygen isotopes. Degassing of impacting meteorites and comets. Volatiles of impacting meteorites and comets are released into transient atmosphere. It was shown experimentally [3] that the forming gases are qualitatively similar for various rocky materials including meteorites of different classes. Such gas mixtures have the following characteristics: the CO/CO2 ratio is ³1, hydrocarbons are presented mainly by alkenes and PAHs, sulfur containing gases are presented by SO2, CS2, H2S, and COS in decreasing sequence, production of HCN, and noticeable release of water. Isotopic composition of volatile elements reflects the projectile to target proportion of their source. Gas-analytic package (GAP) of the Lunar-Resource mission: It is very important to investigate all the inventory of polar volatiles as well as isotopic composition of volatile elements to understand the real source of lunar volatiles and to evaluate their validity as a resource for the Moon exploration. The GAP is aimed on comprehensive investigation of the inventory of volatiles in the regolith of polar regions. It consists of three instruments: 1) Thermal Analyzer; 2) Gas Chromatograph with Tunable Diode Laser Absorption Spectrometer for isotopic measurements of H, O, and C in evolved gases; and 3) Neutral Gas Mass-Spectrometer. References: [1] Mitrofanov, I. G. et al. 2010. Science 330: 483-486. [2] Colaprete, A. et al. 2010. Science 330: 463-468. [3] Gerasimov, M.V. 2002. Geological Society of America Special Paper 356: 705-716. Acknowledgements: This work was supported by P-22 Program of the RAS.
Zhao, Hong-bing; Wang, Zhi-hui; He, Fang; Meng, Han; Peng, Jian-hua; Shi, Ji-lian
2015-04-01
To analyze the volatile components in different processed products of Zingiber officinale rhizome, and to make clear the effect of different heating degree on them. The volatile components were extracted from four kinds of processed products by applying steam distillation, and then were analyzed by GC-MS. There were totally 43 components of volatile oil identified from four kinds of processed products of Zingiber officinale rhizome. Fresh product, dried product, and charcoal product of Zingiber officinale rhizome each had 27 components of volatile oil, while sand fried product contained 24 components. Fresh Zingiber officinale rhizome contained 22. 59% of zingiberene, 20. 87% of a-citral and 11. 01% of β-phellandrene, respectively. After processing in different heating degree, the volatile components changed greatly in both of their quantity and quality, For instance, dried Zingiber officinale rhizome contained 40. 48% of α-citral and 8-phellandrene content was slightly lower at 10. 38%. 32.73% of 3,7,11-trimethyl-l, 6, 10-dodecatriene,16. 38% of murolan-3, 9 (11)-diene-10-peroxy and 3. 36% of cubebene newly emerged in the sand fried Zingiber officinale rhizome, and eudesm-4 (14) and β-bisabolol, etc. However, β-phellandrene content was only 1. 95%. The zingiberene and β-sesquiphellandrene were the highest in charcoal product, besides, new components such as α-cedrene, decanal and γ-elemene appeared. Volatile components in different processed products of Zingiber officinale rhizome were different in both of their kinds and contents. This method is suitable for the analysis of volatile components in Zingiber officinale rhizome, and this study can provide the experimental evidence for quality evaluation and clinical application for ginger processed products.
Fractionation of highly siderophile and chalcogen elements in components of EH3 chondrites
NASA Astrophysics Data System (ADS)
Kadlag, Yogita; Becker, Harry
2015-07-01
Abundances of highly siderophile elements (HSE: Re, platinum group elements and Au), chalcogens (Te, Se and S), 187Os/188Os and the major and minor elements Mg, Ca, Mn, Fe, Ni and Co were determined in the components of Sahara 97072 (EH3, find) and Kota Kota (EH3, find) in order to understand the element fractionation processes. In a 187Re-187Os isochron diagram, most magnetic components lie close to the 4.56 Ga IIIA iron meteorite isochron, whereas most other components show deviations from the isochron caused by late redistribution of Re, presumably during terrestrial weathering. Metal- and sulfide rich magnetic fractions and metal-sulfide nodules are responsible for the higher 187Os/188Os in bulk rocks of EH chondrites compared to CI chondrites. The HSE and chalcogens are enriched in magnetic fractions relative to slightly magnetic and nonmagnetic fractions and bulk compositions, indicating that Fe-Ni metal is the main host phase of the HSE in enstatite chondrites. HSE abundance patterns indicate mixing of two components, a CI chondrite like end member and an Au-enriched end member. Because of the decoupled variations of Au from those of Pd or the chalcogens, the enrichment of Au in EH metal cannot be due to metal-sulfide-silicate partitioning processes. Metal and sulfide rich nodules may have formed by melting and reaction of pre-existing refractory element rich material with volatile rich gas. A complex condensation and evaporation history is required to account for the depletion of elements having very different volatility than Au in EH chondrites. The depletions of Te relative to HSE, Se and S in bulk EH chondrites are mainly caused by the depletion of Te in metal. S/Se and S/Mn are lower than in CI chondrites in almost all components and predominantly reflect volatility-controlled loss of sulfur. The latter most likely occurred during thermal processing of dust in the solar nebula (e.g., during chondrule formation), followed by the non-systematic loss of S during terrestrial weathering.
Alarm Pheromones of the Ant Atta Texana
John C. Moser; R. C. Brownlee; R. Silverstein
1968-01-01
Methyl-3-heptanone (0.59 μg/head) and 2-heptanone (0.14 μg/head) are the main volatile components of the mandibular glands of major workers. In the laboratory, worker ants detected and were attracted by 4-methyl-3-heptanone at a concentration of 5.7 x 10-13 g/cm3 (2.7 x 107 molecules...
E-Nose and GC-MS Reveal a Difference in the Volatile Profiles of White- and Red-Fleshed Peach Fruit
Xin, Rui; Liu, Xiaohong; Wei, Chunyan; Yang, Chong; Liu, Hongru; Cao, Xiangmei; Wu, Di; Chen, Kunsong
2018-01-01
First purchases of fruit are mainly dependent on aspects of appearance such as color. However, repeat buys of fruit are determined by internal quality traits such as flavor-related volatiles. Differences in volatile profiles in white- and red-fleshed peach fruit are not well understood. In the present study, peach cultivars with white- and red-fleshed fruit were subjected to sensory analysis using electronic nose (e-nose) to evaluate overview volatile profiles. Approximately 97.3% of the total variation in peach color-volatiles was explained by the first principle component 1 (PC1) and PC2. After analyzing sensory differences between peach fruit samples, 50 volatile compounds were characterized based on GC-MS. Multivariate analysis such as partial least squares discriminant analysis (PLS-DA) was applied to identify volatile compounds that contribute to difference in white- and red-fleshed peach fruit cultivars. A total of 18 volatiles that could separate peach fruit cultivars with different colors in flesh during ripening were identified based on variable importance in projection (VIP) score. Fruity note latone γ-hexalactone had higher contents in red-fleshed cultivars, while grassy note C6 compounds such as hexanal, 2-hexenal, (E)-2-hexenal, 1-hexanol, and (Z)-2-hexen-1-ol showed great accumulation in white-fleshed peach fruit. PMID:29498705
Methods of Si based ceramic components volatilization control in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie
A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.
NASA Astrophysics Data System (ADS)
Pan, Zhiyuan; Liu, Li
2018-02-01
In this paper, we extend the GARCH-MIDAS model proposed by Engle et al. (2013) to account for the leverage effect in short-term and long-term volatility components. Our in-sample evidence suggests that both short-term and long-term negative returns can cause higher future volatility than positive returns. Out-of-sample results show that the predictive ability of GARCH-MIDAS is significantly improved after taking the leverage effect into account. The leverage effect for short-term volatility component plays more important role than the leverage effect for long-term volatility component in affecting out-of-sample forecasting performance.
Pickett, John A.; Barasa, Stephen; Birkett, Michael A.
2014-01-01
The interaction between volatile and non-volatile, e.g. proteinaceous, components of pheromone and other semiochemical-based signalling systems presents a daunting set of problems for exploitation in the management of vertebrates, good or bad. Aggravating this is the complexity of the mixtures involved with pheromones, not only by definition associated with each species, but also with individual members of that species and their positions within their immediate communities. Nonetheless, already in some contexts, particularly where signals are perceived at other trophic levels from those of the vertebrates, e.g. by arthropods, reductionist approaches can be applied whereby the integrity of complex volatile mixtures is maintained, but perturbed by augmentation with individual components. In the present article, this is illustrated for cattle husbandry, fish farming and human health. So far, crude formulations have been used to imitate volatile semiochemical interactions with non-volatile components, but new approaches must be developed to accommodate more sophisticated interactions and not least the activities of the non-volatile, particularly proteinaceous components, currently being deduced. PMID:25109967
Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin
2011-12-01
To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.
Volatile organic chemicals of a shore-dwelling cyanobacterial mat community.
Evans, W G
1994-02-01
The main components of a cyanobacterial mat community of a hypersaline lake shore consist of edaphic, mat-forming strains (ecophenes), and littoral strains ofOscillatoria animalis Agardh andO. subbrevis Schmidle, other microorganisms associated with these cyanobacteria, several species ofBembidion (Carabidae: Coleoptera), and two halophytic flowering plants:Puccinellia nuttalliana (salt meadow grass) andSalicornia europaea rubra (samphire). The volatile organic compounds of this community are a blend of those emitted by each of these components such as the C17 alka(e)nes, geosmin, 2-methylisoborneol,β-cyclocitral,β-ionone, dimethyl sulfide, and dimethyl trisulfide of cyanobacteria and associated microorganisms; alcohols, esters, and aldehydes usually associated with flowering plants; and possibly some insect-derived esters, particularly isopropyl tetradecanoate. The dominant compounds were: C11, C13, C15, and C17 alka(e)nes, methyl esters of C16 and C18:2 acids, isopropyl tetradecanoate, heptanal, 3-octanone and 2-nonanone, the acyclic terpene linalool, and the alcohols 1-heptanol, 1-hexanol, 1-octanol, 3-hexen-1-ol, and 2-octen-1-ol. It is concluded that this community may be distinguished from related communities by its repertoire of volatile organic compounds.
Lanzerstorfer, Christof
2015-11-01
In the dust collected from the off-gas of high-temperature processes, usually components that are volatile at the process temperature are enriched. In the recycling of the dust, the concentration of these volatile components is frequently limited to avoid operation problems. Also, for external utilization the concentration of such volatile components, especially heavy metals, is often restricted. The concentration of the volatile components is usually higher in the fine fractions of the collected dust. Therefore, air classification is a potential treatment method to deplete the coarse material from these volatile components by splitting off a fines fraction with an increased concentration of those volatile components. In this work, the procedure of a sequential classification using a laboratory air classifier and the calculations required for the evaluation of air classification for a certain application were demonstrated by taking the example of a fly ash sample from a biomass combustion plant. In the investigated example, the Pb content in the coarse fraction could be reduced to 60% by separation of 20% fines. For the non-volatile Mg the content was almost constant. It can be concluded that air classification is an appropriate method for the treatment of off-gas cleaning residues. © The Author(s) 2015.
Meta-Analysis of the Core Aroma Components of Grape and Wine Aroma
Ilc, Tina; Werck-Reichhart, Danièle; Navrot, Nicolas
2016-01-01
Wine aroma strongly influences wine quality, yet its composition and its evolution during the winemaking process are poorly understood. Volatile compounds that constitute wine aroma are traditionally divided into three classes according to their origin: grape, fermentation, and maturation aroma. We challenge this view with meta-analysis and review of grape and wine volatiles and their precursors from 82 profiling experiments. We compiled a list of 141 common grape and wine volatiles and quantitatively compared 43 of them. Our work offers insight into complex relationships between biosynthesis of aroma in grapes and the changes during the winemaking process. Monoterpenes are one of the largest and most researched wine aroma compounds. We show that their diversity in wines is mainly due to the oxidative metabolism of linalool in grapes. Furthermore, we demonstrate that most of the linalool produced in grapes is converted to these oxidized derivatives. PMID:27746799
Comparative study of submerged and surface culture acetification process for orange vinegar.
Cejudo-Bastante, Cristina; Durán-Guerrero, Enrique; García-Barroso, Carmelo; Castro-Mejías, Remedios
2018-02-01
The two main acetification methodologies generally employed in the production of vinegar (surface and submerged cultures) were studied and compared for the production of orange vinegar. Polyphenols (UPLC/DAD) and volatiles compounds (SBSE-GC/MS) were considered as the main variables in the comparative study. Sensory characteristics of the obtained vinegars were also evaluated. Seventeen polyphenols and 24 volatile compounds were determined in the samples during both acetification processes. For phenolic compounds, analysis of variance showed significant higher concentrations when surface culture acetification was employed. However, for the majority of volatile compounds higher contents were observed for submerged culture acetification process, and it was also reflected in the sensory analysis, presenting higher scores for the different descriptors. Multivariate statistical analysis such as principal component analysis demonstrated the possibility of discriminating the samples regarding the type of acetification process. Polyphenols such as apigenin derivative or ferulic acid and volatile compounds such as 4-vinylguaiacol, decanoic acid, nootkatone, trans-geraniol, β-citronellol or α-terpineol, among others, were those compounds that contributed more to the discrimination of the samples. The acetification process employed in the production of orange vinegar has been demonstrated to be very significant for the final characteristics of the vinegar obtained. So it must be carefully controlled to obtain high quality products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Financial sector development, economic volatility and shocks in sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Ibrahim, Muazu; Alagidede, Paul
2017-10-01
The role of financial sector development in economic volatility has been extensively studied albeit without informative results largely on the failure of extant studies to decompose volatility into its various components. By disaggregating volatility using the spectral approach, this study examines the effect of financial development on volatility components as well as channels through which finance affects volatility in 23 sub-Saharan African countries over the period 1980-2014. Our findings based on the newly developed panel cointegration estimation strategy reveal that while financial development affects business cycle volatility in a non-linear fashion, its effect on long run fluctuation is imaginary. More specifically, well developed financial sectors dampen volatility. Further findings show that while monetary shocks have large magnifying effect on volatility, their effect in the short run is minuscule. The reverse, however, holds for real shocks. The channels of manifestation shows that financial development dampens (magnifies) the effect of real shocks (monetary shocks) on the components of volatility with the dampening effects consistently larger only in the short run. Strengthening financial sector supervision and cross-border oversight may be very crucial in examining the right levels of finance and price stability necessary to falter economic fluctuations.
In-tube extraction for the determination of the main volatile compounds in Physalis peruviana L.
Kupska, Magdalena; Jeleń, Henryk H
2017-01-01
An analytical procedure based on in-tube extraction followed by gas chromatography with mass spectrometry has been developed for the analysis of 24 of the main volatile components in cape gooseberry (Physalis peruviana L.) samples. According to their chemical structure, the compounds were organized into different groups: one hydrocarbon, one aldehyde, four alcohols, four esters, and 14 monoterpenes. By single-factor experiments, incubation temperature, incubation time, extraction volume, extraction strokes, extraction speed, desorption temperature, and desorption speed were determined as 60°C, 20 min, 1000 μL, 20, 50:50 μL/s, 280°C, 100 μL/s, respectively. Quantitative analysis using authentic standards and external calibration curves was performed. The limit of detection and limit of quantification for the analytical procedure were calculated. Results shown the benzaldehyde, ethyl butanoate, 2-methyl-1-butanol, 1-hexanol, 1-butanol, α-terpineol, and terpinen-4-ol were the most abundant volatile compounds in analyzed fruits (68.6-585 μg/kg). The obtained data may contribute to qualify cape gooseberry to the group of superfruits and, therefore, increase its popularity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[GC-MS analysis of essential oil from Curcuma aromatica rhizome of different growth periods].
Feng, Jie; Xu, Ming-ming; Huang, Xiu-lan; Liu, Hua-gang; Lai, Mao-xiang; Wei, Meng-han
2013-12-01
To analyze the essential oil from the rhizome of Curcuma aromatica of different growth periods, and to provide the scientific reference for reasonable cultivation and quality control of this plant. The essential oil was extracted by hydrodistillation and analyzed with GC-MS. The relative contents were determined with area normalization method. The main volatile constituents in the rhizome of Curcuma aromatica were basically the same. Among these volatile constituents, curdione was the major. The relative content of curdione was 16.35% in the rhizome of wild plant in Hengxian county, and 15.81% in the rhizome of one-year-old plant in Mingyang farm, Nanning city. The relative content of eucalyptol in the 2-year-old cultivated rhizome in Hengxian county was 15.40%, and 14.59% in the rhizome of wild plant in Hengxian county. beta-Elemene, beta-caryophyllene,eugenol and germacrone were also the main constituents in the rhizome essential oil. Volatile constituents in the rhizome of Curcuma aromatica are similar to each other,but the relative content of each component is different. This result can provide the scientific foundation for the cultivation of Curcuma aromatica.
Yue, Zheng-Bo; Zhang, Meng-Lin; Sheng, Guo-Ping; Liu, Rong-Hua; Long, Ying; Xiang, Bing-Ren; Wang, Jin; Yu, Han-Qing
2010-04-01
A near-infrared-reflectance (NIR) spectroscopy-based method is established to determine the main components of aquatic plants as well as their anaerobic rumen biodegradability. The developed method is more rapid and accurate compared to the conventional chemical analysis and biodegradability tests. Moisture, volatile solid, Klason lignin and ash in entire aquatic plants could be accurately predicted using this method with coefficient of determination (r(2)) values of 0.952, 0.916, 0.939 and 0.950, respectively. In addition, the anaerobic rumen biodegradability of aquatic plants, represented as biogas and methane yields, could also be predicted well. The algorithm of continuous wavelet transform for the NIR spectral data pretreatment is able to greatly enhance the robustness and predictive ability of the NIR spectral analysis. These results indicate that NIR spectroscopy could be used to predict the main components of aquatic plants and their anaerobic biodegradability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Ghimire, Bimal Kumar; Yoo, Ji Hye; Yu, Chang Yeon; Chung, Ill-Min
2017-07-01
To investigate the composition of volatile compounds in the different accessions of Perilla frutescens (P. frutescens) collected from various habitats of China and Japan. In the present study, the essential oil from the leaves of P. frutescens cultivars from China and Japan was extracted by hydro-distillation and the chemical composition and concentration of the volatile components present in the oils were determined by gas chromatography-mass spectrometry (GC-MS) analysis. Among the volatile components, the major proportion was of perilla ketone, which was followed by elemicin and beta-caryophyllene in the Chinese Perilla cultivars. The main component in the oil extracted from the Japanese accessions was myristicin, which was followed by perilla ketone and beta-caryophyllene. We could distinguish seven chemotypes, namely the perilla ketone (PK) type, perilla ketone, myristicin (PM) type, perilla ketone, unknown (PU) type, perilla ketone, beta-caryophyllene, myristicine (PB) type, perilla ketone, myristicin, unknown (PMU) type, perilla ketone, elemicine, myristicin, beta-caryophyllene (PEMB) type, and the perilla ketone, limonene, beta-cryophyllene, myristicin (L) type. Most of the accessions possessed higher essential oil content before the flowering time than at the flowering stage. The average plant height, leaf length, leaf width of the Chinese accessions was higher than those of the Japanese accessions. The results revealed that the harvest time and geographical origin caused polymorphisms in the essential oil composition and morphological traits in the Perilla accessions originating from China and Japan. Therefore, these chemotypes with desirable characters might be useful for industrial exploitation and for determining the harvest time. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei
2014-10-01
The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.
Additive Effects on Si3n4 Oxidation/Volatilization in Water Vapor
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Robinson, R. Craig; Fox, Dennis S.; Wenglarz, Richard A.; Ferber, Mattison K.
2002-01-01
Two commercially available additive-containing silicon nitride materials were exposed in four environments which range in severity from dry oxygen at 1 atm pressure, and low gas velocity to an actual turbine engine. Oxidation and volatilization kinetics were monitored at temperatures ranging from 1066 to 1400 C. The main purpose of this paper is to examine the surface oxide morphology resulting from the exposures. It was found that the material surface was enriched in rare earth silicate phases in combustion environments when compared to the oxides formed on materials exposed in dry oxygen. However, the in situ formation of rare earth disilicate phases offered little additional protection from the volatilization of silica observed in combustion environments. It was concluded that externally applied environmental barrier coatings are needed to protect additive-containing silicon nitride materials from volatilization reactions in combustion environments. Introduction Si3N4 is proposed for use as components, such as vanes, in turbine applications. Tens of thousands of hours of life are needed for both land-based turbines and aeropropulsion applications. Additive-containing SisN4 materials are
Kakuta, Shoji; Yamashita, Toshiyuki; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi
2015-01-01
A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL−1, and the average LOD for alcohols was 0.66 ng mL−1. This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis. PMID:26819905
Kakuta, Shoji; Yamashita, Toshiyuki; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi
2015-01-01
A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL(-1), and the average LOD for alcohols was 0.66 ng mL(-1). This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis.
Current understandings and perspectives on non-cancer health effects of benzene: A global concern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahadar, Haji; Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences; Mostafalou, Sara
Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmentalmore » pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be evaluated in related chronic diseases. • Cigarette smoke is the main source for indoor benzene exposure. • Health outcomes associated with air pollutants are poorly characterized due to lack of comprehensive monitoring system.« less
2014-01-01
Volatile components in cape gooseberry fruit at ripe stage were collected using headspace-solid phase microextraction, and analyzed by gas chromatography-mass spectrometry. Three solid phase microextraction fiber coatings (DVB/CAR/PDMS, CAR/PDMS, and PDMS/DVB) were tested for evaluation of volatile compounds. DVB/CAR/PDMS fiber showed a strong extraction capacity for volatile compounds and produced the best result in case of total peak areas. A total of 133 volatile compounds were identified in fruit pulp; among them 1-hexanol (6.86%), eucalyptol (6.66%), ethyl butanoate (6.47%), ethyl octanoate (4.01%), ethyl decanoate (3.39%), 4-terpineol (3.27%), and 2-methyl-1-butanol (3.10%) were the major components in the sample extracts. PMID:24741358
Yilmaztekin, Murat
2014-01-01
Volatile components in cape gooseberry fruit at ripe stage were collected using headspace-solid phase microextraction, and analyzed by gas chromatography-mass spectrometry. Three solid phase microextraction fiber coatings (DVB/CAR/PDMS, CAR/PDMS, and PDMS/DVB) were tested for evaluation of volatile compounds. DVB/CAR/PDMS fiber showed a strong extraction capacity for volatile compounds and produced the best result in case of total peak areas. A total of 133 volatile compounds were identified in fruit pulp; among them 1-hexanol (6.86%), eucalyptol (6.66%), ethyl butanoate (6.47%), ethyl octanoate (4.01%), ethyl decanoate (3.39%), 4-terpineol (3.27%), and 2-methyl-1-butanol (3.10%) were the major components in the sample extracts.
Distribution of 28 elements in size fractions of lunar mare and highlands soils
NASA Technical Reports Server (NTRS)
Boynton, W. V.; Wasson, J. T.
1977-01-01
Four volatile, six siderophile and 18 generally lithophile elements were determined in six sieve fractions of mare soil 15100 (moderately mature) and seven sieve fractions of highlands soil 66080 (highly mature). Previous work (Boynton et al., 1976) showed that the volatile elements in lunar soils were enriched in the finest size fraction relative to the coarsest factors by up to about 20. The present investigation tests Boynton's interpretation that the distribution pattern of the volatiles indicates the presence of two components: a volume-correlated component having volatile concentrations independent of grain size and a surface-correlated component with concentration increasing with decreasing grain size.
Possible role of plant volatiles in tolerance against huanglongbing in citrus
Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil
2016-01-01
abstract Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas. PMID:26829496
Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria
Verhulst, Niels O.; Andriessen, Rob; Groenhagen, Ulrike; Bukovinszkiné Kiss, Gabriella; Schulz, Stefan; Takken, Willem; van Loon, Joop J. A.; Schraa, Gosse; Smallegange, Renate C.
2010-01-01
The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour. PMID:21209854
Possible role of plant volatiles in tolerance against huanglongbing in citrus.
Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil
2016-01-01
Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas.
Pricing end-of-life components
NASA Astrophysics Data System (ADS)
Vadde, Srikanth; Kamarthi, Sagar V.; Gupta, Surendra M.
2005-11-01
The main objective of a product recovery facility (PRF) is to disassemble end-of-life (EOL) products and sell the reclaimed components for reuse and recovered materials in second-hand markets. Variability in the inflow of EOL products and fluctuation in demand for reusable components contribute to the volatility in inventory levels. To stay profitable the PRFs ought to manage their inventory by regulating the price appropriately to minimize holding costs. This work presents two deterministic pricing models for a PRF bounded by environmental regulations. In the first model, the demand is price dependent and in the second, the demand is both price and time dependent. The models are valid for single component with no inventory replenishment sale during the selling horizon . Numerical examples are presented to illustrate the models.
Effect of supercritical carbon dioxide decaffeination on volatile components of green teas.
Lee, S; Park, M K; Kim, K H; Kim, Y-S
2007-09-01
Volatile components in regular and decaffeinated green teas were isolated by simultaneous steam distillation and solvent extraction (SDE), and then analyzed by GC-MS. A total of 41 compounds, including 8 alcohols, 15 terpene-type compounds, 10 carbonyls, 4 N-containing compounds, and 4 miscellaneous compounds, were found in regular and decaffeinated green teas. Among them, linalool and phenylacetaldehyde were quantitatively dominant in both regular and decaffeinated green teas. By a decaffeination process using supercritical carbon dioxide, most volatile components decreased. The more caffeine was removed, the more volatile components were reduced in green teas. In particular, relatively nonpolar components such as terpene-type compounds gradually decreased according to the decaffeination process. Aroma-active compounds in regular and decaffeinated green teas were also determined and compared by aroma extract dilution analysis (AEDA). Most greenish and floral flavor compounds such as hexanal, (E)-2-hexenal, and some unknown compounds disappeared or decreased after the decaffeination process.
Li, Jin-Lin; Tu, Zong-Cai; Zhang, Lu; Sha, Xiao-Mei; Wang, Hui; Pang, Juan-Juan; Tang, Ping-Ping
2016-08-01
Ginger and garlic have long been used in Asian countries to enhance the flavor and to neutralize any unpleasant odors present in fish soup. The purpose of this study was to evaluate the change in the amount of volatile components present in fish soup compared to boiled water solutions of ginger and garlic. The fish soup was prepared by boiling oil-fried grass carp ( Ctenopharyngodon idella ) with or without ginger and/or garlic. Generally, boiling garlic and ginger in water led to a decrease in the amount of the principal volatile constituents of these spices, together with the formation of some new volatiles such as pentanal, hexanal, and nonanal. The results showed that 16 terpenes present in raw ginger, predominantly camphene, β -phellandrene, β -citral, α -zingiberene, and ( E )-neral, were detected in fish soup with added ginger and thus remained in the solution even after boiling. Similarly, 2-propen-1-ol and three sulfur compounds (allyl sulfide, diallyl disulfide, and diallyl trisulfide) present in raw garlic, were present in trace amounts in the boiled garlic solution, but were present in considerably larger amounts in the boiled fish solution with garlic or garlic plus ginger. In conclusion, the effect of adding spices on the volatile profile of grass carp soup can be attributed to the dissolution of flavor volatiles mainly derived from raw spices into the solution, with few additional volatiles being formed during boiling. In addition, boiling previously fried grass carp with spices led to enhanced volatile levels compared to boiled spice solutions.
Métoyer, Benjamin; Lebouvier, Nicolas; Hnawia, Edouard; Herbette, Gaëtan; Thouvenot, Louis; Asakawa, Yoshinori; Nour, Mohammed; Raharivelomanana, Phila
2018-06-05
Volatile components of seven species of the Bazzanioideae sub-family (Lepidoziaceae) native to New Caledonia, including three endemic species ( Bazzania marginata , Acromastigum caledonicum and A. tenax ), were analyzed by GC-FID-MS in order to index these plants to known or new chemotypes. Detected volatile constituents in studied species were constituted mainly by sesquiterpene, as well as diterpene compounds. All so-established compositions cannot successfully index some of them to known chemotypes but afforded the discovery of new chemotypes such as cuparane/fusicoccane. The major component of B. francana was isolated and characterized as a new zierane-type sesquiterpene called ziera-12(13),10(14)-dien-5-ol ( 23 ). In addition, qualitative intraspecies variations of chemical composition were very important particularly for B. francana which possessed three clearly defined different compositions. We report here also the first phytochemical investigation of Acromastigum species. Moreover, crude diethyl ether extract of B. vitatta afforded a new bis(bibenzyl) called vittatin ( 51 ), for which a putative biosynthesis was suggested.
Lunar Advanced Volatile Analysis Subsystem: Pressure Transducer Trade Study
NASA Technical Reports Server (NTRS)
Kang, Edward Shinuk
2017-01-01
In Situ Resource Utilization (ISRU) is a key factor in paving the way for the future of human space exploration. The ability to harvest resources on foreign astronomical objects to produce consumables and propellant offers potential reduction in mission cost and risk. Through previous missions, the existence of water ice at the poles of the moon has been identified, however the feasibility of water extraction for resources remains unanswered. The Resource Prospector (RP) mission is currently in development to provide ground truth, and will enable us to characterize the distribution of water at one of the lunar poles. Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is the primary payload on RP that will be used in conjunction with a rover. RESOLVE contains multiple instruments for systematically identifying the presence of water. The main process involves the use of two systems within RESOLVE: the Oxygen Volatile Extraction Node (OVEN) and Lunar Advanced Volatile Analysis (LAVA). Within the LAVA subsystem, there are multiple calculations that depend on accurate pressure readings. One of the most important instances where pressure transducers (PT) are used is for calculating the number of moles in a gas transfer from the OVEN subsystem. As a critical component of the main process, a mixture of custom and commercial off the shelf (COTS) PTs are currently being tested in the expected operating environment to eventually down select an option for integrated testing in the LAVA engineering test unit (ETU).
Volatility-resolved Measurements of the Chemical Composition of Arctic Aerosol Particles
NASA Astrophysics Data System (ADS)
Ehn, M.; Kroll, J.; Coffman, D.; Quinn, P.; Bates, T.; Williams, E.; Kulmala, M.; Worsnop, D.
2008-12-01
Here we describe measurements of the chemical composition of submicron particles in the Arctic marine boundary layer, taken on board the R/V Knorr during the IPY-ICEALOT mission (March-April 2008). Measurements were made with an Aerodyne high-resolution aerosol mass spectrometer (HR-AMS) for the measurement of the non-refractory fraction of the aerosol, in particular allowing for the determination of the oxygen/carbon (O/C) ratio of the particulate organics and the unambiguous identification of trace inorganic species. Sampling alternated between ambient air and air sent through a thermodenuder (TD), continually scanned between 50 and 250C in order to remove aerosol components by volatility. The mass spectra of particulate matter in the Arctic (including Arctic haze) were dominated by sulfur-containing peaks and the CO2+ ion (at m/z 44), indicating the main non-refractory components of the aerosol are acidic sulfate and highly oxygenated organics. Thermodenuder measurements allow for the clear speciation of sulfate compounds by volatility, as well as the comparison of the degree of atmospheric aging of the organics to measurements taken elsewhere (including at terrestrial sites). AMS measurements will be compared to results from a hygroscopicity tandem differential mobility analyzer (HTDMA), also downstream of the thermodenuder, as well as from semicontinuous (PILS) and offline (filter) measurements of particle composition.
Liu, Qiutao; Zhang, Shanshan; Yang, Xihui; Wang, Ruilin; Guo, Weiying; Kong, Weijun; Yang, Meihua
2016-12-01
Atractylodes rhizome is a valuable traditional Chinese medicinal herb that comprises complex several species whose essential oils are the primary pharmacologically active component. Essential oils of Atractylodes lancea and Atractylodes koreana were extracted by hydrodistillation, and the yield was determined. The average yield of essential oil obtained from A. lancea (2.91%) was higher than that from A. koreana (2.42%). The volatile components of the essential oils were then identified by a gas chromatography with mass spectrometry method that demonstrated good precision. The method showed clear differences in the numbers and contents of volatile components between the two species. 41 and 45 volatile components were identified in A. lancea and A. koreana, respectively. Atractylon (48.68%) was the primary volatile component in A. lancea, while eudesma-4(14)-en-11-ol (11.81%) was major in A. koreana. However, the most significant difference between A. lancea and A. koreana was the major component of atractylon and atractydin. Principal component analysis was utilized to reveal the correlation between volatile components and species, and the analysis was used to successfully discriminate between A. lancea and A. koreana samples. These results suggest that different species of Atractylodes rhizome may yield essential oils that differ significantly in content and composition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Volatile components of the enzyme-ripened sufu, a Chinese traditional fermented product of soy bean.
Moy, Yin-Soon; Lu, Ting-Jang; Chou, Cheng-Chun
2012-02-01
In the present study, sufu, a soft cheese-like oriental fermented food, was prepared by ripening the salted-tofu cubes in Aspergillus oryzae-fermented soybean-rice koji at 37°C for 16 days (16-day sufu). Sufu was further held at room temperature for another 30 days (46-day sufu). The volatile components of the non-fermented tofu cubes and the sufu products were identified and quantified by GC and GC-MS. A total of 70 volatile compounds including 20 aldehydes, 18 alcohols, 16 esters, 5 ketones, 5 acids and 6 other compounds were identified. Sufu products contained more volatile compounds than non-fermented tofu cubes qualitatively and quantitatively. After 16-days of ripening, fatty acid, aldehyde and ester were noted to be the dominant volatile fractions. In contrast, the 46-day sufu contained ester, and alcohol as the major volatile fractions. They comprise approximately 63.9% of the total volatile components. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Sulfur volatiles in guava (Psidium guajava L.) leaves: possible defense mechanism.
Rouseff, Russell L; Onagbola, Ebenezer O; Smoot, John M; Stelinski, Lukasz L
2008-10-08
Volatiles from crushed and intact guava leaves (Psidium guajava L.) were collected using static headspace SPME and determined using GC-PFPD, pulsed flame photometric detection, and GC-MS. Leaf volatiles from four common citrus culitvars were examined similarly to determine the potential component(s) responsible for guava's protective effect against the Asian citrus psyllid (Diaphorina citri Kuwayama), which is the insect vector of Huanglongbing (HLB) or citrus greening disease. Seven sulfur volatiles were detected: hydrogen sulfide, sulfur dioxide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), methional, and dimethyl trisulfide (DMTS). Identifications were based on matching linear retention index values on ZB-5, DB-Wax, and PLOT columns and MS spectra in the case of DMDS and DMS. DMDS is an insect toxic, defensive volatile produced only by wounded guava but not citrus leaves and, thus, may be the component responsible for the protective effect of guava against the HLB vector. DMDS is formed immediately after crushing, becoming the major headspace volatile within 10 min. Forty-seven additional leaf volatiles were identified from LRI and MS data in the crushed guava leaf headspace.
Liu, Jingke; Zhao, Wei; Li, Shaohui; Zhang, Aixia; Zhang, Yuzong; Liu, Songyan
2018-02-20
The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm Carboxen (CAR)/PDMS, and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers), and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV). Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1), and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50), having a high OAV. Principal component analysis (PCA) showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME) fibers.
NASA Astrophysics Data System (ADS)
Hu, Min; Peng, Jianfei; Qin, Yanhong; Du, Zhuofei; Li, Mengjin; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Lu, Sihua; Wu, Yusheng; Zeng, Limin; Guo, Song; Shao, Min; Wang, Yinhui; Shuai, Shijin
2017-04-01
Along with the urbanization and economic growth, vehicle population in China reached 269 million, ranked the second in the world in 2015. Gasoline vehicle is identified to be the main source for urban PM2.5 in China, accounting for 15%-31%. In this study the impact of fuel components on PM2.5 and volatile organic compounds (VOCs) emissions from a gasoline port fuel injection (PFI) engine and a gasoline direct injection (GDI) engine are discussed. Results show that, higher proportion of aromatics, alkenes or sulfur in gasoline fuel will lead to higher PM emissions. The PM from the PFI engine mainly consists of OC and a small amount of EC and inorganic ions, while the PM discharge from the GDI engine mainly consists of EC, OM and a small amount of inorganic ions. Since the GDI engines can reduce fuel consumption and CO2 emissions, and it would become more and more popular in the near future. The characteristics of POM component, emission factors and source profile were investigated from GDI engine, particularly focused on the effect of engine speed, load and the catalyst, which will be very much helpful for source identification as source indicators. Chamber experiments were conducted to quantify the potential of secondary aerosol formation from exhaust of a PFI gasoline engine and China V gasoline fuel. During 4-5 h simulation, equivalent to10 days of atmospheric photo-oxidation in Beijing, the extreme SOA production was 426 ± 85 mg/kg fuel, with high precursors and OH exposure. 14% of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatility organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reduction of emissions of aerosol precursor gases from vehicles is essential to mediate pollution in China.
Josino Soares, Denise; Pignitter, Marc; Ehrnhöfer-Ressler, Miriam Margit; Walker, Jessica; Montenegro Brasil, Isabella; Somoza, Veronika
2015-01-01
The pulp of pitanga (Eugenia uniflora L.) is used to prepare pitanga juice. However, there are no reports on the identification and quantification of the main constituents in pitanga pulp. The aim of this study was to identify and quantify the major volatile and non-volatile low-molecular-weight constituents of the pulp. Isolation of volatile compounds was performed by solvent-assisted flavor evaporation technique. Characterization of the main volatile and non-volatile constituents was performed by GC-MS, LC-MS and NMR spectroscopy. For quantitative measurements, the main volatile compound needed to be isolated from pitanga pulp to obtain a commercially not available reference standard. Cyanidin-3-glucoside was determined as one of the most abundant non-volatile pulp compound yielding 53.8% of the sum of the intensities of all ions detected by LC-MS. Quantification of cyanidin-3-glucoside in pitanga pulp resulted in a concentration of 344 ± 66.4 μg/mL corresponding to 688 ± 133 μg/g dried pulp and 530 ± 102 μg/g fruit. For the volatile fraction, oxidoselina-1,3,7(11)-trien-8-one was identified as the main volatile pulp constituent (27.7% of the sum of the intensities of all ions detected by GC-MS), reaching a concentration of 89.0 ± 16.9 μg/mL corresponding to 1.34 ± 0.25 μg/g fresh pulp and 1.03 ± 0.19 μg/g fruit. The results provide quantitative evidence for the occurrence of an anthocyanin and an oxygenated sesquiterpene as one of the major volatile and non-volatile low-molecular-weight compounds in pitanga pulp.
Electroantennographic Bioassay as a Screening Tool for Host Plant Volatiles
Beck, John J.; Light, Douglas M.; Gee, Wai S.
2012-01-01
Plant volatiles play an important role in plant-insect interactions. Herbivorous insects use plant volatiles, known as kairomones, to locate their host plant.1,2 When a host plant is an important agronomic commodity feeding damage by insect pests can inflict serious economic losses to growers. Accordingly, kairomones can be used as attractants to lure or confuse these insects and, thus, offer an environmentally friendly alternative to pesticides for insect control.3 Unfortunately, plants can emit a vast number volatiles with varying compositions and ratios of emissions dependent upon the phenology of the commodity or the time of day. This makes identification of biologically active components or blends of volatile components an arduous process. To help identify the bioactive components of host plant volatile emissions we employ the laboratory-based screening bioassay electroantennography (EAG). EAG is an effective tool to evaluate and record electrophysiologically the olfactory responses of an insect via their antennal receptors. The EAG screening process can help reduce the number of volatiles tested to identify promising bioactive components. However, EAG bioassays only provide information about activation of receptors. It does not provide information about the type of insect behavior the compound elicits; which could be as an attractant, repellent or other type of behavioral response. Volatiles eliciting a significant response by EAG, relative to an appropriate positive control, are typically taken on to further testing of behavioral responses of the insect pest. The experimental design presented will detail the methodology employed to screen almond-based host plant volatiles4,5 by measurement of the electrophysiological antennal responses of an adult insect pest navel orangeworm (Amyelois transitella) to single components and simple blends of components via EAG bioassay. The method utilizes two excised antennae placed across a "fork" electrode holder. The protocol demonstrated here presents a rapid, high-throughput standardized method for screening volatiles. Each volatile is at a set, constant amount as to standardize the stimulus level and thus allow antennal responses to be indicative of the relative chemoreceptivity. The negative control helps eliminate the electrophysiological response to both residual solvent and mechanical force of the puff. The positive control (in this instance acetophenone) is a single compound that has elicited a consistent response from male and female navel orangeworm (NOW) moth. An additional semiochemical standard that provides consistent response and is used for bioassay studies with the male NOW moth is (Z,Z)-11,13-hexdecadienal, an aldehyde component from the female-produced sex pheromone.6-8 PMID:22588282
NASA Astrophysics Data System (ADS)
Chung, Myeong Y.; Beene, Matt; Ashkan, Shawn; Krauter, Charles; Hasson, Alam S.
2010-02-01
Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006-2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.
Koldaş, Serkan; Demirtas, Ibrahim; Ozen, Tevfik; Demirci, Mehmet Ali; Behçet, Lütfi
2015-03-15
A detailed phytochemical analysis of Origanum vulgare L. ssp. viride (Boiss.) Hayek was carried out and the antioxidant activities of five different crude extracts were determined. The antiproliferative activities of the extracts were determined using the xCELLigence system (Real Time Cell Analyzer). Differences between the essential oil and volatile organic compound profiles of the plant were shown. The main component of the essential oil was caryophyllene oxide, while the main volatile organic compounds were sabinene and eucalyptol as determined by HS-GC/MS. Phenolic contents of the extracts were determined qualitatively and quantitatively by HPLC/TOF-MS. Ten phenolic compounds were found in the extracts from O. vulgare and Origanum acutidens: rosmarinic acid (in highest abundance), chicoric acid, caffeic acid, p-coumaric acid, gallic acid, quercetin, apigenin-7-glucoside, kaempferol, naringenin and 4-hydroxybenzaldehyde. This study provides first results on the antiproliferative and antioxidant properties and detailed phytochemical screening of O. vulgare ssp. viride (Boiss.) Hayek. © 2014 Society of Chemical Industry.
Dong, Wenjiang; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Tan, Lehe
2017-11-01
This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deng, Xiao-Hua; Xie, Peng-Fei; Peng, Xin-Hui; Yi, Jian-Hua; Zhou, Ji-Heng; Zhou, Qing-Ming; Pu, Wen-Xuan; Dai, Yuan-Gang
2010-08-01
A pot experiment with the soils from Yongzhou, Liuyang, and Sangzhi, the high-quality tobacco planting regions of Hunan Province, was conducted to study the effects of climate, soil, and their interaction on some neutral volatile aroma components in flue-cured tobacco leaves. The contents of test neutral volatile aroma components in the flue-cured tobacco leaves were of medium variation, and the variation intensity was decreased in the order of dihydroactinolide, damascenone, furfural, total megastigmatrienone, and beta-ionone. Climate, soil, and their interaction affected the neutral volatile aroma components in different degrees. The furfural content was most affected by climate, the damascenone content was most affected by climate and by soil, the total megastigmatrienone and beta-ionone contents were most affected by the interaction of soil and climate, while the dihydroactinolide content was less affected by soil, climate, and their interaction. The contribution of climate, soil, and their interaction to the contents of the five aroma components was 40.82%, 20.67%, and 38.51%, respectively. During different growth periods of tobacco, different climate factors had different effects on the neutral volatile aroma components. The rainfall, cloudiness, and mean air temperature at rooting stage, the diurnal temperature amplitude, sunshine time, and evaporation at vigorous growth stage, and the rainfall, evaporation, and mean air temperature at maturing stage were the top three climate factors affecting the contents of the neutral volatile aroma components in flue-tobacco leaves. For the soil factors, the available potassium, available phosphorus, and pH were the top three factors affecting the contents of the five components.
Pereira, Gustavo Araujo; Arruda, Henrique Silvano; de Morais, Damila Rodrigues; Eberlin, Marcos Nogueira; Pastore, Glaucia Maria
2018-06-01
Soluble carbohydrates, volatile and phenolic compounds from calabura fruit as well as its antioxidant activity were assessed. The low amount of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) and similar amount of glucose and fructose allow us to classify the calabura berry as low-FODMAPs. The terpenes β-Farnesene and dendrolasin identified by SPME-GC-MS were the major volatile components. UHPLC-MS/MS analysis revelled gallic acid (5325 μg/g dw) and cyanidin-3-O-glucoside (171 μg/g dw) as the main phenolic compounds, followed by gentisic acid, gallocatechin, caffeic acid and protocatechuic acid. In addition, gallic acid was found mainly in esterified (2883 μg/g dw) and insoluble-bound (2272 μg/g dw) forms. Free and glycosylated forms showed however the highest antioxidant activity due to occurrence of flavonoids (0.28-27 μg/g dw) in these fractions, such as catechin, gallocatechin, epigallocatechin, naringenin, and quercetin. These findings clearly suggest that calabura is a berry with low energy value and attractive colour and flavour that may contribute to the intake of several bioactive compounds with antioxidant activity. Furthermore, this berry have great potential for use in the food industry and as functional food. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Wei-Hsin; Du, Shan-Wen; Yang, Hsi-Hsien; Wu, Jheng-Syun
2008-05-01
The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400 degrees C are considered. Experimental observations indicate that when the reaction temperature is 1000 degrees C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400 degrees C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000 degrees C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400 degrees C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000 degrees C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400 degrees C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases.
Chen, Hong-Ping; Pan, Huan-Huan; Zhang, Xin; Liu, Fei; Chen, Mei-Jun; Luo, Guan-Hua; Liu, You-Ping
2016-07-01
To investigate the dynamic change rules of volatile components from Atractylodis Macrocephalae Rhizoma with different stir-baking degrees (from slight stir-baking, stir-baking to yellow, stir-baking to brown, to stir-baking to scorch). In the present experiment, the Atractylodis Macrocephalae Rhizoma samples with different stir-baking degrees were collected at different processing time points. The contents of volatile oil in various samples were determined by steam distillation method, and the volatile compounds were extracted by using static headspace sampling method. Gas chromatography-mass spectrography (GC-MS) and automated mass spectral deconrolution and identification system (AMDIS) were combined with Kováts retention index to analyze the chemical constituents of the volatile compounds. The results showed that with the deepening of the stir-baking degree, the content of volatile oil was decreased step by step in 4 phases, and both the compositions and contents of volatile components from Atractylodis Macrocephalae Rhizoma showed significant changes. The results showed that the dynamic change rules of volatile components from Atractylodis Macrocephalae Rhizoma in the process of stir-baking were closely related to the processing degree; in addition, Atractylodis Macrocephalae Rhizoma and honey bran had adsorption on each other. These results can provide a scientific basis for elucidating the stir-baking (with bran) mechanism of Atractylodis Macrocephalae Rhizoma. Copyright© by the Chinese Pharmaceutical Association.
[Study on absorbing volatile oil with mesoporous carbon].
Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan
2014-11-01
Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.
[Solidification of volatile oil with graphene oxide].
Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao
2015-02-01
To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study.
Nieva-Echevarría, Bárbara; Manzanos, María J; Goicoechea, Encarnación; Guillén, María D
2017-09-01
This study aims to shed light on the changes provoked by boiling, steaming and sous-vide cooking on the lipids and volatile profile of farmed and wild European sea bass meat. None of the cooking techniques provoked changes due to hydrolytic or oxidation processes detectable by 1 H NMR on sea bass lipids. The lipid profile of main and minor lipidic components was maintained after cooking. However, study by SPME-GC/MS evidenced that steaming and sous-vide cooking modified the volatile profile of sea bass meat, especially in farmed specimens. The compounds generated came from the occurrence, to a very small extent, of lipid and protein degradation. By contrast, boiling scarcely modified the initial characteristics of raw sea bass. Thus, from a sensory point of view and considering the odour-active compounds generated, steaming and sous-vide cooking provoked more noticeable changes than boiling, especially in farmed sea bass meat. Copyright © 2017. Published by Elsevier Ltd.
Faria, Jorge M S; Rodrigues, Ana M; Sena, Inês; Moiteiro, Cristina; Bennett, Richard N; Mota, Manuel; Figueiredo, A Cristina
2016-10-12
As a nematotoxics screening biotechnological system, Solanum tuberosum hairy roots (StHR) and S. tuberosum hairy roots with Meloidogyne chitwoodi co-cultures (StHR/CRKN) were evaluated, with and without the addition of the essential oils (EOs) of Satureja montana and Ruta graveolens. EOs nematotoxic and phytotoxic effects were followed weekly by evaluating nematode population density in the co-cultures as well as growth and volatile profiles of both in vitro cultures types. Growth, measured by the dissimilation method and by fresh and dry weight determination, was inhibited after EO addition. Nematode population increased in control cultures, while in EO-added cultures numbers were kept stable. In addition to each of the EOs main components, and in vitro cultures constitutive volatiles, new volatiles were detected by gas chromatography and gas chromatography coupled to mass spectrometry in both culture types. StHR with CRKN co-cultures showed to be suitable for preliminary assessment of nematotoxic EOs.
Zhang, Rong; Wu, Qun; Xu, Yan
2014-08-20
Nonvolatile compounds play important roles in the quality of alcoholic beverages. In our previous work, a type of cyclooctapeptide lichenysin was newly identified in Chinese strong-aroma type liquor. In this work, it was found that lichenysin could selectively affect aroma volatility in strong-aroma type (Jiannanchun) liquor. Interaction of lichenysin and volatile phenolic compounds (off-odors in strong-aroma type liquor) was characterized using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). HS-SPME results indicated that lichenysin very efficiently suppressed the volatility of phenolic compounds by 36-48% (P < 0.05). Thermodynamic analysis showed that the binding process was mainly mediated by hydrogen bonding. Furthermore, the mixture of lichenysin and 4-ethylguaiacol revealed intermolecular cross peaks between the aH (Val) of lichenysin and the 1H of 4-ethylguaiacol, by using nuclear Overhauser effect spectroscopy. This study will help to further understand the interaction mechanisms between flavor and nonvolatile matrix components in Chinese liquors.
Characteristics of oily sludge combustion in circulating fluidized beds.
Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo
2009-10-15
Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.
Basic biogenic aerosol precursors: Agricultural source attribution of volatile amines revised
NASA Astrophysics Data System (ADS)
Kuhn, U.; Sintermann, J.; Spirig, C.; Jocher, M.; Ammann, C.; Neftel, A.
2011-08-01
Despite recent evidence on an important role of volatile amines in the nucleation of particulate matter, very scarce information is available on their atmospheric abundance and source distribution. Previous measurements in animal housings had identified livestock husbandry as the main amine source, with trimethylamine (TMA) being the key component. This has led to the assumption that the agricultural sources for amines are similar as for ammonia, emitted throughout the cascade of animal excretion, storage and application in the field. In this study, we present the first micrometeorological flux measurements as well as dynamic enclosure experiments showing that the amine source strength from stored slurry is negligible, implying significant consequences for the global amine emission inventory. In the case of cattle, amine production is attributed to the animal's rumination activity and exhalation is suggested to be an important emission pathway, similar to the greenhouse gas methane. Fodder like hay and silage also emits volatile amines, potentially assigning these alkaloid compounds a key function in enhancing particle formation in remote areas.
Dimaki, Virginia D; Iatrou, Gregoris; Lamari, Fotini N
2017-11-17
A number of beneficial medicinal properties are attributed to the extract and essential oil of the aerial parts of Sideritis species (Lamiaceae). Hydrodistillation of the aerial parts of wild Sideritis clandestina ssp. peloponnesiaca (an endemic taxon in northern Peloponnesus, Greece) gave a low essential oil yield (<0.12%); about 65 components, mainly α-pinene, β-caryophyllene, β-pinene, globulol, caryophyllene oxide, were identified via GC-MS. Internal and external standards were used for quantification. For miniaturization of the procedure, we studied side-by-side maceration (MAC) and ultrasound-assisted extraction (UAE) methods, as well as the effect of preincubation in acidic medium (pH 4.8) for 75min at 37°C with or without a mixture of cellulase, hemicellulase and pectinase. Maceration and UAE provide consistent chemoprofiling of the main volatile compounds (about 20); UAE has lower demands on time, solvent, plant material (3g) and results in higher yields. Pretreatment with enzymes can increase the respective yields of hydrodistillation and UAE, but this effect is definitely attributed to the concurrent acidic pretreatment. In conclusion, incubation of plant material prior to hydrodistillation or UAE in citrate buffer, pH 4.8, significantly enhances the overall yield and number of components obtained and is recommended for the analysis of Sideritis volatiles. The acidic pre-treatment method was also successfully applied to analysis of cultivated Sideritis raeseri Boiss. & Heldr. in Boiss. ssp. raeseri; α-pinene, α- and γ-terpinene and β-thujene were predominant albeit in different percentages in flowers and leaves. Copyright © 2017. Published by Elsevier B.V.
Yang, C-H; Huang, Y-C; Tsai, M-L; Cheng, C-Y; Liu, L-L; Yen, Y-W; Chen, W-L
2015-10-01
Volatile essential oils of mint species are used for cosmetics and in skin care products. In this study, we evaluated the main chemical components of the lime mint and the anti-melanogenic properties of its main components. The essential oil was analysed by gas chromatography-mass spectrometry (GC/MS). The anti-melanogenic effects of mint essential oil and β-caryophyllene were investigated in B16F10 murine melanoma cells. The main components of lime mint essential oil were found to be D-limonene (41.10%), D-carvone (8.58%), δ-selinene (6.73%) and β-caryophyllene (6.24%). The lime mint essential oil reduced melanin production in a dose-dependent manner in murine B16F10 cells. β-Caryophyllene, one of the main compounds in lime mint essential oil, could reduce melanogenesis by down-regulating the expression of MITF, TRP-1, TRP-2 and tyrosinase, resulting in a decrease in melanin content decrease. These results reveal that lime mint essential oil and β-caryophyllene are considered to be valuable as potential skin-whitening agents. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Liu, Zechang; Wang, Liping; Liu, Yumei
2018-01-18
Hops impart flavor to beer, with the volatile components characterizing the various hop varieties and qualities. Fingerprinting, especially flavor fingerprinting, is often used to identify 'flavor products' because inconsistencies in the description of flavor may lead to an incorrect definition of beer quality. Compared to flavor fingerprinting, volatile fingerprinting is simpler and easier. We performed volatile fingerprinting using head space-solid phase micro-extraction gas chromatography-mass spectrometry combined with similarity analysis and principal component analysis (PCA) for evaluating and distinguishing between three major Chinese hops. Eighty-four volatiles were identified, which were classified into seven categories. Volatile fingerprinting based on similarity analysis did not yield any obvious result. By contrast, hop varieties and qualities were identified using volatile fingerprinting based on PCA. The potential variables explained the variance in the three hop varieties. In addition, the dendrogram and principal component score plot described the differences and classifications of hops. Volatile fingerprinting plus multivariate statistical analysis can rapidly differentiate between the different varieties and qualities of the three major Chinese hops. Furthermore, this method can be used as a reference in other fields. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Portable Medical Diagnosis Instrument
NASA Technical Reports Server (NTRS)
Coleman, Matthew A. (Inventor); Straume, Tore (Inventor); Loftus, David J. (Inventor); Li, Jing (Inventor); Singh, Anup K. (Inventor); Davis, Cristina E. (Inventor)
2017-01-01
A system that integrates several technologies into a single, portable medical diagnostic apparatus for analyzing a sample body fluid (liquid and/or gas): (1) a mechanism to capture airborne microdroplets and to separate the body fluid into a first fluid component (primarily gas) and a second fluid component (primarily liquid); (2) a volatilizer to convert a portion of the second fluid component into a third fluid component that is primarily a gas; (3) a functionalized nanostructure (NS) array configured to receive, identify, and estimate concentration of at least one constituent in the first and/or third fluid components; (4) a miniaturized differential mobility spectrometer (DMS) module; and (5) a biomarker sensor, to detect volatile and non-volatile molecules in a sample fluid, which may contain one or more components of blood, breath, perspiration, saliva, and urine.
