NASA Astrophysics Data System (ADS)
Du, Jiabi; Shen, Jian
2017-11-01
Driven by estuarine circulation, material released from lower Chesapeake Bay tributaries has the potential to be transported to the upper Bay. How far and what fraction of the material from tributaries can be carried to the upper estuary have not been quantitatively investigated. For an estuary system with multiple tributaries, the relative contribution from each tributary can provide valuable information for source assessment and fate prediction for riverine materials and passive moving organisms. We conducted long-term numerical simulations using multiple passive tracers that are independently released in the headwater of five main rivers (i.e., Susquehanna, Potomac, Rappahannock, York, and James Rivers) and calculated the relative contribution of each river to the total material in the mainstem. The results show that discharge from Susquehanna River exerts the dominant control on the riverine material throughout the entire mainstem. Despite the smaller contribution from the lower-middle Bay tributaries to the total materials in the mainstem, materials released from these rivers have a high potential to be transported to the middle-upper Bay through the bottom inflow by the persistent estuarine circulation. The fraction of the tributary material transported to the upper Bay depends on the location of the tributary. Materials released near the mouth are subject to a rapid flushing process, small retention time, and strong shelf current. Our results reveal three distinct spatial patterns for materials released from the main river, tributary, and coastal oceans. This study highlights the important control of estuarine circulation over horizontal and vertical distributions of materials in the mainstem.
Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon
Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.
2003-01-01
Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.
The EPA Office of Research and Development's Mid-Continent Ecology Division has undertaken an EMAP study to assess the condition of selected resources of the Upper Missouri River mainstem (riverine) aquatic habitats, riparian habitats, and reservoirs. In 2000, we completed pilot ...
Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida
Burgess, O.T.; Pine, William E.; Walsh, S.J.
2013-01-01
Floodplain habitats provide critical spawning and rearing habitats for many large-river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally.
Clara Wheeler; James Bettaso; Donald Ashton; Hartwell Welsh
2014-01-01
Many riverine organisms are well adapted to seasonally dynamic environments, but extreme changes in flow and thermal regimes can threaten sustainability of their populations in regulated rivers. Altered thermal regimes may limit recruitment to populations by shifting the timing of breeding activities and affecting the growth and development of early life stages. Stream...
Viers, Jérôme; Barroux, Guénaël; Pinelli, Marcello; Seyler, Patrick; Oliva, Priscia; Dupré, Bernard; Boaventura, Geraldo Resende
2005-03-01
The purpose of this paper is to forecast the role of riverine wetlands in the transfer of trace elements. One of the largest riverine wetlands in the world is the floodplain (várzea) of the Amazon River and its tributaries (Junk and Piedade, 1997). The central Amazon wetlands are constituted by a complex network of lakes and floodplains, named várzeas, that extend over more than 300,000 km2 (Junk, W.J., The Amazon floodplain--a sink or source for organic carbon? In Transport of Carbon and Minerals in Major World Rivers, edited by E.T. Degens, S. Kempe, R. Herrera, SCOPE/UNEP; 267-283, 1985.) and are among the most productive ecosystems in the world due to the regular enrichment in nutrients by river waters In order to understand if the adjacent floodplain of Amazon River have a significant influence on the trace element concentrations and fluxes of the mainstem, the concentrations of selected elements (i.e., Al, Mn, Fe, Co, Cu, Mo, Rb, Sr, Ba, and U) have been measured in the Amazon River water (Manacapuru Station, Amazonas State, Brazil) and in lake waters and plants (leaves) from a várzea(Ilha de Marchantaria, Amazonas State, Brazil) during different periods of the hydrological cycle. Four plant species (two perennial species: Pseudobombax munguba and Salix humboldtiana, and two annual herbaceous plants: Echinochloa polystachya and Eichhornia crassipes) were selected to represent the ecological functioning of the site. Time series obtained for dissolved Mn and Cu (<0.20 microm) in Amazon River water could not be explained by tributary mixing or instream processes only. Therefore, the contribution of the waters transiting the floodplains should be considered. These results suggest that the chemical composition of the waters draining these floodplains is controlled by reactions occurring at sediment-water and plant-water interfaces. Trace elements concentrations in the plants (leaves) vary strongly with hydrological seasonality. Based on the concentration data and the biological productivity of floodplain ecosystems, a first order approximation of trace element storage (permanent or temporary) in the vegetation of these floodplains was made. It was found that floodplain-mainstem elemental fluxes make a significant contribution to the dissolved flux of the Amazon River. This study is part of the Brazilian_French joint research program Hybam (Hydrology and Geochemistry of the Amazonian Basin).
Starks, Trevor A.; Long, James M.; Dzialowski, Andrew R.
2016-01-01
Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts.
Lowery, Erin D.; Beauchamp, David A.
2015-01-01
Bull Trout Salvelinus confluentus are typically top predators in their host ecosystems. The Skagit River in northwestern Washington State contains Bull Trout and Chinook Salmon Oncorhynchus tshawytschapopulations that are among the largest in the Puget Sound region and also contains a regionally large population of steelhead O. mykiss (anadromous Rainbow Trout). All three species are listed as threatened under the Endangered Species Act (ESA). Our objective was to determine the trophic ecology of Bull Trout, especially their role as predators and consumers in the riverine food web. We seasonally sampled distribution, diets, and growth of Bull Trout in main-stem and tributary habitats during 2007 and winter–spring 2008. Consumption rates were estimated with a bioenergetics model to (1) determine the annual and seasonal contributions of different prey types to Bull Trout energy budgets and (2) estimate the potential impacts of Bull Trout predation on juvenile Pacific salmon populations. Salmon carcasses and eggs contributed approximately 50% of the annual energy budget for large Bull Trout in main-stem habitats, whereas those prey types were largely inaccessible to smaller Bull Trout in tributary habitats. The remaining 50% of the energy budget was acquired by eating juvenile salmon, resident fishes, and immature aquatic insects. Predation on listed Chinook Salmon and steelhead/Rainbow Trout was highest during winter and spring (January–June). Predation on juvenile salmon differed between the two study years, likely due to the dominant odd-year spawning cycle for Pink Salmon O. gorbuscha. The population impact on ocean- and stream-type Chinook Salmon was negligible, whereas the impact on steelhead/Rainbow Trout was potentially very high. Due to the ESA-listed status of Bull Trout, steelhead, and Chinook Salmon, the complex trophic interactions in this drainage provide both challenges and opportunities for creative adaptive management strategies.
Second-Tier Database for Ecosystem Focus, 2003-2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of Washington, Columbia Basin Research, DART Project Staff,
2004-12-01
The Second-Tier Database for Ecosystem Focus (Contract 00004124) provides direct and timely public access to Columbia Basin environmental, operational, fishery and riverine data resources for federal, state, public and private entities essential to sound operational and resource management. The database also assists with juvenile and adult mainstem passage modeling supporting federal decisions affecting the operation of the FCRPS. The Second-Tier Database known as Data Access in Real Time (DART) integrates public data for effective access, consideration and application. DART also provides analysis tools and performance measures for evaluating the condition of Columbia Basin salmonid stocks. These services are critical tomore » BPA's implementation of its fish and wildlife responsibilities under the Endangered Species Act (ESA).« less
NASA Astrophysics Data System (ADS)
Eagles-Smith, C.; Ackerman, J.; Herring, G.; Willacker, J.; Flanagan, C.
2014-12-01
Mercury (Hg) is a globally distributed contaminant that threatens ecosystem health across aquatic environments. The complexity of the Hg cycle and its primary drivers, coupled with dynamic food web processes that govern biomagnification, result in marked spatial variability in Hg bioaccumulation across aquatic ecosystems. However, it is unclear if patterns of bioaccumulation are consistent in magnitude and direction across ecosystem types. We synthesized data from several studies spanning more than 200 individual sites, comprising four distinct ecosystem classifications (estuaries, sub-alpine lakes, rivers, and managed wetlands). Within each ecosystem, we compared fish Hg concentrations among replicated sub-habitats and also evaluated the influence of land use, landscape composition, and biogeochemical drivers on fish Hg concentrations. We found substantial variability in fish Hg concentrations among adjacent sub-habitats within ecosystems. In estuarine environments, fish Hg concentrations were 7.4x higher in seasonal-saline wetlands than adjacent tidal wetland habitats. In riverine alcoves, preliminary data suggest that fish Hg concentrations were 1.5x higher than in fishes from paired mainstem river habitat. Among managed wetland habitats, fish Hg concentrations in rice fields were 2x higher than those in managed seasonal wetlands that were subjected to identical wetting and drying patterns. Across ecosystems, dissolved organic carbon (DOC) concentrations in surface waters were consistently correlated with fish Hg concentrations, highlighting its importance in Hg methylation and transport processes. Yet, the strength and direction of the relationships varied among habitat types. For example, fish Hg concentrations were positively correlated with DOC concentrations in riverine environments, whereas we found a negative correlation in alpine lakes. Instead, the most important determinant of fish Hg concentrations in alpine lakes was conifer tree density within a lake's catchment, resulting in a 4x increase in fish Hg concentration in lakes with the lowest to the highest catchment conifer tree density. Together, this integrated ecosystem analysis highlights the importance of understanding small-scale variation in bioaccumulation processes in order to better predict Hg risk.
External nutrient sources, internal nutrient pools, and phytoplankton production in Chesapeake Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnien, R.E.; Summers, R.M.; Sellner, K.G.
1992-12-01
External nutrient loadings, internal nutrient pools, and phytoplankton production were examined for three major subsystems of the Chesapeake Bay Estuary-the upper Mainstem, the Patuxent Estuary, and the Potomac Estuary-during 1985-1989. The atomic nitrogen to phosphorus ratios (TN:TP) of total loads were 51, 29 and 35, respectively. Most of these loads entered at the head of the estuaries from riverine sources and major wastewater treatment plants. Seven-16% of the nitrogen load entered the head of each estuary as particulate matter in contrast to 48-69% for phosphorus. The difference seems to favor a greater loss of phosphorus than nitrogen through sedimentation andmore » burial. A major storm event in the Potomac watershed greatly increased the particulate fraction of nitrogen and phosphorus and lowered the TN:TP in the river-borne loads and accounted for 11% of the nitrogen and 31% of the phosphorus delivered to the estuary by the Potomac River during the entire 60- month period examined here. Within the Mainstem estuary, salinity dilution plots revealed strong net sources of ammonium and phosphate in the oligohaline to upper mesohaline region. indicating considerable internal recycling of nutrients to surface waters. A net sink of nitrate was indicated during summer. Phytoplankton biomass in the mesohaline Mainstem reached a peak in spring and was relatively constant throughout the other seasons. In the Patuxent and Potomac, the TN:TP ratios of external loads are 2-4 times higher than those observed over the previous two decades. These changes are attributed to point-source phosphorus controls and the likelihood that nitrogen-rich nonpoint source inputs, including contributions from the atmosphere, have increased. These higher N:P ratios now suggest a greater overall potential for phosphorus-limitation rather than nitrogen-limitation of phytoplankton in the areas studied. 66 refs., 6 figs., 7 tabs.« less
Ross, Rob; Grams, Paul E.
2013-01-01
Construction and operation of Glen Canyon Dam has dramatically impacted the flow of the Colorado River through Glen, Marble, and Grand Canyons. Extremes in both streamflow and water temperature have been suppressed by controlled releases from the dam. Trapping of sediment in Lake Powell, the reservoir formed by Glen Canyon Dam, has also dramatically reduced the supply of suspended sediment entering the system. These changes have altered the riverine ecosystem and the habitat of native species, including fish such as the endangered humpback chub (Gila cypha). Most native fish are adapted to seasonally warm water, and the continuous relatively cold water released by the dam is one of the factors that is believed to limit humpback chub growth and survival. While average mainstem temperatures in the Colorado River are well documented, there is limited understanding of temperatures in the nearshore environments that fish typically occupy. Four nearshore geomorphic unit types were studied between the confluence of the Colorado and Little Colorado Rivers and Lava Canyon in the summer and fall of 2010, for study periods of 10 to 27 days. Five to seven sites were studied during each interval. Persistent thermal gradients greater than the 0.2 °C accuracy of the instruments were not observed in any of the sampled shoreline environments. Temperature gradients between the shoreline and mainstem on the order of 4 °C, believed to be important to the habitat-seeking behavior of native or nonnative fishes, were not detected.
Anchoring submersible ultrasonic receivers in river channels with stable substrate
Bettoli, Phillip William; Scholten, G.D.; Hubbs, D.
2010-01-01
We developed an anchoring system for submersible ultrasonic receivers (SURs) that we placed on the bottom of the riverine reaches of three main-stem reservoirs in the upper Tennessee River. Each anchor consisted of a steel tube (8.9 x 35.6 cm) welded vertically to a round plate of steel (5.1 x 40.6 cm). All seven SURs and their 57-kg anchors were successfully deployed and retrieved three times over 547 d by a dive team employing surface air-breathing equipment and a davit-equipped boat. All of the anchors and their SURs remained stationary over two consecutive winters on the hard-bottom, thalweg sites where they were deployed. The SUR and its anchor at the most downriver site experienced flows that exceeded 2,100 m(3)/s and mean water column velocities of about 0.9 m/s.
Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B
2016-01-01
Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.
Evidence for fish dispersal from spatial analysis of stream network topology
Hitt, N.P.; Angermeier, P.L.
2008-01-01
Developing spatially explicit conservation strategies for stream fishes requires an understanding of the spatial structure of dispersal within stream networks. We explored spatial patterns of stream fish dispersal by evaluating how the size and proximity of connected streams (i.e., stream network topology) explained variation in fish assemblage structure and how this relationship varied with local stream size. We used data from the US Environmental Protection Agency's Environmental Monitoring and Assessment Program in wadeable streams of the Mid-Atlantic Highlands region (n = 308 sites). We quantified stream network topology with a continuous analysis based on the rate of downstream flow accumulation from sites and with a discrete analysis based on the presence of mainstem river confluences (i.e., basin area >250 km2) within 20 fluvial km (fkm) from sites. Continuous variation in stream network topology was related to local species richness within a distance of ???10 fkm, suggesting an influence of fish dispersal within this spatial grain. This effect was explained largely by catostomid species, cyprinid species, and riverine species, but was not explained by zoogeographic regions, ecoregions, sampling period, or spatial autocorrelation. Sites near mainstem river confluences supported greater species richness and abundance of catostomid, cyprinid, and ictalurid fishes than did sites >20 fkm from such confluences. Assemblages at sites on the smallest streams were not related to stream network topology, consistent with the hypothesis that local stream size regulates the influence of regional dispersal. These results demonstrate that the size and proximity of connected streams influence the spatial distribution of fish and suggest that these influences can be incorporated into the designs of stream bioassessments and reserves to enhance management efficacy. ?? 2008 by The North American Benthological Society.
Koster, Wayne M; Dawson, David R; O'Mahony, Damien J; Moloney, Paul D; Crook, David A
2014-01-01
Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua) between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (2007-2011). Fish were tagged and released in autumn 2007-2009 in the mid-Murray (n = 42) and lower Goulburn (n = 37) rivers within 3-6 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstem-tributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstem-tributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers.
NUTRIENT DYNAMICS IN RELATION TO GEOMORPHOLOGY OF RIVERINE WETLANDS
Variation in water depth and soil properties associated with geomorphic structures can affect riverine wetland nutrient dynamics by altering biogeochemical processes. We examined the seasonal influence of soils and geomorphology on nutrient forms and concentrations in riverine we...
Using CDOM optical properties for estimating DOC concentrations and pCO 2 in the Lower Amazon River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valerio, Aline de Matos; Kampel, Milton; Vantrepotte, Vincent
Colored dissolved organic matter (CDOM) is largely responsible for the optical properties of freshwaters and coastal areas and can be used as a proxy to assess the non-optical carbon content as the dissolved organic carbon (DOC) and the partial pressure of carbon dioxide (pCO 2). Nevertheless, riverine studies that explores the former relationship are more challenging due to the spectral mixture caused by the high content of inorganic materials in the suspended sediment. Here we evaluate the spatial-temporal variability of CDOM, DOC and pCO 2, as well as the potential of CDOM absorption coefficient (aCDOM(412)) for estimating DOC concentration andmore » pCO 2 along the lower Amazon River. Our results revealed differences in the dissolved organic matter (DOM) quality between clear water (CW) tributaries and the Amazon River mainstem. A linear relationship between DOC and CDOM was observed when tributaries and mainstem are evaluated separately (Amazon waters: N=42, R2=0.74; CW: N= 13, R2 = 0.57). However, this linear relationship was not observed during periods of higher rainfall and river discharge, requiring a model specific to these time periods to be developed (N = 25, R2 = 0.58). A strong linear positive relation was found between aCDOM(412) and pCO 2( N=69, R2=0.65) along the lower river. pCO 2 was less affected by the optical difference between tributaries and mainstem water or by the presence of higher hygrometric conditions when compared to CDOM to DOC relationships. Including the river water temperature in the model improves our ability to estimate pCO 2 (N=69; R2 = 0.80). Our results also illustrate the complexity of DOM temporal dynamics in the lower Amazon River where the occurrence of extreme high and low discharge due to factors such as El Niño, can significantly alter the expected seasonal oscillation, as was the case during this study period. The ability to remotely assess both DOC and pCO 2 from CDOM optical properties highlight the importance of using remote sensing data for monitoring carbon dynamics in large running water systems worldwide.« less
Armstrong, David S.; Parker, Gene W.
2003-01-01
The relations among stream habitat and hydrologic conditions were investigated in the Usquepaug?Queen River Basin in southern Rhode Island. Habitats were assessed at 13 sites on the mainstem and tributaries from July 1999 to September 2000. Channel types are predominantly low-gradient glides, pools, and runs that have a sand and gravel streambed and a forest or shrub riparian zone. Along the stream margins,overhanging brush, undercut banks supported by roots, and downed trees create cover; within the channel, submerged aquatic vegetation and woody debris create cover. These habitat features decrease in quality and availability with declining streamflows, and features along stream margins generally become unavailable once streamflows drop to the point at which water recedes from the stream banks. Riffles are less common, but were identified as critical habitat areas because they are among the first to exhibit habitat losses or become unavailable during low-flow periods. Stream-temperature data were collected at eight sites during summer 2000 to indicate the suitability of those reaches for cold-water fish communities. Data indicate stream temperatures provide suitable habitat for cold-water species in the Fisherville and Locke Brook tributaries and in the mainstem Queen River downstream of the confluence with Fisherville Brook. Stream temperatures in the Usquepaug River downstream from Glen Rock Reservoir are about 6?F warmer than in the Queen River upstream from the impoundment. These warmer temperatures may make habitat in the Usquepaug River marginal for cold-water species. Fish-community composition was determined from samples collected at seven sites on tributaries and at three sites on the mainstem Usquepaug?Queen River. Classification of the fish into habitat-use groups and comparison to target fish communities developed for the Quinebaug and Ipswich Rivers indicated that the sampled reaches of the Usquepaug?Queen River contained most of the riverine fish species that would have been expected to occur in this area. Streamflow records from the gaging station Usquepaug River near Usquepaug were used to (1) determine streamflow requirements for habitat protection by use of the Tennant method, and (2) define a flow regime that mimics the river's natural flow regime by use of the Range of Variability Approach. The Tennant streamflow requirement, defined as 30 percent of the mean annual flow, was 0.64 cubic feet per second per square mile (ft3/s/mi2). This requirement should be considered an initial estimate because flows measured at the Usquepaug River gaging station are reduced by water withdrawals upstream from the gage. The streamflow requirements may need to be revised once a watershed-scale precipitationrunoff model of the Usquepaug River is complete and a simulation of streamflows without water withdrawals has been determined. Streamflow requirements for habitat protection were also determined at seven riffle sites by use of the Wetted-Perimeter and R2Cross methods. Two of these sites were on the mainstem Usquepaug River, one was on the mainstem Queen River, and four were on tributaries and the headwaters of the Queen River. Median streamflow requirements for habitat protection for these sites were 0.41 (ft3/s)/mi2, determined by the Wetted-Perimeter method and 0.72 ft3/s/mi2, determined by the R2Cross method.
Counihan, Timothy D.; Hardiman, Jill M.; Waste, Stephen
2013-01-01
Implementing an Integrated Status and Trends Monitoring program (ISTM) for the mainstem Columbia River will help identify trends in important natural resources and help us understand the long-term collective effects of management actions. In this report, we present progress towards the completion of a stepwise process that will facilitate the development of an ISTM for the mainstem Columbia River. We discuss planning and regulatory documents that can be used to identify monitoring goals and objectives and present existing monitoring and research activities that should be considered as the development of a Columbia River ISTM proceeds. We also report progress towards the development of sample frames for the Columbia and Snake Rivers and their floodplains. The sample frames were formulated using Digital Elevation Models (DEM’s) of the river channel and upland areas and a Generalized Random-Tessellation Stratified (GRTS) algorithm for an area based resource to generate “master sample(s).” Working with the Pacific Northwest Aquatic Monitoring Partnership (PNAMP) we facilitated the transfer of the sample frames to the PNAMP “Monitoring Sample Designer” tool. We then discuss aspects of response and survey designs as they pertain to the formulation of a mainstem Columbia River ISTM. As efforts to formulate an ISTM for the mainstem Columbia River proceed, practitioners should utilize the extensive literature describing the planning and implementation of fish and wildlife mitigation and recovery efforts in the Columbia River Basin. While we make progress towards establishing an ISTM framework, considerable work needs to be done to formulate an ISTM program for the mainstem Columbia River. Long-term monitoring programs have been established for other large rivers systems; scientists that have experience planning, implementing, and maintaining large river monitoring efforts such as those in the Colorado, Illinois, and Mississippi Rivers should be consulted and involved as efforts proceed.
Pellerin, Brian A.; Downing, Bryan D.; Kendall, Carol; Dahlgren, Randy A.; Kraus, Tamara E.C.; Saraceno, John Franco; Spencer, Robert G. M.; Bergamaschi, Brian A.
2009-01-01
1. We investigated diurnal nitrate (NO3−) concentration variability in the San Joaquin River using an in situ optical NO3− sensor and discrete sampling during a 5‐day summer period characterized by high algal productivity. Dual NO3− isotopes (δ15NNO3 and δ18ONO3) and dissolved oxygen isotopes (δ18ODO) were measured over 2 days to assess NO3− sources and biogeochemical controls over diurnal time‐scales.2. Concerted temporal patterns of dissolved oxygen (DO) concentrations and δ18ODOwere consistent with photosynthesis, respiration and atmospheric O2 exchange, providing evidence of diurnal biological processes independent of river discharge.3. Surface water NO3− concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5‐day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of δ15NNO3 and δ18ONO3isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3− variability in the San Joaquin River during the study. The lack of a clear explanation for NO3− variability likely reflects a combination of riverine biological processes and time‐varying physical transport of NO3− from upstream agricultural drains to the mainstem San Joaquin River.4. The application of an in situ optical NO3− sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.
Pulsed flows, tributary inputs, and food web structure in a highly regulated river
Sabo, John; Caron, Melanie; Doucett, Richard R.; Dibble, Kimberly L.; Ruhi, Albert; Marks, Jane; Hungate, Bruce; Kennedy, Theodore A.
2018-01-01
1.Dams disrupt the river continuum, altering hydrology, biodiversity, and energy flow. Although research indicates that tributary inputs have the potential to dilute these effects, knowledge at the food web level is still scarce.2.Here we examined the riverine food web structure of the Colorado River below Glen Canyon Dam, focusing on organic matter sources, trophic diversity, and food chain length. We asked how these components respond to pulsed flows from tributaries following monsoon thunderstorms that seasonally increase streamflow in the American Southwest.3.Tributaries increased the relative importance of terrestrial organic matter, particularly during the wet season below junctures of key tributaries. This contrasted with the algal-based food web present immediately below Glen Canyon Dam.4.Tributary inputs during the monsoon also increased trophic diversity and food chain length: food chain length peaked below the confluence with the largest tributary (by discharge) in Grand Canyon, increasing by >1 trophic level over a 4-5 kilometre reach possibly due to aquatic prey being flushed into the mainstem during heavy rain events.5.Our results illustrate that large tributaries can create seasonal discontinuities, influencing riverine food web structure in terms of allochthony, food web diversity, and food chain length.6.Synthesis and applications. Pulsed flows from unregulated tributaries following seasonal monsoon rains increase the importance of terrestrially-derived organic matter in large, regulated river food webs, increasing food chain length and trophic diversity downstream of tributary inputs. Protecting unregulated tributaries within hydropower cascades may be important if we are to mitigate food web structure alteration due to flow regulation by large dams. This is critical in the light of global hydropower development, especially in megadiverse, developing countries where dam placement (including completed and planned structures) is in tributaries.
Land use mediates riverine nitrogen export under the dominant influence of human activities
NASA Astrophysics Data System (ADS)
Chen, Binhui; Chang, Scott X.; Lam, Shu Kee; Erisman, Jan Willem; Gu, Baojing
2017-09-01
Riverine nitrogen (N) export is a crucial process that links upstream and downstream ecosystems and coastal zones. However, the driving forces of riverine N export that is closely related to water N pollution are still not well understood. In this study, we used a mass balance approach to quantify the sources of N discharge and analyzed the effect of land use composition on riverine N export, taking Zhejiang Province, China as a case study. We found that the total reactive N discharge to rivers in Zhejiang increased from 0.22 to 0.26 Tg yr-1 from 2000 to 2015. At the watershed scale, our estimate of N export agrees well with the monitored riverine N concentration in the eight major watersheds in Zhejiang. Direct discharge of domestic wastewater and effluents from wastewater treatment plants are dominant sources of riverine N export, followed by agricultural non-point sources. Although riverine N export increases with the increasing proportion of urban and agricultural land uses, we did not find any relationship between land use change and changes in riverine N export. This suggests that the dominant factor affecting riverine N export should be human activities (e.g. wastewater discharge and fertilization level), while land use only mediates riverine N export.
Can brook trout survive climate change in large rivers? If it rains.
Merriam, Eric R; Fernandez, Rodrigo; Petty, J Todd; Zegre, Nicolas
2017-12-31
We provide an assessment of thermal characteristics and climate change vulnerability for brook trout (Salvelinus fontinalis) habitats in the upper Shavers Fork sub-watershed, West Virginia. Spatial and temporal (2001-2015) variability in observed summer (6/1-8/31) stream temperatures was quantified in 23 (9 tributary, 14 main-stem) reaches. We developed a mixed effects model to predict site-specific mean daily stream temperature from air temperature and discharge and coupled this model with a hydrologic model to predict future (2016-2100) changes in stream temperature under low (RCP 4.5) and high (RCP 8.5) emissions scenarios. Observed mean daily stream temperature exceeded the 21°C brook trout physiological threshold in all but one main-stem site, and 3 sites exceeded proposed thermal limits for either 63- and 7-day mean stream temperature. We modeled mean daily stream temperature with a high degree of certainty (R 2 =0.93; RMSE=0.76°C). Predicted increases in mean daily stream temperature in main-stem and tributary reaches ranged from 0.2°C (RCP 4.5) to 1.2°C (RCP 8.5). Between 2091 and 2100, the average number of days with mean daily stream temperature>21°C increased within main-stem sites under the RCP 4.5 (0-1.2days) and 8.5 (0-13) scenarios; however, no site is expected to exceed 63- or 7-day thermal limits. During the warmest 10years, ≥5 main-stem sites exceeded the 63- or 7-day thermal tolerance limits under both climate emissions scenarios. Years with the greatest increases in stream temperature were characterized by low mean daily discharge. Main-stem reaches below major tributaries never exceed thermal limits, despite neighboring reaches having among the highest observed and predicted stream temperatures. Persistence of thermal refugia within upper Shavers Fork would enable persistence of metapopulation structure and life history processes. However, this will only be possible if projected increases in discharge are realized and offset expected increases in air temperature. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buenau, Kate E.; Hiller, Tim L.; Tyre, Andrew J.
Humans make extensive use of rivers and floodplains for economic benefits including agriculture, hydropower, commerce and recreation. Economic development of floodplains subsequently requires control of river levels to avoid flood damage. This process began in the Missouri River basin in the 1890s with the construction of a series of hydropower dams in Montana and escalated to new levels with the approval of the Pick-Sloan plan in the 1944 Flood Control Act. Maximizing these human uses of the river led to changes in and losses of hydrological and ecological processes, ultimately resulting in the federal listing of three fish and wildlifemore » species under the Endangered Species Act: the pallid sturgeon (Scaphirhyncus albus; 1983), the piping plover (Charadrius melodus; 1984), and the interior population of least tern (Sternula antillarum; 1985). The listing of terns and plovers did not affect river management until the United States Army Corps of Engineers (USACE) proposed to modify the governing document of the Missouri River Mainstem System, the Master Manual, a process which was completed in 2003. Although there was little disagreement over the habitat conditions that terns and plovers used for nesting, there was substantial disagreement over the amount of habitat necessary for terns and plovers to meet population recovery goals. Answering this question requires forecasting species-specific population responses to dynamic habitat affected by both human actions (reservoir management and habitat restoration) and natural variability in precipitation. Piping plovers and least terns nest along the Missouri River from Fort Peck, Montana to just north of Sioux City, Iowa (Figure 1). Both species prefer to nest on sand and fine gravel substrates with no or sparse vegetation cover (Prindiville Gaines and Ryan, 1988; Sherfy et al., 2012), such as riverine sandbars (emergent sandbar habitat; ESH). Piping plovers also nest on reservoir shorelines that lack vegetation cover (Anteau et al., 2012). The amount of ESH available for nesting in a given year is strongly affected by the amount of water entering the Missouri River system through precipitation and the management of water flow from six reservoirs operated by the USACE on the mainstem Missouri River. Prior to the construction of dams, the Missouri River experienced bimodal peak flows in spring and early summer in concordance with the melting of plains and mountain snowpack (Galat and Lipkin, 2000). Flows decreased during summer months, with river stage then dependent upon rainfall. The combination of consistent high flows and occasional extreme high flows, together with the meandering characteristic of the river, regularly reshaped and scoured vegetation from ESH.« less
R.G. Bramblett; M.D. Bryant; B.E. Wright; R.G. White
2002-01-01
The movement of juvenile salmonids between small tributaries and main-stem habitats in southeast Alaska watersheds is poorly understood. We observed movements of steelhead Oncorhynchus mykiss, coho salmon O. kisutch, and Dolly Varden Salvelinus malma between mainstem and tributary habitats at weirs located...
Recruitment variation of crappies in response to hydrology of Tennessee reservoirs
Sammons, S.M.; Bettoli, P.W.; Isermann, D.A.; Churchill, T.N.
2002-01-01
Black crappies Pomoxis nigromaculatus and white crappies P. annularis were sampled to index recruitment in seven Tennessee reservoirs (four main-stem and three tributary storage impoundments). Crappie recruitment in tributary storage impoundments appeared to be consistently higher in years of high discharge during the prespawn period (1 January-31 March). A similar relation was found in one main-stem impoundment; however, crappie recruitment in two main-stem impoundments was inversely related to discharge during the spawning period (1 April-30 May), and little recruitment variation was found in the fourth main-stem impoundment. In general, reservoir hydrology appeared to have a stronger effect on crappie recruitment in tributary storage impoundments than in main-stem impoundments, possibly because recruitment was more variable in tributary systems. Thus, it is likely that crappie populations will rarely have strong year-classes simultaneously over a wide geographic area or even within a single watershed.
Koster, Wayne M.; Dawson, David R.; O’Mahony, Damien J.; Moloney, Paul D.; Crook, David A.
2014-01-01
Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua) between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (2007–2011). Fish were tagged and released in autumn 2007–2009 in the mid-Murray (n = 42) and lower Goulburn (n = 37) rivers within 3–6 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstem–tributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstem–tributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers. PMID:24788137
ASSESSING LONGITUDINAL THERMAL CONNECTIVITY FOR PACIFIC SALMONIDS
Water temperature is a key driver of ecological processes in aquatic environments and can influence biological connectivity among riverine habitats. Riverine fish and other mobile aquatic species often must navigate a variety of physical barriers such as dams and culverts. For Pa...
EVALUATING THE CONDITION OF RIVERINE-RIPARIAN RESOURCES IN THE PACIFIC NORTHWEST
The evaluation of the condition of riverine-riparian resources at regional scales relies on the interpretation of measurements taken on a variety of attributes reflecting both status and processes governing status of these resources. Typical attributes include indicators of upsl...
NASA Technical Reports Server (NTRS)
Richey, Jeffrey E.; Devol, Allan H.; Wofsy, Steven C.; Victoria, Reynaldo; Riberio, Maria N. G.
1986-01-01
Concentrations of CO2, O2, CH4, and N2O in the Amazon River system reflect an oxidation-reduction sequence in combination with physical mixing between the floodplain and the mainstem. Concentrations of CO2 ranged from 150 microM in the Amazon mainstem to 200 to 300 microM in aerobic waters of the floodplain, and up to 1000 microM in oxygen-depleted environments. Apparent oxygen utilization (AOU) ranged from 80 to 250 microM. Methane was highly supersaturated, with concentrations ranging from 0.06 microM in the mainstem to 100 microM on the floodplain. Concentrations of N2O were slightly supersaturated in the mainstem, but were undersaturated on the floodplain. Fluxes calculated from these concentrations indicated decomposition of 1600 g C sq m y(-1) of organic carbon in Amazon floodplain waters. Analysis of relationships between CH4, O2, and CO2 concentrations indicated that approximately 50 percent of carbon mineralization on the floodplain is anaerobic, with 20 percent lost to the atmoshphere as CH4. The predominance of anaerobic metabolism leads to consumption of N2O on the flood plane. Elevated concentrations of CH4 in the mainstem probably reflect imput from the floodplain, while high levels of CO2 in the mainstem are derived from a combination of varzea drainage and in situ respiration.
NASA Astrophysics Data System (ADS)
Hu, Minpeng; Liu, Yanmei; Wang, Jiahui; Dahlgren, Randy A.; Chen, Dingjiang
2018-06-01
Source apportionment is critical for guiding development of efficient watershed nitrogen (N) pollution control measures. The ReNuMa (Regional Nutrient Management) model, a semi-empirical, semi-process-oriented model with modest data requirements, has been widely used for riverine N source apportionment. However, the ReNuMa model contains limitations for addressing long-term N dynamics by ignoring temporal changes in atmospheric N deposition rates and N-leaching lag effects. This work modified the ReNuMa model by revising the source code to allow yearly changes in atmospheric N deposition and incorporation of N-leaching lag effects into N transport processes. The appropriate N-leaching lag time was determined from cross-correlation analysis between annual watershed individual N source inputs and riverine N export. Accuracy of the modified ReNuMa model was demonstrated through analysis of a 31-year water quality record (1980-2010) from the Yongan watershed in eastern China. The revisions considerably improved the accuracy (Nash-Sutcliff coefficient increased by ∼0.2) of the modified ReNuMa model for predicting riverine N loads. The modified model explicitly identified annual and seasonal changes in contributions of various N sources (i.e., point vs. nonpoint source, surface runoff vs. groundwater) to riverine N loads as well as the fate of watershed anthropogenic N inputs. Model results were consistent with previously modeled or observed lag time length as well as changes in riverine chloride and nitrate concentrations during the low-flow regime and available N levels in agricultural soils of this watershed. The modified ReNuMa model is applicable for addressing long-term changes in riverine N sources, providing decision-makers with critical information for guiding watershed N pollution control strategies.
Clara Wheeler; James Bettaso; Donald Ashton; Hartwell Welsh
2013-01-01
The cold temperatures maintained in the Trinity River are beneficial to fish but may be problematic for foothill yellow-legged frogs. We examined the timing of breeding, reproductive output, and growth and development of tadpoles for populations of foothill yellow-legged frogs on the mainstem and six tributaries of the Trinity River. On the colder mainstem, onset of...
RIVERINE RESTORATION STRATEGIES: PATTERN AND PROCESS IN A LARGE ALLUVIAL RIVER
The Willamette River in western Oregon is the tenth largest river in the conterminous U. S. Plans being developed to restore ecological function to the main corridor of the river. Our riverine research has developed a basic understanding of some of the ecological functions and ...