Han, Song-Lin; Li, Xin-Xia; Mian, Qiang-Hui; Lan, Wei; Liu, Yan
2013-01-01
To compare the antioxidant active components from two species of chamomile-matricaria and Roman chamomile produced in Xinjiang. The TLC-bioautography was used, with 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical as the experimental model. The peak areas of various antioxidant components were obtained by TLC-scanning for analyzing antioxidant active components contained in volatile oil extracts and flavone extracts from the two species of chamomiles. The total peak area was taken as the indicator for comparing the antioxidant capacities of the two types of extracts, and comparing them with the total antioxidant activity of flavone extracts of the two species of chamomiles. According to the result of TLC-bioautography in volatile oil extracts from the two species of chamomiles, volatile oil extracts from chamomile showed four white antioxidant spots, including en-yne-dicycloether, and volatile oil extracts from Roman chamomile showed only one white antioxidant spot. The TLC-scanning result showed that the peak area of antioxidant spots of volatile oil extracts from chamomile was significantly larger than that of volatile oil extracts from Roman chamomile. According to the test on the antioxidant activity of the two species of chamomiles with ultraviolet-visible spectrophotometry, the concentration of chamomile after scavenging 50% of DPPH radicals was 0.66 g x L(-1), whereas the figure for Roman chamomile was 0.33 g x L(-1). According to the result of TLC-bioautography in flavone extracts from the two species of chamomiles, flavone extracts from chamomile showed seven yellowish antioxidant spots, including apigenin and apigenin-7-glucoside, and flavone extracts of Roman chamomile showed eight yellowish antioxidant spots, including apigenin and apigenin-7-glucoside. The TLC-scanning results showed that the peak area of antioxidant spots of flavone extracts from Roman chamomile was significantly larger than that of flavone extracts from chamomile. Volatile oil extracts from the two species of chamomiles have significant difference in the antioxidant activity in TLC-bioautography. Specifically, the antioxidant activity of volatile oil extracts from chamomile is stronger than volatile oil extracts from Roman chamomile; the known antioxidant active components in volatile oil extracts from chamomile is en-yne-dicycloether, while all of the other three antioxidant active components as well as antioxidant active components in volatile oil extracts from Roman chamomile are unknown components and remain to be further determined. Considering the significant difference in the number of antioxidant active spots in volatile oil extracts from the two species of chamomiles, the result can be applied to distinguish the two species of chamomiles. The antioxidant activity determination result for flavone extracts from two species of chamomiles was consistent with the result of TLC-bioautography, showing that flavone extracts from chamomile and Roman chamomile are more antioxidant active, while that of Roman chamomile is stronger than chamomile. Flavone extracts from both of the two species of chamomiles contain apigenin and pigenin-7-glucoside, which are known, while all of the other five antioxidant active components contained in flavone extracts from chamomile and the other six antioxidant active components contained in flavone extracts from Roman chamomile are unknown and remain to be further identified. The method lays a foundation for further identification of antioxidant active components contained in chamomile.
Singh, Gurdip; Maurya, Sumitra; DeLampasona, M P; Catalan, Cesar A N
2007-09-01
The antioxidant, antifungal and antibacterial potentials of volatile oils and oleoresin of Cinnamomum zeylanicum Blume (leaf and bark) were investigated in the present study. The oleoresins have shown excellent activity for the inhibition of primary and secondary oxidation products in mustard oil added at the concentration of 0.02% which were evaluated using peroxide, thiobarbituric acid, p-anisidine and carbonyl values. Moreover, it was further supported by other complementary antioxidant assays such as ferric thiocyanate method in linoleic acid system, reducing power, chelating and scavenging effects on 1,1'-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals. In antimicrobial investigations, using inverted petriplate and food poison techniques, the leaf and bark volatile oils has been found to be highly effective against all the tested fungi except Aspergillus ochraceus. However, leaf oleoresin has shown inhibition only for Penicillium citrinum whereas bark oleoresin has caused complete mycelial zone inhibition for Aspergillus flavus and A. ochraceus along with Aspergillus niger, Aspergillus terreus, P. citrinum and Penicillium viridicatum at 6 microL. Using agar well diffusion method, leaf volatile oil and oleoresin have shown better results in comparison with bark volatile oil, oleoresin and commercial bactericide, i.e., ampicillin. Gas chromatographic-mass spectroscopy studies on leaf volatile oil and oleoresin resulted in the identification of 19 and 25 components, which accounts for the 99.4% and 97.1%, respectively of the total amount and the major component was eugenol with 87.3% and 87.2%, respectively. The analysis of cinnamon bark volatile oil showed the presence of 13 components accounting for 100% of the total amount. (E)-cinnamaldehyde was found as the major component along with delta-cadinene (0.9%), whereas its bark oleoresin showed the presence of 17 components accounting for 92.3% of the total amount. The major components were (E)-cinnamaldehyde (49.9%), along with several other components.
Zhang, Zheng-qun; Sun, Xiao-ling; Xin, Zhao-jun; Luo, Zong-xiu; Gao, Yu; Bian, Lei; Chen, Zong-mao
2013-10-01
Volatile organic compounds derived from non-host plants, Ocimum basilicum, Rosmarinus officinalis, Corymbia citriodora, and Ruta graveolens, can be used to mask host plant odors, and are repellent to the tea geometrid, Ectropis obliqua. Volatile compounds were collected by headspace absorption, and the components were identified and quantified by using gas chromatography/mass spectrometry. The responses of antennae of female E. obliqua to the compounds were evaluated with gas chromatography/electroantennography detection. Qualitative and quantitative differences were found among the four odor profiles. Consistent electroantennographic activity was obtained for eight of the volatiles from the four plants: β-myrcene, α-terpinene, γ-terpinene, linalool, cis-verbenol, camphor, α-terpineol, and verbenone. In a Y-tube bioassay, six chemicals, β-myrcene, γ-terpinene, (R)-(-)-linalool, (S)-(-)-cis-verbenol, (R)-(+)-camphor, and (S)-(-)-verbenone, were the main compounds responsible for repelling E. obliqua. An eight-component mixture including all of the bioactive compounds (in a ratio of 13:2:13:8:1:24:6:17) from R. officinalis was significantly more effective at repelling the moths than any single compound or a mixture of equal amounts of the eight compounds. Field results demonstrated that intercropping tea plants with R. officinalis effectively suppressed E. obliqua infestations in a tea plantation. Our findings suggests that odor blends of R. officinalis play a role in disturbing host orientation behavior, and in repelling E. obliqua adults, and that R. officinalis should be considered when developing "push-pull" strategies aimed at optimizing the control of E. obliqua with semiochemicals.
Changes in dark chocolate volatiles during storage.
Nightingale, Lia M; Cadwallader, Keith R; Engeseth, Nicki J
2012-05-09
Chocolate storage is critical to the quality of the final product. Inadequate storage, especially with temperature fluctuations, may lead to a change in crystal structure, which may eventually cause fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The impact of various storage conditions on the flavor quality of dark chocolate was determined. Dark chocolate was stored in different conditions leading to either fat or sugar bloom and analyzed at 0, 4, and 8 weeks of storage. Changes in chocolate flavor were determined by volatile analysis and descriptive sensory evaluation. Results were analyzed by analysis of variance (ANOVA), cluster analysis, principal component analysis (PCA), and linear partial least-squares regression analysis (PLS). Volatile concentration and loss were significantly affected by storage conditions. Chocolates stored at high temperature were the most visually and texturally compromised, but volatile concentrations were affected the least, whereas samples stored at ambient, frozen, and high relative humidity conditions had significant volatile loss during storage. It was determined that high-temperature storage caused a change in crystal state due to the polymorphic shift to form VI, leading to an increase in sample hardness. Decreased solid fat content (SFC) during high-temperature storage increased instrumentally determined volatile retention, although no difference was detected in chocolate flavor during sensory analysis, possibly due to instrumental and sensory sampling techniques. When all instrumental and sensory data had been taken into account, the storage condition that had the least impact on texture, surface roughness, grain size, lipid polymorphism, fat bloom formation, volatile concentrations, and sensory attributes was storage at constant temperature and 75% relative humidity.
Ma, Chengying; Li, Junxing; Chen, Wei; Wang, Wenwen; Qi, Dandan; Pang, Shi; Miao, Aiqing
2018-06-01
Oolong tea is a typical semi-fermented tea and is famous for its unique aroma. The aim of this study was to compare the volatile compounds during manufacturing process to reveal the formation of aroma. In this paper, a method was developed based on head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with chemometrics to assess volatile profiles during manufacturing process (fresh leaves, sun-withered leaves, rocked leaves and leaves after de-enzyming). A total of 24 aroma compounds showing significant differences during manufacturing process were identified. Subsequently, according to these aroma compounds, principal component analysis and hierarchical cluster analysis showed that the four samples were clearly distinguished from each other, which suggested that the 24 identified volatile compounds can represent the changes of volatile compounds during the four steps. Additionally, sun-withering, rocking and de-enzyming can influence the variations of volatile compounds in different degree, and we found the changes of volatile compounds in withering step were less than other two manufacturing process, indicating that the characteristic volatile compounds of oolong tea might be mainly formed in rocking stage by biological reactions and de-enzyming stage through thermal chemical transformations rather than withering stage. This study suggested that HS-SPME/GC-MS combined with chemometrics methods is accurate, sensitive, fast and ideal for rapid routine analysis of the aroma compounds changes in oolong teas during manufacturing processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Hongyang; Li, Yahui; Mi, Jianing; Zhang, Min; Wang, Yuerong; Jiang, Zhihong; Hu, Ping
2017-10-24
The fermentation products of Cordyceps sinensis ( C. sinensis ) mycelia are sustainable substitutes for natural C. sinensis . However, the volatile compositions of the commercial products are still unclear. In this paper, we have developed a simultaneous distillation-extraction (SDE) and gas chromatography-mass spectrometry (GC-MS) method for the profiling of volatile components in five fermentation products. A total of 64, 39, 56, 52, and 44 components were identified in the essential oils of Jinshuibao capsule (JSBC), Bailing capsule (BLC), Zhiling capsule (ZLC), Ningxinbao capsule (NXBC), and Xinganbao capsule (XGBC), respectively. 5,6-Dihydro-6-pentyl-2H-pyran-2-one (massoia lactone) was first discovered as the dominant component in JSBC volatiles. Fatty acids including palmitic acid (C16:0) and linoleic acid (C18:2) were also found to be major volatile compositions of the fermentation products. The multivariate partial least squares-discriminant analysis (PLS-DA) showed a clear discrimination among the different commercial products as well as the counterfeits. This study may provide further chemical evidences for the quality evaluation of the fermentation products of C. sinensis mycelia.
[Characteristics of odors and VOCs from sludge direct drying process].
Chen, Wen-He; Deng, Ming-Jia; Luo, Hui; Zhang, Jing-Ying; Ding, Wen-Jie; Liu, Jun-Xin; Liu, Jun-Xin
2014-08-01
Co-processing sewage sludge by using the high-temperature feature of cement kiln can realize harmless disposal and energy recycling. In this paper, investigation on characteristics of the flue gas from sludge drying process was carried out in Guangzhou Heidelberg Yuexiu Cement Co., LTD. The composition and the main source of odors and volatile organic compounds (VOCs) emitted during the drying process were analyzed, aimed to provide scientific basis for the treatment of sewage sludge. Results showed that there were a large number of malodorous substances and VOCs in the flue gas. Sulfur dioxide and other sulfur-containing compounds were the main components in the malodorous substances, while benzene derivatives were predominant in VOCs. The compositions of odors and VOCs were influenced by the characteristics of the sludge and the heat medium (kiln tail gas). Total organic compounds in the sludge were significantly decreased after drying. Other organic substances such as volatile fatty acid, protein, and polysaccharide were also obviously reduced. The organic matter in sludge was the main source of VOCs in the flue gas. Part of sulfurous substances, such as sulfur dioxide, carbon disulfide, were from sulfur-containing substances in the sludge, and the rest were from the kiln tail gas itself.
USDA-ARS?s Scientific Manuscript database
Although many of the volatile constituents of flavor and aroma in citrus have been identified, the molecular mechanism and regulation of volatile production is not well understood. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. To this end fruits...
Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin
2012-04-01
To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.
Camelo-Méndez, G A; Ragazzo-Sánchez, J A; Jiménez-Aparicio, A R; Vanegas-Espinoza, P E; Paredes-López, O; Del Villar-Martínez, A A
2013-09-01
Anthocyanins are a group of water-soluble pigments that provide red, purple or blue color to the leaves, flowers, and fruits. In addition, benefits have been attributed to hypertension and cardiovascular diseases. This study compared the content of total anthocyanins and volatile compounds in aqueous and ethanolic extracts of four varieties of Mexican roselle, with different levels of pigmentation. The multivariable analysis of categorical data demonstrated that ethanol was the best solvent for the extraction of both anthocyanins and volatile compounds. The concentration of anthocyanin in pigmented varieties ranged from 17.3 to 32.2 mg of cyanidin 3-glucoside/g dry weight, while volatile compounds analysis showed that geraniol was the main compound in extracts from the four varieties. The principal component analysis (PCA) allowed description of results with 77.38% of variance establishing a clear grouping for each variety in addition to similarities among some of these varieties. These results were validated by the confusion matrix obtained in the classification by the factorial discriminate analysis (FDA); it can be useful for roselle varieties classification. Small differences in anthocyanin and volatile compounds content could be detected, and it may be of interest for the food industry in order to classify a new individual into one of several groups using different variables at once.
Zheng, Nan; Zhang, Jie; Wang, Jie
2017-11-01
Non-catalytic hydropyrolysis of pinewood and its components was carried out using a two-stage reactor. The main aim of this work is to investigate the hydrodeoxygenation and hydrogenation of volatile matter in the post hydrocracking reactor for oriented production of gaseous and light aromatic hydrocarbons. A portion of volatile matter, which evolved from hemicellulose, neutral extractives and lignin below 275°C, was found to be thoroughly hydrodeoxygenated preventing the release of CO 2 and CO. Increasing hydrocracking temperature from 600°C to 750°C and pressure from 1.0MPa to 5.0MPa strongly facilitated the hydrogenation reactions to target products. The summed yield of CH 4 and C 2 H 6 (dry biomass basis) reached up to 33.2% at a hydrocracking temperature of 750°C and 5.0MPa, with a concomitant 5.1% yield of BTX. All components in pinewood significantly contributed to the production of CH 4 and BTX by hydropyrolysis, differing from the case of pyrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
El Hawary, Seham S; Zaghloul, Soumaya S; El Halawany, Ali M; El Bishbishy, Mahitab H
2013-11-01
The volatile oils obtained from the leaves of four pecan cultivars growing in Egypt were evaluated for their chemical composition and antimicrobial activity. The selected cultivars (cv.) were Carya illinoinensis (Wangneh.) K. Koch. cv. Wichita, C. illinoinensis cv. Western Schley, C. illinoinensis cv. Cherokee, and C. illinoinensis cv. Sioux. The gas chromatography-mass spectrometry analyses revealed that the volatile oils from samples of the different cultivars differ in composition and percentage of their components. β-Curcumene was found as the major constituent of the cv. Wichita oil, whereas germacrene D was the major component of cv. Sioux, cv. Cherokee, and cv. Western Schley. The antimicrobial activity was assayed using the Kirby-Bauer Method by measuring the zone of inhibition of growth. All volatile oils displayed an antimicrobial activity against the tested bacterial strains. On the other hand, only the volatile oil of cv. Wichita showed an antifungal effect on Aspergillus flavus. This work has identified candidates of volatile oils for future in vivo studies to develop antibiotic substitutes for the diminution of human and animal pathogenic bacteria. Nevertheless, the variations of the volatile oil components and antimicrobial potencies of the different studied cultivars, necessitate identifying the cultivars used in future studies.
Socaci, Sonia A; Socaciu, Carmen; Tofană, Maria; Raţi, Ioan V; Pintea, Adela
2013-01-01
The health benefits of sea buckthorn (Hippophae rhamnoides L.) are well documented due to its rich content in bioactive phytochemicals (pigments, phenolics and vitamins) as well as volatiles responsible for specific flavours and bacteriostatic action. The volatile compounds are good biomarkers of berry freshness, quality and authenticity. To develop a fast and efficient GC-MS method including a minimal sample preparation technique (in-tube extraction, ITEX) for the discrimination of sea buckthorn varieties based on their chromatographic volatile fingerprint. Twelve sea buckthorn varieties (wild and cultivated) were collected from forestry departments and experimental fields, respectively. The extraction of volatile compounds was performed using the ITEX technique whereas separation and identification was performed using a GC-MS QP-2010. Principal component analysis (PCA) was applied to discriminate the differences among sample composition. Using GC-MS analysis, from the headspace of sea buckthorn samples, 46 volatile compounds were separated with 43 being identified. The most abundant derivatives were ethyl esters of 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, octanoic acid and butanoic acid, as well as 3-methylbutyl 3-methylbutanoate, 3-methylbutyl 2-methylbutanoate and benzoic acid ethyl ester (over 80% of all volatile compounds). Principal component analysis showed that the first two components explain 79% of data variance, demonstrating a good discrimination between samples. A reliable, fast and eco-friendly ITEX/GC-MS method was applied to fingerprint the volatile profile and to discriminate between wild and cultivated sea buckthorn berries originating from the Carpathians, with relevance to food science and technology. Copyright © 2013 John Wiley & Sons, Ltd.
Li, Guangwei; Chen, Xiulin; Li, Boliao; Zhang, Guohui; Li, Yiping; Wu, Junxiang
2016-01-01
Background The oriental fruit moth Grapholita molesta is a host-switching pest species. The adults highly depend on olfactory cues in locating optimal host plants and oviposition sites. Odorant binding proteins (OBPs) are thought to be responsible for recognizing and transporting hydrophobic odorants across the aqueous sensillum lymph to stimulate the odorant receptors (ORs) within the antennal sensilla and activate the olfactory signal transduction pathway. Exploring the physiological function of these OBPs could facilitate understanding insect chemical communications. Methodology/Principal Finding Two antennae-specific general OBPs (GOBPs) of G. molesta were expressed and purified in vitro. The binding affinities of G. molesta GOBP1 and 2 (GmolGOBP1 and 2) for sex pheromone components and host plant volatiles were measured by fluorescence ligand-binding assays. The distribution of GmolGOBP1 and 2 in the antennal sensillum were defined by whole mount fluorescence immunohistochemistry (WM-FIHC) experiments. The binding sites of GmolGOBP2 were predicted using homology modeling, molecular docking and site-directed mutagenesis. Both GmolGOBP1 and 2 are housing in sensilla basiconica and with no differences in male and female antennae. Recombinant GmolGOBP1 (rGmolGOBP1) exhibited broad binding properties towards host plant volatiles and sex pheromone components; rGmolGOBP2 could not effectively bind host plant volatiles but showed specific binding affinity with a minor sex pheromone component dodecanol. We chose GmolGOBP2 and dodecanol for further homology modeling, molecular docking, and site-directed mutagenesis. Binding affinities of mutants demonstrated that Thr9 was the key binding site and confirmed dodecanol bonding to protein involves a hydrogen bond. Combined with the pH effect on binding affinities of rGmolGOBP2, ligand binding and release of GmolGOBP2 were related to a pH-dependent conformational transition. Conclusion Two rGmolGOBPs exhibit different binding characteristics for tested ligands. rGmolGOBP1 has dual functions in recognition of host plant volatiles and sex pheromone components, while rGmolGOBP2 is mainly involved in minor sex pheromone component dodecanol perception. This study also provides empirical evidence for the predicted functions of key amino acids in recombinant protein ligand-binding characteristics. PMID:27152703
Fresh squeezed orange juice odor: a review.
Perez-Cacho, Pilar Ruiz; Rouseff, Russell L
2008-08-01
Fresh orange juice is a highly desirable but unstable product. This review examines analytical findings, odor activity, and variations due to cultivar, sampling methods, manner of juicing, plus possible enzymatic and microbial artifacts. Initial attempts to characterize orange juice odor were based on volatile quantitation and overemphasized the importance of high concentration volatiles. Although over 300 volatiles have been reported from GC-MS analytical studies, this review presents 36 consensus aroma active components from GC-olfactometry studies consisting of 14 aldehydes, 7 esters, 5 terpenes, 6 alcohols, and 4 ketones. Most are trace (microg/L) components. (+)-Limonene is an essential component in orange juice odor although its exact function is still uncertain. Total amounts of volatiles in mechanically squeezed juices are three to 10 times greater than hand-squeezed juices because of elevated peel oil levels. Elevated peel oil changes the relative proportion of several key odorants. Odor active components from solvent extraction studies differ from those collected using headspace techniques as they include volatiles with low vapor pressure such as vanillin. Some reported odorants such as 2,3-butanedione are microbial contamination artifacts. Orange juice odor models confirm that fresh orange aroma is complex as the most successful models contain 23 odorants.
Distillation process using microchannel technology
Tonkovich, Anna Lee [Dublin, OH; Simmons, Wayne W [Dublin, OH; Silva, Laura J [Dublin, OH; Qiu, Dongming [Carbondale, IL; Perry, Steven T [Galloway, OH; Yuschak, Thomas [Dublin, OH; Hickey, Thomas P [Dublin, OH; Arora, Ravi [Dublin, OH; Smith, Amanda [Galloway, OH; Litt, Robert Dwayne [Westerville, OH; Neagle, Paul [Westerville, OH
2009-11-03
The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.
Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.
Lee, Sang Mi; Oh, Jieun; Hurh, Byung-Serk; Jeong, Gwi-Hwa; Shin, Young-Keum; Kim, Young-Suk
2016-12-01
This study investigated the profiles of volatile compounds produced by Lactobacillus paracasei during oat fermentation using gas chromatography-mass spectrometry coupled with headspace solid-phase microextraction method. A total of 60 compounds, including acids, alcohols, aldehydes, esters, furan derivatives, hydrocarbons, ketones, sulfur-containing compounds, terpenes, and other compounds, were identified in fermented oat. Lipid oxidation products such as 2-pentylfuran, 1-octen-3-ol, hexanal, and nonanal were found to be the main contributors to oat samples fermented by L. paracasei with the level of 2-pentylfuran being the highest. In addition, the contents of ketones, alcohols, acids, and furan derivatives in the oat samples consistently increased with the fermentation time. On the other hand, the contents of degradation products of amino acids, such as 3-methylbutanal, benzaldehyde, acetophenone, dimethyl sulfide, and dimethyl disulfide, decreased in oat samples during fermentation. Principal component analysis (PCA) was applied to discriminate the fermented oat samples according to different fermentation times. The fermented oats were clearly differentiated on PCA plots. The initial fermentation stage was mainly affected by aldehydes, whereas the later samples of fermented oats were strongly associated with acids, alcohols, furan derivatives, and ketones. The application of PCA to data of the volatile profiles revealed that the oat samples fermented by L. paracasei could be distinguished according to fermentation time. © 2016 Institute of Food Technologists®.
Nojima, Satoshi; Linn, Charles; Roelofs, Wendell
2003-10-01
Solid-phase microextraction and gas chromatography coupled with electroantennographic detection were used to identify volatiles from fruit of flowering dogwood, Cornus florida, as key attractants for Rhagoletis pomonella flies originating from dogwood fruit. A six-component blend containing ethyl acetate (54.9%), 3-methylbutan-1-ol (27.5%), isoamyl acetate (0.9%), dimethyl trisulfide (1.9%), 1-octen-3-ol (9.1%), and beta-caryophyllene (5.8%) was identified from flowering dogwood fruit that gave consistent EAD activity. In a flight tunnel assay there was no significant difference in the response of individual dogwood flies exhibiting upwind anemotactic flight to volatile extracts from dogwood fruit and the six-component synthetic mixture. Dogwood flies also displayed significantly greater levels of upwind flight to sources with the dogwood volatile blend than with previously identified volatile blends from domestic apple or hawthorn fruit. Selected subtraction assays showed that the three-component mixture of 3-methylbutan-1-ol, 1-octen-3-ol, and beta-caryophyllene elicited levels of upwind flight to the source equivalent to the six-component mixture. Our study adds to previous ones showing that populations of Rhagoletis pomonella flies infesting apple, hawthorn, and flowering dogwood fruit are attracted to unique mixtures of fruit volatiles, supporting the hypothesis that host fruit odors could be key traits in sympatric host shifts and establishing host fidelity within members of the Rhagoletis pomonella species complex.
Volatility of source apportioned wintertime organic aerosol in the city of Athens
NASA Astrophysics Data System (ADS)
Louvaris, Evangelos E.; Florou, Kalliopi; Karnezi, Eleni; Papanastasiou, Dimitrios K.; Gkatzelis, Georgios I.; Pandis, Spyros N.
2017-06-01
The volatility distribution of ambient organic aerosol (OA) and its components was measured during the winter of 2013 in the city of Athens combining a thermodenuder (TD) and a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Positive Matrix Factorization (PMF) analysis of both the ambient and the thermodenuder AMS-spectra resulted in a four-factor solution for the OA, namely: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking OA (COA), and oxygenated OA (OOA). The thermograms of the four factors were analyzed and the corresponding volatility distributions were estimated using the volatility basis set (VBS). All four factors included compounds with a wide range of effective volatilities from 10 to less than 10-4 μg m-3 at 298 K. Almost 40% of the HOA consisted of low-volatility organic compounds (LVOCs) with the semi-volatile compounds (SVOCs) representing roughly 30%, while the remaining 30% consisted of extremely low volatility organic compounds (ELVOCs). BBOA was more volatile than the HOA factor on average, with 10% ELVOCs, 40% LVOCs, and 50% SVOCs. 10% of the COA consisted of ELVOCs, another 65% LVOCs, and 50% SVOCs. Finally, the OOA was the least volatile factor and included 40% ELVOCs, 25% LVOCs, and 35% SVOCs. Combining the volatility distributions and the O:C ratios of the various factors, we placed our results in the 2D-VBS analysis framework of Donahue et al. (2012). HOA and BBOA are in the expected region but also include an ELVOC component. COA is in similar range as HOA, but on average is half an order of magnitude more volatile. The OOA in these wintertime conditions had a moderate O:C ratio and included both semi-volatile and extremely low volatility components. The above results are sensitive to the assumed values of the effective vaporization enthalpy and the accommodation coefficient. A reduction of the accommodation coefficient by an order of magnitude or the reduction of the vaporization enthalpy by 20 kJ mol-1 results in the increase of the average volatility by half an order of magnitude.
Zhang, X M; Ai, N S; Wang, J; Tong, L J; Zheng, F P; Sun, B G
2016-11-01
The purpose of this study was to modify the amount and composition of volatile components in bovine milk products, in an attempt to create a recombined skim milk product with full-fat milk flavor but with only 0.5% fat. The experimental plan included lipase-catalyzed hydrolysis and esterification reactions using Palatase 20000L (Novozymes, Bagsværd, Denmark). The results, measured by the methods of volatile compositional analysis and sensory evaluation, showed that the flavor profiles of the optimal recombined milk products were effectively modified in this way, possessing intensified characteristic volatile flavor components with rather low level of fat contents, and the sensory characters were quite realistic to natural whole milk flavor. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Polatoğlu, Kaan; Arsal, Seniha; Demirci, Betül; Can Başer, Kemal Hüsnü
2016-01-01
Lathyrus species including L. ochrus and L. sativus are known for their food, feed and horticultural uses. Despite their widespread uses and cultivation, there is limited information on their chemistry. Previously, only the essential oil composition of L. rotundifolius, L. vernus and volatiles of L. odoratus have been reported. In the present research, volatiles of seven Lathyrus L. species, namely, L. aphaca, L. ochrus, L. cicera, L. sativus, L. gorgonei, L. saxatilis and L. blepharicarpos var. cyprius were analyzed by SPME GC-MS for the first time. Plant materials were collected from five different locations in Cyprus (February-March 2012). The main components of L. aphaca volatiles from four locations were yomogi alcohol 26.1-16.5%, camphor 21.6-10.1%, tetradecane 14.3-0%; L. cicera from five locations were yomogi alcohol 20.3-3.0%, camphor 18.7-2.0%; L. gorgonei from two locations were yomogi alcohol 24.5-13.1%, camphor 17.1-9.0% and L. sativus was yomogi alcohol 11.4%, camphor 9.0%. Yomogi alcohol was not present as the major compound in L. ochrus (2-methyl butanoic acid 7.2%), L. saxatilis (hexanal 7.7%) and L. blepharicarpos var. cyprius ((Z)-3-hexenal 8.6%) volatiles. The volatiles of the Lathyrus species were also compared with each other quantitative and qualitatively using AHC analysis to find out differences among the species. The irregular monoterpene yomogi alcohol is reported from the Lathyrus and the Leguminosae family for the first time. The existence of yomogi alcohol in Lathyrus volatiles points out that the irregular monoterpenes are not restricted solely to Asteraceae family.
Flavor profiling of apple ciders from the UK and Scandinavian region.
Qin, Zihan; Petersen, Mikael A; Bredie, Wender L P
2018-03-01
The aim of this study was to characterize the flavor profiles of 14 commercial apple ciders from the United Kingdom and Scandinavian region. The flavor properties were established by sensory profiling and analysis of volatile and non-volatile components, including titratable acidity, pH, residual sugars and organic acids. A total of 72 volatile compounds were identified in the 14 apple ciders using dynamic headspace sampling (DHS) coupled to gas chromatography-mass spectrometry (GC/MS). The main volatile compounds found in apple ciders were esters and higher alcohols, followed by aldehydes and fatty acids. Sensory characterizations of the aroma and taste of apple ciders were carried out by a trained sensory panel using descriptive analysis with 23 sensory attributes. The attributes apple, cooked apple, yeasty, sweet and sour were the most predominant sensory descriptors used to describe the similarities and differences in the samples. Principal component analysis (PCA) showed that floral and fruity (fresh apple, banana and pear) odors were highly associated with sweet taste and opposed to the more complex aroma attributes (yeasty, lactic, chemical, mouldy, black pepper and earthy) and sour taste. Most of the UK apple ciders were characterized by these complex odors and taste notes sour, astringent and bitter, whereas ciders from the Scandinavian region had diverse sensory profiles. Partial least squares regression (PLS) based on the sensory and chemical data was able to cluster the ciders according to differences in production methods (oak-aged or spontaneous fermentation; controlled malolactic fermentation; industrial production with flavor modifications). Moreover, this study also suggested that ciders with marked levels of acetate esters were characterized by cooked/fresh apple, citrus and tropical fruit odors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mu, Jingqing; Gao, Xun; Li, Qing; Yang, Xiaomei; Yang, Wenling; Sun, Xu; Bi, Kaishun; Zhang, Huifen
2017-08-01
Guanxin Shutong Capsule, an effective traditional Chinese medicine, is widely used for coronary heart disease clinically. Volatile components are one of its important bioactive constituents. To better understand the material basis for the therapeutic effects, the components of Guanxin Shutong Capsule absorbed into the blood and their metabolites were identified based on gas chromatography with mass spectrometry coupled with vortex-ultrasound-assisted dispersive liquid-liquid microextraction. As a result, three prototypes and 15 metabolites were identified or tentatively characterized in rat plasma. Subsequently, a pharmacokinetic study was carried out to monitor the concentrations of the main bioactive constituents and metabolites (isoborneol, borneol, eugenol, and camphor) by gas chromatography with mass spectrometry in rat plasma following oral administration of single herb extract and different combinations of herbs in this prescription. Compared to other groups, a statistically significant difference of the pharmacokinetic properties was obtained when the total complex prescription was administered, indicating possible drug-drug interactions among the complex ingredients of Guanxin Shutong Capsule. These findings provided an experimental basis concerning the clinical application and medicinal efficacy of Guanxin Shutong Capsule in the treatment of coronary heart disease. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Xin Hua; da Silva, Jaime A Teixeira; Jia, Yong Xia; Zhao, Jie Tang; Ma, Guo Hua
2012-01-01
The chemical composition of volatile compounds from pericarp oils of Indian sandalwood, Santalum album L., isolated by hydrodistillation and solvent extraction, were analyzed by GC and GC-MS. The pericarps yielded 2.6 and 5.0% volatile oil by hydrodistillation and n-hexane extraction, and they were colorless and yellow in color, respectively. A total of 66 volatile components were detected. The most prominent compounds were palmitic and oleic acids, representing about 40-70% of the total oil. Many fragrant constituents and biologically active components, such as alpha- and beta-santalol, cedrol, esters, aldehydes, phytosterols, and squalene were present in the pericarp oils. This is the first report of the volatile composition of the pericarps of any Santalum species.
NASA Technical Reports Server (NTRS)
Morgan, J. W.; Anders, E.
1979-01-01
The chemical composition of Mars is estimated from the cosmochemical model of Ganapathy and Anders (1974) with additional petrological and geophysical constraints. The model assumes that planets and chondrites underwent the same fractionation processes in the solar nebula, and constraints are imposed by the abundance of the heat-producing elements, U, Th and K, the volatile-rich component and the high density of the mantle. Global abundances of 83 elements are presented, and it is noted that the mantle is an iron-rich garnet wehrlite, nearly identical to the bulk moon composition of Morgan at al. (1978) and that the core is sulfur poor (3.5% S). The comparison of model compositions for the earth, Venus, Mars, the moon and a eucrite parent body suggests that volatile depletion correlates mainly with size rather than with radial distance from the sun.
Li, Yuying; Ma, Hong; Wan, Youming; Li, Taiqiang; Liu, Xiuxian; Sun, Zhenghai; Li, Zhenghong
2016-04-22
Luculia plants are famed ornamental plants with sweetly fragrant flowers, of which L. pinceana Hooker, found primarily in Yunnan Province, China, has the widest distribution. Solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) was employed to identify the volatile organic compounds (VOCs) emitted from different flower development stages of L. pinceana for the evaluation of floral volatile polymorphism. Peak areas were normalized as percentages and used to determine the relative amounts of the volatiles. The results showed that a total of 39 compounds were identified at four different stages of L. pinceana flower development, including 26 at the bud stage, 26 at the initial-flowering stage, 32 at the full-flowering stage, and 32 at the end-flowering stage. The most abundant compound was paeonol (51%-83%) followed by (E,E)-α-farnesene, cyclosativene, and δ-cadinene. All these volatile compounds create the unique fragrance of L. pinceana flower. Floral scent emission offered tendency of ascending first and descending in succession, meeting its peak level at the initial-flowering stage. The richest diversity of floral volatile was detected at the third and later periods of flower development. Principal component analysis (PCA) indicated that the composition and its relative content of floral scent differed throughout the whole flower development. The result has important implications for future floral fragrance breeding of Luculia. L. pinceana would be adequate for a beneficial houseplant and has a promising prospect for development as essential oil besides for a fragrant ornamental owing to the main compounds of floral scent with many medicinal properties.
D'Agostino, M F; Sanz, J; Martínez-Castro, I; Giuffrè, A M; Sicari, V; Soria, A C
2014-07-01
Statistical analysis has been used for the first time to evaluate the dispersion of quantitative data in the solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis of blackberry (Rubus ulmifolius Schott) volatiles with the aim of improving their precision. Experimental and randomly simulated data were compared using different statistical parameters (correlation coefficients, Principal Component Analysis loadings and eigenvalues). Non-random factors were shown to significantly contribute to total dispersion; groups of volatile compounds could be associated with these factors. A significant improvement of precision was achieved when considering percent concentration ratios, rather than percent values, among those blackberry volatiles with a similar dispersion behavior. As novelty over previous references, and to complement this main objective, the presence of non-random dispersion trends in data from simple blackberry model systems was evidenced. Although the influence of the type of matrix on data precision was proved, the possibility of a better understanding of the dispersion patterns in real samples was not possible from model systems. The approach here used was validated for the first time through the multicomponent characterization of Italian blackberries from different harvest years. Copyright © 2014 Elsevier B.V. All rights reserved.
Ghader, Masoud; Shokoufi, Nader; Es-Haghi, Ali; Kargosha, Kazem
2017-11-01
A novel and efficient headspace solid-phase microextraction (HS-SPME) method, followed by gas chromatography mass spectrometry (GC-MS), was developed to study volatile organic compounds (VOCs) emerging from microorganisms. Two homemade SPME fibers, a semi-polar poly (dimethylsiloxane) (PDMS) fiber, and a polar polyethylene glycol (PEG) fiber, along with two commercial fibers (PDMS and PDMS/DVB) were used to collect VOCs emerging from Clostridium tetani which was cultured in different media. The adsorbed VOCs were desorbed and identified, in vitro, using GC-MS. The adsorption efficiency was improved by optimizing the time duration of adsorption and desorption. About 50 components were identified by the proposed method. The main detected compounds appeared to be sulfur containing compounds such as butanethioic acid S-methyl ester, dimethyl trisulfide, and dimethyl tetrasulfide. These volatile sulfur containing compounds are derived from amino acids containing the sulfur element, which probably coexist in the mentioned bacterium or are added to the culture media. The developed HS-SPME-GC-MS method allowed the determination of the chemical fingerprint of Clostridium tetani volatile constituents, and thus provides a new, simple, and reliable tool for studying the growth of microorganisms. Graphical abstract Investigation of biogenic VOCs released from Clostridium tetani using SPME-GC-MS.
Flying the fly: long-range flight behavior of Drosophila melanogaster to attractive odors.
Becher, Paul G; Bengtsson, Marie; Hansson, Bill S; Witzgall, Peter
2010-06-01
The fruit fly, Drosophila melanogaster Meigen (Diptera: Drosophilidae), is a model for how animals sense, discriminate, and respond to chemical signals. However, with D. melanogaster our knowledge of the behavioral activity of olfactory receptor ligands has relied largely on close-range attraction, rather than on long-range orientation behavior. We developed a flight assay to relate chemosensory perception to behavior. Headspace volatiles from vinegar attracted 62% of assayed flies during a 15-min experimental period. Flies responded irrespective of age, sex, and mating state, provided they had been starved. To identify behaviorally relevant chemicals from vinegar, we compared the responses to vinegar and synthetic chemicals. Stimuli were applied by a piezoelectric sprayer at known and constant release rates. Re-vaporized methanol extracts of Super Q-trapped vinegar volatiles attracted as many flies as vinegar. The main volatile component of vinegar, acetic acid, elicited significant attraction as a single compound. Two other vinegar volatiles, 2-phenyl ethanol and acetoin, produced a synergistic effect when added to acetic acid. Geosmin, a microbiological off-flavor, diminished attraction to vinegar. This wind tunnel assay based on a conspicuous and unambiguous behavioral response provides the necessary resolution for the investigation of physiologically and ecologically relevant odors and will become an essential tool for the functional analysis of the D. melanogaster olfactory system.
Krist, Sabine; Stuebiger, Gerald; Unterweger, Heidrun; Bandion, Franz; Buchbauer, Gerhard
2005-10-19
Poppy seed oil (Oleum Papaveris Seminis) is used for culinary and pharmaceutical purposes, as well as for making soaps, paints, and varnishes. Astonishingly, hardly anything was yet known about the volatile compounds of this promising comestible. Likewise, there are no current published data about the triglyceride (TAG) composition of poppy seed oils available. In this investigation solid-phase microextraction (SPME) with DVB/Carboxen/PDMS Stable-Flex fiber was applied to the study of volatile compounds of several seed oil samples from Papaver somniferum L. (Papaveraceae). 1-Pentanol (3.3-4.9%), 1-hexanal (10.9-30.9%), 1-hexanol (5.3-33.7%), 2-pentylfuran (7.2-10.0%), and caproic acid (2.9-11.5%) could be identified as the main volatile compounds in all examined poppy seed oil samples. Furthermore, the TAG composition of these oils was analyzed by MALDI-ReTOF- and ESI-IT-MS/MS. The predominant TAG components were found to be composed of linoleic, oleic, and palmitic acid, comprising approximately 70% of the oils. TAG patterns of the different poppy varieties were found to be very homogeneous, showing also no significant differences in terms of the applied pressing method of the plant seeds.
NASA Astrophysics Data System (ADS)
Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vásquez, M.; Borrás, E.; Ródenas, M.
2013-12-01
The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high performance liquid chromatography mass spectrometry (HPLC-ITMS), high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18-29% depending on initial precursor (VOC : NOx) mixing ratios. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O : C ratios, where functionalisation rather than fragmentation is mainly observed as a~result of the stability of the ring. The SOA species observed can be characterized as semi-volatile to low volatile oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.
Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice.
Cheong, Mun Wai; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Yu, Bin
2012-12-15
Two cultivars (Citrus grandis (L.) Osbeck PO 51 and PO 52) of Malaysian pomelo juices were studied by examining their physicochemical properties (i.e. pH, °Brix and titratable acidity), volatile and non-volatile components (sugars and organic acids). Using solvent extraction and headspace solid-phase microextraction, 49 and 65 volatile compounds were identified by gas chromatography-mass spectrometer/flame ionisation detector, respectively. Compared to pink pomelo juice (cultivar PO 52), white pomelo juice (cultivar PO 51) contained lower amount of total volatiles but higher terpenoids. Descriptive sensory evaluation indicated that white pomelo juice was milder in taste especially acidity. Furthermore, principal component analysis and partial least square regression revealed a strong correlation in pomelo juices between their chemical components and some flavour attributes (i.e. acidic, fresh, peely and sweet). Hence, this research enabled a deeper insight into the flavour of this unique citrus fruit. Copyright © 2012 Elsevier Ltd. All rights reserved.
What distinguishes individual stocks from the index?
NASA Astrophysics Data System (ADS)
Wagner, F.; Milaković, M.; Alfarano, S.
2010-01-01
Stochastic volatility models decompose the time series of financial returns into the product of a volatility factor and an iid noise factor. Assuming a slow dynamic for the volatility factor, we show via nonparametric tests that both the index as well as its individual stocks share a common volatility factor. While the noise component is Gaussian for the index, individual stock returns turn out to require a leptokurtic noise. Thus we propose a two-component model for stocks, given by the sum of Gaussian noise, which reflects market-wide fluctuations, and Laplacian noise, which incorporates firm-specific factors such as firm profitability or growth performance, both of which are known to be Laplacian distributed. In the case of purely Gaussian noise, the chi-squared probability for the density of individual stock returns is typically on the order of 10-20, while it increases to values of O(1) by adding the Laplace component.
Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms.
de Pinho, P Guedes; Ribeiro, Bárbara; Gonçalves, Rui F; Baptista, Paula; Valentão, Patrícia; Seabra, Rosa M; Andrade, Paula B
2008-03-12
Volatile and semivolatile components of 11 wild edible mushrooms, Suillus bellini, Suillus luteus, Suillus granulatus, Tricholomopsis rutilans, Hygrophorus agathosmus, Amanita rubescens, Russula cyanoxantha, Boletus edulis, Tricholoma equestre, Fistulina hepatica, and Cantharellus cibarius, were determined by headspace solid-phase microextraction (HS-SPME) and by liquid extraction combined with gas chromatography-mass spectrometry (GC-MS). Fifty volatiles and nonvolatiles components were formally identified and 13 others were tentatively identified. Using sensorial analysis, the descriptors "mushroomlike", "farm-feed", "floral", "honeylike", "hay-herb", and "nutty" were obtained. A correlation between sensory descriptors and volatiles was observed by applying multivariate analysis (principal component analysis and agglomerative hierarchic cluster analysis) to the sensorial and chemical data. The studied edible mushrooms can be divided in three groups. One of them is rich in C8 derivatives, such as 3-octanol, 1-octen-3-ol, trans-2-octen-1-ol, 3-octanone, and 1-octen-3-one; another one is rich in terpenic volatile compounds; and the last one is rich in methional. The presence and contents of these compounds give a considerable contribution to the sensory characteristics of the analyzed species.
Detailed finite element method modeling of evaporating multi-component droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diddens, Christian, E-mail: C.Diddens@tue.nl
The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet.more » Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.« less
Rinaldi, Maurizio; Gindro, Roberto; Barbeni, Massimo; Allegrone, Gianna
2009-01-01
Orange (Citrus sinensis L.) juice comprises a complex mixture of volatile components that are difficult to identify and quantify. Classification and discrimination of the varieties on the basis of the volatile composition could help to guarantee the quality of a juice and to detect possible adulteration of the product. To provide information on the amounts of volatile constituents in fresh-squeezed juices from four orange cultivars and to establish suitable discrimination rules to differentiate orange juices using new chemometric approaches. Fresh juices of four orange cultivars were analysed by headspace solid-phase microextraction (HS-SPME) coupled with GC-MS. Principal component analysis, linear discriminant analysis and heuristic methods, such as neural networks, allowed clustering of the data from HS-SPME analysis while genetic algorithms addressed the problem of data reduction. To check the quality of the results the chemometric techniques were also evaluated on a sample. Thirty volatile compounds were identified by HS-SPME and GC-MS analyses and their relative amounts calculated. Differences in composition of orange juice volatile components were observed. The chosen orange cultivars could be discriminated using neural networks, genetic relocation algorithms and linear discriminant analysis. Genetic algorithms applied to the data were also able to detect the most significant compounds. SPME is a useful technique to investigate orange juice volatile composition and a flexible chemometric approach is able to correctly separate the juices.
Hierarchical Analytical Approaches for Unraveling the Composition of Proprietary Mixtures
The composition of commercial mixtures including pesticide inert ingredients, aircraft deicers, and aqueous film-forming foam (AFFF) formulations, and by analogy, fracking fluids, are proprietary. Quantitative analytical methodologies can only be developed for mixture components once their identities are known. Because proprietary mixtures may contain volatile and non-volatile components, a hierarchy of analytical methods is often required for the full identification of all proprietary mixture components.
Active non-volatile memory post-processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kannan, Sudarsun; Milojicic, Dejan S.; Talwar, Vanish
A computing node includes an active Non-Volatile Random Access Memory (NVRAM) component which includes memory and a sub-processor component. The memory is to store data chunks received from a processor core, the data chunks comprising metadata indicating a type of post-processing to be performed on data within the data chunks. The sub-processor component is to perform post-processing of said data chunks based on said metadata.
Mastelić, Josip; Politeo, Olivera; Jerković, Igor
2008-04-07
The essential oil of Helichrysum italicum (Roth) G. Don (everlasting or Immortelle essential oil) was isolated by hydrodistillation and analysed by GC and GCMS. Forty four compounds were identified. The main components were alpha-pinene(12.8%), 2-methyl-cyclohexyl pentanoate (11.1 %), neryl acetate (10.4%), 1,7-di-epi-alpha-cedrene (6.8%) and other compounds. The oil was fractionated and ester-containing fraction was hydrolysed with KOH/H(2)SO(4). The liberated volatiles were analysed by GC and GC-MS: three phenols and twenty seven volatile carboxylic acids were identified[70% low fatty acids (C(2)-C(5)), 15% C(10)-C(12) acids and 15% other acids]. The main acids were acetic acid (24.3%) propanoic acid (17.2%), 2-methylpropanoic acid (11.4%),dodecanoic acid (8.7%), 2-methylbutanoic acid (8.3%), (Z)-2-methylbutenoic acid(5.1%) and decanoic acid (4.6%). With respect to the identified bonded carboxylic acids,the minimal number of esters in the oil was twenty seven, but their overall quantity was probably larger due to different possible combinations of alcohols with acids to form esters. On the other hand, only six main esters were identified in the oil before fractionation and hydrolysis.
Xia, Qiang; Mei, Jun; Yu, Wenjuan; Li, Yunfei
2017-01-01
Germination favors to significantly enhance functional components and health attributes of whole-grain brown rice (BR), but the production of germinated BR (GBR) compromises the typical rice flavor perception due to soaking process. Simultaneously, high hydrostatic pressure (HHP) is considered as an effective processing technique to enhance micronutrients utilization efficiency of GBR and improve products flavor, but no information about the effects of HHP treatments on volatile fingerprinting of GBR has been reported. Therefore, the objective of this work was to apply HHP to improve the flavor and odor of GBR grains by exploring HHP-induced changes in aroma compounds. GBR grains were obtained by incubating at 37°C for 36h, and subsequently subjected to HHP treatments at pressures 100, 300 and 500MPa for 15min, using 0.1MPa as control. Headspace solid-phase micro extraction coupled to gas chromatography mass spectrometry was used to characterize process-induced shifts of volatile organic compounds fingerprinting, followed by multivariate analysis. Our results confirmed the significant reduction of total volatile fractions derived from germination process. Contrarily, the following HHP treatments greatly enhanced the flavor components of GBR, particularly characteristic odorants including aldehydes, ketones, and alcohols. Principal component analysis further indicated the different influence of germination and high pressure on the changes in volatile components. Partial least square-discrimination analysis suggested that 4-vinylguaiacol was closely linked to germination, whereas E,E-2,4-decadienal, E-2-hexenal, E,E-2,4-heptadienal and benzyl alcohol could be considered as volatile biomarkers of high pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Salmerón, Ivan; Rozada, Raquel; Thomas, Keith; Ortega-Rivas, Enrique; Pandiella, Severino S
2014-04-01
Most of the commercialized lactic acid fermented products are dairy-based. Hence, the development of non-dairy fermented products with probiotic properties draws significant attention within the functional foods industry. The microorganisms used in such products have complex enzyme systems through which they generate diverse metabolites (volatile and non-volatile) that provide significant flavour attributes of importance for fermented foods. The correlation of the volatile flavour compounds of a malt beverage fermented with a Bifidobacterium breve strain with its unique sensory characteristics was performed. The volatile composition analysis exposed the presence of 12 components. Eight of these flavour volatiles were produced through the metabolic activity of the bifidobacteria strain. Notably acetic acid, of reported sour flavour characteristics, exhibited the greatest intensity. Four components of considerable organoleptic characteristics were identified as Maillard-derived products, namely maltol, pyranone, 2 (5H)-furanmethanol and 3-furanmethanol. The sensory evaluation exhibited that the fermented cereal beverage had a sour flavour with mild sweet and malty notes. These results indicate that the volatile compounds identified can be appointed as significant flavour markers of the novel fermented cereal beverage.
Size segregation of component coals during pulverization of high volatile/low volatile blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, A.; Orban, P.C.
1995-12-31
Samples of single high volatile (hvb) and low volatile (lvb) coals and binary blends in proportions ranging from 75%hvb/25%lvb to 25%hvb/75%lvb were pulverized in a Raymond 271 bowl mill and then screened into different size fractions. The ranks of two of the feed coals were sufficiently different that individual particles could be distinguished microscopically. This enabled the proportions of each feed coal in the various blend size fractions to be determined. The difference in rank and therefore grindability of the components (Hardgrove indices of 99 versus 50) was such that significant segregation resulted. For example, the 25%hvb/75%lvb blend, upon grinding,more » produced a +50 mesh (300 {micro}m) fraction with 30% lvb coal, and a {minus}325 mesh (45 {micro}m) fraction with 84% lvb coal. The effect of this segregation according to size was a notable progressive decrease in volatility towards the finer fractions, consistent with an increase in the proportion of lvb particles; differences in volatile matter (d.b.) between coarsest and finest fractions of up to 6.9% were encountered. Although most of the segregation is attributable to rank difference between the component coals, part appears to be due to the lower grindability of liptinite-rich lithotypes in the hvb coal.« less
NASA Astrophysics Data System (ADS)
Pratama, Rusky I.; Rostini, I.; Rochima, E.
2018-02-01
Fish species and processing methods could affect the volatile flavour composition and amino acid profile of fishery commodity. The objectives of this study were to identify volatile components and amino acid profile of two considered predominant fish species in Indonesia which are freshwater Patin catfish (Pangasius hypophthalmus) and marine water fish, Spanish mackerel (Scomberomorus commerson). The methods used in this study were to detect volatile compounds using Gas Chromatography/Mass Spectrometry (GC/MS) on fresh and steamed of both species samples (100°C for 30 minutes) and amino acid profile were also analyzed using High Performance Liquid Chromatography (HPLC). The volatile components analysis successfully detects as much as 29 and 59 volatiles compounds in fresh and steamed Patin catfish respectively, while 37 and 102 compounds were detected in fresh and steamed Spanish mackerel samples. Most of detected components derives from hydrocarbons, aldehydes, alcohols and ketone groups which could affected by their chemical composition and resulted from various thermal involved reaction. The amino acids profile identification results showed that glutamic acid was found higher compared to other amino acids standards in both samples. Glutamic acid is non-essential amino acid which is important in umami taste substances.
USDA-ARS?s Scientific Manuscript database
Coupled gas chromatographic-electroantennographic detection (GC-EAD) analyses of Super Q collected worker honey bee volatiles revealed several components that elicited antennal responses by the small hive beetle Aethina tumida. However, GC-MS analysis showed that eight of these EAD-active components...
Chemical Composition and Character Impact Odorants in Volatile Oils from Edible Mushrooms.