Pan, Xiaohui; Tang, Jianhui; Chen, Yingjun; Li, Jun; Zhang, Gan
2011-12-01
PCN congeners were analyzed in marine and riverine sediments of the Laizhou Bay area, North China. Concentrations of PCNs ranged from 0.12 to 5.1 ng g(-)(1) dry weight (dw) with a mean value of 1.1 ng g(-)(1) dw. The levels of PCNs varied largely, with industrial group approximately ten folds higher than those of the rural in riverine sediment. A strong impact by direct discharge from local factories was suggested. Similar compositional profiles were found within groups. High resemblance of compositional profiles between industrial samples and Halowax 1014 was observed. It was indicated that PCNs in riverine sediments were mainly from release of industrial usage, with additional contributions from industrial thermal process at certain sites. In marine sediments, it was suggested that PCNs along the coast of Laizhou Bay were mainly controlled by riverine input. While in the central bay, PCN distributions were possibly impacted by combined multiple factors. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wehrs, K.; Crosby, B. T.
2017-12-01
River response to changes in climate and relative base level often leave behind a legacy of transient landforms that enable the interpretation of past events. The dominant paradigm is that base level fall initiates a wave of mainstem incision that progressively transmits change upstream. Mainstem-adjacent hillslopes coupled to the channel subsequently respond as their toe slopes are steepened. To test this paradigm, we first use a longitudinal set of mainstem terrace ages to evaluate whether incision incrementally progresses upstream or is contemporaneous. Second, we explore longitudinal variations in mainstem-adjacent mass movements to evaluate whether they reflect a time and space progression in response. The South Fork Eel River in northern California contains over 600 mainstem-adjacent mass movements and 60 m tall, longitudinally extensive strath terraces that record a landscape response to river incision. We use Optically Stimulated Luminescence, with feldspars and coarse-grained sampling technique, to determine the depositional age of alluvial fill atop the strath terrace. If terrace abandonment progressively young upstream, this suggests that base level fall was not spatially contemporaneous, but rather time progressive. As a consequence, the age, form, and extent of mass wasting events should also vary longitudinally. Because terraces isolate hillslopes from the base level fall signal, we use these surfaces to quantify hillslope form and function independent of that forcing. Preliminary results using mainstem-parallel, 1 m LiDAR, show significant variation in size of mass movements throughout the basin, with planar, linearly moving translational landslides dominating throughout the catchment. In the lower basin, well downstream of the current knickzone, we see an increase in mass movement concentration, reactivation, and overall extent of mass movements. Multiple factors confound our interpretation of hillslope morphology and response, due to changes in lithology, climate, and river sinuosity throughout the catchment.
Moix, Matthew W.; Barks, C. Shane; Funkhouser, Jaysson E.
2003-01-01
Osage and Prairie Creeks in Benton County, Arkansas, were studied between July 24 and July 26, 2001, to describe the surface-water quality and the streamflow gains and losses along sections of each mainstem. The creeks are located in northwestern Arkansas. Water-quality samples were collected at 12 surface-water sites on the mainstem and at 6 points of inflow for Osage Creek, and at 9 surface-water sites on the mainstem and at 4 points of inflow for Prairie Creek. Water-quality analyses were performed by Rogers Water Utilities and the Arkansas Water Resources Laboratory. Streamflow measurements were made along the mainstem of each creek and at points of inflow (prior to confluence with the mainstem) to identify gaining and losing reaches. Water-quality data collected for Osage Creek indicated that dissolved ammonia concentrations were within the typical range of concentrations measured for streams in the Springfield and Salem Plateaus. Nitrite plus nitrate and total phosphorus concentrations were within the range of concentrations measured for several streams in the western part of the Springfield and Salem Plateaus. Total phosphorus concentrations measured on the mainstem of Osage Creek were higher downstream from the Rogers wastewater-treatment plant than upstream from the wastewater-treatment plant. Water-quality data collected for Prairie Creek indicated that dissolved ammonia concentrations measured for three mainstem sites were above the typical level of dissolved ammonia concentrations measured for streams in the Springfield and Salem Plateaus. High concentrations of dissolved ammonia measured at these sites might be indicative of sewage disposal or organic waste. Most concentrations of nitrite plus nitrate for Prairie Creek were above the range measured for some of the least-disturbed streams of the Ozark Highlands ecoregion but were within the range that is typical for several streams in the western part of the Springfield and Salem Plateaus. Total phosphorus concentrations were below or within the range that is typical for several streams in the western part of the Springfield and Salem Plateaus with elevated concentrations measured at two sties. Elevated concentrations of total phosphorus measured might be indicative of sewage or animal metabolic waste. Identification of losing and gaining reaches indicates that interaction exists between the local shallow unconfined ground-water aquifer and surface flow in Osage and Prairie Creeks. Measured streamflow for the mainstem of Osage Creek ranged from 2.34 to 19.1 cubic feet per second during this study. Streamflow measured at the beginning of the study reach for Osage Creek was 2.34 cubic feet per second, and streamflow measured at the downstream end of the study reach was 15.7 cubic feet per second. One losing and two gaining reaches were identified on the mainstem of Osage Creek with a net gain of 3.58 cubic feet per second upstream from the wastewater-treatment plant. Measured streamflow for the mainstem of Prairie Creek ranged from 0 to 3.17 cubic feet per second during this study. Streamflow measured at the beginning of the study reach for Prairie Creek was 0.44 cubic feet per second, and the stream bed was dry at the downstream end of the study reach. Three losing and two gaining reaches were identified on the mainstem of Prairie Creek with a net loss of 3.06 cubic feet per second.
NASA Astrophysics Data System (ADS)
Young, M. B.; Kendall, C.; Silva, S. R.; Dahlgren, R. A.; Stringfellow, W. T.
2008-12-01
The San Joaquin River (SJR) is a large hypereutrophic river located in the Central Valley, California, a major agricultural region. Nutrient subsidies, algae, and other organic material from the San Joaquin River contribute to periods of low dissolved oxygen in the Stockton Deep Water Ship Channel, inhibiting salmon migration. We used a multi-isotope approach to link nitrate and particulate organic matter (POM) to different sources and related land uses. The isotope data was also used to better understand the physical and biological processes controlling the distribution of nitrate and POM throughout the river system. Samples collected from the mainstem SJR and tributaries twice-monthly to monthly between March 2005 and December 2007 were analyzed for nitrate, POM, and water isotopes. There are many land uses surrounding the SJR and its tributaries, including multiple types of agriculture, dairies, wetlands, and urban areas. Samples from SJR tributaries containing both major and minor contributions of wetland discharge generally had distinct nitrate and POM isotope signatures compared to other tributaries. Unique nitrate and POM isotope signatures associated with wetland discharges may reflect anaerobic biological processes occurring in flooded soils. For the mainstem SJR, we applied an isotope mass balance approach using nitrate and water isotopes to calculate the expected downstream isotope values based upon measured inputs from known water sources such as drains and tributaries. Differences between the calculated downstream isotope values and the measured values indicate locations and time periods when either biological processes such as algal uptake, or physical process such as the input of unidentified water sources, significantly altered the isotope signatures of water, POM, or nitrate within the SJR. This research will provide a better understanding of how different land uses affect the delivery of carbon and nitrogen to the SJR, and will provide a better understanding of the physical and biological processes occurring within the mainstem SJR.
Role of surface and subsurface processes in scaling N2O emissions along riverine networks
Marzadri, Alessandra; Dee, Martha M.; Tonina, Daniele; Bellin, Alberto; Tank, Jennifer L.
2017-01-01
Riverine environments, such as streams and rivers, have been reported as sources of the potent greenhouse gas nitrous oxide (N2O) to the atmosphere mainly via microbially mediated denitrification. Our limited understanding of the relative roles of the near-surface streambed sediment (hyporheic zone), benthic, and water column zones in controlling N2O production precludes predictions of N2O emissions along riverine networks. Here, we analyze N2O emissions from streams and rivers worldwide of different sizes, morphology, land cover, biomes, and climatic conditions. We show that the primary source of N2O emissions varies with stream and river size and shifts from the hyporheic–benthic zone in headwater streams to the benthic–water column zone in rivers. This analysis reveals that N2O production is bounded between two N2O emission potentials: the upper N2O emission potential results from production within the benthic–hyporheic zone, and the lower N2O emission potential reflects the production within the benthic–water column zone. By understanding the scaling nature of N2O production along riverine networks, our framework facilitates predictions of riverine N2O emissions globally using widely accessible chemical and hydromorphological datasets and thus, quantifies the effect of human activity and natural processes on N2O production. PMID:28400514
Mainstem Clearwater River Study: Assessment for Salmonid Spawning, Incubation, and Rearing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, William P.
1989-01-01
Chinook salmon reproduced naturally in the Clearwater River until damming of the lower mainstem in 1927 impeded upstream spawning migrations and decimated the populations. Removal of the Washington Water Power Dam in 1973 reopened upriver passage. This study was initiated to determine the feasibility of re-introducing chinook salmon into the lower mainstem Clearwater River based on the temperature and flow regimes, water quality, substrate, and invertebrate production since the completion of Dworshak Dam in 1972. Temperature data obtained from the United States Geological Survey gaging stations at Peck and Spalding, Idaho, were used to calculate average minimum and maximum watermore » temperature on a daily, monthly and yearly basis. The coldest and warmest (absolute minimum and maximum) temperatures that have occurred in the past 15 years were also identified. Our analysis indicates that average lower mainstem Clearwater River water temperatures are suitable for all life stages of chinook salmon, and also for steelhead trout rearing. In some years absolute maximum water temperatures in late summer may postpone adult staging and spawning. Absolute minimum temperatures have been recorded that could decrease overwinter survival of summer chinook juveniles and fall chinook eggs depending on the quality of winter hiding cover and the prevalence of intra-gravel freezing in the lower mainstem Clearwater River.« less
Sepulveda, A.J.; Colyer, W.T.; Lowe, W.H.; Vinson, M.R.
2009-01-01
Interior cutthroat trout occupy small fractions of their historic ranges and existing populations often are relegated to headwater habitats. Conservation requires balancing protection for isolated genetically pure populations with restoration of migratory life histories by reconnecting corridors between headwater and mainstem habitats. Identification of alternative life history strategies within a population is critical to these efforts. We tested the application of nitrogen stable isotopes to discern fluvial from resident Bonneville cutthroat trout (BCT; Oncorhynchus clarkii utah) in a headwater stream. Fluvial BCT migrate from headwater streams with good water quality to mainstem habitats with impaired water quality. Resident BCT remain in headwater streams. We tested two predictions: (i) fluvial BCT have a higher ??15N than residents, and (ii) fluvial BCT ??15N reflects diet and ??15N enrichment characteristics of mainstem habitats. We found that fluvial ??15N was greater than resident ??15N and that ??15N was a better predictor of life history than fish size. Our data also showed that fluvial and resident BCT had high diet overlap in headwater sites and that ??15N of lower trophic levels was greater in mainstem sites than in headwater sites. We conclude that the high ??15N values of fluvial BCT were acquired in mainstem sites.
Predicting the thermal effects of dam removal on the Klamath River
Bartholow, J.M.; Campbell, S.G.; Flug, M.
2004-01-01
The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the river’s water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the river’s seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the river’s thermal regime during certain conditions for over 200 km of the mainstem.
[Selective left mainstem bronchial intubation in the neonatal intensive care unit].
Ho, Anthony M H; Flavin, Michael P; Fleming, Melinda L; Mizubuti, Glenio Bitencourt
Selective neonatal left mainstem bronchial intubation to treat right lung disease is typically achieved with elaborate maneuvers, instrumentation and devices. This is often attributed to bronchial geometry which favors right mainstem entry of an endotracheal tube deliberately advanced beyond the carina. A neonate with severe bullous emphysema affecting the right lung required urgent non-ventilation of that lung. We achieved left mainstem bronchial intubation by turning the endotracheal tube 180° such that the Murphy's eye faced the left instead of the right, and simulated a left-handed intubation by slightly orientating the endotracheal tube such that its concavity faced the left instead of the right as in a conventional right-handed intubation. Urgent intubation of the left mainstem bronchus with an endotracheal tube can be easily achieved by recognizing that it is the position of the endotracheal tube tip and the direction of its concavity that are the chief determinants of which bronchus an endotracheal tube goes when advanced. This is important in critically ill neonates as the margin of safety and time window are small, and the absence of double-lumen tubes. Use of fiberoptic bronchoscope and blockers should be reserved as backup plans. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Nielsen, J.L.; Heine, Erika L.; Gan, Christina A.; Fountain, Monique C.
2000-01-01
Mitochondrial DNA (mtDNA) sequence and allelic frequency data for 12 microsatellite loci were used to analyze population genetic structure and recolonization by rainbow trout, Oncorhynchus mykiss, following the 1991 Cantara spill on the upper Sacramento River, California. Genetic analyses were performed on 1,016 wild rainbow trout collected between 1993 and 1996 from the mainstem and in 8 tributaries. Wild trout genotypes were compared to genotypes for 79 Mount Shasta Hatchery rainbow trout. No genetic heterogeneity was found 2 years after the spill (1993) between tributary populations and geographically proximate mainstem fish, suggesting recolonization of the upper mainstem directly from adjacent tributaries. Trout collections made in 1996 showed significant year-class genetic variation for mtDNA and microsatellites when compared to fish from the same locations in 1993. Five years after the spill, mainstem populations appeared genetically mixed with no significant allelic frequency differences between mainstem populations and geographically proximate tributary trout. In our 1996 samples, we found no significant genetic differences due to season of capture (summer or fall) or sampling technique used to capture rainbow trout, with the exception of trout collected by electrofishing and hook and line near Prospect Avenue. Haplotype and allelic frequencies in wild rainbow trout populations captured in the upper Sacramento River and its tributaries were found to differ genetically from Mount Shasta Hatchery trout for both years, with the notable exception of trout collected in the lower mainstem river near Shasta Lake, where mtDNA and microsatellite data both suggested upstream colonization by hatchery fish from the reservoir. These data suggest that the chemical spill in the upper Sacramento River produced significant effects over time on the genetic population structure of rainbow trout throughout the entire upper river basin.
Backwater effects in the Amazon River basin of Brazil
Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.
1991-01-01
The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.
NASA Astrophysics Data System (ADS)
Esariti, L.; Yuliastuti, N.; Ratih, N. K.
2018-02-01
The research looks for the importance of riverine settlement preservation as one of the efforts to carry out sustainable management of a traditional settlement. East Kalimantan, more specifically riverine settlement in Mentaya River is known as one of the traditional settlements that put river as the central of their livelihood activities. The theory of Rapopport [1] was used to investigate the importance of cultural aspect influence to the settlement process, and to seek for the behavioural and environment relationship in determining the pattern of adaptation process. Mix method approach was conducted by utilizing in depth interviews among 40 respondents within three districts, namely in Baamang, Mentaya Seberang and Mentawa Baru Ketapang subdistrict. The result shows that culture dominantly affect the process of settlement adaptation, especially the aspect of family structure, social network, and kinship. The adaptation pattern is influenced significantly by physical environment, type of physical condition of the houses, economic condition and the degree of heritage preservation motive. It sums up that adaptation process could be effective if the integration of culture, activities and government regulations is performed.
Aunins, Aaron W.; Petty, J. Todd; King, Timothy L.; Schilz, Mariya; Mazik, Patricia M.
2015-01-01
Brook trout (Salvelinus fontinalis) often exist as highly differentiated populations, even at small spatial scales, due either to natural or anthropogenic sources of isolation and low rates of dispersal. In this study, we used molecular approaches to describe the unique population structure of brook trout inhabiting the Shavers Fork watershed, located in eastern West Virginia, and contrast it to nearby populations in tributaries of the upper Greenbrier River and North Fork South Branch Potomac Rivers. Bayesian and maximum likelihood clustering methods identified minimal population structuring among 14 collections of brook trout from throughout the mainstem and tributaries of Shavers Fork, highlighting the role of the cold-water mainstem for connectivity and high rates of effective migration among tributaries. In contrast, the Potomac and Greenbrier River collections displayed distinct levels of population differentiation among tributaries, presumably resulting from tributary isolation by warm-water mainstems. Our results highlight the importance of protecting and restoring cold-water mainstem habitats as part of region-wide brook trout conservation efforts. In addition, our results from Shavers Fork provide a contrast to previous genetic studies that characterize Appalachian brook trout as fragmented isolates rather than well-mixed populations. Additional study is needed to determine whether the existence of brook trout as genetically similar populations among tributaries is truly unique and whether connectivity among brook trout populations can potentially be restored within other central Appalachian watersheds.
Chen, Dingjiang; Lu, Jun; Wang, Hailong; Shen, Yena; Kimberley, Mark O
2010-02-01
Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China. Water quality, hydrological parameters, and hydrophyte coverage were monitored along the ChangLe River monthly during 2004-2006. Nutrient export loads (including chemical fertilizer, livestock, and domestic sources) entering the river from the catchment area were computed using an export coefficient model based on estimated nutrient sources. Riverine TN and TP retention loads (RNRL and RPRL) were estimated using mass balance calculations. Temporal variations in riverine nutrient retention were analyzed statistically. Estimated annual riverine retention loads ranged from 1,538 to 2,127 t year(-1) for RNRL and from 79.4 to 90.4 t year(-1) for RPRL. Monthly retention loads varied from 6.4 to 300.8 t month(-1) for RNRL and from 1.4 to 15.3 t month(-1) for RPRL. Both RNRL and RPRL increased with river flow, water temperature, hydrophyte coverage, monthly sunshine hours, and total TN and TP inputs. Dissolved oxygen concentration and the pH level of the river water decreased with RNRL and RPRL. Riverine nutrient retention ratios (retention as a percentage of total input) were only related to hydrophyte coverage and monthly sunshine hours. Monthly variations in RNRL and RPRL were functions of TN and TP loads. Riverine nutrient retention capacity varied with environmental conditions. Annual RNRL and RPRL accounted for 30.3-48.3% and 52.5-71.2%, respectively, of total input TN and TP loads in the ChangLe River. Monthly riverine retention ratios were 3.5-88.7% for TN and 20.5-92.6% for TP. Hydrophyte growth and coverage on the river bed is the main cause for seasonal variation in riverine nutrient retention capacity. The total input TN and TP loads were the best indicators of RNRL and RPRL, respectively. High riverine nutrient retention capacity during summer due to hydrophytic growth is favorable to the avoidance of algal bloom in both river systems and coastal water in southeast China. Policies should be developed to strictly control nutrient applications on agricultural lands. Strategies for promoting hydrophyte growth in rivers are desirable for water quality management.
Petersen, James C.
2004-01-01
The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Most of the length of the Buffalo River lies within the boundaries of Buffalo National River, a unit of the National Park Service; the upper 24 river kilometers lie within the boundary of the Ozark National Forest. Much of the upper and extreme lower parts of the basin on the south side of the Buffalo River is within the Ozark National Forest. During the summers of 2001 and 2002, fish communities were sampled at 52 sites in the study area that included the Buffalo River Basin and selected smaller nearby basins within the White River Basin in north-central Arkansas. Water quality (including nutrient and bacteria concentrations) and several other environmental factors (such as stream size, land use, substrate size, and riparian shading) also were measured. A total of 56 species of fish were collected from sites within the Buffalo River Basin in 2001 and 2002. All 56 species also were collected from within the boundaries of Buffalo National River. Twenty-two species were collected from headwater sites on tributaries of the Buffalo River; 27 species were collected from sites within or immediately adjacent to the Ozark National Forest. The list of species collected from Buffalo National River is similar to the list of species reported by previous investigators. Species richness at sites on the mainstem of the Buffalo River generally increased in a downstream direction. The number of species collected (both years combined) increased from 17 at the most upstream site to 38 near the mouth of the Buffalo River. In 2001 and 2002, a total of 53 species of fish were collected from sites outside the Buffalo River Basin. Several fish community metrics varied among sites in different site categories (mainstem, large tributary, small tributary, headwater, and developed out-of-basin sites). Median relative abundances of stonerollers ranged from about 25 to 55 percent and were highest at headwater and developed out-of-basin sites and lowest at mainstem sites. The relative abundances at the headwater and developed out-of-basin sites were significantly different from the relative abundances at the mainstem sites. Percentages of individuals of algivorous/herbivorous, invertivorous, and piscivorous species at headwater sites were significantly lower than values at mainstem and developed out-of-basin sites. Percentages of individuals of invertivorous species at mainstem sites were significantly higher than values at small tributary, headwater, and developed out-of-basin sites. Percentages of top carnivores at mainstem sites were significantly higher than values at tributary and headwater sites. The numbers of darter, sculpin, plus madtom species at mainstem, large tributary, and developed out-of-basin sites were significantly higher than values at other sites, and the values at small tributary sites and headwater sites were each significantly different from values at the other four types of sites. The number of lithophilic spawning species at large tributary sites was not significantly different from values at mainstem and developed out-of-basin sites, but values for small tributary and headwater sites each were significantly different from values for all other categories. Index of biotic integrity scores varied among the site categories. Scores for mainstem sites were significantly larger than all but large tributary site scores. Scores for headwater sites were significantly smaller than mainstem and large tributary site scores. Several analyses of the data described in this report suggest that drainage area is the most important single factor influencing fish communities of the Buffalo River Basin and nearby basins. Species richness increases with increasing drainage area and some species are restricted to smaller streams while other species are more common in larger streams. Some community metrics also are related to land use and related factors
NASA Astrophysics Data System (ADS)
Shirina Begum, Most; Jin, Hyojin; Yoon, Tae Kyung; Park, Ji-Hyung
2016-04-01
To understand how anthropogenic perturbations such as dams and pollution modify the chemical characteristics and biological transformations of riverine organic matter during transit through urbanized watersheds, we compared the optical characteristics and biodegradability of dissolved organic matter (DOM) and particulate organic matter (POM) along different reaches and urban tributary streams of the Han River watershed during short-term incubations. Laboratory incubations were conducted for 5-7 days at 20-25 oC with filtered or unfiltered water samples collected from up-, mid-, and downstream reaches with different levels of anthropogenic perturbations and three urban streams along the downstream reach that receive effluents from waste water treatment facilities in the metropolitan Seoul. Optical parameters such as ultraviolet absorbance at 254 nm, absorption coefficients at 254 nm and 350 nm, fluorescence index, humic-like fluorescence, microbial humic-like fluorescence, and protein-like fluorescence, and spectral slope at 350-400 nm were significantly correlated with increasing concentration of biodegradable dissolved organic carbon (BDOC) in filtered and unfiltered sample along the Han River up-, mid-, down-, and urban streams. The concentrations of BDOC in the urban streams were 6-12 times higher than in the filtered and unfiltered main-stem river samples, with significantly higher values in presence of POM in the unfiltered samples than in the filtered samples. In a separate 5-day incubation experiment with the unfiltered water sample from a downstream location of the Han River and its urban tributary water in isolation or mixed , the rate of concurrent biodegradation of both DOM and POM, as measured by the cumulative rate of CO2 production, was higher in the mixture than the average rate of the separately incubated samples, indicating the priming effect of mixed organic materials on the biodegradation of allochthonous organic materials from the other site. Greater amounts of CO2 were produced in all the samples than could be explained by BDOC alone, indicating the role of POM as a source of CO2. Faster and more intense changes in the consumed or produced components detected in the differential images between the fluorescence excitation emission matrices collected at intervals also suggested activated organic matter processing and CO2 production upon mixing the mainstem and tributary organic matter. Overall results suggest that dams and urban water pollution leave idiosyncratic imprints in the optical characteristics of DOM along waterways of the dammed and urbanized watershed and that inputs of anthropogenic organic materials via urban tributary streams can exert a strong priming effect on the biodegradation of both DOM and POM downstream.
We reviewed the results of seven extensive and two reach-specific fish surveys conducted on the mainstem Willamette River between 1944 and 2006 to document changes in the summer distribution and species richness of non-native fishes through time and the relative abundances of the...
Bencala, Kenneth E.; Hamilton, David B.; Petersen, James H.
2006-01-01
Federal and state agencies need improved scientific analysis to support riverine ecosystem management. The ability of the USGS to integrate geologic, hydrologic, chemical, geographic, and biological data into new tools and models provides unparalleled opportunities to translate the best riverine science into useful approaches and usable information to address issues faced by river managers. In addition to this capability to provide integrated science, the USGS has a long history of providing long-term and nationwide information about natural resources. The USGS is now in a position to advance its ability to provide the scientific support for the management of riverine ecosystems. To address this need, the USGS held a listening session in Fort Collins, Colorado in April 2006. Goals of the workshop were to: 1) learn about the key resource issues facing DOI, other Federal, and state resource management agencies; 2) discuss new approaches and information needs for addressing these issues; and 3) outline a strategy for the USGS role in supporting riverine ecosystem management. Workshop discussions focused on key components of a USGS strategy: Communications, Synthesis, and Research. The workshop identified 3 priority actions the USGS can initiate now to advance its capabilities to support integrated science for resource managers in partner government agencies and non-governmental organizations: 1) Synthesize the existing science of riverine ecosystem processes to produce broadly applicable conceptual models, 2) Enhance selected ongoing instream flow projects with complementary interdisciplinary studies, and 3) Design a long-term, watershed-scale research program that will substantively reinvent riverine ecosystem science. In addition, topical discussion groups on hydrology, geomorphology, aquatic habitat and populations, and socio-economic analysis and negotiation identified eleven important complementary actions required to advance the state of the science and to develop the tools for supporting decisions on riverine ecosystem management. These eleven actions lie within the continuum of Communications, Synthesis, and Research.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Jacob, D. J.; Dutkiewicz, S.; Amos, H. M.; Long, M. S.; Sunderland, E. M.
2014-12-01
Rivers are estimated to deliver 27 Mmol a-1 of mercury (Hg) to ocean margins, which is comparable to the global atmospheric deposition flux of Hg to the ocean. Previous studies presumed that most of this riverine Hg is sequestered by settling to the coastal regions. However, there has been little investigation of the mechanism and efficiency with which this sequestration takes place, and the implications for riverine influence in different ocean regions. Here we develop a global 3-D chemical transport model for Hg in the ocean (MITgcm-Hg) with ecology (DARWIN model). We track offshore export of the discharged Hg from heterogeneous river systems over different ocean regions, and how it is influenced by the interaction of Hg in a variety of geochemical forms with carbon and suspended particles. We constrain our model assumptions with available offshore observations that bear strong riverine signals. Modeling results suggest that some of the riverine Hg is highly refractory, sorbs strongly to particles and does not follow equilibrium partitioning with the dissolved phase. Simulated global Hg evasion from riverine sources is 50 times larger without this refractory particulate pool, which results in a total evasion flux two times larger than our current best estimate. Based on a typology system of global rivers, we calculate that 10% to 60% of the particulate Hg from different rivers settles in ocean margin sediments because of subgrid sedimentation processes. The remaining 7.5 Mmol a-1 (28% of total river discharge) is available for offshore transport, where it undergoes further sedimentation to the shelf (5.3 Mmol a-1) as well as evasion to the atmosphere (0.44 Mmol a-1). Only 1.7 Mmol a-1 (6.4% of the global riverine Hg) reaches the open ocean, although that fraction varies from 2.6% in East Asia because of the blockage of Korean Peninsula to 25% in east North America facilitated by the Gulf Stream. We find large riverine influences over coastal oceans off East Asia, and the contributions elsewhere are much smaller due to less riverine Hg discharge. We find the transport of riverine Hg is most influenced by its release rates from organic carbon pools and particle sinking velocities. Varying these parameters changes the contribution of riverine sources to the Hg concentrations over the open ocean for a factor of 2.
Colorado River fish monitoring in Grand Canyon, Arizona; 2002–14 humpback chub aggregations
Persons, William R.; Van Haverbeke, David R.; Dodrill, Michael J.
2017-01-31
The humpback chub (Gila cypha) is an endangered cyprinid species endemic to the Colorado River. The largest remaining population of the species spawns and rears in the Little Colorado River in Grand Canyon. Construction and operation of Glen Canyon Dam has altered the main-stem Colorado River in Glen and Grand Canyons. Cold, clear water releases from the dam result in a river that is generally unsuitable for successful humpback chub reproduction. During the early 1990s, nine locations within the main-stem Colorado River were identified as humpback chub aggregations—areas with a consistent and disjunct group of fish with no significant exchange of individuals with other aggregations. We monitored main-stem Colorado River aggregations of humpback chub in Grand Canyon during 2010 to 2014 and compared our results to previous investigations. Relative abundance, as described by catch per unit effort (fish per hour) of adult humpback chub at most main-stem aggregations, generally increased from the 1990s to 2014. In addition, distribution of humpback chub in the main-stem Colorado River has increased since the 1990s. Movement of humpback chub between the Little Colorado River and other aggregations likely adds fish to those aggregations. There is clear evidence of reproduction near the 30-Mile aggregation, and reproduction at Middle Granite Gorge and downstream seems likely based on catches of gravid fish and captures of very young fish, especially during relatively warm water releases from Glen Canyon Dam, 2004 to 2011. Humpback chub relative abundance at Shinumo and Havasu Creek inflows increased following translocations of young humpback chub starting in 2009. In light of this information, we modify the original nine aggregations, combining two previously separate aggregations and dropping two locations to form six distinct aggregations of humpback chub. Trends in humpback chub abundance at main-stem aggregations, relative to management actions (for example, translocations) or changing environmental conditions (for example, river warming), informs management of the species across a riverscape scale within the Colorado River.
Jason L. White; Bret Harvey
1999-01-01
Sympatric coastrange sculpin, Cottus aleuticus, and prickly sculpin, C. asper, occupied distinct habitats in the mainstem Smith River, northwestern California. For example, 90% of coastrange sculpin (n = 294) used habitat with water velocity > 5 cm s-1, whereas 89% of prickly sculpin (n = 981) used...
Return to the river: strategies for salmon restoration in the Columbia River Basin.
Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell
2006-01-01
The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remainfor example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia Riverthe Columbia and Snake River mainstems are dominated...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
..., 6:30-8:30 p.m. Vancouver, WA, January 31, 2008, at the Water Resources Education Center, 6:30-8:30 p... influenced by Columbia River tributary/ mainstem water withdrawals and other water management actions in... River tributary/ mainstem water withdrawals and other water management actions in tributaries. Flow...
Ecological assessment of streams in the Powder River Structural Basin, Wyoming and Montana, 2005-06
Peterson, D.A.; Wright, P.R.; Edwards, G.P.; Hargett, E.G.; Feldman, D.L.; Zumberge, J.R.; Dey, Paul
2009-01-01
Energy and mineral development, particularly coalbed natural gas development, is proceeding at a rapid pace in the Powder River Structural Basin (PRB) in northeastern Wyoming. Concerns about the potential effects of development led to formation of an interagency working group of primarily Federal and State agencies to address these issues in the PRB in Wyoming and in Montana where similar types of resources exist but are largely undeveloped. Under the direction of the interagency working group, an ecological assessment of streams in the PRB was initiated to determine the current status (2005–06) and to establish a baseline for future monitoring.The ecological assessment components include assessment of stream habitat and riparian zones as well as assessments of macroinvertebrate, algal, and fish communities. All of the components were sampled at 47 sites in the PRB during 2005. A reduced set of components, consisting primarily of macroinvertebrate and fish community assessments, was sampled in 2006. Related ecological data, such as habitat and fish community data collected from selected sites in 2004, also are included in this report.The stream habitat assessment included measurement of channel features, substrate size and embeddedness, riparian vegetation, and reachwide characteristics. The width-to-depth ratio (bankfull width/bankfull depth) tended to be higher at sites on the main-stem Powder River than at sites on the main-stem Tongue River and at sites on tributary streams. The streambed substrate particle size was largest at sites on the main-stem Tongue River and smallest at sites on small tributary streams such as Squirrel Creek and Otter Creek. Total vegetative cover at the ground level, understory, and canopy layers ranged from less than 40 percent at a few sites to more than 90 percent at many of the sites. A bank-stability index indicated that sites in the Tongue River drainage were less at risk of bank failure than sites on the main-stem Powder River.Macroinvertebrate communities showed similarity at the river-drainage scale. Macroinvertebrate communities at sites with mountainous headwaters and snowmelt-driven hydrology, such as Clear Creek, Crazy Woman Creek, and Goose Creek, showed similarity with communities from the main-stem Tongue River. The data also indicated similarity among sites on the main-stem Powder River and among small tributaries of the Tongue River. Data analyses using macroinvertebrate observed/expected models and multimetric indices developed by the States of Wyoming and Montana indicated a tendency toward declining biological condition in the downstream direction along the Tongue River. Biological condition for the main-stem Powder River generally improved downstream, from below Salt Creek to near the Wyoming/Montana border, followed by a general decline downstream from the border to the confluence with the Yellowstone River. The biological condition generally was not significantly different between 2005 and 2006, although streamflow was less in 2006 because of drought.Algal communities showed similarity at the river-drainage scale with slight differences from the pattern observed in the macroinvertebrate communities. Although the algal communities from Clear Creek and Goose Creek were similar to those from the main-stem Tongue River, as was true of the macroinvertebrate communities, the algal communities from Crazy Woman Creek had more similarity to those of main-stem Powder River sites than to the Tongue River sites, contrary to the macroinvertebrates. Ordination of algal communities, as well as diatom metrics including salinity and dominant taxa, indicated substantial variation at two sites along the main stem of the Powder River.Fish communities of the PRB were most diverse in the Tongue River drainage. In part due to the effects of Tongue River Reservoir, 15 species of fish were found in the Tongue River drainage that were not found in the Cheyenne, Belle Fourche, or Little Powder River drainages. The number of introduced species and relative abundance of introduced species of fish were higher in the Tongue River and other drainages than at sites on the main-stem Powder River. Although non-native species were identified in the Powder River, the native fish community is largely intact. Western silvery minnow and sturgeon chub—species of special concern—were identified only at sites on the main-stem Powder River and were most common in the Montana segment of the main stem. Fish and habitat sampling on the main-stem Powder River indicated affinity of some species for certain habitats such as pools, runs, riffles, backwaters, or shoals.
NASA Astrophysics Data System (ADS)
Kumbier, Kristian; Carvalho, Rafael C.; Vafeidis, Athanasios T.; Woodroffe, Colin D.
2018-02-01
Many previous modelling studies have considered storm-tide and riverine flooding independently, even though joint-probability analysis highlighted significant dependence between extreme rainfall and extreme storm surges in estuarine environments. This study investigates compound flooding by quantifying horizontal and vertical differences in coastal flood risk estimates resulting from a separation of storm-tide and riverine flooding processes. We used an open-source version of the Delft3D model to simulate flood extent and inundation depth due to a storm event that occurred in June 2016 in the Shoalhaven Estuary, south-eastern Australia. Time series of observed water levels and discharge measurements are used to force model boundaries, whereas observational data such as satellite imagery, aerial photographs, tidal gauges and water level logger measurements are used to validate modelling results. The comparison of simulation results including and excluding riverine discharge demonstrated large differences in modelled flood extents and inundation depths. A flood risk assessment accounting only for storm-tide flooding would have underestimated the flood extent of the June 2016 storm event by 30 % (20.5 km2). Furthermore, inundation depths would have been underestimated on average by 0.34 m and by up to 1.5 m locally. We recommend considering storm-tide and riverine flooding processes jointly in estuaries with large catchment areas, which are known to have a quick response time to extreme rainfall. In addition, comparison of different boundary set-ups at the intermittent entrance in Shoalhaven Heads indicated that a permanent opening, in order to reduce exposure to riverine flooding, would increase tidal range and exposure to both storm-tide flooding and wave action.
Stevens, Michael R.; Leib, Kenneth J.; Thomas, Judith C.; Bauch, Nancy J.; Richards, Rodney J.
2018-06-13
In response to the need for more information about selenium (Se) sources and transport, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, completed a study that characterized Se loads in a reach of the Gunnison River between Delta and Grand Junction, Colo. This report identifies where possible dissolved Se loading is occurring in a study reach in the Lower Gunnison River Basin between Delta and Grand Junction on November 19, 2015.The combined Se loads from the Gunnison River at Delta (site 3) and the Uncompahgre River at Delta (site 4) were about 95 percent of the load at the furthest downstream main-stem sample location at the Gunnison River below Roubideau Creek near Delta (site 20) (31.6 and 33.4 pounds per day, respectively), indicating that about 5 percent of the total load (1.8 pounds) was potentially contributed from diffuse groundwater inflow. Main-stem streamflow accounting during November 2015 in a downstream direction was not supportive of substantial net gains or losses in the main-stem water balance.The cumulative load from measured tributary inflows downstream from the Uncompahgre River confluence only amounted to 1.2 pounds of the main-stem loads (1.8 pounds gain) from site 4 to the end of the synoptic reach at site 20. The remaining 33 percent (about 0.6 pounds) of Se load increase was not accounted for by known tributary inflow. Yet, the small changes in the streamflow mass balance in the same reach does not strongly support a net inflow explanation for the apparent gain in load.Based on the results of the loading and streamflow analysis, when errors in the loading estimates are considered, there is no conclusive evidence of an appreciable amount of Se load that is unaccounted for in the study reach of the Gunnison River as was originally hypothesized. Differences determined from comparisons of cumulative tributary loads and Gunnison River main-stem loads for this study are within error estimates of the main-stem loads.
Payne, G.A.
1994-01-01
The Minnesota River, 10 major tributaries, and 21 springs were sampled to determine the sources and transport of sediment, nutrients, and oxygen- demanding substances. The study was part of a four-year assessment of non-point source pollution in the Minnesota River Basin. Runoff from tributary watersheds was identified as the primary source of suspended sediment and nutrients in the Minnesota River mainstem. Suspended-sediment, phosphorus, and nitrate concentrations were elevated in all major tributaries during runoff, but tributaries in the south-central and eastern part of the basin produce the highest annual loading to the mainstem because of higher annual precipitation and runoff in that part of the basin. Particle-size analyses showed that most of the suspended sediment in transport consisted of silt- and clay-size material. Phosphorus enrichment was indicated throughout the mainstem by total phosphorus concentrations that ranged from 0.04 to 0.48 mg/L with a median value of 0.22 mg/L, and an interquartile range of 0.15 to 0.29 mg/L. Nitrate concentrations periodically exceeded drinking water standards in tributaries draining the south-central and eastern part of the basin. Oxygen demand was most elevated during periods of summer low flow. Correlations between levels of biochemical oxygen demand and levels of algal productivity suggest that algal biomass comprises much of the oxygen-demanding material in the mainstem. Transport of sediment, nutrients, and organic carbon within the mainstem was found to be conservative, with nearly all tributary inputs being transported downstream. Uptake and utilization of nitrate and orthophosphorus was indicated during low flow, but at normal and high flow, inputs of these constituents greatly exceeded biological utilization.
Kraus, Tamara E.C.; Anderson, Chauncey W.; Morgenstern, Karl; Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.
2010-01-01
This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.
Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain
NASA Astrophysics Data System (ADS)
Langerwisch, F.; Walz, A.; Rammig, A.; Tietjen, B.; Thonicke, K.; Cramer, W.
2016-07-01
Any regular interaction of land and river during flooding affects carbon pools within the terrestrial system, riverine carbon and carbon exported from the system. In the Amazon basin carbon fluxes are considerably influenced by annual flooding, during which terrigenous organic material is imported to the river. The Amazon basin therefore represents an excellent example of a tightly coupled terrestrial-riverine system. The processes of generation, conversion and transport of organic carbon in such a coupled terrigenous-riverine system strongly interact and are climate-sensitive, yet their functioning is rarely considered in Earth system models and their response to climate change is still largely unknown. To quantify regional and global carbon budgets and climate change effects on carbon pools and carbon fluxes, it is important to account for the coupling between the land, the river, the ocean and the atmosphere. We developed the RIVerine Carbon Model (RivCM), which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL, in order to account for this large-scale coupling. We evaluate RivCM with observational data and show that some of the values are reproduced quite well by the model, while we see large deviations for other variables. This is mainly caused by some simplifications we assumed. Our evaluation shows that it is possible to reproduce large-scale carbon transport across a river system but that this involves large uncertainties. Acknowledging these uncertainties, we estimate the potential changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (Special Report on Emissions Scenarios, SRES). We find that climate change causes a doubling of riverine organic carbon in the southern and western basin while reducing it by 20 % in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin, independent of the SRES scenario. The export of carbon to the atmosphere increases as well, with an average of about 30 %. In contrast, changes in future export of organic carbon to the Atlantic Ocean depend on the SRES scenario and are projected to either decrease by about 8.9 % (SRES A1B) or increase by about 9.1 % (SRES A2). Such changes in the terrigenous-riverine system could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean. Changes in riverine carbon could lead to a shift in the riverine nutrient supply and pH, while changes in the exported carbon to the ocean lead to changes in the supply of organic material that acts as a food source in the Atlantic. On larger scales the increased outgassing of CO2 could turn the Amazon basin from a sink of carbon to a considerable source. Therefore, we propose that the coupling of terrestrial and riverine carbon budgets should be included in subsequent analysis of the future regional carbon budget.
Jason L. White; Bret C. Harvey
1999-01-01
Sympatric coastrange sculpin, Cottus aleuticus, and prickly sculpin, C. asper, occupied distinct habitats in the mainstem Smith River, northwestern California. For example, 90% of coastrange sculpin (n = 294) used habitat with water velocity > 5 cm s -1 , whereas 89% of prickly sculpin (n = 981) used habitat with water velocity ? 5 cm s -1. Sixty-five percent of...
Parrett, Charles; Hull, J.A.
1990-01-01
Five streamflow-gaging stations were installed in the Rock Creek basin north of the Milk River near Hinsdale, Montana. Streamflow was monitored at these stations and at an existing gaging station upstream on Rock Creek from May 1983 through September 1987. The data collected were used to describe the flow characteristics of four small tributary streams. Annual mean streamflow ranges from 2.8 to 57 cu ft/sec in the mainstem and from 0 to 0.60 cu ft/sec in the tributaries. Monthly mean streamflow ranged from 0 to 528 cu ft/sec in Rock Creek and from zero to 5.3 cu ft/sec in the four tributaries. The six gaged sites show similar patterns of daily mean streamflow during periods of large runoff, but substantial individual variations during periods of lesser runoff. During periods of lesser runoff , the small tributaries may have small daily mean streamflows. At other times, daily mean streamflow at the two mainstem sites decreased downstream. Daily mean streamflow in the tributaries appears to be closely related to daily mean streamflow in the mainstem only during periods of substantial area-wide runoff. Thus, streamflow in the tributaries resulting from local storms or local snowmelt may not contribute to streamflow in the mainstem. (USGS)
Mueller, Gordon A.
2005-01-01
Mechanical predator removal programs have gained popularity in the United States and have benefited the recovery of several native trout and spring fish. These successes have been limited to headwater streams and small, isolated ponds or springs. Nevertheless, these same approaches are being applied to large river systems on the belief that any degree of predator removal will somehow benefit natives. This attitude is prevalent in the Colorado River mainstem where recovery and conservation programs are struggling to reverse the decline of four endangered fish species. Predator removal and prevention are major thrusts of that work but unfortunately, after 10 years and the removal of >1.5 million predators, we have yet to see a positive response from the native fish community. This leads to the obvious question: is mechanical removal or control in large (>100 cfs base flow) western streams technically or politically feasible? If not, recovery for some mainstem fishes may not be practical in the conventional sense, but require innovative management strategies to prevent their extirpation or possible extinction. This article examines (1) what has been attempted, (2) what has worked, and (3) what has not worked in the Colorado River mainstem and provides recommendations for future efforts in this critical management area.
NASA Astrophysics Data System (ADS)
Izett, Jonathan G.; Fennel, Katja
2018-02-01
Rivers deliver large amounts of fresh water, nutrients, and other terrestrially derived materials to the coastal ocean. Where inputs accumulate on the shelf, harmful effects such as hypoxia and eutrophication can result. In contrast, where export to the open ocean is efficient riverine inputs contribute to global biogeochemical budgets. Assessing the fate of riverine inputs is difficult on a global scale. Global ocean models are generally too coarse to resolve the relatively small scale features of river plumes. High-resolution regional models have been developed for individual river plume systems, but it is impractical to apply this approach globally to all rivers. Recently, generalized parameterizations have been proposed to estimate the export of riverine fresh water to the open ocean (Izett & Fennel, 2018, https://doi.org/10.1002/2017GB005667; Sharples et al., 2017, https://doi.org/10.1002/2016GB005483). Here the relationships of Izett and Fennel, https://doi.org/10.1002/2017GB005667 are used to derive global estimates of open-ocean export of fresh water and dissolved inorganic silicate, dissolved organic carbon, and dissolved organic and inorganic phosphorus and nitrogen. We estimate that only 15-53% of riverine fresh water reaches the open ocean directly in river plumes; nutrient export is even less efficient because of processing on continental shelves. Due to geographic differences in riverine nutrient delivery, dissolved silicate is the most efficiently exported to the open ocean (7-56.7%), while dissolved inorganic nitrogen is the least efficiently exported (2.8-44.3%). These results are consistent with previous estimates and provide a simple way to parameterize export to the open ocean in global models.
Riverine Li isotope fractionation in small mountainous rivers of Taiwan
NASA Astrophysics Data System (ADS)
Huang, K. F.; Liu, Y. H.; Wang, R. M.; Chung, C. H.; You, C. F.
2016-12-01
Riverine lithium (Li) and its isotopes became of increasing interest over the last decade due to its great potential as a tracer for silicate weathering processes and carbon cycle. However, little is known about the main controls on the riverine Li isotope fractionation in tropical small mountainous rivers (SMRs). Here we condcut the first deatiled study of the Li isotopic composition (δ7Li) of river-borne dissolved and solid materials in the SMRs around Taiwan to characterize behaviors of riverine Li and δ7Li in different geomorrphic setting and at wet/dry seasons. Riverine Li and δ7Li range from 0.15 to 6.37 μM with δ7Li of +8.6 to +18.2 ‰ at the wet season, and 0.23 to 18.8 μM with δ7Li of +8.2 to +20.3 ‰ at the dry season. Of special interest is that high dissolved δ7Li values are observed at the wet season and the downstream of the river catchments. By combining the multiple isotope systems and river chemistry, our results suggest that in the high-relief and tectonically active terrain, the high δ7Li values at the wet season are most likely controlled by more intense chemcical weathering, particularly by the greater extent of uptake of 6Li into secondary minierals during weathering. Seasonal variations in the dissolved loads and riverine δ7Li are also found and can be attributed to a greater contribution from carbonate weathering at the wet season, highlighting a different response of primary mineral dissolution/secondary mineral formation to climatic forcing in the SMRs of Taiwan.
Patterns of Bacterial and Archaeal Gene Expression through the Lower Amazon River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satinsky, Brandon M.; Smith, Christa B.; Sharma, Shalabh
Analysis of metatranscriptomic and metagenomic datasets from the lower reaches of the Amazon River between Obidos and the river mouth revealed microbial transcript and gene pools dominated by Actinobacteria, Thaumarchaeota, Bacteroidetes, Acidobacteria, Betaproteobacteria, and Planctomycetes. Three mainstem stations spanning a 625 km reach had similar gene expression patterns (transcripts gene copy-1) across a diverse suite of element cycling genes, but two tributary-influenced stations at the mouth of the Tapajos River and near the Tocantins River at Belem had distinct transcriptome composition and expression ratios, particularly for genes encoding light-related energy capture (higher) and iron acquisition and ammonia oxidation (lower). Environmentalmore » parameters that were useful predictors of gene expression ratios included concentrations of lignin phenols, suspended sediments, nitrate, phosphate, and particulate organic carbon and nitrogen. Similar to the gene expression data, these chemical properties reflected highly homogeneous mainstem stations punctuated by distinct tributary- influenced stations at Tapajos and Belem. Although heterotrophic processes were expected to dominate in the lower Amazon, transcripts from photosynthetic bacteria were abundant in tributary-influenced regions, and transcripts from Thaumarcheota taxa genetically capable of chemosynthetic ammonia oxidation accounted for up to 21% of the transcriptome at others. Based on regressions of transcript numbers against gene numbers, expression ratios of Thaumarchaeota populations were largely unchanged within the mainstem, suggesting a relatively minor role for gene regulation. These quantitative gene and transcript inventories detail a diverse array of energy acquisition strategies and metabolic capabilities for bacteria and archaea populations of the world’s largest river system.« less
Widespread anatoxin-a detection in benthic cyanobacterial mats throughout a river network
Kudela, Raphael M.; Power, Mary E.
2018-01-01
Benthic algae fuel summer food webs in many sunlit rivers, and are hotspots for primary and secondary production and biogeochemical cycling. Concerningly, riverine benthic algal assemblages can become dominated by toxic cyanobacteria, threatening water quality and public health. In the Eel River in Northern California, over a dozen dog deaths have been attributed to cyanotoxin poisonings since 2000. During the summers of 2013–2015, we documented spatial and temporal patterns of cyanotoxin concentrations in the watershed, showing widespread distribution of anatoxin-a in benthic cyanobacterial mats. Solid phase adsorption toxin tracking (SPATT) samplers were deployed weekly to record dissolved microcystin and anatoxin-a levels at 10 sites throughout the watershed, and 187 Anabaena-dominated or Phormidium-dominated cyanobacterial mat samples were collected from 27 locations to measure intracellular anatoxin-a (ATX) and microcystins (MCY). Anatoxin-a levels were higher than microcystin for both SPATT (mean MCY = 0.8 and ATX = 4.8 ng g resin-1 day-1) and cyanobacterial mat samples (mean MCY = 0.074 and ATX = 1.89 μg g-1 DW). Of the benthic mats sampled, 58.9% had detectable anatoxin-a (max = 70.93 μg g-1 DW), while 37.6% had detectable microcystins (max = 2.29 μg g-1 DW). SPATT cyanotoxin levels peaked in mid-summer in warm mainstem reaches of the watershed. This is one of the first documentations of widespread anatoxin-a occurrence in benthic cyanobacterial mats in a North American watershed. PMID:29775481
[Which factors determine the altitudinal distribution of tropical Andean riverine fishes]?
De La Barra, Evans; Zubieta, José; Aguilera, Gastón; Maldonado, Mabel; Pouilly, Marc; Oberdorff, Thierry
2016-03-01
Altitudinal gradients represent an appropriate system to assess whether there is a relationship between richness patterns, environmental variables, and the ecological processes that determine the species type and number inhabiting a given area. In mountain streams freshwater fishes, the most prevalent relationship is a monotonic decrease in species richness with elevation. The objective of this study was to evaluate four hypotheses that can explain the negative relationship between local fish species richness and altitude, 1) the hypothesis of decreasing energy availability, 2) the hypothesis of increasing climate severity, 3) the hypothesis of habitat diversity, and 4) the hypothesis of isolation by physical severity of the environment. Fish and macro-invertebrates were collected following standard methods from 83 sites (between 200-4 000 meters) of two river basins in the Bolivian Amazon. The first hypothesis was tested by analyzing relationships between the density of macro-invertebrates, the richness of invertivorous fish species and altitude; while the second and third hypotheses were assessed by a multiple regression analysis (GLM) between fish species richness and several local and regional factors. Besides, assemblage dissimilarity between sites along the altitudinal gradient was analyzed using βsim and βness indices. Fish richness decreases linearly with increasing altitude. The density of macro-invertebrates tends to increase at higher altitudes, contrary to invertivorous fish species richness, suggesting that energy availability is not a limiting factor for fish species colonization. The GLM explained 86 % of the variation in fish species richness, with a significant contribution of water temperature, maximum slope in the river mainstem, and stream width. There is a higher species turnover (βsim) between sites at low elevation. Inversely, βness shows higher values in the upper parts, corresponding to change in assemblages mainly due to species loss. Taken together, these results suggest that climatic and physical severities create strong barriers to colonization, further explaining the decrease in fish richness along the altitudinal gradient.
Generalized sediment budgets of the Lower Missouri River, 1968–2014
Heimann, David C.
2016-09-13
Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and determine a suspended-sediment budget for selected annual, monthly, and daily time increments. The temporal changes in the cumulative annual budget residuals were poorly correlated with the comparatively steady 1968–2011 annual stage trends at the Missouri River at Nebraska City, Nebr., station. An accurate total sediment budget is developed by having concurrent data available for all primary suspended and bedload components for a reach of interest throughout a period. Such a complete budget, with concurrent record for suspended-sediment load and bedload components, is unavailable for any reach and period in the Lower Missouri River. The primary data gaps are in bedload data, and also in suspended-sediment gains and losses including ungaged tributary inputs and sediment storage. Bedload data gaps in the Missouri River Basin are much more prevalent than suspended-sediment data gaps, and the first step in the development of reach bedload budgets is the establishment of a standardized bedload monitoring program at main-stem stations.The temporal changes in flow-adjusted suspended-sediment concentrations analyzed at main-stem Missouri River stations indicated an overall downward change in concentrations between 1968 and 2014. Temporary declines in flow-adjusted suspended-sediment concentrations during and following large floods were evident but generally returned to near pre-flood values within about 6 months.Data uncertainties associated with the development of a sediment budget include uncertainties associated with the collection of suspended-sediment and bedload data and the computation of suspended-sediment loads. These uncertainties vary depending on the frequency of data collection, the variability of conditions being represented by the discrete samples, and the statistical approach to suspended-sediment load computations. The coefficients of variation of suspended-sediment loads of Missouri River tributary stations for 1968–2014 were greater, 75.0 percent, than the main-stem stations, 47.1 percent. The lower coefficient of variation at main-stem stations compared to tributaries, primarily is the result of the lower variability in streamflow and sediment discharge identified at main-stem stations. To obtain similar accuracy between suspended-sediment loads at main-stem and tributary stations, a longer period of record is required of the tributary stations. During 1968–2014, however, the Missouri River main-stem station record was much more complete (87 percent) than the tributary station record (28 percent).
Thomaz, A T; Malabarba, L R; Knowles, L L
2017-10-01
Past shifts in connectivity in riverine environments (for example, sea-level changes) and the properties of current drainages can act as drivers of genetic structure and demographic processes in riverine population of fishes. However, it is unclear whether the same river properties that structure variation on recent timescales will also leave similar genomic signatures that reflect paleodrainage properties. By characterizing genetic structure in a freshwater fish species (Hollandichthys multifasciatus) from a system of basins along the Atlantic coast of Brazil we test for the effects of paleodrainages caused by sea-level changes during the Pleistocene. Given that the paleodrainage properties differ along the Brazilian coast, we also evaluate whether estimated genetic diversity within paleodrainages can be explained by past riverine properties (i.e., area and number of rivers in a paleodrainage). Our results demonstrate that genetic structure between populations is not just highly concordant with paleodrainages, but that differences in the genetic diversity among paleodrainages correspond to the joint effect of differences in the area encompassed by, and the number of rivers, within a paleodrainage. Our findings extend the influence of current riverine properties on genetic diversity to those associated with past paleodrainage properties. We discuss how these findings may explain the inconsistent support for paleodrainages in structuring divergence from different global regions and the importance of taking into account past conditions for understanding the high species diversity of freshwater fish that we currently observe in the world, and especially in the Neotropics.
NASA Astrophysics Data System (ADS)
Olsen, Dean A.; Young, Roger G.
2009-02-01
To assess whether reaches of the Motueka River (New Zealand) that gain water from groundwater were likely to represent significant cold-water refugia for brown trout during periods of high water temperatures, water temperature was monitored for more than 18 months in two gaining reaches of the Motueka River and three reaches that were predicted to be losing water to groundwater. These data were used to predict brown trout ( Salmo trutta) growth in gaining and losing reaches. Groundwater inputs had a small effect on water temperature at the reach-scale and modelling suggests that the differences observed were unlikely to result in appreciable differences in trout growth. Several coldwater patches were identified within the study reach that were up to 3.5°C cooler than the mainstem, but these were generally shallow and were unlikely to provide refuge for adult trout. The exception was Hinetai Spring, which had a mean water temperature of close to 16°C during the period January-March, when temperatures in the mainstem regularly exceeded 19°C. Trout were observed within the cold-water plume at the mouth of Hinetai Stream, which would allow them to thermoregulate when mainstem temperatures are unfavourable while still being able to capitalise on food resources available in the mainstem.
Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkman, Jed
2005-12-01
In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reportingmore » period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.« less
SUSPENDED AND BENTHIC SEDIMENT RELATIONSHIPS IN THE YAQUINA ESTUARY, OREGON: NUTRIENT PROCESSING
Measurements of nutrient loading and subsequent nutrient processing are fundamental for determining biogeochemical processes in rivers and estuaries. In Oregon coastal watersheds, nutrient transport is strongly seasonal with up to 94% of the riverine dissolved nitrate and silic...
Improving Rapid Acquisition: A Review of the Riverine Command Boat Procurement
2013-12-01
the NECC is the Coastal Riverine Force (CRF), composed of Riverine Command Groups One and Two , which are responsible for the seven coastal riverine...patrol (RPBs), and two command boats (RCBs), as shown in Figure 1. 3 Figure 1. Boats Constituting a Riverine Squadron (from Thompson, 2011) 4...degrees within two boat lengths and accelerate from 0–25 knots in 15 seconds. 5 Third, the boat needed to endure 24-hour missions and 0600–1000 hours
1975-06-01
downstream mainstem of the Delaware River and help repel tidal intrusion of salt water in the mainstem below Philadelphia. The consultant concurs in the...balance of this section which contains three parts: 1) background and policy overview ; 2) overall constraints and im- pacts imposed by implementation of...adopted federal policies and standards; and 3) constraints and impacts on project purposes. VIII.C.2(a) Background and Policy Overview The methodology
NASA Astrophysics Data System (ADS)
Zhang, Wangshou; Swaney, Dennis; Hong, Bongghi; Howarth, Robert
2017-04-01
Phosphorus (P) originating from anthropogenic sources as a pollutant of surface waters has been an environmental issue for decades because of the well-known role of P in eutrophication. Human activities, such as food production and rapid urbanization, have been linked to increased P inputs which are often accompanied by corresponding increases in riverine P export. However, uneven distributions of anthropogenic P inputs along watersheds from the headwaters to downstream reaches can result in significantly different contributions to the riverine P fluxes of a receiving water body. So far, there is still very little scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream to downstream continuum. Here, we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China, and developed a simple empirical function to describe the relationship between anthropogenic inputs and riverine TP fluxes. The results indicated that an average of 1.1% of anthropogenic P inputs are exported into rivers, with most of the remainder retained in the watershed landscape over the period studied. Fertilizer application was the main contributor of P loading to the lake (55% of total loads), followed by legacy P stock (30%), food and feed P inputs (12%) and non-food P inputs (4%). From 60% to 89% of the riverine TP loads generated from various locations within this basin were ultimately transported into the receiving lake of the downstream, with an average rate of 1.86 tons P km-1 retaining in the main stem of the inflowing river annually. Our results highlight that in-stream processes can significantly buffer the riverine P loading to the downstream receiving lake. An integrated P management strategy considering the influence of anthropogenic inputs and hydrological interactions is required to assess and optimize P management for protecting fresh waters.
Schroth, A.W.; Crusius, John; Chever, F.; Bostick, B.C.; Rouxel, O.J.
2011-01-01
Riverine iron (Fe) derived from glacial weathering is a critical micronutrient source to ecosystems of the Gulf of Alaska (GoA). Here we demonstrate that the source and chemical nature of riverine Fe input to the GoA could change dramatically due to the widespread watershed deglaciation that is underway. We examine Fe size partitioning, speciation, and isotopic composition in tributaries of the Copper River which exemplify a long-term GoA watershed evolution from one strongly influenced by glacial weathering to a boreal-forested watershed. Iron fluxes from glacierized tributaries bear high suspended sediment and colloidal Fe loads of mixed valence silicate species, with low concentrations of dissolved Fe and dissolved organic carbon (DOC). Iron isotopic composition is indicative of mechanical weathering as the Fe source. Conversely, Fe fluxes from boreal-forested systems have higher dissolved Fe concentrations corresponding to higher DOC concentrations. Iron colloids and suspended sediment consist of Fe (hydr)oxides and organic complexes. These watersheds have an iron isotopic composition indicative of an internal chemical processing source. We predict that as the GoA watershed evolves due to deglaciation, so will the source, flux, and chemical nature of riverine Fe loads, which could have significant ramifications for Alaskan marine and freshwater ecosystems.
Rivermouth alteration of agricultural impacts on consumer tissue δ15N
Larson, James H.; Richardson, William B.; Vallazza, Jonathan M.; Nelson, J. C.
2013-01-01
Terrestrial agricultural activities strongly influence riverine nitrogen (N) dynamics, which is reflected in the δ15N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ15N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ15N. In a previous study, this terrestrial-consumer tissue δ15N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the ‘rivermouth effect’). This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ15N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients) will require integration of biogeochemical and hydrologic models.
Payne, G.A.; Lee, K.E.; Montz, G.R.; Talmage, P.J.; Hirsch, J.K.; Larson, J.D.
2002-01-01
Resource monitoring, consisting of short-term diagnostic studies, may be needed in parts of the St. Croix River mainstem and tributaries where results from this study indicate constituent loading is greatest and where the aquatic community composition indicates disturbance. Longer-term trend monitoring may be needed to detect physical, chemical and biological responses to natural processes and human activities in the St. Croix River Basin.
Evaluation of streambed scour at bridges over tidal waterways in Alaska
Conaway, Jeffrey S.; Schauer, Paul V.
2012-01-01
The potential for streambed scour was evaluated at 41 bridges that cross tidal waterways in Alaska. These bridges are subject to several coastal and riverine processes that have the potential, individually or in combination, to induce streambed scour or to damage the structure or adjacent channel. The proximity of a bridge to the ocean and water-surface elevation and velocity data collected over a tidal cycle were criteria used to identify the flow regime at each bridge, whether tidal, riverine, or mixed, that had the greatest potential to induce streambed scour. Water-surface elevations measured through at least one tide cycle at 32 bridges were correlated to water levels at the nearest tide station. Asymmetry of the tidal portion of the hydrograph during the outgoing tide at 12 bridges indicated that riverine flows were stored upstream of the bridge during the tidal exchange. This scenario results in greater discharges and velocities during the outgoing tide compared to those on the incoming tide. Velocity data were collected during outgoing tides at 10 bridges that experienced complete flow reversals, and measured velocities during the outgoing tide exceeded the critical velocity required to initiate sediment transport at three sites. The primary risk for streambed scour at most of the sites considered in this study is from riverine flows rather than tidal fluctuations. A scour evaluation for riverine flow was completed at 35 bridges. Scour from riverine flow was not the primary risk for six tidally-controlled bridges and therefore not evaluated at those sites. Field data including channel cross sections, a discharge measurement, and a water-surface slope were collected at the 35 bridges. Channel instability was identified at 14 bridges where measurable scour and or fill were noted in repeated surveys of channel cross sections at the bridge. Water-surface profiles for the 1-percent annual exceedance probability discharge were calculated by using the Hydrologic Engineering Center’s River Analysis System model, and scour depths were calculated using methods recommended by the Federal Highway Administration. Computed contraction-scour depths were greater than 2.0 feet at five bridges and computed pier-scour depths were 4.0 feet or greater at 15 bridges. The potential for streambed scour by both coastal and riverine processes at the bridges considered in this study were evaluated, ranked, and summed to determine a cumulative risk factor for each bridge. Possible factors that could mitigate the scour risks were investigated at 22 bridges that had high individual or cumulative rankings. Mitigating factors such as piers founded in bedrock, deep pier foundations relative to scour depths, and lack of observed scour during field measurements were documented for 13 sites, but additional study and monitoring is needed to better quantify the streambed scour potential for nine sites. Three bridges prone to being affected by storm surges will require more data collection and possibly complex hydrodynamic modeling to accurately quantify the streambed scour potential. Continuous monitoring of water-surface and streambed elevation at one or more piers is needed for two bridges to better understand the tidal and riverine influences on streambed scour.
1988-08-01
requirements of ASTM C 150. 8-10 The Kaiser Cement Company plant in the Lucerne Valley , located approximately 100 miles from the project, produces Type II...land classification of the greater Los Angeles area; Part III Classification of sand and gravel resource areas, Orange County-Temescal Valley Production...Memorandum No. i 4. TITLE (eod Subtitle) 5. TYPE OF REPORT a P ERIOD COVERED Phase II GDM on the Santa Ana River MainstemIncluding Santiago Creek Final
NASA Astrophysics Data System (ADS)
Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.
2014-01-01
Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006-2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43-. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43- ratios ranged from 37 to 1063, suggesting preferential depletion of PO43- relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.
Brown, B.L.; Swan, C.M.; Auerbach, D.A.; Campbell, Grant E.H.; Hitt, N.P.; Maloney, K.O.; Patrick, C.
2011-01-01
Explaining the mechanisms underlying patterns of species diversity and composition in riverine networks is challenging. Historically, community ecologists have conceived of communities as largely isolated entities and have focused on local environmental factors and interspecific interactions as the major forces determining species composition. However, stream ecologists have long embraced a multiscale approach to studying riverine ecosystems and have studied both local factors and larger-scale regional factors, such as dispersal and disturbance. River networks exhibit a dendritic spatial structure that can constrain aquatic organisms when their dispersal is influenced by or confined to the river network. We contend that the principles of metacommunity theory would help stream ecologists to understand how the complex spatial structure of river networks mediates the relative influences of local and regional control on species composition. From a basic ecological perspective, the concept is attractive because new evidence suggests that the importance of regional processes (dispersal) depends on spatial structure of habitat and on connection to the regional species pool. The role of local factors relative to regional factors will vary with spatial position in a river network. From an applied perspective, the long-standing view in ecology that local community composition is an indicator of habitat quality may not be uniformly applicable across a river network, but the strength of such bioassessment approaches probably will depend on spatial position in the network. The principles of metacommunity theory are broadly applicable across taxa and systems but seem of particular consequence to stream ecology given the unique spatial structure of riverine systems. By explicitly embracing processes at multiple spatial scales, metacommunity theory provides a foundation on which to build a richer understanding of stream communities.
Yang, Qichun; Zhang, Xuesong; Xu, Xingya; ...
2017-05-29
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
Hydrological connectivity for riverine fish: measurement challenges and research opportunities
Fullerton, A.H.; Burnett, K.M.; Steel, E.A.; Flitcroft, R.L.; Pess, G.R.; Feist, B.E.; Torgersen, Christian E.; Miller, D.J.; Sanderson, B.L.
2010-01-01
In this review, we first summarize how hydrologic connectivity has been studied for riverine fish capable of moving long distances, and then identify research opportunities that have clear conservation significance. Migratory species, such as anadromous salmonids, are good model organisms for understanding ecological connectivity in rivers because the spatial scale over which movements occur among freshwater habitats is large enough to be easily observed with available techniques; they are often economically or culturally valuable with habitats that can be easily fragmented by human activities; and they integrate landscape conditions from multiple surrounding catchment(s) with in‐river conditions. Studies have focussed on three themes: (i) relatively stable connections (connections controlled by processes that act over broad spatio‐temporal scales >1000 km2 and >100 years); (ii) dynamic connections (connections controlled by processes acting over fine to moderate spatio‐temporal scales ∼1–1000 km2 and <1–100 years); and (iii) anthropogenic influences on hydrologic connectivity, including actions that disrupt or enhance natural connections experienced by fish.We outline eight challenges to understanding the role of connectivity in riverine fish ecology, organized under three foci: (i) addressing the constraints of river structure; (ii) embracing temporal complexity in hydrologic connectivity; and (iii) managing connectivity for riverine fishes. Challenges include the spatial structure of stream networks, the force and direction of flow, scale‐dependence of connectivity, shifting boundaries, complexity of behaviour and life histories and quantifying anthropogenic influence on connectivity and aligning management goals. As we discuss each challenge, we summarize relevant approaches in the literature and provide additional suggestions for improving research and management of connectivity for riverine fishes.Specifically, we suggest that rapid advances are possible in the following arenas: (i) incorporating network structure and river discharge into analyses; (ii) increasing explicit consideration of temporal complexity and fish behaviour in the scope of analyses; and (iii) parsing degrees of human and natural influences on connectivity and defining acceptable alterations. Multiscale analyses are most likely to identify dominant patterns of connections and disconnections, and the appropriate scale at which to focus conservation activities.
Relative importance of atmospheric and riverine mercury sources to the northern Gulf of Mexico.
Rice, Glenn E; Senn, David B; Shine, James P
2009-01-15
A box model was developed to quantify the major sources and dominant fates of inorganic mercury (Hg) in the Mississippi River-influenced area of the northern Gulf of Mexico (nGOM). Riverine (75%) and direct atmospheric deposition (25%) deliver 9.7 t Hg y(-1) to this productive fishery; most (80%) accumulates in bottom sediments where it can be methylated and enter foodwebs. Although riverine inputs dominate atmospheric deposition, 75% of the riverine sediment-associated Hg accumulates in only approximately 8% of the study area. Atmospheric deposition can explain most of the Hg accumulating in sediments of the remaining area. Considering the differences in temporal responsiveness of riverine (centuries) and atmospheric (years) Hg inputs to anthropogenic emissions changes, the spatial limits of the riverine Hg source andthe potential dominance of atmospheric deposition over large areas could have implications for the timing of benefits from policies reducing anthropogenic Hg emissions.
Mai, Bi-Xian; Fu, Jia-Mo; Sheng, Guo-Ying; Kang, Yue-Hui; Lin, Zheng; Zhang, Gan; Min, Yu-Shuan; Zeng, Eddy Y
2002-01-01
Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.
SUBMERGED MACROPHYTE EFFECTS ON NUTRIENT EXCHANGES IN RIVERINE SEDIMENTS
Submersed macrophytes are important in nutrient cycling in marine and lacustrine systems, although their role in nutrient exchange in tidally-influenced riverine systems is not well studied. In the laboratory, plants significantly lowered porewater nutrient pools of riverine sedi...
Processing and evaluation of riverine waveforms acquired by an experimental bathymetric LiDAR
NASA Astrophysics Data System (ADS)
Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.
2010-12-01
Accurate mapping of fluvial environments with airborne bathymetric LiDAR is challenged not only by environmental characteristics but also the development and application of software routines to post-process the recorded laser waveforms. During a bathymetric LiDAR survey, the transmission of the green-wavelength laser pulses through the water column is influenced by a number of factors including turbidity, the presence of organic material, and the reflectivity of the streambed. For backscattered laser pulses returned from the river bottom and digitized by the LiDAR detector, post-processing software is needed to interpret and identify distinct inflections in the reflected waveform. Relevant features of this energy signal include the air-water interface, volume reflection from the water column itself, and, ideally, a strong return from the bottom. We discuss our efforts to acquire, analyze, and interpret riverine surveys using the USGS Experimental Advanced Airborne Research LiDAR (EAARL) in a variety of fluvial environments. Initial processing of data collected in the Trinity River, California, using the EAARL Airborne Lidar Processing Software (ALPS) highlighted the difficulty of retrieving a distinct bottom signal in deep pools. Examination of laser waveforms from these pools indicated that weak bottom reflections were often neglected by a trailing edge algorithm used by ALPS to process shallow riverine waveforms. For the Trinity waveforms, this algorithm had a tendency to identify earlier inflections as the bottom, resulting in a shallow bias. Similarly, an EAARL survey along the upper Colorado River, Colorado, also revealed the inadequacy of the trailing edge algorithm for detecting weak bottom reflections. We developed an alternative waveform processing routine by exporting digitized laser waveforms from ALPS, computing the local extrema, and fitting Gaussian curves to the convolved backscatter. Our field data indicate that these techniques improved the definition of pool areas dominated by weak bottom reflections. These processing techniques are also being tested for EAARL surveys collected along the Platte and Klamath Rivers where environmental conditions have resulted in suppressed or convolved bottom reflections.
Application of a geomorphic and temporal perspective to wetland management in North America
Smith, L.M.; Euliss, N.H.; Wilcox, D.A.; Brinson, M.M.