Usami, Atsushi; Motooka, Ryota; Nakahashi, Hiroshi; Marumoto, Shinsuke; Miyazawa, Mitsuo
2015-11-01
The aim of this study was to investigate the chemical composition and the odor-active components of volatile oils from three edible mushrooms, Pleurotus ostreatus, Pleurotus eryngii, and Pleurotus abalonus, which are well-known edible mushrooms. The volatile components in these oils were extracted by hydrodistillation and identified by GC/MS, GC-olfactometry (GC-O), and aroma extract dilution analysis (AEDA). The oils contained 40, 20, and 53 components, representing 83.4, 86.0, and 90.8% of the total oils in P. ostreatus, P. eryngii, and P. abalonus, respectively. Odor evaluation of the volatile oils from the three edible mushrooms was also carried out using GC-O, AEDA, and odor activity values, by which 13, eight, and ten aroma-active components were identified in P. ostreatus, P. eryngii, and P. abalonus, respectively. The most aroma-active compounds were C8 -aliphatic compounds (oct-1-en-3-ol, octan-3-one, and octanal) and/or C9 -aliphatic aldehydes (nonanal and (2E)-non-2-enal). Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Zhan, Ru-Lin; Wu, Hong-Xia; Yao, Quan-Sheng; Xu, Wen-Tian; Luo, Chun; Zhou, Yi-Gang; Liang, Qing-Zhi; Wang, Song-Biao
2017-01-01
Aroma is important in assessing the quality of fresh fruit and their processed products, and could provide good indicators for the development of local cultivars in the mango industry. In this study, the volatile diversity of 25 mango cultivars from China, America, Thailand, India, Cuba, Indonesia, and the Philippines was investigated. The volatile compositions, their relative contents, and the intervarietal differences were detected with headspace solid phase microextraction tandem gas chromatography-mass spectrometer methods. The similarities were also evaluated with a cluster analysis and correlation analysis of the volatiles. The differences in mango volatiles in different districts are also discussed. Our results show significant differences in the volatile compositions and their relative contents among the individual cultivars and regions. In total, 127 volatiles were found in all the cultivars, belonging to various chemical classes. The highest and lowest qualitative abundances of volatiles were detected in ‘Zihua’ and ‘Mallika’ cultivars, respectively. Based on the cumulative occurrence of members of the classes of volatiles, the cultivars were grouped into monoterpenes (16 cultivars), proportion and balanced (eight cultivars), and nonterpene groups (one cultivars). Terpene hydrocarbons were the major volatiles in these cultivars, with terpinolene, 3-carene, caryophyllene and α-Pinene the dominant components depending on the cultivars. Monoterpenes, some of the primary volatile components, were the most abundant aroma compounds, whereas aldehydes were the least abundant in the mango pulp. β-Myrcene, a major terpene, accounted for 58.93% of the total flavor volatile compounds in ‘Xiaofei’ (Philippens). γ-Octanoic lactone was the only ester in the total flavor volatile compounds, with its highest concentration in ‘Guiya’ (China). Hexamethyl cyclotrisiloxane was the most abundant volatile compound in ‘Magovar’ (India), accounting for 46.66% of the total flavor volatiles. A typical aldehydic aroma 2,6-di-tert-butyl-4-sec-butylphenol, was detected in ‘Gleck’. A highly significant positive correlation was detected between Alc and K, Alk and Nt, O and L. Cultivars originating from America, Thailand, Cuba, India, Indonesia and the Philippines were more similar to each other than to those from China. This study provides a high-value dataset for use in development of health care products, diversified mango breeding, and local extension of mango cultivars. PMID:29211747
Glutathione protects Candida albicans against horseradish volatile oil.
Bertóti, Regina; Vasas, Gábor; Gonda, Sándor; Nguyen, Nhat Minh; Szőke, Éva; Jakab, Ágnes; Pócsi, István; Emri, Tamás
2016-10-01
Horseradish essential oil (HREO; a natural mixture of different isothiocyanates) had strong fungicide effect against Candida albicans both in volatile and liquid phase. In liquid phase this antifungal effect was more significant than those of its main components allyl, and 2-phenylethyl isothiocyanate. HREO, at sublethal concentration, induced oxidative stress which was characterized with elevated superoxide content and up-regulated specific glutathione reductase, glutathione peroxidase, catalase and superoxide dismutase activities. Induction of specific glutathione S-transferase activities as marker of glutathione (GSH) dependent detoxification was also observed. At higher concentration, HREO depleted the GSH pool, increased heavily the superoxide production and killed the cells rapidly. HREO and the GSH pool depleting agent, 1-chlore-2,4-dinitrobenzene showed strong synergism when they were applied together to kill C. albicans cells. Based on all these, we assume that GSH metabolism protects fungi against isothiocyanates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogen Sulfide and Ionic Liquids: Absorption, Separation, and Oxidation.
Chiappe, Cinzia; Pomelli, Christian Silvio
2017-06-01
Economical and environmental concerns are the main motivations for development of energy-efficient processes and new eco-friendly materials for the capture of greenhouse gases. Currently, H 2 S capture is dominated by physical and/or chemical absorption technologies, which are, however, energy intensive and often problematic from an environmental point of view due to emission of volatile solvent components. Ionic liquids have been proposed as a promising alternative to conventional solvents because of their low volatility and other interesting properties. The aim of the present review paper is to provide a detailed overview of the achievements and difficulties that have been encountered in finding suitable ionic liquids for H 2 S capture. The effect of ionic liquid anions, cations, and functional groups on the H 2 S absorption, separation, and oxidation are highlighted. Recent developments on yet scarcely available molecular simulations and on the development of robust predictive methods are also discussed.
Chahdoura, Hassiba; Barreira, João C M; Fernández-Ruiz, Virginia; Morales, Patricia; Calhelha, Ricardo C; Flamini, Guido; Soković, Marina; Ferreira, Isabel C F R; Achour, Lotfi
2016-03-01
Opuntia spp. flowers have been traditionally used for medical purposes, mostly because of their diversity in bioactive molecules with health promoting properties. The proximate, mineral and volatile compound profiles, together with the cytotoxic and antimicrobial properties were characterized in O. microdasys flowers at different maturity stages, revealing several statistically significant differences. O. microdasys stood out mainly for its high contents of dietary fiber, potassium and camphor, and its high activities against HCT15 cells, Staphylococcus aureus, Aspergillus versicolor and Penicillium funiculosum. The vegetative stage showed the highest cytotoxic and antifungal activities, whilst the full flowering stage was particularly active against bacterial species. The complete dataset has been classified by principal component analysis, achieving clearly identifiable groups for each flowering stage, elucidating also the most distinctive features, and comprehensively profiling each of the assayed stages. The results might be useful to define the best flowering stage considering practical application purposes.
NASA Astrophysics Data System (ADS)
Bebout, Gray E.
The efficiency with which volatiles are deeply subducted is governed by devolatilization histories and the geometries and mechanisms of fluid transport deep in subduction zones. Metamorphism along the forearc slab-mantle interface may prevent the deep subduction of many volatile components (e.g., H2O, Cs, B, N, perhaps As, Sb, and U) and result in their transport in fluids toward shallower reservoirs. The release, by devolatilization, and transport of such components toward the seafloor or into the forearc mantle wedge, could in part explain the imbalances between the estimated amounts of subducted volatiles and the amounts returned to Earth's surface. The proportion of the initially subducted volatile component that is retained in rocks subducted to depths greater than those beneath magmatic arcs (>100 km) is largely unknown, complicating assessments of deep mantle volatile budgets. Isotopic and trace element data and volatile contents for the Catalina Schist, the Franciscan Complex, and eclogite-facies complexes in the Alps (and elsewhere) provide insight into the nature and magnitude of fluid production and transport deep in subduction zones and into the possible effects of metamorphism on the compositions of subducting rocks. Compatibilities of the compositions of the subduction-related rocks and fluids with the isotopic and trace element compositions of various mantle-derived materials (igneous rocks, xenoliths, serpentinite seamounts) indicate the potential to trace the recycling of rock and fluid reservoirs chemically and isotopically fractionated during subduction-zone metamorphism.
Composition of the water-soluble fraction of different cheeses.
Taborda, Gonzalo; Molina, Elena; Martínez-Castro, Isabel; Ramos, Mercedes; Amigo, Lourdes
2003-01-01
Volatile and nonvolatile compounds present in the water-soluble fraction (WSF) and water-soluble fraction with molecular weight lower than 1000 Da (WSF < 1000 Da) of six Spanish cheeses, Cabrales, Idiazábal, Mahón, Manchego, Roncal, and a goat's milk cheese, were analyzed. Different nitrogen fractions (determined by Kjeldahl method), caseins (by capillary electrophoresis), peptides and amino acids (by HPLC), and volatile components (by dynamic headspace coupled to GC-MS) as well as mineral content in the cheese fractions were analyzed and compared. The different nitrogen and volatile compounds identified in the WSF were characteristic of each cheese variety. Cabrales cheese displayed the highest content of free amino acids and the highest quantity and variety of volatile compounds. The WSF < 1000 Da fraction was less representative, especially for volatile compounds, as some of the components were lost in the ultrafiltration. Alcohols were better recovered than ketones and esters.
Volatile components and continental material of planets
NASA Technical Reports Server (NTRS)
Florenskiy, K. P.; Nikolayeva, O. V.
1986-01-01
It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H20, CO2, etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes.
Volatile components from mango (Mangifera indica L.) cultivars.
Pino, Jorge A; Mesa, Judith; Muñoz, Yamilie; Martí, M Pilar; Marbot, Rolando
2005-03-23
The volatile components of 20 mango cultivars were investigated by means of simultaneous distillation-extraction, GC, and GC-MS. Three hundred and seventy-two compounds were identified, of which 180 were found for the first time in mango fruit. The total concentration of volatiles was approximately 18-123 mg/kg of fresh fruit. Terpene hydrocarbons were the major volatiles of all cultivars, the dominant terpenes being delta-3-carene (cvs. Haden, Manga amarilla, Macho, Manga blanca, San Diego, Manzano, Smith, Florida, Keitt, and Kent), limonene (cvs. Delicioso, Super Haden, Ordonez, Filipino, and La Paz), both terpenes (cv. Delicia), terpinolene (cvs. Obispo, Corazon, and Huevo de toro), and alpha-phellandrene (cv. Minin). Other qualitative and quantitative differences among the cultivars could be demonstrated.
Perestrelo, Rosa; Barros, António S; Rocha, Sílvia M; Câmara, José S
2011-09-15
The volatiles (VOCs) and semi-volatile organic compounds (SVOCs) responsible for aroma are mainly present in skin of grape varieties. Thus, the present investigation is directed towards the optimisation of a solvent free methodology based on headspace-solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-qMS) in order to establish the global volatile composition in pulp and skin of Bual and Bastardo Vitis vinifera L. varieties. A deep study on the extraction-influencing parameters was performed, and the best results, expressed as GC peak area, number of identified compounds and reproducibility, were obtained using 4 g of sample homogenised in 5 mL of ultra-pure Milli-Q water in a 20 mL glass vial with addition of 2g of sodium chloride (NaCl). A divinylbenzene/carboxen/polydimethylsiloxane fibre was selected for extraction at 60°C for 45 min under continuous stirring at 800 rpm. More than 100 VOCs and SVOCs, including 27 monoterpenoids, 27 sesquiterpenoids, 21 carbonyl compounds, 17 alcohols (from which 2 aromatics), 10 C(13) norisoprenoids and 5 acids were identified. The results showed that, for both grape varieties, the levels and number of volatiles in skin were considerably higher than those observed in pulp. According to the data obtained by principal component analysis (PCA), the establishment of the global volatile signature of grape and the relationship between different part of grapes-pulp and skin, may be an useful tool to winemaker decision to define the vinification procedures that improves the organoleptic characteristics of the corresponding wines and consequently contributed to an economic valorization and consumer acceptance. Copyright © 2011 Elsevier B.V. All rights reserved.
Volatile compounds in samples of cork and also produced by selected fungi.
Barreto, M C; Vilas Boas, L; Carneiro, L C; San Romão, M V
2011-06-22
The production of volatile compounds by microbial communities of cork samples taken during the cork manufacturing process was investigated. The majority of volatiles were found in samples collected at two stages: resting after the first boiling and nontreated cork disks. Volatile profiles produced by microbiota in both stages are similar. The releasable volatile compounds and 2,4,6-trichloroanisole (TCA) produced in cork-based culture medium by five isolated fungal species in pure and mixed cultures were also analyzed by gas chromatography coupled with mass spectrometry (GC-MS).The results showed that 1-octen-3-ol and esters of fatty acids (medium chain length C8-C20) were the main volatile compounds produced by either pure fungal species or their mixture. Apparently, Penicillium glabrum is the main contributor to the overall volatile composition observed in the mixed culture. The production of releasable TCA on cork cannot be attributed to any of the assayed fungal isolates.
Fast characterization of cheeses by dynamic headspace-mass spectrometry.
Pérès, Christophe; Denoyer, Christian; Tournayre, Pascal; Berdagué, Jean-Louis
2002-03-15
This study describes a rapid method to characterize cheeses by analysis of their volatile fraction using dynamic headspace-mass spectrometry. Major factors governing the extraction and concentration of the volatile components were first studied. These components were extracted from the headspace of the cheeses in a stream of helium and concentrated on a Tenax TA trap. They were then desorbed by heating and injected directly into the source of a mass spectrometer via a short deactivated silica transfer line. The mass spectra of the mixture of volatile components were considered as fingerprints of the analyzed substances. Forward stepwise factorial discriminant analysis afforded a limited number of characteristic mass fragments that allowed a good classification of the batches of cheeses studied.
Essential oil variation among natural populations of Lavandula multifida L. (Lamiaceae).
Chograni, Hnia; Zaouali, Yosr; Rajeb, Chayma; Boussaid, Mohamed
2010-04-01
Volatiles from twelve wild Tunisian populations of Lavandula multifida L. growing in different bioclimatic zones were assessed by GC (RI) and GC/MS. Thirty-six constituents, representing 83.48% of the total oil were identified. The major components at the species level were carvacrol (31.81%), beta-bisabolene (14.89%), and acrylic acid dodecyl ester (11.43%). These volatiles, together with alpha-pinene, were also the main compounds discriminating the populations. According to these dominant compounds, one chemotype was revealed, a carvacrol/beta-bisabolene/acrylic acid dodecyl ester chemotype. However, a significant variation among the populations was observed for the majority of the constituents. A high chemical-population structure, estimated both by principal component analysis (PCA) and unweighted pair group method with averaging (UPGMA) cluster analysis based on Euclidean distances, was observed. Both methods allowed separation of the populations in three groups defined rather by minor than by major compounds. The population groups were not strictly concordant with their bioclimatic or geographic location. Conservation strategies should concern all populations, because of their low size and their high level of destruction. Populations exhibiting particular compounds other than the major ones should be protected first.
Ortiz, Américo; Ortiz, Aristófeles; Vega, Fernando E; Posada, Francisco
2004-09-22
The analysis of volatile emissions of coffee berries in different physiological states of ripeness was performed using dynamic headspace and gas chromatography/mass spectrometry analysis for Coffea arabica, var. Colombia. The composition of the volatiles emitted by coffee berries is dominated by very high levels of alcohols, mainly ethanol, in all stages of ripeness in comparison with other compounds. Overripe coffee berries have high volatile emissions and show a composition dominated mainly by esters followed by alcohols, ketones, and aldehydes. The lowest level compounds were monoterpenes. 2-Methyl furan was detected in various ripening stages; this compound has not been previously reported as a coffee berry volatile. The presence of ethanol and other alcohols in the volatile composition might explain the effectiveness of using traps with mixed alcohols for detection and capture of coffee berry borers.
Gas production and migration in landfills and geological materials.
Nastev, M; Therrien, R; Lefebvre, R; Gélinas, P
2001-11-01
Landfill gas, originating from the anaerobic biodegradation of the organic content of waste, consists mainly of methane and carbon dioxide, with traces of volatile organic compounds. Pressure, concentration and temperature gradients that develop within the landfill result in gas emissions to the atmosphere and in lateral migration through the surrounding soils. Environmental and safety issues associated with the landfill gas require control of off-site gas migration. The numerical model TOUGH2-LGM (Transport of Unsaturated Groundwater and Heat-Landfill Gas Migration) has been developed to simulate landfill gas production and migration processes within and beyond landfill boundaries. The model is derived from the general non-isothermal multiphase flow simulator TOUGH2, to which a new equation of state module is added. It simulates the migration of five components in partially saturated media: four fluid components (water, atmospheric air, methane and carbon dioxide) and one energy component (heat). The four fluid components are present in both the gas and liquid phases. The model incorporates gas-liquid partitioning of all fluid components by means of dissolution and volatilization. In addition to advection in the gas and liquid phase, multi-component diffusion is simulated in the gas phase. The landfill gas production rate is proportional to the organic substrate and is modeled as an exponentially decreasing function of time. The model is applied to the Montreal's CESM landfill site, which is located in a former limestone rock quarry. Existing data were used to characterize hydraulic properties of the waste and the limestone. Gas recovery data at the site were used to define the gas production model. Simulations in one and two dimensions are presented to investigate gas production and migration in the landfill, and in the surrounding limestone. The effects of a gas recovery well and landfill cover on gas migration are also discussed.
Turkmenoglu, Fatma Pinar; Agar, Osman Tuncay; Akaydin, Galip; Hayran, Mutlu; Demirci, Betul
2015-06-22
According to distribution of genus Achillea, two main centers of diversity occur in S.E. Europe and S.W. Asia. Diversified essential oil compositions from Balkan Peninsula have been numerously reported. However, report on essential oils of Achillea species growing in Turkey, which is one of the main centers of diversity, is very limited. This paper represents the chemical compositions of the essential oils obtained by hydrodistillation from the aerial parts of eleven Achillea species, identified simultaneously by gas chromatography and gas chromatography-mass spectrometry. The main components were found to be 1,8-cineole, p-cymene, viridiflorol, nonacosane, α-bisabolol, caryophyllene oxide, α-bisabolon oxide A, β-eudesmol, 15-hexadecanolide and camphor. The chemical principal component analysis based on thirty compounds identified three species groups and a subgroup, where each group constituted a chemotype. This is the first report on the chemical composition of A. hamzaoglui essential oil; as well as the antioxidant and antimicrobial evaluation of its essential oil and methanolic extract.
Application of PLE for the determination of essential oil components from Thymus vulgaris L.
Dawidowicz, Andrzej L; Rado, Ewelina; Wianowska, Dorota; Mardarowicz, Marek; Gawdzik, Jan
2008-08-15
Essential plants, due to their long presence in human history, their status in culinary arts, their use in medicine and perfume manufacture, belong to frequently examined stock materials in scientific and industrial laboratories. Because of a large number of freshly cut, dried or frozen plant samples requiring the determination of essential oil amount and composition, a fast, safe, simple, efficient and highly automatic sample preparation method is needed. Five sample preparation methods (steam distillation, extraction in the Soxhlet apparatus, supercritical fluid extraction, solid phase microextraction and pressurized liquid extraction) used for the isolation of aroma-active components from Thymus vulgaris L. are compared in the paper. The methods are mainly discussed with regard to the recovery of components which typically exist in essential oil isolated by steam distillation. According to the obtained data, PLE is the most efficient sample preparation method in determining the essential oil from the thyme herb. Although co-extraction of non-volatile ingredients is the main drawback of this method, it is characterized by the highest yield of essential oil components and the shortest extraction time required. Moreover, the relative peak amounts of essential components revealed by PLE are comparable with those obtained by steam distillation, which is recognized as standard sample preparation method for the analysis of essential oils in aromatic plants.
Ono, Toshirou; Yonejima, Yasunori; Ikeda, Atsushi; Kashima, Yusei; Nakaya, Satoshi; Miyazawa, Mitsuo
2014-01-01
Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of Lactobacillus acidophilus were isolated by hydrodistillation (HD) and analyzed to investigate the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 46 and 19 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were fatty acids, including pentanoic acid (12.75%), heptanoic acid (14.05%), and nonanoic acid (14.04%). The important aroma-active compounds in the oils were detected by GC-MS/Olfactometry (GC-O), and their intensity of aroma were measured by aroma extraction dilution analysis (AEDA). Pyrazines were determined as key aroma components; in particular, 2-ethyl-5-methylpyrazine was the most primary aroma-active compound in MAI oil. In addition, as the characteristic aroma-active compounds, 3-(methylthio)-propanal, trimethylpyrazine, and pentanoic acid were also detected in MAI oil. These results imply that the waste medium after incubation of L. acidophilus may be utilized as a source of volatile oils.
Rong, Lei; Peng, Li-Juan; Ho, Chi-Tang; Yan, Shou-He; Meurens, Marc; Zhang, Zheng-Zhu; Li, Da-Xiang; Wan, Xiao-Chun; Bao, Guan-Hu; Gao, Xue-Ling; Ling, Tie-Jun
2016-04-15
Green tea, oolong tea and black tea were separately introduced to brew three kinds of tea beers. A model was designed to investigate the tea beer flavour character. Comparison of the volatiles between the sample of tea beer plus water mixture (TBW) and the sample of combination of tea infusion and normal beer (CTB) was accomplished by triangular sensory test and HS-SPME GC-MS analysis. The PCA of GC-MS data not only showed a significant difference between volatile features of each TBW and CTB group, but also suggested some key compounds to distinguish TBW from CTB. The results of GC-MS showed that the relative concentrations of many typical tea volatiles were significantly changed after the brewing process. More interestingly, the behaviour of yeast fermentation was influenced by tea components. A potential interaction between tea components and lager yeast could be suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wardle, A R; Borden, J H; Pierce, H D; Gries, R
2003-04-01
Volatile compounds released by disturbed and calm female and male Lygus lineolaris were collected and analyzed. Six major compounds were present in samples from disturbed bugs and from calm females: (E)-2-hexenal, 1-hexanol, (E)-2-hexenol, hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-2,4-oxohexenal. (E)-2-hexenal was lacking in volatiles collected from calm males. Hexyl butyrate accounted for approximately 68% and 66% of volatiles released by agitated and calm females, and 87% and 88% of volatiles released by agitated and calm males, respectively. Blends released by disturbed insects differed quantitatively from blends released by calm insects, with amounts of compounds increasing 75-350 times in samples from disturbed insects. In static air bioassays, both females and males were repelled by natural volatiles collected from females and by five-component [(E)-2,4-oxohexenal excluded] and six-component synthetic blends at doses of 1 and 10 bug-hours, indicating that these volatiles may serve an alarm or epideictic function, as well as a possible role as defensive allomones. Adults also avoided hexyl butyrate, (E)-2-hexenyl butyrate, (E)-2-hexenol, and (E)-2,4-oxohexenal, but not 1-hexanol and (E)-2-hexenal when compounds were assayed individually in static air bioassays at doses equal to 1 bug-hour. When tested over 1 day in two-choice cage trials, adults did not prefer untreated bean plants over bean plants surrounded by vials releasing up to 8.1 mg/hr (= 234 bug-hours) of the five-component synthetic blend. Therefore, the volatiles produced by disturbed adults would not be useful as a repellent for L. lineolaris.
Aroma profile and volatiles odor activity along gold cultivar pineapple flesh.
Montero-Calderón, Marta; Rojas-Graü, María Alejandra; Martín-Belloso, Olga
2010-01-01
Physicochemical attributes, aroma profile, and odor contribution of pineapple flesh were studied for the top, middle, and bottom cross-sections cut along the central axis of Gold cultivar pineapple. Relationships between volatile and nonvolatile compounds were also studied. Aroma profile constituents were determined by headspace solid-phase microextraction at 30 °C, followed by gas chromatography/mass spectrometry analysis. A total of 20 volatile compounds were identified and quantified. Among them, esters were the major components which accounted for 90% of total extracted aroma. Methyl butanoate, methyl 2-methyl butanoate, and methyl hexanoate were the 3 most abundant components representing 74% of total volatiles in pineapple samples. Most odor active contributors were methyl and ethyl 2-methyl butanoate and 2,5-dimethyl 4-methoxy 3(2H)-furanone (mesifuran). Aroma profile components did not vary along the fruit, but volatile compounds content significantly varied (P < 0.05) along the fruit, from 7560 to 10910 μg/kg, from the top to the bottom cross-sections of the fruit, respectively. In addition, most odor-active volatiles concentration increased from the top to the bottom 3rd of the fruit, concurrently with soluble solids content (SSC) and titratable acidity (TA) differences attributed to fruitlets distinct degree of ripening. Large changes in SSC/TA ratio and volatiles content throughout the fruit found through this study are likely to provoke important differences among individual fresh-cut pineapple trays, compromising consumer perception and acceptance of the product. Such finding highlighted the need to include volatiles content and SSC/TA ratio and their variability along the fruit as selection criteria for pineapples to be processed and quality assessment of the fresh-cut fruit. © 2010 Institute of Food Technologists®
Wei, Jianing; Shao, Wenbo; Wang, Xianhui; Ge, Jin; Chen, Xiangyong; Yu, Dan; Kang, Le
2017-02-01
Chemical communication plays an important role in density-dependent phase change in locusts. However, the volatile components and emission patterns of the migratory locust, Locusta migratoria, are largely unknown. In this study, we identified the chemical compositions and emission dynamics of locust volatiles from the body and feces and associated them with developmental stages, sexes and phase changes. The migratory locust shares a number of volatile components with the desert locust (Schistocerca gregaria), but the emission dynamics of the two locust species are significantly different. The body odors of the gregarious nymphs in the migratory locust consisted of phenylacetonitrile (PAN), benzaldehyde, guaiacol, phenol, aliphatic acids and 2,3-butanediol, and PAN was the dominant volatile. Volatiles from the fecal pellets of the nymphs primarily consist of guaiacol and phenol. Principal component analysis (PCA) showed significant differences in the volatile profiles between gregarious and solitary locusts. PAN and 4-vinylanisole concentrations were significantly higher in gregarious individuals than in solitary locusts. Gregarious mature males released significantly higher amounts of PAN and 4-vinylanisole during adulthood than mature females and immature adults of both sexes. Furthermore, PAN and 4-vinylanisole were completely lost in gregarious nymphs during the solitarization process, but were obtained by solitary nymphs during gregarization. The amounts of benzaldehyde, guaiacol and phenol only unidirectionally decreased from solitary to crowded treatment. Aliphatic aldehydes (C7 to C10), which were previously reported as locust volatiles, are now identified as environmental contaminants. Therefore, our results illustrate the precise odor profiles of migratory locusts during developmental stages, sexes and phase change. However, the function and role of PAN and other aromatic compounds during phase transition need further investigation. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Munira, Abudukeremu; Muheta'er, Tu'erhong; Resalat, Yimin; Xia, Na
2015-04-01
Althaea rosea is a type of mallow plant. Its dry flowers are one of common herb in Uyghur medicines and recorded to have several efficacies such as external application for detumescence, moistening lung and arresting cough, sweating and relieving asthma, diminishing swelling and promoting eruption, soothing the nerves and strengthening heart. However, there are only fewer studies on effective components of A. rosea and no literature about its volatile oil and pharmacological activity. In this paper, the volatile oil of A. rosea was obtained by using the chemical distillation and extraction method. The individual chemical components were separated from the volatile oil and identified by the Gas Chromatograph-Mass Spectrometer technique (GC-MS). The antioxidant activity against free radicals was detected by the'ultraviolet and visible spectrophotometer method. The antibiotic activity was detected by the filter paper diffusion method. The experimental results showed nearly 70 compounds in the volatile oil, with complex chemical components. With a low content, most of the compounds were aromatic and aliphatic compounds and their derivatives. A. rosea had a better antibiotic activity for common microorganisms, with a wide antibacterial spectrum. According to the results, the volatile oil of A. rosea will have a good application value in medicine, food and cosmetic industries, which provided a scientific basis for the development of natural A. rosea resources.
Volatile components of ethanolic extract from broccolini leaves.
Wang, Xiaoqin; Zhang, Bochao; Wang, Bingfang; Zhang, Xuewu
2012-01-01
Broccolini (Brassica oleracea Italica × Alboglabra) is a hybrid of broccoli and kai-lan, Chinese broccoli. To date, no study has been reported on the chemical composition of the volatile fractions of this raw material. In this study, the volatile constituents from the ethanolic extract of broccolini leaves were analysed by gas chromatography-mass spectrometry (GC-MS). Sixteen compounds were identified. The major components include 5-phenyl-undecane (11%), n-hexadecanoic acid (9.34%), octadecanoic acid (6.39%), 1,1,3-trimethyl-3-phenyl-indan (4.0%), 3-(2-phenylethyl)benzonitrile (3.48%) and phytol (3.37%).
Method For Removing Volatile Components From A Gel-Cast Ceramic Article
Klug, Frederic Joseph; DeCarr, Sylvia Marie
2004-09-07
A method of removing substantially all of the volatile component in a green, volatile-containing ceramic article is disclosed. The method comprises freezing the ceramic article; and then subjecting the frozen article to a vacuum for a sufficient time to freeze-dry the article. Frequently, the article is heated while being freeze-dried. Use of this method efficiently reduces the propensity for any warpage of the article. The article is often formed from a ceramic slurry in a gel-casting process. A method for fabricating a ceramic core used in investment casting is also described.
Method for removing volatile components from a ceramic article, and related processes
Klug, Frederic Joseph; DeCarr, Sylvia Marie
2002-01-01
A method of removing substantially all of the volatile component in a green, volatile-containing ceramic article is disclosed. The method comprises freezing the ceramic article; and then subjecting the frozen article to a vacuum for a sufficient time to freeze-dry the article. Frequently, the article is heated while being freeze-dried. Use of this method efficiently reduces the propensity for any warpage of the article. The article is often formed from a ceramic slurry in a gel-casting process. A method for fabricating a ceramic core used in investment casting is also described.
[Comparison of green coffee beans volatiles chemical composition of Hainan main area].
Hu, Rong-Suo; Chu, Zhong; Gu, Feng-Lin; Lu, Min-Quan; Lu, Shao-Fang; Wu, Gui-Ping; Tan, Le-He
2013-02-01
Chemical component of Hainan green coffee beans was analyzed with solid phase microextraction-gas chromatography-mass spectrometry, and the discrepancy between two green coffee beans was differentiated through the spectrum database retrieval and retention index of compound characterization. The experimental results show that: the chemical composition of Wanning coffee beans and Chengmai coffee beans is basically the same. The quantity of analyzed compound in Wanning area coffee is 91, and in Chengmai area coffee is 106, the quantity of the same compound is 66, and the percent of the same component is 75.52%. The same compounds accounted for 89.86% of the total content of Wanning area coffee, and accounted for 85.70% of the total content of Chengmai area coffee.
Tomei Torres, Francisco A
2017-06-21
Drywall manufactured in China released foul odors attributed to volatile sulfur compounds. These included hydrogen sulfide, methyl mercaptan, and sulfur dioxide. Given that calcium sulfate is the main component of drywall, one would suspect bacterial reduction of sulfate to sulfide as the primary culprit. However, when the forensics, i.e., the microbial and chemical signatures left in the drywall, are studied, the evidence suggests that, rather than dissimilatory sulfate reduction, disproportionation of elemental sulfur to hydrogen sulfide and sulfate was actually the primary cause of the malodors. Forensic evidence suggests that the transformation of elemental sulfur went through several abiological and microbial stages: (1) partial volatilization of elemental sulfur during the manufacture of plaster of Paris, (2) partial abiotic disproportionation of elemental sulfur to sulfide and thiosulfate during the manufacture of drywall, (3) microbial disproportionation of elemental sulfur to sulfide and sulfate resulting in neutralization of all alkalinity, and acidification below pH 4, (4) acidophilic microbial disproportionation of elemental sulfur to sulfide and sulfuric acid, and (5) hydrogen sulfide volatilization, coating of copper fixtures resulting in corrosion, and oxidation to sulfur dioxide.
Mandibular gland chemistry of four Caribbean species of Camponotus (Hymenoptera:Formicidae)
Juan A. Torres; Roy R. Snelling; Murray S. Blum; Rusell C. Flournoy; Tappey H. Jones
2001-01-01
The volatile components of whole-body extracts of males, females and workers were analyzed in four species of Neotropical ants in the formicine genus, Camponotus. The species, C. kaura, C. sexguttatus, C. ramulorum and C. planatus, represent three different subgenera. Volatile mandibular gland components were found only in male extracts in three of the species. In C....
Condurso, Cettina; Verzera, Antonella; Romeo, Vincenza; Ziino, Marisa; Trozzi, Alessandra; Ragusa, Salvatore
2006-08-01
The leaf volatile constituents of Isatis tinctoria L. (Brassicaceae) have been studied by Solid-Phase Microextraction and Gas chromatography/Mass Spectrometry (SPME/GC-MS). Seventy components were fully characterized by mass spectra, linear retention indices, and injection of standards; the average composition (ppm) as single components and classes of substances is reported. Aliphatic hydrocarbons, acids, alcohols, aldehydes and esters, aromatic aldehydes, esters and ethers, furans, isothiocyanates and thiocyanates, sulfurated compounds, nitriles, terpenes and sesquiterpenes were identified. Leaf volatiles in Isatis tinctoria L. were characterized by a high amount of isothiocyanates which accounted for about 40 % of the total volatile fraction. Isothiocyanates are important and characteristic flavour compounds in Brassica vegetables and the cancer chemo-protective attributes are recently responsible for their growing interest.
USDA-ARS?s Scientific Manuscript database
A targeted approach using HS-SPME-GC–MS was performed to investigate volatile compounds of ordinary Valencia (VAL) and its more deeply colored mutant Rohde Red Valencia orange (RRV) at different developmental stages. Fifty-six volatile components classified into six chemical groups were quantified. ...
Chemometric evaluation of the volatile profile of probiotic melon and probiotic cashew juice.
de Godoy Alves Filho, Elenilson; Rodrigues, Tigressa Helena Soares; Fernandes, Fabiano André Narciso; Pereira, Ana Lucia Fernandes; Narain, Narendra; de Brito, Edy Sousa; Rodrigues, Sueli
2017-09-01
The aim of this study was to evaluate the influence of the lactic acid fermentation on volatile compounds of melon and cashew apple juices. The effect of the fermentation processing on the volatile profile of probiotic juices was assessed by HS-SPME/GC-MS coupled to chemometrics with 67.9% and 81.0% of the variance in the first principal component for melon and cashew juices, respectively. The Lactobacillus casei fermentation imparted a reduction of ethyl butanoate, ethyl-2-methylbutirate, and ethyl hexanoate for melon juice; and of ethyl acetate, ethyl-2-methyl butanoate, ethyl crotonate, ethyl isovalerate, benzaldehyde, and ethyl hexanoate for cashew juice. Measurements of the stability of these compounds and the formation of the component 3-methyl-2-butenyl in melon juice may be used as a volatile marker to follow the juice fermentation. These findings suggested that even though it is not a dairy product the lactic acid fermentation of fruits developed a volatile profile combining the fruit and lactic acid fermentation volatiles with mildly formation or degradation of aroma compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yalcin, Hasan; Ozturk, Ismet; Tulukcu, Eray; Sagdic, Osman
2011-09-01
Clary sage seeds (Salvia sclarea L.) were obtained from plants cultivated, and 2.5, 4.0, 5.5, and 7.0 kGy doses of γ-irradiation were applied to the clary sage seeds. They were then analyzed for their protein, ash, oil and dry matter contents, and fatty acid composition. Additionally, the total phenolic contents, antiradical, antioxidant activities, and volatile compounds of the clary sage seed extract were determined. There was no significant difference in protein content. However, the moisture, oil, and ash contents of the samples were affected by irradiation. While the 7 kGy dose had a positive effect on the total phenolic content and antiradical activity of the sage seed extract, all doses have negative effects on the antioxidant activity of the sage seed. The main fatty acid of the sage seed was remarkably found as α-linolenic acid. The four irradiation levels caused significant differences in fatty acid composition by affecting all fatty acids except palmitic, palmitoleic, and eicosenoic acids. The dominant volatile compounds of control sage seed were found as β-pinene (18.81%) and limonene (15.60%). Higher doses of the irradiation decreased volatile components of sage seed. Clary sage seed including high omega-3 can be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. Clary sage is one of the most popular Salvia species in Turkey and many countries. Clary sage seed has approximately 29% oil content and this oil contains >50% of α-linolenic acid. γ-Irradiation is widely applied in the preservation of spice quality. The present study shows that the antioxidant activity of the clary sage seed is decreased by γ-irradiation. Additionally, higher doses of irradiation also decreased the volatile components of sage seed. Therefore, we suggest that clary sage seed which includes high levels of omega-3 should be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. © 2011 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Silva, A. Christian; Prange, Richard E.
2007-03-01
We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.
Bi-Component Droplet Combustion in Reduced Gravity
NASA Technical Reports Server (NTRS)
Shaw, Benjamin D.
2004-01-01
This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground-based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting ground-based studies have been performed. Some of the most recent ground-based research is summarized.
Bi-Component Droplet Combustion in Reduced Gravity
NASA Technical Reports Server (NTRS)
Shaw, B. D.
2001-01-01
This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced-gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in future flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting studies have been performed. Because of space limitations, only some of the research performed over the last two years (since the 5th Microgravity Combustion Workshop) is summarized here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaeger, C.; Huisken, F.; Henning, Th.
2009-05-01
Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs) that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile three to five ring systems. At condensation temperatures highermore » than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot asymptotic giant branch stars or Wolf-Rayet stars should be different and should have distinct spectral properties.« less
NASA Astrophysics Data System (ADS)
Schmutzer, G.; Avram, V.; Feher, I.; David, L.; Moldovan, Z.
2012-02-01
The volatile composition of alcoholic beverage was studied by headspace solid-phase microextraction (HSSPME) method and gas chromatography - mass spectrometry (GC-MS). Some volatile compounds, such as alcohols, esters, terpenes and other are mainly responsible for the flavor of fortified wines and their amounts specify the quality of the alcoholic beverages. From this perspective it is interesting to develop a rapid, selective and sensitive analytical method suitable for simultaneous quantification of the main molecules being responsible for the organoleptic characteristic of alcoholic beverages. Vermouth fortified drink was analyzed in order to characterize the volatile profile. Using the HS-SPME/GC-MS a number of twenty-six volatile compounds from a commercial market alcoholic beverage were identified. The most abundant compounds were m-thymol, o-thymol and eugenol, alongside of the ethyl ester compounds.
Biochemistry of Apple Aroma: A Review.
Espino-Díaz, Miguel; Sepúlveda, David Roberto; González-Aguilar, Gustavo; Olivas, Guadalupe I
2016-12-01
Flavour is a key quality attribute of apples defined by volatile aroma compounds. Biosynthesis of aroma compounds involves metabolic pathways in which the main precursors are fatty and amino acids, and the main products are aldehydes, alcohols and esters. Some enzymes are crucial in the production of volatile compounds, such as lipoxygenase, alcohol dehydrogenase, and alcohol acyltransferase. Composition and concentration of volatiles in apples may be altered by pre- and postharvest factors that cause a decline in apple flavour. Addition of biosynthetic precursors of volatile compounds may be a strategy to promote aroma production in apples. The present manuscript compiles information regarding the biosynthesis of volatile aroma compounds, including metabolic pathways, enzymes and substrates involved, factors that may affect their production and also includes a wide number of studies focused on the addition of biosynthetic precursors in their production.
Biochemistry of Apple Aroma: A Review
Espino-Díaz, Miguel; Sepúlveda, David Roberto; González-Aguilar, Gustavo
2016-01-01
Summary Flavour is a key quality attribute of apples defined by volatile aroma compounds. Biosynthesis of aroma compounds involves metabolic pathways in which the main precursors are fatty and amino acids, and the main products are aldehydes, alcohols and esters. Some enzymes are crucial in the production of volatile compounds, such as lipoxygenase, alcohol dehydrogenase, and alcohol acyltransferase. Composition and concentration of volatiles in apples may be altered by pre- and postharvest factors that cause a decline in apple flavour. Addition of biosynthetic precursors of volatile compounds may be a strategy to promote aroma production in apples. The present manuscript compiles information regarding the biosynthesis of volatile aroma compounds, including metabolic pathways, enzymes and substrates involved, factors that may affect their production and also includes a wide number of studies focused on the addition of biosynthetic precursors in their production. PMID:28115895
NASA Astrophysics Data System (ADS)
Galin, Ts.; Gerstl, Z.; Yaron, B.
1990-05-01
The stability of kerosene in soils as affected by volatization was determined in a laboratory column experiment by following the losses in the total concentration and the change in composition of the residuals in a dune sand, a loamy sand, and a silty loam soil during a 50-day period. Seven major compounds ranging between C 9 and C 15 were selected from a large variety of hydrocarbons forming kerosene and their presence in the remaining petroleum product was determined. The change in composition of kerosene during the experimental period was determined by gas chromatography and related to the seven major compounds selected. The experimental conditions — air-dairy soil and no subsequent addition of water—excluded both biodegradative and leaching. losses. The losses of kerosene in air-dried soil columns during the 50-day experimental period and the changes in the composition of the remaining residues due to volatilization are reported. The volatilization of all the components determined was greater from the dune sand and loamy sand soils than from the silty loam soil. It was assumed that the reason for this behavior was that the dune sand and the loamy sand soils contain a greater proportion of large pores (>4.5 μm) than the silty loam soil, even though the total porosity of the loamy sand and the silty loam is similar. In all the soils in the experiment, the components with a high carbon number formed the main fraction of the kerosene residues after 50 days of incubation.
Liu, Shuang Ping; Mao, Jian; Liu, Yun Ya; Meng, Xiang Yong; Ji, Zhong Wei; Zhou, Zhi Lei; Ai-lati, Aisikaer
2015-12-01
Shaoxing rice wine is one of the most typical representatives of Chinese rice wine. It is brewed under non-sterile condition with various microorganism growing at the same time and forms a special flavor. The aims of this study was to monitor the bacterial succession by MiSeq pyrosequencing and the volatile compound dynamics by HS-SPME/GC–MS during brewing process. Moreover, the volatile compounds and bacterial community were analyzed by partial least squares regression to evaluate the effect of bacteria on volatile compounds formation. The results showed that there were ten dominating genera during Shaoxing rice wine fermentation process. Ten genera, Bacillus, Leuconostoc, Lactococcus, Weissella, Thermoactinomyces, Pseudomonas, Saccharopolyspora, Staphylococcus, Enterobacter and Lactobacillus, were identified as the main bacteria. The Bacillus and Lactobacillus dominated the Chinese rice wine ecosystems. In addition, a total of 64 volatile compounds were identified, mainly esters, alcohols, carbonyl compound and phenols. Pseudomonas were involved in synthesis of a wide variety of volatile compounds. Thermoactinomyces, Bacillus and Lactococcus also played critical roles in the formation of volatile compounds.
Malheiro, Ricardo; Casal, Susana; Rodrigues, Nuno; Renard, Catherine M G C; Pereira, José Alberto
2018-04-01
This study focused on the volatile changes in cv. Verdeal Transmontana throughout the entire olive oil processing chain, from the drupe to olive oil storage up to 12 months, while correlating it with quality parameters and sensory quality. During crushing and malaxation, the volatiles formed were mainly "green-leaf volatiles" (GLVs), namely (E)-2-hexenal, hexanal, and 1-hexanol. Centrifugation and clarification steps increased the total volatile amounts to 130 mg kg -1 . However, clarification also increased nonanal and (E)-2-decenal contents, two markers of oxidation, with a noticeable loss of phenolic compounds and oxidative stability. During storage, the total volatile amounts reduced drastically (94% at 12 months after extraction), together with the positive sensory attributes fruity, green, bitter, and pungent. Despite being classified as extra-virgin after one year of storage, peroxides and conjugated dienes were significantly higher while there was a reduction in antioxidant capacity as well as in phenolic compounds (less 50%) and oxidative stability (57%). The present work allowed concluding that the extraction process modulates the volatile composition of olive oil, with a concentration of volatiles at the clarification step. During storage, volatiles are lost, mainly eight months after extraction, leading to the loss of important sensory attributes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Martel, Kristine L.; Baum, Michael J.
2009-01-01
We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-, but not same-sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ. We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite-sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer, cholera toxin B (CTB), into the AOB, and were exposed to either same- or opposite-sex volatile urinary odours one week later. We found CTB- labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA), and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co-labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment 2, CTB-injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co-labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory - MeA -AOB signaling may motivate approach behaviour to opposite-sex pheromonal signals that ensure successful reproduction. PMID:19077123
[Comparison on extraction of volatile oils from Lithospermum erythrorhizon by different methods].
Yang, Ri-fu; Huang, Ping-ping; Qiu, Tai-qiu; Fan, Xiao-dan
2011-02-01
To extract the volatile oils from Lithospermum erythrorhizon via ultrasound-enhanced sub-critical water extraction (USWE) and compare with ultrasound-enhanced solvent extraction (USE) and steam distillation extraction (SD). The extraction yield of the volatile oils, the containing components of extract, the effect of scanvenging activities on free radical DPPH and reducing activities as well as the inhibitory on escherichia coli and staphylococcus aureus were investigated. The extraction yield of volatile oils by USWE, USE and SD were 2.39%, 1.93% and 0.62%, respectively, the extracts by three methods all contained six major components, but the extracts by SD and USE contained more impurities. The inhibitory effect on escherichia coli and staphylococcus aureus of the extract by SD and its reducing action were the best,but those by USWE were the worst. the extraction yield of volatile oils by USWE is the highest, and it contains less impurities based on the worst in reducing power and inhibitory effects.
The Salt Lake City EPA Environmental Monitoring for Public Access and Community Tracking (EMPACT) project, initiated in October 1999, is designed to evaluate the usefulness of a newly developed real-time continuous monitor (RAMS) for total (non-volatile plus semi-volatile) PM<...
Napoli, Edoardo M; Siracusa, Laura; Saija, Antonella; Speciale, Antonio; Trombetta, Domenico; Tuttolomondo, Teresa; La Bella, Salvatore; Licata, Mario; Virga, Giuseppe; Leone, Raffaele; Leto, Claudio; Rubino, Laura; Ruberto, Giuseppe
2015-07-01
To identify the best biotypes, an extensive survey of Sicilian wild rosemary was carried out by collecting 57 samples from various sites, followed by taxonomic characterization from an agronomic perspective. All the biotypes collected were classified as Rosmarinus officinalis L. A cluster analysis based on the morphological characteristics of the plants allowed the division of the biotypes into seven main groups, although the characteristics examined were found to be highly similar and not area-dependent. Moreover, all samples were analyzed for their phytochemical content, applying an extraction protocol to obtain the nonvolatile components and hydrodistillation to collect the essential oils for the volatile components. The extracts were characterized by LC-UV-DAD/ESI-MS, and the essential oils by GC-FID and GC/MS analyses. In the nonvolatile fractions, 18 components were identified, namely, 13 flavones, two organic acids, and three diterpenes. In the volatile fractions, a total of 82 components were found, with as predominant components α-pinene and camphene among the monoterpene hydrocarbons and 1,8-cineole, camphor, borneol, and verbenone among the oxygenated monoterpenes. Cluster analyses were carried out on both phytochemical profiles, allowing the separation of the rosemary samples into different chemical groups. Finally, the total phenol content and the antioxidant activity of the essential oils and extracts were determined with the Folin-Ciocalteu (FC) colorimetric assay, the UV radiation-induced peroxidation in liposomal membranes (UV-IP test), and the scavenging activity of the superoxide radical (O$\\rm{{_{2}^{{^\\cdot} -}}}$). The present study confirmed that the essential oils and organic extracts of the Sicilian rosemary samples analyzed showed a considerable antioxidant/free radical-scavenging activity. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg
2015-03-01
Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.
De Martino, Laura; De Feo, Vincenzo; Fratianni, Florinda; Nazzaro, Filomena
2009-12-01
The present paper reports the chemical composition, antioxidant and antibacterial activities of several essential oils and their components. Analysis showed that three oils (Carum carvi L., Verbena officinalis L. and Majorana hortensis L.) contained predominantly oxygenated monoterpenes, while others studied (Pimpinella anisum L., Foeniculum vulgare Mill.) mainly contained anethole. C. carvi, V. officinalis and M. hortensis oils exhibited the most potent antioxidant activity, due their contents of carvacrol, anethole and estragol. Antibacterial action was assessed against a range of pathogenic and useful bacteria and fungi of agro-food interest. V. officinalis and C. carvi oils proved the most effective, in particular against Bacillus cereus and Pseudomonas aeruginosa. Carvacrol proved most active against Escherichia coli, and completely inhibited the growth of Penicillium citrinum. The oils proved inactive towards some Lactobacilli strains, whereas single components showed an appreciable activity. These results may be important for use of the essential oils as natural preservatives for food products.
Wang, Chao; Zhang, Chenxia; Kong, Yawen; Peng, Xiaopei; Li, Changwen; Liu, Shunhang; Du, Liping; Xiao, Dongguang; Xu, Yongquan
2017-10-01
Dianhong teas produced from fresh leaves of different tea cultivars (YK is Yunkang No. 10, XY is Xueya 100, CY is Changyebaihao, SS is Shishengmiao), were compared in terms of volatile compounds and descriptive sensory analysis. A total of 73 volatile compounds in 16 tea samples were tentatively identified. YK, XY, CY, and SS contained 55, 53, 49, and 51 volatile compounds, respectively. Partial least squares-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) were used to classify the samples, and 40 key components were selected based on variable importance in the projection. Moreover, 11 flavor attributes, namely, floral, fruity, grass/green, woody, sweet, roasty, caramel, mellow and thick, bitter, astringent, and sweet aftertaste were identified through descriptive sensory analysis (DSA). In generally, innate differences among the tea varieties significantly affected the intensities of most of the key sensory attributes of Dianhong teas possibly because of the different amounts of aroma-active and taste components in Dianhong teas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teal, P E; Mitchell, E R; Tumlinson, J H; Heath, R R; Sugie, H
1985-06-01
Analysis of sex pheromone gland extracts and volatile pheromone components collected from the calling female southern armyworm,Spodoptera eridania (Cramer), by high-resolution capillary gas chromatography and mass spectroscopy indicated that a number of 14-carbon mono- and diunsaturated acetates and a monounsaturated 16-carbon acetate were produced. Gland extracts also indicated the presence of (Z)-9-tetradecen-1-ol. However, this compound was not found in collections of volatiles. Field trapping studies indicated that the volatile blend composed of (Z)-9-tetradecen-1-ol acetate (60%), (Z)-9-(E)-12-tetradecadien-1-ol acetate (17%), (Z)-9-(Z)-12-tetradecadien-1-ol acetate (15%), (Z)-9-(E)-11-tetradecadien-1-ol acetate (5%), and (Z)-11-hexadecen-1-ol acetate (3 %) was an effective trap bait for males of this species. The addition of (Z)-9-tetradecen-1-ol to the acetate blends tested resulted in the capture of beet armyworm,S. exigua (Hubner), males which provides further evidence that the alcohol is a pheromone component of this species.
Analysis of aroma compounds of pitaya fruit wine
NASA Astrophysics Data System (ADS)
Gong, Xiao; Ma, Lina; Li, Liuji; Yuan, Yuan; Peng, Shaodan; Lin, Mao
2017-12-01
In order to analyze the volatile components in red pitaya fruit wine, the study using headspace solid phase microextractionand gas chromatography-mass spectrometry technology of pitaya fruit juice and wine aroma composition analysis comparison. Results showed that 55 volatile components were detected in red pitaya fruit wine, including 12 kinds of alcohol (18.16%), 18 kinds of esters (66.17%), 7 kinds of acids (5.94%), 11 kinds of alkanes (4.32%), one kind of aldehyde (0.09%), 2 kinds of olefins (0.09%) and 3 kinds of other volatile substances (0.23%). Relative contents among them bigger have 11 species, such as decanoic acid, ethyl ester (22.92%), respectively, diisoamylene (20.75%), octanoic acid, ethyl ester (17.73%), etc. The red pitaya fruit wine contained a lot of aroma components, which offer the products special aroma like brandy, rose and fruit.
Koo, Bon-Wook; Sim, Jun-Bo; Shin, Hyun-Jung; Kim, Duck-Woo; Kang, Sung-Bum; Do, Sang-Hwan; Na, Hyo-Seok
2016-08-01
Anesthetic agents used for general anesthesia are emerging possible influential factors for surgical site infection (SSI). In this retrospective study, we evaluated the incidence of SSI after colorectal surgery according to the main anesthetic agents: volatile anesthetics vs. propofol. A total 1,934 adult patients, who underwent elective colorectal surgery under general anesthesia between January 2011 and December 2013, were surveyed to evaluate the incidence of SSI: 1,519 using volatile anesthetics and 415 using propofol for main anesthetic agents. Patient, surgery, and anesthesia-related factors were investigated from all patients. Propensity-score matching was performed to reduce the risk of confounding and produced 390 patients in each group. Within the propensity-score matched groups, the incidence of SSI was higher in the volatile group compared with the propofol group (10 [2.6%] vs. 2 [0.5%], OR = 5.0 [95% CI = 1.1-2.8]). C-reactive protein was higher in the volatile group than in the propofol group (8.4 ± 5.6 vs. 7.1 ± 5.3 mg/dl, P = 0.001), and postoperative white blood cells count was higher in the volatile group than in the propofol group (9.2 ± 3.2 × 10(3)/µl vs. 8.6 ± 3.4 × 10(3)/µl, P = 0.041). The results of this study suggest that intravenous anesthesia may have beneficial effects for reducing SSI in colorectal surgery compared to volatile anesthesia.
Korpi, A; Kasanen, J P; Alarie, Y; Kosma, V M; Pasanen, A L
1999-01-01
The authors investigated the ability/potencies of 3 microbial volatile organic compounds and a mixture of 5 microbial volatile organic compounds to cause eye and upper respiratory tract irritation (i.e., sensory irritation), with an animal bioassay. The authors estimated potencies by determining the concentration capable of decreasing the respiratory frequency of mice by 50% (i.e., the RD50 value). The RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 182 mg/m3 (35 ppm), 1359 mg/m3 (256 ppm), and 17586 mg/m3 (3360 ppm), respectively. Recommended indoor air levels calculated from the individual RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 100, 1000, and 13000 microg/m3, respectively-values considerably higher than the reported measured indoor air levels for these compounds. The RD50 value for a mixture of 5 microbial volatile organic compounds was also determined and found to be 3.6 times lower than estimated from the fractional concentrations and the respective RD50s of the individual components. The data support the conclusion that a variety of microbial volatile organic compounds may have some synergistic effects for the sensory irritation response, which constrains the interpretation and application of recommended indoor air levels of individual microbial volatile organic compounds. The results also showed that if a particular component of a mixture was much more potent than the other components, it may dominate the sensory irritation effect. With respect to irritation symptoms reported in moldy houses, the results of this study indicate that the contribution of microbial volatile organic compounds to these symptoms seems less than previously supposed.
Microscale Variations in the 13C Content of the Murchison Meteorite
NASA Astrophysics Data System (ADS)
Romanek, C.; Gibson, E.; Socki, R.; Burkett, P. J.