2008-01-01
The failure of managed wetlands to provide a broad suite of ecosystem services (e.g., carbon storage, wildlife habitat, ground-water recharge, storm-water retention) valuable to society is primarily the result of a lack of consideration of ecosystem processes that maintain productive wetland ecosystems or physical and social forces that restrict a manager's ability to apply actions that allow those processes to occur. Therefore, we outline a course of action that considers restoration of ecosystem processes in those systems where off-site land use or physical alterations restrict local management. Upon considering a wetland system, or examining a particular management regime, there are several factors that will allow successful restoration of wetland services. An initial step is examination of the political/social factors that have structured the current ecological condition and whether those realities can be addressed. Most successful restorations of wetland ecosystem services involve cooperation among multiple agencies, acquisition of funds from non-traditional sources, seeking of scientific advice on ecosystem processes, and cultivation of good working relationships among biologists, managers, and maintenance staff. Beyond that, in on-site wetland situations, management should examine the existing hydrogeomorphic situation and processes (e.g., climatic variation, tides, riverine flood-pulse events) responsible for maintenance of ecosystem services within a given temporal framework appropriate for that wetland's hydrologic pattern. We discuss these processes for five major wetland types (depressional, lacustrine, estuarine, riverine, and man-made impoundments) and then provide two case histories in which this approach was applied: Seney National Wildlife Refuge with a restored fen system and Bosque del Apache National Wildlife Refuge where riverine processes have been simulated to restore native habitat. With adequate partnerships and administrative and political support, managers faced with degraded and/or disconnected wetland processes will be able to restore ecosystem services for society in our highly altered landscape by considering wetlands in their given hydrogeomorphic setting and temporal stage. ?? 2008 The Society of Wetland Scientists.
US Military Presence in Latin America: Making the Manta Forward Operating Location work
2003-09-01
actors in the decision making process and the actors’ policy preferences and determine how they group themselves in this policy area and interact......between Peru’s growing areas and Colombia’s processing plants.22 The riverine efforts responded to concerns that drug traffickers would shift smuggling
Ecological responses to simulated agricultural runoff in a riverine backwater wetland
USDA-ARS?s Scientific Manuscript database
Riverine backwater wetlands within river floodplains provide valuable ecological functions such as acting as filters for suspended sediment, nutrients and pesticides entering from adjacent agricultural fields, as well as habitat and refugia for aquatic biota. A 500 m long, 20 m wide riverine backwa...
Survival of Atlantic salmon Salmo salar smolts through a hydropower complex.
Stich, D S; Bailey, M M; Zydlewski, J D
2014-10-01
This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06-0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river. © 2014 The Fisheries Society of the British Isles.
Survival of Atlantic salmon Salmo salar smolts through a hydropower complex
Stich, D.S.; Bailey, M.M.; Zydlewski, Joseph D.
2014-01-01
This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06–0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river.
Hassett, Whitney; Bollens, Stephen M.; Counihan, Timothy D.; Rollwagen-Bollens, Gretchen; Zimmerman, Julie; Emerson, Joshua E.
2017-01-01
The invasive Asian clam Corbicula fluminea was introduced to North America in the 1930s and now inhabits most regions of the conterminous United States; however, the distribution and ecology of C. fluminea in the Columbia River Basin is poorly understood. During 2013 and 2014, 5 Columbia-Snake River reservoirs were sampled monthly from May through September, along with 23 additional lakes and reservoirs sampled once each summer. Associations among C. fluminea veligers, other components of the plankton, and environmental variables were analyzed using non-metric multidimensional scaling and canonical correspondence analysis. Corbicula fluminea veligers were found in high abundances in all mainstem Columbia-Snake River reservoirs, with an annual mean abundance of 71.2 individuals per cubic meter (inds./m3). Only 3 of 23 lakes and (non-mainstem) reservoirs contained C. fluminea, with abundances considerably lower (maximum = 21.2 inds./m3) than in the mainstem reservoirs. A diatom-dominated community preceded the spawning of C. fluminea in early summer at all sites. Corbicula fluminea veligers characterized the plankton community in late summer and were associated with cyanobacteria and high water temperatures. A third community, characterized by cyanobacteria, was apparent in non-mainstem sites in July and August. Our analyses describe the relationship of C. fluminea to the plankton community and environment, which contributes to our understanding of the possible effects of C. fluminea infestations and which waterbodies in the Columbia River Basin are at risk for infestation. Understanding the effects and environmental determinants of invasive mollusks will be increasingly important in the future with the possible arrival of zebra (Dreissena polymorpha) or quagga (D. bugensis) mussels to the region.
Chen, Dingjiang; Huang, Hong; Hu, Minpeng; Dahlgren, Randy A
2014-05-20
This study demonstrates the importance of the nitrogen-leaching lag effect, soil nitrogen release, and climate change on anthropogenic N inputs (NANI) and riverine total nitrogen (TN) export dynamics using a 30-yr record for the Yongan River watershed in eastern China. Cross-correlation analysis indicated a 7-yr, 5-yr, and 4-yr lag time in riverine TN export in response to changes in NANI, temperature, and drained agricultural land area, respectively. Enhanced by warmer temperature and improved agricultural drainage, the upper 20 cm of agricultural soils released 270 kg N ha(-1) between 1980 and 2009. Climate change also increased the fractional export of NANI to river. An empirical model (R(2) = 0.96) for annual riverine TN flux incorporating these influencing factors estimated 35%, 41%, and 24% of riverine TN flux originated from the soil N pool, NANI, and background N sources, respectively. The model forecasted an increase of 45%, 25%, and 6% and a decrease of 13% in riverine TN flux from 2010 to 2030 under continued development, climate change, status-quo, and tackling scenarios, respectively. The lag effect, soil N release, and climate change delay riverine TN export reductions with respect to decreases in NANI and should be considered in developing and evaluating N management measures.
NASA Astrophysics Data System (ADS)
Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.
2014-12-01
Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of tributaries.
NASA Astrophysics Data System (ADS)
Duan, Y.; Wang, G.; Xie, N.
2016-02-01
The coastal ocean connects terrestrial (e.g., rivers and estuaries) with oceanic ecosystems and is considered as a major component of global carbon cycles and budgets. The coastal waters are featured with a high biodiversity and high primary production. Because of the excessive primary production, a large fraction of primary organic matter becomes available to consumers as detritus in the coastal waters. Bacterioplankton have long been known to play a key role in the degradation of this detritus, and export and storage of organic matter in the coastal ecosystems. However, the primary and secondary production and the carbon biogeochemical processes in the ecosystems are largely regulated by nutrient inputs from riverine and other anthropogenic activities through heterotrophic microbial communities. Thraustochytrids, commonly known as fungal-like protists, are unicellular heterotrophic protists and are recently acknowledged to play a significant role in ocean carbon cycling. Their abundance exceeds that of bacterioplankton in the most time of the year in the coastal waters of China. Also, their abundance and diversity are largely regulated by nutrients inputs from riverine and other anthropogenic activities. Our findings support that thraustochytrids are a dominant heterotrophic microbial group in the coastal waters. Evidently, thraustochytrids are an import, but neglected, component in microbial carbon biogeochemical processes of the coastal ocean.
Physical Heterogeneity and Aquatic Community Function in River Networks
The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological...
Stegen, James C.; Fredrickson, James K.; Wilkins, Michael J.; Konopka, Allan E.; Nelson, William C.; Arntzen, Evan V.; Chrisler, William B.; Chu, Rosalie K.; Danczak, Robert E.; Fansler, Sarah J.; Kennedy, David W.; Resch, Charles T.; Tfaily, Malak
2016-01-01
Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater–surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater–surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds. PMID:27052662
Stegen, James C; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Danczak, Robert E; Fansler, Sarah J; Kennedy, David W; Resch, Charles T; Tfaily, Malak
2016-04-07
Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater-surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds.
Cheng, Lv; Li, Xiaofei; Lin, Xianbiao; Hou, Lijun; Liu, Min; Li, Ye; Liu, Sai; Hu, Xiaoting
2016-12-01
Urbanizations have increased the loadings of reactive nitrogen in urban riverine environments. However, limited information about dissimilatory nitrate reduction processes and associated contributions to nitrogen removal is available for urban riverine environments. In this study, sediment slurry experiments were conducted with nitrogen isotope-tracing technique to investigate the potential rates of denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) and their contributions to nitrate reduction in sediments of urban river networks, Shanghai. The potential rates of denitrification, anammox and DNRA measured in the study area ranged from 0.193 to 98.7 nmol N g -1 h -1 dry weight (dw), 0.0387-23.7 nmol N g -1 h -1 dw and 0-10.3 nmol N g -1 h -1 dw, respectively. Denitrification and DNRA rates were higher in summer than in winter, while anammox rates were greater in winter than in summer for most sites. Dissolved oxygen, total organic carbon, nitrate, ammonium, sulfide, Fe(II) and Fe(III) were found to have significant influence on these nitrate reduction processes. Denitrification contributed 11.5-99.5%% to total nitrate reduction, as compared to 0.343-81.6% for anammox and 0-52.3% for DNRA. It is estimated that nitrogen loss of approximately 1.33 × 10 5 t N year -1 was linked to both denitrification and anammox processes, which accounted for about 20.1% of total inorganic nitrogen transported annually into the urban river networks of Shanghai. Overall, these results show the potential importance of denitrification and anammox in nitrogen removal and provide new insight into the mechanisms of nitrogen cycles in urban riverine environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
How much riverine nutrients do shelf seas allow into the open ocean?
NASA Astrophysics Data System (ADS)
Sharples, J.; Fennel, K.; Jickells, T. D.
2016-02-01
Globally rivers deliver 35 Tg of dissolved N and 2 Tg of dissolved P into the coastal zone each year. Investigating the effects of this nutrient supply on the open ocean generally takes one of two approaches: either all or none of the nutrients are assumed to enter the open ocean. Here we use some general assumptions on the behaviour of river plumes on the shelf to arrive at an estimate of the proportions of dissolved N and P that are processed on the shelf, and thus the amount of riverine nutrient that enters the open ocean. Using the Global NEWS database of 6000 rivers we assume that discharges to the shelf are initially constrained within coastal buoyancy currents of width 2 internal Rossby radii. This width is compared to the local shelf width for each river. For plume widths greater than the shelf width riverine nutrients are assumed to be transported over the shelf edge within the plume. For plume widths less than the shelf width we assume that exchange with the open ocean is controlled by physical processes at the shelf break. For each river an estimate of the residence time of riverine water is made, based on the transport or exchange rate and the shelf volume. Empirical relationships between residence time and the proportion of supplied N and P that is retained on the shelf are then used to estimate the amount of dissolved N and P that escapes to the open ocean. The results suggest that 25% of dissolved N and 20% of dissolved P are processed in shelf seas, with the rest exported to the open ocean. There is a latitudinal pattern, with tropical rivers delivering more nutrients to the open ocean. This is partially a result of the high discharges of some tropical rivers, but a key issue is our assumption of the internal Rossby radius governing plume width. A range of values for transport rates within plumes and exchange rates across the shelf break are used to assess the sensitivity of these results, which appear to be robust.
Are we meeting the challenges of landscape-scale riverine research? A review
E. Ashley Steel; Robert M. Hughes; Aimee H. Fullerton; Stefan Schmutz; John A. Young; Michio Fukushima; Susanne Muhar; Michaela Poppe; Blake E. Feist; Clemens Trautwein
2010-01-01
Identifying and quantifying relationships among landscape patterns, anthropogenic disturbances, and aquatic ecosystems is a new and rapidly developing approach to riverine ecology. In this review, we begin by describing the policy and management drivers for landscape-scale riverine research and we synthesize the technological advances that have enabled dramatic...
Rehabilitate Newsome Creek Watershed, 2007-2008 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bransford, Stephanie
2009-05-01
The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridgetop approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Newsome Creek watershed of the South Fork Clearwater River in 1997. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. Starting in FY 2001 and continuing into themore » present, a major stream restoration effort on the mainstem of Newsome Creek has been pursued. From completing a watershed assessment to a feasibility study of 4 miles of mainstem rehabilitation to carrying that forward into NEPA and a final design, we will begin the effort of restoring the mainstem channel of Newsome Creek to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed.« less
Shift in the chemical composition of dissolved organic matter in the Congo River network
NASA Astrophysics Data System (ADS)
Lambert, Thibault; Bouillon, Steven; Darchambeau, François; Massicotte, Philippe; Borges, Alberto V.
2016-09-01
The processing of terrestrially derived dissolved organic matter (DOM) during downstream transport in fluvial networks is poorly understood. Here, we report a dataset of dissolved organic carbon (DOC) concentrations and DOM composition (stable carbon isotope ratios, absorption and fluorescence properties) acquired along a 1700 km transect in the middle reach of the Congo River basin. Samples were collected in the mainstem and its tributaries during high-water (HW) and falling-water (FW) periods. DOC concentrations and DOM composition along the mainstem were found to differ between the two periods because of a reduced lateral mixing between the central water masses of the Congo River and DOM-rich waters from tributaries and also likely because of a greater photodegradation during FW as water residence time (WRT) increased. Although the Cuvette Centrale wetland (one of the world's largest flooded forests) continuously releases highly aromatic DOM in streams and rivers of the Congo Basin, the downstream transport of DOM was found to result in an along-stream gradient from aromatic to aliphatic compounds. The characterization of DOM through parallel factor analysis (PARAFAC) suggests that this transition results from (1) the losses of aromatic compounds by photodegradation and (2) the production of aliphatic compounds by biological reworking of terrestrial DOM. Finally, this study highlights the critical importance of the river-floodplain connectivity in tropical rivers in controlling DOM biogeochemistry at a large spatial scale and suggests that the degree of DOM processing during downstream transport is a function of landscape characteristics and WRT.
Coastal and Riverine Flood Forecast Model powered by ADCIRC
NASA Astrophysics Data System (ADS)
Khalid, A.; Ferreira, C.
2017-12-01
Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which might provide better and more reliable forecast for the flood affected communities.
Feng, Yang; Friedrichs, Marjorie A M; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E; Wiggert, Jerry D; Hood, Raleigh R
2015-08-01
The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 10 9 g N yr -1 ) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 10 9 g N yr -1 ) and buried (46 × 10 9 g N yr -1 ) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 10 9 g N yr -1 ) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50-60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf.
Friedrichs, Marjorie A. M.; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E.; Wiggert, Jerry D.; Hood, Raleigh R.
2015-01-01
Abstract The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land‐estuarine‐ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within‐estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite‐derived data, and a simulation using environmental conditions for 2001–2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 109 g N yr−1) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 109 g N yr−1) and buried (46 × 109 g N yr−1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 109 g N yr−1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50–60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf. PMID:27668137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qichun; Zhang, Xuesong; Xu, Xingya
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
NASA Astrophysics Data System (ADS)
Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.
2013-06-01
Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006-2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43- ranged from 37 to 1063, suggesting preferential PO43- relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km-2 yr-1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be caused.
Us SAN DIEGO (May 22, 2018) Sailors assigned to Coastal Riverine Squadron (CRS) 3 operate a Mark VI patrol boat during a final evaluation problem conducted by Coastal Riverine Group (CRG) 1's training and ./Released) Sailors assigned to Coastal Riverine Squadron 3 operate a Mark VI patrol boat in waters off San
Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River, 2002 Technical Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawding, Dan; Hillson, Todd D.
2003-11-15
Accurate and precise population estimates of chum salmon (Oncorhynchus keta) spawning in the mainstem Columbia River are needed to provide a basis for informed water allocation decisions, to determine the status of chum salmon listed under the Endangered Species Act, and to evaluate the contribution of the Duncan Creek re-introduction program to mainstem spawners. Currently, mark-recapture experiments using the Jolly-Seber model provide the only framework for this type of estimation. In 2002, a study was initiated to estimate mainstem Columbia River chum salmon populations using seining data collected while capturing broodstock as part of the Duncan Creek re-introduction. The fivemore » assumptions of the Jolly-Seber model were examined using hypothesis testing within a statistical framework, including goodness of fit tests and secondary experiments. We used POPAN 6, an integrated computer system for the analysis of capture-recapture data, to obtain maximum likelihood estimates of standard model parameters, derived estimates, and their precision. A more parsimonious final model was selected using Akaike Information Criteria. Final chum salmon escapement estimates and (standard error) from seining data for the Ives Island, Multnomah, and I-205 sites are 3,179 (150), 1,269 (216), and 3,468 (180), respectively. The Ives Island estimate is likely lower than the total escapement because only the largest two of four spawning sites were sampled. The accuracy and precision of these estimates would improve if seining was conducted twice per week instead of weekly, and by incorporating carcass recoveries into the analysis. Population estimates derived from seining mark-recapture data were compared to those obtained using the current mainstem Columbia River salmon escapement methodologies. The Jolly-Seber population estimate from carcass tagging in the Ives Island area was 4,232 adults with a standard error of 79. This population estimate appears reasonable and precise but batch marks and lack of secondary studies made it difficult to test Jolly-Seber assumptions, necessary for unbiased estimates. We recommend that individual tags be applied to carcasses to provide a statistical basis for goodness of fit tests and ultimately model selection. Secondary or double marks should be applied to assess tag loss and male and female chum salmon carcasses should be enumerated separately. Carcass tagging population estimates at the two other sites were biased low due to limited sampling. The Area-Under-the-Curve escapement estimates at all three sites were 36% to 76% of Jolly-Seber estimates. Area-Under-the Curve estimates are likely biased low because previous assumptions that observer efficiency is 100% and residence time is 10 days proved incorrect. If managers continue to rely on Area-Under-the-Curve to estimate mainstem Columbia River spawners, a methodology is provided to develop annual estimates of observer efficiency and residence time, and to incorporate uncertainty into the Area-Under-the-Curve escapement estimate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Ryan; Stephens, Brian; Tohtz, Joel
2009-04-03
A new project began in 2005 to monitor the biological and physical effects of improved operations of Hungry Horse and Libby Dams, Montana, called for by the Northwest Power and Conservation Council (NPCC) Mainstem Amendment. This operating strategy was designed to benefit resident fish impacted by hydropower and flood control operations. Under the new operating guidelines, July through September reservoir drafts will be limited to 10 feet from full pool during the highest 80% of water supply years and 20 feet from full pool during the lowest 20% of water supply (drought) years. Limits were also established on how rapidlymore » discharge from the dams can be increased or decreased depending on the season. The NPCC also directed the federal agencies that operate Libby and Hungry Horse Dams to implement a new flood control strategy (VARQ) and directed Montana Fish, Wildlife & Parks to evaluate biological responses to this operating strategy. The Mainstem Amendment operating strategy has not been fully implemented at the Montana dams as of June 2008 but the strategy will be implemented in 2009. This report highlights the monitoring methods used to monitor the effects of the Mainstem Amendment operations on fishes, habitat, and aquatic invertebrates upstream and downstream of Libby Dam. We also present initial assessments of data and the effects of various operating strategies on physical and biological components of the systems upstream and downstream of Libby Dam. Annual electrofishing surveys in the Kootenai River and selected tributaries, along with gill net surveys in the reservoir, are being used to quantify the impacts of dam operations on fish populations upstream and downstream of Libby Dam. Scales and otoliths are being used to determine the age structure and growth of focal species. Annual population estimates and tagging experiments provide estimates of survival and growth in the mainstem Kootenai River and selected tributaries. Radio telemetry will be used to validate an existing Instream Flow Incremental Methodology (IFIM) model developed for the Kootenai River and will also be used to assess the effect of changes in discharge on fish movements and habitat use downstream of Libby Dam. Passive integrated transponder (PIT) tags will be injected into rainbow, bull, and cutthroat trout throughout the mainstem Kootenai River and selected tributaries to provide information on growth, survival, and migration patterns in relation to abiotic and biotic variables. Model simulations (RIVBIO) are used to calculate the effects of dam operations on the wetted perimeter and benthic biomass in the Kootenai River below Libby Dam. Additional models (IFIM) will also be used to evaluate the impacts of dam operations on the amount of available habitat for different life stages of rainbow and bull trout in the Kootenai River.« less
2009-06-01
greatly influenced by the sources of iron to the marine environment, which include riverine input, hydrothermal upwelling, and atmospheric...deposition (Jickells et al, 2005). While the amount of iron introduced to the oceans from riverine and hydrothermal sources is high, precipitation occurs...rapidly in both cases and removes iron from seawater, minimizing the impact of hydrothermal and riverine sources on the concentration of iron in the
As defined by Wikipedia (https://en.wikipedia.org/wiki/Metamodeling), “(a) metamodel or surrogate model is a model of a model, and metamodeling is the process of generating such metamodels.” The goals of metamodeling include, but are not limited to (1) developing func...
Tiffan, Kenneth F.; Erhardt, John M.; St. John, Scott J.
2014-01-01
We examined prey availability, prey consumed, and diet energy content as sources of variation in growth of natural fall Chinook Salmon Oncorhynchus tshawytscha subyearlings rearing in riverine and reservoir habitats in the Snake River. Subyearlings in riverine habitat primarily consumed aquatic insects (e.g., Diptera, Ephemeroptera, Trichoptera), of which a high proportion was represented by adult, terrestrial forms. In the reservoir, subyearlings also consumed aquatic insects but also preyed heavily at times on nonnative lentic amphipods Corophium spp. and the mysid Neomysis mercedis, which were absent in riverine habitats. The availability of prey was typically much higher in the reservoir due to N. mercedis often composing over 90% of the biomass, but when this taxon was removed from consideration, biomass estimates were more often higher in the riverine habitat. Subyearling diets during 2009–2011 were generally 17–40% higher in energy in the riverine habitat than in the reservoir. Observed growth in both length and weight were significantly higher in the riverine habitat than in the reservoir. Little is known about how temporal and spatial changes in the food web in large river landscapes influence populations of native anadromous fishes. Our results provide a glimpse of how the spread and establishment of nonnative prey species can reduce juvenile salmon growth in a large river impoundment, which in turn can affect migration timing and survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay, David A.; Borde, Amy B.; Diefenderfer, Heida L.
Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetlandmore » hydrologic regimes at different locations on the river floodplain. A new predictive tool is introduced and validated, the potential SEV (pSEV), which can reduce the need for extensive new data collection in wetland restoration planning. Models of water levels and inundation frequency distinguish four zones encompassing eight reaches. The system zones are the wave- and current-dominated Entrance to river kilometer (rkm) 5; the Estuary (rkm-5 to 87), comprised of a lower reach with salinity, the energy minimum (where the turbidity maximum normally occurs), and an upper estuary reach without salinity; the Tidal River (rkm-87 to 229), with lower, middle, and upper reaches in which river flow becomes increasingly dominant over tides in determining water levels; and the steep and weakly tidal Cascade (rkm-229 to 234) immediately downstream from Bonneville Dam. The same zonation is seen in the water levels of floodplain stations, with considerable modification of tidal properties. The system zones and reaches defined here reflect geological features and their boundaries are congruent with five wetland vegetation zones« less
Contribution of wetlands to nitrate removal at the watershed scale
NASA Astrophysics Data System (ADS)
Hansen, Amy T.; Dolph, Christine L.; Foufoula-Georgiou, Efi; Finlay, Jacques C.
2018-02-01
Intensively managed row crop agriculture has fundamentally changed Earth surface processes within the Mississippi River basin through large-scale alterations of land cover, hydrology and reactive nitrogen availability. These changes have created leaky landscapes where excess agriculturally derived nitrate degrades riverine water quality at local, regional and continental scales. Individually, wetlands are known to remove nitrate but the conditions under which multiple wetlands meaningfully reduce riverine nitrate concentration have not been established. Only one region of the Mississippi River basin—the 44,000 km2 Minnesota River basin—still contains enough wetland cover within its intensively agriculturally managed watersheds to empirically address this question. Here we combine high-resolution land cover data for the Minnesota River basin with spatially extensive repeat water sampling data. By clearly isolating the effect of wetlands from crop cover, we show that, under moderate-high streamflow, wetlands are five times more efficient per unit area at reducing riverine nitrate concentration than the most effective land-based nitrogen mitigation strategies, which include cover crops and land retirement. Our results suggest that wetland restorations that account for the effects of spatial position in stream networks could provide a much greater benefit to water quality then previously assumed.
NASA Astrophysics Data System (ADS)
Lu, Meng-Chang; Huang, -Chuan, Jr.; Chang, Chung-Te; Shih, Yu-Ting; Lin, Teng-Chiu
2016-04-01
The riverine DIN is a crucial indicator for eutrophication in river network. The riverine DIN export in Taiwan is featured by the extremely high yield, ~3800 kg-N km-2yr-1, nearly 20-fold than the global average, showing the interesting terrestrial N process yet rarely documented. In this study we collected the DIN samples in rainwater, soil water, and stream water in a mountainous forest watershed, FuShan experimental forest watershed 1 (WS1) which is a natural broadleaf forest without human activities. Based on the intensive observations, we applied the INCA-N to simulate the riverine DIN response and thus estimate the terrestrial N processes in a global synthesis. The result showed that both discharge and DIN yield were simulated well with the average Nash-Sutcliffe efficiency coefficient of 0.83 and 0.76 , respectively. Among all N processes, N uptake, mineralization, nitrification, denitrfication, and immobilization are significantly positive correlated with soil moisture (R2>0.99), which indicates that soil moisture greatly influences N cycle processes. The average rate of mineralization and nitrification in wet years are consistent with documented values, whereas the rates in dry years are lower than the observations. Despite the high nitrification rate, the secondary forest may uptake abundant N indicating the plant uptake, which responds for removing considerable nitrate, is a controlling factor in forest ecosystem. Our simulated denitrification rate falls between the documented rates of temperate forest and agricultural area, and that may be affected by the high N-deposition in Taiwan. Simulated in-stream denitrification rate is less than 10% of the rate in soil, and is a little lower than that in temperate forest. This preliminary simulation provides an insightful guide to establish the monitoring programme and improve the understanding of N cycle in subtropical.
NASA Astrophysics Data System (ADS)
Yousefi, Saleh; Keesstra, Saskia; Pourghasemi, Hamid Reza; Surian, Nicola; Mirzaee, Somayeh
2017-04-01
Fluvial dynamics in riverine borders can play an important role in political relationships between countries. Rivers move and evolve under the influence of natural processes and external drivers (e.g. land use change in river catchments). The Hirmand River is an important riverine border between Iran and Afghanistan. The present study shows the evolution and lateral shifting of the Hirmand River along the common international border (25.6 km) over a period of 6 decades (1955-2015). Seven data series of aerial photos, topographic maps and Landsat images were used to identify the land cover and morphological changes in the study reach. The land cover has changed dramatically on both sides of the border during the last 6 decades, especially in the Afghan part. Overall, 49% of all land surface changed its cover type, especially the area of agriculture and residential land contributed to that, with an increase in surface area of about 4931 ha and 561 ha, respectively. On the other hand, the natural cover and water bodies decreased to 38 % and 63 %, respectively. The impact of these land use changes on the morphological evolution of Hirmand River was investigated in 5 sub-reaches. We found an average decrease of the active channel width of 53% during 60 years and the average River Network Change Index for the whole study reach during 60 years was -1.25 m/yr. Deposition and narrowing turned out to be the main processes occurring within the study reach. Furthermore, due to natural riverine processes the Hirmand River has moved towards Afghanistan (37 m on average) and lateral shifting was found to be up to 1900 m in some sections.
NASA Astrophysics Data System (ADS)
Brovkin, V.; Gehlot, S.; Hagemann, S.
2017-12-01
The current state of the art General Circulation Models (GCMs) do not consider the lateral transport of dissolved organic carbon (DOC) from land to ocean via rivers/streams and the global carbon budget is primarily evaluated based only on vertical gas exchange processes between land or ocean carbon reservoirs. In high latitudes, the permafrost plays an important role in contributing to riverine organic carbon. Moreover, the vertical gas exchange processes are active during the lateral riverine carbon transport but are not considered in the impact of thawing permafrost on global climate. The interplay between permafrost and lateral hydrology is a substantial factor impacting the organic carbon inflow to the Arctic and its associated atmospheric exchange. In this research, we propose a framework of coupling the soil carbon transport via rivers using the hydrological discharge scheme (HD-Model) of MPI-ESM (Max-Planck Institute for Meteorology Earth System Model). The soil carbon classification is based on the solubility (YASSO soil carbon pools) and their subsequent attribution to the dissolved organic carbon via runoff (fast carbon pool) and baseflow (slow carbon pool). The HD-model, which simulates the river discharge for all land areas at a resolution of 0.5 degree, will be modified with inclusion of the DOC as tracer over test areas. Evaluation of DOC transport scheme is intended at reservoir level via available site measurements. The analysis will include global river networks for organic carbon transport with focus on permafrost and high latitude areas. Decomposition of DOC en-route land to ocean via vertical gas exchange processes will be included.
An assessment of stream habitat and nutrients in the Elwha River basin: implications for restoration
Munn, Mark D.; Black, R.W.; Haggland, A.L.; Hummling, M.A.; Huffman, R.L.
1999-01-01
The Elwha River was once famous for its 10 runs of anadromous salmon which included chinook that reportedly exceeded 45 kilograms. These runs either ceased to exist or were significantly depleted after the construction of the Elwha (1912) and Glines Canyon (1927) Dams, which resulted in the blockage of more than 113 kilometers of mainstem river and tributary habitat. In 1992, in response to the loss of the salmon runs in the Elwha River Basin, President George Bush signed the Elwha River Ecosystem and Fisheries Restoration Act, which authorizes the Secretary of the Interior to remove both dams for ecosystem restoration. The objective of this U.S. Geological Survey (USGS) study was to begin describing baseline conditions for assessing changes that will result from restoration. The first step was to review available physical, chemical, and biological information on the Elwha River Basin. We found that most studies have focused on anadromous fish and habitat and that little information is available on water quality, habitat classification, geomorphic processes, and riparian and aquatic biological communities. There is also a lack of sufficient data on baseline conditions for assessing future changes if restoration occurs. The second component of this study was to collect water-quality and habitat data, filling information gaps. This information will permit a better understanding of the relation between physical habitat and nutrient conditions and changes that may result from salmon restoration. We collected data in the fall of 1997 and found that the concentrations of nitrogen and phosphorous were generally low, with most samples having concentrations below detection limits. Detectable concentrations of nitrogen were associated with sites in the lower reach of the Elwha River, whereas the few detections of phosphorus were at sites throughout the basin. Nutrient data indicate that the Elwha River and its tributaries are oligotrophic. Results of the stream classification indicated that most of the habitat that would be usable by salmon is found in the mainstem of the Elwha River due to natural gradient barriers at the lower end of most tributaries. Habitat is diverse in the mainstem due to large woody debris accumulations and the existence of secondary channels. We concluded that restoring salmon runs to the Elwha River system will affect the ecosystem profoundly. Decaying carcasses of migrating salmon will be the source of large quantities of nutrients to the Elwha River. The complex instream habitat of the mainstem will enhance cycling of these nutrients because carcasses will be retained long enough to be assimilated thereby increasing primary and secondary production, size of immature salmonids, and overall higher salmon recruitment.
Limburg, Karin E.; Hayden, Todd A.; Pine, William E.; Yard, Michael D.; Kozdon, Reinhard; Valley, John W.
2013-01-01
We developed a geochemical atlas of the Colorado River in Grand Canyon and in its tributary, the Little Colorado River, and used it to identify provenance and habitat use by Federally Endangered humpback chub, Gila cypha. Carbon stable isotope ratios (δ13C) discriminate best between the two rivers, but fine scale analysis in otoliths requires rare, expensive instrumentation. We therefore correlated other tracers (SrSr, Ba, and Se in ratio to Ca) to δ13C that are easier to quantify in otoliths with other microchemical techniques. Although the Little Colorado River’s water chemistry varies with major storm events, at base flow or near base flow (conditions occurring 84% of the time in our study) its chemistry differs sufficiently from the mainstem to discriminate one from the other. Additionally, when fish egress from the natal Little Colorado River to the mainstem, they encounter cold water which causes the otolith daily growth increments to decrease in size markedly. Combining otolith growth increment analysis and microchemistry permitted estimation of size and age at first egress; size at first birthday was also estimated. Emigrants < 1 year old averaged 51.2 ± 4.4 (SE) days and 35.5 ± 3.6 mm at egress; older fish that had recruited to the population averaged 100 ± 7.8 days old and 51.0 ± 2.2 mm at egress, suggesting that larger, older emigrants recruit better. Back-calculated size at age 1 was unimodal and large (78.2 ± 3.3 mm) in Little Colorado caught fish but was bimodally distributed in Colorado mainstem caught fish (49.9 ± 3.6 and 79 ± 4.9 mm) suggesting that humpback chub can also rear in the mainstem. The study demonstrates the coupled usage of the two rivers by this fish and highlights the need to consider both rivers when making management decisions for humpback chub recovery.
Protiva, Frank R.; Ralston, Barbara E.; Stone, Dennis M.; Kohl, Keith A.; Yard, Michael D.; Haden, G. Allen
2010-01-01
Water velocity and temperature are physical variables that affect the growth and survivorship of young-of-year (YOY) fishes. The Little Colorado River, a tributary to the Colorado River in Grand Canyon, is an important spawning ground and warmwater refuge for the endangered humpback chub (Gila cypha) from the colder mainstem Colorado River that is regulated by Glen Canyon Dam. The confluence area of the Little Colorado River and the Colorado River is a site where YOY humpback chub (size 30-90 mm) emerging from the Little Colorado River experience both colder temperatures and higher velocities associated with higher mainstem discharge. We used detailed surveying and mapping techniques in combination with YOY velocity and temperature preferenda (determined from field and lab studies) to compare the areal extent of available habitat for young fishes at the confluence area under four mainstem discharges (227, 368, 504, and 878 m3/s). Comparisons revealed that the areal extent of low-velocity, warm water at the confluence decreased when discharges exceeded 368 m3/s. Furthermore, mainstem fluctuations, depending on the rate of upramp, can affect velocity and temperature dynamics in the confluence area within several hours. The amount of daily fluctuations in discharge can result in the loss of approximately 1.8 hectares of habitat favorable to YOY humpback chub. Consequently, flow fluctuations and the accompanying changes in velocity and temperature at the confluence may diminish the recruitment potential of humpback chub that spawn in the tributary stream. This study illustrates the utility of multiple georeferenced data sources to provide critical information related to the influence of the timing and magnitude of discharge from Glen Canyon Dam on potential rearing environment at the confluence area of the Little Colorado River.
Limburg, Karin E.; Hayden, Todd A.; Pine, William E.; Yard, Michael D.; Kozdon, Reinhard; Valley, John W.
2013-01-01
We developed a geochemical atlas of the Colorado River in Grand Canyon and in its tributary, the Little Colorado River, and used it to identify provenance and habitat use by Federally Endangered humpback chub, Gila cypha. Carbon stable isotope ratios (δ13C) discriminate best between the two rivers, but fine scale analysis in otoliths requires rare, expensive instrumentation. We therefore correlated other tracers (SrSr, Ba, and Se in ratio to Ca) to δ13C that are easier to quantify in otoliths with other microchemical techniques. Although the Little Colorado River’s water chemistry varies with major storm events, at base flow or near base flow (conditions occurring 84% of the time in our study) its chemistry differs sufficiently from the mainstem to discriminate one from the other. Additionally, when fish egress from the natal Little Colorado River to the mainstem, they encounter cold water which causes the otolith daily growth increments to decrease in size markedly. Combining otolith growth increment analysis and microchemistry permitted estimation of size and age at first egress; size at first birthday was also estimated. Emigrants < 1 year old averaged 51.2 ± 4.4 (SE) days and 35.5 ± 3.6 mm at egress; older fish that had recruited to the population averaged 100 ± 7.8 days old and 51.0 ± 2.2 mm at egress, suggesting that larger, older emigrants recruit better. Back-calculated size at age 1 was unimodal and large (78.2 ± 3.3 mm) in Little Colorado caught fish but was bimodally distributed in Colorado mainstem caught fish (49.9 ± 3.6 and 79 ± 4.9 mm) suggesting that humpback chub can also rear in the mainstem. The study demonstrates the coupled usage of the two rivers by this fish and highlights the need to consider both rivers when making management decisions for humpback chub recovery. PMID:24358346
Joseph A. Tainter; Bonnie Bagley Tainter
1996-01-01
Ecosystem management should be based on the fullest possible knowledge of ecological structures and processes. In prehistoric North America, the involvement of Indian populations in ecosystem processes ranged from inadvertent alteration of the distribution and abundance of species to large-scale management of landscapes. The knowledge needed to manage ecosystems today...
As defined by Wikipedia (https://en.wikipedia.org/wiki/Metamodeling), “(a) metamodel or surrogate model is a model of a model, and metamodeling is the process of generating such metamodels.” The goals of metamodeling include, but are not limited to (1) developing functional or st...
Xu, Jie; Sun, Mingming; Shi, Zhen; Harrison, Paul J.; Liu, Hongbin
2014-01-01
A cross-transplant experiment between estuarine water and seawater was conducted to examine the response of bacterial metabolic activity to riverine dissolved organic carbon (DOC) input under virus-rich and virus-free conditions, as well as to exogenous viruses. Riverine DOC input increased bacterial production significantly, but not bacterial respiration (BR) because of its high lability. The bioavailable riverine DOC influenced bulk bacterial respiration in two contrasting ways; it enhanced the bulk BR by stimulating bacterial growth, but simultaneously reduced the cell-specific BR due to its high lability. As a result, there was little stimulation of the bulk BR by riverine DOC. This might be partly responsible for lower CO2 degassing fluxes in estuaries receiving high sewage-DOC that is highly labile. Viruses restricted microbial decomposition of riverine DOC dramatically by repressing the growth of metabolically active bacteria. Bacterial carbon demand in the presence of viruses only accounted for 7–12% of that in the absence of viruses. Consequently, a large fraction of riverine DOC was likely transported offshore to the shelf. In addition, marine bacteria and estuarine bacteria responded distinctly to exogenous viruses. Marine viruses were able to infect estuarine bacteria, but not as efficiently as estuarine viruses, while estuarine viruses infected marine bacteria as efficiently as marine viruses. We speculate that the rapid changes in the viral community due to freshwater input destroyed the existing bacteria-virus relationship, which would change the bacterial community composition and affect the bacterial metabolic activity and carbon cycling in this estuary. PMID:25036641
Xu, Jie; Sun, Mingming; Shi, Zhen; Harrison, Paul J; Liu, Hongbin
2014-01-01
A cross-transplant experiment between estuarine water and seawater was conducted to examine the response of bacterial metabolic activity to riverine dissolved organic carbon (DOC) input under virus-rich and virus-free conditions, as well as to exogenous viruses. Riverine DOC input increased bacterial production significantly, but not bacterial respiration (BR) because of its high lability. The bioavailable riverine DOC influenced bulk bacterial respiration in two contrasting ways; it enhanced the bulk BR by stimulating bacterial growth, but simultaneously reduced the cell-specific BR due to its high lability. As a result, there was little stimulation of the bulk BR by riverine DOC. This might be partly responsible for lower CO2 degassing fluxes in estuaries receiving high sewage-DOC that is highly labile. Viruses restricted microbial decomposition of riverine DOC dramatically by repressing the growth of metabolically active bacteria. Bacterial carbon demand in the presence of viruses only accounted for 7-12% of that in the absence of viruses. Consequently, a large fraction of riverine DOC was likely transported offshore to the shelf. In addition, marine bacteria and estuarine bacteria responded distinctly to exogenous viruses. Marine viruses were able to infect estuarine bacteria, but not as efficiently as estuarine viruses, while estuarine viruses infected marine bacteria as efficiently as marine viruses. We speculate that the rapid changes in the viral community due to freshwater input destroyed the existing bacteria-virus relationship, which would change the bacterial community composition and affect the bacterial metabolic activity and carbon cycling in this estuary.
Jones, R Christian; Kelso, Donald P; Schaeffer, Elaine
2008-12-01
Spatial and temporal patterns in water quality were studied for seven years within an embayment-river mainstem area of the tidal freshwater Potomac River. The purpose of this paper is to determine the important components of spatial and temporal variation in water quality in this study area to facilitate an understanding of management impacts and allow the most effective use of future monitoring resources. The study area received treated sewage effluent and freshwater inflow from direct tributary inputs into the shallow embayment as well as upriver sources in the mainstem. Depth variations were determined to be detectable, but minimal due mainly to the influence of tidal mixing. Results of principal component analysis of two independent water quality datasets revealed clear spatial and seasonal patterns. Interannual variation was generally minimal despite substantial variations in tributary and mainstem discharge among years. Since both spatial and seasonal components were important, data were segmented by season to best determine the spatial pattern. A clear difference was found between a set of stations located within one embayment (Gunston Cove) and a second set in the nearby Potomac mainstem. Parameters most highly correlated with differences were those typically associated with higher densities of phytoplankton: chlorophyll a, photosynthetic rate, pH, dissolved oxygen, BOD, total phosphorus and Secchi depth. These differences and their consistency indicated two distinct water masses: one in the cove harboring higher algal density and activity and a second in the river with lower phytoplankton activity. A second embayment not receiving sewage effluent generally had an intermediate position. While this was the most consistent spatial pattern, there were two others of a secondary nature. Stations closer to the effluent inputs in the embayment sometimes grouped separately due to elevated ammonia and chloride. Stations closer to tributary inflows into the embayment sometimes grouped separately due to dilution with freshwater runoff. Segmenting the datasets by spatial region resulted in a clarification of seasonal patterns with similar factors relating to algal activity being the major correlates of the seasonal pattern. A basic seasonal pattern of lower scores in the spring increasing steadily to a peak in July and August followed by a steady decline through the fall was observed in the cove. In the river, the pattern of increases tended to be delayed slightly in the spring. Results indicate that the study area can be effectively monitored with fewer study sites provided that at least one is located in each of the spatial regions.
The Evolution of the Lower Missouri River: National Mapping Discipline Research at Lisbon Bottom
,
2002-01-01
Before 1800, the Missouri River was one of North America's most diverse and dynamic ecosystems. During the past 200 years, civil engineering has transformed it into a navigation system regulated by reservoirs and confined by bank stabilization and flood control structures. These modifications have reduced seasonal flow variability and sediment load and have disconnected the river from backwater, off-channel, and floodplain habitats. Flooding along the Lower Missouri River in 1993 and again in 1996 created a side-channel chute across Lisbon Bottom, a well-formed loop bottom near Glasgow, Mo. The formation and subsequent development of the chute have provided USGS scientists with a glimpse of a preregulated Missouri River. Knowledge of geologic characteristics and processes in an alluvial setting like Lisbon Bottom provides a scientific basis for floodplain management. This knowledge is also vital to a complete understanding of riverine habitat disturbance, recovery, and rehabilitation. A critical component of this knowledge is an understanding of the spatial and temporal relationships between riverine habitats and geomorphic processes.
River systems consist of hydrogeomorphic patches (HPs) that emerge at multiple spatiotemporal scales. Functional process zones (FPZs) are HPs that exist at the river valley scae and are important strata for fraing whole-watershed research questions and management plans. Hierarchi...
Surface water quality in streams and rivers: introduction, scaling, and climate change: Chapter 5
Loperfido, John
2013-01-01
A variety of competing and complementary needs such as ecological health, human consumption, transportation, recreation, and economic value make management and protection of water resources in riverine environments essential. Thus, an understanding of the complex and interacting factors that dictate riverine water quality is essential in empowering stake-holders to make informed management decisions (see Chapter 1.15 for additional information on water resource management). Driven by natural and anthropogenic forcing factors, a variety of chemical, physical, and biological processes dictate riverine water quality, resulting in temporal and spatial patterns and cycling (see Chapter 1.2 for information describing how global change interacts with water resources). Furthermore, changes in climatic forcing factors may lead to long-term deviations in water quality outside the envelope of historical data. The goal of this chapter is to present fundamental concepts dictating the conditions of basic water quality parameters in rivers and streams (herein generally referred to as rivers unless discussing a specific system) in the context of temporal (diel (24 h) to decadal) longitudinal scaling. Understanding water quality scaling in rivers is imperative as water is continually reused and recycled (see also Chapters 3.1 and 3.15); upstream discharges from anthropogenic sources are incorporated into bulk riverine water quality that is used by downstream consumers. Water quality parameters reviewed here include temperature, pH, dissolved oxygen (DO), and suspended sediment and were selected given the abundance of data available for these parameters due to recent advances in water quality sensor technology (see Chapter 4.13 for use of hydrologic data in watershed management). General equations describing reactions affecting water temperature, pH, DO, and suspended sediment are included to convey the complexity of how simultaneously occurring reactions can affect water quality in rivers. Concepts presented in this chapter will provide a backdrop that other chapters in this book will explore further, including water quality in the following riverine systems: the Mississippi River (see Chapter 4.9), Hudson River (see Chapter 4.6), and rivers in India (see Chapter 4.10).
Jacobson, R.B.
2013-01-01
The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration strategies requires that the role of physical habitat is correctly diagnosed and that restoration activities address true habitat limitations, including the role of dynamic habitats.
NASA Astrophysics Data System (ADS)
Scheibe, T. D.; Hou, Z.; Murray, C. J.; Perkins, W. A.; Arntzen, E.; Richmond, M. C.; Mackley, R.; Johnson, T. C.
2016-12-01
The hyporheic zone (HZ) is the sediment layer underlying a river channel within which river water and groundwater may interact, and plays a significant role in controlling energy and nutrient fluxes and biogeochemical reactions in hydrologic systems. The area of this study is the HZ along the Hanford Reach of the Columbia River in southeastern Washington State, where daily and seasonal river stage changes, hydromorphology, and heterogeneous sediment texture drive groundwater-river water exchange and associated biogeochemical processes. The recent alluvial sediments immediately underlying the river are geologically distinct from the surrounding aquifer sediments, and serve as the primary locale of mixing and reaction. In order to effectively characterize the HZ, a novel approach was used to define and map recent alluvial (riverine) facies using river bathymetric attributes (e.g., slope, aspect, and local variability) and simulated hydrodynamic attributes (e.g., shear stress, flow velocity, river depth). The riverine facies were compared with riverbed substrate texture data for confirmation and quantification of textural relationships. Multiple flow regimes representing current (managed) and historical (unmanaged) flow hydrographs were considered to evaluate hydrodynamic controls on the current riverbed grain size distributions. Hydraulic properties were then mapped at reach and local scales by linking textural information to hydraulic property measurements from piezometers. The spatial distribution and thickness of riverine facies is being further constrained by integrating 3D time-lapse electrical resistivity tomography. The mapped distributions of riverine facies and the corresponding flow, transport and biogeochemical properties are supporting the parameterization of multiscale models of hyporheic exchange between groundwater and river water and associated biogeochemical transformations.
Geology and Hydrology Drive Benthic Fungal Community Structure in a Lowland River System
NASA Astrophysics Data System (ADS)
Mansour, I.; Heppell, C. M.; McKew, B.; Dumbrell, A.; Whitby, C. B.; Veresoglou, S.; Leung, G.; Binley, A. M.; Lansdown, K.; Trimmer, M.; Olde, L.; Rillig, M.
2017-12-01
Despite their essential roles in ecosystem functioning, exceptionally little is known about fungal communities and the ecological processes regulating their structure. This is particularly true for riverine ecosystems, where almost nothing about the diversity of their fungal communities is known. In this field study, benthic sediment samples and surface water samples were collected seasonally from lowland rivers (Hampshire Avon catchment, UK) underlain by three distinct parent geologies (clay, Greensand and Chalk), across a hydrological gradient of baseflow index ranging from 0.23 to 0.95. Fungal communities were assessed using high-throughput sequencing and community data were analyzed via ordination, variance partitioning and indicator species analysis. We found that distinct fungal communities inhabited the benthic sediments of the differing geologies. Clay sediments were dominated by the yeast Cryptococcus podzolicus, the hyphomycete Pseudeuotium hygrophilum, Mortierella, and unidentified fungi in the class Sordariomycetes - the latter two also common within Greensand sediments along with seasonal spikes in Rhizophydium littoreum, a parasite of green algae. An unidentified fungus from the phylum Ascomycota was numerically dominant at all chalk sites and across all seasons. Spatial variables explained only a negligible proportion of variance between communities, indicating that environmental and biotic processes drive the differences between the observed fungal communities rather than purely spatial mechanisms (e.g. stochastic processes). Season was a highly significant predictor of community structure (p=0.005) and baseflow index explained some of the variance within the fungal community data across seasons. This study demonstrates that deterministic rather than stochastic processes are important for structuring lotic fungal communities, and, for the first time, shows that underlying geology and associated differences in hydrology are drivers of fungal community structure. Since riverine ecosystems are often subject to high levels of natural and anthropogenic stressors, it is imperative to understand the mechanisms regulating riverine fungal communities before appropriate management options can be suggested.
Modeling nitrous oxide emission from rivers: a global assessment.
Hu, Minpeng; Chen, Dingjiang; Dahlgren, Randy A
2016-11-01
Estimates of global riverine nitrous oxide (N 2 O) emissions contain great uncertainty. We conducted a meta-analysis incorporating 169 observations from published literature to estimate global riverine N 2 O emission rates and emission factors. Riverine N 2 O flux was significantly correlated with NH 4 , NO 3 and DIN (NH 4 + NO 3 ) concentrations, loads and yields. The emission factors EF(a) (i.e., the ratio of N 2 O emission rate and DIN load) and EF(b) (i.e., the ratio of N 2 O and DIN concentrations) values were comparable and showed negative correlations with nitrogen concentration, load and yield and water discharge, but positive correlations with the dissolved organic carbon : DIN ratio. After individually evaluating 82 potential regression models based on EF(a) or EF(b) for global, temperate zone and subtropical zone datasets, a power function of DIN yield multiplied by watershed area was determined to provide the best fit between modeled and observed riverine N 2 O emission rates (EF(a): R 2 = 0.92 for both global and climatic zone models, n = 70; EF(b): R 2 = 0.91 for global model and R 2 = 0.90 for climatic zone models, n = 70). Using recent estimates of DIN loads for 6400 rivers, models estimated global riverine N 2 O emission rates of 29.6-35.3 (mean = 32.2) Gg N 2 O-N yr -1 and emission factors of 0.16-0.19% (mean = 0.17%). Global riverine N 2 O emission rates are forecasted to increase by 35%, 25%, 18% and 3% in 2050 compared to the 2000s under the Millennium Ecosystem Assessment's Global Orchestration, Order from Strength, Technogarden, and Adapting Mosaic scenarios, respectively. Previous studies may overestimate global riverine N 2 O emission rates (300-2100 Gg N 2 O-N yr -1 ) because they ignore declining emission factor values with increasing nitrogen levels and channel size, as well as neglect differences in emission factors corresponding to different nitrogen forms. Riverine N 2 O emission estimates will be further enhanced through refining emission factor estimates, extending measurements longitudinally along entire river networks and improving estimates of global riverine nitrogen loads. © 2016 John Wiley & Sons Ltd.
Shen, Jianlin; Liu, Jieyun; Li, Yong; Li, Yuyuan; Wang, Yi; Liu, Xuejun; Wu, Jinshui
2014-09-01
Atmospheric nitrogen (N) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8kgN/(ha·yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6kgN/(ha·yr) in the forest sub-catchment and 27.4 to 30.3kgN/(ha·yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH4(+)-N or NO3(-)-N wet deposition and riverine NH4(+)-N or NO3(-)-N exports except for NH4(+)-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation with precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China. Copyright © 2014. Published by Elsevier B.V.
2011-09-01
ERDC/EL TR-11-12 7 Table 1. Hydrogeomorphic Wetland Classes. HGM Wetland Class Definition Depression Depressional wetlands occur in topographic... depressions (i.e., closed elevation contours) that allow the accumulation of surface water. Depressional wetlands may have any combination of inlets...Riverine, Low-gradient Riverine Backwater, Low-gradient Riverine Overbank, Headwater Depression , Isolated Depression , and Connected Depression . For
Shiu, Ruei-Feng; Lee, Chon-Lin
2017-04-15
We use riverine and marine dissolved organic carbon (DOC) polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit very much difference in size and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of hazardous materials. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norwood, Matt J.; Louchouarn, Patrick; Kuo, Li-Jung
This study demonstrates that wildfires/biomass combustion may be an important source of labile pyrogenic water-soluble organic matter (Py-WSOM) to aquatic systems. Spectroscopic analysis (of the solid char and Py-WSOM) with Fourier transform infrared spectroscopy (FTIR) indicated that the Py-WSOM extracted from two low temperature chars (one wood, one grass) was dominated by polar moieties (-OH and C-O) derived from depolymerization and fragmentation of lignocellulose. Incubation experiments under aerobic conditions with unsterilized river water suggested that Py-WSOM and associated biomarkers may have turnover rates on the order of weeks to months, consistent with mixing and transport conditions of riverine systems. Formore » example, pyrogenic dissolved organic carbon (Py-DOC) had a half-life of 30-40 days. Turnover rate for the combustion biomarkers was shorter, with levoglucosan and free lignin phenols having a half-life around 3-4 days and polymeric lignin components 13-14 days. The latter observations contradict earlier studies on the biodegradation of dissolved lignin and point to the need for re-assessment of lignin degradation kinetics in well-mixed riverine systems, particularly when such lignin components are derived from thermally altered plant material that may exist in a form more labile than that in highly processed riverine DOM.« less
Mercury transport through stream ecosystems is driven by a complicated set of transport and transformation reactions operating on a variety of scales in the atmosphere, landscape, surface water, and biota. Riverine systems typically have short residence times and can experience l...
NASA Technical Reports Server (NTRS)
Lee, Hyongki; Beighley, R. Edward; Alsdorf, Douglas; Jung, Hahn Chul; Shum, C. K.; Duan, Jianbin; Guo, Junyi; Yamazaki, Dai; Andreadis, Konstantinos
2011-01-01
The Congo Basin is the world's third largest in size (approx.3.7 million sq km), and second only to the Amazon River in discharge (approx.40,200 cu m/s annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3deg 3deg regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 cu km, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain.
NASA Technical Reports Server (NTRS)
Lee, Lyongki; Beighley, R. Edward; Alsdorf, Douglas; Jung, Hahn Chul; Shum, C. K.; Duan, Jianbin; Guo, Junyi; Yamazaki, Dai; Andreadis, Konstantinos
2011-01-01
The Congo Basin is the world's third largest in size (approximately 3.7 million km^2), and second only to the Amazon River in discharge (approximately 40,200 cms annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3 degree x 3 degree regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 km^3, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research also highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain.
Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.
2005-01-01
This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.
Moring, J. Bruce
1997-01-01
This report describes the occurrence and distribution of organochlorine compounds in biological tissue and bed sediment from the Trinity River Basin study area of the National Water-Quality Assessment Program. Concentrations of organochlorine pesticides, polychlorinated biphenyls (PCBs), and other organochlorine compounds were determined in biological tissue and surficial bed sediment from 16 stream sites in the Trinity River Basin of east-central Texas. Asiatic clams (Corbicula fluminea) were collected at 10 sites, and fish, including blue catfish (Ictalurus furcatus), common carp (Cyprinus carpio), bluegill (Lepomis cyanellus), and yellow bullhead (Ameiurus natalis) were collected at all mainstem and two tributary sites. Thirty of the 36 compounds analyzed in biological tissue or surficial bed sediment were detected in one or both media. Overall, more organochlorine compounds were detected in bed sediment than in biological tissue; however, various chlordane isomers, DDT metabolites, and PCBs were detected more frequently in tissue than in sediment. The chlordane isomers and PCBs that were detected more frequently in biological tissue also were detected more frequently at urban sites than at agricultural sites. Organochlorine compound concentrations generally were highest in fish tissue from Trinity River mainstem sites. Fish tissue from the mainstem sites contained a higher percentage of lipids than did fish- and clam-tissue samples from the tributary sites.
Remote detection of riverine traffic using an ad hoc wireless sensor network
NASA Astrophysics Data System (ADS)
Athan, Stephan P.
2005-05-01
Trafficking of illegal drugs on riverine and inland waterways continues to proliferate in South America. While there has been a successful joint effort to cut off overland and air trafficking routes, there exists a vast river network and Amazon region consisting of over 13,000 water miles that remains difficult to adequately monitor, increasing the likelihood of narcotics moving along this extensive river system. Hence, an effort is underway to provide remote unattended riverine detection in lieu of manned or attended detection measures.
Dunham, Jason B.; Angermeier, Paul L.; Crausbay, Shelley D.; Cravens, Amanda; Gosnell, Hannah; McEvoy, Jamie; Moritz, Max A.; Raheem, Nejem; Sanford, Todd
2018-01-01
Incorporation of concepts from landscape ecology into understanding and managing riverine ecosystems has become widely known as riverscape ecology. Riverscape ecology emphasizes interactions among processes at different scales and their consequences for valued ecosystem components, such as riverine fishes. Past studies have focused strongly on understanding the ecological processes in riverscapes and how human actions modify those processes. It is increasingly clear, however, that an understanding of the drivers behind actions that lead to human modification also merit consideration, especially regarding how those drivers influence management efficacy. These indirect drivers of riverscape outcomes can be understood in the context of a diverse array of social processes, which we collectively refer to as human dimensions. Like ecological phenomena, social processes also exhibit complex interactions across spatiotemporal scales. Greater emphasis on feedbacks between social and ecological processes will lead scientists and managers to more completely understand riverscapes as complex, dynamic, interacting social–ecological systems. Emerging applications in riverscapes, as well as studies of other ecosystems, provide examples that can lead to stronger integration of social and ecological science. We argue that conservation successes within riverscapes may not come from better ecological science, improved ecosystem service analyses, or even economic incentives if the fundamental drivers of human behaviors are not understood and addressed in conservation planning and implementation.
Total Mercury and Methylmercury in the Great Egg Harbor River Watershed, New Jersey, USA
NASA Astrophysics Data System (ADS)
Barringer, J. L.; Riskin, M. L.; Szabo, Z.; Fischer, J. M.; Reilly, P. A.; Rosman, R.; Bonin, J. L.; Heckathorn, H. A.
2007-12-01
Hydrologic and biogeochemical conditions are important factors in the transport and distribution of mercury (Hg) in New Jersey Coastal Plain watersheds that contain extensive freshwater wetlands and where Hg bioaccumulation is of concern. U.S. Geological Survey studies found Hg concentrations in top predator fish from the Great Egg Harbor River mainstem that ranged from 2.9 to 4.5 mg/kg (dry wt.) and exceeded 10 ng/L in the watershed's acidic streams. An ongoing study with the N.J. Department of Environmental Protection indicates that atmospheric deposition of Hg to the wetlands and streams may be augmented by substantial contributions of Hg from ground water. Although background levels of Hg in water from the underlying aquifer typically are less than 10 ng/L, concentrations in water from more than 600 domestic wells in southern New Jersey have been shown to exceed the drinking-water maximum contaminant level of 2,000 ng/L. Therefore, to determine ground-water inputs to the streams, samples of ground water discharging to the tributaries and mainstem as well as streamwater samples collected during various flow conditions were analyzed for total Hg and methylmercury (MeHg). Total Hg concentrations in ground water discharging to the tributaries and mainstem were low to moderate (0.29-22 ng/L) in relatively undeveloped areas (including wetlands), but higher (36 and 177 ng/L) in two urban/suburban areas where much of the Hg was in particulate form. In recent and ongoing studies, total Hg concentrations in unfiltered samples of surface water, except those for one suburban tributary, have ranged from 2.13 to 37.7 ng/L. Concentrations in the suburban tributary have ranged from 50 ng/L during a dry period to 250 ng/L during a wet period. Hg concentrations in samples from a wetlands-embedded reach of the mainstem varied markedly with flow. In addition to increases in concentrations of total Hg, UV absorbance and concentrations of dissolved organic carbon also increased with flow after rain events, whereas pH and concentrations of dissolved oxygen and nitrate decreased. These flow-related changes apparently result from inputs of water that has percolated through acidic, reducing wetlands soils. The biogeochemical environment of these soils, on the basis of hydrogen sulfide odors detected during piezometer placement, supports sulfate reduction and likely promotes methylation of Hg. MeHg concentrations were 0.48 ng/L after a rainfall in discharge from 0.8 m below the streambed at a mainstem wetlands site. Downstream, where the channel briefly emerges from wetlands, MeHg was detectable during a dry period only in the hyporheic-zone water from 0.15 m below the streambed and in ground water from a depth of 0.3 m (0.15 ng/L and 0.05 ng/L, respectively). MeHg was not detected in the ground-water samples from deeper points below the streambeds, but concentrations in surface water ranged from 0.17 to 2.88 ng/L. The concentration from a tributary surrounded by urban/suburban development was highest. MeHg concentrations in mainstem water did not always increase with streamflow; variations in antecedent hydrologic conditions in the wetlands may explain the unpredictable relation of concentration to flow. Overall, total Hg appears to be contributed to the streams by both ground water and atmospheric deposition, with methylation taking place at shallow levels in wetlands soils and stream sediments.
Coastal erosion vs riverline sediment discharge in the Arctic shelfx seas
Rachold, V.; Grigoriev, M.N.; Are, F.E.; Solomon, Sean C.; Reimnitz, E.; Kassens, H.; Antonow, M.
2000-01-01
This article presents a comparison of sediment input by rivers and by coastal erosion into both the Laptev Sea and the Canadian Beaufort Sea (CBS). New data on coastal erosion in the Laptev Sea, which are based on field measurements and remote sensing information and existing data on coastal erosion in the CBS as well as riverine sediment discharge into both the Laptev Sea and the CBS are included. Strong regional differences in the percentages of coastal ero- sion and riverine sediment supply are observed. The CBS is dominated by the riverine sediment discharge (64.45x106 t a-1) mainly of the Mackenzie River. which is the largest single source of sediments in the Arctic. Riverine sediment discharge into the Laptev Sea amounts to 24.10x106 t a-1, more than 70% of which are related to the Lena River. In comparison with the CBS. the Laptev Sea coast on average delivers approximately twice as much sediment mass per kilometer, a result of higher erosion rates due to higher cliffs and seasonal ice melting. In the Laptev Sea sediment input by coastal erosion (58.4x106 t a-1) is therefore more important than in the CBS and the ratio between riverine and coastal sediment input amounts to 0.4. Coastal erosion supplying 5.6x106 t a-1 is less significant for the sediment budget of the CBS where riverine sediment discharge exceeds coastal sediment input by a factor of ca. 10.
Nardi, Mariane; Lira-Guedes, Ana Cláudia; Albuquerque Cunha, Helenilza Ferreira; Guedes, Marcelino Carneiro; Mustin, Karen; Gomes, Suellen Cristina Pantoja
2016-01-01
Várzea forests of the Amazon estuary contain species of importance to riverine communities. For example, the oil extracted from the seeds of crabwood trees is traditionally used to combat various illnesses and as such artisanal extraction processes have been maintained. The objectives of this study were to (1) describe the process involved in artisanal extraction of crabwood oil in the Fazendinha Protected Area, in the state of Amapá; (2) characterise the processes of knowledge transfer associated with the extraction and use of crabwood oil within a peri-urban riverine community; and (3) discern medicinal uses of the oil. The data were obtained using semistructured interviews with 13 community members involved in crabwood oil extraction and via direct observation. The process of oil extraction is divided into four stages: seed collection; cooking and resting of the seeds; shelling of the seeds and dough preparation; and oil collection. Oil extraction is carried out within the home for personal use, with surplus marketed within the community. More than 90% of the members of the community involved in extraction of crabwood oil highlighted the use of the oil to combat inflammation of the throat. Knowledge transfer occurs via oral transmission and through direct observation.
Lira-Guedes, Ana Cláudia; Albuquerque Cunha, Helenilza Ferreira; Guedes, Marcelino Carneiro; Mustin, Karen; Gomes, Suellen Cristina Pantoja
2016-01-01
Várzea forests of the Amazon estuary contain species of importance to riverine communities. For example, the oil extracted from the seeds of crabwood trees is traditionally used to combat various illnesses and as such artisanal extraction processes have been maintained. The objectives of this study were to (1) describe the process involved in artisanal extraction of crabwood oil in the Fazendinha Protected Area, in the state of Amapá; (2) characterise the processes of knowledge transfer associated with the extraction and use of crabwood oil within a peri-urban riverine community; and (3) discern medicinal uses of the oil. The data were obtained using semistructured interviews with 13 community members involved in crabwood oil extraction and via direct observation. The process of oil extraction is divided into four stages: seed collection; cooking and resting of the seeds; shelling of the seeds and dough preparation; and oil collection. Oil extraction is carried out within the home for personal use, with surplus marketed within the community. More than 90% of the members of the community involved in extraction of crabwood oil highlighted the use of the oil to combat inflammation of the throat. Knowledge transfer occurs via oral transmission and through direct observation. PMID:27478479
Evidence for serial discontinuity in the fish community of a heavily impounded river
Miranda, Leandro E.; Dembkowski, D.J.
2016-01-01
In the Tennessee River, USA, we examined lengthwise patterns in fish community structure and species richness within and among nine reservoirs organized in sequence and connected through navigational locks. Within reservoirs, the riverine, transition and lacustrine zones supported distinct, although overlapping, nearshore fish assemblages; differences were also reflected in measures of species richness. Spatial patterns were most apparent for rheophilic species, which increased in species richness and representation upstream within each reservoir and downstream across the chain of reservoirs. This pattern resembled a sawtooth wave, with the amplitude of the wave peaking in the riverine zone below each dam, and progressively higher wave amplitude developing downstream in the reservoir chain. The observed sawtooth pattern supports the serial discontinuity concept in that the continuity of the riverine fish community is interrupted by the lacustrine conditions created behind each dam. Upstream within each reservoir, and downstream in the chain of reservoirs, habitat characteristics become more riverine. To promote sustainability of rheophilic fishes and maintain biodiversity in impounded rivers, conservation plans could emphasize maintenance and preservation of riverine environments of the reservoir's upper reaches, while remaining cognizant of the broader basin trends that provide opportunities for a lengthwise array of conservation and management policy.
Revisiting evolutionary dead ends in sockeye salmon ( Oncorhynchus nerka) life history
Pavey, S.A.; Hamon, T.R.; Nielsen, J.L.
2007-01-01
This study challenges recent hypotheses about sockeye salmon (Oncorhynchus nerka) colonization based on life history and broadens the pathways that investigators should consider when studying sockeye colonization of novel habitats. Most sockeye populations exhibit lake-type life histories. Riverine populations are thought to be more likely to stray from their natal stream to spawn and therefore colonize new habitat. We examined genetic relationships among five geographically proximate sockeye populations from the Aniakchak region of the Alaska Peninsula, Alaska. Specifically, we sought to determine if the genetic population structure was consistent with the hypothesis that a riverine population colonized a recently available upriver volcanic caldera lake, and whether recent volcanism led to genetic bottlenecks in these sockeye populations. Heterozygosity and allelic richness were not higher in the riverine population. Patterns of genetic divergence suggested that the geographically proximate riverine sockeye population did not colonize the lake; the caldera populations were more genetically divergent from the downstream riverine population (FST = 0.047) than a lake-type population in a different drainage (FST = 0.018). Our results did not suggest the presence of genetic bottlenecks in the caldera populations.
NASA Astrophysics Data System (ADS)
Snyder, Noah P.; Castele, Michael R.; Wright, Jed R.
2009-02-01
The rivers of coastal Maine flow through mainstem lakes and long low-gradient reaches that break the continuum of bedload transport expected in nonparaglacial landscapes. Stream erosion of glacial deposits supplies coarse sediment to these systems. The land use history includes intensive timber harvest and associated dam construction, which may have altered the frequency of substrate-mobilizing events. These watersheds are vital habitat for the last remaining wild anadromous Atlantic salmon in the United States. Future adjustments in channel morphology and habitat quality (via natural stream processes or restoration projects) depend on erosion, transport, and deposition of coarse sediment. These factors motivate our study of competence at four sites in the Sheepscot and Narraguagus watersheds. Three of the four sites behaved roughly similarly, with particle entrainment during intervals that include winter ice and spring flood conditions, and relatively minor bed mobilization during moderate floods in the summer and fall (with a recurrence interval of 2-3 years). The fourth site, on the Sheepscot River mainstem, exhibits more vigorous entrainment of marked particles and more complex three-dimensional channel morphology. This contrast is partially due to local geomorphic conditions that favor high shear stresses (particularly relatively steep gradient), but also likely to nourishment of the bedload saltation system by recruitment from an eroding glacial deposit upstream. Our results suggest that the frequency and magnitude of bedload transport are reach specific, depending on factors including local channel geometry, upstream sediment supply and transport, and formation of anchor ice. This presents a challenge for stream practitioners in this region: different reaches may require contrasting management strategies. Our results underscore the importance of understanding channel processes at a given site and assessing conditions upstream and downstream as a prerequisite for conducting habitat restoration projects.
2015-01-01
UNCLASSIFIED I N S T I T U T E F O R D E F E N S E A N A L Y S E S Comparison of a Riverine Waterborne Transport ...F E N S E A N A L Y S E S IDA Document D-5330 Comparison of a Riverine Waterborne Transport and Dispersion Model and Yellowstone...tool for predicting waterborne transport and dispersion of hazardous materials. In a preliminary analysis, IDA reviewed the code’s technical
USDA-ARS?s Scientific Manuscript database
Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...
United States Preparedness to Respond to a Mumbai-Style Attack within the Homeland
2010-02-17
IAD Dulles International Airport, monitoring in/out processing of Austrian, Canadian, Dutch, German, and Japanese Air Marshals as they transit U.S...Metro Cinema – a famous Metro-Goldwyn-Mayer (MGM) theater 7 Navy Department Library, “Riverine Warfare: The U.S. Navy‟s Operations on Inland
Characteristics of fall chum salmon spawning habitat on a mainstem river in Interior Alaska
Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.
2010-01-01
Chum salmon (Oncorhynchus keta) are the most abundant species of salmon spawning in the Yukon River drainage system, and they support important personal use, subsistence, and commercial fisheries. Chum salmon returning to the Tanana River in Interior Alaska are a significant contribution to the overall abundance of Yukon River chum salmon and an improved understanding of habitat use is needed to improve conservation of this important resource. We characterized spawning habitat of chum salmon using the mainstem Tanana River as part of a larger study to document spawning distributions and habitat use in this river. Areas of spawning activity were located using radiotelemetry and aerial helicopter surveys. At 11 spawning sites in the mainstem Tanana River, we recorded inter-gravel and surface-water temperatures and vertical hydraulic gradient (an indication of the direction of water flux) in substrate adjacent to salmon redds. At all locations, vertical hydraulic gradient adjacent to redds was positive, indicating that water was upwelling through the gravel. Inter-gravel temperatures adjacent to redds generally were warmer than surface water at most locations and were more stable than surface-water temperature. Inter-gravel water temperature adjacent to redds ranged from 2.6 to 5.8 degrees Celsius, whereas surface-water temperature ranged from greater than 0 to 5.5 degrees Celsius. Some sites were affected more by extremes in air temperature than others. At these sites, inter-gravel water temperature profiles were variable (with ranges similar to those observed in surface water), suggesting that even though upwelling habitats provide a stable thermal incubation environment, eggs and embryos still may be affected by extremes in air temperature. Fine sand and silt covered redds at multiple sites and were evidence of increased river flow during the winter months, which may be a potential source of increased mortality during egg-to-fry development. This study provides documentation of spawning by fall chum salmon and is the first study to continuously measure inter-gravel water temperature at sites in the mainstem Tanana River.
Consequences of variation in stream-landscape connections for stream nitrate retention and export
NASA Astrophysics Data System (ADS)
Handler, A. M.; Helton, A. M.; Grimm, N. B.
2017-12-01
Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work focuses on how seasonal variability in connections between the stream and sources of nitrogen affect in-stream nitrate and ammonium uptake rates and watershed export. Episodic connections between dryland streams and the surrounding landscape can have a strong effect on stream nitrogen loads, uptake, and export.
NASA Astrophysics Data System (ADS)
Collins, M. J.; Aponte Clarke, G.; Baeder, C.; McCaw, D.; Royte, J.; Saunders, R.; Sheehan, T.
2012-12-01
The Penobscot River Restoration Project aims to improve aquatic connectivity in New England's second largest watershed ( 22,000 km2) by removing the two lowermost, mainstem dams and bypassing a third dam on a principal tributary upstream. Project objectives include: restoring unobstructed access to the entire historic riverine range for five lower river diadromous species including Atlantic and shortnose sturgeon; significantly improving access to upstream habitat for six upper river diadromous species including Atlantic salmon; reconnecting trophic linkages between headwater areas and the Gulf of Maine; restoring fluvial processes to the former impoundments; improving recreational and Penobscot Nation cultural opportunities; and maintaining basin-wide hydropower output. The project is expected to have landscape-scale benefits and the need for a significant investment in long-term monitoring and evaluation to formally quantify ecosystem response has been recognized. A diverse group of federal, state, tribal, NGO, and academic partners has developed a long-term monitoring and evaluation program composed of nine studies that began in 2009. Including American Recovery and Reinvestment Act (ARRA) funding that leveraged partner contributions, we have invested nearly $2M to date in pre- and post-removal investigations that evaluate geomorphology/bed sediment, water quality, wetlands, and fisheries. Given the number of affected diadromous species and the diversity of their life histories, we have initiated six distinct, but related, fisheries investigations to document these expected changes: Atlantic salmon upstream and downstream passage efficiency using passive integrated transponder (PIT) and acoustic telemetry; fish community structure via an index of biotic integrity (IBI); total diadromous fish biomass through hydroacoustics; shortnose sturgeon spawning and habitat use via active and passive acoustic telemetry; and freshwater-marine food web interactions by examining stable nutrient isotopes in fish tissue. Here we summarize the multidisciplinary studies we are undertaking and present some preliminary results from three years of pre-removal study. We highlight our stream channel geometry and bed sediment grain size investigations that reveal impoundments bedded primarily by coarse materials and storing very little sediment, circumstances that are influenced by the reach's geology and late Quaternary history. The pre-removal data from our nine studies help us characterize the impounded and fragmented ecosystem on the eve of dam removal and help us further develop and refine testable hypotheses for ecosystem response to the project.