1993-07-01
Heretofore unresolved micrometer-scale carbon isotopic zonation in the Murchison meteorite (CM3) is documented using a laser microprobe mass spectrometer. High-resolution isotopic gradients and heterogeneities between high- and low-temperature textural components help to constrain the processes that have shaped the physiochemical character of this carbonaceous chondrite. Previous bulk samples of Murchison yield an average delta ^13C value of - 5.7 +/- 4.3 per mil [1] while individual components such as micrometer-sized mineral separates (e.g., C(sub)graphite , C(sub)diamond, and SiC), acid- soluble extracts (e.g., CaCO3 and polar hydrocarbons), and insoluble residues (e.g., polycyclic aromatic hydrocarbons) are isotopically diverse (delta ^13C of -1000 to 29,000 per mil). While these studies shed light on the origin and occurrence of C-bearing phases, they fail to constrain intrinsic spatial isotopic heterogeneities. The power of the laser microprobe lies in the fact that in situ chemical and isotopic compositions are measured simultaneously for volatiles extracted from extremely small sample volumes (i.e., 0.025 mm^3 for 5 wt% C). Nd-YAG laser irradiation (1.06 micrometers) is directed onto texturally defined targets (>=50 micrometers wide) from which solid material is volatilized. Condensible gaseous phases are collected in a variable-temperature cold trap while the more volatile species (CH4 and CO) are quantified using an ion trap mass spectrometer. All gases are then converted to CO2 in a CuO furnace (containing Pt) held at 600 degrees C and analyzed for carbon and oxygen isotope ratios. The concentration and isotopic composition of condensed species are determined by stepped sublimation of unstable components and conversion to CO2. Preliminary isotopic analyses of the total volatile C content (i.e., bulk microanalysis) from distinct textural components at least 0.05 mm^3 in volume are described below. The most ^13C-depleted components within Murchison reside within the cores of chondrules and/or aggregates. Three typical cores were analyzed, with an average bulk composition of -21.0 +/- 0.5 per mil (n = 7). The bulk ^13C content of C-bearing phases increases monotonically outward in all directions within 100 to 200 micrometers of each core (i.e., within dust mantles) to a constant matrix value of -12.5 +/- 0.5 per mil (n = 40). The most isotopically enriched textural component found in Murchison is a regolith breccia clast without chondrules that has an average bulk delta ^13C value of -10 +/-0.5 per mil (n = 5). The clast was originally detectable only under cathodoluminescence, but with the aid of the laser microprobe it is now characterized by an unusually low volatile content and enriched ^13C composition. In general, the most isotopically enriched components also produce the lowest yield of gas (normalized to sampling volume). This trend of isotopic enrichment from chondrule to matrix has been documented previously for oxygen isotopes in carbonaceous chondrites [2]. Carbon isotopic gradients and heterogeneities within Murchison reflect fundamental changes in the chemical speciation and/or isotopic content of the main C-bearing components (i.e., acid-soluble and insoluble hydrocarbon fractions) within the meteorite. Perhaps core interiors and dust mantles are responding to environmental changes reflected in the speciation of C-bearing species distributed within the solar nebula or the parent body. Inverse correlations between hydrocarbon atomic mass number and ^13C abundance in the acid-soluble [3] and insoluble residues [4] of Murchison have been documented. Alternatively, micrometer-scale isotopic gradients may reflect fundamental changes in the isotopic composition of individual C-bearing species through time. Enrichments may represent kinetically controlled processes related to hydrocarbon formation. In contrast, assuming an equilibrium fractionation mechanism, isotopic enrichments may record a temperature-dependent component to hydrocarbon delta ^13C values. These opposing alternatives will be discussed in light of the isotopic composition of individual C-bearing components volatilized from tightly constrained sample volumes within Murchison. References: [1] Kerridge J. F. (1985) GCA, 49, 1707-1714. [2] Clayton R. N. and Mayeda T. K. (1984) EPSL, 67, 151-161. [3] Yuen G. et al. (1984) Nature, 307, 254. [4] Gilmour I. et al. (1991) Meteoritics, 26, 337-338.
NASA Astrophysics Data System (ADS)
Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vázquez, M.; Borrás, E.; Ródenas, M.
2014-06-01
The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound (VOC) that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high-performance liquid chromatography mass spectrometry (HPLC-ITMS), high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18 and 29% for an initial VOC mixing ratio of 212 and 460 ppbv (parts per billion by volume) respectively; using a VOC:NOx ratio of ~5:1. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high-resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro-functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O:C ratios, where functionalisation rather than fragmentation is mainly observed as a result of the stability of the ring. The SOA species observed can be characterised as semi-volatile to low-volatility oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.
Pei, Fei; Shi, Ying; Gao, Xingyang; Wu, Fangning; Mariga, Alfred Mugambi; Yang, Wenjian; Zhao, Liyan; An, Xinxin; Xin, Zhihong; Yang, Fangmei; Hu, Qiuhui
2014-12-15
Button mushroom slices were dehydrated using freeze drying (FD) or FD combined with microwave vacuum drying (FMVD), and the non-volatile component profiles were studied. The results showed that the level of non-volatile components in button mushroom firstly increased during sublimation of FD/FMVD process and then fell during desorption in FD process and MVD in FMVD process. Compared to FD products, the contents of soluble sugars and polyols in FMVD products were relatively low, whereas the contents of total free amino acids were significantly higher, close to the level of fresh mushroom. However, there was no significant difference in the contents of 5'-nucleotides and organic acids between FD and FMVD products. The equivalent umami concentration (EUC) values for FD and FMVD products did not differ from fresh, indicating that both drying methods could effectively preserve MSG (monosodium glutamate)-like components in button mushroom. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Component and content changes of volatiles from Chinese cabbage damaged by Plutella xylostella].
Yang, Guang; You, Minsheng; Wei, Hui
2004-11-01
The study showed that Chinese cabbage, Brassica campestris could release a variety of volatiles, especially when infested by Plutella xylostella larvae. Among these volatiles, saturated hydrocarbon was dominant, aromatic hydrocarbon was the second, and unsaturated hydrocarbon, aldehyde, alcohol, ketone, acid and heteroaromatic compounds were existed with a small amount. Chinese cabbage damaged by Plutella xylostella larvae produced 3 times of volatiles in amount with more species than the control. The volatiles from control plants were mostly of small molecular weight, and those from Chinese cabbage damaged by Plutella xylostella were mostly of high molecular weight.
Dickens, J C
1984-12-01
Electroantennogram (EAG) techniques were utilized to measure the antennal olfactory responsiveness of adult boll weevils,Anthonomus grandis Boh. (Coleoptera: Curculionidae), to 38 odorants, including both insect and host plant (Gossypium hirsutum L.) volatiles. EAGs of both sexes were indicative of at least two receptor populations: one receptor population primarily responsive to pheromone components and related compounds, the other receptor population primarily responsive to plant odors. Similar responses to male aggregation pheromone components (i.e., compounds I, II, and III + IV) were obtained from both sexes, but females were slightly more sensitive to I. Both sexes were highly responsive to components of the "green leaf volatile complex," especially the six-carbon saturated and monounsaturated primary alcohols. Heptanal was the most active aldehyde tested. More acceptors responded to oxygenated monoterpenes than to monoterpene hydrocarbons. β-Bisabolol, the major volatile of cotton, was the most active sesquiterpene. In general, males, which are responsible for host selection and pheromone production, were more sensitive to plant odors than were females. In fact, males were as sensitive to β-bisabolol and heptanal as to aggregation pheromone components. Electrophysiological data are discussed with regard to the role of insect and host plant volatiles in host selection and aggregation behavior of the boll weevil.
Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China
NASA Astrophysics Data System (ADS)
Cao, Li-Ming; Huang, Xiao-Feng; Li, Yuan-Yuan; Hu, Min; He, Ling-Yan
2018-02-01
Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components, and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a thermodenuder aerosol mass spectrometer (TD-AMS) system was deployed to study the volatility of non-refractory submicron particulate matter (PM1) species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7±20.1 µg m-3, with organic aerosol (OA) being the most abundant component (43.2 % of the total mass). The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with a mass fraction remaining (MFR) of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C), and the volatility had a relatively linear correlation with the TD temperature (from the ambient temperature to 200 °C), with an evaporation rate of 0.45 % °C-1. Five subtypes of OA were resolved from total OA using positive matrix factorization (PMF) for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %), a cooking OA (COA, 20.6 %), a biomass-burning OA (BBOA, 8.9 %), and two oxygenated OAs (OOAs): a less-oxidized OOA (LO-OOA, 39.1 %) and a more-oxidized OOA (MO-OOA, 17.9 %). Different OA factors presented different volatilities, and the volatility sequence of the OA factors at 50 °C was HOA (MFR of 0.56) > LO-OOA (0.70) > COA (0.85) ≈ BBOA (0.87) > MO-OOA (0.99), which was not completely consistent with the sequence of their O / C ratios. The high volatility of HOA implied that it had a high potential to be oxidized to secondary species in the gas phase. The aerosol volatility measurement results in this study provide useful parameters for the modeling work of aerosol evolution in China and are also helpful in understanding the formation mechanisms of secondary aerosols.
A method for the solvent extraction of low-boiling-point plant volatiles.
Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne
2005-01-01
A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.
Thermodynamics of Volatile Species in the Silicon-Oxygen-Hydrogen System Studied
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Opila, Elizabeth J.; Copland, Evan H.; Myers, Dwight
2005-01-01
The volatilization of silica (SiO2) to silicon hydroxides and oxyhydroxides because of reaction with water vapor is important in a variety of high-temperature corrosion processes. For example, the lifetimes of silicon carbide (SiC) and silicon nitride (Si3N4) - based components in combustion environments are limited by silica volatility. To understand and model this process, it is essential to have accurate thermodynamic data for the formation of volatile silicon hydroxides and oxyhydroxides.
RESOLVE: Regolith and Environment Science and Oxygen and Lunar Volatile Extraction
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline; Baird, Scott; Colaprete, Anthony; Larson, William; Sanders, Gerald; Picard, Martin
2011-01-01
Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is an internationally developed payload that is intended to prospect for resources on other planetary bodies. RESOLVE is a miniature drilling and chemistry plant packaged onto a medium-sized rover to collect and analyze soil for volatile components such as water or hydrogen that could be used in human exploration efforts.
Multifractal in Volatility of Family Business Stocks Listed on Casablanca STOCK Exchange
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
In this paper, we check for existence of multifractal in volatility of Moroccan family business stock returns and in volatility of Casablanca market index returns based on multifractal detrended fluctuation analysis (MF-DFA) technique. Empirical results show strong evidence of multifractal characteristics in volatility series of both family business stocks and market index. In addition, it is found that small variations in volatility of family business stocks are persistent, whilst small variations in volatility of market index are anti-persistent. However, large variations in family business volatility and market index volatility are both anti-persistent. Furthermore, multifractal spectral analysis based results show strong evidence that volatility in Moroccan family business companies exhibits more multifractality than volatility in the main stock market. These results may provide insightful information for risk managers concerned with family business stocks.
[Volatile organic compounds concentrations and sources inside new air-conditioned bus].
You, Ke-Wei; Ge, Yun-Shan; Qian, Yi-Xin; Liu, Wei; Feng, Bo; Zhang, Yan-Ni; Ning, Zhan-Wu; Hu, Bin; Zhao, Shou-Tang
2008-05-01
The distributing profile and concentration level inside new air-conditioned buses with 53 seats have been determined using the method of thermal desorption-capillary GC/MS under vehicle static conditions. Compounds were identified from their mass spectral data by using US National Institute of Standards and Technology (NIST02). The total numbers of identified components were 33 inside buses, including alkenes (15,45.4%), aromatic compounds (9,27.3%), alcohols (4,12.1%), ketones (3,9.1%) and esters (2,6.1%), especially in the range of C6-C10. The top 5 compounds measured inside buses were decane (8.01 mg/m3), 3-methylhexane (7.10 mg/m3), heptane (5.10 mg/m3), isoheptane (4.20 mg/m3) and 1-Methyl-3-ethylbenzene (3.56 mg/m3), and total volatile organic compounds (TVOC) > 52.5 mg/m3. The main sources of in-vehicle hydrocarbons and aromatic compounds comes from cabin components and interior trim materials (e.g., sealants, carpets, adhesives, paints, leather, plastics, PU foam and PE foam) that may retain certain VOCs during manufacturing, and/or emit these compounds over an extended period of time from off-gassing, aging-related breakdown products, heating/cooling and so on.
Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening
Xi, Wanpeng; Zheng, Huiwen; Zhang, Qiuyun; Li, Wenhui
2016-01-01
Sugars, organic acids and volatiles of apricot were determined by HPLC and GC-MS during fruit development and ripening, and the key taste and aroma components were identified by integrating flavor compound contents with consumers’ evaluation. Sucrose and glucose were the major sugars in apricot fruit. The contents of all sugars increased rapidly, and the accumulation pattern of sugars converted from glucose-predominated to sucrose-predominated during fruit development and ripening. Sucrose synthase (SS), sorbitol oxidase (SO) and sorbitol dehydrogenase (SDH) are under tight developmental control and they might play important roles in sugar accumulation. Almost all organic acids identified increased during early development and then decrease rapidly. During early development, fruit mainly accumulated quinate and malate, with the increase of citrate after maturation, and quinate, malate and citrate were the predominant organic acids at the ripening stage. The odor activity values (OAV) of aroma volatiles showed that 18 aroma compounds were the characteristic components of apricot fruit. Aldehydes and terpenes decreased significantly during the whole development period, whereas lactones and apocarotenoids significantly increased with fruit ripening. The partial least squares regression (PLSR) results revealed that β-ionone, γ-decalactone, sucrose and citrate are the key characteristic flavor factors contributing to consumer acceptance. Carotenoid cleavage dioxygenases (CCD) may be involved in β-ionone formation in apricot fruit. PMID:27347931
Weerawatanakorn, Monthana; Asikin, Yonathan; Takahashi, Makoto; Tamaki, Hajime; Wada, Koji; Ho, Chi-Tang; Chuekittisak, Raweewan
2016-11-01
Non-centrifugal cane sugar (NCS) is globally consumed and has various health benefits. It is mostly produced in hardened block form, which is less convenient than in granulated form for food applications. In terms of the traditional processing of NCS, preparation of granulated products is difficult due to the impurities found in the cane juice extracted from the whole stalk. Therefore, the aim of this study was to characterize and determine the physico-chemical properties, wax composition (policosanols and long-chain aldehydes), volatile aroma profiles, and antioxidant activity of traditional NCS in granular form made from four different cane cultivars of Thailand. The total soluble solid, pH, color, and mineral content varied among the sugarcane cultivars, whereas there was no significant difference in the total sugar, phenolic and flavonoid content. The total policosanol, a cholesterol-lowering nutraceutical wax component, and long-chain aldehyde contents were similar in the NCS products amongst three cultivars, and ranged from 2.63 to 3.69 mg/100 g. The granulated NCS products, in which acetaldehyde and dimethyl sulfide were the main volatile compounds, gave less aroma components than traditional NCS. The use of different sugarcane cultivars thus influenced the quality attributes of granulated non-centrifugal sugar products.
Mothana, Ramzi A; Noman, Omar M; Al-Sheddi, Ebtesam S; Khaled, Jamal M; Al-Said, Mansour S; Al-Rehaily, Adnan J
2017-02-27
The essential oil of Leucas inflata Balf.f. (Lamiaceae), collected in Yemen, was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. Forty-three components were recognized, representing 89.2% of the total oil. The L. inflata volatile oil was found to contain a high percentage of aliphatic acids (51.1%). Hexadecanoic acid (32.8%) and n-dodecanoic acid (7.8%) were identified as the major compounds. Oxygenated monoterpenes were distinguished as the second significant group of constituents (16.0%). Camphor (6.1%) and linalool (3.2%) were found to be the main components among the oxygenated monoterpenes. In addition, the volatile oil was assessed for its antimicrobial activity against four bacterial strains and one yeast species using broth micro-dilution assay for minimum inhibitory concentrations (MIC). In addition, antioxidant activity was measured utilizing the anti-radical activity of the sable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-Carotene-linoleic acid assays. The oil of L. inflata showed an excellent antibacterial activity against only the tested Gram-positive bacteria with a MIC-value of 0.81 mg/mL. Furthermore, the oil demonstrated, at a concentration of 1 mg/mL, a weak to moderate antiradical and antioxidant activity of 38% and 32%, respectively.
Guo, Long; Jiao, Qian; Zhang, Dan; Liu, Ai-Peng; Wang, Qian; Zheng, Yu-Guang
2018-03-01
Artemisiae Argyi Folium, the dried leaves of Artemisia argyi, has been widely used in traditional Chinese and folk medicines for treatment of hemorrhage, pain, and skin itch. Phytochemical studies indicated that volatile oil, organic acid and flavonoids were the main bioactive components in Artemisiae Argyi Folium. Compared to the volatile compounds, the research of nonvolatile compounds in Artemisiae Argyi Folium are limited. In the present study, an accurate and reliable fingerprint approach was developed using HPLC for quality control of Artemisiae Argyi Folium. A total of 10 common peaks were marked,and the similarity of all the Artemisiae Argyi Folium samples was above 0.940. The established fingerprint method could be used for quality control of Artemisiae Argyi Folium. Furthermore, an HPLC method was applied for simultaneous determination of seven bioactive compounds including five organic acids and two flavonoids in Artemisiae Argyi Folium and Artemisiae Lavandulaefoliae Folium samples. Moreover, chemometrics methods such as hierarchical clustering analysis and principal component analysis were performed to compare and discriminate the Artemisiae Argyi Folium and Artemisiae Lavandulaefoliae Folium based on the quantitative data of analytes. The results indicated that simultaneous quantification of multicomponents coupled with chemometrics analysis could be a well-acceptable strategy to identify and evaluate the quality of Artemisiae Argyi Folium. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Biswas, Subhasis; Hu, Shaohua; Verma, Vishal; Herner, Jorn D.; Robertson, William H.; Ayala, Alberto; Sioutas, Constantinos
Emission control technologies designed to meet the 2007 and 2010 emission standards for heavy-duty diesel vehicles (HDDV) remove effectively the non-volatile fraction of particles, but are comparatively less efficient at controlling the semi-volatile components. A collaborative study between the California Air Resources Board (CARB) and the University of Southern California was initiated to investigate the physicochemical and toxicological characteristics of the semi-volatile and non-volatile particulate matter (PM) fractions from HDDV emissions. This paper reports the physical properties, including size distribution, volatility (in terms of number and mass), surface diameter, and agglomeration of particles emitted from HDDV retrofitted with advanced emission control devices. Four vehicles in combination with six after-treatment devices (V-SCRT ®, Z-SCRT ®, CRT ®, DPX, Hybrid-CCRT ®, EPF) were tested under three driving cycles: steady state (cruise), transient (urban dynamometer driving schedule, UDDS), and idle. An HDDV without any control device is served as the baseline vehicle. Substantial reduction of PM mass emissions (>90%) was accomplished for the HDDV operating with advanced emission control technologies. This reduction was not observed for particle number concentrations under cruise conditions, with the exceptions of the Hybrid-CCRT ® and EPF vehicles, which were efficient in controlling both—mass and number emissions. In general, significant nucleation mode particles (<50 nm) were formed during cruise cycles in comparison with the UDDS cycles, which emit higher PM mass in the accumulation mode. The nucleation mode particles (<50 nm) were mainly internally mixed, and evaporated considerably between 150 and 230 °C. Compared to the baseline vehicle, particles from vehicles with controls (except of the Hybrid-CCRT ®) had a higher mass specific surface area.
Volatile oil composition of Carthamus Tinctorius L. flowers grown in Kazakhstan.
Turgumbayeva, Aknur Amanbekovna; Ustenova, Gulbaram Omargazieva; Yeskalieva, Balakyz Kymyzgalievna; Ramazanova, Bakyt Amanullovna; Rahimov, Kairolla Duysenbayevich; Aisa, Hajiakbar; Juszkiewicz, Konrad T
2018-03-14
Carthamus tinctorius L. is commonly known as Safflower. C. tinctorius extracts and oil are important in drug development with numerous pharmacological activities in the world. This plant is cultivated mainly for its seed which is used as edible oil. For a long time, C. tinctorius has been used in traditional medicines as a purgative, analgesic, antipyretic and an antidote to poisoning. It is a useful plant in painful menstrual problems, post-partum haemorrhage and osteoporosis. The subject of this study is the seeds of Kazakhstan species of 'Akmai' safflower, collected in the flowering stage in Southern Kazakhstan. Volatile oil was carry out to study the component composition of Kazakhstan 'AkMai' safflower flowers. Pale yellow oily extracts were obtain by varying the process parameters. The volatile oil obtained by hydrodistillation of the petals Carthamus tinctorius L. was analyzed by gas chromatography/mass spectrometry (GC/MS). The yield of the oil was 0.175 % (v/w). 20 compounds representing 99.81% of the oil were characterized. The volatile oil was found to be rich in undecanoic acid, octane, 2-nonen -1-ol, hexadecanal, dodecanal, dec-2-en-1-ol, nonanoic acid, tetradecanoic acid, 2 pentadecanone, 6,10,14-trimethyl, 1,2-benzenedicarboxylic acid, isobutyl-beta-phenylpropionate, 1.3-cyclohexadiene, myrtenoic acid, octadecanoic acid, heneicosanoic acid, 2(3H)-furanone, 4,4-dipropylheptane, hexcosane,1-eicosanol, as well as heptocosane. Volatile oil from the flowers of the Kazakhstan safflower species 'Ak-Mai' were investigated by GC/MS which allowed the detection of 20 compounds. Biologically active complex of the flower of the Kazakhstan safflower species 'Ak-Mai' was released for the first time by using this oil.
Wang, Sai-Jun; Wu, Zhen-Feng; Yang, Ming; Wang, Ya-Qi; Hu, Peng-Yi; Jie, Xiao-Lu; Han, Fei; Wang, Fang
2014-09-01
Aromatic traditional Chinese medicines have a long history in China, with wide varieties. Volatile oils are active ingredients extracted from aromatic herbal medicines, which usually contain tens or hundreds of ingredients, with many biological activities. Therefore, volatile oils are often used in combined prescriptions and made into various efficient preparations for oral administration or external use. Based on the sources from the database of Newly Edited National Chinese Traditional Patent Medicines (the second edition), the author selected 266 Chinese patent medicines containing volatile oils in this paper, and then established an information sheet covering such items as name, dosage, dosage form, specification and usage, and main functions. Subsequently, on the basis of the multidisciplinary knowledge of pharmaceutics, traditional Chinese pharmacology and basic theory of traditional Chinese medicine, efforts were also made in the statistics of the dosage form and usage, variety of volatile oils and main functions, as well as the status analysis on volatile oils in terms of the dosage form development, prescription development, drug instruction and quality control, in order to lay a foundation for the further exploration of the market development situations of volatile oils and the future development orientation.
Piras, Alessandra; Falconieri, Danilo; Porcedda, Silvia; Marongiu, Bruno; Gonçalves, Maria José; Cavaleiro, Carlos; Salgueiro, Ligia
2014-01-01
This article reports the results on the composition and antifungal effect of volatile extracts obtained from the aerial parts of Sardinian wild fennel (Foeniculum vulgare Mill.), by supercritical fluid extraction (SFE) and by hydrodistillation (HD). The extracts were analysed by gas chromatography-mass spectrometry for qualitative composition and gas chromatography-flame ionisation detector to establish the percentage of constituents. The main components were fenchone (7.1% vs. 8.8%), estragole (34.9% vs. 42.6%) and (E)-anethole (24.6% vs. 43.4%) in the SFE and HD extract, respectively. Minimum inhibitory concentrations (MICs) were measured according to the reference Clinical and Laboratory Standards Institute (CLSI) broth macrodilution protocols. Minimum lethal concentrations were determined by subsequent subculturing of the same cell suspensions in solid medium. The essential oil was more active against Candida albicans, whereas the supercritical fluid extract possesses higher activity against Candida guillermondii and Cryptococcus neoformans, with MIC values of 0.32 μL/mL.
Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang
2016-07-01
Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline. Copyright © 2016 Elsevier Ltd. All rights reserved.
New insights in the chemical composition of benzoin balsams.
Burger, Pauline; Casale, Alexandre; Kerdudo, Audrey; Michel, Thomas; Laville, Rémi; Chagnaud, Francis; Fernandez, Xavier
2016-11-01
Benzoin balsam is an anthropic exudate obtained from the bark of several species of Styrax trees that is mainly used as a perfume fixative as well as a flavouring agent. Benzoe tonkinensis Laos (also commercialized under the denomination Siam benzoin balsam) displaying characteristic vanilla notes and already being largely used to flavour all kinds of edible goods, was intended to be proposed by Agroforex Company to the Codex Committee on Food Additives for evaluation as a food additive. For this purpose, the present paper reports the phytochemical characterisation of both the volatile and non-volatile fractions of benzoin balsams and the quantitation of some of the major components by gas and liquid chromatography techniques. Four coniferyl and two morinol derivatives were characterised for the first time in Benzoe tonkinensis Laos. Finally, two liquid chromatographic methods used to easily discriminate Siam from Sumatra balsam (also known as Benzoe sumatranus Indonesia) were developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sereshti, Hassan; Samadi, Soheila; Jalali-Heravi, Mehdi
2013-03-08
Ultrasound assisted extraction (UAE) followed by dispersive liquid-liquid microextraction (DLLME) was used for extraction and preconcentration of volatile constituents of six tea plants. The preconcentrated compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Totally, 42 compounds were identified and caffeine was quantitatively determined. The main parameters (factors) of the extraction process were optimized by using a central composite design (CCD). Methanol and chloroform were selected as the extraction solvent and preconcentration solvent, respectively .The optimal conditions were obtained as 21 in for sonication time; 32°C for temperature; 27 L for volume of extraction solvent and 7.4% for salt concentration (NaCl/H(2)O). The determination coefficient (R(2)) was 0.9988. The relative standard deviation (RSD %) was 4.8 (n=5), and the enhancement factors (EFs) were 4.0-42.6. Copyright © 2013 Elsevier B.V. All rights reserved.
The role of chondrules in nebular fractionations of volatiles and other elements
NASA Technical Reports Server (NTRS)
Grossman, J. N.
1994-01-01
For at least 30 years, cosmochemists have been grappling with the question of how and why groups of geochemically and volatility related elements became fractionated in the major chondrite groups. At least five relatively independent fractionations are known. Virtually everyone who has thought about these facts has been attempted to attribute at least some of the fractionations to the physical separation or mixing of the visible components. By far the most abundant of these components in meteorites is chondrules, and indeed chondrules have long been suspected of playing a direct role in fractionation of volatile elements. The question addressed here is whether chondrules formed before or after chemical components became separated is of fundamental importance to our understanding of the early solar system, as the answer constrains how, when, where, and from what chondrules formed, and tells us about how materials were processed in the nebula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bean, R. M.; Mann, D. C.; Riley, R. G.
1980-06-01
The products of low-level chlorination of natural waters from ten locations across the continental United States have been studied, with emphasis on volatile and lipophilic organohalogen components. A specially designed apparatus permitted continuous sampling and chlorination of water in a manner analogous to some types of cooling water treatments. Volatile components were analyzed using headspace, purge-and-trap, and resin adsorption methods. The less-volatile components were collected by passing large volumes of the chlorinated water over XAD-2 columns. Total organic halogen collected on XAD resins was compared with the halogen contribution of haloform compounds. The XAD samples were further separated into fractionsmore » according to molecular weight and polarity using liquid chrOmatography. These studies indicate that haloforms are the most abundant lipophilic halogenated products formed from low-level chlorination of natural waters, but that other halogenated lipophilic material is also formed.« less
Kamle, Madhu; Bar, Einat; Lewinsohn, Dalia; Shavit, Elinoar; Roth-Bejerano, Nurit; Kagan-Zur, Varda; Barak, Ze'ev; Guy, Ofer; Zaady, Eli; Lewinsohn, Efraim; Sitrit, Yaron
2017-03-28
Desert truffles are mycorrhizal, hypogeous fungi considered a delicacy. On the basis of morphological characters, we identified three desert truffle species that grow in the same habitat in the Negev desert. These include Picoa lefebvrei (Pat.), Tirmania nivea (Desf.) Trappe, and Terfezia boudieri (Chatain), all associated with Helianthemum sessiliflorum. Their taxonomy was confirmed by PCR-RFLP. The main volatiles of fruit bodies of T. boudieri and T. nivea were 1-octen-3-ol and hexanal; however, volatiles of the latter species further included branched-chain amino acid derivatives such as 2-methylbutanal and 3-methylbutanal, phenylalanine derivatives such as benzaldehyde and benzenacetaldehyde, and methionine derivatives such as methional and dimethyl disulfide. The least aromatic truffle, P. lefebvrei, contained low levels of 1-octen-3-ol as the main volatile. Axenic mycelia cultures of T. boudieri displayed a simpler volatile profile compared to its fruit bodies. This work highlights differences in the volatile profiles of desert truffles and could hence be of interest for selecting and cultivating genotypes with the most likable aroma.
Jung, Heeyong; Lee, Seung-Joo; Lim, Jeong Ho; Kim, Bum Keun; Park, Kee Jai
2014-01-01
The chemical and sensory profiles of 12 commercial samples of makgeolli, a Korean rice wine, were determined using descriptive sensory, chemical, and volatile components analyses. The sample wines were analysed for their titratable acidity, ethanol content, pH, Hunter colour value and total reducing sugars. The chemical compositions of the makgeolli samples were found to be significantly different. The volatile compounds were extracted with solid-phase microextraction and analysed by gas chromatography time-of-flight mass spectrometry. In all, 45 major volatile compounds, consisting of 33 esters, 8 alcohols, 1 aldehyde, 1 acid, 1 phenol and 1 terpene, were identified; each makgeolli sample included 28-35 volatile compounds. Based on principal component analysis of the sensory data, samples RW1, RW2, RW5, RW8 and RW12 were associated with roasted cereal, mouldy, bubbles, sweet and sour attributes; the other samples were associated with sensory attributes of yellowness, yeast, full body, turbidity, continuation, swallow, alcohol, fruit aroma and whiteness. Copyright © 2014. Published by Elsevier Ltd.
Guclu, Gamze; Sevindik, Onur; Kelebek, Hasim; Selli, Serkan
2016-01-01
Ayvalik is an important olive cultivar producing high quality oils in Turkey. In the present study, volatile and phenolic compositions of early-harvest extra virgin olive oil (cv. Ayvalik) were determined. The solvent-assisted flavor evaporation (SAFE) technique was used for the extraction of volatile components. The aromatic extract obtained by SAFE was representative of the olive oil odor. A total of 32 aroma compounds, including alcohols, aldehydes, terpenes, esters, and an acid, were identified in the olive oil. Aldehydes and alcohols were qualitatively and quantitatively the most dominant volatiles in the oil sample. Of these, six volatile components presented odor activity values (OAVs) greater than one, with (Z)-3-hexenal (green), hexanal (green-sweet) and nonanal (fatty-pungent) being those with the highest OAVs in olive oil. A total of 14 phenolic compounds were identified and quantified by liquid chromatography combined with a diode array detector and ion spray mass spectrometry. The major phenolic compounds were found as 3,4-DHPEA-EDA, 3,4-DHPEA-EA and p-HPEA-EDA. PMID:28231141
Apichartsrangkoon, Arunee; Wongfhun, Pronprapa; Gordon, Michael H
2009-01-01
The flavor characteristics of pennywort juices with added sugar treated by ultra-high pressure, pasteurization, and sterilization were investigated using solid phase microextraction combined with gas chromatography-mass spectrometry. It was found that sesquiterpene hydrocarbons comprised the major class of volatile components present and the juices had a characteristic aroma due to the presence of volatiles including beta-caryophyllene and humulene and alpha-copaene. In comparison with heated juices, HPP-treated samples could retain more volatile compounds such as linalool and geraniol similar to those present in fresh juice, whereas some volatiles such as alpha-terpinene and ketone class were apparently formed by thermal treatment. All processing operations produced juice that was not significantly different in the concentration of total volatiles. Practical Application: Pennywort juice is considered a nutraceutical drink for health benefits. Therefore, to preserve all aroma and active components in this juice, a nonthermal process such as ultra-high pressure should be a more appropriate technique for retention of its nutritive values than pasteurization and sterilization.
Saka, Boualem; Djouahri, Abderrahmane; Djerrad, Zineb; Terfi, Souhila; Aberrane, Sihem; Sabaou, Nasserdine; Baaliouamer, Aoumeur; Boudarene, Lynda
2017-06-01
In the present work, the Brassica rapa var. rapifera parts essential oils and their antioxidant and antimicrobial activities were investigated for the first time depending on geographic origin and extraction technique. Gas-chromatography (GC) and GC/mass spectrometry (MS) analyses showed several constituents, including alcohols, aldehydes, esters, ketones, norisoprenoids, terpenic, nitrogen and sulphur compounds, totalizing 38 and 41 compounds in leaves and root essential oils, respectively. Nitrogen compounds were the main volatiles in leaves essential oils and sulphur compounds were the main volatiles in root essential oils. Qualitative and quantitative differences were found among B. rapa var. rapifera parts essential oils collected from different locations and extracted by hydrodistillation and microwave-assisted hydrodistillation techniques. Furthermore, our findings showed a high variability for both antioxidant and antimicrobial activities. The highlighted variability reflects the high impact of plant part, geographic variation and extraction technique on chemical composition and biological activities, which led to conclude that we should select essential oils to be investigated carefully depending on these factors, in order to isolate the bioactive components or to have the best quality of essential oil in terms of biological activities and preventive effects in food. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
NASA Astrophysics Data System (ADS)
Kamenetsky, V.; Sobolev, A.; McDonough, W.
2003-04-01
Late Cretaceous komatiites of Gorgona Island are unambiguous samples of ultra-mafic melts related to a hot and possibly 'wet' mantle plume. Despite significant efforts in studying komatiites, their volatile abundances remain largely unknown because of significant alteration of rocks and lack of fresh glasses. This work presents major, trace and volatile element data for 22 partially homogenised (at 1275oC and 1 bar pressure) melt inclusions in olivine (Fo 90.5-91.5) from a Gorgona Isl. komatiite (# Gor 94-3). Major element compositions (except FeO which is notably lower by up to 5 wt% as a result of post-entrapment re-equilibration) and most lithophile trace elements of melt inclusions are indistinguishable from the whole rock komatiites. With the exception of three inclusions that have low Na, H2O, Cl, F and S (likely compromised and degassed during heating) most compositions are characterised by relatively constant and high volatile abundances (H2O 0.4-0.8 wt%, Cl 0.02-0.03 wt%, B 0.8-1.4 ppm). These are interpreted as representative of original volatiles in parental melts because they correspond to the internal volatile pressure in the closed inclusions significantly exceeding 1 bar pressure of heating experiment. Although H2O is strongly enriched (PM-normalised H2O/Ce 10-17) its concentrations correlate well with many elements (e.g. Yb, Er, Y, Ti, Sr, Be). Other positive anomalies on the overall depleted (La/Sm 0.26-0.33) PM normalized compositional spectra of melt inclusions are shown by B (B/K 2.4-5.4) and Cl (Cl/K 11-16). Compositions of melt inclusions, when corrected for Fe loss and recalculated in equilibrium with host olivine, have high MgO (15.4-16.4 wt%; Mg# of 74) and substantial H2O (0.4-0.6 wt%) contents. This together with the data on other 'enriched' elements argues for the presence of previously unknown volatile-enriched component in the parental melts of Gorgona Isl. komatiites. We discuss contamination of magmas by altered oceanic crust in the plumbing system, the involvement of volatile-rich subduction related component(s) in the mantle source, and the geochemical control from residual garnet during the generation of komatiite primary melts.
Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H
2006-02-01
Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas with high concentrations of NH4NO3 and other volatile particles.
Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes.
Lekshmi, P C; Arimboor, Ranjith; Indulekha, P S; Menon, A Nirmala
2012-11-01
Anti-diabetic capacity of Curcuma longa volatile oil in terms of its ability to inhibit glucosidase activities was evaluated. Turmeric volatile oils inhibited glucosidase enzymes more effectively than the reference standard drug acarbose. Drying of rhizomes was found to enhance α-glucosidase (IC₅₀ = 1.32-0.38 μg/ml) and α-amylase (IC₅₀ = 64.7-34.3 μg/ml) inhibitory capacities of volatile oils. Ar-Turmerone, the major volatile component in the rhizome also showed potent α-glucosidase (IC₅₀ = 0.28 μg) and α-amylase (IC₅₀ = 24.5 μg) inhibition.
Ab Ghani, Nurunajah; Ismail, Nor Hadiani; Asakawa, Yoshinori
2016-02-01
Analysis of the volatile components present in the fresh male and female flowers and young leaves shows that 2-phenylethanol is the major component in all these three organs, which play a significant role in the strong resinous aromatic odor. The male flowers contained styrene as a second major compound. The level of styrene does not affect the male flowers odor concentration. The level of β-phenylethyl cinnamate and trans-methyl cinnamate in the fermented male flowers decreased as the fermentation time increased. This was due to the Penicillium enzymatic action on the fermented male flowers.
Zou, Ju-Ying; Chen, Sheng-Huang; Li, Qin-Wen; Chen, Han-Jun; Liu, Bei-Bei; Du, Fan
2012-04-01
To analyze the chemical constituents of volatile oil from the rhizomes and leaves of Pileostegia viburnoides var. glabrescens by GC-MS. The volatile oil was extracted from the rhizomes and leaves of Pileostegia viburnoides var. glabrescens by steam distillation. The constituents of volatile oil were identified by GC-MS technology. 37 compounds were identified from the oil of rhizomes. 36 compounds were identified from the oil of leaves. The rhizomes and leaves volatile oil had 18 compounds in common. This study is the first one to report the volatile components of Pileostegia viburnoides var. glabrescens. It can provide a scientific basis for rational use of the rhizomes and leaves of Pileostegia viburnoides var. glabrescens.
Baum, Michael J.
2012-01-01
Until recently it was widely believed that the ability of female mammals (with the likely exception of women) to identify and seek out a male breeding partner relied on the detection of non-volatile male pheromones by the female's vomeronasal organ (VNO) and their subsequent processing by a neural circuit that includes the accessory olfactory bulb (AOB), vomeronasal amygdala, and hypothalamus. Emperical data are reviewed in this paper that demonstrate the detection of volatile pheromones by the main olfactory epithelium (MOE) of female mice which, in turn, leads to the activation of a population of glomeruli and abutting mitral cells in the main olfactory bulb (MOB). Anatomical results along with functional neuroanatomical data demonstrate that some of these MOB mitral cells project to the vomeronasal amygdala. These particular MOB mitral cells were selectively activated (i.e., expressed Fos protein) by exposure to male as opposed to female urinary volatiles. A similar selectivity to opposite sex urinary volatiles was also seen in mitral cells of the AOB of female mice. Behavioral data from female mouse, ferret, and human are reviewed that implicate the main olfactory system, in some cases interacting with the accessory olfactory system, in mate recognition. PMID:22679420
Cha, Dong H; Adams, Todd; Rogg, Helmuth; Landolt, Peter J
2012-11-01
Previous studies suggest that olfactory cues from damaged and fermented fruits play important roles in resource recognition of polyphagous spotted wing Drosophila flies (SWD), Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). They are attracted to fermented sweet materials, such as decomposing fruits but also wines and vinegars, and to ubiquitous fermentation volatiles, such as acetic acid and ethanol. Gas chromatography coupled with electroantennographic detection (GC-EAD), gas chromatography-mass spectrometry (GC-MS), two-choice laboratory bioassays, and field trapping experiments were used to identify volatile compounds from wine and vinegar that are involved in SWD attraction. In addition to acetic acid and ethanol, consistent EAD responses were obtained for 13 volatile wine compounds and seven volatile vinegar compounds, with all of the vinegar EAD-active compounds also present in wine. In a field trapping experiment, the 9-component vinegar blend and 15-component wine blend were similarly attractive when compared to an acetic acid plus ethanol mixture, but were not as attractive as the wine plus vinegar mixture. In two-choice laboratory bioassays, 7 EAD-active compounds (ethyl acetate, ethyl butyrate, ethyl lactate, 1-hexanol, isoamyl acetate, 2-methylbutyl acetate, and ethyl sorbate), when added singly to the mixture at the same concentrations tested in the field, decreased the attraction of SWD to the mixture of acetic acid and ethanol. The blends composed of the remaining EAD-active chemicals, an 8-component wine blend [acetic acid + ethanol + acetoin + grape butyrate + methionol + isoamyl lactate + 2-phenylethanol + diethyl succinate] and a 5-component vinegar blend [acetic acid + ethanol + acetoin + grape butyrate + 2-phenylethanol] were more attractive than the acetic acid plus ethanol mixture, and as attractive as the wine plus vinegar mixture in both laboratory assays and the field trapping experiment. These results indicate that these volatiles in wine and vinegar are crucial for SWD attraction to fermented materials on which they feed as adults.
Analysis of the build-up of semi and non volatile organic compounds on urban roads.
Mahbub, Parvez; Ayoko, Godwin A; Goonetilleke, Ashantha; Egodawatta, Prasanna
2011-04-01
Vehicular traffic in urban areas may adversely affect urban water quality through the build-up of traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) on road surfaces. The characterisation of the build-up processes is the key to developing mitigation measures for the removal of such pollutants from urban stormwater. An in-depth analysis of the build-up of SVOCs and NVOCs was undertaken in the Gold Coast region in Australia. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the SVOC and NVOC build-up under combined traffic scenarios of low, moderate, and high traffic in different land uses. It was found that congestion in the commercial areas and use of lubricants and motor oils in the industrial areas were the main sources of SVOCs and NVOCs on urban roads, respectively. The contribution from residential areas to the build-up of such pollutants was hardly noticeable. It was also revealed through this investigation that the target SVOCs and NVOCs were mainly attached to particulate fractions of 75-300 μm whilst the redistribution of coarse fractions due to vehicle activity mainly occurred in the >300 μm size range. Lastly, under combined traffic scenario, moderate traffic with average daily traffic ranging from 2300 to 5900 and average congestion of 0.47 were found to dominate SVOC and NVOC build-up on roads. Copyright © 2011 Elsevier Ltd. All rights reserved.
Features of spillover networks in international financial markets: Evidence from the G20 countries
NASA Astrophysics Data System (ADS)
Liu, Xueyong; An, Haizhong; Li, Huajiao; Chen, Zhihua; Feng, Sida; Wen, Shaobo
2017-08-01
The objective of this study is to investigate volatility spillover transmission systematically in stock markets across the G20 countries. To achieve this objective, we combined GARCH-BEKK model with complex network theory using the linkages of spillovers. GARCH-BEKK model was used to capture volatility spillover between stock markets. Then, an information spillover network was built. The data encompass the main stock indexes from 19 individual countries in the G20. To consider the dynamic spillover, the full data set was divided into several sub-periods. The main contribution of this paper is considering the volatility spillover relationships as the edges of a complex network, which can capture the propagation path of volatility spillovers. The results indicate that the volatility spillovers among the stock markets of the G20 countries constitute a holistic associated network, another finding is that Korea acts a role of largest sender in long-term, while Brazil is the largest long-term recipient in the G20 spillover network.
USDA-ARS?s Scientific Manuscript database
Euonymus europaeus seeds and seed oil were investigated for their volatiles using GC-MS-FID, Headspace-SPME/GC-MS-FID, and derivative GC-MS-FID for their volatiles and HPLC-DAD-CAD/MS for their non-volatile compounds. The seeds contain about 30% of fatty oil, mainly glyceryl trioleate, small amounts...
Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris).
Barney, Jacob N; Hay, Anthony G; Weston, Leslie A
2005-02-01
Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, alpha-pinene, and beta-pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.
Double-Vacuum-Bag Process for Making Resin-Matrix Composites
NASA Technical Reports Server (NTRS)
Bradford, Larry J.
2007-01-01
A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.
NASA Astrophysics Data System (ADS)
Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow
2017-04-01
This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.
Cecchi, Teresa; Alfei, Barbara
2013-12-01
This study aims to contribute to the knowledge of the commercial, sensory, and analytical characteristics of extra virgin olive oil (EVOO) from Italy (Marche region), renowned since ancient times. Headspace solid-phase micro-extraction (HS-SPME) was applied for the very first time to the sampling of volatile compounds of eleven typical Italian monocultivar EVOOs. Forty-eight compounds were characterised by GC-MS, some of them were only occasionally found in other EVOOs and some other were never detected before in any EVOO. Compounds belonging mainly to alcohols, esters, aldehydes, ketones and hydrocarbons chemical classes characterised the volatile profiles. The main volatile compounds detected in the EVOOs were the C6 compounds derived from polyunsaturated fatty acids, through the lipoxygenase pathway, in different proportion according to the specific cultivar. The results suggest that genetic factors strongly influence volatile formation and terpene hydrocarbons are claimed to be suitable markers of the geographic origin and genotype of the EVOO. Correlations among sensory attributes evaluated by a panel test and the presence of specific volatile compounds were highlighted for the very first time. The significance of the presence of some newly identified volatile compounds was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.
2015-01-01
The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.
NASA Astrophysics Data System (ADS)
Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling
2016-03-01
We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in volatile and trace element contents. Our results are consistent with previously proposed geodynamical processes acting at mid-ocean ridges and with the generation of the E-DMM. Our observations indicate that the D-DMM and E-DMM have (1) a relatively constant CO2/Cl ratio of ∼57 ± 8, and (2) volatile and ITE element abundance patterns that can be related by a simple melting event, supporting the hypothesis that the E-DMM is a recycled oceanic lithosphere mantle metasomatized by low degree melts. Our calculation and model give rise to a Pacific upper mantle with volatile content of CO2 = 235 ppm, H2O = 191 ppm, F = 13 ppm, Cl = 5 ppm, and S = 114 ppm.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic... § 59.106 of this subpart, any coating resulting from the mixing instructions of a regulated entity must... § 59.104(a). (b) Different combinations or mixing ratios of coating components constitute different...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulisashvili, Archil, E-mail: guli@math.ohiou.ed; Stein, Elias M., E-mail: stein@math.princeton.ed
2010-06-15
We study the asymptotic behavior of distribution densities arising in stock price models with stochastic volatility. The main objects of our interest in the present paper are the density of time averages of the squared volatility process and the density of the stock price process in the Stein-Stein and the Heston model. We find explicit formulas for leading terms in asymptotic expansions of these densities and give error estimates. As an application of our results, sharp asymptotic formulas for the implied volatility in the Stein-Stein and the Heston model are obtained.
Pereira, Regina F R; Vidal, Carla B; de Lima, Ari C A; Melo, Diego Q; Dantas, Allan N S; Lopes, Gisele S; do Nascimento, Ronaldo F; Gomes, Clerton L; da Silva, Maria Nataniela
2012-01-01
Sugar cane spirits are some of the most popular alcoholic beverages consumed in Cape Verde. The sugar cane spirit industry in Cape Verde is based mainly on archaic practices that operate without supervision and without efficient control of the production process. The objective of this work was to evaluate samples of industrial and alembic sugar cane spirits from Cape Verde and Ceará, Brazil using principal component analysis. Thirty-two samples of spirits were analyzed, twenty from regions of the islands of Cape Verde and twelve from Ceará, Brazil. Of the samples obtained from Ceará, Brazil seven are alembic and five are industrial spirits. The components analyzed in these studies included the following: volatile organic compounds (n-propanol, isobutanol, isoamylic, higher alcohols, alcoholic grade, acetaldehyde, acetic acid, acetate); copper; and sulfates.
Pereira, Regina F. R.; Vidal, Carla B.; de Lima, Ari C. A.; Melo, Diego Q.; Dantas, Allan N. S.; Lopes, Gisele S.; do Nascimento, Ronaldo F.; Gomes, Clerton L.; da Silva, Maria Nataniela
2012-01-01
Sugar cane spirits are some of the most popular alcoholic beverages consumed in Cape Verde. The sugar cane spirit industry in Cape Verde is based mainly on archaic practices that operate without supervision and without efficient control of the production process. The objective of this work was to evaluate samples of industrial and alembic sugar cane spirits from Cape Verde and Ceará, Brazil using principal component analysis. Thirty-two samples of spirits were analyzed, twenty from regions of the islands of Cape Verde and twelve from Ceará, Brazil. Of the samples obtained from Ceará, Brazil seven are alembic and five are industrial spirits. The components analyzed in these studies included the following: volatile organic compounds (n-propanol, isobutanol, isoamylic, higher alcohols, alcoholic grade, acetaldehyde, acetic acid, acetate); copper; and sulfates. PMID:23227051
NASA Astrophysics Data System (ADS)
Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.
2014-05-01
Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. While the hygroscopicities of pure salts, di-carboxylic acids (DCA), and DCA salts are known, the hygroscopicity of internal mixtures of these components, as they are typically found in the atmosphere, has not been fully characterized. Here we show that inorganic-organic component interactions typically not considered in atmospheric models can lead to very strongly bound metal-organic complexes and greatly affect aerosol volatility and hygroscopicity; in particular, the bi-dentate binding of DCA to soluble inorganic ions. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the cloud condensation nuclei (CCN) activation diameter for particles with di-valent salts (e.g., CaCl2) and relatively small particle volume fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O : C ratios are capable of forming low-volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low-particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles without the need for a phase transition.
Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang
2016-03-01
An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modelling of volatility in monetary transmission mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobešová, Anna; Klepáč, Václav; Kolman, Pavel
2015-03-10
The aim of this paper is to compare different approaches to modeling of volatility in monetary transmission mechanism. For this purpose we built time-varying parameter VAR (TVP-VAR) model with stochastic volatility and VAR-DCC-GARCH model with conditional variance. The data from three European countries are included in the analysis: the Czech Republic, Germany and Slovakia. Results show that VAR-DCC-GARCH system captures higher volatility of observed variables but main trends and detected breaks are generally identical in both approaches.
NASA Astrophysics Data System (ADS)
Cerully, K. M.; Bougiatioti, A.; Hite, J. R., Jr.; Guo, H.; Xu, L.; Ng, N. L.; Weber, R.; Nenes, A.
2014-12-01
The formation of secondary organic aerosol (SOA) combined with the partitioning of semi-volatile organic components can impact numerous aerosol properties including cloud condensation nuclei (CCN) activity, hygroscopicity and volatility. During the summer 2013 Southern Oxidant and Aerosol Study (SOAS) field campaign in a rural site in the Southeastern United States, a suite of instruments including a CCN counter, a thermodenuder (TD) and a high resolution time-of-flight aerosol mass spectrometer (AMS) were used to measure CCN activity, aerosol volatility, composition and oxidation state. Particles were either sampled directly from ambient or through a Particle Into Liquid Sampler (PILS), allowing the investigation of the water-soluble aerosol component. Ambient aerosol exhibited size-dependent composition with larger particles being more hygroscopic. The hygroscopicity of thermally-denuded aerosol was similar between ambient and PILS-generated aerosol and showed limited dependence on volatilization. Results of AMS 3-factor Positive Matrix Factorization (PMF) analysis for the PILS-generated aerosol showed that the most hygroscopic components are most likely the most and the least volatile features of the aerosol. No clear relationship was found between organic hygroscopicity and oxygen-to-carbon ratio; in fact, Isoprene organic aerosol (Isoprene-OA) was found to be the most hygroscopic factor, while at the same time being the least oxidized and likely most volatile of all PMF factors. Considering the diurnal variation of each PMF factor and its associated hygroscopicity, Isoprene-OA and More Oxidized - Oxidized Oxygenated Organic Aerosol (MO-OOA) are the prime contributors to hygroscopicity and covary with Less Oxidized - Oxidized Oxygenated Organic Aerosol (LO-OOA) in a way that induces the observed diurnal invariance in total organic hygroscopicity. Biomass Burning Organic Aerosol (BBOA) contributed little to aerosol hygroscopicity, which is expected since there was little biomass burning activity during the sampling period examined.
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-07-16
We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-02-18
We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
NASA Astrophysics Data System (ADS)
Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.
2013-11-01
Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. Here we show that inorganic-organic component interactions typically not considered in atmospheric models may strongly affect aerosol volatility and hygroscopicity. In particular, bi-dentate binding of di-carboxylic acids (DCA) to soluble inorganic ions can lead to very strongly bound metal-organic complexes with largely undetermined hygroscopicity and volatility. These reactions profoundly impact particle hygroscopicity, transforming hygroscopic components into irreversibly non-hygroscopic material. While the hygroscopicities of pure salts, DCA, and DCA salts are known, the hygroscopicity of internal mixtures of hygroscopic salts and DCA, as they are typically found in the atmosphere, has not been fully characterized. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the CCN activation diameter for particles with divalent salts (e.g. CaCl2) and relatively small particle mass fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O:C are capable of forming low volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles with very low viscosity.
NASA Astrophysics Data System (ADS)
Huang, De-Yin; Zhou, Shun-Gui; Hong, Wei; Feng, Wei-Feng; Tao, Liang
2013-06-01
With the aim to investigate the main pollution characteristics of exhaust gases emitted from plastic waste recycling granulation plants, mainly volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) were analyzed in Xingtan Town, the largest distribution center of plastic waste recycling in China. Both inside and outside the plants, the total concentrations of volatile monocyclic aromatic hydrocarbons (MAHs), PAHs and PAEs ranged from 2000 to 3000 μg m-3, 450 to 1200 ng m-3, and 200 to 1200 ng m-3, respectively. Their concentration levels inside the plants were higher than those outside the plants, and PAHs and PAEs were mainly distributed in the gas-phase. Notably, highly toxic benzo[a]pyrene (BaP) could be detected inside the plants, and harmful PAEs could be detected not only inside but also outside the plants, although PAEs are non-volatile. The exhaust gas composition and concentration were related to the plastic feedstock and granulation temperature.
NASA Astrophysics Data System (ADS)
Petersen, Alexander M.; Wang, Fengzhong; Havlin, Shlomo; Stanley, H. Eugene
2010-09-01
We study the cascading dynamics immediately before and immediately after 219 market shocks. We define the time of a market shock Tc to be the time for which the market volatility V(Tc) has a peak that exceeds a predetermined threshold. The cascade of high volatility “aftershocks” triggered by the “main shock” is quantitatively similar to earthquakes and solar flares, which have been described by three empirical laws—the Omori law, the productivity law, and the Bath law. We analyze the most traded 531 stocks in U.S. markets during the 2 yr period of 2001-2002 at the 1 min time resolution. We find quantitative relations between the main shock magnitude M≡log10V(Tc) and the parameters quantifying the decay of volatility aftershocks as well as the volatility preshocks. We also find that stocks with larger trading activity react more strongly and more quickly to market shocks than stocks with smaller trading activity. Our findings characterize the typical volatility response conditional on M , both at the market and the individual stock scale. We argue that there is potential utility in these three statistical quantitative relations with applications in option pricing and volatility trading.
Faria, Jorge M S; Sena, Inês; Vieira da Silva, Inês; Ribeiro, Bruno; Barbosa, Pedro; Ascensão, Lia; Bennett, Richard N; Mota, Manuel; Figueiredo, A Cristina
2015-06-01
Co-cultures of Pinus pinaster with Bursaphelenchus xylophilus were established as a biotechnological tool to evaluate the effect of nematotoxics addition in a host/parasite culture system. The pinewood nematode (PWN), Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), was detected for the first time in Europe in 1999 spreading throughout the pine forests in Portugal and recently in Spain. Plant in vitro cultures may be a useful experimental system to investigate the plant/nematode relationships in loco, thus avoiding the difficulties of field assays. In this study, Pinus pinaster in vitro cultures were established and compared to in vivo 1 year-old plantlets by analyzing shoot structure and volatiles production. In vitro co-cultures were established with the PWN and the effect of the phytoparasite on in vitro shoot structure, water content and volatiles production was evaluated. In vitro shoots showed similar structure and volatiles production to in vivo maritime pine plantlets. The first macroscopic symptoms of PWD were observed about 4 weeks after in vitro co-culture establishment. Nematode population in the culture medium increased and PWNs were detected in gaps of the callus tissue and in cavities developed from the degradation of cambial cells. In terms of volatiles main components, plantlets, P. pinaster cultures, and P. pinaster with B. xylophilus co-cultures were all β- and α-pinene rich. Co-cultures may be an easy-to-handle biotechnological approach to study this pathology, envisioning the understanding of and finding ways to restrain this highly devastating nematode.