NASA Astrophysics Data System (ADS)
Shiu, R. F.; Lee, C. L.
2016-12-01
Dissolved organic carbon (DOC) polymers are complex and poorly understood mixture of organic macromolecules in environment system. Portions of these polymers spontaneously form microgels that play key roles in many biogeochemical reactions, including mediating aggregation processes, element cycling, and pollutant mobility. However, the detailed interaction of microgels-heterogeneous materials in aquatic systems is still lacking. Insight into the interaction between surrounding materials and microgels from different types of aquatic DOC polymers are extremely important, as it is crucial in determining the fate and transport of these materials. Here, we use riverine and marine DOC polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit too much difference in size ( 3-5 μm) and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had the sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of pollutant.
NASA Astrophysics Data System (ADS)
Bowring, S.; Lauerwald, R.; Guenet, B.; Zhu, D.; Ciais, P.
2017-12-01
Most global climate models do not represent the unique permafrost soil environment and its respective processes. This significantly contributes to uncertainty in estimating their responses, and that of the planet at large, to warming. Here, the production, transport and atmospheric release of dissolved organic carbon (DOC) from high-latitude permafrost soils into inland waters and the ocean is explicitly represented for the first time in the land surface component (ORCHIDEE-MICT) of a CMIP6 global climate model (IPSL). This work merges two models that are able to mechanistically simulate complex processes for 1) snow, ice and soil phenomena in high latitude environments, and 2) DOC production and lateral transport through soils and the river network, respectively, at 0.5° to 2° resolution. The resulting model is subjected to a wide range of input forcing data, parameter testing and contentious feedback phenomena, including microbial heat generation as the active layer deepens. We present results for the present and future Pan-Arctic and Eurasia, with a focus on the Lena and Mackenzie River basins, and show that soil DOC concentrations, their riverine transport and atmospheric evasion are reasonably well represented as compared to observed stocks, fluxes and seasonality. We show that most basins exhibit large increases in DOC transport and riverine CO2 evasion across the suite of RCP scenarios to 2100. We also show that model output is strongly influenced by choice of input forcing data. The riverine component of what is known as the `boundless carbon cycle' is little-recognized in global climate modeling. Hydrological mobilization to the river network results either in sedimentary settling or atmospheric `evasion', presently amounting to 0.5-1.8 PgC yr-1. Our work aims at filling in these knowledge gaps, and the response of these DOC-related processes to thermal forcing. Potential feedbacks owing to such a response are of particular relevance, given the magnitude of the permafrost carbon pool.
Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.
2007-01-01
Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( < 1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.
Modeling pathways of riverine nitrogen and phosphorus in the Baltic Sea
NASA Astrophysics Data System (ADS)
Radtke, H.; Neumann, T.; Voss, M.; Fennel, W.
2012-09-01
A better understanding of the fate of nutrients entering the Baltic Sea ecosystem is an important issue with implications for environmental management. There are two sources of nitrogen and phosphorus: riverine input and atmospheric deposition. In the case of nitrogen, the fixation of dinitrogen by diazotrophic bacteria represents a third source. From an analysis of stable nitrogen isotope ratios it was suggested that most of the riverine nitrogen is sequestered in the coastal rim, specifically along the southern Baltic Sea coast with its coarse sediments, whereas nitrogen from fixation dominates the central basins. However, pathways of nutrients and timescales between the input of the nutrients and their arrival in different basins are difficult to obtain from direct measurements. To elucidate this problem, we use a source attribution technique in a three-dimensional ecosystem model, ERGOM, to track nutrients originating from various rivers. An “age” variable is attributed to the marked elements to indicate their propagation speeds and residence times. In this paper, we specifically investigate the spreading of nitrogen and phosphorus from the riverine discharges of the Oder, Vistula, Neman and Daugava. We demonstrate which regions they are transported to and for how long they remain in the ecosystem. The model results show good agreement with source estimations from observed δ15N values in sediments. The model results suggest that 95% of nitrogen is lost by denitrification in sediments, after an average time of 1.4 years for riverine nitrogen. The residence time of riverine phosphorus is much longer and exceeds our simulated period of 35 years.
Nitrogen balance for a plantation forest drainage canal on the North Carolina Coastal Plain
Timothy W. Appelboom; George M. Chescheir; R. Wayne Skaggs; J. Wendell Gilliam; Devendra M. Amatya
2009-01-01
Human alteration of the nitrogen cycle has led to increased riverine nitrogen loads, contributing to the eutrophication of lakes, streams, estuaries, and near-coastal oceans. These riverine nitrogen loads are usually less...
78 FR 24382 - Endangered and Threatened Species; Take of Anadromous Fish
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
... using beach seines (in mainstem habitat), pole seines (inside restoration site prior to breaching), and... on various Chinook tissues to help identify gene pathways and develop robust diagnostic indices for...
Spatial and temporal patterns of debris flow deposition in the Oregon Coast Range, USA
May, Christine L.; Gresswell, Robert E.
2004-01-01
Patterns of debris-flow occurrence were investigated in 125 headwater basins in the Oregon Coast Range. Time since the previous debris-flows was established using dendrochronology, and recurrence interval estimates ranged from 98 to 357 years. Tributary basins with larger drainage areas had a greater abundance of potential landslide source areas and a greater frequency of scouring events compared to smaller basins. The flux rate of material delivered to the confluence with a larger river influenced the development of small-scale debris-flow fans. Fans at the mouths of tributary basins with smaller drainage areas had a higher likelihood of being eroded by the mainstem river in the interval between debris-flows, compared to bigger basins that had larger, more persistent fans. Valley floor width of the receiving channel also influenced fan development because it limited the space available to accommodate fan formation. Of 63 recent debris-flows, 52% delivered sediment and wood directly to the mainstem river, 30% were deposited on an existing fan before reaching the mainstem, and 18% were deposited within the confines of the tributary valley before reaching the confluence. Spatial variation in the location of past and present depositional surfaces indicated that sequential debris-flow deposits did not consistently form in the same place. Instead of being spatially deterministic, results of this study suggest that temporally variable and stochastic factors may be important for predicting the runout length of debris-flows.
Seo, Jeong-Hwa; Bae, Jun-Yeol; Kim, Hyun Joo; Hong, Deok Man; Jeon, Yunseok; Bahk, Jae-Hyon
2015-10-28
Double-lumen endobronchial tubes (DLTs) are commonly advanced into the mainstem bronchus either blindly or by fiberoptic bronchoscopic guidance. However, blind advancement may result in misplacement of left-sided DLTs into the right bronchus. Therefore, incidence, risk factors, and blind repositioning techniques for right bronchial misplacement of left-sided DLTs were investigated. This was an observational cohort study performed on the data depository consecutively collected from patients who underwent intubation of left-sided DLTs for 2 years. Patients' clinical and anatomical characteristics were analyzed to investigate risk factors for DLT misplacements with logistic regression analysis. Moreover, when DLTs were misplaced into the right bronchus, the bronchial tube was withdrawn into the trachea and blindly readvanced without rotation, or with 90° or 180° counterclockwise rotation while the patient's head was turned right. DLTs were inadvertently advanced into the right bronchus in 48 of 1135 (4.2 %) patients. DLT misplacements occurred more frequently in females, in patients of short stature or with narrow trachea and bronchi, and when small-sized DLTs were used. All of these factors were significantly inter-correlated each other (P < 0.001). In 40 of the 48 (83.3 %) patients, blind repositioning was successful. Smaller left-sided DLTs were more frequently misplaced into the right mainstem bronchus than larger DLTs. Moreover, we were usually able to reposition the misplaced DLTs into the left bronchus by using the blind techniques. ClinicalTrials.gov Identifier: NCT01371773.
Liedtke, Theresa L.; Zimmerman, Mara S.; Tomka, Ryan G.; Holt, Curt; Jennings, Lyle
2016-09-14
Recent interest in flood control and restoration strategies in the Chehalis River Basin has increased the need to understand the current status and ecology of spring Chinook salmon. Based on the extended period between freshwater entry and spawn timing, spring Chinook salmon have the longest exposure of all adult Chinook salmon life histories to the low-flow and high water temperature conditions that typically occur during summer. About 100 adult spring Chinook salmon were found dead in the Chehalis River in July and August 2009. Adult Chinook salmon are known to hold in cool-water refugia during warm summer months, but the extent to which spring Chinook salmon might use thermal refugia in the Chehalis River is unknown. The movements and temperature exposures of adult spring Chinook salmon following their return to the Chehalis River were investigated using radiotelemetry and transmitters equipped with temperature sensors, combined with water temperature monitoring throughout the basin. A total of 23 spring Chinook salmon were radio-tagged between April and early July 2015; 11 were captured and released in the main-stem Chehalis River, and 12 were captured and released in the South Fork Newaukum River. Tagged fish were monitored with a combination of fixed-site monitoring locations and regular mobile tracking, from freshwater entry through the spawning period.Water temperature and flow conditions in the main-stem Chehalis River during 2015 were atypical compared to historical averages. Mean monthly water temperatures between March and July 2015 were higher than any decade since 1960 and mean daily flows were 30–70 percent of the flows in previous years. Overall, 96 percent of the tagged fish were detected, with a mean of 62 d in the detection history of tagged fish. Of the 11 fish released in the main-stem Chehalis River, six fish (55 percent) moved upstream, either shortly after release (2–7 d, 50 percent), or following a short delay (12–18 d, 50 percent). One fish released in the main-stem Chehalis River remained near the release location for 64 d before moving upstream.The final fates for the seven fish that moved upstream in the main-stem Chehalis River included two fish with unknown fates, two fish with a fate of pre-spawn mortality, and three fish that were assigned a fate of spawner. Four (36 percent) of the radio-tagged Chinook salmon released in the main-stem Chehalis River showed limited movement from their release sites, and were assigned fates of unknown (one fish), pre-spawn mortality (one fish), and spit/mortality (2 fish). The 12 spring Chinook salmon released in the South Fork Newaukum River remained in the South Fork Newaukum River throughout the study period. Five (42 percent) of these fish were actively moving through the spawning period and were assigned a fate of spawner. Seven (58 percent) of these fish were detected for a period following release, but their detection histories ended prior to the spawning period. The fates assigned to these seven fish included two fish with spit/mortality fates and five fish with fates of pre-spawn mortality. Tagged fish in both the Chehalis River and the South Fork Newaukum River showed limited movements during the peak water temperatures in July and August, and were not frequently detected at sites where water temperatures were greater than 21 °C. Pre-spawn mortality due to predation or harvest may be an important factor in the Chehalis River Basin as it was the assigned fate for 27 percent of the fish released in the main-stem Chehalis River and 42 percent of the fish released in the South Fork Newaukum River.This study represents a substantial contribution to the understanding of spring Chinook salmon in the Chehalis River Basin. The water temperatures and flow conditions during the 2015 study period were not typical of the historical conditions in the basin and the numbers of tagged fish monitored was relatively low, so results should be interpreted with those cautions in mind.
McIsaac, Gregory F.; David, Mark B.; Gertner, George Z.; Goolsby, Donald A.
2002-01-01
A quantitative understanding of the relationship between terrestrial N inputs and riverine N flux can help guide conservation, policy, and adaptive management efforts aimed at preserving or restoring water quality. The objective of this study was to compare recently published approaches for relating terrestrial N inputs to the Mississippi River basin (MRB) with measured nitrate flux in the lower Mississippi River. Nitrogen inputs to and outputs from the MRB (1951 to 1996) were estimated from state-level annual agricultural production statistics and NO y (inorganic oxides of N) deposition estimates for 20 states that comprise 90% of the MRB. A model with water yield and gross N inputs accounted for 85% of the variation in observed annual nitrate flux in the lower Mississippi River, from 1960 to 1998, but tended to underestimate high nitrate flux and overestimate low nitrate flux. A model that used water yield and net anthropogenic nitrogen inputs (NANI) accounted for 95% of the variation in riverine N flux. The NANI approach accounted for N harvested in crops and assumed that crop harvest in excess of the nutritional needs of the humans and livestock in the basin would be exported from the basin. The U.S. White House Committee on Natural Resources and Environment (CENR) developed a more comprehensive N budget that included estimates of ammonia volatilization, denitrification, and exchanges with soil organic matter. The residual N in the CENR budget was weakly and negatively correlated with observed riverine nitrate flux. The CENR estimates of soil N mineralization and immobilization suggested that there were large (2000 kg N ha−1) net losses of soil organic N between 1951 and 1996. When the CENR N budget was modified by assuming that soil organic N levels have been relatively constant after 1950, and ammonia volatilization losses are redeposited within the basin, the trend of residual N closely matched temporal variation in NANI and was positively correlated with riverine nitrate flux in the lower Mississippi River. Based on results from applying these three modeling approaches, we conclude that although the NANI approach does not address several processes that influence the N cycle, it appears to focus on the terms that can be estimated with reasonable certainty and that are correlated with riverine N flux.
PHOTOCHEMICALLY-INDUCED TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN RIVERINE WATERS
We demonstrated that exposure of riverine water to natural sunlight initiated degradation and corresponding alteration to the stable carbon isotope ratio and biochemical composition of the associated dissolved organic carbon (DOC). Water samples were collected from two distinct ...
Mapping the unknown: Modeling future scenarios of riverine fish communities
Riverscapes can be defined by spatial and temporal variation in a suite of environmental conditions that influence the distribution and persistence of riverine fish populations. Fish in riverscapes can exhibit extensive movements, require seasonally-distinct habitats for spawnin...
Simulating fish assemblages in riverine networks
We describe a modeling approach for simulating assemblages of fish in riverine landscapes. The approach allows a user to determine the grain and extent of river networks within which fish populations reproduce, move, and survive in response to both environmental drivers and assem...
Quantifying the impact of riverine particulate dissolution in seawater on ocean chemistry
NASA Astrophysics Data System (ADS)
Jones, Morgan T.; Gislason, Sigurður R.; Burton, Kevin W.; Pearce, Christopher R.; Mavromatis, Vasileios; Pogge von Strandmann, Philip A. E.; Oelkers, Eric H.
2014-06-01
The quantification of the sources and sinks of elements to the oceans forms the basis of our understanding of global geochemical cycles and the chemical evolution of the Earth's surface. There is, however, a large imbalance in the current best estimates of the global fluxes to the oceans for many elements. In the case of strontium (Sr), balancing the input from rivers would require a much greater mantle-derived component than is possible from hydrothermal water flux estimates at mid-ocean ridges. Current estimates of riverine fluxes are based entirely on measurements of dissolved metal concentrations, and neglect the impact of riverine particulate dissolution in seawater. Here we present 87Sr/86Sr isotope data from an Icelandic estuary, which demonstrate rapid Sr release from the riverine particulates. We calculate that this Sr release is 1.1-7.5 times greater than the corresponding dissolved riverine flux. If such behaviour is typical of volcanic particulates worldwide, this release could account for 6-45% of the perceived marine Sr budget imbalance, with continued element release over longer timescales further reducing the deficit. Similar release from particulate material will greatly affect the marine budgets of many other elements, changing our understanding of coastal productivity, and anthropogenic effects such as soil erosion and the damming of rivers.
The shift to watershed management of rivers from a more reach-based approach has had far-reaching implications for the way we characterize and classify rivers and then use this information to understand and manage biodiversity, ecological functions, and ecosystem services in rive...
A field reverse osmosis system was used to isolate dissolved organic matter (DOM) from two lacustrine and two riverine surface water sources. The rejection of DOM was on the order of 99% and did not vary significantly with pressure. A simple mass balance model using a single m...
Water Quality Conditions in the Missouri River Mainstem System. 2009 Report
2010-09-01
Navigation Channel Reach ............................................................................. 117 6.2 Flow Regulation...118 6.2.2 Historic Flow Releases...118 6.2.3 Flow Releases for Water Quality management
Effect of storm events on riverine nitrogen dynamics in a subtropical watershed, southeastern China.
Chen, Nengwang; Wu, Jiezhong; Hong, Huasheng
2012-08-01
Rain storms are predicted to increase in the subtropical region due to climate change. However, the effects of storm events on riverine nitrogen (N) dynamics are poorly understood. In this study, the riverine N dynamics and storm effects in a large subtropical river (North Jiulong River, southeastern China) were investigated through continuous sampling of two storm events which occurred in June 2010 and June 2011. The results disclosed a strong linkage between N dynamics and hydrological controls and watershed characteristics. The extreme storm in June 2010 resulted in more fluctuations in N concentrations, loads, and composition, compared with the moderate storm in June 2011. There were contrasting patterns (e.g., the hysteresis effect) between nitrate and ammonium behavior in storm runoff, reflecting their different supply source and transport mechanism. Overall, nitrate supply originated from subsurface runoff and was dominated by within-channel mobilization, while ammonium was mainly from over-land sources and flushed by surface runoff. Extreme storm runoff (2010) caused a four-fold increase in dissolved inorganic N fluxes (DIN), with a greater fraction of ammonium (up to 30% of DIN) compared with the moderate storm and background flow condition (less than 15%). Storm-driven sharp increases of N loads and changes in nutrient stoichiometry (more ammonium) might have been connected with algal blooms in the adjacent estuary and Xiamen Bay. Combined with the background flow measurement of N gradients along the main river and a stream together with anthropogenic N load information, the interactive effect of hydrological and biogeochemical process on riverine N was preliminarily revealed. Current results suggested that storm runoff N was controlled by rainfall, hydrological condition, antecedent soil moisture, spatial variability of land-based N source, and damming. These findings could be used as a reference for future water quality monitoring programs and the development of a pollution mitigation strategy. Copyright © 2012 Elsevier B.V. All rights reserved.
Hydrological controls on riverine carbon export in a seasonally wet tropical catchment
NASA Astrophysics Data System (ADS)
Duvert, C.; Hutley, L. B.; Bossa, M.; Bird, M. I.; Munksgaard, N.; Wynn, J. G.; Setterfield, S. A.; Northwood, M.
2017-12-01
Understanding the movement of carbon (C) through the landscape is critical for accurate C accounting. Failure to account for the transport of terrestrially-derived C to aquifers and streams can result in a considerable over-estimation of the C sequestration by the biosphere. Here we report on the magnitude of C export via shallow groundwater and adjacent streams in a savanna-covered seasonally wet tropical catchment of northern Australia. Riverine fluxes of carbon dioxide (CO2), dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) were measured at a high resolution over a full year to gain insight into the drivers of C export in this system. Water and C stable isotopes were also measured in order to elucidate water sources and dominant flow pathways. Our results suggest that CO2 evasion was the major process contributing to riverine C loss in the catchment (111 kg C ha-1 yr-1). The downstream export of C was dominated by DOC (78 kg C ha-1 yr-1), while DIC accounted for 39 kg C ha-1 yr-1 of the annual export. The bulk of annual DOC export was flushed out during the very first high-flow events, with export decreasing throughout the wet season to pre-flood levels. In contrast, the DIC flux was more important during flow recession, upon activation of deeper flowpaths carrying geologically-derived C. Shallow groundwater measured in boreholes was supersaturated with CO2 (15,000 < pCO2 < 55,000 ppm), whereas in-stream concentrations were an order of magnitude lower, suggesting substantial outgassing of CO2. Our findings outline the key role of point-source groundwater discharge in riverine CO2 evasion, with C largely sourced from seasonally productive savanna vegetation. Given the complexity of this pathway and the magnitude of this flux, new methods are needed to more precisely quantify CO2 evasion.
NASA Astrophysics Data System (ADS)
Ramsey, M.; Nytch, C. J.; Branoff, B.
2016-12-01
Socio-hydrological studies that explore feedbacks between social and biophysical processes related to flood risk can help managers identify strategies that increase a community's freshwater security. However, knowledge uncertainty due to coarse spatio-temporal coverage of hydrological monitoring data, missing riverine discharge and precipitation records, assumptions of flood risk models, and effects of urbanization, can limit the ability of these studies to isolate hydrological responses to social drivers of flooding and a changing climate. Local experiential knowledge can provide much needed information about 1) actual flood spatio-temporal patterns, 2) human impacts and perceptions of flood events, and 3) mechanisms to validate flood risk studies and understand key social elements of the system. We addressed these knowledge gaps by comparing the location and timing of flood events described in resident interviews and resident drawn maps (total = 97) from two San Juan communities with NOAA and USGS precipitation and riverine discharge data archives, and FEMA flood maps. Analyses of five focal flood events revealed 1) riverine monitoring data failed to record a major flood event caused by localized blockage of the river, 2) residents did not mention multiple extreme riverine discharge events, 3) resident and FEMA flood maps matched closely but resident maps provided finer spatial information about frequency of flooding, and 4) only a small percentage of residents remembered the dates of flood events. Local knowledge provided valuable social data about flood impacts on human economic and physical/psychological wellbeing, perceptions about factors causing flooding, and what residents use as sources of flood information. A simple mechanism or tool for residents to record their flood experiences in real-time will address the uncertainties in local knowledge and improve social memory. The integration of local experiential knowledge with simulated and empirical hydro-meteorological data can be a powerful approach to increase the quality of socio-hydrological studies about flooding and freshwater security.
Composition and transformation of dissolved organic matter in the Baltic Sea
NASA Astrophysics Data System (ADS)
Seidel, Michael; Manecki, Marcus; Herlemann, Daniel P. R.; Deutsch, Barbara; Schulz-Bull, Detlef; Jürgens, Klaus; Dittmar, Thorsten
2017-05-01
The processing of terrestrial dissolved organic matter (DOM) in coastal shelf seas is an important part of the global carbon cycle, yet, it is still not well understood. One of the largest brackish shelf seas, the Baltic Sea in northern Europe, is characterized by high freshwater input from sub-arctic rivers and limited water exchange with the Atlantic Ocean via the North Sea. We studied the molecular and isotopic composition and turnover of solid-phase extractable (SPE) DOM and its transformation along the salinity and redox continuum of the Baltic Sea during spring and autumn. We applied ultrahigh-resolution mass spectrometry and other geochemical and biological approaches. Our data demonstrate a large influx of terrestrial riverine DOM, especially into the northern part of the Baltic Sea. The DOM composition in the central Baltic Sea changed seasonally and was mainly related to autochthonous production by phytoplankton in spring. Especially in the northern, river-dominated basins, a major fraction of riverine DOM was removed, likely by bio- and photo-degradation. We estimate that the removal rate of terrestrial DOM in the Baltic Sea (Bothnian Bay to the Danish Straits/Kattegat area) is 1.6 - 1.9 Tg C per year which is 43 to 51% of the total riverine input. The export of terrestrial DOM from the Danish Straits/Kattegat area towards the North Sea is 1.8 - 2.1 Tg C per year. Due to the long residence time of terrestrial DOM in the Baltic Sea (total of ca. 12 years), seasonal variations caused by bio- and photo-transformations and riverine discharge are dampened, resulting in a relatively invariant DOM molecular and isotopic signature exported to the North Sea. In the deep stagnant basins of the Baltic Sea, the DOM composition and dissolved organic nitrogen concentrations changed seasonally, likely because of vertical particle transport and subsequent degradation releasing DOM. DOM in the deep anoxic basins was also enriched in sulfur-containing organic molecules, pointing to abiotic sulfurization of DOM under sulfidic conditions.
Caballero, Susana; Duchêne, Sebastian; Garavito, Manuel F; Slikas, Beth; Baker, C Scott
2015-01-01
A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the 'river dolphins', early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three 'river dolphins' (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of cetaceans.
Caballero, Susana; Duchêne, Sebastian; Garavito, Manuel F.; Slikas, Beth; Baker, C. Scott
2015-01-01
A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the ‘river dolphins’, early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three ‘river dolphins’ (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of cetaceans. PMID:25946045
Spatial variation in fish species richness of the upper Mississippi River system
Koel, T.M.
2004-01-01
Important natural environmental gradients, including the connectivity of off-channel aquatic habitats to the main-stem river, have been lost in many reaches of the upper Mississippi River system, and an understanding of the consequences of this isolation is lacking in regard to native fish communities. The objectives of this study were to describe patterns of fish species richness, evenness, and diversity among representative habitats and river reaches and to examine the relationship between fish species richness and habitat diversity. Each year (1994-1999) fish communities of main-channel borders (MCB), side channel borders (SCB), and contiguous backwater shorelines (BWS) were sampled using boat-mounted electrofishing, mini-fyke-nets, tyke nets, hoop nets, and seines at a standardized number of sites. A total of 0.65 million fish were collected, representing 106 species from upper Mississippi River Pools 4, 8, 13, and 26; the open (unimpounded) river reach; and the La Grange Reach of the Illinois River. Within pools, species richness based on rarefaction differed significantly among habitats and was highest in BWS and lowest in MCB (P < 0.0001). At the reach scale, Pools 4, 8, and 13 consistently had the highest species richness and Pool 26, the open-river reach, and the La Grange Reach were significantly lower (P < 0.0001). Species evenness and diversity indices showed similar trends. The relationship between native fish species richness and habitat diversity was highly significant (r(2) = 0.85; P = 0.0091). These results support efforts aimed at the conservation and enhancement of connected side channels and backwaters. Although constrained by dams, pools with high native species richness could serve as a relative reference. The remnants of natural riverine dynamics that remain in these reaches should be preserved and enhanced; conditions could be used to guide restoration activities in more degraded reaches.
Galat, D.L.; Lipkin, R.
2000-01-01
Restoring the ecological integrity of regulated large rivers necessitates characterizing the natural flow regime. We applied 'Indicators of Hydrologic Alteration' to assess the natural range of variation of the Missouri River's flow regime at 11 locations before (1929-1948) and after (1967-1996) mainstem impoundment. The 3768 km long Missouri River was divided into three sections: upper basin least-altered from flow regulation, including the lower Yellowstone River; middle basin inter-reservoir, and lower basin channelized. Flow regulation was associated with a reduction in magnitude and duration of the annual flood pulse, an increase in magnitude and duration of annual discharge minima, a reduction in frequency of annual low-flow pulses, earlier timing of March-October low-flow pulses, and a general increase in frequency of flow reversals with a reduction in the rate of change in river flows. Hydrologic alterations were smallest at two least-altered upper-basin sites and most frequent and severe in inter-reservoir and upper-channelized river sections. The influence of reservoir operations on depressing the annual flood pulse was partially offset by tributary inflow in the lower 600 km of river. Reservoir operations could be modified to more closely approximate the 1929-1948 flow regime to establish a simulated natural riverine ecosystem. For inter-reservoir and upper channelized-river sections, we recommend periodic controlled flooding through managed reservoir releases during June and July; increased magnitude, frequency and duration of annual high-flow pulses; and increased annual rates of hydrograph rises and falls. All of the regulated Missouri River would benefit from reduced reservoir discharges during August-February, modified timing of reservoir releases and a reduced number of annual hydrograph reversals. Assessment of ecological responses to a reregulation of Missouri River flows that more closely approximates the natural flow regime should then be used in an adaptive fashion to further adjust reservoir operations.
Simulating fish assemblages in riverine networks - September 2013
We describe a modeling approach for simulating assemblages of fish in riverine landscapes. The approach allows a user to determine the grain and extent of river networks within which fish populations reproduce, move, and survive in response to both environmental drivers and assem...
Chen, Dingjiang; Guo, Yi; Hu, Minpeng; Dahlgren, Randy A
2015-08-01
Legacy nitrogen (N) sources originating from anthropogenic N inputs (NANI) may be a major cause of increasing riverine N exports in many regions, despite a significant decline in NANI. However, little quantitative knowledge exists concerning the lag effect of NANI on riverine N export. As a result, the N leaching lag effect is not well represented in most current watershed models. This study developed a lagged variable model (LVM) to address temporally dynamic export of watershed NANI to rivers. Employing a Koyck transformation approach used in economic analyses, the LVM expresses the indefinite number of lag terms from previous years' NANI with a lag term that incorporates the previous year's riverine N flux, enabling us to inversely calibrate model parameters from measurable variables using Bayesian statistics. Applying the LVM to the upper Jiaojiang watershed in eastern China for 1980-2010 indicated that ~97% of riverine export of annual NANI occurred in the current year and succeeding 10 years (~11 years lag time) and ~72% of annual riverine N flux was derived from previous years' NANI. Existing NANI over the 1993-2010 period would have required a 22% reduction to attain the target TN level (1.0 mg N L(-1)), guiding watershed N source controls considering the lag effect. The LVM was developed with parsimony of model structure and parameters (only four parameters in this study); thus, it is easy to develop and apply in other watersheds. The LVM provides a simple and effective tool for quantifying the lag effect of anthropogenic N input on riverine export in support of efficient development and evaluation of watershed N control strategies.
Controls on the Origin and Cycling of Riverine Dissolved Inorganic Carbon in the Brazos River, Texas
NASA Astrophysics Data System (ADS)
Zeng, F.; Masiello, C. A.; Hockaday, W. C.
2008-12-01
Rivers are generally supersaturated in CO2 with respect to the atmosphere. However, there is little agreement on the sources and turnover times of excess CO2 in river waters. This is likely due to varying dominant controls on carbon sources (e.g. geologic setting, climate, land use, or human activities). In this study, we measured carbon isotopic signatures (δ13C and Δ14C) of riverine dissolved inorganic carbon (DIC), as well as solid state cross polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR) of particulate organic carbon (POC), to determine carbon sources fuelling respiration of the Brazos River in Texas. We found that sources of riverine CO2 varied significantly along the length of the Brazos. In the middle Brazos (between Graham and Waco), which is partially underlain by limestone, riverine DIC had average Δ14C of 74 ‰ and δ13C of -7.5 ‰, suggesting that riverine CO2 is derived almost entirely from contemporary carbon (less than 5 years old) with little evidence of carbonate input, probably due to the damming upstream of Waco. In the lower Brazos (downstream of Bryan), riverine DIC was highly depleted in 14C (average Δ14C = -148.5 ‰) and enriched in 13C (average δ13C= -9.32 ‰), indicative of the presence of old carbonate. Since there is no carbonate bedrock in contact with the river in this area, the most likely source of old carbonate is the shell used in road and building construction throughout the 19th century. Our results suggest that the effect of human activities superimposes and even surpasses the effect of natural controls (e.g. geologic setting and climate) on C cycling in the Brazos.
NASA Astrophysics Data System (ADS)
Koçak, M.; Kubilay, N.; Tuǧrul, S.; Mihalopoulos, N.
2010-07-01
Aerosol and rain samples were collected at a rural site located on the coastline of the Eastern Mediterranean, Erdemli, Turkey between January 1999 and December 2007. Riverine sampling was carried out at five Rivers (Ceyhan, Seyhan, Göksu, Berdan and Lamas) draining into the Northeastern Levantine Basin (NLB) between March 2002 and July 2007. Samples were analyzed for macronutrients of phosphate, silicate, nitrate and ammonium (PO43-, Sidiss, NO3- and NH4+). Phosphate and silicate in aerosol and rainwater showed higher and larger variation during the transitional period (March-May, September) when air flows predominantly originate from North Africa and Middle East/Arabian Peninsula. Deficiency of alkaline material were found to be the main reason of the acidic rain events whilst high pH values (>7) were associated with high Sidiss concentrations due to sporadic dust events. In general, lowest nitrate and ammonium concentrations in aerosol and rainwater were associated with air flow from the Mediterranean Sea. Unlike NO3- and NH4+ (Dissolved Inorganic Nitrogen, DIN), there were statistical differences for PO43- and Sidiss solubilities in sea-water and pure-water. Solubilities of PO43- and Sidiss were found to be related with air mass back trajectories and pH. Comparison of atmospheric with riverine fluxes demonstrated that DIN and PO43- fluxes to NLB were dominated by atmosphere (~90% and ~60% respectively) whereas the input of Si was mainly derived from riverine runoff (~90%). N/P ratios (atmosphere ~233; riverine ~28) revealed that NLB receives excessive amounts of DIN and this unbalanced P and N inputs may provoke even more phosphorus deficiency. Molar Si/N ratios (atmosphere + riverine) suggested Si limitation which might cause a switch from diatom dominated phytoplankton communities to non-siliceous populations in NLB.
Conceptualizing and Communicating River Restoration
NASA Astrophysics Data System (ADS)
Jacobosn, R. B.
2007-12-01
River restoration increasingly involves collaboration with stakeholders having diverse values and varying technical understanding. In cases where river restoration proceeds through collaborative processes, scientists are required to communicate complex understanding about riverine ecosystem processes to broad audiences. Of particular importance is communication of uncertainties in predictions of ecosystem responses to restoration actions, and how those uncertainties affect monitoring and evaluation strategies. I present a relatively simple conceptual model of how riverine ecosystems operate. The model, which has been used to conceptualize and communicate various river-restoration and management processes in the Lower Missouri River, emphasizes a) the interdependencies of driving regimes (for example, flow, sediment, and water quality), b) the filtering effect of management history, c) the typical hierarchical nature of information about how ecosystems operate, and d) how scientific understanding interacts with decision making. I provide an example of how the conceptual model has been used to illustrate the effects of extensive channel re-engineering of the Lower Missouri River which is intended to mitigate the effects of channelization and flow regulation on aquatic and flood-plain ecosystems. The conceptual model illustrates the logic for prioritizing investments in monitoring and evaluation, interactions among ecosystem components, tradeoffs between ecological and social-commercial benefits, and the feedback loop necessary for successful adaptive management.
Zhong, Jun; Li, Si-liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang
2017-01-01
To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system. PMID:28220859
Peters, N.E.; Buell, G.R.; Frick, E.A.
1997-01-01
Nutrient concentrations from the early 1970s through 1995 were evaluated at several sites along the Chattahoochee River and its tributaries near Atlanta, to determine general patterns and processes controlling nutrient concentrations in the river. A spatial analysis was conducted on data collected in 1994 and 1995 from an intensive nutrient study of the Chattahoochee River and its tributaries by the Georgia Department of Natural Resources, Environmental Protection Division. The 1994-1995 data show step increases in ammonium (NH4-N), nitrite plus nitrate (NO2 + NO3-N), and total-phosphorus (Tot-P) concentrations in the river. The step increases occur downstream of two wastewater treatment facilities (WWTFs) and Peachtree Creek, a small tributary inflow with degraded water quality draining a predominantly urban and industrial area. Median NO2 + NO3-N and Tot-P concentrations in the mainstem increase downstream of these inputs from 0.5 to 1 mg 1-1 and from 0.04 to 0.13 mg 1-1, respectively. NH4-N concentrations were typically low with 95% of the 2575 observations less than 0.2 mg 1-1 throughout the river system, except some high values (>1 mg 1-1) in some tributaries, particularly near the central part of Atlanta. High NH4-N concentrations are attributed to sewage discharge as they also are associated with high biological oxygen demand and faecal coliform bacteria concentrations. Nutrient concentrations vary temporally. An assessment of four sites, two mainstem and two tributaries, from 1970 to 1995 indicates a progressive increase and variability in NO2 + NO3-N concentrations during the period. The progressive increase in NO2 + NO3-N concentrations and their variability is similar to that reported for surface waters throughout the world and for which increased fertilizer usage has been attributed. Tot-P concentrations increase at mainstem sites through the middle to late 1980s and decrease markedly thereafter, due to improvements to WWTFs and a 1990 phosphate detergent ban. NH4-N concentrations, although less pronounced than Tot-P, display a similar decrease from the late 1980s to 1995 at the four sites. Tot-P concentration variability has increased at the tributary sites since 1993, although recent concentrations, on average, are the lowest since 1970 at each of the four sites.
Peterson, David A.; Clark, Melanie L.; Foster, Katharine; Wright, Peter R.; Boughton, Gregory K.
2010-01-01
Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. The interagency task group developed a monitoring plan and conducted sampling of macroinvertebrate, algal, and fish communities at 47 sites during 2005-08 to document current ecological conditions and determine existing and potential effects of water produced from coalbed natural gas development on biological communities. Macroinvertebrate, algal, and fish community composition varied between drainage basins, among sites within drainage basins, and by year. Macroinvertebrate communities of the main-stem Tongue River were characterized by higher taxa richness and higher abundance of Ephemeroptera, for example, compared to macroinvertebrate communities in plains tributaries of the Tongue River and the main-stem Powder River. Fish communities of the Tongue River were characterized by higher taxa richness and abundance of introduced species compared to the Powder River where native species were dominant. Macroinvertebrate community metric values from sites in the middle reach of the main-stem Powder River, from below Willow Creek to below Crazy Woman Creek, differed from metric values in the upper and lower reaches of the Powder River. Metrics indicative of communitywide differences included measures of taxa richness, relative abundance, feeding mode, and tolerance. Some of the variation in the macroinvertebrate communities could be explained by variation in environmental variables, including physical (turbidity, embeddedness, bed substrate size, and streamflow) and chemical (alkalinity and specific conductance) variables. Of these environmental variables, alkalinity was the best indicator of coalbed natural gas development because of the sodiumbicarbonate signature of the production water. Algal samples from the main-stem Powder River generally confirmed the pattern observed in the macroinvertebrate communities. Algal communities at sites in the middle reach of the Powder River commonly were characterized by dominance by a single taxon and by low biovolume of algae compared to other sites. In contrast to the macroinvertebrate and algal communities, species richness of fish communities was highest in the middle reach of the Powder River. Although a few significant differences in fish metrics were determined along the main-stem Powder River, the differences did not correspond to the pattern observed for the macroinvertebrate and algae communities. Differences in biological communities were noted between years, potentially due to the effects of drought. Macroinvertebrate community metrics, such as Diptera taxa richness, were significantly different in the severe drought year of 2006 from metric values in 2005 and 2007-08. Waterquality data collected during the study indicated that, with few exceptions, water-quality constituents generally did not exceed State or Federal acute and chronic criteria for the protection of aquatic life.
Trapping Efficiency of Agricultural Runoff in a Modified Riverine Backwater Wetland
USDA-ARS?s Scientific Manuscript database
Riverine backwater wetlands within river floodplains have important economic and ecological functions such as acting as filters for suspended sediment, nutrients and pesticides entering from adjacent agricultural fields. These wetlands hydrology can be modified to increase the efficiency of their n...
Manaster, Amanda D.; Domanski, Marian M.; Straub, Timothy D.; Boldt, Justin A.
2016-08-18
Acoustic technologies have the potential to be used as a surrogate for measuring suspended-sediment concentration (SSC). This potential was examined in a fine-grained (97-100 percent fines) riverine system in central Illinois by way of installation of an acoustic instrument. Acoustic data were collected continuously over the span of 5.5 years. Acoustic parameters were regressed against SSC data to determine the accuracy of using acoustic technology as a surrogate for measuring SSC in a fine-grained riverine system. The resulting regressions for SSC and sediment acoustic parameters had coefficients of determination ranging from 0.75 to 0.97 for various events and configurations. The overall Nash-Sutcliffe model-fit efficiency was 0.95 for the 132 observed and predicted SSC values determined using the sediment acoustic parameter regressions. The study of using acoustic technologies as a surrogate for measuring SSC in fine-grained riverine systems is ongoing. The results at this site are promising in the realm of surrogate technology.
Satizábal, Paula; Mignucci-Giannoni, Antonio A.; Duchêne, Sebastián; Caicedo-Herrera, Dalila; Perea-Sicchar, Carlos M.; García-Dávila, Carmen R.; Trujillo, Fernando; Caballero, Susana J.
2012-01-01
Phylogeographic patterns and sex-biased dispersal were studied in riverine populations of West Indian (Trichechus manatus) and Amazonian manatees (T. inunguis) in South America, using 410bp D-loop (Control Region, Mitochondrial DNA) sequences and 15 nuclear microsatellite loci. This multi-locus approach was key to disentangle complex patterns of gene flow among populations. D-loop analyses revealed population structuring among all Colombian rivers for T. manatus, while microsatellite data suggested no structure. Two main populations of T. inunguis separating the Colombian and Peruvian Amazon were supported by analysis of the D-loop and microsatellite data. Overall, we provide molecular evidence for differences in dispersal patterns between sexes, demonstrating male-biased gene flow dispersal in riverine manatees. These results are in contrast with previously reported levels of population structure shown by microsatellite data in marine manatee populations, revealing low habitat restrictions to gene flow in riverine habitats, and more significant dispersal limitations for males in marine environments. PMID:23285054
Xu, Weihai; Yan, Wen; Li, Xiangdong; Zou, Yongde; Chen, Xiaoxiang; Huang, Weixia; Miao, Li; Zhang, Ruijie; Zhang, Gan; Zou, Shichun
2013-11-01
Ten antibiotics belonging to three groups (macrolides, fluoroquinolones and sulfonamides) were investigated in riverine runoff of the Pearl River Delta (PRD) and Pearl River Estuary (PRE), South China for assessing the importance of riverine runoff in the transportation of contaminants from terrestrial sources to the open ocean. All antibiotics were detected in the eight outlets with concentrations ranging from 0.7 to 127 ng L(-1). The annual mass loadings of antibiotics from the PRD to the PRE and coast were 193 tons with 102 tons from the fluoroquinolone group. It showed that antibiotics decreased from the riverine outlets to the PRE and open ocean. Risk assessment showed that most of these antibiotics showed various ecological risks to the relevant aquatic organisms, in which ofloxacin (OFL), erythromycin (ETM) and ciprofloxacin (CIP) posed high ecological risks to the studied aquatic environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Satizábal, Paula; Mignucci-Giannoni, Antonio A; Duchêne, Sebastián; Caicedo-Herrera, Dalila; Perea-Sicchar, Carlos M; García-Dávila, Carmen R; Trujillo, Fernando; Caballero, Susana J
2012-01-01
Phylogeographic patterns and sex-biased dispersal were studied in riverine populations of West Indian (Trichechus manatus) and Amazonian manatees (T. inunguis) in South America, using 410bp D-loop (Control Region, Mitochondrial DNA) sequences and 15 nuclear microsatellite loci. This multi-locus approach was key to disentangle complex patterns of gene flow among populations. D-loop analyses revealed population structuring among all Colombian rivers for T. manatus, while microsatellite data suggested no structure. Two main populations of T. inunguis separating the Colombian and Peruvian Amazon were supported by analysis of the D-loop and microsatellite data. Overall, we provide molecular evidence for differences in dispersal patterns between sexes, demonstrating male-biased gene flow dispersal in riverine manatees. These results are in contrast with previously reported levels of population structure shown by microsatellite data in marine manatee populations, revealing low habitat restrictions to gene flow in riverine habitats, and more significant dispersal limitations for males in marine environments.
Environmental background levels of Pb were measured in ponds, river waters, sediments, suspended sediments, rocks, and air particulates within the Kankakee watershed during the period of 1995 to 1999. Stable isotopic Pb distinguised airborne Pb and its incorporation into riverin...
Apoplast Proteome Reveals that Extracellular Matrix Contributes to Multistress Response in Poplar
USDA-ARS?s Scientific Manuscript database
Riverine ecosystems that are highly sensitive to climate change and human activities are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species ha...
MICROBIAL ACTIVITY: AN INDICATOR OF WATERSHED IMPACTRS ON RIVERINE COASTAL WETLANDS OF LAKE MICHIGAN
The loss of watershed storage and/or forest cover due to land use, is expected to increase nutrient levels and sedimentation in the riverine coastal wetlands. Watershed indicators should be able to distinguish between degradation gradients, separating reference, transitional, and...
NASA Astrophysics Data System (ADS)
Wu, Jiawang; Böning, Philipp; Pahnke, Katharina; Tachikawa, Kazuyo; De Lange, Gert
2017-04-01
Circum-Mediterranean climate variability is reflected in sediments deposited and preserved at the Mediterranean seafloor. Alternating depositions of organic-lean marls and organic-rich sapropel sediments in the eastern Mediterranean Sea (EMS) are clearly related to precessional hydroclimate variability. The exact origin for freshwater sources and related changes therein during sapropel formation are still debated. Here, Sr and Nd isotopes and high-resolution elemental ratios from core CP10BC are used to unravel and constrain different eolian and riverine supplies from North Africa and from northern borderlands to the central Mediterranean over the past 9.8 ka. Based on Sr and Nd isotopic and elemental compositions, the provenance for detrital sediments in the Levantine basin can be adequately described using 2-end-members. However, in the central Mediterranean, a three-endmember mixing system is required. The three endmember include Saharan Dust, Aegean/Nile, and Libyan Soil, which respectively represents the eolian supply from North Africa, the riverine inputs from the Aegean/Nile areas, and the riverine and shelf-derived fluxes from the Libyan-Tunisian margin. For the first time, robust and consistent evidence is given for important riverine supplies from the Libyan-Tunisian margin into the central Mediterranean during sapropel S1 time in particular. Considerable amounts of detrital materials and freshwater must have been delivered into the EMS through the fossil river/wadi systems, which were activated by intensified African monsoon precipitation. A west-east comparison of Sr-Nd isotope data between core CP10BC and 4 other cores throughout the EMS shows that, such detrital supplies originated mainly from western Libya and Tunisia, and were transported as far eastward as 25°E while being diluted by an increasing Nile contribution. The Nile contribution to the central-Mediterranean detrital sediment fraction appears to have been negligible. Moreover, elemental proxies (Ti/Al, K/Al, Y/Sc, Ce/Ni, and Zr/Cr) reflect concordant changes in the three endmembers at high resolution. These indicate that enhanced precipitation and associated detrital fluxes must have occurred not only from North Africa but also from the northern EMS borderlands. Changes in the Libyan-Tunisian riverine contribution show a close correspondence with hydroclimate evolution of NW Libya on the one hand, and with prominent riverine contribution from the northern EMS borderlands on the other (Wu et al., 2016). Wu, J., Böning, P., Pahnke, K., Tachikawa, K., De Lange, G.J., 2016. Unraveling North-African riverine and eolian contributions to central Mediterranean sediments during Holocene sapropel S1 formation. Quaternary Science reviews 152, 31-48.
NASA Astrophysics Data System (ADS)
Ferguson, John W.; Healey, Michael; Dugan, Patrick; Barlow, Chris
2011-01-01
We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.
Curran, Janet H.; McTeague, Monica L.; Burril, Sean E.; Zimmerman, Christian E.
2011-01-01
Turbid, glacially influenced rivers are often considered to be poor salmon spawning and rearing habitats and, consequently, little is known about salmon habitats that do occur within rivers of this type. To better understand salmon spawning habitats in the Matanuska River of southcentral Alaska, the distribution and characteristics of clearwater side-channel spawning habitats were determined and compared to spawning habitats in tributaries. More than 100 kilometers of clearwater side channels within the braided mainstem of the Matanuska River were mapped for 2006 from aerial images and ground-based surveys. In reaches selected for historical analysis, side channel locations shifted appreciably between 1949 and 2006, but the relative abundance of clearwater side channels was fairly stable during the same period. Geospatial analysis of side channel distribution shows side channels typically positioned along abandoned bars at the braid plain margin rather than on bars between mainstem channels, and shows a strong correlation of channel abundance with braid plain width. Physical and geomorphic characteristics of the channel and chemical character of the water measured at 19 side channel sites, 6 tributary sites, 4 spring sites, and 5 mainstem channel sites showed conditions suitable for salmon spawning in side channels and tributaries, and a correlation of side channel characteristics with the respective tributary or groundwater source water. Autumn-through-spring monitoring of intergravel water temperatures adjacent to salmon redds (nests) in three side channels and two tributaries indicate adequate accumulated thermal units for incubation and emergence of salmon in side channels and relatively low accumulated thermal units in tributaries.
Kelly E. Crook; Catherine M. Pringle; Mary C. Freeman
2009-01-01
1. One way in which dams affect ecosystem function is by altering the distribution and abundance of aquatic species. 2. Previous studies indicate that migratory shrimps have significant effects on ecosystem processes in Puerto Rican streams, but are vulnerable to impediments to upstream or downstream passage, such as dams and associated water intakes where stream water...
Transformation of dwelling culture based on riverine community in Musi River Palembang
NASA Astrophysics Data System (ADS)
Wicaksono, Bambang; Siswanto, Ari; Kusdiwanggo, Susilo; Anwar, Widya Fransiska Febriati
2017-11-01
Palembang City development since the Palembang Darussalam Sultanate era to the reformation era has impact on the living culture community, less of the raft houses, houses on stilts transformed into a terraced house, and the house became the dominant land. Dwelling Culture oriented on transformation of river become land-oriented. The development has leaving identity, character, and potential of the riverine architecture and dwelling life of river. The goals of study are to describe a case and revealing the meaning of dwelling cultural transformation in Musi River society from the process of cultural acculturation and investigate the architectural aspect from the form of house and modes of dwelling through the structuralism approach. The data collection is conducted qualitatively by using data collection techniques such as observation, interview, literature study, whereas the method of analysis, is a method that is done through Levi-Strauss structuralism approach that identifies all the elements of community thought in a systematic procedure. The results showed the structure behind the orientation, position, shape, and layout of dwelling revealed through the meanings in it. It means, the change and development from cultural acculturation process which oriented in the land dwelling, based on structure thinking of Palembang society.
LONGITUDINAL AND LATERAL PATTERNS IN PHYSICAL AND CHEMICAL ATTRIBUTES OF WILLAMETTE RIVERINE HABITAT
The Willamette River in western Oregon is the tenth largest river in the conterminous U. S. Plans are being developed to restore ecological function to the main corridor of the river. Our riverine research has developed a basic understanding of some of the ecological functions ...
Simulating Fish Assemblages in Riverine Networks: Response to Habitat in the Willamette Watershed
We describe a modeling approach for simulating assemblages of fish in riverine landscapes. The approach allows a user to determine the scale and extent of river networks within which fish populations reproduce, move, and survive in response to both environmental drivers and assem...
PHOSPHORUS SORPTION DYNAMICS IN SOILS AND COUPLING WITH SURFACE AND PORE WATER IN RIVERINE WETLANDS
Adsorption to soils is one of the dominant mechanisms of P storage in wetlands. We examined P sorption dynamics in soils collected at 12 sample points with diverse hydrology, geomorphic position, mineralogy, and plant communities in two riverine wetlands in northern Minnesota and...
Evaluating the Simulation of MetacommUnities for Riverine Fishes (SMURF) in the Calapooia Basin, OR
We describe a modeling approach for simulating assemblages of fish in riverine landscapes. The approach allows a user to determine the grain and extent of river networks within which fish populations reproduce, move, and survive in response to both environmental drivers and assem...
Nitrogen Bsalance for a Plantation Forest Drainage Canal on the North Carolina Coastal Plain
USDA-ARS?s Scientific Manuscript database
Human alteration of the nitrogen cycle has led to increased riverine nitrogen loads, contributing to the eutrophication of lakes, streams, estuaries, and near-coastal oceans. These riverine nitrogen loads are usually less than the total nitrogen inputs to the system, indicating nitrogen removal duri...
NASA Astrophysics Data System (ADS)
Curtis, Katherine E.; Renshaw, Carl E.; Magilligan, Francis J.; Dade, William B.
2010-05-01
Because of the combined effects of reduced sediment transport capacity and competency following flow regulation, morphological changes are expected to occur in channels downstream from dams and, specifically, at tributary junctions where local inputs of water and sediment occur. Using a combination of historical aerial photographs, mainstem- and tributary-channel pebble counts, and HEC-RAS flow modeling for two watersheds in south-central VT, one unregulated and the other regulated since 1961, we document the time series of post-regulation channel narrowing and associated bar growth due to the influx of tributary sediment. Channel adjustments at regulated tributary junctions have been significant in ca. 50 years following impoundment, with channels downstream of the confluences narrowing over 15% after an initial ca. 20-year lag before the onset of accelerated narrowing. Moreover, flow modeling suggests that downstream of regulated confluences, the modern median grain size ( d50) along the channel bed is immobile. No significant channel narrowing has occurred either above or below unregulated tributary junctions or on the mainstem upstream of regulated confluences. However, greater channel sediment fining is observed upstream of regulated confluences than above unregulated confluences. Thus, the primary mode of mainstem channel adjustment differs up- and downstream of regulated tributaries. These confluence effects have occurred where the tributary drainage area is only 0.2 times that of the mainstem, well below the threshold ratio of 0.6 required for significant geomorphic effects at unregulated confluences, highlighting the geomorphic scale shift of dams. Lastly, we evaluate the downstream length required for a river to recover from the impacts of impoundment and demonstrate that even distal locations are impacted by flow regulation. Unlike the impacts of flow regulation in the western US where channel incision and bar erosion predominate following impoundment, we find that in situations where bed incision is minimal and where sediment loads are low but bed caliber high, bar growth and channel narrowing are significant adjustments at tributary junctions following impoundment. Therefore, at our sites the effects of dams on reduced competency may be more profound than on reduced sediment transport capacity, highlighting the importance of geologic and geomorphic settings in understanding fluvial responses to impoundment.
Beyond the edge: Linking agricultural landscapes, stream networks, and best management practices
Kreiling, Rebecca M.; Thoms, Martin C.; Richardson, William B.
2018-01-01
Despite much research and investment into understanding and managing nutrients across agricultural landscapes, nutrient runoff to freshwater ecosystems is still a major concern. We argue there is currently a disconnect between the management of watershed surfaces (agricultural landscape) and river networks (riverine landscape). These landscapes are commonly managed separately, but there is limited cohesiveness between agricultural landscape-focused research and river science, despite similar end goals. Interdisciplinary research into stream networks that drain agricultural landscapes is expanding but is fraught with problems. Conceptual frameworks are useful tools to order phenomena, reveal patterns and processes, and in interdisciplinary river science, enable the joining of multiple areas of understanding into a single conceptual–empirical structure. We present a framework for the interdisciplinary study and management of agricultural and riverine landscapes. The framework includes components of an ecosystems approach to the study of catchment–stream networks, resilience thinking, and strategic adaptive management. Application of the framework is illustrated through a study of the Fox Basin in Wisconsin, USA. To fully realize the goal of nutrient reduction in the basin, we suggest that greater emphasis is needed on where best management practices (BMPs) are used within the spatial context of the combined watershed–stream network system, including BMPs within the river channel. Targeted placement of BMPs throughout the riverine landscape would increase the overall buffering capacity of the system to nutrient runoff and thus its resilience to current and future disturbances.
NASA Astrophysics Data System (ADS)
Korotenko, K. A.; Sentchev, A. V.
2008-10-01
Using a combined model that couples a three-dimensional ocean circulation model, a model for tidal currents, and a model for particle transport, the structure of the velocity field of the tidal current and the transport of particles migrating over the vertical were studied in the zone of the influence of the riverine runoff in the eastern part of the English Channel. It was found that the interaction between the tidal current and the baroclinic flow formed by the riverine runoff off the northeastern coast of France generates a steady-state intensive (˜0.3 m/s) residual current in the zone of the effect of the riverine runoff. In order to assess the influence of different types of particle migration (which simulate ichthyoplankton) on the processes of their transport in the region under consideration, we performed numerical experiments with particle clusters, for which parameterization of their migration was implemented on the basis of the field observations over the proper vertical movements of different types of ichthyoplankton. The experiments showed that the distribution of the fields of the particle concentrations and the velocities of their movements depend not only on the background hydrophysical conditions but also on the character of the vertical migration of the particles. In this paper, a comparison between the results of the modeling and those of the field observations in the region under consideration are presented.
NASA Astrophysics Data System (ADS)
Schroth, A. W.; Crusius, J.; Kroeger, K. D.; Hoyer, I. R.; Osburn, C. L.
2010-12-01
Iron (Fe) is a micronutrient that is thought to limit phytoplankton productivity in offshore waters of the Gulf of Alaska (GoA). However, it has been proposed that in coastal regions where offshore, Fe-limited, nitrate-rich waters mix with relatively Fe-rich river plumes, productive ecosystems and fisheries result. Indeed, an observed northward increase in phytoplankton biomass along the pacific coast of North America has been attributed to higher input of riverine Fe to coastal waters, suggesting that many of the coastal ecosystems of the North Pacific rely heavily on this input of Fe as a nutrient source. Based on our studies of the Copper River (the largest point source of freshwater to the GoA) and its tributaries, it is clear that riverine Fe delivered to the GoA is primarily derived from fine glacial flour generated by glacial weathering, which imparts a unique partitioning of Fe species and Fe size fractionation in coastal river plumes. Furthermore, the distribution of Fe species and size fractionation exhibits significant seasonal and spatial variability based on the source of iron within the watershed, which varies from glacial mechanical weathering of bedrock to internal chemical processing in portions of watersheds with forest and wetland land covers. These findings are relevant to our understanding of the GoA biogeochemical system as it exists today and can help to predict how the system may evolve as glaciers within the GoA watershed continue to recede.
Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.
Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju
2011-03-01
Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.
Bottom sediments and nutrients in the tidal Potomac system, Maryland and Virginia
Glenn, Jerry L.
1988-01-01
The characteristics and distributions of near-surface bottom sediments and of nutrients in the sediments provide information on modern sediment and nutrient sources, sedimentation environments, and geochemical reactions in the tidal Potomac system, Maryland and Virginia. This information is fundamental to an improved understanding of sedimentation and eutrophication problems in the tidal Potomac system. The tidal Potomac system consists of 1,230 square kilometers of intertidal to subtidal Potomac mainstem and tributary streambed from the heads-of-tides to Chesapeake Bay. Tidal Potomac sediments are dominantly silt and clay except in local areas. An average sediment sample is about two-thirds silt and clay (fine) particles and one-third sand (coarse) particles. The mean of the median size of all samples is 6.60 phi, or 0.010 millimeters. Sorting generally is poor and the average sediment is skewed toward the fine tail of the size-distribution curve. Mean particle-size measures have large standard deviations. Among geomorphic units, two distinctly different size populations are found; fine (median phi about 9), and poorly sorted (sorting about 3) sediments in the channel and the smooth flat, and coarse (median phi about 2), and well sorted (sorting about 1) sediments in the shoreline flat and the irregular slope. Among mainstem hydrologic divisions, an average sediment from the river and the estuary division is coarser and more variable than an average sediment from the transition division. Substantial concentrations of total carbon, total nitrogen, and total phosphorus, and limited amounts of inorganic carbon, ammonia nitrogen and nitrite plus nitrate nitrogen occur in tidal Potomac sediments. An average tidal Potomac sediment sample weighing 1 kilogram contains about 21,000 milligrams of total carbon, 2,400 milligrams of total nitrogen, 1,200 milligrams of total phosphorus, 600 milligrams of inorganic carbon, 170 milligrams of ammonia nitrogen, and 2 milligrams of nitrite plus nitrate nitrogen. Total carbon, nitrogen, and phosphorus have an average ratio by weight of 18:2:1 and an average ratio by atoms of 94:8:1. Nutrient concentrations and nutrient ratios have large ranges and standard deviations. Nutrient concentrations usually are closely related to particle size; large concentrations are characteristic of fine sediments in the channel and the smooth flat, and small concentrations are typical of coarse sediments in the shoreline flat and the irregular slope. Concentrations typically decrease from the river division to the estuary division. Mainstem and tributaries show no statistically significant difference in mean particle-size measures or mean nutrient concentrations. Tributaries do not contribute large quantities of sediment with diverse texture or nutrient content to the Potomac mainstem. Particle-size measures and nutrient concentrations in the mainstem are significantly related to hydrologic divisions and geomorphic units; that is, particle size and nutrients vary significantly along and across the Potomac mainstem. Lateral variations in particle size and nutrient content are more pronounced and contribute more to significant relations than longitudinal variations contribute. The mean values for the median particle size and for the percentage of sand indicate significant variations among hydrologic divisions for samples from a geomorphic unit, and among geomorphic units, for samples from a hydrologic division. Sediments of channels and smooth flats in the river division commonly are coarser than sediments of channels and smooth flats in the transition and the estuary divisions. Shoreline flats in the estuary division are coarser than shoreline flats in the river division. Shoreline flats and irregular slopes in each hydrologic division generally are significantly coarser than channels and smooth flats. Relations between particle-size measures and geomorphic units show progressively larger cor
Armstrong, David S.; Richards, Todd A.; Parker, Gene W.
2001-01-01
The relations among stream habitat, fish communities, and hydrologic conditions were investigated in the Ipswich River Basin in northeastern Massachusetts. Data were assessed from 27 sites on the mainstem of the Ipswich River from July to September 1998 and from 10 sites on 5 major tributaries in July and August 1999. Habitat assessments made in 1998 determined that in a year with sustained streamflow for most of the summer, the Ipswich River contains diverse, high-quality aquatic habitat. Channel types are predominantly low gradient glides, pools, and impoundments, with a sandy streambed and a forest or shrub riparian zone. Features that provide fish habitat are located mostly along stream margins; these features include overhanging brush, undercut banks, exposed roots, and woody debris. These habitat features decrease in availability to aquatic communities with declining streamflows and generally become unavailable after streamflows drop to the point where the edge of water recedes from the stream banks.The mainstem and tributaries were sampled to determine fish species composition, relative abundance, and length frequency. Fish sampling indicates that the fish community in the Ipswich River is currently a warm-water fish community dominated by pond-type fish. However, historical temperature data, and survival of stocked trout in the mainstem Ipswich into late summer of 1998, indicate that the Ipswich River potentially could support cold-water fish species if adequate flows are maintained. Dominant fish species sampled in the mainstem Ipswich River were redfin pickerel (Esox americanus), American eel (Anguilla rostrata), and pumpkinseed (Lepomis gibbosus), which together represented 41, 22, and 10 percent, respectively, of 4,745 fish sampled. The fish communities of the mainstem and tributaries contained few fluvial-dependent or fluvial-specialist species (requiring flow), and were dominated by macrohabitat generalists (tolerant of low-flow, warm-water, and ponded conditions). In comparison to a nearby river (Lamprey River, N.H.), and a reference fish community developed for inland New England streams, the Ipswich fish community would be expected to have appreciably higher percentages of fluvial-dependent and fluvial-specialist species were streamflows restored.Four riffle sites on the mainstem of the Ipswich River were identified as critical habitat areas because they are among the first sites to exhibit fish-passage problems or to dry during low flows. A watershed-scale precipitation-runoff model previously developed for the Ipswich River was used to simulate streamflows at these four sites for the period 1961-95 under no withdrawals (for water supply) and 1991 land use to evaluate habitat suitability under conditions that approximate the natural flow conditions. These simulated flows were used to calculate streamflow requirements by the Tennant and New England Aquatic-Base-Flow methods. Stream channels were surveyed at the critical riffle sites, and Water Surface Profile models were used to simulate streamflows and hydraulic characteristics needed for determining streamflow requirements by use of the Wetted-Perimeter and R2Cross methods. Normalized by drainage area to units of cubic feet per second per square mile, these methods yielded the following streamflow requirements: 0.50 cubic feet per second per square mile for the Tennant 30-percent QMA method, 0.42 cubic feet per second per square mile for the wetted-perimeter value necessary to maintain wetted perimeter at three altered riffle sites, 0.42 cubic feet per second per square mile for the R2Cross value required to maintain R2Cross hydraulic criteria at a natural riffle site, and 0.34 cubic feet per second per square mile for the aquatic-base-flow median of monthly mean flows for August for the simulated 1961-95 period under no withdrawals and 1991 land use. The mean streamflow requirement determined from these four methods is 0.42 cubic feet per second per square
Human and climate impact on global riverine water and sediment fluxes - a distributed analysis
NASA Astrophysics Data System (ADS)
Cohen, S.; Kettner, A.; Syvitski, J. P.
2013-05-01
Understanding riverine water and sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of climate, landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. The intensity and dynamics between man-made and climatic factors vary widely across the globe and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment and water discharge model (WBMsed) to simulate human and climate effect on our planet's large rivers.
White pine pruning and branch growth
Thomas W. McConkey
1965-01-01
A better understanding of the growth responses of young trees to silvicultural treatments is essential for intensive management programs for juvenile stands. At the juvenile stage, the effect of silvicultural treatment on main-stem development is much greater than it would be later.
Hydrological connectivity for riverine fish: measurement challenges and research opportunities
A.H. Fullerton; Kelly Burnett; Ashley Steel; Rebecca Flitcroft; G.R. Pess; B.E. Feist; C.E. Torgersen; D.J. Miller; B.L. Sanderson
2010-01-01
In this review, we first summarize how hydrologic connectivity has been studied for riverine fish capable of moving long distances, and then identify research opportunities that have clear conservation significance. Migratory species, such as anadromous salmonids, are good model organisms for understanding ecological connectivity in rivers because the spatial scale...
N-mix for fish: estimating riverine salmonid habitat selection via N-mixture models
Som, Nicholas A.; Perry, Russell W.; Jones, Edward C.; De Juilio, Kyle; Petros, Paul; Pinnix, William D.; Rupert, Derek L.
2018-01-01
Models that formulate mathematical linkages between fish use and habitat characteristics are applied for many purposes. For riverine fish, these linkages are often cast as resource selection functions with variables including depth and velocity of water and distance to nearest cover. Ecologists are now recognizing the role that detection plays in observing organisms, and failure to account for imperfect detection can lead to spurious inference. Herein, we present a flexible N-mixture model to associate habitat characteristics with the abundance of riverine salmonids that simultaneously estimates detection probability. Our formulation has the added benefits of accounting for demographics variation and can generate probabilistic statements regarding intensity of habitat use. In addition to the conceptual benefits, model application to data from the Trinity River, California, yields interesting results. Detection was estimated to vary among surveyors, but there was little spatial or temporal variation. Additionally, a weaker effect of water depth on resource selection is estimated than that reported by previous studies not accounting for detection probability. N-mixture models show great promise for applications to riverine resource selection.
Arctic Riverine CDOM and its effects on the Polar Marine Light Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orandle, Zoe Ann; Weijer, Wilbert; Elliott, Scott M.
2016-09-28
It is well-known that CDOM (Chromophoric Dissolved Organic Matter) can have a significant effect on biological activity in the photic zones of aquatic ecosystems. However, the extent of CDOM’s interference with biological activity is not well-known. We examined this issue in great detail in the mixed surface layer of the Arctic Ocean. We studied the impacts of CDOM’s light attenuation on Arctic phytoplankton populations to discover if riverine CDOM’s presence in the Arctic ocean could inhibit and possibly prevent local phytoplankton populations from performing photosynthesis. We incorporated biogeochemistry concepts and data with oceanographic models and calculations to approach the problem.more » The results showed that riverine CDOM can indeed significantly impact the productivity of phytoplankton populations during the spring and summer months near the major Arctic river mouths we chose to examine. Although our study was detailed and inclusive of many variables, the issue of CDOM’s light attenuation and its effects on phytoplankton populations must be explored on a global scale to help understand if riverine CDOM could prove disastrous for phytoplankton populations.« less
Stegen, James C.; Fredrickson, James K.; Wilkins, Michael J.; ...
2016-04-07
Environmental transition zones are associated with geochemical gradients that overcome energy limitations to microbial metabolism, resulting in biogeochemical hot spots and moments. Riverine systems where groundwater mixes with surface water (the hyporheic zone) are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. To investigate the coupling among groundwater-surface water mixing, microbial communities, and biogeochemistry we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected across times and locations representing amore » broad range of mixing conditions. Mixing of groundwater and surface water resulted in a shift from transport-driven stochastic dynamics to a deterministic microbial structure associated with elevated biogeochemical rates. While the dynamics of the hyporheic make predictive modeling a challenge, we provide new knowledge that can improve the tractability of such models.« less
Ecological transcriptomics of lake-type and riverine sockeye salmon (Oncorhynchus nerka)
2011-01-01
Background There are a growing number of genomes sequenced with tentative functions assigned to a large proportion of the individual genes. Model organisms in laboratory settings form the basis for the assignment of gene function, and the ecological context of gene function is lacking. This work addresses this shortcoming by investigating expressed genes of sockeye salmon (Oncorhynchus nerka) muscle tissue. We compared morphology and gene expression in natural juvenile sockeye populations related to river and lake habitats. Based on previously documented divergent morphology, feeding strategy, and predation in association with these distinct environments, we expect that burst swimming is favored in riverine population and continuous swimming is favored in lake-type population. In turn we predict that morphology and expressed genes promote burst swimming in riverine sockeye and continuous swimming in lake-type sockeye. Results We found the riverine sockeye population had deep, robust bodies and lake-type had shallow, streamlined bodies. Gene expression patterns were measured using a 16K microarray, discovering 141 genes with significant differential expression. Overall, the identity and function of these genes was consistent with our hypothesis. In addition, Gene Ontology (GO) enrichment analyses with a larger set of differentially expressed genes found the "biosynthesis" category enriched for the riverine population and the "metabolism" category enriched for the lake-type population. Conclusions This study provides a framework for understanding sockeye life history from a transcriptomic perspective and a starting point for more extensive, targeted studies determining the ecological context of genes. PMID:22136247
Januchowski-Hartley, Stephanie Renee; Moon, Katie; Stoeckl, Natalie; Gray, Sally
2012-11-15
Private land conservation is an essential component of conservation that requires organizing both protection and restoration actions accordingly. Yet private land conservation programs are often formulated to generate public benefits, with inadequate consideration of costs or benefits to private landholders. Landholders' willingness to participate in conservation programs depends on a complex set of social factors, and the benefits they expect from participation. However, these two attributes are commonly evaluated independent of one another. We addressed this limitation through interviews aimed at determining landholders': 1) willingness to participate in restoration programs; 2) barriers to participation; 3) prioritization of proposed riverine restoration actions; 4) expected public or private benefits for undertaking proposed riverine restoration actions; and 5) most preferred incentive for undertaking proposed restoration actions on their land. Our results revealed four main findings. First, landholders stated that biases towards ecological rather than production outcomes, impractical programs, and government mistrust (structural factors) were the major barriers that prevented them from participating in riverine restoration on their land. Second, private benefits influenced landholders' willingness to engage riverine restoration. Third, 'a sense of stewardship and improved landscape aesthetics' (an internal factor) was the most commonly reported private benefit. Fourth, the most preferred incentives for high priority restoration actions were cash for on-ground works, extension and community recognition. We highlight the importance of designing private land conservation programs that align with landholders' priorities and deliver public benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ecological transcriptomics of lake-type and riverine sockeye salmon (Oncorhynchus nerka).
Pavey, Scott A; Sutherland, Ben J G; Leong, Jong; Robb, Adrienne; von Schalburg, Kris; Hamon, Troy R; Koop, Ben F; Nielsen, Jennifer L
2011-12-02
There are a growing number of genomes sequenced with tentative functions assigned to a large proportion of the individual genes. Model organisms in laboratory settings form the basis for the assignment of gene function, and the ecological context of gene function is lacking. This work addresses this shortcoming by investigating expressed genes of sockeye salmon (Oncorhynchus nerka) muscle tissue. We compared morphology and gene expression in natural juvenile sockeye populations related to river and lake habitats. Based on previously documented divergent morphology, feeding strategy, and predation in association with these distinct environments, we expect that burst swimming is favored in riverine population and continuous swimming is favored in lake-type population. In turn we predict that morphology and expressed genes promote burst swimming in riverine sockeye and continuous swimming in lake-type sockeye. We found the riverine sockeye population had deep, robust bodies and lake-type had shallow, streamlined bodies. Gene expression patterns were measured using a 16 k microarray, discovering 141 genes with significant differential expression. Overall, the identity and function of these genes was consistent with our hypothesis. In addition, Gene Ontology (GO) enrichment analyses with a larger set of differentially expressed genes found the "biosynthesis" category enriched for the riverine population and the "metabolism" category enriched for the lake-type population. This study provides a framework for understanding sockeye life history from a transcriptomic perspective and a starting point for more extensive, targeted studies determining the ecological context of genes.
Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia.
Hayes, Matthew A; Jesse, Amber; Hawke, Bruce; Baldock, Jeff; Tabet, Basam; Lockington, David; Lovelock, Catherine E
2017-10-01
Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175-504 Mg/ha) than those in nonriverine settings (44-271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000-5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across intertidal wetland systems. © 2017 John Wiley & Sons Ltd.