Lime treatment has been used in contaminated sediment management activities for many purposes such as dewatering, improvement of physical properties, and reducing contaminant mobility. Exothermic volatilization of volatile organic compounds from lime-treated sediment is well kno...
HS-GC-MS Volatile compounds recovered in freshly pressed and commercial Wonderful pomegranate juices
USDA-ARS?s Scientific Manuscript database
Consumption and production of superfruits has been increasing. Highly colored fruits often have bitter and astringent components that may make them undesirable, especially when processed. Many pomegranate volatile reports involved commercial samples, complicated isolation methods, or blending and ...
The history of Martian volatiles
NASA Astrophysics Data System (ADS)
Jakosky, Bruce M.; Jones, John H.
The behavior of water and other volatiles on Mars is key to understanding the evolution of the climate. The early climate played a fundamental role in producing the observed surface morphology and possibly in enabling the existence of an early biosphere. Geochemical and isotopic data can be used to infer the history of volatiles. On the basis of the isotopic data from the atmosphere and from components of the surface (as measured in meteorites that come from Mars), there appear to be at least two reservoirs of volatiles, one that has undergone exchange with the atmosphere and has been isotopically fractionated, and a second that is unfractionated and may represent juvenile gases. The fractionation of the atmospheric component has occurred primarily through the escape of gas to space. In addition, the atmospheric gases have mixed substantially with crustal reservoirs of volatiles. Such exchange may have occurred in aqueous or hydrothermal environments. The history of escape to space, as driven by the properties of the Sun through time, is consistent with the surface geomorphology. Together, they suggest an early environment that was substantially different from the present one and the evolution through time to a colder, dryer climate.
Fernandes, Bruno; Correia, Ana C; Cosme, Fernanda; Nunes, Fernando M; Jordão, António M
2015-01-01
The purpose of this work was to study the volatile composition of vine leaves and vine leaf infusion prepared from vine leaves collected at 30 and 60 days after grape harvest of two Vitis vinifera L. species. Eighteen volatile compounds were identified by gas chromatography-mass spectrometry in vine leaves and in vine leaf infusions. It was observed that the volatile compounds present in vine leaves are dependent on the time of harvest, with benzaldehyde being the major volatile present in vine leaves collected at 30 days after harvesting. There are significant differences in the volatile composition of the leaves from the two grape cultivars, especially in the sample collected at 60 days after grape harvest. This is not reflected in the volatile composition of the vine leaf infusion made from this two cultivars, the more important being the harvesting date for the volatile profile of vine leaf infusion than the vine leaves grape cultivar.
Jackels, Susan C; Marshall, Eric E; Omaiye, Angelica G; Gianan, Robert L; Lee, Fabrice T; Jackels, Charles F
2014-10-22
Potato taste defect (PTD) is a flavor defect in East African coffee associated with Antestiopsis orbitalis feeding and 3-isopropyl-2-methoxypyrazine (IPMP) in the coffee. To elucidate the manifestation of PTD, surface and interior volatile compounds of PTD and non-PTD green coffees were sampled by headspace solid phase microextraction and analyzed by gas chromatography mass spectrometry. Principal component analysis of the chromatographic data revealed a profile of surface volatiles distinguishing PTD from non-PTD coffees dominated by tridecane, dodecane, and tetradecane. While not detected in surface volatiles, IPMP was found in interior volatiles of PTD coffee. Desiccated antestia bugs were analyzed by GCMS, revealing that the three most prevalent volatiles were tridecane, dodecane, and tetradecane, as was found in the surface profile PTD coffee. Coffee having visible insect damage exhibited both a PTD surface volatile profile and IPMP in interior volatiles, supporting the hypothesis linking antestia bug feeding activity with PTD profile compounds on the surface and IPMP in the interior of the beans.
NASA Astrophysics Data System (ADS)
Kostenidou, Evangelia; Karnezi, Eleni; Hite, James R., Jr.; Bougiatioti, Aikaterini; Cerully, Kate; Xu, Lu; Ng, Nga L.; Nenes, Athanasios; Pandis, Spyros N.
2018-04-01
The volatility distribution of the organic aerosol (OA) and its sources during the Southern Oxidant and Aerosol Study (SOAS; Centreville, Alabama) was constrained using measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a thermodenuder (TD). Positive matrix factorization (PMF) analysis was applied on both the ambient and thermodenuded high-resolution mass spectra, leading to four factors: more oxidized oxygenated OA (MO-OOA), less oxidized oxygenated OA (LO-OOA), an isoprene epoxydiol (IEPOX)-related factor (isoprene-OA) and biomass burning OA (BBOA). BBOA had the highest mass fraction remaining (MFR) at 100 °C, followed by the isoprene-OA, and the LO-OOA. Surprisingly the MO-OOA evaporated the most in the TD. The estimated effective vaporization enthalpies assuming an evaporation coefficient equal to unity were 58 ± 13 kJ mol-1 for the LO-OOA, 89 ± 10 kJ mol-1 for the MO-OOA, 55 ± 11 kJ mol-1 for the BBOA, and 63 ± 15 kJ mol-1 for the isoprene-OA. The estimated volatility distribution of all factors covered a wide range including both semi-volatile and low-volatility components. BBOA had the lowest average volatility of all factors, even though it had the lowest O : C ratio among all factors. LO-OOA was the more volatile factor and its high MFR was due to its low enthalpy of vaporization according to the model. The isoprene-OA factor had intermediate volatility, quite higher than suggested by a few other studies. The analysis suggests that deducing the volatility of a factor only from its MFR could lead to erroneous conclusions. The oxygen content of the factors can be combined with their estimated volatility and hygroscopicity to provide a better view of their physical properties.
Diffusive retention of atmospheric gases in chert
NASA Astrophysics Data System (ADS)
Pettitt, E.; Cherniak, D. J.; Watson, E. B.; Schaller, M. F.
2016-12-01
Throughout Earth's history, the volatile contents (N2, CO2, Ar) of both deep and shallow terrestrial reservoirs has been dynamic. Volatiles are important chemical constituents because they play a significant role in regulating Earth's climate, mediating the evolution of complex life, and controlling the properties of minerals and rocks. Estimating levels of atmospheric volatiles in the deep geological past requires interrogation of materials that have acquired and retained a chemical memory from that time. Cherts have the potential to trap atmospheric components during formation and later release those gases for analysis in the laboratory. However, cherts have been underexploited in this regard, partly because their ability to retain a record of volatile components has not been adequately evaluated. Before cherts can be reliably used as indicators of past levels of major atmospheric gases, it is crucial that we understand the diffusive retentiveness of these cryptocrystalline silica phases. As the first step toward quantifying the diffusivity and solubility of carbon dioxide and nitrogen in chert, we have performed 1-atmosphere diffusive-uptake experiments at temperatures up to 450°C. Depth profiles of in-diffusing gases are measured by nuclear reaction analysis (NRA) to help us understand the molecular-scale transport of volatiles and thus the validity of using chert-bound volatiles to record information about Earth history. Data collected to date suggest that at least some cherts are ideal storage containers and can retain volatiles for a geologically long time. In addition to these diffusion experiments, preliminary online-crush fast-scan measurements using a quadrupole mass spectrometer indicate that atmospheric volatiles are released upon crushing various chert samples. By coupling such volatile-release measurements made by mass spectrometry with diffusion experiments, we are uniquely able to address the storage and fidelity of volatiles bound in crustal materials; an important step toward understanding atmospheric evolution over geologic history.
Wang, Xing-Jie; Tao, Yong-Sheng; Wu, Yun; An, Rong-Yan; Yue, Zhuo-Ya
2017-07-01
Aroma characteristics and their impact volatile components of noble-rot wines elaborated from artificial botrytized Chardonnay grapes, obtained by spraying Botrytis cinerea suspension in Yuquan vineyard, Ningxia, China, were explored in this work. Dry white wine made from normal-harvested grapes and sweet wine produced from delay-harvested grapes were compared. Wine aromas were analysed by trained sensory panelists, and aroma compounds were determined by SPME-GC-MS. Results indicated that esters, fatty acids, thiols, lactones, volatile phenols and 2-nonanone increased markedly in noble-rot wines. In addition to typical aromas of noble-rot wines, artificial noble-rot wines were found to contain significant cream and dry apricot attributes. Partial Least-Squares Regression models of aroma characteristics against aroma components revealed that non-fermentative odorants were the primary contributor to dry apricot attribute, especially, thiols, C13-norisoprenoids, lactones, terpenols and phenolic acid derivatives, while cream attribute was dependent on both fermentative and non-fermentative volatile components. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Crippa, M.; Canonaco, F.; Lanz, V. A.; Äijälä, M.; Allan, J. D.; Carbone, S.; Capes, G.; Dall'Osto, M.; Day, D. A.; DeCarlo, P. F.; Di Marco, C. F.; Ehn, M.; Eriksson, A.; Freney, E.; Hildebrandt Ruiz, L.; Hillamo, R.; Jimenez, J.-L.; Junninen, H.; Kiendler-Scharr, A.; Kortelainen, A.-M.; Kulmala, M.; Mensah, A. A.; Mohr, C.; Nemitz, E.; O'Dowd, C.; Ovadnevaite, J.; Pandis, S. N.; Petäjä, T.; Poulain, L.; Saarikoski, S.; Sellegri, K.; Swietlicki, E.; Tiitta, P.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.
2013-09-01
Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of EUCAARI and the intensive campaigns of EMEP during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we propose a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 datasets accounting for urban, rural, remote and high altitude sites and therefore it is likely suitable for the treatment of AMS-related ambient datasets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling evaluation purposes.
NASA Technical Reports Server (NTRS)
Presper, T.; Kurat, G.; Koeberl, C.; Palme, H.; Maurette, Michel
1993-01-01
Antarctic micrometeorites (MM's) and Arctic cosmic spherules (CS's) have bulk compositions comparable to those of chondritic meteorites. However, abundance of Na, Ca, Mn, Ni, Co, and S are commonly lower in MM's and CS's as compared to chondrites. Our SEM, EMP, and INAA studies suggest that these elemental depletions in unmelted MM's are likely to be due to leaching of soluble components from the MM's in the upper atmosphere and the melt ice water. Depletions in CS's appear to be mainly due to volatilization during melting in the atmosphere or to sampling bias during aggregate formation or parent rock break-up.
Huang, Daihong; Zhang, Zhenguo; Chen, Guoping; Li, Houhun; Shi, Fuchen
2015-03-01
The floral scent plays the important key role in maintaining the obligate pollination mutualism between Glochidion plants and Epicephala moths. In the study, the dynamic headspace adsorption technique was employed to collect the floral scent emitted by Glochidion puberum, gas chromatography coupled with mass spectrometry (GC-MS) was used for the detection and identification of volatile chemical components in headspace samples of flowers from G. puberum. The peak area normalization was used to determine the relative contents of each odour component. The results showed that 45 compounds mainly consisting of monoterpenes and sesquiterpenes were isolated from the floral scent produced by G. puberum. Especially, both linalool (38.06%) and β-elemene (23.84%) were considered as the major scent components of G. puberum. It was speculated that linalool and β-elemene may be the two potential compounds attracting female Epicephala moths. The study provided the basic data for further electroantennographic detection and bioassays to identify the compounds having the actual physiological activity to female Epicephala moths.
[Analyze on volatile compounds of Antrodia camphorata using HS-SPME-GC-MS].
He, Zhe; Lu, Zhen-Ming; Xu, Hong-Yu; Shi, Jing-Song; Xu, Zheng-Hong
2011-11-01
To analyze the volatile compounds of Antrodia camphorata in solid-state and submerged cultures. A headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry(GC-MS) were used to evaluate the profile of the volatile compounds. 49 volatile compounds were identified in A. camphorata mycelia in submerged culture, while 43 volatile compounds were identified in mycelia in solid-state culture. 1-octen-3-ol, 3-octanone, 1-octen-3-ylacetate, acetic acid octyl ester and ethanol were the main volatile compounds in A. camphorata mycelia in submerged culture, while 1-octen-3-ol, 3-octanone, 3-methyl-butyraldenhyde, gamma-podecalactone and methyl 2-furozte were the most potent key volatile compounds in mycelia in solid-state culture. The volatile compounds in the mycelia of A. camphorata in solid-state and submerged cultures are similar but their relative contents are different.
High Throughput Exposure Modeling of Semi-Volatile Chemicals in Articles of Commerce (SOT)
Chemical components of consumer products and articles of commerce such as carpet and clothing are key drivers of exposure in the near-field environment. These chemicals include semi-volatile organic compounds (SVOCs), some of which have been shown to alter endocrine functionality...
MODIFICATION OF METAL PARTITIONING BY SUPPLEMENTING ACID VOLATILE SULFIDE IN FRESHWATER SEDIMENTS
Acid volatile sulfide is a component of sediments which complexes some cationic metals and thereby influences the toxicity of these metals to benthic organisms. EPA has proposed AVS as a key normalization phase for the development of sediment quality criteria for metals. Experime...
Verma, Ram Swaroop; Padalia, Rajendra Chandra; Chauhan, Amit; Singh, Anand; Yadav, Ajai Kumar
2011-10-01
Rosa damascena Mill. is an important aromatic plant for commercial production of rose oil, water, concrete and absolute. The rose water and rose oil produced under the mountainous conditions of Uttarakhand were investigated for their chemical composition. The major components of rose water volatiles obtained from the bud, half bloom and full bloom stages of cultivar 'Ranisahiba' were phenyl ethyl alcohol (66.2-79.0%), geraniol (3.3-6.6%) and citronellol (1.8-5.5%). The rose water volatiles of cultivar 'Noorjahan' and 'Kannouj' also possessed phenyl ethyl alcohol (80.7% and 76.7%, respectively) as a major component at full bloom stage. The essential oil of cultivar 'Noorjahan' obtained from two different growing sites was also compared. The major components of these oils were citronellol (15.9-35.3%), geraniol (8.3-30.2%), nerol (4.0-9.6%), nonadecane (4.5-16.0%), heneicosane (2.6-7.9%) and linalool (0.7-2.8%). This study clearly showed that the flower ontogeny and growing site affect the composition of rose volatiles. The rose oil produced in this region was comparable with ISO standards. Thus, it was concluded that the climatic conditions of Uttarakhand are suitable for the production of rose oil of international standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajt, S; Sandford, S A; Flynn, G J
2007-08-28
Infrared spectroscopy maps of some tracks, made by cometary dust from 81P/Wild 2 impacting Stardust aerogel, reveal an interesting distribution of volatile organic material. Out of six examined tracks three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained excess volatile organic material, they were found to be -CH{sub 2}-rich. Off-normal particle tracks could indicate impacts by lower velocity particles that could have bounced off the Whipple shield, therefore carry off some contamination from it. However, this theory is not supported by data that show excess organic-rich material in normal andmore » off-normal particle tracks. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also include grains that contained little or none of this volatile organic component. This observation is consistent with the highly heterogeneous nature of the collected grains, as seen by a multitude of other analytical techniques. We propose that at least some of the volatile organic material might be of cometary origin based on supporting data shown in this paper. However, we also acknowledge the presence of carbon (primarily as -CH{sub 3}) in the original aerogel, which complicates interpretation of these results.« less
Diacetyl levels and volatile profiles of commercial starter distillates and selected dairy foods.
Rincon-Delgadillo, M I; Lopez-Hernandez, A; Wijaya, I; Rankin, S A
2012-03-01
Starter distillates (SDL) are used as ingredients in the formulation of many food products such as cottage cheese, margarine, vegetable oil spreads, processed cheese, and sour cream to increase the levels of naturally occurring buttery aroma associated with fermentation. This buttery aroma results, in part, from the presence of the vicinal dicarbonyl, diacetyl, which imparts a high level of buttery flavor notes and is a key component of SDL. Diacetyl (2,3-butanedione) is a volatile product of citrate metabolism produced by certain bacteria, including Lactococcus lactis ssp. diacetylactis and Leuconostoc citrovorum. In the United States, SDL are regarded as generally recognized as safe ingredients, whereby usage in food products is limited by good manufacturing practices. Recently, diacetyl has been implicated as a causative agent in certain lung ailments in plant workers; however, little is published about the volatile composition of SDL and the levels of diacetyl or other flavoring components in finished dairy products. The objective of this work was to characterize the volatile compounds of commercial SDL and to quantitate levels of diacetyl and other Flavor and Extract Manufacturers Association-designated high-priority flavoring components found in 18 SDL samples and 24 selected dairy products. Headspace volatiles were assessed using a solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. In addition to diacetyl (ranging from 1.2 to 22,000 μg/g), 40 compounds including 8 organic acids, 4 alcohols, 3 aldehydes, 7 esters, 3 furans, 10 ketones, 2 lactones, 2 sulfur-containing compounds, and 1 terpene were detected in the SDL. A total of 22 food samples were found to contain diacetyl ranging from 4.5 to 2,700 μg/100g. Other volatile compounds, including acetaldehyde, acetic acid, acetoin, benzaldehyde, butyric acid, formic acid, furfural, 2,3-heptanedione, 2,3-pentanedione, and propanoic acid, were also identified and quantified in SDL or food samples, or both. The results obtained in this work summarize the volatile composition of commercial SDL and the approximate levels of diacetyl and other Flavor and Extract Manufacturers Association-designated high-priority flavoring components found in SDL and selected dairy foods. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
On the source of stochastic volatility: Evidence from CAC40 index options during the subprime crisis
NASA Astrophysics Data System (ADS)
Slim, Skander
2016-12-01
This paper investigates the performance of time-changed Lévy processes with distinct sources of return volatility variation for modeling cross-sectional option prices on the CAC40 index during the subprime crisis. Specifically, we propose a multi-factor stochastic volatility model: one factor captures the diffusion component dynamics and two factors capture positive and negative jump variations. In-sample and out-of-sample tests show that our full-fledged model significantly outperforms nested lower-dimensional specifications. We find that all three sources of return volatility variation, with different persistence, are needed to properly account for market pricing dynamics across moneyness, maturity and volatility level. Besides, the model estimation reveals negative risk premium for both diffusive volatility and downward jump intensity whereas a positive risk premium is found to be attributed to upward jump intensity.
NASA Astrophysics Data System (ADS)
Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.
2010-12-01
The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.
Volatile compounds of dry beans (Phaseolus vulgaris L.).
Oomah, B Dave; Liang, Lisa S Y; Balasubramanian, Parthiba
2007-12-01
Volatile compounds of uncooked dry bean (Phaseolus vulgaris L.) cultivars representing three market classes (black, dark red kidney and pinto) grown in 2005 were isolated with headspace solid phase microextraction (HS-SPME), and analyzed with gas chromatography mass spectrometry (GC-MS). A total of 62 volatiles consisting of aromatic hydrocarbons, aldehydes, alkanes, alcohols and ketones represented on average 62, 38, 21, 12, and 9 x 10(6) total area counts, respectively. Bean cultivars differed in abundance and profile of volatiles. The combination of 18 compounds comprising a common profile explained 79% of the variance among cultivars based on principal component analysis (PCA). The SPME technique proved to be a rapid and effective method for routine evaluation of dry bean volatile profile.
Understanding the determinants of volatility clustering in terms of stationary Markovian processes
NASA Astrophysics Data System (ADS)
Miccichè, S.
2016-11-01
Volatility is a key variable in the modeling of financial markets. The most striking feature of volatility is that it is a long-range correlated stochastic variable, i.e. its autocorrelation function decays like a power-law τ-β for large time lags. In the present work we investigate the determinants of such feature, starting from the empirical observation that the exponent β of a certain stock's volatility is a linear function of the average correlation of such stock's volatility with all other volatilities. We propose a simple approach consisting in diagonalizing the cross-correlation matrix of volatilities and investigating whether or not the diagonalized volatilities still keep some of the original volatility stylized facts. As a result, the diagonalized volatilities result to share with the original volatilities either the power-law decay of the probability density function and the power-law decay of the autocorrelation function. This would indicate that volatility clustering is already present in the diagonalized un-correlated volatilities. We therefore present a parsimonious univariate model based on a non-linear Langevin equation that well reproduces these two stylized facts of volatility. The model helps us in understanding that the main source of volatility clustering, once volatilities have been diagonalized, is that the economic forces driving volatility can be modeled in terms of a Smoluchowski potential with logarithmic tails.
Fruit characters and volatile organic components in peach-to-nectarine mutants
USDA-ARS?s Scientific Manuscript database
Peach-to-nectarine mutants showed broad pleiotropic effects on fruit size, taste, and aroma, in addition to hairlessness. In this study, we compared nine fruit attributes and 27 detected volatiles in the peach progenitor, ‘Flameprince’ (FPP), its two independently discovered peach-to-nectarine mutan...
Drought and leaf herbivory influence floral volatiles and pollinator attraction
Laura A. Burkle; Justin B. Runyon
2016-01-01
The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic...
USDA-ARS?s Scientific Manuscript database
Flavor is an important attribute of mandarin (Citrus reticulata Blanco) and flavor improvement via conventional breeding is very challenging largely due to the complexity of the flavor components and traits. Many aroma associated volatiles of citrus fruit have been identified, which are directly rel...
USDA-ARS?s Scientific Manuscript database
The waste product of the artificial larval rearing media of the primary screwworm, Cochliomyia hominivorax, attracts gravid female screwworm flies to oviposit. The volatile component of this waste product was collected using solid phase microextraction techniques and subjected to gas chromatography-...
Career Counseling in a Volatile Job Market: Tiedeman's Perspective Revisited
ERIC Educational Resources Information Center
Duys, David K.; Ward, Janice E.; Maxwell, Jane A.; Eaton-Comerford, Leslie
2008-01-01
This article explores implications of Tiedeman's original theory for career counselors. Some components of the theory seem to be compatible with existing volatile job market conditions. Notions of career path recycling, development in reverse, nonlinear progress, and parallel streams in career development are explored. Suggestions are made for…
Quantitative organic vapor-particle sampler
Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.
1998-01-01
A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.
El-Tantawy, Mona E; Shams, Manal M; Afifi, Manal S
2016-01-01
The essential oil from the aerial parts of Nephrolepis exaltata and Nephrolepis cordifolia obtained by hydro-distillation were analyzed by gas chromatography/ mass spectrometry. The essential oils exhibited potential antibacterial and antifungal activities against a majority of the selected microorganisms. NEA oil showed promising cytotoxicity in breast, colon and lung carcinoma cells. The results presented indicate that NEA oil could be useful alternative for the treatment of dermatophytosis. Comparative investigation of hydro-distilled volatile constituents from aerial parts (A) of Nephrolepis exaltata (NE) and Nephrolepis cordifolia (NC) (Family Nephrolepidaceae) was carried out. Gas chromatography/mass spectrometry revealed that oils differ in composition and percentages of components. Oxygenated compounds were dominant in NEA and NCA. 2,4-Hexadien-1-ol (16.1%), nonanal (14.4%), β-Ionone (6.7%) and thymol (2.7%) were predominant in NEA. β-Ionone (8.0%), eugenol (7.2%) and anethol (4.6%) were the main constituents in NCA. Volatile samples were screened for their antibacterial and antifungal activities using agar diffusion method and minimum inhibitory concentrations. The cytotoxic activity was evaluated using viability assay in breast (MCF-7), colon (HCT-116) and lung carcinoma (A-549) cells by the MTT assay. The results revealed that NEA oil exhibited potential antimicrobial activity against most of the tested organisms and showed promising cytotoxicity.
Minteguiaga, Manuel; Umpiérrez, Noelia; Fariña, Laura; Falcão, Manuel A; Xavier, Vanessa B; Cassel, Eduardo; Dellacassa, Eduardo
2015-09-01
The Baccharis genus has more than 400 species of aromatic plants. However, only approximately 50 species have been studied in oil composition to date. From these studies, very few take into consideration differences between male and female plants, which is a significant and distinctive factor in Baccharis in the Asteraceae family. Baccharis articulata is a common shrub that grows wild in south Brazil, northern and central Argentina, Bolivia, Paraguay and Uruguay. It is considered to be a medicinal plant and is employed in traditional medicine. We report B. articulata male and female volatile composition obtained by simultaneous distillation-extraction technique and analyzed by gas chromatography with mass spectrometry. Also, an assessment of aromatic differences between volatile extracts was evaluated by gas chromatography with olfactometry. The results show a very similar chemical composition between male and female extracts, with a high proportion of terpene compounds of which β-pinene, limonene and germacrene D are the main components. Despite the chemical similarity, great differences in aromatic profile were found: male plant samples exhibited the strongest odorants in number and intensity of aromatic attributes. These differences explain field observations which indicate differences between male and female flower aroma, and might be of ecological significance in the attraction of pollinating insects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abouziena, H F; El-Saeid, Hamed M
2013-10-15
Balady cultivar and six Chinese lines were planted to study their developmental growth, yield and essential oil variations. Bulb of Balady cultivar had more two folds of cloves number per bulb than the Chinese lines. On the contrary Balady cv had the lowest clove weight compared to all Chinese lines. Chinese lines significantly surppassed the Balady cultivar in the bulb yield ha(-1). The bulb yield ha(-1) could be arrangement in descending order as follow Line B > Line F > Line D > Line C > Line A > Line E > Balady cv. Line B significantly surpassed the other tested lines in oil yield and had 7 folds oil yield plant(-1) than the local cultivar. The main compound in the bulb was found to be methylallay disulfide in both Chinese lines and Balady cultivar. Some components which found in the garlic bulbs at the age 150 days disappeared at the maturity time. Chinese Line B recorded the highest bulb yield and volatile oil content comparing with other lines.
Petrović, Goran M; Stamenković, Jelena G; Kostevski, Ivana R; Stojanović, Gordana S; Mitić, Violeta D; Zlatković, Bojan K
2017-05-01
The present study reports the chemical composition of the headspace volatiles (HS) and essential oils obtained from fresh Chaerophyllum aromaticum root and aerial parts in full vegetative phase, as well as biological activities of their essential oils and MeOH extracts. In HS samples, the most dominant components were monoterpene hydrocarbons. On the other hand, the essential oils consisted mainly of sesquiterpenoids, representing 73.4% of the root and 63.4% of the aerial parts essential oil. The results of antibacterial assay showed that the aerial parts essential oil and MeOH extract have no antibacterial activity, while the root essential oil and extract showed some activity. Both of the tested essential oils exhibited anticholinesterase activity (47.65% and 50.88%, respectively); MeOH extract of the root showed only 8.40% inhibition, while aerial part extract acted as an activator of cholinesterase. Regarding the antioxidant activity, extracts were found to be more effective than the essential oils. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Liu, Feng; Tian, Yu; Ding, Yi; Li, Zhipeng
2016-11-01
Wastewater primary sedimentation sludge was prepared into fermentation liquid as denitrification carbon source, and the main components of fermentation liquid was short-chain volatile fatty acids. Meanwhile, the acetic acid and propionic acid respectively accounted for about 29.36% and 26.56% in short-chain volatile fatty acids. The performance of fermentation liquid, methanol, acetic acid, propionic acid and glucose used as sole carbon source were compared. It was found that the denitrification rate with fermentation liquid as carbon source was 0.17mgNO3(-)-N/mg mixed liquor suspended solid d, faster than that with methanol, acetic acid, and propionic acid as sole carbon source, and lower than that with glucose as sole carbon source. For the fermentation liquid as carbon source, the transient accumulation of nitrite was insignificantly under different initial total nitrogen concentration. Therefore, the use of fermentation liquid for nitrogen removal could improve denitrification rate, and reduce nitrite accumulation in denitrification process. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Lei; Elliott, Brad; Jin, Xixuan; Zeng, Ling; Chen, Jian
2015-12-01
The antimicrobial property of volatiles produced by red imported fire ants, Solenopsis invicta, against Beauveria bassiana, a common entomopathogenic fungus, was demonstrated. The germination rate of B. bassiana spores was significantly reduced after they were exposed to volatiles within an artificial ant nest. Since the air that contained the same level of O2 and CO2 as that in artificial fire ant nests did not suppress the germination rate of B. bassiana, the observed reduction of germination rate must be caused by the toxicity of nest volatiles. Nest fumigation may be an important component of the social immune system in S. invicta.
Wang, Lei; Elliott, Brad; Jin, Xixuan; Zeng, Ling; Chen, Jian
2015-12-01
The antimicrobial property of volatiles produced by red imported fire ants, Solenopsis invicta, against Beauveria bassiana, a common entomopathogenic fungus, was demonstrated. The germination rate of B. bassiana spores was significantly reduced after they were exposed to volatiles within an artificial ant nest. Since the air that contained the same level of O2 and CO2 as that in artificial fire ant nests did not suppress the germination rate of B. bassiana, the observed reduction of germination rate must be caused by the toxicity of nest volatiles. Nest fumigation may be an important component of the social immune system in S. invicta.
Volatile-rich lunar soil - Evidence of possible cometary impact.
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.; Moore, G. W.
1973-01-01
A subsurface Apollo 16 soil, 61221, is much richer in volatile compounds than soils from any other locations or sites as shown by thermal analysis-gas release measurements. A weight loss of 0.03% during the interval 175 to 350 C was associated with the release of water, carbon dioxide, methane, hydrogen cyanide, hydrogen, and minor amounts of hydrocarbons and other species. These volatile components may have been brought to this site by a comet, which may have formed North Ray crater.
A detailed study of the volatile components of Plectranthus asirensis of Saudi Arabian origin.
Al-Saleem, Muneera S M; Khan, Merajuddin; Alkhathlan, Hamad Z
2016-10-01
Essential oil composition of Plectranthus asirensis grown in Saudi Arabia was chemically analysed for the first time by various gas chromatography techniques (GC-MS, GC-FID, Co-GC, LRI determination and database and literature searches) using two different stationary phase columns (polar and nonpolar). This analysis led to the characterisation of a total of 124 components representing 98.5% of the total oil composition. The results revealed that P. asirensis oil was mainly dominated by monoterpenoids (90.7%) in which most representative constituents were thymol (66.0 ± 0.36%), γ-terpinene (14.0 ± 0.18%), p-cymene (5.2 ± 0.06%) and β-caryophyllene (3.0 ± 0.03%). It is worth mentioning here that this is the first report on the phytochemical constituents of P. asirensis.
Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus
2011-01-01
Background and Aims Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Methods Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Key Results Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Conclusions Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers. PMID:21498566
Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus
2011-06-01
Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.
NASA Astrophysics Data System (ADS)
Cain, Kerrigan P.; Pandis, Spyros N.
2017-12-01
Hygroscopicity, oxidation level, and volatility are three crucial properties of organic pollutants. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties and establish their relationship. The proposed experimental setup utilizes a cloud condensation nuclei (CCN) counter to quantify hygroscopic activity, an aerosol mass spectrometer to measure the oxidation level, and a thermodenuder to evaluate the volatility. The setup was first tested with secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. The results of the first experiments indicated that, for this system, the less volatile SOA contained species that had on average lower O : C ratios and hygroscopicities. In this SOA system, both low- and high-volatility components can have comparable oxidation levels and hygroscopicities. The method developed here can be used to provide valuable insights about the relationships among organic aerosol hygroscopicity, oxidation level, and volatility.
Legako, J F; Brooks, J C; O'Quinn, T G; Hagan, T D J; Polkinghorne, R; Farmer, L J; Miller, M F
2015-02-01
Proximate data, consumer palatability scores and volatile compounds were investigated for four beef muscles (Longissimus lumborum, Psoas major, Semimembranosus and Gluteus medius) and five USDA quality grades(Prime, Upper 2/3 Choice, Low Choice, Select, and Standard). Quality grade did not directly affect consumer scores or volatiles but interactions (P < 0.05) between muscle and grade were determined. Consumer scores and volatiles differed (P < 0.05) between muscles. Consumers scored Psoas major highest for tenderness, juiciness, flavor liking and overall liking, followed by Longissimus lumborum, Gluteus medius, and Semimembranosus (P < 0.05). Principal component analysis revealed clustering of compound classes, formed by related mechanisms. Volatile n-aldehydes were inversely related to percent fat. Increases in lipid oxidation compounds were associated with Gluteus medius and Semimembranosus, while greater quantities of sulfur-containing compounds were associated with Psoas major. Relationships between palatability scores and volatile compound classes suggest that differences in the pattern of volatile compounds may play a valuable role in explaining consumer liking.
Extreme-volatility dynamics in crude oil markets
NASA Astrophysics Data System (ADS)
Jiang, Xiong-Fei; Zheng, Bo; Qiu, Tian; Ren, Fei
2017-02-01
Based on concepts and methods from statistical physics, we investigate extreme-volatility dynamics in the crude oil markets, using the high-frequency data from 2006 to 2010 and the daily data from 1986 to 2016. The dynamic relaxation of extreme volatilities is described by a power law, whose exponents usually depend on the magnitude of extreme volatilities. In particular, the relaxation before and after extreme volatilities is time-reversal symmetric at the high-frequency time scale, but time-reversal asymmetric at the daily time scale. This time-reversal asymmetry is mainly induced by exogenous events. However, the dynamic relaxation after exogenous events exhibits the same characteristics as that after endogenous events. An interacting herding model both with and without exogenous driving forces could qualitatively describe the extreme-volatility dynamics.
Manning, Andrew H.; Hofstra, Albert H.
2017-01-01
The He, Ne, and Ar isotopic composition of fluid inclusions in ore and gangue minerals were analyzed to determine the source of volatiles in the high-grade Goldfield and Tonopah epithermal Au-Ag deposits in southwestern Nevada, USA. Ar and Ne are mainly atmospheric, whereas He has only a minor atmospheric component. Corrected 3He/4He ratios (with atmospheric He removed) range widely from 0.05 to 35.8 times the air 3He/4He ratio (RA), with a median of 1.43 RA. Forty-one percent of measured 3He/4He ratios are ≥4 RA, corresponding to ≥50% mantle He assuming a mantle ratio of 8 RA. These results suggest that mafic magmas were part of the magmatic-hydrothermal system underlying Goldfield and Tonopah, and that associated mantle-sourced volatiles may have played a role in ore formation. The three highest corrected 3He/4He ratios of 17.0, 23.7, and 35.8 RAindicate a primitive mantle He source and are the highest yet reported for any epithermal-porphyry system and for the Cascades arc region. Compiled 3He/4He measurements from epithermal-porphyry systems in subduction-related magmatic arcs around the world (n = 209) display a statistically significant correlation between 3He/4He and Au-Ag grade. The correlation suggests that conditions which promote higher fluid inclusion 3He/4He ratios (abundance of mantle volatiles and focused upward volatile transport) have some relation to conditions that promote higher Au-Ag grades (focused flow of metal-bearing fluids and efficient chemical traps). Results of this and previous investigations of He isotopes in epithermal-porphyry systems are consistent with the hypothesis posed in recent studies that mafic magmas serve an important function in the formation of these deposits.
Sunlight exclusion from Muscat grape alters volatile profiles during berry development.
Zhang, Haohao; Fan, Peige; Liu, Cuixia; Wu, Benhong; Li, Shaohua; Liang, Zhenchang
2014-12-01
The effects of sunlight exclusion on the volatile profiles of grapes during different stages of berry development were investigated by placing clusters of grapes in special boxes. Terpenes and aldehydes were the main volatile compounds in the ripe 'Jingxiangyu' berries. Sunlight exclusion was found to change volatile profiles at any stage. Sunlight exclusion from berries significantly inhibited the synthesis and accumulation of terpenes, which contribute to the characteristic aroma of Muscat grapes. However, sunlight exclusion during berry formation and veraison promoted the accumulation of aldehydes, alcohols, and ketones during the ripening stage. These results may provide important information regarding the metabolism of volatile compounds in grapes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Yan-Qin; Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang
2018-01-01
In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties.
Cai, Xiaoming; Bian, Lei; Xu, Xiuxiu; Luo, Zongxiu; Li, Zhaoqun; Chen, Zongmao
2017-01-01
Attractants for pest monitoring and controlling can be developed based on plant volatiles. Previously, we showed that tea leafhopper (Empoasca onukii) preferred grapevine, peach plant, and tea plant odours to clean air. In this research, we formulated three blends with similar attractiveness to leafhoppers as peach, grapevine, and tea plant volatiles; these blends were composed of (Z)-3-hexenyl acetate, (E)-ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene, benzaldehyde, and ethyl benzoate. Based on these five compounds, we developed two attractants, formula-P and formula-G. The specific component relative to tea plant volatiles in formula-P was benzaldehyde, and that in formula-G was ethyl benzoate. These two compounds played a role in attracting leafhoppers. In laboratory assays, the two attractants were more attractive than tea plant volatiles to the leafhoppers, and had a similar level of attractiveness. However, the leafhoppers were not attracted to formula-P in the field. A high concentration of benzaldehyde was detected in the background odour of the tea plantations. In laboratory tests, benzaldehyde at the field concentration was attractive to leafhoppers. Our results indicate that the field background odour can interfere with a point-releasing attractant when their components overlap, and that a successful attractant must differ from the field background odour. PMID:28150728
Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang
2018-01-01
In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties. PMID:29494626
Hammerstein system represention of financial volatility processes
NASA Astrophysics Data System (ADS)
Capobianco, E.
2002-05-01
We show new modeling aspects of stock return volatility processes, by first representing them through Hammerstein Systems, and by then approximating the observed and transformed dynamics with wavelet-based atomic dictionaries. We thus propose an hybrid statistical methodology for volatility approximation and non-parametric estimation, and aim to use the information embedded in a bank of volatility sources obtained by decomposing the observed signal with multiresolution techniques. Scale dependent information refers both to market activity inherent to different temporally aggregated trading horizons, and to a variable degree of sparsity in representing the signal. A decomposition of the expansion coefficients in least dependent coordinates is then implemented through Independent Component Analysis. Based on the described steps, the features of volatility can be more effectively detected through global and greedy algorithms.
NASA Astrophysics Data System (ADS)
Hsieh, Y.; Bugna, G.
2006-12-01
Uncertainty of black carbon (BC) research is often plagued by the analytical difficulty associated with separating carbon components in solid samples. A rapid and sensitive multi-elemental scanning thermal analysis (MESTA), originally developed for organic matter analysis in solid samples, was applied to this study. The objective was to identify the chemical signature of biomass burning emitted PM2.5 (aerosols less than 2.5 micron) for tracing purposes. We collected PM2.5 from the burning of various biomass of a pine forest and from the ambient air of an urban campus using a PM sampler. The MESTA provides simultaneous C, N and S thermograms of the PM2.5 samples that can be used for characterization and identification purposes. This study showed that the PM2.5 samples produced from the burning of forest biomass can be characterized by a high temperature (greater than 350 oC) volatile organic component with high C/N ratio and no S content while those produced from the ambient air can be characterized by a low temperature (less than 350 oC) volatile organic component with low C/N ratio and high S content. Burning of the soaked woody debris, however, produced significant amount of the low-temperature volatile organic component similar to that of the ambient air in C/N ratio but different in S content. Most PM2.5 samples have a very low temperature (less than 110 oC) volatile N component that is identified as absorbed ammonia. The absorbed ammonia is most significant in the PM2.5 of the ambient air and the burning of soaked woody debris. All PM2.5 samples have significant amount of BC which volatilized above 500 oC with very high C/N ratio. This study also shows that MESTA can provide an objective means to present the chemical signature of the whole spectrum of OC/BC in the PM2.5 samples.
Comparison of fruit characters and volatile components in peach-to-nectarine mutants
USDA-ARS?s Scientific Manuscript database
In this study, we compared nine fruit attributes and 27 detected volatiles in the peach progenitor, ‘Flameprince’ (FPP), its two independently discovered peach-to-nectarine mutants (HFN and PFN), and a selected nectarine hybrid (SLN). HFN and PFN differed from FPP in fruit size and taste, but shared...
USDA-ARS?s Scientific Manuscript database
Gas chromatography coupled with electroantennogram detection (GC-EAD) was used to identify volatiles from the fruit of Snowberry, Symphoricarpos albus laevigatus, as key attractants for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), ...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
Cai, Yongqing; Hu, Xiaogang; Huang, Mingchun; Sun, Fengjun; Yang, Bo; He, Juying; Wang, Xianfeng; Xia, Peiyuan; Chen, Jianhong
2012-06-25
Rubus parvifolius L. (Rp) is a medicinal herb that possesses antibacterial activity. In this study, we extracted the volatile oil from the leaves of Rp to assess its antibacterial activity and analyze its chemical composition. A uniform distribution design was used to optimize the extraction procedure, which yielded 0.36% (w/w) of light yellowish oil from the water extract of Rp leaves. We found that the extracted oil effectively inhibited the growth of a wide range of Gram positive and negative bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii, Bacillus cloacae, and Klebsiella pneumoniae. We further analyzed the components contained in the hydro-distillated Rp volatile oil by gas chromatography-mass spectroscopy. Twenty nine compounds were identified, including 4-hydroxy-3-methoxystyrene (66%), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (10%) and 4-tert-butylbenzoic acid (2%). Our results suggest that one or multiple constituents contained in Rp volatile oil may account for its antibacterial activity.
Birkett, M A; Chamberlain, K; Guerrieri, E; Pickett, J A; Wadhams, L J; Yasuda, T
2003-07-01
The blend of volatile compounds emitted by bean plants (Phaseolus vulgaris) infested with greenhouse whitefly (Trialeurodes vaporariorum) has been studied comparatively with undamaged plants and whiteflies themselves. Collection of the volatiles and analysis by gas chromatography revealed more than 20 compounds produced by plants infested with whitefly. Of these, 4 compounds, (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, 3-octanone, and one unidentified compound were emitted at higher levels than from the undamaged control plants. Synthetic (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, or 3-octanone all elicited a significant increase in oriented flight and landing on the source by the parasitoid, Encarsia formosa, in wind tunnel bioassays. Two-component mixtures of the compounds and the three-component mixture all elicited a similar or, in most cases, a better response by the parasitoid, the most effective being a mixture of (Z)-3-hexen-1-ol and 3-octanone. These results demonstrate that E. formosa uses volatiles from the plant-host complex as olfactory cues for host location.
Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Shinpuku, Hideto; Yonejima, Yasunori; Ikeda, Atsushi; Miyazawa, Mitsuo
2015-01-01
Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) during the cultivation process of Lactobacillus brevis were isolated by hydrodistillation (HD) and analyzed to determine the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 55 and 36 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were N-containing compounds, including 2,3-dimethylpyrazine (16, 37.1 %), methylpyrazine (4, 17.1 %). The important aroma-active compounds in the oils were detected by GC-Olfactometry (GC-O), and their intensity of aroma were measured by aroma extract dilution analysis (AEDA). Expressly, pyrazine compounds were determined as key aroma components; in particular, 2,5-dimethylpyrazine and 2,3-dimethylpyrazine were the most primary aroma-active compound in MAI oil. These results imply that the waste medium after incubation of L. brevis may be utilized as a source of volatile oils.
Volatile Flavor Compounds Produced by Molds of Aspergillus, Penicillium, and Fungi imperfecti.
Kaminski, E; Stawicki, S; Wasowicz, E
1974-06-01
Strains of molds Aspergillus niger, A. ochraceus, A. oryzae, A. parasiticus, Penicillium chrysogenum, P. citrinum, P. funiculosum, P. raistrickii, P. viridicatum, Alternaria, Cephalosporium, and Fusarium sp. were grown on sterile coarse wheat meal at 26 to 28 C for 120 h. The volatiles from mature cultures were distilled at low temperature under reduced pressure. The distillates from traps -40 and -78 C were extracted with methylene chloride and subsequently concentrated. All the concentrates thus obtained were analyzed by gas-liquid chromatography, mass spectrometry, chemical reactions of functional groups, and olfactory evaluation. Six components detected in the culture distillates were identified positively: 3-methylbutanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and 2-octen-1-ol. They represented 67 to 97% of all the volatiles occurring in the concentrated distillate. The following 14 components were identified tentatively: octane, isobutyl alcohol, butyl alcohol, butyl acetate, amyl acetate, octyl acetate, pyridine, hexanol, nonanone, dimethylpyrazine, tetramethylpyrazine, benzaldehyde, propylbenzene, and phenethyl alcohol. Among the volatiles produced by molds, 1-octen-3-ol yielding a characteristic fungal odor was found predominant.
Volatile Flavor Compounds Produced by Molds of Aspergillus, Penicillium, and Fungi imperfecti
Kaminski, E.; Stawicki, S.; Wasowicz, E.
1974-01-01
Strains of molds Aspergillus niger, A. ochraceus, A. oryzae, A. parasiticus, Penicillium chrysogenum, P. citrinum, P. funiculosum, P. raistrickii, P. viridicatum, Alternaria, Cephalosporium, and Fusarium sp. were grown on sterile coarse wheat meal at 26 to 28 C for 120 h. The volatiles from mature cultures were distilled at low temperature under reduced pressure. The distillates from traps -40 and -78 C were extracted with methylene chloride and subsequently concentrated. All the concentrates thus obtained were analyzed by gas-liquid chromatography, mass spectrometry, chemical reactions of functional groups, and olfactory evaluation. Six components detected in the culture distillates were identified positively: 3-methylbutanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and 2-octen-1-ol. They represented 67 to 97% of all the volatiles occurring in the concentrated distillate. The following 14 components were identified tentatively: octane, isobutyl alcohol, butyl alcohol, butyl acetate, amyl acetate, octyl acetate, pyridine, hexanol, nonanone, dimethylpyrazine, tetramethylpyrazine, benzaldehyde, propylbenzene, and phenethyl alcohol. Among the volatiles produced by molds, 1-octen-3-ol yielding a characteristic fungal odor was found predominant. PMID:16349989
Major Odorants Released as Urinary Volatiles by Urinary Incontinent Patients
Pandey, Sudhir Kumar; Kim, Ki-Hyun; Choi, Si On; Sa, In Young; Oh, Soo Yeon
2013-01-01
In this study, volatile urinary components were collected using three different types of samples from patients suffering from urinary incontinence (UI): (1) urine (A); (2) urine + non-used pad (B); and (3) urine + used pad (C). In addition, urine + non-used pad (D) samples from non-patients were also collected as a reference. The collection of urinary volatiles was conducted with the aid of a glass impinger-based mini-chamber method. Each of the four sample types (A through D) was placed in a glass impinger and incubated for 4 hours at 37 °C. Ultra pure air was then passed through the chamber, and volatile urine gas components were collected into Tedlar bags at the other end. These bag samples were then analyzed for a wide range of VOCs and major offensive odorants (e.g., reduced sulfur compounds (RSCs), carbonyls, trimethylamine (TMA), ammonia, etc.). Among the various odorants, sulfur compounds (methanethiol and hydrogen sulfide) and aldehydes (acetaldehyde, butylaldehyde, and isovaleraldehyde) were detected above odor threshold and predicted to contribute most effectively to odor intensity of urine incontinence. PMID:23823973
Yang, Lu; Cheng, Ping; Wang, Jin-Hui; Li, Hong
2017-10-23
This study investigated the volatile flavor compounds and antioxidant properties of the essential oil of chrysanthemums that was extracted from the fresh flowers of 10 taxa of Chrysanthemum morifolium from three species; namely Dendranthema morifolium (Ramat.) Yellow, Dendranthema morifolium (Ramat.) Red, Dendranthema morifolium (Ramat.) Pink, Dendranthema morifolium (Ramat.) White, Pericallis hybrid Blue, Pericallis hybrid Pink, Pericallis hybrid Purple, Bellis perennis Pink, Bellis perennis Yellow, and Bellis perennis White. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis. The volatile flavor compounds from the fresh flowers were collected using dynamic headspace collection, analyzed using auto thermal desorber-gas chromatography/mass spectrometry, and identified with quantification using the external standard method. The antioxidant activities of Chrysanthemum morifolium were evaluated by DPPH and FRAP assays, and the results showed that the antioxidant activity of each sample was not the same. The different varieties of fresh Chrysanthemum morifolium flowers were distinguished and classified by fingerprint similarity evaluation, principle component analysis (PCA), and cluster analysis. The results showed that the floral volatile component profiles were significantly different among the different Chrysanthemum morifolium varieties. A total of 36 volatile flavor compounds were identified with eight functional groups: hydrocarbons, terpenoids, aromatic compounds, alcohols, ketones, ethers, aldehydes, and esters. Moreover, the variability among Chrysanthemum morifolium in basis to the data, and the first three principal components (PC1, PC2, and PC3) accounted for 96.509% of the total variance (55.802%, 30.599%, and 10.108%, respectively). PCA indicated that there were marked differences among Chrysanthemum morifolium varieties. The cluster analysis confirmed the results of the PCA analysis. In conclusion, the results of this study provide a basis for breeding Chrysanthemum cultivars with desirable floral scents, and they further support the view that some plants are promising sources of natural antioxidants.
Zhou, Yuzhi; Ren, Yanling; Ma, Zhijie; Jia, Guangcheng; Gao, Xiaoxia; Zhang, Lizeng; Qin, Xuemei
2012-05-07
Xiaoyaosan (XYS), a well-known formula for relieving depression, was originated from the book of "Taiping Huimin Heji Jufang" in Song Dynasty (960-1127 AD), composed of Radix Bupleuri, Radix Angelicae Sinensis, Radix Paeoniae Alba, Rhizoma Atractylodis Macrocephalae, Poria, Herba Menthae, Rhizoma Zingiberis Recens and Radix Glycyrrhizae with dose proportion of 6:6:6:6:6:3:2:2. It is commonly used for the treatment of depression-related syndromes in China. In the formula, Radix Bupleuri usually serves as the principal drug, Radix Angelicae Sinensis and Radix Paeoniae Alba serve as the ministerial drugs, Rhizoma Atractylodis Macrocephalae, Poria, Herba Menthae and Rhizoma Zingiberis Recens serve as adjunctive drugs, Radix Glycyrrhizae serves as messenger drug, they coordinate with each other and enhance the effect of the formula. In our previous experiments, the antidepressant effect of XYS was revealed. However, the antidepressant part (or component) of this prescription was still obscure. An experimental despair animal model: the mice tail suspension test (TST) was used to evaluate the antidepressant activity of XYS and its fractions. GC-MS method was developed to identify the volatile components and determine 4 major volatile components in active fraction. In the TST test, the effect of a low polar fraction (XY-EA) was superior to other fractions of XYS. 13 volatile compounds in the XY-EA were identified on the basis of standards, isolation and structural determination in our laboratory, NIST 05 database and literature data. The content of 4 major volatile compounds in XY-EA which is 6.703%. The petroleum ether fraction (XY-EA) appears to be the active fraction of XYS. 4 major components Z-ligustilide, palmitic acid, atractylenolide I, and atractylenolide II may be the antidepressant active compounds. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.
2016-01-01
The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl in apatite.
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2018-06-01
The realized stochastic volatility model has been introduced to estimate more accurate volatility by using both daily returns and realized volatility. The main advantage of the model is that no special bias-correction factor for the realized volatility is required a priori. Instead, the model introduces a bias-correction parameter responsible for the bias hidden in realized volatility. We empirically investigate the bias-correction parameter for realized volatilities calculated at various sampling frequencies for six stocks on the Tokyo Stock Exchange, and then show that the dynamic behavior of the bias-correction parameter as a function of sampling frequency is qualitatively similar to that of the Hansen-Lunde bias-correction factor although their values are substantially different. Under the stochastic diffusion assumption of the return dynamics, we investigate the accuracy of estimated volatilities by examining the standardized returns. We find that while the moments of the standardized returns from low-frequency realized volatilities are consistent with the expectation from the Gaussian variables, the deviation from the expectation becomes considerably large at high frequencies. This indicates that the realized stochastic volatility model itself cannot completely remove bias at high frequencies.
SCREENING MODEL FOR VOLATILE POLLUTANTS IN DUEL POROSITY SOILT
This paper develops mass fraction models for transport and fate of volatile organic chemicals, such as pesticides, in two-region soils. It addressed two main and interrelated parts. First, expressions are derived which describe the rate mass transfer coefficient in a periodical...
NASA Astrophysics Data System (ADS)
Roman, D.; Plank, T. A.; Hauri, E. H.; Rasmussen, D. J.; Power, J. A.; Lyons, J. J.; Haney, M. M.; Werner, C. A.; Kern, C.; Lopez, T. M.; Izbekov, P. E.; Stelling, P. L.
2016-12-01
We present initial results from an integrated geochemical-geophysical study of the Unimak-Cleveland corridor of the Aleutian volcanic arc, which encompasses six volcanoes spanning 450 km of the arc that have erupted in the past 25 years with a wide range of magmatic water contents. This relatively small corridor also exhibits a range of deep and upper-crustal seismicity, apparent magma storage depths, and depths to the subducting tectonic plate. The ultimate goal of this study is to link two normally disconnected big-picture problems: 1) the deep origin of magmas and volatiles, and 2) the formation and eruption of crustal magma reservoirs, which we will do by establishing the depth(s) of crustal magma reservoirs and pre-eruptive volatile contents throughout the corridor. Our preliminary work focuses on the geographic end members Shishaldin Volcano, which last erupted in 2014-2015, and Cleveland Volcano, which last erupted in April-May of this year (2016). Both systems are persistently degassing, open-vent volcanoes whose frequent eruptions are typically characterized by minimal precursory seismicity, making eruption forecasting challenging. At Cleveland, we analyze data from a 12-station broadband seismic network deployed from August 2015-July 2016, which is complemented by two permanent seismo-acoustic stations operated by the Alaska Volcano Observatory (AVO). We also analyze tephras from recent eruptions (including 2016) and conducted ground- and helicopter-based gas emission surveys. At Shishaldin, we analyze data from the permanent AVO network, which is comprised of mainly short-period, single-component seismic stations. We also present preliminary analyses of samples of recent eruptive deposits and gas emission data. Through integration of these various datasets we present preliminary interpretations related to the origin, storage, ascent and eruption of volatile-bearing magmas at Cleveland and Shishaldin volcanoes.
Wu, Qiong; Xia, Xinghui; Mou, Xinli; Zhu, Baotong; Zhao, Pujun; Dong, Haiyang
2014-12-01
Climate change is supposed to have influences on water quality and ecosystem. However, only few studies have assessed the effect of climate change on environmental toxic contaminants in urban lakes. In this research, response of several toxic contaminants in twelve urban lakes in Beijing, China, to the seasonal variations in climatic factors was studied. Fluorides, volatile phenols, arsenic, selenium, and other water quality parameters were analyzed monthly from 2009 to 2012. Multivariate statistical methods including principle component analysis, cluster analysis, and multiple regression analysis were performed to study the relationship between contaminants and climatic factors including temperature, precipitation, wind speed, and sunshine duration. Fluoride and arsenic concentrations in most urban lakes exhibited a significant positive correlation with temperature/precipitation, which is mainly caused by rainfall induced diffuse pollution. A negative correlation was observed between volatile phenols and temperature/precipitation, and this could be explained by their enhanced volatilization and biodegradation rates caused by higher temperature. Selenium did not show a significant response to climatic factor variations, which was attributed to low selenium contents in the lakes and soils. Moreover, the response degrees of contaminants to climatic variations differ among lakes with different contamination levels. On average, temperature/precipitation contributed to 8%, 15%, and 12% of the variations in volatile phenols, arsenic, and fluorides, respectively. Beijing is undergoing increased temperature and heavy rainfall frequency during the past five decades. This study suggests that water quality related to fluoride and arsenic concentrations of most urban lakes in Beijing is becoming worse under this climate change trend. Copyright © 2014. Published by Elsevier B.V.
Liu, Cuihua; Yan, Fuhua; Gao, Huijun; He, Min; Wang, Zhuang; Cheng, Yunjiang; Deng, Xiuxin; Xu, Juan
2015-01-01
Terpenoids are major components of carotenoids, limonoids and aromas in citrus fruits, resulting in fruit coloration, bitterness and aroma. In this study the carotenoid, limonoid and volatile profiles of red-flesh Chuhong pummelo (CH) and pale green-flesh Feicui pummelo (FC) were investigated by HPLC and GC/MS. Large differences were found in constituents of carotenoids and limonoids in juice sacs and flavedo and of aromas in flavedo of the two pummelos. For carotenoids in juice sacs, CH contained 57 times the amount in FC, mainly all-trans-lycopene and phytoene, whereas in flavedo it contained only 25% of that in FC, the latter showing a high proportion of β-carotene and other chloroplastic carotenoids. In comparison with FC, limonin and nomilin aglycone production was boosted in juice sacs of CH while being almost absent in flavedo. For volatiles in flavedo, the total amount was significantly higher in CH. PCA suggested that germacrene-type sesquiterpenoids, etc. were principal in distinguishing volatile profiles of the two pummelos. The data showed a different tissue-biased pattern of carotenoid and limonoid aglycone synthesis in pummelos with different flesh color, and the possible independently regulated synthesis of those metabolites in different fruit tissues. Furthermore, decreased carotenoid and limonoid aglycone production accompanied by increased accumulation of volatile terpenoids in flavedo of red-flesh CH was identified, indicating that a total capacity or a balance of production of various terpenoids might exist in pummelo fruit tissues. It was also suggested that substrate concentration is not the key factor affecting product concentrations during the synthesis of monoterpene derivatives. © 2014 Society of Chemical Industry.
Long Memory in STOCK Market Volatility: the International Evidence
NASA Astrophysics Data System (ADS)
Yang, Chunxia; Hu, Sen; Xia, Bingying; Wang, Rui
2012-08-01
It is still a hot topic to catch the auto-dependence behavior of volatility. Here, based on the measurement of average volatility, under different observation window size, we investigated the dependence of successive volatility of several main stock indices and their simulated GARCH(1, 1) model, there were obvious linear auto-dependence in the logarithm of volatility under a small observation window size and nonlinear auto-dependence under a big observation. After calculating the correlation and mutual information of the logarithm of volatility for Dow Jones Industrial Average during different periods, we find that some influential events can change the correlation structure and the volatilities of different periods have distinct influence on that of the remote future. Besides, GARCH model could produce similar behavior of dependence as real data and long memory property. But our analyses show that the auto-dependence of volatility in GARCH is different from that in real data, and the long memory is undervalued by GARCH.
Vuts, József; Woodcock, Christine M; Caulfield, John C; Powers, Stephen J; Pickett, John A; Birkett, Michael A
2018-03-08
The response of virgin females of the legume pest Acanthoscelides obtectus (Coleoptera: Bruchidae) to headspace extracts of volatiles collected from flowers of a nectar plant, Daucus carota, was investigated using behaviour (four-arm olfactometry) and coupled gas chromatography-electroantennography (GC-EAG). Odours from inflorescences were significantly more attractive to virgin female beetles than clean air. Similarly, a sample of volatile organic compounds (VOCs) collected by air entrainment (dynamic headspace collection) was more attractive to beetles than a solvent control. In coupled GC-EAG experiments with beetle antennae and the VOC extract, six components showed EAG activity. Using coupled GC-mass spectrometry (GC-MS) and GC peak enhancement with authentic standards, the components were identified as α-pinene (S:R 16:1), sabinene, myrcene, limonene (S:R 1:3), terpinolene and (S)-bornyl acetate. Females preferred the synthetic blend of D. carota EAG-active volatiles to the solvent control in bioassays. When compared directly, odours of D. carota inflorescences elicited stronger positive behaviour than the synthetic blend. This is the first report of behaviourally active volatiles linked to pollen location for A. obtectus, and development of the six-component blend is being pursued, which could underpin the design of semiochemical-based field management approaches against this major pest of stored products. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Mammalian social odours: attraction and individual recognition
Brennan, Peter A; Kendrick, Keith M
2006-01-01
Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent–offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals. PMID:17118924
Flamini, Guido; Cioni, Pier Luigi; Morelli, Ivano
2003-04-09
Headspace analyses of pollen, whole flowerheads, ligulate and tubular florets, flower buds, involucral bracts, and leaves have been performed on the food plant Chrysanthemum coronarium L. (Asteraceae). The analyses permitted differences in the pattern of volatiles emitted by the different floral parts to be observed and the site and phenological stage of emission of these chemicals to be verified. Camphor and cis-chrysanthenyl acetate were emitted mainly by ligulate and tubular florets; the production of myrcene and (Z)-ocimene was higher in the flower buds, whereas beta-caryophyllene, (E,E)-alpha-farnesene, and (E)-beta-farnesene seemed attributable mainly to the involucral bracts. The leaves showed a quite different volatile profile, with (Z)-ocimene as the main constituent. Pollen showed a completely different composition of its volatiles, with perilla aldehyde, cis-chrysanthenyl acetate, and camphor among the principal compounds; many carbonylic compounds and linear hydrocarbons have been detected exclusively in pollen. Furthermore, the essential oils obtained from flowerheads and leaves have been studied. These samples showed mainly quantitative differences. Camphor (22.1%) and cis-chrysanthenyl acetate (19.9%) were the main constituents of the oil from flowers, whereas the oil from the leaves contained mainly (Z)-ocimene (45.4%) and myrcene (28.2%).
Yu, Qibin; Plotto, Anne; Baldwin, Elizabeth A; Bai, Jinhe; Huang, Ming; Yu, Yuan; Dhaliwal, Harvinder S; Gmitter, Frederick G
2015-03-06
Although many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile production are very limited. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. Fruits of two mandarin hybrids, Temple and Murcott with contrasting volatile and non- volatile profiles, were collected at three developmental stages. A combination of methods, including the isobaric tags for relative and absolute quantification (iTRAQ), quantitative real-time polymerase chain reaction, gas chromatography, and high-performance liquid chromatography, was used to identify proteins, measure gene expression levels, volatiles, sugars, organic acids and carotenoids. Two thirds of differentially expressed proteins were identified in the pathways of glycolysis, citric acid cycle, amino acid, sugar and starch metabolism. An enzyme encoding valencene synthase gene (Cstps1) was more abundant in Temple than in Murcott. Valencene accounted for 9.4% of total volatile content in Temple, whereas no valencene was detected in Murcott fruit. Murcott expression of Cstps1 is severely reduced. We showed that the diversion of valencene and other sesquiterpenes into the terpenoid pathway together with high production of apocarotenoid volatiles might have resulted in the lower concentration of carotenoids in Temple fruit.
Popova, Alexandra A.; Koksharova, Olga A.; Lipasova, Valentina A.; Zaitseva, Julia V.; Katkova-Zhukotskaya, Olga A.; Eremina, Svetlana Iu.; Mironov, Alexander S.; Chernin, Leonid S.; Khmel, Inessa A.
2014-01-01
In previous research, volatile organic compounds (VOCs) emitted by various bacteria into the chemosphere were suggested to play a significant role in the antagonistic interactions between microorganisms occupying the same ecological niche and between bacteria and target eukaryotes. Moreover, a number of volatiles released by bacteria were reported to suppress quorum-sensing cell-to-cell communication in bacteria, and to stimulate plant growth. Here, volatiles produced by Pseudomonas and Serratia strains isolated mainly from the soil or rhizosphere exhibited bacteriostatic action on phytopathogenic Agrobacterium tumefaciens and fungi and demonstrated a killing effect on cyanobacteria, flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans). VOCs emitted by the rhizospheric Pseudomonas chlororaphis strain 449 and by Serratia proteamaculans strain 94 isolated from spoiled meat were identified using gas chromatography-mass spectrometry analysis, and the effects of the main headspace compounds—ketones (2-nonanone, 2-heptanone, 2-undecanone) and dimethyl disulfide—were inhibitory toward the tested microorganisms, nematodes, and flies. The data confirmed the role of bacterial volatiles as important compounds involved in interactions between organisms under natural ecological conditions. PMID:25006575
["Plastic lung". Broncho-pulmonary pathology related to plastics (author's transl)].
Anthoine, D; Martinet, Y; Zuck, P; Peiffer, G; Dangelzer, J; Lamy, P
1980-01-01
Plastics can induce three main groups of respiratory accidents.--Acute and subacute intoxications related to the inhalation of volatil substances from decomposing plastics (mostly during burning and pyrolysis) or on the contrary during synthesis. They are accidental chemical broncho-pneumopathies (acute tracheo-bronchitis and pulmonary edema).--Chronic broncho-pneumopathies following repeated inhalation of dusts or suspension of plastics: pneumoconioses and thesaurismoses leading to pulmonary fibrosis.--Broncho-pneumopathies related to the irritant and sensitizing action of some components of plastics: professional asthma and sensitization pneumopathies. Diagnosis of such diseases therefore imposes a careful study of working conditions. Proof rests on two arguments:--curing by risk eviction;--analysis of the products in order to reveal their toxicity.
[Advance in chemical constituents of genus Clematis].
Sun, Feng; Yang, Depo
2009-10-01
Progresses in the studies on chemical constituents of Clematis L. (belonging to the family Ranunculaceae) were systematiically reviewed in this article. The plants in this genus have a wide spectrum of constituents as follows: triterpenes, flavonoids, lignans, coumarins, alkaloids, volatile oils, steroids, organic acids, macrocyclic compounds and phenols, etc., among which triterpenoid saponins, flavonoids and lignans are the main components. The triterpenoid saponins are mainly oleanolic type and hederagenin type, most of which are bidesmosidic saponins, substituted with oligosaccharide chains at both C-3 and C-28, and some are substituted with acetyl, caffeoyl, isoferuloyl, p-methoxy cinnamyl and 3,4-dimethoxy cinnamyl groups in the oligosaccharide chains. The flavonoids from Clematis species are mainly flavones, flavonols, flavanones, isoflavones, xanthones and their glucosides (sugar moieties are connected to the aglycone through either the oxygen or the carbon atoms), the aglycones of which are mainly apigenin, kaempferol, luteolin and quercetin. The lignans from Clematis are mainly eupomatene lignans, cyclolignans, monoepoxylignans, bisepoxylignans and lignanolides. Clematis spp. are rich in resources, however, studies on their chemical constituents have only been carried out on twenty or so spp. As a result, it is necessary to expand our study on other spp. from this genus for better utilization of medicinal resources.
NASA Astrophysics Data System (ADS)
Crippa, M.; Canonaco, F.; Lanz, V. A.; Äijälä, M.; Allan, J. D.; Carbone, S.; Capes, G.; Ceburnis, D.; Dall'Osto, M.; Day, D. A.; DeCarlo, P. F.; Ehn, M.; Eriksson, A.; Freney, E.; Hildebrandt Ruiz, L.; Hillamo, R.; Jimenez, J. L.; Junninen, H.; Kiendler-Scharr, A.; Kortelainen, A.-M.; Kulmala, M.; Laaksonen, A.; Mensah, A. A.; Mohr, C.; Nemitz, E.; O'Dowd, C.; Ovadnevaite, J.; Pandis, S. N.; Petäjä, T.; Poulain, L.; Saarikoski, S.; Sellegri, K.; Swietlicki, E.; Tiitta, P.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.
2014-06-01
Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) and the intensive campaigns of European Monitoring and Evaluation Programme (EMEP) during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we define a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 data sets accounting for two urban, several rural and remote and two high altitude sites; therefore it is likely suitable for the treatment of AMS-related ambient data sets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Generally, our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling purposes.
Ammagarahalli, Byrappa; Gemeno, César
2015-10-01
In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone-plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Leclercq-Perlat, Marie-Noëlle; Latrille, Eric; Corrieu, Georges; Spinnler, Henry-Eric
2004-08-01
Flavour generation in cheese is a major aspect of ripening. In order to enhance aromatic qualities it is necessary to better understand the chemical and microbiological changes. Experimental Camembert-type cheeses were prepared in duplicate from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two replicates performed under controlled conditions of temperature (12 degrees C), relative humidity (95 +/- 2%), and atmosphere showed similar ripening characteristics. The evolutions of metabolite concentrations were studied during ripening. The volatile components were extracted by dynamic headspace extraction, separated and quantified by gas chromatography and identified by mass spectrometry. For each cheese the volatile concentrations varied with the part considered (rind or core). Except for ethyl acetate and 2-pentanone, the volatile quantities observed were higher than their perception thresholds. The flavour component production was best correlated with the starter strains. During the first 10 days the ester formations (ethyl, butyl and isoamyl acetates) were associated with the concentrations of K. lactis and G. candidum. The rind quantity of esters was lower than that observed in core probably due to (1) a diffusion from the core to the surface and (2) evaporation from the surface to the chamber atmosphere. G. candidum and Brev. linens association produced 3 methyl butanol and methyl 3-butanal from leucine, respectively. DMDS came from the methionine catabolism due to Brev. linens. Styrene production was attributed to Pen. camemberti. 2-Pentanone evolution was associated with Pen. camemberti spores and G. candidum. 2-Heptanone changes were not directly related to flora activities while 2-octanone production was essentially due to G. candidum. This study also demonstrates the determining role of volatile component diffusion.
Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis PlantsW⃞
Aharoni, Asaph; Giri, Ashok P.; Deuerlein, Stephan; Griepink, Frans; de Kogel, Willem-Jan; Verstappen, Francel W. A.; Verhoeven, Harrie A.; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.
2003-01-01
Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants. PMID:14630967
Origin of conductivity anomalies in the asthenosphere
NASA Astrophysics Data System (ADS)
Yoshino, T.; Zhang, B.
2013-12-01
Electrical conductivity anomalies with anisotropy parallel to the plate motion have been observed beneath the oceanic lithosphere by electromagnetic studies (e.g., Evans et al., 2005; Baba et al., 2010; Naif et al., 2013). Electrical conductivity of the oceanic asthenosphere at ~100 km depth is very high, about 10-2 to 10-1 S/m. This zone is also known in seismology as the low velocity zone. Since Karato (1990) first suggested that electrical conductivity is sensitive to water content in NAMs, softening of asthenosphere has been regarded as a good indicator for constraining the distribution of water. There are two difficulties to explain the observed conductivity features in the asthenosphere. Recent publications on electrical conductivity of hydrous olivine suggested that olivine with the maximum soluble H2O content at the top of the asthenosphere has much lower conductivity less than 0.1 S/m (e.g., Yoshino et al., 2006; 2009a; Poe et al., 2010; Du Frane and Tyburczy, 2012; Yang, 2012), which is a typical value of conductivity anomaly observed in the oceanic mantle. Partial melting has been considered as an attractive agent for substantially raising the conductivity in this region (Shankland and Waff, 1977), because basaltic melt has greater electrical conductivity (> 100.5 S/m) and high wetting properties. However, dry mantle peridotite cannot reach the solidus temperature at depth 100 km. Volatile components can dramatically reduce melting temperature, even if its amount is very small. Recent studies on conductivity measurement of volatile-bearing melt suggest that conductivity of melt dramatically increases with increasing volatile components (H2O: Ni et al., 2010a, b; CO2: Gaillard et al., 2008; Yoshino et al., 2010; 2012a). Because incipient melt includes higher amount of volatile components, conductivity enhancement by the partial melt is very effective at temperatures just above that of the volatile-bearing peridotite solidus. In this study, the electrical conductivity of peridotite with trace amount of volatile phases was measured in single crystal olivine capsule to protect escape of water from the sample at 3 GPa. The conductivity values were significantly higher than those of dry peridotite, suggesting that the observed conductivity anomalies at the asthenosphere are caused by a presence of trace amount of volatile component in fluid or melt. On the other hand, conductivity of partial molten peridotite measured under shear showed that the conductivity parallel to the shear direction becomes one order of magnitude higher than that normal direction. These observations suggest that partial melting can explain softening and the observed geophysical anomalies of asthenosphere.
Dynamical Analysis of Stock Market Instability by Cross-correlation Matrix
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2016-08-01
We study stock market instability by using cross-correlations constructed from the return time series of 366 stocks traded on the Tokyo Stock Exchange from January 5, 1998 to December 30, 2013. To investigate the dynamical evolution of the cross-correlations, crosscorrelation matrices are calculated with a rolling window of 400 days. To quantify the volatile market stages where the potential risk is high, we apply the principal components analysis and measure the cumulative risk fraction (CRF), which is the system variance associated with the first few principal components. From the CRF, we detected three volatile market stages corresponding to the bankruptcy of Lehman Brothers, the 2011 Tohoku Region Pacific Coast Earthquake, and the FRB QE3 reduction observation in the study period. We further apply the random matrix theory for the risk analysis and find that the first eigenvector is more equally de-localized when the market is volatile.
Resource Prospector, the Decadal Survey and the Scientific Context for the Exploration of the Moon
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Andrews, D. R.
2017-01-01
The Inner Planets Panel of the Planetary Exploration Decadal Survey defined several science questions related to the origins, emplacement, and sequestration of lunar polar volatiles: 1. What is the lateral and vertical distribution of the volatile deposits? 2. What is the chemical composition and variability of polar volatiles? 3. What is the isotopic composition of the volatiles? 4. What is the physical form of the volatiles? 5. What is the rate of the current volatile deposition? A mission concept study, the Lunar Polar Volatiles Explorer (LPVE), defined a approximately $1B New Frontiers mission to address these questions. The NAS/NRC report, 'Scientific Context for the Exploration of the Moon' identified he lunar poles as special environments with important implications. It put forth the following goals: Science Goal 4a-Determine the compositional state (elemental, isotopic, mineralogic) and compositional distribution (lateral and depth) of the volatile component in lunar polar regions. Science Goal 4b-Determine the source(s) for lunar polar volatiles. Science Goal 4c-Understand the transport, retention, alteration, and loss processes that operate on volatile materials at permanently shaded lunar regions. Science Goal 4d-Understand the physical properties of the extremely cold (and possibly volatile rich) polar regolith. Science Goal 4e-Determine what the cold polar regolith reveals about the ancient solar environment.
40 CFR 52.970 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FR 54308 Ref 52.999(c)(66) Chapter 21—Control of Emissions of Organic Compounds Subchapter A General... Storage of Volatile Organic Compounds (Large Tanks) Dec. 1995, LR21:1333 10/22/96, 61 FR 54737 Ref 52.999(c)(71)(E)(F)(G) Section 2105 Storage of Volatile Organic Components (Small Tanks) NOT IN SIP Section...
Emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from oil and natural gas production were investigated using direct measurements of component-level emissions on well pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-...
An unusual and persistent contamination of drinking water by cutting oil.
Rella, R; Sturaro, A; Parvoli, G; Ferrara, D; Doretti, L
2003-02-01
Drinking water contamination by materials, such as cutting oil, used to set up pipelines is an uncommon but possible event. This paper describes the analytical procedures used to identify the components of that contaminant in drinking water. Volatile and semi-volatile chemical species, responsible for an unpleasant taste and odour, were recognised by solid phase microextraction and GC/MS techniques. Among the volatile compounds, the presence of xylenes, bornyl acetate and diphenyl ether was confirmed by certificate standards and quantified in the most contaminated samples.
Malheiro, Ricardo; Casal, Susana; Cunha, Sara C; Baptista, Paula; Pereira, José Alberto
2016-01-01
The olive fly, Bactrocera oleae (Rossi), is a monophagous pest that displays an oviposition preference among cultivars of olive (Olea europaea L.). To clarify the oviposition preference, the olive leaf volatiles of three olive cultivars (Cobrançosa, Madural and Verdeal Transmontana) were assessed by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) at six different periods of olive fruit maturation and degrees of infestation. A total of 39 volatiles were identified, mainly esters and alcohols, with a minor percentage of aldehydes, ketones and terpenic compounds, including sesquiterpenes. At sampling dates with higher degrees of infestation, cv. Cobrançosa had, simultaneously, significantly lower infestation degrees and higher volatile amounts than the other two cultivars, with a probable deterrent effect for oviposition. The green leaf volatiles (GLVs) (Z)-3-hexen-1-ol and (Z)-3-hexen-1-ol acetate) were the main compounds identified in all cultivars, together with toluene. The abundance of GLVs decreased significantly throughout maturation, without significant differences among cultivars, while toluene showed a general increase and positive correlation with olive fly infestation levels. The results obtained could broaden our understanding of the roles of various types and amounts of olive volatiles in the environment, especially in olive fly host selection and cultivar preference. Copyright © 2015 Elsevier Ltd. All rights reserved.
Volatility and Growth in Populations of Rural Associations
ERIC Educational Resources Information Center
Wollebaek, Dag
2010-01-01
This article uses unique community-level data aggregated from censuses of associations to analyze growth and volatility in rural populations of grassroots associations. A qualitative comparative analysis (QCA) shows that the two main paths to growth were (1) centralization in polycephalous (multicentered) municipalities and (2) population growth…
Two cubesat mission to study the Didymos asteroid system
NASA Astrophysics Data System (ADS)
Wahlund, J.-E.; Vinterhav, E.; Trigo-Rodríguez, J. M.; Hallmann, M.; Barabash, S.; Ivchenko, N.
2015-10-01
Among the growing interest about asteroid impact hazard mitigation in our community the Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to use a kinetic impactor to demonstrate its capability as reliable deflection system [1]. As a part of the AIDA mission, we have proposed a set of two three-axis stabilized 3U CubeSats (with up to 5 science sensors) to simultaneously rendezvous at close range (<500m) with both the primary and the secondary component of the Didymos asteroid system. The CubeSats will be hosted on the ESA component of the AIDA mission, the monitoring satellite AIM (Asteroid Impact Mission). The CubeSats will characterise the magnetization, the main bulk chemical composition and presence of volatiles as well as do superresolution surface imaging of the Didymos components. The CubeSats will also support the plume characterisation resulting from the DART impact (Double Asteroid Redirection Test, a NASA component of the AIDA mission) at much closer range than the AIM main spacecraft, and provide imaging, composition, and temperature of the plume material. At end of the mission, the two CubeSats can optionally land on one of the asteroids for continued science operation. The science sensors consist of a dual fluxgate magnetometer (MAG), one miniaturized volatile composition analyser (VCA), a narrow angle camera (NAC) and a Video Emission Spectrometer (VES) with a diffraction grating for allowing a sequential chemical study of the emission spectra associated with the impact flare and the expanding plume. Consequently, the different envisioned instruments onboard the CubeSats can provide significant insight into the complex response of asteroid materials during impacts that has been theoretically studied using different techniques [2]. The two CubeSats will remain stowed in CubeSat dispensers aboard the main AIM spacecraft. They will be deployed and commissioned before the AIM impactor reaches the secondary and record the impact event from a closer vantage point than the main spacecraft. The two CubeSats are equipped with relative navigation systems capable of estimating the spacecraft position relative to the asteroids and propulsion system that allow them to operate close to the asteroid bodies. The two CubeSats will rely on mapping data relayed via the AIM main spacecraft but operate autonomously and individually based on schedules and navigation maps uploaded from ground. AIDA's target is the binary Apollo asteroid 65803 Didymos that is also catalogued as Potentially Hazardous Asteroid (PHA) because it experiences close approaches to Earth. Didymos' primary has a diameter of ˜800 meters and the secondary is ˜150 m across. Both bodies are separated about 1.1 km [3]. The rotation period and asymmetry of the secondary object is unknown, and it might be tidally locked to the larger primary body. At least the primary body is expected to be associated with ordinary chondrite material, consisting mostly of silicates, and metal, but the earlier made Xk classification suggested a rubble-pile type with large amount of volatile content. The secondary companion spectral class is unknown, but the total mass of the system suggests that the secondary companion could be of similar class. Detailed empirical information on the physical properties of the Didymos asteroid system, in particular the magnetic field, the (mineralogical) surface composition, the internal composition via the bulk density, the ages of surface units through crater counts and other morphological surface features is valuable in order to make progress in the asteroid field of science. Furthermore, the periodic effect of such a close dynamic system in the presence and temporal displacement of the surface regolith is EPSC Abstracts Vol. 10, EPSC2015-698, 2015 European Planetary Science Congress 2015 c Author(s) 2015 EPSC European Planetary Science Congress unknown, and could be followed using close-up video systems provided by the CubeSats. In conclusion, the proposed two CubeSats as part of the AIDA mission can therefore contribute significantly, since they can monitor the Didymos asteroid components at a very close range around hundred meters, and at the same time monitor in-situ an impact plume when it is created.
Volatile reservoirs below the surface of the Elysium region of Mars: Geomorphic evidence
NASA Technical Reports Server (NTRS)
Christiansen, Eric H.; Hopler, Jennifer A.
1987-01-01
The Elysium volcanic province contains a variety of geomorphic evidence for the existence of large volatile reservoirs of subsurface volatiles. Study of these landforms yields insight into the distribution and size of these reservoirs and how they interact with the surface environment and will ultimately place constraints on the geometry, constitution, origin, time of formation, and temporal evolution of these important components of the Martian crust. Three principal types of landforms appear to be related to subsurface volatile reservoirs in the Elysium region of Mars: small outflow channels; large lahars; and vast expanses of knobby terranes around the margins of the Elysium dome. The evidence provided by these landforms is internally consistent with the presence of a large relatively shallow volatile reservoir in the Elysium region. If the geologic features described are reliable indicators of subsurface volatiles, they imply that: volatile reservoirs lie relatively close to the surface and underlie millions of sq km in this region; there is no apparent latitudinal variation in the depth or thickness of the volatile reservoirs; the precursors of the knobby terranes are or were important volatile reservoirs; volatiles may be lost in a variety of ways from these reservoirs; and volatiles were incorporated in an easily eroded surficial deposit in the middle history of Mars. The ultimate origin of water in this reservoir is uncertain. A model to explain the preferential entrapment of volatiles into the region's surface materials may be required.
Zhao, Jianglin; Shan, Tijiang; Huang, Yongfu; Liu, Xili; Gao, Xiwu; Wang, Mingan; Jiang, Weibo; Zhou, Ligang
2009-11-01
Volatile oils were obtained by hydro-distillation from Gliomastix murorum and Pichia guilliermondii, two endophytic fungi isolated from the traditional Chinese medicinal herb Paris polyphylla var. yunnanensis. The oils were analyzed for their chemical composition by gas chromatography-mass spectrometry (GC-MS). Palmitic acid (15.5%), (E)-9-octadecenoic acid (11.6%), 6-pentyl-5,6-dihydropyran-2-one (9.7%), and (7Z,10Z)-7,10- hexadecadienoic acid (8.3%) were the major compounds of the 40 identified components in G. murorum volatile oil. 1,1,3a,7-Tetramethyl-1a,2,3,3a,4,5,6,7b-octahydro-1H-cyclopropa[a]- naphthalene (25.9%), palmitic acid (15.5%), 1-methyl-2,4-di- (prop-1-en-2-yl)-1- vinylcyclohexane (7.9%), (E)-9-octadecenoic acid (7.3%), and (9E,12E)-ethyl-9,12-octadecadienoate (5.2%) were the major compounds of the 27 identified components in P. guilliermondii volatile oil. The in vitro antimicrobial activity of the volatile oils was also investigated to evaluate their efficacy against six bacteria and one phytopathogenic fungus. The minimum inhibitory concentration (MIC) values of the volatile oils against the test bacteria ranged from 0.20 mg/mL to 1.50 mg/mL. One of the most sensitive bacteria was Xanthomonas vesicatoria with an MIC of 0.20 mg/mL and 0.40 mg/mL for G. murorum and P. guilliermondii, respectively. The mean inhibitory concentration (IC50) of the volatile oils against spore germination of Magnaporthe oryzae was 0.84 mg/mL for G. murorum and 1.56 mg/mL for P. guilliermondii. These results indicated that the volatile oils from the endophytic fungi have strong antimicrobial activity and could be a potential source of antimicrobial ingredients.
Correlation and volatility in an Indian stock market: A random matrix approach
NASA Astrophysics Data System (ADS)
Kulkarni, Varsha; Deo, Nivedita
2007-11-01
We examine the volatility of an Indian stock market in terms of correlation of stocks and quantify the volatility using the random matrix approach. First we discuss trends observed in the pattern of stock prices in the Bombay Stock Exchange for the three-year period 2000 2002. Random matrix analysis is then applied to study the relationship between the coupling of stocks and volatility. The study uses daily returns of 70 stocks for successive time windows of length 85 days for the year 2001. We compare the properties of matrix C of correlations between price fluctuations in time regimes characterized by different volatilities. Our analyses reveal that (i) the largest (deviating) eigenvalue of C correlates highly with the volatility of the index, (ii) there is a shift in the distribution of the components of the eigenvector corresponding to the largest eigenvalue across regimes of different volatilities, (iii) the inverse participation ratio for this eigenvector anti-correlates significantly with the market fluctuations and finally, (iv) this eigenvector of C can be used to set up a Correlation Index, CI whose temporal evolution is significantly correlated with the volatility of the overall market index.
Estimation of the Age and Amount of Brown Rice Plant Hoppers Based on Bionic Electronic Nose Use
Xu, Sai; Zhou, Zhiyan; Lu, Huazhong; Luo, Xiwen; Lan, Yubin; Zhang, Yang; Li, Yanfang
2014-01-01
The brown rice plant hopper (BRPH), Nilaparvata lugens (Stal), is one of the most important insect pests affecting rice and causes serious damage to the yield and quality of rice plants in Asia. This study used bionic electronic nose technology to sample BRPH volatiles, which vary in age and amount. Principal component analysis (PCA), linear discrimination analysis (LDA), probabilistic neural network (PNN), BP neural network (BPNN) and loading analysis (Loadings) techniques were used to analyze the sampling data. The results indicate that the PCA and LDA classification ability is poor, but the LDA classification displays superior performance relative to PCA. When a PNN was used to evaluate the BRPH age and amount, the classification rates of the training set were 100% and 96.67%, respectively, and the classification rates of the test set were 90.67% and 64.67%, respectively. When BPNN was used for the evaluation of the BRPH age and amount, the classification accuracies of the training set were 100% and 48.93%, respectively, and the classification accuracies of the test set were 96.67% and 47.33%, respectively. Loadings for BRPH volatiles indicate that the main elements of BRPHs' volatiles are sulfur-containing organics, aromatics, sulfur- and chlorine-containing organics and nitrogen oxides, which provide a reference for sensors chosen when exploited in specialized BRPH identification devices. This research proves the feasibility and broad application prospects of bionic electronic noses for BRPH recognition. PMID:25268913
Volatile Composition of Some Cultivated and Wild Culinary-Medicinal Mushrooms from Hungary.
Csóka, Mariann; Geosel, Andras; Amtmann, Maria; Korany, Kornel
2017-01-01
The volatile constituents of the fruiting bodies of 4 culinary-medicinal mushroom species (Agaricus bisporus, Boletus edulis, Cantharellus cibarius, and Hericium erinaceus) from Hungary were examined to review their aroma composition. Simultaneous distillation/extraction was applied to extract volatile compounds from fungi, and the values were measured with gas chromatography--mass spectrometry. Although the fragrances of fungi are not as characteristic as those of spices, several groups of volatile compounds have been found in mushrooms. The number of identified components ranged between 61 and 100, with a high ratio of 8-carbon volatiles generally occurring in fungi. Beyond common properties, individual attributes have been identified as well: an outstanding ratio of benzene compounds in champignons, numerous N-containing volatiles in boletes, carotenoid degradation products in chanterelles, and esters and fatty acids with a high carbon number in the lion's mane mushroom. The identification of these characteristic fragrance constituents can be very important in differentiating between species and confirming their presence in mushroom products.
Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii
Lo Cantore, Pietro; Giorgio, Annalisa; Iacobellis, Nicola S.
2015-01-01
Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC–MS, methanethiol, dimethyl disulfide (DMDS), and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while DMDS toxicity was assessed till a quantity of 1.25 μg, below which it caused, together with 1-undecene (≥10 μg), broccoli growth increase. PMID:26500627
Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L
2008-08-15
Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus.
Woodcock, Christine M; Sumner, Mary E; Caulfield, John C; Reed, Katy; Inward, Daegan JG; Leather, Simon R; Pickett, John A; Birkett, Michael A; Denman, Sandra
2016-01-01
Abstract BACKGROUND Agrilus bigutattus (Fabricius) is a forest pest of increasing importance in the United Kingdom. The larvae damage weakened native oaks and are thought to contribute to premature tree death. Suspected links with acute oak decline (AOD) are not yet confirmed, but AOD‐predisposed trees appear to become more susceptible to A. biguttatus attack. Thus, management may be necessary for control of this insect. To explore the possibility of monitoring beetle populations by baited traps, the host tree volatiles regulating A. biguttatus–oak interactions were studied. RESULTS Biologically active volatile organic compounds in dynamic headspace extracts of oak foliage and bark were identified initially by coupled gas chromatography–electroantennography (GC‐EAG) and GC–mass spectrometry (GC‐MS), and the structures were confirmed by GC coinjection with authentic compounds. Of two synthetic blends of these compounds comprising the active leaf volatiles, the simpler one containing three components evoked strongly positive behavioural responses in four‐arm olfactometer tests with virgin females and males, although fresh leaf material was more efficient than the blend. The other blend, comprising a five‐component mixture made up of bark volatiles, proved to be as behaviourally active for gravid females as bark tissue. CONCLUSIONS These initial results on A. biguttatus chemical ecology reveal aspects of the role of attractive tree volatiles in the host‐finding of beetles and underpin the development of semiochemically based surveillance strategies for this forest insect. © 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:26663022
NASA Astrophysics Data System (ADS)
Gitelson, I. I.; Tikhomirov, A. A.; Parshina, O. V.; Ushakova, S. A.; Kalacheva, G. S.
The effect of elevated temperatures of 35 and 45°C (at the intensities of photosynthetically active radiation 322, 690 and 1104 μmol·m -2·s -1) on the photosynthesis, respiration, and qualitative and quantitative composition of the volatiles emitted by wheat ( Triticum aestuvi L., cultivar 232) crops was investigated in growth chambers. Identification and quantification of more than 20 volatile compounds (terpenoids-α-pinene, Δ3 carene, limonene, benzene, α-and trans-caryophyllene, α- and γ-terpinene, their derivatives, aromatic hydrocarbons, etc.) were conducted by gas chromatograph/mass spectrometry. Under light intensity of 1104 μmol·m -2·s -1 heat resistance of photosynthesis and respiration increased at 35°C and decreased at 45°C. The action of elevated temperatures brought about variations in the rate and direction of the synthesis of volatile metabolites. The emission of volatile compounds was the greatest under a reduced irradiation of 322 μmol·m -2·s -1 and the smallest under 1104 μmol·m -2·s -1, at 35°C. During the repair period, the contents and proportions of volatile compounds were different from their initial values, too. The degree of disruption and the following recovery of the functional state depended on the light intensity during the exposure to elevated temperatures. The investigation of the atmosphere of the growth chamber without plants has revaled the substances that were definitely technogenic in origin: tetramethylurea, dimethylsulfide, dibutylsulfide, dibutylphthalate, and a number of components of furan and silane nature.
Volatilization of oxides during oxidation of some superalloys at 1200 C
NASA Technical Reports Server (NTRS)
Zaplatynsky, I.
1977-01-01
Volatilization of oxides during cyclic oxidation of commercial Nichrome, Inconel 750, Rene 41, Stellite 6B, and GE-1541 was studied at 1200 C in static air. Quantitative analysis of oxide vapor deposits revealed that oxides of tungsten, molybdenum, niobium, manganese, and chromium volatilized preferentially from the oxide scales. Aluminum and silicon were not detected in vapor deposits. For all the alloys except GE-1541 chromium was found to be the main metallic element in the oxide scales.
Volatilization of oxides during oxidation of some superalloys at 1200 C
NASA Technical Reports Server (NTRS)
Zaplatynsky, I.
1977-01-01
Volatilization of oxides during cyclic oxidation of commercial Nichrome, Inconel 750, Rene 41, Stellite 6B, and GE-1541 was studied at 1200 C in static air. Quantitative analysis of oxide vapor deposits revealed that oxides of tungsten, molybdenum, niobium, manganese, and chromium volatilized preferentially from the oxide scales. Aluminum and silicon were not detected in vapor deposits. For all the alloys except GE-1541, chromium was found to be the main metallic element in the oxide scales.
NASA Astrophysics Data System (ADS)
Stuart, Jason M.; Anderson, Russell; Lazzarino, Patrick; Kuehn, Kevin A.; Harvey, Omar R.
2018-05-01
Quantifying links between pyOM dynamics, environmental factors and processes is central to predicting ecosystem function and response to future perturbations. In this study, changes in carbon (TC), nitrogen (TN) , pH and relative recalcitrance (R50) for pine- and cordgrass-derived pyOM were measured at 3-6 weeks intervals throughout the first year of burial in the soil. Objectives were to 1) identify key environmental factors and processes driving early-stage pyOM dynamics, and 2) develop quantitative relationships between environmental factors and changes in pyOM properties. The study was conducted in sandy soils of a forested ecosystem in the Longleaf pine range, US with a focus on links between changes in pyOM properties, fire history (FH), cumulative precipitation (Pcum), average temperature (Tavg) and soil residence time (SRT). Pcum, SRT and Tavg were the main factors controlling TC and TN accounting for 77-91% and 64-96% of their respective variability. Fire history, along with Pcum, SRT and Tavg, exhibited significant controlling effects on pyOM, pH and R50 - accounting for 48-91% and 88-93% of respective variability. Volatilization of volatiles and leaching of water-soluble components (in summer) and the sorption of exogenous organic matter (fall through spring) were most plausibly controlling pyOM dynamics in this study. Overall, our results point to climatic and land management factors and physicochemical process as the main drivers of pyOM dynamics in the pine ecosystems of the Southeastern US.
USDA-ARS?s Scientific Manuscript database
MS with GC-RI evidence was found for the presence of Linden ether in cooked carrot. Evaluation of the GC effluent from cooked carrot volatiles using Aroma Extract Dilution Analysis (AEDA) found Linden ether with the highest Flavor Dilution (FD) factor. Others with 10 fold lower FD factors were B-i...
de Lima Morais da Silva, Patricia; de Lima, Liliane Schier; Caetano, Ísis Kaminski; Torres, Yohandra Reyes
2017-12-01
The volatile composition of honeys produced by eight species of stingless bees collected in three municipalities in the state of Paraná (Brazil) was compared by combining static headspace GC-MS and chemometrics methods. Forty-four compounds were identified using NIST library and linear retention index relative to n-alkanes (C 8 -C 40 ). Linalool derivatives were the most abundant peaks in most honeys regardless geographical or entomological origin. However, Principal Component Analysis discriminated honeys from different geographical origins considering their distinctive minor volatile components. Honey samples from Guaraqueçaba were characterized by the presence of hotrienol while those from Cambará showed epoxylinalol, benzaldehyde and TDN as minor discriminating compounds. Punctual species such as Borá showed similar fingerprints regardless geographical origin, with ethyl octanoate and ethyl decanoate as characteristic intense chromatographic peaks, which may suggest a specialized behavior for nectar collection. Discriminant Analysis allowed correct geographic discrimination of most honeys produced in the three spots tested. We concluded that volatile profile of stingless bee honeys can be used to attest authenticity related to regional origin of honeys. Copyright © 2017. Published by Elsevier Ltd.
Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke
2014-06-13
In this study, a novel sulfonated graphene/polypyrrole (SG/PPy) solid-phase microextraction (SPME) coating was prepared and fabricated on a stainless-steel wire by a one-step in situ electrochemical polymerization method. Crucial preparation conditions were optimized as polymerization time of 15min and SG doping amount of 1.5mg/mL. SG/PPy coating showed excellent thermal stability and mechanical durability with a long lifespan of more than 200 stable replicate extractions. SG/PPy coating demonstrated higher extraction selectivity and capacity to volatile terpenes than commonly-used commercial coatings. Finally, SG/PPy coating was practically applied for the analysis of volatile components from star anise and fennel samples. The majority of volatile components identified were terpenes, which suggested the ultra-high extraction selectivity of SG/PPy coating to terpenes during real analytical projects. Four typical volatile terpenes were further quantified to be 0.2-27.4μg/g from star anise samples with good recoveries of 76.4-97.8% and 0.1-1.6μg/g from fennel samples with good recoveries of 80.0-93.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Shirooye, Pantea; Mokaberinejad, Roshanak; Ara, Leila; Hamzeloo-Moghadam, Maryam
2016-01-01
Herbal medicines formulated as oils were believed to possess more powerful effects than their original plants in Iranian Traditional Medicine (ITM). One of the popular oils suggested for treatment of various indications was ginger oil. In the present study, to suggest a more convenient method of oil preparation (compared to the traditional method), ginger oil has been prepared according to both the traditional and conventional maceration methods and the volatile oil constituents have been compared. Ginger oil was obtained in sesame oil according to both the traditional way and the conventional (maceration) methods. The volatile oil of dried ginger and both oils were obtained by hydro-distillation and analyzed by gas chromatography/mass spectroscopy. Fifty five, fifty nine and fifty one components consisting 94 %, 94 % and 98 % of the total compounds were identified in the volatile oil of ginger, traditional and conventional oils, respectively. The most dominant compounds of the traditional and conventional oils were almost similar; however they were different from ginger essential oil which has also been to possess limited amounts of anti-inflammatory components. It was concluded that ginger oil could be prepared through maceration method and used for indications mentioned in ITM.
Asakawa, Yoshinori; Tomiyama, Kenichi; Sakurai, Kazutoshi; Kawakami, Yukihiro; Yaguchi, Yoshihiro
2017-08-01
The volatile compounds obtained from the different organs of Houttuynia cordata (Saururaceae) and Litsea cubeba (Lauraceae) were analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), Headspace Solid Phase Micro Extraction-Gas Chromatography/Mass Spectrometry (HS-SPME-GC/MS), and GC/olfactometry (GC/O). The major component of all parts of H. cordata is assigned as 4-tridecanone. Each organ produces myrcene as the major monoterpenoid. The major monoterpene in the rhizomes and roots was β-pinene instead of myrcene. 1-Decanal which was responsible for the unpleasant odor of this plant, was the predominant polyketide in both leaves and stems. The presence of 1-decanal was very poor in flowers, stem collected in summer, rhizomes, and roots. GC/MS analyses were very simple in case of the crude extracts of flowers. The content of sesquiterpenoids was extremely poor. (8Z)-Heptadecene, geranial, and neral were detected as the major components in Litsea cubeba. Odor-contributing components by GC/O analysis of the ether extract of the fresh flowers of L. cubeba were neral and geranial which played an important role in sweet-lemon fragrance of the flowers. The role of a high content of (8Z)-heptadecene was still unknown but it might play a significant role in the dispersion of the volatile monoterpene hydrocarbons and aldehydes. The flower volatiles of the Japanese L. cubeba were chemically quite different from those of the Chinese same species.
Fontana, Ariel; Rodríguez, Isaac; Cela, Rafael
2018-04-20
The suitability of dispersive liquid-liquid microextraction (DLLME) and gas chromatography accurate mass spectrometry (GC-MS), based on a time-of-flight (TOF) MS analyzer and using electron ionization (EI), for the characterization of volatile and semi-volatile profiles of grape marc distillates (grappa) are evaluated. DLLME conditions are optimized with a selection of compounds, from different chemical families, present in the distillate spirit. Under final working conditions, 2.5 mL of sample and 0.5 mL of organic solvents are consumed in the sample preparation process. The absolute extraction efficiencies ranged from 30 to 100%, depending on the compound. For the same sample volume, DLLME provided higher responses than solid-phase microextraction (SPME) for most of the model compounds. The GC-EI-TOF-MS records of grappa samples were processed using a data mining non-targeted search algorithm. In this way, chromatographic peaks and accurate EI-MS spectra of sample components were linked. The identities of more than 140 of these components are proposed from comparison of their accurate spectra with those in a low resolution EI-MS database, accurate masses of most intense fragment ions of known structure, and available chromatographic retention index. The use of chromatographic and spectral data, associated to the set of components mined from different grappa samples, for multivariate analysis purposes is also illustrated in the study. Copyright © 2018 Elsevier B.V. All rights reserved.
Composition of the earth's upper mantle. II - Volatile trace elements in ultramafic xenoliths
NASA Technical Reports Server (NTRS)
Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.
1980-01-01
Radiochemical neutron activation analysis was used to determine the nine volatile elements Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn in 19 ultramafic rocks, consisting mainly of spinel and garnet lherzolites. A sheared garnet lherzolite, PHN 1611, may approximate undepleted mantle material and tends to have a higher volatile element content than the depleted mantle material represented by spinel lherzolites. Comparisons of continental basalts with PHN 1611 and of oceanic ridge basalts with spinel lherzolites show similar basalt: source material partition factors for eight of the nine volatile elements, Sb being the exception. The strong depletion of Te and Se in the mantle, relative to lithophile elements of similar volatility, suggests that 97% of the earth's S, Se and Te may be in the outer core.
Batista, Nádia Nara; Ramos, Cíntia Lacerda; Dias, Disney Ribeiro; Pinheiro, Ana Carla Marques; Schwan, Rosane Freitas
2016-02-01
Theobroma cacao seeds are the main raw material for chocolate production. During their fermentation, a succession of microorganisms are responsible for the physicochemical changes occurring in the pulp and inside the beans. The aim of this study was to investigate the effects of yeast inoculation (Saccharomyces cerevisiae UFLA CA11, Pichia kluivery CCMA0237, and Hanseniaspora uvarum CCMA0236) on the profile of the volatile compounds and microbial communities in cocoa fermentation. The resulting chocolate was also evaluated by temporal dominance of sensations (TDS) analyses. The dominant microorganisms during spontaneous fermentation were S. cerevisiae, H. uvarum, H. guilliermondii, Lactobacillus fermentum, Pediococcus sp., and Acetobacter pasteurianus. Similarly, S. cerevisiae, P. kluyveri, Candida sp., Pediococcus sp., and A. pasteurianus were the predominant microorganisms assessed by Denaturing Gradient Gel Electrophoresis (DGGE) in inoculated fermentation. Sixty-seven volatile compounds were detected and quantified by gas chromatography/mass spectrometry (GC/MS) at the end of fermentation and chocolates. The main group of volatile compound found after the inoculated and spontaneous fermentations was esters (41 and 39 %, respectively). In the chocolates, the main group was acids (73 and 44 % from the inoculated and spontaneous fermentations, respectively). The TDS analyses showed a dominance of bitter and cocoa attributes in both chocolates. However, in the inoculated chocolate, lingering fruity notes were more intense, while the chocolate produced by spontaneous fermentation was more astringent. Thus, the inoculation of yeast influenced the microbial profile, which likely affected the volatile compounds that affect sensory characteristics, resulting in chocolate with dominant bitter, cocoa, and fruity attributes.
Aroma composition of shalgam: a traditional Turkish lactic acid fermented beverage.
Tanguler, Hasan; Selli, Serkan; Sen, Kemal; Cabaroglu, Turgut; Erten, Huseyin
2017-06-01
Shalgam, a traditional red, cloudy and sour soft beverage, is produced by lactic acid fermentation of black carrot, sourdough, salt, bulgur flour, turnip and adequate water. The present study was designed to characterize the volatile compounds of shalgam obtained from different methods. The aroma compounds of shalgams produced by traditional and direct methods, and addition of Lactic acid bateria (LAB) cultures were examined. Volatile components of shalgam samples were extracted by liquid-liquid extraction technique with pentane/dichloromethane and analyzed by gas chromatography-mass spectrometry (GC-MS). Sixty aroma compounds were identified in shalgam samples including 20 terpenes, 9 esters, 9 alcohols, 5 volatile acids, 6 volatile phenols, 5 lactones, 3 naphthalenes, 2 carbonyl compounds and 1 C13-norisoprenoids. It was found that the aroma profiles of shalgams were quite similar. However, the total volatile content of the shalgam samples increased with addition of Lb. plantarum .
NASA Astrophysics Data System (ADS)
Feng, Xi; Ahn, Dong Uk
2016-10-01
Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant.
Chemically-resolved volatility measurements of organic aerosol fom different sources.
Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L
2009-07-15
A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.
Englezos, Vasileios; Rantsiou, Kalliopi; Cravero, Francesco; Torchio, Fabrizio; Giacosa, Simone; Ortiz-Julien, Anne; Gerbi, Vincenzo; Rolle, Luca; Cocolin, Luca
2018-07-01
The use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae is gaining attention in recent years due to their ability to modulate the metabolites production of enological interest. In the present study, four of the most popular planted red grape varieties (Cabernet sauvignon, Merlot, Pinot noir and Shiraz) were fermented using the aforementioned species and two different inoculation protocols (inoculation of S. cerevisiae after 24 and 48 h from the Starm. bacillaris inoculation), in order to evaluate their impact on the volatile composition and chromatic characteristics of wines. Analysis from chemical composition showed that titratable acidity and glycerol content exhibited marked differences among wines after fermentation. For volatile compounds, mixed fermented wines using an inoculation delay of 48 h led to reduction of volatile compounds (mainly esters). A shorter 24 h delay produced wines with higher values of color intensity than pure fermented wines. The differences observed between the inoculation protocols can be explained by the growth dynamics of both species during fermentation. These findings suggest that mixed fermentations posed a great potential in reducing metabolites which are considered negative for wine quality (mainly ethyl acetate and volatile fatty acids) and with an improvement of the chromatic profile of the wines. Copyright © 2018 Elsevier Ltd. All rights reserved.
Separation process using pervaporation and dephlegmation
Vane, Leland M.; Mairal, Anurag P.; Ng, Alvin; Alvarez, Franklin R.; Baker, Richard W.
2004-06-29
A process for treating liquids containing organic compounds and water. The process includes a pervaporation step in conjunction with a dephlegmation step to treat at least a portion of the permeate vapor from the pervaporation step. The process yields a membrane residue stream, a stream enriched in the more volatile component (usually the organic) as the overhead stream from the dephlegmator and a condensate stream enriched in the less volatile component (usually the water) as a bottoms stream from the dephlegmator. Any of these may be the principal product of the process. The membrane separation step may also be performed in the vapor phase, or by membrane distillation.
Effects of oil dispersants on photodegradation of pyrene in marine water.
Gong, Yanyan; Fu, Jie; O'Reilly, S E; Zhao, Dongye
2015-04-28
This work investigated effects of a popular oil dispersant (Corexit EC9500A) on UV- or sunlight-mediated photodegradation of pyrene (a model polycyclic aromatic hydrocarbon) in seawater. The presence of 18 and 180mg/L of the dispersant increased the first-order photodegradation rate by 5.5% and 16.7%, respectively, and reduced or ceased pyrene volatilization. By combining individual first-order rate laws for volatilization and photodegradation, we proposed an integrated kinetic model that can adequately predict the overall dissipation of pyrene from seawater. Mechanistic studies indicated that superoxide radicals played a predominant role in pyrene photodegradation, and the dispersant enhanced formation of superoxide radicals. 1-Hydroxypyrene was the main intermediate regardless of the dispersant, suggesting that electrons were transferred from excited pyrene to oxygen. In the presence of 18mg/L of the dispersant, the photodegradation rate increased with increasing ionic strength and temperature, but decreased with increasing HA concentration, and remained independent of solution pH. The results are important in understanding roles of oil dispersants on environmental fate of persistent oil components in natural and engineered systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Rokbeni, Nesrine; M'rabet, Yassine; Dziri, Salma; Chaabane, Hedia; Jemli, Marwa; Fernandez, Xavier; Boulila, Abdennacer
2013-12-01
The essential oils of Daucus carota L. (Apiaceae) seeds sampled from ten wild populations spread over northern Tunisia were characterized by GC-FID and GC/MS analyses. In total, 36 compounds were identified in the D. carota seed essential oils, with a predominance of sesquiterpene hydrocarbons in most samples (22.63-89.93% of the total oil composition). The main volatile compounds identified were β-bisabolene (mean content of 39.33%), sabinene (8.53%), geranyl acetate (7.12%), and elemicin (6.26%). The volatile composition varied significantly across the populations, even for oils of populations harvested in similar areas. The chemometric principal component analysis and the hierarchical clustering identified four groups, each corresponding to a composition-specific chemotype. The in vitro antimicrobial activity of the isolated essential oils was preliminarily evaluated, using the disk-diffusion method, against one Gram-positive (Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), as well as against a pathogenic yeast (Candida albicans). All tested essential oils exhibited interesting antibacterial and antifungal activities against the assayed microorganisms. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Alquézar, Berta; Volpe, Haroldo Xavier Linhares; Magnani, Rodrigo Facchini; de Miranda, Marcelo Pedreira; Santos, Mateus Almeida; Wulff, Nelson Arno; Bento, Jose Mauricio Simões; Parra, José Roberto Postali; Bouwmeester, Harro; Peña, Leandro
2017-07-17
Production of citrus, the main fruit tree crop worldwide, is severely threatened by Huanglongbing (HLB), for which as yet a cure is not available. Spread of this bacterial disease in America and Asia is intimately connected with dispersal and feeding of the insect vector Diaphorina citri, oligophagous on rutaceous host plants. Effective control of this psyllid is an important component in successful HLB management programs. Volatiles released from the non-host guava have been shown to be repellent to the psyllid and to inhibit its response to citrus odour. By analysing VOC emission from guava we identified one volatile compound, (E)-β-caryophyllene, which at certain doses exerts a repellent effect on D. citri. Non-host plant rejection mediated by (E)-β-caryophyllene is demonstrated here by using Arabidopsis over-expression and knock-out lines. For the first time, results indicate that genetically engineered Arabidopsis plants with modified emission of VOCs can alter the behaviour of D. citri. This study shows that transgenic plants with an inherent ability to release (E)-β-caryophyllene can potentially be used in new protection strategies of citrus trees against HLB.
Kuś, Piotr M; Jerković, Igor; Marijanović, Zvonimir; Kranjac, Marina; Tuberoso, Carlo I G
2018-04-01
Phacelia tanacetifolia Benth. honey (14 samples) collected in Poland was characterized by melissopalynological analysis, color determination (CIE L*a*b*C ab *h ab ° coordinates) and volatiles (VOCs) composition. VOCs were isolated by headspace solid-phase microextraction (HS-SPME, two fibers) and ultrasound-assisted solvent extraction (USE, two solvents) and analyzed by GC-MS. Principal component analysis (PCA) and hierarchical-tree clustering (HTC) were applied to show trends and form groups and to indicate the most representative unifloral samples. Six samples were pointed out with average pollen 74.9% and color parameters (L=85.1; a*=-0.8; b*=27.9; C ab *=27.9; h ab *=91.9) that were significantly correlated. High abundance of trans-linalool oxide (27.3-45.9%) that was significantly correlated with the pollen percentages, hexan-1-ol (4.4-5.7%) and lavender lactone (0.8% - 1.5%) were characteristic for their headspace. C 13 -norisoprenoids, mainly (E)-/(Z)-3-oxo-retro-α-ionol (4.7-5.4%; 6.9-9.4%) and vomifoliol (9.0-13.0%) dominated in their USE extracts. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wåler, S M
1997-10-01
Halitosis is most often caused by oral conditions. Volatile sulfur compounds (VSC), constituting the major components of oral malodor, are produced by anaerobic, gram-negative bacteria retained mainly in periodontal pockets or on the tongue dorsum. Sulfur-containing amino acids serve as substrate for these bacteria. VSC have also been found to have unfavorable effect on the tissue. The aim of this study was to examine whether normal, healthy individuals with no history of halitosis were able to produce VSC from cysteine, when applied as a mouthrinse. A further aim of the study was to investigate and compare the potential of other sulfur-containing amino acids and peptides as substrates for oral VSC production and to localize the odor-production sites. A portable sulfide monitor was used for VSC registration. Results showed that all test subjects produced high oral concentrations of VSC upon rinses with cysteine, which thus seems to be a major substrate for VSC production. The other sulfur-containing substrates had much less effect. It was found that the tongue was the major site for VSC production, and that saliva per se caused low VSC production.
Siderhurst, Matthew S; Jang, Eric B
2006-11-01
Coupled gas chromatography-electroantennogram detection (GC-EAD) analysis of volatiles from tropical almond fruit, Terminalia catappa L., revealed 22 compounds that were detected by antennae of oriental fruit fly females, Bactrocera dorsalis (Hendel). Both solid-phase microextraction (SPME) and Porapak Q were used for sampling odors in fruit headspace, with SPME collections producing larger EAD responses from a greater number of compounds. Geranyl acetate and methyl eugenol elicited the largest EAD responses. A synthetic blend containing SPME collected, EAD stimulatory compounds showed female-biased attraction in laboratory wind tunnel bioassays, but heavily male-biased trap captures in a larger olfactometer arena. A nine-component subset of compounds eliciting relatively small EAD responses (EAD minor) and consisting of equal parts ethanol, ethyl acetate, ethyl hexanoate, hexyl acetate, linalyl acetate, ethyl nonanate, nonyl acetate, ethyl cinnamate, and (E)-beta-farnesene, attracted mainly females. This EAD minor blend was as attractive to females and much less attractive to males when compared to torula yeast in field cage experiments using glass McPhail traps. Similar results were obtained with outdoor rotating olfactometer tests in which the EAD minor blend was almost completely inactive for males.
Characterization of volatiles and identification of odor-active compounds of rocket leaves.
Raffo, Antonio; Masci, Maurizio; Moneta, Elisabetta; Nicoli, Stefano; Sánchez Del Pulgar, José; Paoletti, Flavio
2018-02-01
The volatile profile of crushed rocket leaves (Eruca sativa and Diplotaxis tenuifolia) was investigated by applying Headspace Solid-Phase MicroExtraction (HS-SPME), combined with GC-MS, to an aqueous extract obtained by homogenization of rocket leaves, and stabilized by addition of CaCl 2 . A detailed picture of volatile products of the lipoxygenase pathway (mainly C6-aldehydes) and of glucosinolate hydrolysis (mainly isothiocyanates), and their dynamics of formation after tissue disruption was given. Odor-active compounds of leaves were characterized by GC-Olfactometry (GC-O) and Aroma Extract Dilution Analysis (AEDA): volatile isolates obtained by HS-SPME from an aqueous extract and by Stir-Bar Sorptive Extraction (SBSE) from an ethanolic extract were analyzed. The most potent odor-active compounds fully or tentatively identified were (Z)- and (E)-3-hexenal, (Z)-1,5-octadien-3-one, responsible for green olfactory notes, along with 4-mercaptobutyl and 4-(methylthio)butyl isothiocyanate, associated with typical rocket and radish aroma. Relatively high odor potency was observed for 1-octen-3-one, (E)-2-octenal and 1-penten-3-one. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Protopapa, S.; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, C. M.; Cook, J. C.; Cruikshank, D. P.; Schmitt, B.; Philippe, S.; Quirico, E.;
2016-01-01
On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55degN, the second dominated by nitrogen, continues south to 35 degN, and the third, com- posed again mainly of methane, reaches 20 degN. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.
NASA Astrophysics Data System (ADS)
Protopapa, S.; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, C. M.; Cook, J. C.; Cruikshank, D. P.; Schmitt, B.; Philippe, S.; Quirico, E.; Binzel, R. P.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Lunsford, A. W.; Olkin, C. B.; Parker, A.; Singer, K. N.; Stern, A.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; New Horizons Science Team
2017-05-01
On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55°N, the second dominated by nitrogen, continues south to 35°N, and the third, composed again mainly of methane, reaches 20°N. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.
Optimal directional volatile transport in retronasal olfaction
Ni, Rui; Michalski, Mark H.; Brown, Elliott; Doan, Ngoc; Zinter, Joseph; Ouellette, Nicholas T.; Shepherd, Gordon M.
2015-01-01
The ability of humans to distinguish the delicate differences in food flavors depends mostly on retronasal smell, in which food volatiles entrained into the airway at the back of the oral cavity are transported by exhaled air through the nasal cavity to stimulate the olfactory receptor neurons. Little is known whether food volatiles are preferentially carried by retronasal flow toward the nasal cavity rather than by orthonasal flow into the lung. To study the differences between retronasal and orthonasal flow, we obtained computed tomography (CT) images of the orthonasal airway from a healthy human subject, printed an experimental model using a 3D printer, and analyzed the flow field inside the airway. The results show that, during inhalation, the anatomical structure of the oropharynx creates an air curtain outside a virtual cavity connecting the oropharynx and the back of the mouth, which prevents food volatiles from being transported into the main stream toward the lung. In contrast, during exhalation, the flow preferentially sweeps through this virtual cavity and effectively enhances the entrainment of food volatiles into the main retronasal flow. This asymmetrical transport efficiency is also found to have a nonmonotonic Reynolds number dependence: The asymmetry peaks at a range of an intermediate Reynolds number close to 800, because the air curtain effect during inhalation becomes strongest in this range. This study provides the first experimental evidence, to our knowledge, for adaptations of the geometry of the human oropharynx for efficient transport of food volatiles toward the olfactory receptors in the nasal cavity. PMID:26553982
Cetin, Bülent; Ozer, Hakan; Cakir, Ahmet; Polat, Taşkin; Dursun, Atilla; Mete, Ebru; Oztürk, Erdoğan; Ekinci, Melek
2010-02-01
The objective of this study was to determine the chemical compositions of the essential oil and hexane extract isolated from the inflorescence, leaf stems, and aerial parts of Florence fennel and the antimicrobial activities of the essential oil, hexane extract, and their major component, anethole, against a large variety of foodborne microorganisms. Gas chromatography and gas chromatography-mass spectrometry analysis showed that the essential oils obtained from inflorescence, leaf stems, and whole aerial parts contained (E)-anethole (59.28-71.69%), limonene (8.30-10.73%), apiole (trace to 9.23%), beta-fenchyl acetate (3.02-4.80%), and perillene (2.16-3.29%) as the main components. Likewise, the hexane extract of the plant sample exhibited a similar chemical composition, and it contained (E)-anethole (53.00%), limonene (27.16%), gamma-terpinene (4.09%), and perillene (3.78%). However, the hexane extract also contained less volatile components such as n-hexadecanoic acid (1.62%), methyl palmitate (1.17%), and linoleic acid (1.15%). The in vitro antimicrobial assays showed that the essential oil, anethole, and hexane extract were effective against most of the foodborne pathogenic, saprophytic, probiotic, and mycotoxigenic microorganisms tested. The results of the present study revealed that (E)-anethole, the main component of Florence fennel essential oil, is responsible for the antimicrobial activity and that the essential oils as well as the hexane extract can be used as a food preservative. This study is the first report showing the antimicrobial activities of essential oil and hexane extract of Florence fennel against probiotic bacteria.
De Pasquale, Ilaria; Buchin, Solange; De Angelis, Maria; Gobbetti, Marco
2014-01-01
Pyrosequencing of the 16S rRNA targeting RNA, community-level physiological profiles made with Biolog EcoPlates, proteolysis, and volatile component (VOC) analyses were mainly used to characterize the manufacture and ripening of the pasta filata cheese Caciocavallo Pugliese. Plate counts revealed that cheese manufacture affected the microbial ecology. The results agreed with those from culture-independent approaches. As shown by urea-PAGE, reverse-phase high pressure liquid chromatography (RP-HPLC), and free-amino-acid (FAA) analyses, the extent of secondary proteolysis mainly increased after 30 to 45 days of ripening. VOCs and volatile free fatty acids (VFFA) were identified by a purge-and-trap method (PT) and solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS), respectively. Except for aldehydes, the levels of most of VOCs and VFFA mainly increased from 30 to 45 days onwards. As shown through pyrosequencing analysis, raw cows' milk was contaminated by Firmicutes (53%), Proteobacteria (39%), Bacteroidetes (7.8%), Actinobacteria (0.06%), and Fusobacteria (0.03%), with heterogeneity at the genus level. The primary starter Streptococcus thermophilus dominated the curd population. Other genera occurred at low incidence or sporadically. The microbial dynamics reflected on the overall physiological diversity. At 30 days, a microbial succession was clearly highlighted. The relative abundance of Streptococcus sp. and especially St. thermophilus decreased, while that of Lactobacillus casei, Lactobacillus sp., and especially Lactobacillus paracasei increased consistently. Despite the lower relative abundance compared to St. thermophilus, mesophilic lactobacilli were the only organisms positively correlated with the concentration of FAAs, area of hydrophilic peptide peaks, and several VOCs (e.g., alcohols, ketones, esters and all furans). This study showed that a core microbiota was naturally selected during middle ripening, which seemed to be the main factor responsible for cheese ripening. PMID:25085486
Steiner, Ulrike; Kucht, Sabine Hellwig neé; Ahimsa-Müller, Mahalia A; Grundmann, Nicola; Li, Shu-Ming; Drewke, Christel; Leistner, Eckhard
2015-04-16
Clavicipitaceous fungi producing ergot alkaloids were recently discovered to be epibiotically associated with peltate glandular trichomes of Ipomoea asarifolia and Turbina corymbosa, dicotyledonous plants of the family Convolvulaceae. Mediators of the close association between fungi and trichomes may be sesquiterpenes, main components in the volatile oil of different convolvulaceous plants. Molecular biological studies and microscopic investigations led to the observation that the trichomes do not only secrete sesquiterpenes and palmitic acid but also seem to absorb ergot alkaloids from the epibiotic fungal species of the genus Periglandula. Thus, the trichomes are likely to have a dual and key function in a metabolic dialogue between fungus and host plant.
Hydraulic Universal Display Processor System (HUDPS).
1981-11-21
emphasis on smart alphanumeric devices in Task II. Volatile and non-volatile memory components were utilized along with the Intel 8748 microprocessor...system. 1.2 TASK 11 Fault display methods for ground support personnel were investigated during Phase II with emphasis on smart alphanumeric devices...CONSIDERATIONS Methods of display fault indication for ground support personnel have been investigated with emphasis on " smart " alphanumeric devices
Szendrei, Zsofia; Averill, Anne; Alborn, Hans; Rodriguez-Saona, Cesar
2011-04-01
Studies were conducted to develop an attractant for the cranberry weevil, Anthonomus musculus, a pest of blueberry and cranberry flower buds and flowers in the northeastern United States. In previous studies, we showed that cinnamyl alcohol, the most abundant blueberry floral volatile, and the green leaf volatiles (Z)-3-hexenyl acetate and hexyl acetate, emitted from both flowers and flower buds, elicit strong antennal responses from A. musculus. Here, we found that cinnamyl alcohol did not increase capture of A. musculus adults on yellow sticky traps compared with unbaited controls; however, weevils were highly attracted to traps baited with the Anthonomus eugenii Cano aggregation pheromone, indicating that these congeners share common pheromone components. To identify the A. musculus aggregation pheromone, headspace volatiles were collected from adults feeding on blueberry or cranberry flower buds and analyzed by gas chromatography-mass spectrometry. Three male-specific compounds were identified: (Z)-2-(3,3-dimethyl-cyclohexylidene) ethanol (Z grandlure II); (Z)-(3,3-dimethylcyclohexylidene) acetaldehyde (grandlure III); and (E)-(3,3- dimethylcyclohexylidene) acetaldehyde (grandlure IV). A fourth component, (E)-3,7-dimethyl-2,6-octadien-1-ol (geraniol), was emitted in similar quantities by males and females. The emission rates of these volatiles were about 2.8, 1.8, 1.3, and 0.9 ng/adult/d, respectively. Field experiments in highbush blueberry (New Jersey) and cranberry (Massachusetts) examined the attraction of A. musculus to traps baited with the male-produced compounds and geraniol presented alone and combined with (Z)-3-hexenyl acetate and hexyl acetate, and to traps baited with the pheromones of A. eugenii and A. grandis. In both states and crops, traps baited with the A. musculus male-produced compounds attracted the highest number of adults. Addition of the green leaf volatiles did not affect A. musculus attraction to its pheromone but skewed the sex ratio of the captured adults towards females. Although the role of plant volatiles in host-plant location by A. musculus is still unclear, our studies provide the first identification of the primary A. musculus aggregation pheromone components that can be used to monitor this pest in blueberry and cranberry pest management programs.
Colville, Louise
2012-01-01
The volatile compounds released by orthodox (desiccation-tolerant) seeds during ageing can be analysed using gas chromatography–mass spectrometry (GC-MS). Comparison of three legume species (Pisum sativum, Lathyrus pratensis, and Cytisus scoparius) during artificial ageing at 60% relative humidity and 50 °C revealed variation in the seed volatile fingerprint between species, although in all species the overall volatile concentration increased with storage period, and changes could be detected prior to the onset of viability loss. The volatile compounds are proposed to derive from three main sources: alcoholic fermentation, lipid peroxidation, and Maillard reactions. Lipid peroxidation was confirmed in P. sativum seeds through analysis of malondialdehyde and 4-hydroxynonenal. Volatile production by ageing orthodox seeds was compared with that of recalcitrant (desiccation-sensitive) seeds of Quercus robur during desiccation. Many of the volatiles were common to both ageing orthodox seeds and desiccating recalcitrant seeds, with alcoholic fermentation forming the major source of volatiles. Finally, comparison was made between two methods of analysis; the first used a Tenax adsorbent to trap volatiles, whilst the second used solid phase microextraction to extract volatiles from the headspace of vials containing powdered seeds. Solid phase microextraction was found to be more sensitive, detecting a far greater number of compounds. Seed volatile analysis provides a non-invasive means of characterizing the processes involved in seed deterioration, and potentially identifying volatile marker compounds for the diagnosis of seed viability loss. PMID:23175670
NASA Astrophysics Data System (ADS)
Verma, M.; Diffenbaugh, N. S.; Hertel, T. W.; Beckman, J.
2011-12-01
In presence of bio-fuels, link between energy and agricultural commodity markets has become more complex. An increase in ethanol production to minimum 15bn gallons a year - Renewable Fuel Standard (RFS) and current technically permissible maximum 10% blending limit - Blend Wall (BW); make the link even stronger. If oil prices in future do not rise significantly from their current levels, this minimum production requirement would likely be binding. In such a scenario any fluctuation in crop production will have to be absorbed by the non-ethanol usage of the crop and would translate into crop prices adjusting to clear the markets and therefore the commodity prices will be more volatile. At high oil prices it is possible that the BW may become binding, severing the link between oil prices and commodity prices as well, potentially leading to higher price volatility. Hertel and Beckman (2010) find that, with both RFS and BW simultaneously binding, corn price volatility due to supply side shocks (which could arise from extreme climate events) could be more than 50% as large as in the absence of bio-fuel policies. So energy markets are important determinants of agricultural commodity price volatility. This proposal intends to introduce the increased supply side volatility on account of climate change and volatility, in the framework. Global warming on account of increased GHG concentrations is expected to increase the intensity and frequency of hot extremes in US (Diffenbaugh et al. 2008) and therefore affect corn yields. With supply shocks expected to increase, binding RFS and BW will exacerbate the volatility, while if they are non-binding then the price changes could be cushioned. We propose to model the impacts of climate changes and volatility on commodity prices by linking three main components - a. Projections for change in temperature and precipitation using climate model b. A statistical model to predict impacts of change in climate variable on corn yields in US c. Computable General Equilibrium economic model that uses the results of the two above as inputs, to predict commodity prices under alternative energy price scenarios We start with the high resolution projections on temperature and precipitation for US corn-belt for years 2020-2040. A modified version of statistical relationship estimated by Schlenker and Roberts, is used to translate climate variables' change into yield changes for each. Shocks are sampled from this distribution to decipher the corresponding volatility in commodity prices. All else constant, the increased supply side variability should result in increased price volatility; high oil prices however give markets an incentive to produce more than 15bn gallons ethanol a year (non-binding RFS) and part of supply fluctuation in crop production can be borne by ethanol production and impact of climate change on crop prices would be less dramatic than it would have been if the entire adjustment was to come through non-ethanol usage. So impact of climate change clearly depends on energy markets and policy decisions and results should provide insights into impact of climate change on agricultural prices under different energy market scenarios.
The impact of derivatives on Malaysian stock market
NASA Astrophysics Data System (ADS)
Malim, M. R.; Halim, F. A.; Murad, A.; Maad, H. A.; Annuar, N. F. M.
2017-09-01
The essential of derivatives has been discovered by researchers over recent decade. However, the conclusions made regarding the impact of derivatives on stock market volatility remains debatable. The main objective of this study is to examine the impact of derivatives on Malaysian stock market volatility by exploring FTSE Bursa Malaysia Kuala Lumpur Composite Index Futures (BMD FKLI) using FBM KLCI as the underlying asset. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) (1, 1) model was employed to realize the objective. The results have shown that the introduction of futures trading has decreased the volatility of Malaysian stock market. The volatility increased vigorously during the Asian financial crisis compared to the Global financial crisis. However, the role of futures as a risk transfer is agreed as it could improve the market by decreasing the volatility in the spot market.
Patel, Kirti; Ruiz, Candy; Calderon, Rosa; Marcelo, Mavel; Rojas, Rosario
2016-11-01
The volatiles were characterised by headspace solid phase micro extraction (HS-SPME), gas chromatography mass spectrometry (GC-FID/MS). A total of 127 compounds were identified with terpenes (including mono terpenes and sesquiterpenes - a total of 45 compounds), esters (31 compounds) and hydrocarbons (20 compounds) were the predominant volatile compounds. Principal component analysis (PCA) of the volatile compounds yielded 2 significant PC's, which together accounted for 90.3% of the total variance in the data set and the scatter plot generated between PC1 and PC2 successfully segregated the 50 chili pepper samples into 7 groups. Clusters of hydrocarbons, esters, terpenes, aldehyde and ketones formed the major determinants of the difference. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Messina, Valeria; Biolatto, Andrea; Sancho, Ana; Descalzo, Adriana; Grigioni, Gabriela; de Reca, Noemí Walsöe
2011-09-01
The aim of the performed work was to evaluate with an electronic nose changes in odor profile of Arauco and Arbequina varieties of extra-virgin olive oil during deep-frying. Changes in odor were analyzed using an electronic nose composed of 16 sensors. Volatile compounds were analyzed by SPME-GC-FID. Principal Component Analysis was applied for electronic results. Arauco variety showed the highest response for sensors. Statistical analysis for volatile compounds indicated a significant (P<0.001) interaction between variety and time of frying processes. Arauco variety showed the highest production of volatile compounds at 60 min of deep frying. The two varieties presented distinct patterns of volatile products, being clearly identified with the electronic nose.
Mango ginger (Curcuma amada Roxb.)--a promising spice for phytochemicals and biological activities.
Policegoudra, R S; Aradhya, S M; Singh, L
2011-09-01
Mango ginger (Curcuma amada Roxb.) is a unique spice having morphological resemblance with ginger but imparts a raw mango flavour. The main use of mango ginger rhizome is in the manufacture of pickles and culinary preparations. Ayurveda and Unani medicinal systems have given much importance to mango ginger as an appetizer, alexteric, antipyretic, aphrodisiac, diuretic, emollient, expectorant and laxative and to cure biliousness, itching, skin diseases, bronchitis, asthma, hiccough and inflammation due to injuries. The biological activities of mango ginger include antioxidant activity, antibacterial activity, antifungal activity, anti-inflammatory activity, platelet aggregation inhibitory activity, cytotoxicity, antiallergic activity, hypotriglyceridemic activity, brine-shrimp lethal activity, enterokinase inhibitory activity, CNS depressant and analgesic activity. The major chemical components include starch, phenolic acids, volatile oils, curcuminoids and terpenoids like difurocumenonol, amadannulen and amadaldehyde. This article brings to light the major active components present in C. amada along with their biological activities that may be important from the pharmacological point of view.
[Emission Characteristics of VOCs from Typical Restaurants in Beijing].
Cui, Tong; Cheng, Jing-chen; He, Wan-qing; Ren, Pei-fang; Nie, Lei; Xu, Dong-yao; Pan, Tao
2015-05-01
Using the EPA method, emission of volatile organic compounds (VOCs) , sampled from barbecue, Chinese and Western fast-food, Sichuan cuisine and Zhejiang cuisine restaurants in Beijing was investigated. VOCs concentrations and components from different cuisines were studied. The results indicated that based on the calibrated baseline ventilation volume, the VOCs emission level from barbecue was the highest, reaching 12.22 mg · m(-3), while those from fast-food of either Chinese or Western, Sichuan cuisine and Zhejiang cuisine were about 4 mg · m(-3). The components of VOCs from barbecue were different from those in the other cuisines, which were mainly propylene, 1-butene, n-butane, etc. The non-barbecue cuisines consisted of high concentration of alcohols, and Western fast-food contained relatively high proportion of aldehydes and ketones organic compounds. According to emission concentration of baseline ventilation volume, barbecue released more pollutants than the non-barbecue cuisines at the same scale. So, barbecue should be supervised and controlled with the top priority.
Multifractal Cross Wavelet Analysis
NASA Astrophysics Data System (ADS)
Jiang, Zhi-Qiang; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene
Complex systems are composed of mutually interacting components and the output values of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we propose a method of characterizing the joint multifractal nature of these long-range cross correlations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we find the empirical joint multifractality of MFXWT to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indices, and in pairs of index returns and volatilities we find an intriguing joint multifractal behavior. The tests on surrogate series also reveal that the cross correlation behavior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.
Coutinho, HDM; Matias, EFF; Santos, KKA; Tintino, SR; Souza, CES; Guedes, GMM; Santos, FAD; Costa, JGM; Falcão-Silva, VS; Siqueira-Júnior, JP
2010-01-01
This is the first on the modulation of norfloxacin antibiotic activity by the volatile compounds of an essential oil. We report the chemical composition and antibiotic modifying activity of the essential oil extracted from the leaves of Croton zehntneri Pax et Hoffm (variety estragole), using the minimal inhibitory dose method and gaseous contact. The leaves of Croton zehntneri Pax et Hoffm (Euphorbiaceae) were subjected to hydrodistillation, and the essential oil extracted was examined with respect to the chemical composition, by gas chromatography-mass spectrometry (GC/MS), and to inhibitory activity of efflux pump by gaseous contact. The main component of the essential oil of C. zehntneri was estragole (76,8%). The gaseous components of the oil enhanced the inhibition zone of norfloxacin in 39,5%. This result shows that this oil influences the antibiotic activity of norfloxacin, possibly affecting the bacterial NorA efflux system, and may be used as an adjuvant in the antibiotic therapy of multidrug resistant pathogens. PMID:21264094
Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan
Sotin, Christophe; Jaumann, R.; Buratti, B.J.; Brown, R.H.; Clark, R.N.; Soderblom, L.A.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Lemouelic, S.; Rodriguez, S.; Stephan, K.; Scholz, C.K.
2005-01-01
Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N 2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10 years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure ???30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.
Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan.
Sotin, C; Jaumann, R; Buratti, B J; Brown, R H; Clark, R N; Soderblom, L A; Baines, K H; Bellucci, G; Bibring, J-P; Capaccioni, F; Cerroni, P; Combes, M; Coradini, A; Cruikshank, D P; Drossart, P; Formisano, V; Langevin, Y; Matson, D L; McCord, T B; Nelson, R M; Nicholson, P D; Sicardy, B; LeMouelic, S; Rodriguez, S; Stephan, K; Scholz, C K
2005-06-09
Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10(7) years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure approximately 30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.
NASA Technical Reports Server (NTRS)
Anders, E.
1979-01-01
An attempt is made to show that Delano and Ringwood (1978) reached the conclusion that the siderophiles in the lunar highlands are mainly of indigenous rather than meteoric origin by stretching and chopping the evidence to fit a preconceived mold. In determining the abundance of siderophiles and volatiles in the lunar highlands, Delano and Ringwood rejected evidence supplied by pristine rocks uncontaminated by meteoric debris, on the basis that these rocks are impact melts. It is argued that there is no evidence that complete melting and slow freezing needed for settling of metal is ever attained in lunar impacts. Moreover, some of the meteorite-free rocks are clasts within, and hence older than the siderophile-rich breccias that Delano and Ringwood consider more pristine. If one uses the pristine highland rocks to determine an indigenous component, no problems with enrichment of Zn, Ge, As, Ag, Sb, and Au in the indigenous component relative to mare basalts are encountered, since the pristine rocks show no significant enrichment in these elements.
Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach
Bilia, Anna Rita; Guccione, Clizia; Isacchi, Benedetta; Righeschi, Chiara; Firenzuoli, Fabio; Bergonzi, Maria Camilla
2014-01-01
Essential oils are complex blends of a variety of volatile molecules such as terpenoids, phenol-derived aromatic components, and aliphatic components having a strong interest in pharmaceutical, sanitary, cosmetic, agricultural, and food industries. Since the middle ages, essential oils have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, and other medicinal properties such as analgesic, sedative, anti-inflammatory, spasmolytic, and locally anaesthetic remedies. In this review their nanoencapsulation in drug delivery systems has been proposed for their capability of decreasing volatility, improving the stability, water solubility, and efficacy of essential oil-based formulations, by maintenance of therapeutic efficacy. Two categories of nanocarriers can be proposed: polymeric nanoparticulate formulations, extensively studied with significant improvement of the essential oil antimicrobial activity, and lipid carriers, including liposomes, solid lipid nanoparticles, nanostructured lipid particles, and nano- and microemulsions. Furthermore, molecular complexes such as cyclodextrin inclusion complexes also represent a valid strategy to increase water solubility and stability and bioavailability and decrease volatility of essential oils. PMID:24971152
Essid, Faten; Sifi, Samira; Beltrán, Gabriel; Sánchez, Sebastián; Raïes, Aly
2016-07-01
The quality of olive oil is defined as a combination of characteristics that significantly determine its acceptance by consumers. This study was carried out to compare sensorial and chemical characteristics of sixty 'Chétoui' extra virgin olive oils (EVOOc) samples from six northern areas in Tunisia (Tebourba (EVOOT); Other regions (EVOON): Mornag, Sidi Amor, El Kef, Béjà and Jendouba). Trained panel taste detected ten sensory attributes. EVOOT and EVOON were defined by 'tomato' and 'grass/ leave notes, respectively. Twenty one volatile compounds from EVOOc were extracted and identified by Headspace Solid-Phase Microextraction followed by Gas Chromatography- Flame Ionization Detector. Principal component and cluster analysis of all studied parameters showed that EVOOT differed from EVOON. Sensory and volatile profiles of EVOOc revealed that the perception of different aromas, in monovarietal olive oil, was the result of synergic effect of oils' various components, whose composition was influenced by the geographical growing area.
Rodríguez, Ana; Peris, Josep E; Redondo, Ana; Shimada, Takehiko; Peña, Leandro
2016-12-01
We have categorized the dataset from content and emission of terpene volatiles of peel and juice in both Navelina and Pineapple sweet orange cultivars in which D-limonene was either up- (S), down-regulated (AS) or non-altered (EV; control) ("Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception"(A. Rodríguez, J.E. Peris, A. Redondo, T. Shimada, E. Costell, I. Carbonell, C. Rojas, L. Peña, (2016)) [1]). Data from volatile identification and quantification by HS-SPME and GC-MS were classified by Principal Component Analysis (PCA) individually or as chemical groups. AS juice was characterized by the higher influence of the oxygen fraction, and S juice by the major influence of ethyl esters. S juices emitted less linalool compared to AS and EV juices.
Aelenei, Petruta; Miron, Anca; Trifan, Adriana; Bujor, Alexandra; Gille, Elvira; Aprotosoaie, Ana Clara
2016-01-01
Gram-negative bacteria cause infections that are difficult to treat due to the emergence of multidrug resistance. This review summarizes the current status of the studies investigating the capacity of essential oils and their components to modulate antibiotic activity against Gram-negative bacteria. Synergistic interactions are particularly discussed with reference to possible mechanisms by which essential oil constituents interact with antibiotics. Special emphasis is given to essential oils and volatile compounds that inhibit efflux pumps, thus reversing drug resistance in Gram-negative bacteria. In addition, indifference and antagonism between essential oils/volatile compounds and conventional antibiotics have also been reported. Overall, this literature review reveals that essential oils and their purified components enhance the efficacy of antibiotics against Gram-negative bacteria, being promising candidates for the development of new effective formulations against Gram-negative bacteria. PMID:28930130
Precondensed matter - Key to the early solar system
NASA Technical Reports Server (NTRS)
Clayton, D. D.
1978-01-01
Explicit astrophysical details are developed for the hypothesis that chemical and isotopic anomalies in primitive solar-system samples reflect routine initial chemical conditions within precondensed matter. The central feature of this theory concerns the chemical state of presolar dust, which is regarded as never having been vaporized in the region where the most chemically primitive samples (carbonaceous meteorites) accumulated. It is suggested that the initial chemical state of heavy atoms during meteorite and planetary accumulation was distributed between a refractory-mineral component from high-temperature condensation and a volatile component resulting from cold matter adhering to preexisting grains. Thermal conditions in the solar nebula are considered along with the existence of supernova condensates and other thermal condensates in the interstellar dust. Fractionation into volatile and refractory elements is idealized in terms of four distinct interstellar components, and the fractionated precondensed matter is described.
NASA Astrophysics Data System (ADS)
Fan, Yan; Yin, Li'ang; Xue, Yong; Li, Zhaojie; Hou, Hu; Xue, Changhu
2017-04-01
Shrimp paste is a type of condiments with high nutritional value. However, the flavors of shrimp paste, particularly the non-uniformity flavors, have limited its application in food processing. In order to identify the characteristic flavor compounds in Chinese traditional shrimp pastes, five kinds of typical commercial products were evaluated in this study. The differences in the volatile composition of the five products were investigated. Solid phase micro-extraction method was employed to extract the volatile compounds. GC-MS and electronic nose were applied to identify the compounds, and the data were analyzed using principal component analysis (PCA). A total of 62 volatile compounds were identified, including 8 alcohols, 7 aldehydes, 3 ketones, 7 ethers, 7 acids, 3 esters, 6 hydrocarbons, 12 pyrazines, 2 phenols, and 7 other compounds. The typical volatile compounds contributing to the flavor of shrimp paste were found as follows: dimethyl disulfide, dimethyl tetrasulfide, dimethyl trisulfide, 2, 3, 5-trimethyl-6-ethyl pyrazine, ethyl-2, 5-dimethyl-pyrazine, phenol and indole. Propanoic acid, butanoic acid, furans, and 2-hydroxy-3-pentanone caused unpleasant odors, such as pungent and rancid odors. Principal component analysis showed that the content of volatile compounds varied depending on the processing conditions and shrimp species. These results indicated that the combinations of multiple analysis and identification methods could make up the limitations of a single method, enhance the accuracy of identification, and provide useful information for sensory research and product development.
Volatile compounds of Aspergillus strains with different abilities to produce ochratoxin A.
Jeleń, Henryk H; Grabarkiewicz-Szczesna, Jadwiga
2005-03-09
Volatile compounds emitted by Aspergillus strains having different abilities to produce ochratoxin A were investigated. Thirteen strains of Aspergillus ochraceus, three belonging to the A. ochraceus group, and eight other species of Aspergillus were examined for their abilities to produce volatile compounds and ochratoxin A on a wheat grain medium. The profiles of volatile compounds, analyzed using SPME, in all A. ochraceus strains, regardless of their toxeginicity, were similar and comprised mainly of 1-octen-3-ol, 3-octanone, 3-octanol, 3-methyl-1-butanol, 1-octene, and limonene. The prevailing compound was always 1-octen-3-ol. Mellein, which forms part of the ochratoxin A molecule, was found in both toxigenic and nontoxigenic strains. Volatile compounds produced by other Aspergillus strains were similar to those of A. ochraceus. Incubation temperatures (20, 24, and 27 degrees C) and water content in the medium (20, 30, and 40%) influenced both volatile compounds formation and ochratoxin A biosynthesis efficiency, although conditions providing the maximum amount of volatiles were different from those providing the maximum amount of ochratoxin A. The pattern of volatiles produced by toxigenic A. ochraceus strains does not facilitate their differentiation from nontoxigenic strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchholz, B A; Mueller, C J; Garbak, J.
2001-08-02
Accelerator mass spectrometry (AMS) is an isotope-ratio measurement technique developed in the late 1970s for tracing long-lived radioisotopes (e.g., {sup 14}C half life = 5760 y). The technique counts individual nuclei rather than waiting for their radioactive decay, allowing measurement of more than 100 low-level {sup 14}C samples per day (Vogel et al, 1995). The LLNL AMS system is shown in Fig.1. The contemporary quantity of {sup 14}C in living things ({sup 14}C/C = 1.2 x 10{sup -12} or 110 fmol {sup 14}C/ g C) is highly elevated compared to the quantity of {sup 14}C in petroleum-derived products. This isotopicmore » elevation is sufficient to trace the fate of bio-derived fuel components in the emissions of an engine without the use of radioactive materials. If synthesis of a fuel component from biologically-derived source material is not feasible, another approach is to purchase {sup 14}C-labeled material (e.g., dibutyl maleate (DBM)) and dilute it with petroleum-derived material to yield a contemporary level of {sup 14}C. In each case, the virtual absence of {sup 14}C in petroleum based fuels gives a very low {sup 14}C background that makes this approach to tracing fuel components practical. Regulatory pressure to significantly reduce the particulate emissions from diesel engines is driving research into understanding mechanisms of soot formation. If mechanisms are understood, then combustion modeling can be used to evaluate possible changes in fuel formulation and suggest possible fuel components that can improve combustion and reduce PM emissions. The combustion paradigm assumes that large molecules break down into small components and then build up again during soot formation. AMS allows us to label specific fuel components, including oxygenates, trace the carbon atoms, and test this combustion modeling paradigm. Volatile and non-volatile organic fractions (VOF, NVOF) in the PM can be further separated. The VOF of the PM can be oxidized with catalysts in the exhaust stream to further decrease PM. The effectiveness of exhaust stream catalysts to oxidize products from tracer fuel components can be monitored through AMS measurement of carbon in PM. The objects of this report are: (1) Determine contribution of diesel fuel components and oxygenates to soot formation; (2) Separate volatile and non-volatile fractions of soot; (3) Test combustion paradigm that all carbon and oxygen in fuel is equal; and (4) Produce data to validate combustion modeling.« less
NASA Astrophysics Data System (ADS)
Hofstra, A. H.; Rusk, B. G.; Manning, A. H.; Hunt, A. G.; Landis, G. P.
2017-12-01
Recent studies suggest that volatiles released from mafic intrusions may be important sources of heat, sulfur, and metals in porphyry Cu-Mo-Au and epithermal Au-Ag deposits associated with intermediate to silicic stocks. The huge Cu-Mo porphyry and Main Stage polymetallic vein deposits at Butte are well suited to test this hypothesis because there is no geologic or isotopic evidence of basaltic intrusions in the mine or drill holes. The Butte porphyry-vein system is associated with quartz monzonite stocks and dikes within the southwest part of the Late Cretaceous Boulder batholith. The Boulder batholith was emplaced into Mesoproterozoic to Mesozoic sedimentary rocks and Late Cretaceous volcanic rocks. The Boulder batholith and Butte intrusions have Sri and eNd values indicative of crustal contamination. Eu and Ce anomalies in zircon from Butte intrusions provide evidence of oxidation due to magma degassing. To ascertain the source of volatiles in this system, 11 samples from the Cu-Mo porphyry and 16 from Main Stage veins were selected. The isotopic composition of Ar, Ne, and He extracted from fluid inclusions in quartz, magnetite, pyrite, chalcopyrite, sphalerite, galena, enargite, and covellite were determined. Helium isotopes exceed blank levels in all samples and Ne and Ar in some samples. On a 38Ar/36Ar vs. 40Ar/36Ar diagram, data plot near air. On a 20Ne/22Ne vs. 21Ne/22Ne diagram, data extend from air along the trajectories of OIB and MORB. On a 36Ar/4He vs. 3He/4He RA diagram, data extend from crust toward the air-mantle mixing line. The maximum 3He/4He RA values in the Cu-Mo porphyry (2.86) and Main Stage veins (3.46) are from pyrite and these values correspond to 36 and 43 % mantle helium. The Ne and He results show that fluid inclusions contain volatiles discharged from mantle magmas and that these volatiles were diluted by groundwater containing He derived from country rocks. Despite the lack of mafic intrusions in the Butte magmatic center, noble gas isotopes show that volatiles derived from concealed mafic intrusions were present in the hydrothermal system. Discharge of hot volatiles from mafic magma chambers at depth may be required to prevent the overlying magma column from quenching and, thus, allow for the repeated buildup and release of sulfur- and metal-bearing fluids from apical intrusions.
Victório, Cristiane Pimentel; Moreira, Claudio B; Souza, Marcelo da Costa; Sato, Alice; Arruda, Rosani do Carmo de Oliveira
2011-07-01
In this study, we investigated the leaf anatomy and the composition of volatiles in Myrrhinium atropurpureum var. atropurpureum endemic to Rio de Janeiro restingas. Particularly, leaf secretory structures were described using light microscopy, and histochemical tests were performed from fresh leaves to localize the secondary metabolites. To observe secretory cavities, fixed leaf samples were free-hand sectioned. To evaluate lipophilic compounds and terpenoids the following reagents were employed: Sudans III and IV, Red oil O and Nile blue. Leaf volatiles were characterized by gas chromatography after hydrodistillation (HD) or simultaneous distillation-extraction (SDE). Leaf analysis showed several cavities in mesophyll that are the main sites of lipophilic and terpenoid production. Monoterpenes, which represented more than 80% of the major volatiles, were characterized mainly by alpha- and beta-pinene and 1,8-cineole. In order to provide tools for M. atropurpureum identification, the following distinguishing characteristics were revealed by the following data: 1) adaxial face clear and densely punctuated by the presence of round or ellipsoidal secretory cavities randomly distributed in the mesophyll; 2) the presence of cells overlying the upper neck cells of secretory cavities; 3) the presence of numerous paracytic stomata distributed on the abaxial leaf surface, but absent in vein regions and leaf margin; and 4) non-glandular trichomes on both leaf surfaces. Our study of the compounds produced by the secretory cavities of M. atropurpureum led us to conclude that volatile terpenoid class are the main secretory compounds and that they consist of a high concentration of monoterpenes, which may indicate the phytotherapeutic importance of this plant.
Jiang, Bao; Zhang, Zhenwen
2010-12-10
In order to elucidate the aroma components of wine produced in the Loess Plateau region of China, volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the new ecological region were investigated for the first time in this research. Among the volatile compounds analyzed by HS-SPME with GC-MS, a total of 45, 44 and 42 volatile compounds were identified and quantified in Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. In the volatiles detected, alcohols formed the most abundant group in the aroma compounds of the three wines, followed by esters and fatty acids. According to their odor active values (OAVs), 18 volatile compounds were always present in the three wines at concentrations higher than their threshold values, but ethyl octanoate, ethyl hexanoate, and isoamyl acetate were found to jointly contribute to 92.9%, 93.3%, and 98.7%, of the global aroma of Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. These odorants are associated with "fruity'' and ''ripe fruit'' odor descriptors.
Khalil, Mohammed N A; Fekry, Mostafa I; Farag, Mohamed A
2017-02-15
Dates (Phoenix dactylifera L.) are distributed worldwide as major food complement providing a source of sugars and dietary fiber as well as macro- and micronutrients. Although phytochemical analyses of date fruit non-volatile metabolites have been reported, much less is known about the aroma given off by the fruit, which is critical for dissecting sensory properties and quality traits. Volatile constituents from 13 date varieties grown in Egypt were profiled using SPME-GCMS coupled to multivariate data analysis to explore date fruit aroma composition and investigate potential future uses by food industry. A total of 89 volatiles were identified where lipid-derived volatiles and phenylpropanoid derivatives were the major components of date fruit aroma. Multivariate data analyses revealed that 2,3-butanediol, hexanal, hexanol and cinnamaldehyde contributed the most to classification of different varieties. This study provides the most complete map of volatiles in Egyptian date fruit, with Siwi and Sheshi varieties exhibiting the most distinct aroma among studied date varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Cuihua; Jiang, Dong; Cheng, Yunjiang; Deng, Xiuxin; Chen, Feng; Fang, Liu; Ma, Zhaocheng; Xu, Juan
2013-01-01
Volatile profiles yielded from gas chromatography-mass spectrometry (GC-MS) analysis provide abundant information not only for metabolism-related research, but also for chemotaxonomy. To study the chemotaxonomy of Mangshanyegan, its volatile profiles of fruit and leaf and those of 29 other genotypes of Citrus, Poncirus, and Fortunella were subjected to phylogenetic analyses. Results showed that 145 identified (including 64 tentatively identified) and 15 unidentified volatile compounds were detected from their peel oils. The phylogenetic analysis of peel oils based on hierarchical cluster analysis (HCA) demonstrated a good agreement with the Swingle taxonomy system, in which the three genera of Citrus, Poncirus, and Fortunella were almost completely separated. As to Citrus, HCA indicated that Citrophorum, Cephalocitrus, and Sinocitrus fell into three subgroups, respectively. Also, it revealed that Mangshanyegan contain volatile compounds similar to those from pummelo, though it is genetically believed to be a mandarin. These results were further supported by the principal component analysis of the peel oils and the HCA results of volatile profiles of leaves in the study. PMID:23516475
USDA-ARS?s Scientific Manuscript database
The use of swine manure as a nutrient source for pastures is increasingly common in Brazil, due to its low cost. However, this practice can cause nitrogen (N) losses in agricultural soil, where ammonia volatilization may be the main drawback, generating undesirable economic and environmental consequ...
[Effects of azadirachtin on rice plant volatiles induced by Nilaparvata lugens].
Lu, Hai-Yan; Liu, Fang; Zhu, Shu-De; Zhang, Qing
2010-01-01
With the method of solid phase microextraction (SPME), a total of twenty-five volatiles were collected from rice plants induced by Nilaparvata lugens, and after applying azadirachtin fourteen of them were qualitatively identified by gas chromatography coupled by mass spectrometry (GC-MS), mainly of nine kinds of sesquiterpenes. Comparing with healthy rice plants, the plants attacked by N. lugens had more kinds of volatiles, including limonene, linalool, methyl salicylate, unknown 6, unknown 7, zingiberene, nerolidol, and hexadecane. Applying azadirachtin did not result in the production of new kind volatiles, but affected the relative concentrations of the volatiles induced by N. lugens. The proportions of limonene, linalool, methyl salicylate, unknown 6, zingiberene, and hexadecane changed obviously with the concentration of applied azadirachtin, while those of methyl salicylate, unknown 6, unknown 7, zingiberene, and nerolidol changed significantly with the days after azadirachtin application. Azadirachtin concentration, rice variety, and N. lugens density had significant interactions on the relative concentrations of all test N. lugens-induced volatiles.
Cho, Gyeongjun; Kim, Junheon; Park, Chung Gyoo; Nislow, Corey; Weller, David M; Kwak, Youn-Sig
2017-07-01
Streptomyces spp. have the ability to produce a wide variety of secondary metabolites that interact with the environment. This study aimed to discover antifungal volatiles from the genus Streptomyces and to determine the mechanisms of inhibition. Volatiles identified from Streptomyces spp. included three major terpenes, geosmin, caryolan-1-ol and an unknown sesquiterpene. antiSMASH and KEGG predicted that the volatile terpene synthase gene clusters occur in the Streptomyces genome. Growth inhibition was observed when fungi were exposed to the volatiles. Biological activity of caryolan-1-ol has previously not been investigated. Fungal growth was inhibited in a dose-dependent manner by a mixture of the main volatiles, caryolan-1-ol and the unknown sesquiterpene, from Streptomyces sp. S4-7. Furthermore, synthesized caryolan-1-ol showed similar antifungal activity. Results of chemical-genomics profiling assays showed that caryolan-1-ol affected the endomembrane system by disrupting sphingolipid synthesis and normal vesicle trafficking in the fungi. © 2017 The Authors.
Monggoot, Sakon; Kulsing, Chadin; Wong, Yong Foo; Pripdeevech, Patcharee
2018-06-01
Incubation with microbial culture supernatants improved essential oil yield from Aquilaria subintegra woodchips. The harvested woodchips were incubated with de man, rogosa and sharpe (MRS) agar, yeast mold (YM) agar medium and six different microbial culture supernatants obtained from Lactobacillus bulgaricus , L. acidophilus , Streptococcus thermophilus , Lactococcus lactis , Saccharomyces carlsbergensis and S. cerevisiae prior to hydrodistillation. Incubation with lactic acid bacteria supernatants provided higher yield of agarwood oil (0.45% w/w) than that obtained from yeast (0.25% w/w), agar media (0.23% w/w) and water (0.22% w/w). The composition of agarwood oil from all media and microbial supernatant incubations was investigated by using gas chromatography-mass spectrometry. Overall, three major volatile profiles were obtained, which corresponded to water soaking (control), as well as, both YM and MRS media, lactic acid bacteria, and yeast supernatant incubations. Sesquiterpenes and their oxygenated derivatives were key components of agarwood oil. Fifty-two volatile components were tentatively identified in all samples. Beta-agarofuran, α-eudesmol, karanone, α-agarofuran and agarospirol were major components present in most of the incubated samples, while S. cerevisiae -incubated A. subintegra provided higher amount of phenyl acetaldehyde. Microbial culture supernatant incubation numerically provided the highest yield of agarwood oil compared to water soaking traditional method, possibly resulting from activity of extracellular enzymes produced by the microbes. Incubation of agarwood with lactic acid bacteria supernatant significantly enhanced oil yields without changing volatile profile/composition of agarwood essential oil, thus this is a promising method for future use.
Herbivore-induced blueberry volatiles and intra-plant signaling.
Rodriguez-Saona, Cesar R
2011-12-18
Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and analyzed.
Gong, Wei-Wei; Zhang, Yi-Sheng; He, Ling-Yan; Luan, Sheng-Ji
2011-02-01
In order to obtain ammonia volatilization flux and volatilization loss rate in the vegetable field and investigate their relationship with environmental factors, an on-line monitoring system was used to measure the ammonia volatilization in the vegetable (Brassica rapa L. and lettuce) field after urea application during January to September, 2009. The system included a wind tunnel system, a gas collector and an online analyzer system with ion chromatography. The time resolution of measurement was 15 min. The recovery of the system was (92.6 +/- 3.4)%; the accumulated ammonia volatilization within 15 d continuous sampling after fertilization was regarded as the total loss. The accumulated ammonia volatilization of 12 d continuous sampling after fertilization accounted for (85.4 +/- 5.2)% of the total volatilization. The ammonia volatilization loss of broadcasting basal dressing and top dressing for Brassica rapa L. were 23.6% and 21.3%, respectively. The ammonia volatilization loss of holing basal dressing and top dressing for lettuce were 17.6% and 24.0%, respectively. The ammonia volatilization in the vegetable field mostly occurred in the first 2-3 weeks after fertilization. The ammonia volatilization flux had significant positive correlation with the nitrogen application rate, while the ammonia volatilization loss rate had negative correlation with the nitrogen application rate. The ammonia volatilization flux was positively correlated with the soil temperature (r = 0.041, p < 0.05) and the air temperature (r = 0.049, p < 0.01), while not significantly associated with the air humidity and the soil moisture. Temperature was found to be a main factor influencing the ammonia volatilization in the vegetable field.
Cha, Dong H; Yee, Wee L; Goughnour, Robert B; Sim, Sheina B; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E
2012-03-01
The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonella also infests two species of hawthorns in the western USA as major hosts: the native black hawthorn (C. douglasii) and the introduced ornamental English hawthorn, C. monogyna. Apple and downy hawthorn-origin flies in the eastern USA use volatile blends emitted from the surface of their respective ripening fruit to find and discriminate among host trees. To test whether the same is true for western flies, we used coupled gas chromatography and electroantennographic detection (GC-EAD) and developed a 7-component apple fruit blend for western apple-origin flies, an 8-component black hawthorn fruit blend for flies infesting C. douglasii, and a 9-component ornamental hawthorn blend for flies from C. monogyna. Crataegus douglasii and C. monogyna-origin flies showed similar levels of upwind directed flight to their respective natal synthetic fruit blends in flight tunnel assays compared to whole fruit adsorbent extracts, indicating that the blends contain all the behaviorally relevant fruit volatiles to induce maximal response levels. The black and ornamental hawthorn blends shared four compounds in common including 3-methylbutan-1-ol, which appears to be a key volatile for R. pomonella populations in the eastern, southern, and western USA that show a preference for fruit from different Crataegus species. However, the blends also differed from one another and from domesticated apple in several respects that make it possible that western R. pomonella flies behaviorally discriminate among fruit volatiles and form ecologically differentiated host races, as is the case for eastern apple and hawthorn flies.
NASA Astrophysics Data System (ADS)
D'Ambro, Emma L.; Lee, Ben H.; Liu, Jiumeng; Shilling, John E.; Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Schobesberger, Siegfried; Zaveri, Rahul A.; Mohr, Claudia; Lutz, Anna; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Rivera-Rios, Jean C.; Keutsch, Frank N.; Thornton, Joel A.
2017-01-01
We present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C5 compounds were major components (˜ 50 %) of SOA. The SOA composition and effective volatility evolved both as a function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, > 30 % of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.
The Salt Lake City EPA Environmental
Monitoring for Public Access and Community Tracking (EMPACT) project,
initiated in October 1999, is designed to evaluate the usefulness of a
newly developed real-time continuous monitor (RAMS) for total
(non-volatil...
Flash drive memory apparatus and method
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor)
2010-01-01
A memory apparatus includes a non-volatile computer memory, a USB mass storage controller connected to the non-volatile computer memory, the USB mass storage controller including a daisy chain component, a male USB interface connected to the USB mass storage controller, and at least one other interface for a memory device, other than a USB interface, the at least one other interface being connected to the USB mass storage controller.
NASA Astrophysics Data System (ADS)
Pathak, Binita; Basu, Saptarshi
2016-03-01
Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70 % by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.
NASA Astrophysics Data System (ADS)
Cai, C.; Zhao, C.
2017-12-01
Quantifying the gas/particle partitioning of organic compounds is of great significance to the understanding of atmospheric aerosol indirect effect. Accurate determination of the hygroscopicities and vapor pressures of semi-volatile organic compounds (SVOC) is of crucial importance in studying their partitioning behavior into atmospheric aerosol, as current published vapor pressures results of compounds of interest (usually with vapor pressures smaller than 0.01 Pa) vary by several orders of magnitude. On the other hand, influences on SVOCs evaporation from participation of inorganic species remains ambiguous. In this study we present quantitative investigation of hygroscopicities and volatilities of single aerosol droplets in an aerosol optical tweezers. The trapped droplet (3-7 µm radii) in the aerosol optical tweezers acts as a micro cavity, which stimulates the cavity enhanced Raman spectroscopy (CERS) signal. Size and composition of the particle are calculated from Mie fit to the positions of the "whispering gallery modes" in the CERS fingerprint. Hygroscopic behaviors and SVOC pure component vapor pressure can then be extracted from the correlation between the changing droplet radius and solute concentration (derived from experimentally determined RI real part). We will further present the influences between mass transfer on the gas-particle interface and within the droplet.
Chen, Min-Hung; Huang, Tzou-Chi
2016-12-17
As local varieties of citrus fruit in Taiwan, Ponkan ( Citrus reticulata Blanco), Tankan ( C. tankan Hayata), and Murcott ( C. reticulate × C. sinensis ) face substantial competition on the market. In this study, we used carbon dioxide supercritical technology to extract oleoresin from the peels of the three citrus varieties, adding alcohol as a solvent assistant to enhance the extraction rate. The supercritical fluid extraction was fractionated with lower terpene compounds in order to improve the oxygenated amounts of the volatile resins. The contents of oleoresin from the three varieties of citrus peels were then analyzed with GC/MS in order to identify 33 volatile compounds. In addition, the analysis results indicated that the non-volatile oleoresin extracted from the samples contains polymethoxyflavones (86.2~259.5 mg/g), limonoids (111.7~406.2 mg/g), and phytosterols (686.1~1316.4 μg/g). The DPPH (1,1-Diphenyl-2-picrylhydrazyl), ABTS [2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] scavenging and inhibition of lipid oxidation, which test the oleoresin from the three kinds of citrus, exhibited significant antioxidant capacity. The component polymethoxyflavones contributed the greatest share of the overall antioxidant capacity, while the limonoid and phytosterol components effectively coordinated with its effects.
Effect of milk on the deodorization of malodorous breath after garlic ingestion.
Hansanugrum, Areerat; Barringer, Sheryl A
2010-08-01
The effect of milk and milk components on the deodorization of diallyl disulfide (DADS), allyl methyl disulfide (AMDS), allyl mercaptan (AM), allyl methyl sulfide (AMS), and methyl mercaptan (MM) in the headspace of garlic as well as in the mouth- and nose-space after garlic ingestion was investigated using selected ion flow tube-mass spectrometry (SIFT-MS). Fat-free and whole milk significantly reduced the head-, mouth-, and nose-space concentrations of all volatiles. Water was the major component in milk responsible for the deodorization of volatiles. Due to its higher fat content, whole milk was more effective than fat-free milk in the deodorization of the more hydrophobic volatiles diallyl disulfide and allyl methyl disulfide. Milk was more effective than water and 10% sodium caseinate in the deodorization of allyl methyl sulfide, a persistent garlic odor, in the mouth after garlic ingestion. Addition of milk to garlic before ingestion had a higher deodorizing effect on the volatiles in the mouth than drinking milk after consuming garlic. Practical Application: Ingesting beverages or foods with high water and/or fat content such as milk may help reduce the malodorous odor in breath after garlic ingestion and mask the garlic flavor during eating. To enhance the deodorizing effect, deodorant foods should be mixed with garlic before ingestion.
Pang, Xueli; Cao, Jianmin; Wang, Dabin; Qiu, Jun; Kong, Fanyu
2017-05-24
For the characterization of chemical components contributing to the aroma of ginger, which could benefit the development of deep-processed ginger products, volatile extracts were isolated by a combination of direct solvent extraction-solvent-assisted flavor evaporation and static headspace analysis. Aroma-impact components were identified by gas chromatography-olfactometry-mass spectrometry, and the most potent odorants were further screened by aroma extract dilution analysis (AEDA) and static headspace dilution analysis (SHDA). The AEDA results revealed that geranial, eucalyptol, β-linalool, and bornyl acetate were the most potent odorants, exhibiting the highest flavor dilution factor (FD factor) of 2187. SHDA indicated that the predominant headspace odorants were α-pinene and eucalyptol. In addition, odorants exhibiting a high FD factor in SHDA were estimated to be potent aroma contributors in AEDA. The predominant odorants were found to be monoterpenes and sesquiterpenes, as along with their oxygenated derivatives, providing minty, lemon-like, herbal, and woody aromas. On the other hand, three highly volatile compounds detected by SHDA were not detected by AEDA, whereas 34 high-polarity, low-volatility compounds were identified only by AEDA, demonstrating the complementary natures of SHDA and AEDA and the necessity of utilizing both techniques to accurately characterize the aroma of ginger.
Calibration of an electronic nose for poultry farm
NASA Astrophysics Data System (ADS)
Abdullah, A. H.; Shukor, S. A.; Kamis, M. S.; Shakaff, A. Y. M.; Zakaria, A.; Rahim, N. A.; Mamduh, S. M.; Kamarudin, K.; Saad, F. S. A.; Masnan, M. J.; Mustafa, H.
2017-03-01
Malodour from the poultry farms could cause air pollution and therefore potentially dangerous to humans' and animals' health. This issue also poses sustainability risk to the poultry industries due to objections from local community. The aim of this paper is to develop and calibrate a cost effective and efficient electronic nose for poultry farm air monitoring. The instrument main components include sensor chamber, array of specific sensors, microcontroller, signal conditioning circuits and wireless sensor networks. The instrument was calibrated to allow classification of different concentrations of main volatile compounds in the poultry farm malodour. The outcome of the process will also confirm the device's reliability prior to being used for poultry farm malodour assessment. The Multivariate Analysis (HCA and KNN) and Artificial Neural Network (ANN) pattern recognition technique was used to process the acquired data. The results show that the instrument is able to calibrate the samples using ANN classification model with high accuracy. The finding verifies the instrument's performance to be used as an effective poultry farm malodour monitoring.
Fernandes-Silva, Caroline C; Lima, Carolina A; Negri, Giuseppina; Salatino, Maria L F; Salatino, Antonio; Mayworm, Marco A S
2015-12-01
Propolis is a resinous material produced by honeybees, containing mainly beeswax and plant material. Despite the wide spectrum of biological activity of propolis, to our knowledge no studies have been carried out about phytotoxic properties of Brazilian propolis and its constituents. The aims of this study were to analyze the chemical composition and to evaluate the phytotoxic activity of the volatile fraction of a sample of Brazilian green propolis. Main constituents are the phenylpropanoid 3-prenylcinnamic acid allyl ester (26.3%) and the sesquiterpene spathulenol (23.4%). Several other sesquiterpenes and phenylpropanoids, in addition to linalool and α-terpineol (monoterpenes), were also detected. The activity of solutions of the volatile fraction at 1.0, 0.5 and 0.1% was tested on lettuce seeds and seedlings. The solution at 1% inhibited completely the seed germination and solutions at 0.1 and 0.5% reduced the germination rate index. The solution at 0.5% reduced the growth of the hypocotyl-radicle axis and the development of the cotyledon leaf. The chemical composition of the volatile fraction of this Brazilian green propolis is different from those previously described, and these results may contribute to a better understanding about the chemical variations in propolis. The volatile fraction of Brazilian green propolis influences both germination of seed lettuce and the growth of its seedlings, showing an phytotoxic potential. © 2014 Society of Chemical Industry.
Prades, Alexia; Assa, Rebecca Rachel Ablan; Dornier, Manuel; Pain, Jean-Pierre; Boulanger, Renaud
2012-09-01
Coconut (Cocos nucifera L.) water is a refreshing tropical drink whose international market has recently been growing. However, little is yet known about its physicochemical composition, particularly its aroma. This study set out to characterise the volatile profile of water from five coconut varieties. Aroma compounds were characterised by headspace solid phase microextraction gas chromatography (HS-SPME-GC) analysis. An experimental design was established to optimise SPME conditions, leading to an equilibration time of 10 min followed by an extraction time of 60 min at 50 °C. Accordingly, immature coconut water from WAT (West African Tall), PB121 (MYD × WAT Hybrid), MYD (Malayan Yellow Dwarf), EGD (Equatorial Guinea Green Dwarf) and THD (Thailand Aromatic Green Dwarf) palms was analysed and described. Ketones were mainly present in the Tall and Hybrid varieties, whereas aldehydes were most abundant in the Dwarf palms. Tall coconut water was characterised by a high lactone content. THD exhibited a high ethyl octanoate level. The cluster analysis of the volatile fraction from the five coconut cultivars was found to be related to their genetic classification. The volatile compounds of immature coconut water from five varieties were characterised for the first time. Volatile profile analysis could be a useful tool for the selection of Dwarf coconut varieties, which are mainly consumed as a beverage. Copyright © 2012 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Zebelo, S.; Gnavi, G.; Bertea, C.; Bossi, S.; Andrea, O.; Cordero, C.; Rubiolo, P.; Bicchi, C.; Maffei, M.
2011-12-01
Secondary plant metabolites play an important role in insect plant interactions. The Lamiaceae family, especially Mentha species, accumulate secondary plant metabolites in their glandular trichomes, mainly mono and sesquiterpenes. Here we show that mint plants respond to herbivory by changing the quality and quantity of leaf secondary plant metabolite components. The volatiles from herbivore damaged, mechanical damage and healthy plant were collected by HS-SPME and analyzed by GC-MS. Plants with the same treatment were kept for genomic analysis. Total RNA was extracted from the above specified treatments. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran and the other major monoterpene (+)-pulegone emitted by healthy and mechanically damaged plants. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase. In addition we analysed the VOC composition of C. herbacea frass from insects feeding on Mentha aquatica. VOCs were sampled by HS-SPME and analyzed by GCxGC-qMS, and the results compared through quantitative comparative analysis of 2D chromatographic data. Most terpenoids from M. aquatica were completely catabolized by C. herbacea and were absent in the frass volatile fraction. On the other hand, the monoterpene 1,8-cineole was oxidized and frass yielded several new hydroxy-1,8-cineoles, among which 2α-OH-, 3α-OH-, 3β-OH- and 9-OH-1,8-cineole. The role of VOC emitted during herbivory and frass excretion on secondary organic aerosol formation is discussed.
Taste and aroma of fresh and stored mandarins.
Tietel, Zipora; Plotto, Anne; Fallik, Elazar; Lewinsohn, Efraim; Porat, Ron
2011-01-15
During the last decade there has been a continuous rise in consumption of fresh easy-to-peel mandarins. However, mandarins are much more perishable than other citrus fruit, mainly due to rapid deterioration in sensory acceptability after harvest. In the current review we discuss the biochemical components involved in forming the unique flavor of mandarins, and how postharvest storage operations influence taste and aroma and consequently consumer sensory acceptability. What we perceive as mandarin flavor is actually the combination of basic taste, aroma and mouth-feel. The taste of mandarins is principally governed by the levels of sugars and acids in the juice sacs and the relative ratios among them, whereas the aroma of mandarins is derived from a mixture of different aroma volatiles, including alcohols, aldehydes, ketones, terpenes/hydrocarbons and esters. During postharvest storage and marketing there is a gradual decrease in mandarin sensory acceptability, which has been attributed to decreases in acidity and typical mandarin flavor, paralleling an accumulation of off-flavor. Biochemical analysis of volatile and non-volatile constituents in mandarin juice demonstrated that these changes in sensory acceptability were concomitant with decreases in acidity and content of terpenes and aldehydes, which provide green, piney and citrus aroma on the one hand, and increases in ethanol fermentation metabolism products and esters on the other, which are likely to cause 'overripe' and off-flavors. Overall, we demonstrate the vast importance of the genetic background, maturity stage at harvest, commercial postharvest operation treatments, including curing, degreening and waxing, and storage duration on mandarin sensory quality. Copyright © 2010 Society of Chemical Industry.
Wu, Yan; Kang, Yun; Zhang, Liqiu; Qu, Dan; Cheng, Xiang; Feng, Li
2018-03-01
In this study, direct contact membrane distillation (DCMD) was used for treating fermentation wastewater with high organic concentrations. DCMD performance characteristics including permeate flux, permeate water quality as well as membrane fouling were investigated systematically. Experimental results showed that, after 12hr DCMD, the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis, with the permeate flux decreasing from the initial 8.7L/m 2 /hr to the final 4.3L/m 2 /hr due to membrane fouling; the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178mg/L, which is suitable for reutilization. Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater, organic rejection of over 95% was achieved in wastewater. GC-MS results suggested that the fermentation wastewater contained 128 kinds of organics, in which 14 organics dominated. After 12hr DCMD, not only volatile organics including trimethyl pyrazine, 2-acetyl pyrrole, phenethyl alcohol and phenylacetic acid, but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting. FT-IR and SEM-EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca, Mg, and amine, carboxylic acid and aromatic groups. The fouled membrane could be recovered, as most of the deposits could be removed using a HCl/NaOH chemical cleaning method. Copyright © 2017. Published by Elsevier B.V.
Characterization of Volatiles Loss from Soil Samples at Lunar Environments
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Smith, Jim; Roush, Ted; Colaprete, Anthony; Zacny, Kris; Paulsen, Gale; Wang, Alex; Paz, Aaron
2017-01-01
Resource Prospector Integrated Thermal Vacuum Test Program A series of ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations for RP Volatiles loss during sampling operations Hardware performance Sample removal and transfer Concept of operationsInstrumentation5 test campaigns over 5 years have been conducted with RP hardware with advancing hardware designs and additional RP subsystems Volatiles sampling 4 years Using flight-forward regolith sampling hardware, empirically determine volatile retention at lunar-relevant conditions Use data to improve theoretical predictions Determine driving variables for retention Bound water loss potential to define measurement uncertainties. The main goal of this talk is to introduce you to our approach to characterizing volatiles loss for RP. Introduce the facility and its capabilities Overview of the RP hardware used in integrated testing (most recent iteration) Summarize the test variables used thus farReview a sample of the results.
Mao, Guo-Feng; Mo, Xiao-Chang; Fouad, Hatem; Abbas, Ghulam; Mo, Jian-Chu
2018-03-01
Utilisation of Anagrus nilaparvatae is a promising and effective method for planthoppers manipulation. Twenty-seven components of remote lemongrass (Cymbopogon distans) oil were identified by GC/MS and nine volatiles were selected for behavioural experiments. In this study, we noted that the remote lemongrass oil was attractive to female A. nilaparvatae at concentrations of 0.1 and 1 mg/L. α-Pinene, β-pinene, eucalyptol, carveol and D-carvone attracted female wasps in the dose-dependent bioassays. Blend 1 (a mixture of eucalyptol, D-carvone, carveol, α-pinene, and β-pinene with ratios of remote lemongrass oil volatiles of 625:80:11:5:3) attracted female wasps at 10 mg/L, while blend 2 (a mixture of the same five volatiles at the same loading ratio) attracted them at 0.1 and 1 mg/L. These results suggested that plant essential oils could be attractants for natural enemies to control pests. The ratios of volatiles in the mixtures affect the attractiveness of the synthetic mixtures.
Arsenijević, Jelena; Marković, Jelena; Soštarić, Ivan; Ražić, Slavica
2013-10-01
The volatile fraction of the leaves of Thymus pannonicus All. (Lamiaceae) was analyzed by headspace extraction followed by GC-FID and GC-MS analysis. The different headspace profiles were recognized, with citral and with monoterpene hydrocarbons as dominant compounds. In addition, the determination of Cr, Co, Ni, Mo, Cu, Zn, Mn, Fe, Mg, Ca, K and Na was conducted by spectroscopic techniques (FAAS, GFAAS and ICP-OES). In order to evaluate the relationship between volatile organic compounds and metals, a chemometrics approach was applied. The data obtained by analysis of the headspace and elemental content were subjected to correlation analysis, factor analysis, principal component analysis and cluster analysis. A number of significant correlations of metals with plant volatiles were found. Correlation of Zn with citral, Mn with oxygenated monoterpenes and Mg with β-bourbonene, could be explained by involvement of metals in the biosynthesis of volatile organic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Keller, Tobias; Katz, Richard F.
2015-04-01
Laboratory experiments indicate that even small concentrations volatiles (H2O or CO2) in the upper mantle significantly affect the silicate melting behavior [HK96,DH06]. The presence of volatiles stabilizes volatile-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+volatilized MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel disequilibrium multi-component melting model based on thermo-dynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. Application of this simulation code to a mid-ocean ridge system suggests that the methodology captures the leading-order features of both hydrated and carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenological reaction rates are applied to continually move the system towards re-equilibration. The simulations will be used first to characterize volatile extraction from the MOR system assuming a chemically homogeneous mantle. Subsequently, simulations will be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. These studies will advance our understanding of the role of volatiles in the dynamic and chemical evolution of the upper mantle. Moreover, they will help to gauge the significance of the coupling between the deep carbon cycle and the ocean/atmosphere system. REFERENCES HK96 Hirth & Kohlstedt (1996), Earth Planet Sci Lett DH06 Dasgupta & Hirschmann (2006), doi:10.1038/nature04612. H10 Hirschmann (2010), doi:10.1016/j.pepi.2009.12.003. DH10 Dasgupta & Hirschmann (2010), doi:10.1016/j.epsl.2010.06.039. McK84 McKenzie (1984), J Pet KW12 Katz & Weatherley (2012), doi: 10.1016/j.epsl.2012.04.042. RBS11 Rudge, Bercovici & Spiegelman (2011), doi: 10.1111/j.1365-246X.2010.04870.x
Chen, Nai-Dong; You, Tao; Li, Jun; Bai, Li-Tao; Hao, Jing-Wen; Xu, Xiao-Yuan
2016-10-01
Plant tissue culture technique is widely used in the conservation and utilization of rare and endangered medicinal plants and it is crucial for tissue culture stocks to obtain the ability to produce similar bioactive components as their wild correspondences. In this paper, a headspace gas chromatography-mass spectrometry method combined with chemometric methods was applied to analyze and evaluate the volatile compounds in tissue-cultured and wild Dendrobium huoshanense Cheng and Tang, Dendrobium officinale Kimura et Migo and Dendrobium moniliforme (Linn.) Sw. In total, 63 volatile compounds were separated, with 53 being identified from the three Dendrobium spp. Different provenances of Dendrobiums had characteristic chemicals and showed remarkable quantity discrepancy of common compositions. The similarity evaluation disclosed that the accumulation of volatile compounds in Dendrobium samples might be affected by their provenance. Principal component analysis showed that the first three components explained 85.9% of data variance, demonstrating a good discrimination between samples. Gas chromatography-mass spectrometry techniques, combined with chemometrics, might be an effective strategy for identifying the species and their provenance, especially in the assessment of tissue-cultured Dendrobium quality for use in raw herbal medicines. Copyright © 2016. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... Requirements for National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings, EPA... potentially affected by this action as respondents are manufacturers and importers of automobile refinish coatings and coating components. Manufacturers of automobile refinish coatings and coating components fall...
NASA Astrophysics Data System (ADS)
Kjonaas, Richard; Soller, Jean L.; McCoy, Leslee A.
1997-09-01
By placing a piece of chewing gum (Wrigley's) or a crushed piece of hard candy (LifeSavers or Runts) into a vial, followed by GC/MS analysis of a five microliter sample of the headspace, students are able to identify several of the volatile flavoring components which are present. The experiment has been used successfully with sophomore organic chemistry students, and with visiting groups of talented high school students over a three year period. Identification is simplified by handing out a list of the structural formulas of some likely candidates. Some of the components that these students easily identity include ethyl acetate, isobutyl acetate, isoamyl acetate, ethyl butyrate, benzaldehyde, benzyl alcohol, limonene, and cinnamaldehyde. Some of the more difficult to identify components include menthol, menthone, carvone, cineole, myrcene, alpha-pinene, beta-pinene, para-cymene, and gama-terpinene. Most of the major headspace components give signals whose size is comparable to that of the carbon dioxide which is present in each injection. Even with split injection, the background noise is trivial compared to the signals from the major components. The experiments were carried out with a commercially available tabletop GC/MS (Varian 3400 with Saturn MS).
Sources of volatiles in basalts from the Galapagos Archipelago: deep and shallow evidence
NASA Astrophysics Data System (ADS)
Peterson, M. E.; Saal, A. E.; Hauri, E. H.; Werner, R.; Hauff, S. F.; Kurz, M. D.; Geist, D.; Harpp, K. S.
2010-12-01
The study of volatiles (H2O, CO2, F, S, and Cl) is important because volatiles assert a strong influence on mantle melting and magma crystallization, as well as on the viscosity and rheology of the mantle. Despite this importance, there have been a minimal number of volatile studies done on magmas from the four main mantle sources that define the end member compositions of the Galapagos lavas. For this reason, we here present new volatile concentrations of 89 submarine glass chips from dredges collected across the archipelago during the SONNE SO158, PLUM02, AHA-NEMO, and DRIFT04 cruises. All samples, with the exception of six, were collected at depths greater than 1000m. Major elements (E-probe), and volatile and trace elements (SIMS), are analyzed on the same glass chip, using 4 chips per sample, to better represent natural and analytical variation. Trace element contents reveal three main compositional groups: an enriched group typical of OIB, a group with intermediate compositions, and a group with a depleted trace element composition similar to MORB. The absolute ranges of volatile contents for all three compositional groups are .098-1.15wt% for H2O, 10.7-193.7 ppm for CO2, 61.4-806.5 ppm for F, 715.8-1599.2 ppm for S and 3.8-493.3 for Cl. The effect of degassing, sulfide saturation and assimilation of hydrothermally altered material must be understood before using the volatile content of submarine glasses to establish the primary volatile concentration of basalts and their mantle sources. CO2 has a low solubility in basaltic melts causing it to extensively degas. Based on the CO2/Nb ratio, we estimate the extent of degassing for the Galapagos lavas to range from approximately undegassed to 90% degassed. We demonstrate that 98% of the samples are sulfur undersaturated. Therefore, sulfur will behave as a moderately incompatible element during magmatic processes. Finally, we evaluate the effect of assimilation of hydrothermally altered material on the volatile content of the lavas. This process is evident when volatile/refractory element ratios are compared to the trace elements indicative of interaction between melt and the oceanic lithosphere such as a positive Sr anomaly (Sr*) in a primitive mantle normalized diagram. This is indicative of the interaction of basaltic melts with plagioclase cumulates. For the Galapagos depleted submarine glasses, we find a positive correlation between Sr* and all volatile/refractory element ratios suggesting significant volatile input from melt-lithosphere interaction. These samples, due to their low trace element concentrations, readily show the alteration signature, thus making the establishment of their primitive volatile content difficult. As a result, we will present the primary volatile concentrations for the trace element intermediate and enriched groups after careful consideration for degassing, sulfide saturation, and assimilation of hydrothermally altered material.
Maya-Meraz, Irma O; Espino-Díaz, Miguel; Molina-Corral, Francisco J; González-Aguilar, Gustavo A; Jacobo-Cuellar, Juan L; Sepulveda, David R; Olivas, Guadalupe I
2014-11-01
One of the main quality parameters in apples is aroma, its main precursors are fatty acids (FA) and amino acids (AA). In this study, alginate edible coatings were used as carriers of linoleic acid or isoleucine to serve as precursors for the production of aroma in cut apples. Apple wedges were immersed in a CaCl2 solution and coated with one of the following formulations: alginate solution (Alg-Ca), Alg-Ca-low-level linoleic acid (0.61 g/Lt), (LFA), Alg-Ca-high-level linoleic acid (2.44 g/L; HFA), Alg-Ca-low-level isoleucine (0.61 g/L; LAA), and Alg-Ca-high-level isoleucine (2.44 g/L; HAA). Apple wedges were stored at 3 °C and 85% relative humidity for 21 d and key volatiles were studied during storage. Addition of precursors, mainly isoleucine, showed to increase the production of some key volatiles on coated fresh-cut apples during storage. The concentration of 2-methyl-1-butanol was 4 times higher from day 12 to day 21 in HAA, while 2-methyl butyl acetate increased from day 12 to day 21 in HAA. After 21 d, HAA-apples presented a 40-fold value of 2-methyl-butyl acetate, compared to Alg-Ca cut apples. Values of hexanal increased during cut apple storage when the coating carried linoleic acid, mainly on HFA, from 3 to 12 d. The ability of apples to metabolize AA and FA depends on the concentration of precursors, but also depends on key enzymes, previous apple storage, among others. Further studies should be done to better clarify the behavior of fresh-cut apples as living tissue to metabolize precursors contained in edible coatings for the production of volatiles. © 2014 Institute of Food Technologists®
Kang, Ningdong; Baum, Michael J.; Cherry, James A.
2009-01-01
The main olfactory system, like the accessory olfactory system, responds to pheromones involved in social communication. Whereas pheromones detected by the accessory system are transmitted to the hypothalamus via the medial (‘vomeronasal’) amygdala, the pathway by which pheromones are detected and transmitted by the main system is not well understood. We examined in female mice whether a direct projection from mitral/tufted (M/T) cells in the main olfactory bulb (MOB) to the medial amygdala exists, and whether medial amygdala-projecting M/T cells are activated by volatile urinary odors from conspecifics or a predator (cat). Simultaneous anterograde tracing using Phaseolus vulgaris leucoagglutinin and Fluoro-Ruby placed in the MOB and accessory olfactory bulb (AOB), respectively, revealed that axons of MOB M/T cells projected to superficial laminae of layer Ia in anterior and posterodorsal subdivisions of the medial amygdala, whereas projection neurons from the AOB sent axons to non-overlapping, deeper layer Ia laminae of the same subdivisions. Placement of the retrograde tracer cholera toxin B into the medial amygdala labeled M/T cells that were concentrated in the ventral MOB. Urinary volatiles from male mice, but not from female conspecifics or cat, induced Fos in medial amygdala-projecting MOB M/T cells of female subjects, suggesting that information about male odors is transmitted directly from the MOB to the ‘vomeronasal’ amygdala. The presence of a direct MOB-to-medial amygdala pathway in mice and other mammals could enable volatile, opposite-sex pheromones to gain privileged access to diencephalic structures that control mate recognition and reproduction. PMID:19187265
Bed bug aggregation pheromone finally identified.
Gries, Regine; Britton, Robert; Holmes, Michael; Zhai, Huimin; Draper, Jason; Gries, Gerhard
2015-01-19
Bed bugs have become a global epidemic and current detection tools are poorly suited for routine surveillance. Despite intense research on bed bug aggregation behavior and the aggregation pheromone, which could be used as a chemical lure, the complete composition of this pheromone has thus far proven elusive. Here, we report that the bed bug aggregation pheromone comprises five volatile components (dimethyl disulfide, dimethyl trisulfide, (E)-2-hexenal, (E)-2-octenal, 2-hexanone), which attract bed bugs to safe shelters, and one less-volatile component (histamine), which causes their arrestment upon contact. In infested premises, a blend of all six components is highly effective at luring bed bugs into traps. The trapping of juvenile and adult bed bugs, with or without recent blood meals, provides strong evidence that this unique pheromone bait could become an effective and inexpensive tool for bed bug detection and potentially their control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Consequences of sludge composition on combustion performance derived from thermogravimetry analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meiyan; Xiao, Benyi; Wang, Xu
Highlights: • Volatiles, particularly proteins, play a key role in sludge combustion. • Sludge combustion performance varies with different sludge organic concentrations. • Carbohydrates significantly affect the combustion rate in the second stage. • Combustion performance of digested sludge is more negative compared with others. - Abstract: Wastewater treatment plants produce millions of tons of sewage sludge. Sewage sludge is recognized as a promising feedstock for power generation via combustion and can be used for energy crisis adaption. We aimed to investigate the quantitative effects of various sludge characteristics on the overall sludge combustion process performance. Different types of sewagemore » sludge were derived from numerous wastewater treatment plants in Beijing for further thermogravimetric analysis. Thermogravimetric–differential thermogravimetric curves were used to compare the performance of the studied samples. Proximate analytical data, organic compositions, elementary composition, and calorific value of the samples were determined. The relationship between combustion performance and sludge composition was also investigated. Results showed that the performance of sludge combustion was significantly affected by the concentration of protein, which is the main component of volatiles. Carbohydrates and lipids were not correlated with combustion performance, unlike protein. Overall, combustion performance varied with different sludge organic composition. The combustion rate of carbohydrates was higher than those of protein and lipid, and carbohydrate weight loss mainly occurred during the second stage (175–300 °C). Carbohydrates have a substantial effect on the rate of system combustion during the second stage considering the specific combustion feature. Additionally, the combustion performance of digested sewage sludge is more negative than the others.« less
Shi, Z-H; Sun, J-H
2010-06-01
The red turpentine beetle (RTB), Dendroctonus valens LeConte, is a destructive invasive forest pest in China. For such tree-killing species, how to initiate a volatile-mediated mass attack is of great importance during the course of establishment. To understand the hindgut volatile production mechanism underlying mass attack initiated by RTB, coupled gas chromatography-mass spectrometry and 13C-labelled precursors were applied to explore the quantitative variation and biosynthesis of volatiles associated with RTB at different attack phases. Five previously described volatiles, trans-verbenol, myrtenol, cis-verbenol, myrtenal and verbenone, were identified and quantified from extracts of female and male hindguts, with the first two compounds as the major components and the latter three as minor constituents. In newly emerged females and males, only minute amounts of these compounds were detected. The quantity of volatiles from female adults significantly increased after they fed on bolts. Male adults also yielded larger quantities of volatiles after they joined females in galleries, which suggested that RTB males could accelerate the mass colonization on host trees. We also confirmed that RTB produced the five volatiles through oxidizing the major host monoterpene, alpha-pinene, but not synthesized de novo since products were labeled without 13C. The implication of this study in understanding the successful invasion of RTB is discussed.
Ntlhokwe, Gaalebalwe; Tredoux, Andreas G J; Górecki, Tadeusz; Edwards, Matthew; Vestner, Jochen; Muller, Magdalena; Erasmus, Lené; Joubert, Elizabeth; Christel Cronje, J; de Villiers, André
2017-07-01
The applicability of comprehensive two-dimensional gas chromatography (GC×GC) using a single-stage thermal modulator was explored for the analysis of honeybush tea (Cyclopia spp.) volatile compounds. Headspace solid phase micro-extraction (HS-SPME) was used in combination with GC×GC separation on a non-polar × polar column set with flame ionisation (FID) detection for the analysis of fermented Cyclopia maculata, Cyclopia subternata and Cyclopia genistoides tea infusions of a single harvest season. Method optimisation entailed evaluation of the effects of several experimental parameters on the performance of the modulator, the choice of columns in both dimensions, as well as the HS-SPME extraction fibre. Eighty-four volatile compounds were identified by co-injection of reference standards. Principal component analysis (PCA) showed clear differentiation between the species based on their volatile profiles. Due to the highly reproducible separations obtained using the single-stage thermal modulator, multivariate data analysis was simplified. The results demonstrate both the complexity of honeybush volatile profiles and the potential of GC×GC separation in combination with suitable data analysis techniques for the investigation of the relationship between sensory properties and volatile composition of these products. The developed method therefore offers a fast and inexpensive methodology for the profiling of honeybush tea volatiles. Graphical abstract Surface plot obtained for the GC×GC-FID analysis of honeybush tea volatiles.
NASA Technical Reports Server (NTRS)
Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.
2017-01-01
The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.
Mann, R S; Rouseff, R L; Smoot, J M; Castle, W S; Stelinski, L L
2011-02-01
The Asian citrus psyllid, Diaphorina citri Kuwayama, vectors Candidatus Liberibacter asiaticus (Las) and Candidatus Liberibacter americanus (Lam), the presumed causal agents of huanglongbing. D. citri generally rely on olfaction and vision for detection of host cues. Plant volatiles from Allium spp. (Alliaceae) are known to repel several arthropod species. We examined the effect of garlic chive (A. tuberosum Rottl.) and wild onion (A. canadense L.) volatiles on D. citri behaviour in a two-port divided T-olfactometer. Citrus leaf volatiles attracted significantly more D. citri adults than clean air. Volatiles from crushed garlic chive leaves, garlic chive essential oil, garlic chive plants, wild onion plants and crushed wild onion leaves all repelled D. citri adults when compared with clean air, with the first two being significantly more repellent than the others. However, when tested with citrus volatiles, only crushed garlic chive leaves and garlic chive essential oil were repellent, and crushed wild onions leaves were not. Analysis of the headspace components of crushed garlic chive leaves and garlic chive essential oil by gas chromatography-mass spectrometry revealed that monosulfides, disulfides and trisulfides were the primary sulfur volatiles present. In general, trisulfides (dimethyl trisulfide) inhibited the response of D. citri to citrus volatiles more than disulfides (dimethyl disulfide, allyl methyl disulfide, allyl disulfide). Monosulfides did not affect the behaviour of D. citri adults. A blend of dimethyl trisulfide and dimethyl disulfide in 1:1 ratio showed an additive effect on inhibition of D. citri response to citrus volatiles. The plant volatiles from Allium spp. did not affect the behaviour of the D. citri ecto-parasitoid Tamarixia radiata (Waterston). Thus, Allium spp. or the tri- and di-sulphides could be integrated into management programmes for D. citri without affecting natural enemies.
Batterton, M N; Robarts, D; Woodley, S K; Baum, M J
2006-06-12
Previously [S.K. Woodley, M.J. Baum, Differential activation of glomeruli in the ferret's main olfactory bulb by anal scent gland odors from males and females: an early step in mate identification, Eur. J. Neurosci. 20 (2004) 1025-1032], the receipt of intromission from a male activated glomeruli (indexed by Fos immunoreactivity in juxtaglomerular cells) in the main olfactory bulb (MOB) of estrous female ferrets which exceeded the activation seen after exposure to male anal scent gland odorants alone. We asked whether centrifugal inputs (e.g., from the locus coeruleus to the MOB) generated by the receipt of vaginal-cervical stimulation influence odor-induced MOB glomerular activation. We compared the activation of MOB glomeruli in estrous female ferrets which received a unilateral naris occlusion prior to exposure to: unscented air, volatile odorants from an anesthetized male, volatile + non-volatile odorants from direct physical contact with an anesthetized male, or mating stimulation. Little glomerular activation was observed in the MOB ipsilateral to an occluded naris, including females which received intromission. An equivalent distribution of activated glomeruli was observed in the ventral MOB of estrous females which either received mating stimulation or had direct physical contact with an anesthetized male. Considerably less glomerular activation occurred in females exposed only to volatile male odors. The MOB of female ferrets responded to body odorants from the opposite sex; however, there was no evidence that mating-induced centrifugal inputs directly activated MOB glomeruli or modified odor-induced glomerular activation.
Fig volatile compounds--a first comparative study.
Grison-Pigé, Laure; Hossaert-McKey, Martine; Greeff, Jaco M; Bessière, Jean-Marie
2002-09-01
We analysed the compounds of volatile blends released by receptive figs of twenty Ficus species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of Ficus-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. Copyright 2002 Elsevier Science Ltd.
The volatile oil composition of fresh and air-dried buds of Cannabis sativa.
Ross, S A; ElSohly, M A
1996-01-01
The composition of the steam-distilled volatile oil of fresh and air-dried, indoor-grown marijuana was studied by GC/FID and GC/MS. In all, 68 components were detected of which 57 were fully identified. Drying of the plant material had no effect on the qualitative composition of the oil and did not affect the ability of individuals familiar with marijuana smell to recognize the odor.
Diversity among mandarin varieties and natural sub-groups in aroma volatiles compositions.
Goldenberg, Livnat; Yaniv, Yossi; Doron-Faigenboim, Adi; Carmi, Nir; Porat, Ron
2016-01-15
Mandarins constitute a large, diverse and important group within the Citrus family. Here, we analysed the aroma volatiles compositions of 13 mandarin varieties belonging to seven genetically different natural sub-groups that included common mandarin (C. reticulata Blanco), clementine (C. clementina Hort. ex. Tan), satsuma (C. unshiu Marcovitch), Mediterranean mandarin (C. deliciosa Tenore), King mandarin (C. nobilis Loureiro), and mandarin hybrids, such as tangor (C. reticulata × C. sinensis) and tangelo (C. reticulata × C. paradisi). We found that mandarin varieties among tangors ('Temple', 'Ortanique'), tangelos ('Orlando', 'Minneola') and King ('King') had more volatiles, at higher levels, and were richer in sesquiterpene and ester volatiles, than other varieties belonging to the sub-groups common mandarin ('Ora', 'Ponkan'), clementine ('Oroval', 'Caffin'), satsuma ('Okitsu', 'Owari') and Mediterranean mandarin ('Avana', 'Yusuf Efendi'). Hierarchical clustering and principal component analysis accurately differentiated between mandarin varieties and natural sub-groups according to their aroma-volatile profiles. Although we found wide differences in aroma-volatiles compositions among varieties belonging to different natural sub-groups, we detected only minor differences among varieties within any natural sub-group. These findings suggest that selecting appropriate parents would enable manipulation of aroma-volatile compositions in future mandarin breeding programmes. © 2015 Society of Chemical Industry.
Volatile selenium flux from the great Salt Lake, Utah
Diaz, X.; Johnson, W.P.; Oliver, W.A.; Naftz, D.L.
2009-01-01
The removal mechanisms that govern Se concentrations in the Great Salt Lake are unknown despite this terminal lake being an avian habitat of hemispheric importance. However, the volatilization flux of Se from the Great Salt Lake has not been previously measured due to challenges of analysis in this hypersaline environment This paper presents results from recent field studies examining the spatial distribution of dissolved volatile Se (areally and with depth) in the south arm (main body) of the Great Salt Lake. The analyses involved collection of dissolved volatile Se in a cryofocusing trap system via sparging with helium. The cryotrapped volatile Se was digested with nitric acid and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Results show concentrations of dissolved volatile Se that increase with depth in the shallow brine, suggesting that phytoplankton in the open waters and bioherms in shallow sites (<4 m in depth) may be responsible for volatile Se production. Volatile Se flux to the atmosphere was determined using mass transport models corrected to simulate the highly saline environment of the south arm of the Great Salt Lake. The estimated annual flux of volatile Se was 1455 kg/year within a range from 560 to 3780 kg Se/year for the 95% confidence interval and from 970 to 2180 kg Se/year within the 68% confidence interval. ?? 2009 American Chemical Society.
NASA Astrophysics Data System (ADS)
Gurenko, Andrey A.; Kamenetsky, Vadim S.; Kerr, Andrew C.
2016-11-01
We report O isotopes in olivine grains (Fo89-93) and volatile contents (CO2, H2O, F, S, Cl) in olivine-hosted melt inclusions from one Gorgona picrite and five komatiites with the aim of constraining the origin of H2O in these magmas. These samples have previously been analysed for major and trace elements and volatile concentrations (H2O, S, Cl) and B isotopes in melt inclusions. A distinctive feature of the included melts is relatively high contents of volatile components and boron, which show positive anomalies in, otherwise depleted, primitive mantle normalised trace and rare earth element patterns and range in δ11 B from -11.5 to 15.6‰. In this study, the olivines were systematically analysed for O isotopes (1) in the centre of grains, (2) near the grain boundaries and, (3) as close as possible to the studied melt inclusions. The majority of olivines (∼66%) are ;mantle;-like, 4.8 ‰ ≤δ18 O ≤ 5.5 ‰, with a subordinate but still significant number (∼33%) above, and only 2 grains below, this range. There is no systematic difference between the central and marginal parts of the grains. Higher than ;mantle; δ18OOl values are ascribed to low-T (<300 °C) serpentinisation along inner fractures and grain boundaries of olivine phenocrysts. The measured concentrations of volatile components in the melt inclusions corrected for the effects of post-entrapment crystallisation and H2O-CO2 exsolution in inclusion shrinkage bubbles are: 286-1748 μg/g CO2, 0.2-0.86 wt.% H2O, 48-82 μg/g F, 398-699 μg/g S and 132-198 μg/g Cl. They correspond to a pressure of 86 ± 44MPa or ∼2.5-km crustal depth of olivine crystallisation. The correlations of S and, to a lesser extent, of H2O, with highly incompatible lithophile elements and the correlation of F with Cl, but no relationships of H2O with Cl, rule out shallow depth magma degassing and/or crustal contamination. Our new δ18 O olivine and volatile component data combined with the existing, highly variable δ11 B values for melt inclusions also support the deep mantle origin of H2O (and probably other volatiles) in the Gorgona mafic and ultramafic magmas.
Spitzer-Rimon, Ben; Marhevka, Elena; Barkai, Oren; Marton, Ira; Edelbaum, Orit; Masci, Tania; Prathapani, Naveen-Kumar; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander
2010-01-01
Floral scent, which is determined by a complex mixture of low molecular weight volatile molecules, plays a major role in the plant's life cycle. Phenylpropanoid volatiles are the main determinants of floral scent in petunia (Petunia hybrida). A screen using virus-induced gene silencing for regulators of scent production in petunia flowers yielded a novel R2R3-MYB–like regulatory factor of phenylpropanoid volatile biosynthesis, EMISSION OF BENZENOIDS II (EOBII). This factor was localized to the nucleus and its expression was found to be flower specific and temporally and spatially associated with scent production/emission. Suppression of EOBII expression led to significant reduction in the levels of volatiles accumulating in and emitted by flowers, such as benzaldehyde, phenylethyl alcohol, benzylbenzoate, and isoeugenol. Up/downregulation of EOBII affected transcript levels of several biosynthetic floral scent-related genes encoding enzymes from the phenylpropanoid pathway that are directly involved in the production of these volatiles and enzymes from the shikimate pathway that determine substrate availability. Due to its coordinated wide-ranging effect on the production of floral volatiles, and its lack of effect on anthocyanin production, a central regulatory role is proposed for EOBII in the biosynthesis of phenylpropanoid volatiles. PMID:20543029
San Francisco, Sara; Urrutia, Oscar; Martin, Vincent; Peristeropoulos, Angelos; Garcia-Mina, Jose Maria
2011-07-01
Some authors suggest that the absence of tillage in agricultural soils might have an influence on the efficiency of nitrogen applied in the soil surface. In this study we investigate the influence of no-tillage and soil characteristics on the efficiency of a urease inhibitor (N-(n-butyl)thiophosphoric triamide, NBPT) and a nitrification inhibitor (diciandiamide, DCD) in decreasing ammonia volatilization from urea and ammonium nitrate (AN), respectively. The results indicate that ammonia volatilization in soils amended with urea was significantly higher than in those fertilized with AN. Likewise, the main soil factors affecting ammonia volatilization from urea are clay and sand soil contents. While clay impedes ammonia volatilization, sand favours it. The presence of organic residues on soil surface (no-tillage) tends to increase ammonia volatilization from urea, although this fact depended on soil type. The presence of NBPT in urea fertilizer significantly reduced soil ammonia volatilization. This action of NBPT was negatively affected by acid soil pH and favoured by soil clay content. The presence of organic residues on soil surface amended with urea increased ammonia volatilization, and was particularly high in sandy compared with clay soils. Application of NBPT reduced ammonia volatilization although its efficiency is reduced in acid soils. Concerning AN fertilization, there were no differences in ammonia volatilization with or without DCD in no-tillage soils. Copyright © 2011 Society of Chemical Industry.
Zhao, D; Gao, J; Wang, Y; Jiang, J; Li, R
2012-08-01
Tessaratoma papillosa (Drury) (Hemiptera: Tessaratomidae) is a serious insect pest of litchi and longan in South China. When disturbed, this insect could release large quantities of disagreeable odorous volatiles from its scent gland. Knowledge on the scent gland and its secretion is crucial for developing the semiochemical methods to manage this pest. Morphology and ultrastructure of the metathoracic scent glands (MTGs) were studied under stereo and scanning electron microscopy, and the volatile compounds of MTGs from both male and female T. papillosa were analyzed with coupled gas chromatography-mass spectrometry (GC-MS). The MTG complex is located between the metathorax and the first abdominal segment at the ventral surface of the insect, which has a well-developed single double valve cystic-shaped orange median reservoir, paired colorless lateral glands in both sides, and a long and wavy tubular accessory gland that inlays tightly into the ventral edge around the median reservoir. The MTG opens to the body surface through paired ostioles located between the meso- and metacoxae of the evaporatorium with mushroom bodies. The GC-MS analyses showed that female and male adults have nine major volatile components in common. Tridecane is the most abundant in both females and males, reaching up to 47.1% and 51.8% of relative amount, respectively. The minor component is benzophenone with only 0.28% and 0.14%. Furthermore, undecane, tetradecane, 3-methyl-tridecane, and cyclopentadecane were found only in males. The possible function of volatile compounds of MTG contents in T. papillosa is addressed.
Wang, Yu; Dai, Chuan-Chao; Chen, Yan
2009-11-01
In order to investigate the inhibitory effects of host plants secondary metabolites on the growth of endophytic and exogenous fungi, the volatile oil from medicinal plant Atractylodes lancea was extracted with organic solvent extraction method, and its antimicrobial activity against three species of endophytic and seven species of exogenous fungi was determined by paper disc assay and spread-plate. The volatile oil had inhibitory effects on the growth of test endophytic fungi. It had strong antimicrobial activity against Rhodotorula glutinis and Saprolegnia, but weak activity against Rhizopus and Absidia. It suppressed the sporulation of Trichoderma viride and Aspergillus niger, but no effects on the growth of Phytophthora. Under the stress of high concentration volatile oil, the hyphal branches of test endophytic fungi increased, the distance between the branches became shorter, and the growth of aerial hyphae was inhibited. The test endophytic fungi had remarkable ability to metabolize and transform the volatile oil, and decreased the contents of its main ingredients. All the results showed that the volatile oil extracted from A. lancea had inhibitory effects on the growth of endophytic fungi, but the fungi could adapt to the volatile oil via metabolizing and decomposing it.
Volatile flavor compounds in yogurt: a review.
Cheng, Hefa
2010-11-01
Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.
Oliver-Pozo, Celia; Aparicio-Ruiz, Ramón; Romero, Inmaculada; García-González, Diego L
2015-12-09
The need to explain virgin olive oil (VOO) aroma descriptors by means of volatiles has raised interest in applying analytical techniques for trapping and quantitating volatiles. Static headspace sampling with solid phase microextraction (SPME) as trapping material is one of the most applied solutions for analyzing volatiles. The use of an internal standard and the determination of the response factors of the main volatiles seem to guarantee the correct determination of volatile concentrations in VOOs by SPME-GC/FID. This paper, however, shows that the competition phenomena between volatiles in their adsorption to the SPME fiber, inherent in static headspace sampling, may affect the quantitation. These phenomena are more noticeable in the particular case of highly odorant matrices, such as rancid and vinegary VOOs with high intensity of defect. The competition phenomena can modify the measurement sensitivity, which can be observed in volatile quantitation as well as in the recording of internal standard areas in different matrices. This paper analyzes the bias of the peak areas and concentrations of those volatiles that are markers for each sensory defect of VOOs (rancid, vinegary, musty, and fusty) when the intensity and complexity of aroma are increased. Of the 17 volatile markers studied in this work, 10 presented some anomalies in the quantitation in highly odorant matrices due the competition phenomena. However, quantitation was not affected in the concentration ranges at which each volatile marker is typically found in the defective oils they were characteristic of, validating their use as markers.
Karioti, A; Vrahimi-Hadjilouca, T; Droushiotis, D; Rancic, A; Hadjipavlou-Litina, D; Skaltsa, H
2006-11-01
The volatile composition of Origanum dubium in two different maturation stages has been studied. The essential oils were obtained by hydrodistillation in a modified Clevenger-type apparatus, and their analyses were performed by GC and GC-MS. Identification of the components was made by comparison of mass spectra and retention indices with literature records and by co-chromatography with authentic compounds. Carvacrol was shown to be the main constituent. The essential oils were evaluated for antimicrobial activity and proved to be active against all tested microorganisms. Furthermore, their potential antioxidant activity was investigated and found to be significant in scavenging O2-. The samples were further evaluated for inhibition of soybean lipoxygenase LOX and showed high inhibitory activity.
Qiu, Shanshan; Wang, Jun
2015-10-01
In this study, electronic tongue (E-tongue), headspace solid-phase microextraction gas chromatography-mass spectrometer (GC-MS), electronic nose (E-nose), and quantitative describe analysis (QDA) were applied to describe the 2 types of citrus fruits (Satsuma mandarins [Citrus unshiu Marc.] and sweet oranges [Citrus sinensis {L.} Osbeck]) and their mixing juices systematically and comprehensively. As some aroma components or some flavor molecules interacted with the whole juice matrix, the changes of most components in the fruit juice were not in proportion to the mixing ratio of the 2 citrus fruits. The potential correlations among the signals of E-tongue and E-nose, volatile components, and sensory attributes were analyzed by using analysis of variance partial least squares regression. The result showed that the variables from the sensor signals (E-tongue system and E-nose system) had significant and positive (or negative) correlations to the most variables of volatile components (GC-MS) and sensory attributes (QDA). The simultaneous utilization of E-tongue and E-nose obtained a perfect classification result with 100% accuracy rate based on linear discriminant analysis and also attained a satisfying prediction with high coefficient association for the sensory attributes (R(2) > 0.994 for training sets and R(2) > 0.983 for testing sets) and for the volatile components (R(2) > 0.992 for training sets and R(2) > 0.990 for testing sets) based on random forest. Being easy-to-use, cost-effective, robust, and capable of providing a fast analysis procedure, E-nose and E-tongue could be used as an alternative detection system to traditional analysis methods, such as GC-MS and sensory evaluation by human panel in the fruit industry. Being easy-to-use, cost-effective, robust, and capable of providing a fast analysis procedure, E-nose and E-tongue could be used as an alternative detection system to traditional analysis methods for characterizing food flavors. Based on those results, one can draw a conclusion that the fusion system composed of E-tongue and E-nose could guarantee a satisfying result in the prediction of sensory attributes and volatile components for fruit quality profile. © 2015 Institute of Food Technologists®
[Flavouring estimation of quality of grape wines with use of methods of mathematical statistics].
Yakuba, Yu F; Khalaphyan, A A; Temerdashev, Z A; Bessonov, V V; Malinkin, A D
2016-01-01
The questions of forming of wine's flavour integral estimation during the tasting are discussed, the advantages and disadvantages of the procedures are declared. As investigating materials we used the natural white and red wines of Russian manufactures, which were made with the traditional technologies from Vitis Vinifera, straight hybrids, blending and experimental wines (more than 300 different samples). The aim of the research was to set the correlation between the content of wine's nonvolatile matter and wine's tasting quality rating by mathematical statistics methods. The content of organic acids, amino acids and cations in wines were considered as the main factors influencing on the flavor. Basically, they define the beverage's quality. The determination of those components in wine's samples was done by the electrophoretic method «CAPEL». Together with the analytical checking of wine's samples quality the representative group of specialists simultaneously carried out wine's tasting estimation using 100 scores system. The possibility of statistical modelling of correlation of wine's tasting estimation based on analytical data of amino acids and cations determination reasonably describing the wine's flavour was examined. The statistical modelling of correlation between the wine's tasting estimation and the content of major cations (ammonium, potassium, sodium, magnesium, calcium), free amino acids (proline, threonine, arginine) and the taking into account the level of influence on flavour and analytical valuation within fixed limits of quality accordance were done with Statistica. Adequate statistical models which are able to predict tasting estimation that is to determine the wine's quality using the content of components forming the flavour properties have been constructed. It is emphasized that along with aromatic (volatile) substances the nonvolatile matter - mineral substances and organic substances - amino acids such as proline, threonine, arginine influence on wine's flavour properties. It has been shown the nonvolatile components contribute in organoleptic and flavour quality estimation of wines as aromatic volatile substances but they take part in forming the expert's evaluation.
Salinity alters curcumin, essential oil and chlorophyll of turmeric (Curcuma longa L.).
Mostajeran, A; Gholaminejad, A; Asghari, G
2014-01-01
Turmeric (Curcuma longa L.) is a perennial rhizomatous plant from the family of Zingibraceae, native in South Asia. The main components of turmeric are curcuminoids and essential oil which are responsible for turmeric characteristic such as odor and taste. Due to the large areas of saline land in Iran and less information related to cultivation of turmeric, in this research, the effect of salinity on growth, curcumin and essential oil of turmeric was evaluated. Rhizomes were planted in coco peat and perlite for germination. Then uniform germinated rhizomes transferred to hydroponic condition containing Hoagland's solution. Two months old plants were exposed to salinity (0, 20, 60 and 100 mM NaCl) for two months via hydroponic media using Hoagland's solution. Then dry weight of different plant parts, chlorophyll, curcumin and essential oil components of turmeric were determined. The result indicated that, dry weight reductions in 100 mM NaCl were 191%, 141%, 56%, 30% in leaf, pseudo-stem, root and rhizome, respectively (This is almost equal to 6.9, 2.87, 0.34 and 0.23 mg plant(-1) mM(-1)NaCl reduction of dry weight, respectively). The reductions in chlorophyll a and b are almost 3.32 and 0.79 μg/gFW respectively due to one unit addition of NaCl (P < 0.05). The addition of curcumin of rhizome for four months old plant versus three months were almost 5 fold for 0 mM NaCl and 2 fold for 100 mM NaCl due to one month of delay in harvest. Low salinity has positive effect in curcumin production but higher salinity (higher than 60 mM) had adverse effect and causes 24% reduction of curcumin compared to control plants. There were more para-cymene and terpineol in volatile oils of turmeric rhizome than the other components, most of the volatile oil compounds were unchanged or varied slightly as salinity changed.
Salinity alters curcumin, essential oil and chlorophyll of turmeric (Curcuma longa L.)
Mostajeran, A.; Gholaminejad, A.; Asghari, G.
2014-01-01
Turmeric (Curcuma longa L.) is a perennial rhizomatous plant from the family of Zingibraceae, native in South Asia. The main components of turmeric are curcuminoids and essential oil which are responsible for turmeric characteristic such as odor and taste. Due to the large areas of saline land in Iran and less information related to cultivation of turmeric, in this research, the effect of salinity on growth, curcumin and essential oil of turmeric was evaluated. Rhizomes were planted in coco peat and perlite for germination. Then uniform germinated rhizomes transferred to hydroponic condition containing Hoagland's solution. Two months old plants were exposed to salinity (0, 20, 60 and 100 mM NaCl) for two months via hydroponic media using Hoagland's solution. Then dry weight of different plant parts, chlorophyll, curcumin and essential oil components of turmeric were determined. The result indicated that, dry weight reductions in 100 mM NaCl were 191%, 141%, 56%, 30% in leaf, pseudo-stem, root and rhizome, respectively (This is almost equal to 6.9, 2.87, 0.34 and 0.23 mg plant-1 mM-1NaCl reduction of dry weight, respectively). The reductions in chlorophyll a and b are almost 3.32 and 0.79 μg/gFW respectively due to one unit addition of NaCl (P < 0.05). The addition of curcumin of rhizome for four months old plant versus three months were almost 5 fold for 0 mM NaCl and 2 fold for 100 mM NaCl due to one month of delay in harvest. Low salinity has positive effect in curcumin production but higher salinity (higher than 60 mM) had adverse effect and causes 24% reduction of curcumin compared to control plants. There were more para-cymene and terpineol in volatile oils of turmeric rhizome than the other components, most of the volatile oil compounds were unchanged or varied slightly as salinity changed. PMID:25598799
Overview of air pollution and endocrine disorders
Darbre, Philippa D
2018-01-01
Over recent years, many environmental pollutant chemicals have been shown to possess the ability to interfere in the functioning of the endocrine system and have been termed endocrine disrupting chemicals (EDCs). These compounds exist in air as volatile or semi-volatile compounds in the gas phase or attached to particulate matter. They include components of plastics (phthalates, bisphenol A), components of consumer goods (parabens, triclosan, alkylphenols, fragrance compounds, organobromine flame retardants, fluorosurfactants), industrial chemicals (polychlorinated biphenyls), products of combustion (polychlorinated dibenzodioxins/furans, polyaromatic hydrocarbons), pesticides, herbicides, and some metals. This review summarizes current knowledge concerning the sources of EDCs in air, measurements of levels of EDCs in air, and the potential for adverse effects of EDCs in air on human endocrine health. PMID:29872334
Anomalous volatility scaling in high frequency financial data
NASA Astrophysics Data System (ADS)
Nava, Noemi; Di Matteo, T.; Aste, Tomaso
2016-04-01
Volatility of intra-day stock market indices computed at various time horizons exhibits a scaling behaviour that differs from what would be expected from fractional Brownian motion (fBm). We investigate this anomalous scaling by using empirical mode decomposition (EMD), a method which separates time series into a set of cyclical components at different time-scales. By applying the EMD to fBm, we retrieve a scaling law that relates the variance of the components to a power law of the oscillating period. In contrast, when analysing 22 different stock market indices, we observe deviations from the fBm and Brownian motion scaling behaviour. We discuss and quantify these deviations, associating them to the characteristics of financial markets, with larger deviations corresponding to less developed markets.
D'Ambro, Emma L.; Lee, Ben H.; Liu, Jiumeng; ...
2017-01-04
Here, we present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO 2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C 5 compounds were major components (~50%) of SOA. The SOA composition and effective volatility evolved both as amore » function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, >30% of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.« less