Khuman, Sanjenbam Nirmala; Chakraborty, Paromita; Cincinelli, Alessandra; Snow, Daniel; Kumar, Bhupander
2018-04-30
Sixteen priority polycyclic aromatic hydrocarbons (PAHs) regulated by the United States Environmental Protection Agency (USEPA) were analyzed in surface waters and riverine sediments of Brahmaputra and Hooghly Rivers, along urban-suburban-rural transects. ∑ 16 PAHs concentrations were higher in Hooghly riverine sediment (HRS) (Avg, 445 ng g -1 ) than Brahmaputra riverine sediment (BRS) (Avg, 169 ng g -1 ) dominated by 4-ring PAHs. In contrast, PAHs concentrations in surface water of Brahmaputra River (BRW) (Avg, 4.04 μg L -1 ) were comparable with Hooghly River (HRW) (Avg, 4.8 μg L -1 ), with dominance by 3-ring PAHs. Toxic PAHs (BaA, Chr, BbF, BkF, BaP, InP and DBA) were dominant in sub-urban transect of HRS (Avg, 387 ng g -1 ) and BRS (Avg, 14 ng g -1 ). Diagnostic ratios, principal component analysis (PCA) and ring wise composition suggested combustion as the main PAHs source in these riverine belts. In BRS, higher PAHs in suburban and rural transects were attributed to incomplete combustion of fossil fuel and biomass burning. In HRS, >85% of high molecular weight PAHs were found in the industrial areas of the suburban transect possibly associated with the discharge of industrial effluents. Harbor and port activities were other major contributors of HMW-PAHs in Hooghly riverine system. Carcinogenic potency estimated in terms of toxic equivalent (TEQ) was several folds higher in HRS (Avg, 106 ng TEQ g -1 ) compared with BRS (Avg, 2.5 ng TEQ g -1 ). Mostly low molecular weight PAHs are likely posing a risk to fishes in both the rivers. Risk on edible fish species may be a matter of concern considering the regular consumption of fishes in this region. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rowland, J. C.; Dietrich, W. E.; Day, G.; Parker, G.
2009-06-01
Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology; yet they are generally unrecognized and little studied. Here we report the results of field studies focused on tie channel origin and morphodynamics in the following three contrasting systems: the Middle Fly River (Papua New Guinea), the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed, single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V-shaped cross section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bidirectional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.
NASA Astrophysics Data System (ADS)
Kuhn, C.; Butman, D. E.
2016-12-01
Many river-reservoir networks are already managed for ecological targets such as stream temperature regulation, but less is known about how management choices alter the quantity and composition of dissolved organic carbon as well as the concentration of dissolved carbon gases. Understanding these ecological impacts is critical to informing water resources management, especially in light of the global hydropower boom and the increased interest in dam removal in the United States. Here we present results from a field survey and remote sensing imagery analysis quantifying a suite of water quality variables. With this approach, we evaluate spatial differences in carbon signals above, and below eight mainstem dams located on the Columbia and Snake Rivers. Dissolved methane and carbon dioxide concentrations were in excess of atmospheric levels with occasional carbon dioxide undersaturation being observed in the Snake River. CH4 and CO2 δ13C values shifted between the mainstem and the tributaries reflecting changes in carbon sources and processes. Satellite-retrieved estimates of CDOM and chlorophyll-a were compared to in situ measurements to enable surface mapping of concentrations at broader spatial scales. Our technical approach blends cloud-based data fusion techniques and machine learning to link ground-collected observations to remote sensing imagery in order to produce spatially-explicit, cross-scale estimates of carbon dynamics in a large, highly regulated river system. These findings test the feasibility of coupling remote sensing with field-based measurements to observe the complex impacts of run-of-the river impoundments to aquatic carbon cycling.
Red shiner invasion and hybridization with blacktail shiner in the upper Coosa River, USA
Walters, D.M.; Blum, M.J.; Rashleigh, Brenda; Freeman, B.J.; Porter, B.A.; Burkhead, N.M.
2008-01-01
Human disturbance increases the invasibility of lotic ecosystems and the likelihood of hybridization between invasive and native species. We investigated whether disturbance contributed to the invasion of red shiner (Cyprinella lutrensis) and their hybridization with native blacktail shiner (C. venusta stigmatura) in the Upper Coosa River System (UCRS). Historical records indicated that red shiners and hybrids rapidly dispersed in the UCRS via large, mainstem rivers since the mid to late 1990s. We measured the occurrence and abundance of parental species and hybrids near tributary-mainstem confluences and characterized populations at these incipient contact zones by examining variation across morphological traits and molecular markers. Red shiners represented only 1.2% of total catch in tributaries yet introgression was widespread with hybrids accounting for 34% of total catch. Occurrence of red shiners and hybrids was highly correlated with occurrence of blacktail shiners, indicating that streams with native populations are preferentially colonized early in the invasion and that hybridization is a key process in the establishment of red shiners and their genome in new habitats. Tributary invasion was driven by post-F1 hybrids with proportionately greater genomic contributions from blacktail shiner. Occurrence of red shiners and hybrids and the relative abundance of hybrids significantly increased with measures of human disturbance including turbidity, catchment agricultural land use, and low dissolved oxygen concentration. Red shiners are a significant threat to Southeast Cyprinella diversity, given that 41% of these species hybridize with red shiner, that five southeastern drainages are invaded, and that these drainages are increasingly disturbed by urbanization. ?? 2007 Springer Science+Business Media B.V.
CFD Analysis of a Penta-hulled, Air-Entrapment, High-Speed Planning Vessel
2008-03-01
INTRODUCTION A. BACKGROUND The 2007 Total Ship Systems Engineering (TSSE) class was tasked with designing a new riverine craft or specialized...the concept of operations, for our defined system architecture (combined Specialized Command and Control Craft / Mobile Operating Base). This also...of an integration process that requires both systems and equipment optimization while meeting predetermined requirements set for by the Concept of
Deforestation in Amazonia impacts riverine carbon dynamics
NASA Astrophysics Data System (ADS)
Langerwisch, F.; Walz, A.; Rammig, A.; Tietjen, B.; Thonicke, K.; Cramer, W.
2015-10-01
Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it, depend on terrestrial productivity and discharge, as well as temperature and atmospheric CO2. Both terrestrial productivity and discharge are influenced by climate and land use change. To assess the impact of these changes on the riverine carbon dynamics, the coupled model system of LPJmL and RivCM (Langerwisch et al., 2015) has been used. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. The results suggest that, following deforestation, riverine particulate and dissolved organic carbon will strongly decrease by up to 90 % until the end of the current century. In parallel, discharge increases, leading to roughly unchanged net carbon transport during the first decades of the century, as long as a sufficient area is still forested. During the following decades the amount of transported carbon will decrease drastically. In contrast to the riverine organic carbon, the amount of riverine inorganic carbon is only determined by climate change forcing, namely increased temperature and atmospheric CO2 concentration. Mainly due to the higher atmospheric CO2 it leads to an increase in riverine inorganic carbon by up to 20 % (SRES A2). The changes in riverine carbon fluxes have direct effects on the export of carbon, either to the atmosphere via outgassing, or to the Atlantic Ocean via discharge. Basin-wide the outgassed carbon will increase slightly, but can be regionally reduced by up to 60 % due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40 % under the most severe deforestation and climate change scenario. The changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself but also in the adjacent Atlantic Ocean.
Water Quality Conditions in the Missouri River Mainstem System: 2006 Annual Report
2007-07-01
benfluralin, butylate, chlorpyrifos, cyanazine, cycloate, EPTC, hexazinone, isopropalin, metribuzin, molinate, oxadiazon, oxyfluorfen , pebulate...acetochlor, benfluralin, butylate, chlorpyrifos, cyanazine, cycloate, EPTC, hexazinone, isopropalin, metribuzin, molinate, oxadiazon, oxyfluorfen ...isopropalin, metribuzin, molinate, oxadiazon, oxyfluorfen , pebulate, pendimethalin, profluralin, prometon, propachlor, propazine, simazine
Jiang, Rui; Wang, Chun-ying; Hatano, Ryusuke; Kuramochi, Kanta; Hayakawa, Atsushi; Woli, Krishna P
2015-04-01
It is difficult to investigate the factors that control the riverine nitrate-nitrogen (NO3--N) export in a watershed which gains or losses groundwater. To control the NO3--N contamination in these watersheds, it is necessary to investigate the factors that are related to the export of NO3--N that is only produced by the watershed itself. This study was conducted in the Shibetsu watershed located in eastern Hokkaido, Japan, which gains external groundwater contribution (EXT) and 34% of the annual NO3--N loading occurs through EXT. The riverine NO3--N exports from 1980 to 2009 were simulated by the SWAT model, and the factors controlling the temporal and spatial patterns of NO3--N exports were investigated without considering the EXT. The results show that hydrological events control NO3--N export at the seasonal scale, while the hydrological and biogeochemical processes are likely to control NO3--N export at the annual scale. There was an integrated effect among the land use, topography, and soil type related to denitrification process, that regulated the spatial patterns of NO3--N export. The spatial distribution of NO3--N export from hydrologic response units (HRUs) identified the agricultural areas with surplus N that are vulnerable to nitrate contamination. A new standard for the N fertilizer application rate including manure application should be given to control riverine NO3--N export. This study demonstrates that applying the SWAT model is an appropriate method to determine the temporal and spatial patterns of NO3--N export from the watershed which includes EXT and to identify the crucial pollution areas within a watershed in which the management practices can be improved to more effectively control NO3--N export to water bodies.
Wood decay in desert riverine environments
Andersen, Douglas; Stricker, Craig A.; Nelson, S. Mark
2016-01-01
Floodplain forests and the woody debris they produce are major components of riverine ecosystems in many arid and semiarid regions (drylands). We monitored breakdown and nitrogen dynamics in wood and bark from a native riparian tree, Fremont cottonwood (Populus deltoides subsp. wislizeni), along four North American desert streams. We placed locally-obtained, fresh, coarse material [disks or cylinders (∼500–2000 cm3)] along two cold-desert and two warm-desert rivers in the Colorado River Basin. Material was placed in both floodplain and aquatic environments, and left in situ for up to 12 years. We tested the hypothesis that breakdown would be fastest in relatively warm and moist aerobic environments by comparing the time required for 50% loss of initial ash-free dry matter (T50) calculated using exponential decay models incorporating a lag term. In cold-desert sites (Green and Yampa rivers, Colorado), disks of wood with bark attached exposed for up to 12 years in locations rarely inundated lost mass at a slower rate (T50 = 34 yr) than in locations inundated during most spring floods (T50 = 12 yr). At the latter locations, bark alone loss mass at a rate initially similar to whole disks (T50 = 13 yr), but which subsequently slowed. In warm-desert sites monitored for 3 years, cylinders of wood with bark removed lost mass very slowly (T50 = 60 yr) at a location never inundated (Bill Williams River, Arizona), whereas decay rate varied among aquatic locations (T50 = 20 yr in Bill Williams River; T50 = 3 yr in Las Vegas Wash, an effluent-dominated stream warmed by treated wastewater inflows). Invertebrates had a minor role in wood breakdown except at in-stream locations in Las Vegas Wash. The presence and form of change in nitrogen content during exposure varied among riverine environments. Our results suggest woody debris breakdown in desert riverine ecosystems is primarily a microbial process with rates determined by landscape position, local weather, and especially the regional climate through its effect on the flow regime. The increased warmth and aridity expected to accompany climate change in the North American southwest will likely retard the already slow wood decay process on naturally functioning desert river floodplains. Our results have implications for designing environmental flows to manage floodplain forest wood budgets, carbon storage, and nutrient cycling along regulated dryland rivers.
Measures are being assessed to quantify the relationship of land-use in upstream watersheds to the habitat and biota in downstream coastal wetlands. Twenty-two sites were randomly drawn from a pool of 125 identified as riverine coastal wetlands along the shore of Lake Michigan. W...
Characteristics of ground-water/surface-water interactions were identified at a managed wetland (Hog Marsh) and a natural riverine wetland (LaSalle) located on the north and south sides, respectively, of the Kankakee River in northwestern Indiana. Hog Marsh covers about 390 hecta...
Revegetation of Reconstructed Reaches of the Provo River, Heber Valley, Utah
John A. Rice
2006-01-01
In 1999, the Utah Reclamation Mitigation and Conservation Commission began the Provo River Restoration Project to create a more naturally functioning riverine ecosystem between Jordanelle Dam and Deer Creek Reservoir. The purpose of the project was to mitigate for past impacts to riverine, wetland, and riparian habitats caused by the Central Utah Project and other...
NASA Astrophysics Data System (ADS)
Epstein, J.; Lind, P.
2017-12-01
Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons learned from design, construction, and monitoring will be synthesized to share what worked and what didn't, and what key elements a practitioner should think about as part of enhancement project design.
Ripley, Jennifer; Iwanowicz, Luke; Blazer, Vicki; Foran, Christy
2008-08-01
The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption.
Ripley, J.; Iwanowicz, L.; Blazer, V.; Foran, C.
2008-01-01
The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption. ?? 2008 SETAC.
NASA Astrophysics Data System (ADS)
Borges, Alberto V.; Bouillon, Steven; Teodoru, Cristian; Leporcq, Bruno; Descy, Jean-Pïerre; Darchambeau, François
2014-05-01
Rivers are important components of the global carbon cycle, as they transport terrestrial organic matter from the land to the sea, and emit CO2 to the atmosphere. In particular, tropical systems that account for 60% of global freshwater discharge to the oceans. In contrast with south American rivers, very little information is available for African rivers on their carbon flows and stocks, in particular the Congo river, the second largest river in the World in terms of freshwater discharge (1457 km3 yr-1) and in terms of drainage basin (3.75 106 km2) located the second largest tropical forest in the World. Here, we report a data-set of continuous (every minute) records of the partial pressure of CO2 (pCO2) (total of 10,000 records), and discrete samples of particulate (POC) and dissolved (DOC) organic carbon (total of 75 samples) in the mainstem and major tributaries of the Congo river, along the 1700 km stretch from Kisangani to Kinshasa (total river length = 4374 km), during the high water period (December 2013). The pCO2 dynamic range was high ranging from minimum values of 2000 ppm in white waters tributaries (higher turbidity, conductivity and O2, lower DOC), up to maximal values of 18,000 ppm in blackwaters tributaries (lower turbidity, conductivity and O2, higher DOC). In the mainstem, very strong horizontal (cross-section) gradients were imposed by the presence of blackwaters close to the riverbanks and the presence of whitewaters in the middle of the river. In the mainstem, a distinct horizontal (longitudinal) pattern was observed with pCO2 increasing, and conductivity and turbidity decreasing downstream.
Seepage investigation on selected reaches of Fish Creek, Teton County, Wyoming, 2004
Wheeler, Jerrod D.; Eddy-Miller, Cheryl A.
2005-01-01
A seepage investigation was conducted on Fish Creek, a tributary to the Snake River in Teton County in western Wyoming, near Wilson. Mainstem, return flow, tributary, spring, and diversion sites were selected and measured on six reaches along Fish Creek. Flow was measured under two flow regimes, high flow in August 2004 and base flow in November 2004. During August 17-19, 2004, 20 sites had quantifiable discharge with median values ranging from 0.93 to 384 ft3/s for the 14 mainstem sites on Fish Creek, and from 0.35 to 12.2 ft3/s for the 5 return, spring, and tributary sites (inflows). The discharge was 2.23 ft3/s for the single diversion site (outflow). Estimated gains or losses from ground water were calculated for all reaches using the median discharge values and the estimated measurement errors. Reach 1 had a calculated gain in discharge from ground water (23.8 ?3.3 ft3/s). Reaches 2-6 had no calculated gains in flow, greater than the estimated error, that could be attributed to ground water. A second set of measurements were made under base-flow conditions during November 3-4, 2004. Twelve of the 20 sites visited in August 2004 were flowing and were measured. All of the Reach 1 sites near Teton Village were dry. Median discharge values ranged from 10.3 to 70.0 ft3/s on the nine Fish Creek mainstem sites, and from 2.32 to 3.71 ft3/s on the three return, spring, and tributary sites (inflows). Reaches 2, 3 and 6 had a gain from ground water. Reaches 4 and 5 had no calculated gains in flow, greater than the estimated error, that could be attributed to ground water.
Petty, J. Todd; Hansbarger, Jeff L.; Huntsman, Brock M.; Mazik, Patricia M.
2012-01-01
We quantified movements of brook trout Salvelinus fontinalis and brown trout Salmo trutta in a complex riverscape characterized by a large, open-canopy main stem and a small, closed-canopy tributary in eastern West Virginia, USA. Our objectives were to quantify the overall rate of trout movement and relate movement behaviors to variation in streamflow, water temperature, and access to coldwater refugia. The study area experienced extremely high seasonal, yearly, and among-stream variability in water temperature and flow. The relative mobility of brook trout within the upper Shavers Fork watershed varied significantly depending on whether individuals resided within the larger main stem or the smaller tributary. The movement rate of trout inhabiting the main stem during summer months (50 m/d) was an order of magnitude higher than that of tributary fish (2 m/d). Movement rates of main-stem-resident brook trout during summer were correlated with the maximum water temperature experienced by the fish and with the fish's initial distance from a known coldwater source. For main-stem trout, use of microhabitats closer to cover was higher during extremely warm periods than during cooler periods; use of microhabitats closer to cover during warm periods was also greater for main-stem trout than for tributary inhabitants. Main-stem-resident trout were never observed in water exceeding 19.5°C. Our study provides some of the first data on brook trout movements in a large Appalachian river system and underscores the importance of managing trout fisheries in a riverscape context. Brook trout conservation in this region will depend on restoration and protection of coldwater refugia in larger river main stems as well as removal of barriers to trout movement near tributary and main-stem confluences.
Andersen, D.C.; Cooper, D.J.; Northcott, K.
2007-01-01
Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (???5% cover), and stands with >50% canopy cover occupied <1% of the floodplain in 15 subbasins. We suggest that CF extent in the UCRB will decline markedly in the future, when the old trees on floodplains now disconnected from the river die and large areas change from CF to non-CF categories. Attention at a basinwide scale to the multiple factors affecting cottonwood patch dynamics is needed to assure conservation of these riparian forests. ?? 2007 Springer Science+Business Media, LLC.
Smith, Maria W.; Davis, Richard E.; Youngblut, Nicholas D.; Kärnä, Tuomas; Herfort, Lydie; Whitaker, Rachel J.; Metcalf, William W.; Tebo, Bradley M.; Baptista, António M.; Simon, Holly M.
2015-01-01
Lateral bays of the lower Columbia River estuary are areas of enhanced water retention that influence net ecosystem metabolism through activities of their diverse microbial communities. Metagenomic characterization of sediment microbiota from three disparate sites in two brackish lateral bays (Baker and Youngs) produced ∼100 Gbp of DNA sequence data analyzed subsequently for predicted SSU rRNA and peptide-coding genes. The metagenomes were dominated by Bacteria. A large component of Eukaryota was present in Youngs Bay samples, i.e., the inner bay sediment was enriched with the invasive New Zealand mudsnail, Potamopyrgus antipodarum, known for high ammonia production. The metagenome was also highly enriched with an archaeal ammonia oxidizer closely related to Nitrosoarchaeum limnia. Combined analysis of sequences and continuous, high-resolution time series of biogeochemical data from fixed and mobile platforms revealed the importance of large-scale reciprocal particle exchanges between the mainstem estuarine water column and lateral bay sediments. Deposition of marine diatom particles in sediments near Youngs Bay mouth was associated with a dramatic enrichment of Bacteroidetes (58% of total Bacteria) and corresponding genes involved in phytoplankton polysaccharide degradation. The Baker Bay sediment metagenome contained abundant Archaea, including diverse methanogens, as well as functional genes for methylotrophy and taxonomic markers for syntrophic bacteria, suggesting that active methane cycling occurs at this location. Our previous work showed enrichments of similar anaerobic taxa in particulate matter of the mainstem estuarine water column. In total, our results identify the lateral bays as both sources and sinks of biogenic particles significantly impacting microbial community composition and biogeochemical activities in the estuary. PMID:26483785
Johansen, B; Bjørtuft, O; Boe, J
1993-04-01
Single lung function is usually assessed by radioisotopes or, more rarely, by bronchospirometry in which a double lumen catheter is used to separate ventilation of the two lungs. The latter is more precise but less comfortable. An alternative bronchoscopic method is described for determining the volume of a single lung. One mainstem bronchus was temporarily occluded with an inflatable balloon during fibreoptic bronchoscopy in 12 healthy volunteers aged 18-29 years. The functional residual capacities (FRC) of the right, left, and both lungs were measured in duplicate by closed circuit helium dilution. Supplementary vital capacity (VC) manoeuvres permitted calculation of single lung capacities (TLC) and residual volumes (RV). The standard deviation of a single determination of capacities of the right, left, and both lungs were: TLC, 80, 96, and 308 ml; VC, 56, 139, 171 ml; FRC, 131, 74, and 287 ml; RV, 112, 185, and 303 ml, respectively. The sum of the right and left unilateral TLC was not different from bilateral TLC (6.12 v 5.95 l) and the sum of the unilateral FRC was not different from the bilateral FRC (2.60 v 2.78 l). The sum of the unilateral VC was lower than bilateral VC (4.52 v 4.80 l), that of the unilateral RV was higher than bilateral RV (1.60 v 1.16 l). For all subdivisions of lung volume, the right lung was larger than the left. The most common complaint was substernal discomfort during complete exhalation. Oxygen saturation rarely fell below 90%. Temporary occlusion of a mainstem bronchus in normal subjects is safe, relatively simple, and allows fairly precise and accurate measurements of unilateral static lung volumes. Occlusion at TLC, however, probably prevents proper emptying of the non-occluded lung.
NASA Astrophysics Data System (ADS)
Allison, Mead A.; Yuill, Brendan T.; Meselhe, Ehab A.; Marsh, Jonathan K.; Kolker, Alexander S.; Ameen, Alexander D.
2017-07-01
River diversions may serve as useful restoration tools along coastal deltas experiencing land loss due to high rates of relative sea-level rise and the disruption of natural sediment supply. Diversions mitigate land loss by serving as new sediment sources for land building areas in basins proximal to river channels. However, because of the paucity of active diversions, little is known about how diversion receiving-basins evacuate or retain the sediment required to build new land. This study uses observational and numerical particle tracking to investigate the behavior of riverine sand and silt as it enters and passes through the West Bay diversion receiving-basin located on the lowermost Mississippi River delta, USA. Fluorescent sediment tracer was deployed and tracked within the bed sediment over a five-month period to identify locations of sediment deposition in the receiving-basin and nearby river channel. A computational fluid dynamics model with a Lagrangian sediment transport module was employed to predict selective pathways for riverine flow and sand and silt particles through the receiving-basin. Observations of the fluorescent tracer provides snapshots of the integrated sediment response to the full range of drivers in the natural system; the numerical model results offer a continuous map of sediment advection vectors through the receiving basin in response to river-generated currents. Together, these methods provide insight into local and basin-wide values of sediment retention as influenced by grain size, transport time, and basin morphology. Results show that after two weeks of low Mississippi River discharge, basin silt retention was approximately 60% but was reduced to 4% at the conclusion of the study. Riverine sand retention was approximately near 100% at two weeks and 40% over the study period. Modeled sediment storage was predicted to be greatest at the margins of the primary basin transport pathway; this matched the observed dynamics of the silt tracer but did not match the behavior of the sand tracer. The degree to which the observational measurements deviate from the model predictions may indicate the relative influence of physical processes other than the mean riverine generated currents, such as tides, wind generated currents, and waves.
NASA Astrophysics Data System (ADS)
Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen
2017-04-01
In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.
Matherne, Anne Marie; Tillery, Anne C.; Douglas-Mankin, Kyle R.
2018-04-10
Sediment erosion and deposition in two sets of paired (treated and untreated) upland drainages in the Torreon Wash watershed, upper Rio Puerco Basin, New Mexico, were examined over a 3 1/2-year period from spring 2009 through fall 2012. The objective was to evaluate the effectiveness of shallow, loose-stone check dams, or “one-rock dams,” as a hillslope gully erosion stabilization and mitigation method, and its potential for retaining upland eroded soils and decreasing delivery of sediment to lower ephemeral stream channels. Two high-resolution topographic surveys, completed at the beginning and end of the study period, were used to assess the effects of the mitigation measures at paired-drainage sites in both Penistaja Arroyo and Papers Wash watersheds, and at six main-stem-channel cross-section clusters along Penistaja Arroyo and Torreon Wash in the Torreon Wash watershed.For both drainage pairs, the treated drainage had greater sediment aggradation near the channel than the untreated drainage. Erosion was the dominant geomorphic process in the untreated Penistaja Arroyo drainage, whereas aggradation was the dominant process in the other three drainages. For the Penistaja Arroyo paired drainages, the treated site showed a 51-percent increase in area aggraded and 67-percent increase in volume aggraded per area analyzed over the untreated site. Both Papers Wash drainages showed net aggradation, but with similar treatment effect, with the treated site showing a 29-percent increase in area aggraded and 60-percent increase in volume aggraded per area analyzed over the untreated site. In the untreated Penistaja Arroyo drainage, the calculated minimum erosion rate was 0.0055 inches per year (in/yr; 0.14 millimeters per year [mm/yr]), whereas the calculated aggradation rates for the three drainages for which aggradation was the dominant geomorphic process were 0.0063 in/yr (0.16 mm/yr) for the Penistaja Arroyo treated drainage, 0.012 in/yr (0.31 mm/yr) for the Papers Wash untreated drainage, and 0.988 in/yr (2.51 mm/yr) for the Papers Wash treated drainage.Changes in the channel cross section along the main-stem Penistaja Arroyo and Torreon Wash were also examined. Channel-bank slumping and erosion of previously deposited bed material were apparent sources for sediment suspended in ephemeral streamflow. Cross-sectional channel surveys indicated examples of both erosion and deposition along each channel over the study period. Because the drainage area of the treated drainages is small compared to that of the Torreon Wash watershed, the upland mitigation measures would not be expected to measurably affect short-term concentrations of suspended sediment in main-stem channels.One-rock-dam mitigation structures in the upland drainages appear to have resulted in a decrease in sediment delivery to the main-stem channel. One-rock-dam mitigation structures may affect streamflow through their influence on runoff volume (via infiltration) and runoff rate (via detention), both of which may vary with time after structure installation.
Comparisons of Spatial Predictions of Conductivity on a Stream Network in an Appalachian Watershed
We made spatial predictions of specific conductance based on spatial stream network (SSN) modeling to compare conductivity measurements of components of the network, such as headwaters, tributaries, and mainstem, which have different spatial extents in a study Appalachian watersh...
Dzul, Maria C.; Yackulic, Charles B.; Korman, Josh
2017-01-01
Autonomous passive integrated transponder (PIT) tag antenna systems continuously detect individually marked organisms at one or more fixed points over long time periods. Estimating abundance using data from autonomous antennae can be challenging, because these systems do not detect unmarked individuals. Here we pair PIT antennae data from a tributary with mark-recapture sampling data in a mainstem river to estimate the number of fish moving from the mainstem to the tributary. We then use our model to estimate abundance of non-native rainbow trout Oncorhynchus mykiss that move from the Colorado River to the Little Colorado River (LCR), the latter of which is important spawning and rearing habitat for federally-endangered humpback chub Gila cypha. We estimate 226 rainbow trout (95% CI: 127-370) entered the LCR from October 2013-April 2014. We discuss the challenges of incorporating detections from autonomous PIT antenna systems into mark-recapture population models, particularly in regards to using information about spatial location to estimate movement and detection probabilities.
Fragmentation of Andes-to-Amazon connectivity by hydropower dams
Anderson, Elizabeth P.; Jenkins, Clinton N.; Heilpern, Sebastian; Maldonado-Ocampo, Javier A.; Carvajal-Vallejos, Fernando M.; Encalada, Andrea C.; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M.; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A.
2018-01-01
Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems—the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services. PMID:29399629
Fragmentation of Andes-to-Amazon connectivity by hydropower dams.
Anderson, Elizabeth P; Jenkins, Clinton N; Heilpern, Sebastian; Maldonado-Ocampo, Javier A; Carvajal-Vallejos, Fernando M; Encalada, Andrea C; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A
2018-01-01
Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems-the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services.
NASA Astrophysics Data System (ADS)
Zhang, Wangshou; Swaney, Dennis P.; Hong, Bongghi; Howarth, Robert W.
2017-12-01
The increasing trend in riverine phosphorus (P) loads resulting from anthropogenic inputs has gained wide attention because of the well-known role of P in eutrophication. So far, however, there is still limited scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream-to-downstream continuum. Here we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China and developed an empirical function to describe the relationship between anthropogenic inputs and riverine P fluxes. Our results indicated that there are obvious gradients regarding P budgets in response to changes in human activities. Fertilizer application and food and feed P import was always the dominant source of P inputs in all sections, followed by nonfood P. Further interpretation using the model revealed the processes of P loading to the lake. About 2%-9% of anthropogenic P inputs are transported from the various sections into the corresponding tributaries of the river systems, depending upon local precipitation rates. Of this amount, around 41%-95% is delivered to the main stem of the Huai River after in-stream attenuation in its tributaries. Ultimately, 55%-86% of the P loads delivered to different locations of the main stem are transported into the receiving lake of the downstream, due to additional losses in the main stem. An integrated P management strategy that considers the gradients of P loss along the upstream-to-downstream continuum is required to assess and optimize P management to protect the region's freshwater resource.
NASA Astrophysics Data System (ADS)
Knighton, James; Steinschneider, Scott; Walter, M. Todd
2017-12-01
There is a chronic disconnection among purely probabilistic flood frequency analysis of flood hazards, flood risks, and hydrological flood mechanisms, which hamper our ability to assess future flood impacts. We present a vulnerability-based approach to estimating riverine flood risk that accommodates a more direct linkage between decision-relevant metrics of risk and the dominant mechanisms that cause riverine flooding. We adapt the conventional peaks-over-threshold (POT) framework to be used with extreme precipitation from different climate processes and rainfall-runoff-based model output. We quantify the probability that at least one adverse hydrologic threshold, potentially defined by stakeholders, will be exceeded within the next N years. This approach allows us to consider flood risk as the summation of risk from separate atmospheric mechanisms, and supports a more direct mapping between hazards and societal outcomes. We perform this analysis within a bottom-up framework to consider the relevance and consequences of information, with varying levels of credibility, on changes to atmospheric patterns driving extreme precipitation events. We demonstrate our proposed approach using a case study for Fall Creek in Ithaca, NY, USA, where we estimate the risk of stakeholder-defined flood metrics from three dominant mechanisms: summer convection, tropical cyclones, and spring rain and snowmelt. Using downscaled climate projections, we determine how flood risk associated with a subset of mechanisms may change in the future, and the resultant shift to annual flood risk. The flood risk approach we propose can provide powerful new insights into future flood threats.
Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models
NASA Astrophysics Data System (ADS)
Debele, B.; Srinivasan, R.; Parlange, J.
2004-12-01
Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.
Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal
Tank, Suzanne; Frey, Karen E.; Striegl, Robert G.; Raymond, Peter A.; Holmes, R. Max; McClelland, James W.; Peterson, Bruce J.
2012-01-01
While much of the dissolved organic carbon (DOC) within rivers is destined for mineralization to CO2, a substantial fraction of riverine bicarbonate (HCO3-) flux represents a CO2 sink, as a result of weathering processes that sequester CO2 as HCO3-. We explored landscape-level controls on DOC and HCO3- flux in subcatchments of the boreal, with a specific focus on the effect of permafrost on riverine dissolved C flux. To do this, we undertook a multivariate analysis that partitioned the variance attributable to known, key regulators of dissolved C flux (runoff, lithology, and vegetation) prior to examining the effect of permafrost, using riverine biogeochemistry data from a suite of subcatchments drawn from the Mackenzie, Yukon, East, and West Siberian regions of the circumboreal. Across the diverse catchments that we study, controls on HCO3- flux were near-universal: runoff and an increased carbonate rock contribution to weathering (assessed as riverwater Ca:Na) increased HCO3- yields, while increasing permafrost extent was associated with decreases in HCO3-. In contrast, permafrost had contrasting and region-specific effects on DOC yield, even after the variation caused by other key drivers of its flux had been accounted for. We used ionic ratios and SO4 yields to calculate the potential range of CO2 sequestered via weathering across these boreal subcatchments, and show that decreasing permafrost extent is associated with increases in weathering-mediated CO2 fixation across broad spatial scales, an effect that could counterbalance some of the organic C mineralization that is predicted with declining permafrost.
NASA Astrophysics Data System (ADS)
Hossler, Katie; Bauer, James E.
2013-04-01
Riverine exports of carbon (C) and organic matter (OM) are regulated by a variety of natural and anthropogenic factors. Understanding the relationships between these various factors and C and OM exports can help to constrain global C budgets and allow assessment of current and future anthropogenic impacts on both riverine and global C cycles. We quantified the effects of multiple natural and anthropogenic controls on riverine export fluxes and compositions of particulate organic C, dissolved organic C, and dissolved inorganic C for a regional group of eight rivers in the northeastern U.S. Potential controls related to hydrogeomorphology and regional climate, soil order, soil texture, bedrock lithology, land use, and anthropogenic factors were analyzed individually, collectively, and at scales of both local and regional influence. Factors related to hydrogeomorphology and climate, followed in importance by land use and anthropogenic factors, exhibited the strongest impacts on riverine C exports and compositions, particularly at smaller localized scales. The effects of hydrogeomorphology and climate were primarily related to volumetric flow, which resulted in greater exports of terrestrial and total C. Principal anthropogenic factors included impacts of wastewater treatment plants (WWTPs) and river impoundments. The presence of WWTPs as well as anthropogenic use of carbonate-based materials (e.g., limestone) may have substantially increased riverine C exports, particularly fossil C exports, in the study region. The presence of nuclear power plants in the associated watersheds is also discussed because of the potential for anthropogenic 14C inputs and subsequent biasing of aquatic C studies utilizing natural abundance 14C.
Camargo, L M; Noronha, E; Salcedo, J M; Dutra, A P; Krieger, H; Pereira da Silva, L H; Camargo, E P
1999-01-15
We report on a longitudinal study concerning the incidence of malaria in a riverine population (Portuchuelo) settled on the riverbanks of Rio Madeira, in the State of Rondonia, Brazil. We found the incidence of malaria to be seasonal, prevailing in the dry months of June and July. The Annual Parasite Index (API) was 292/1000 inhabitants, almost three times that of the state of Rondonia for the same period. In contrast with other studied Rondonian populations, malaria in Portuchuelo was more prevalent in youngsters < 16 years old, particularly in the 0-1 year age group. Adults were relatively spared, particularly those over 50 years. Besides being indicative of indoor transmission, these facts may suggest the existence of a certain degree of acquired resistance to infection and/or of lessened symptoms in older people. Riverine populations are spread over the entire Amazon region where most of its members were born. Due to the permanent presence of malaria among riverine populations, we are proposing that they may act as perennial reserves of malaria and, therefore, as sources of infection for migrants or eventual settlers at their vicinity. To date, the opposite view has been generally held. Anopheles darlingi, the main vector species in the area, is essentially sylvatic, which contributes to make the control of malaria highly problematic. The only hopes for control rest on permanent surveillance and the prompt treatment of patients, which are also problematic considering the vastness of the Amazon region and the remoteness of some of its riverine settlements.
Changes in Chesapeake Bay Hypoxia over the Past Century
NASA Astrophysics Data System (ADS)
Friedrichs, M. A.; Kaufman, D. E.; Najjar, R.; Tian, H.; Zhang, B.; Yao, Y.
2016-02-01
The Chesapeake Bay, one of the world's largest estuaries, is among the many coastal systems where hypoxia is a major concern and where dissolved oxygen thus represents a critical factor in determining the health of the Bay's ecosystem. Over the past century, the population of the Chesapeake Bay region has almost quadrupled, greatly modifying land cover and management practices within the watershed. Simultaneously, the Chesapeake Bay has been experiencing a high degree of climate change, including increases in temperature, precipitation, and precipitation intensity. Together, these changes have resulted in significantly increased riverine nutrient inputs to the Bay. In order to examine how interdecadal changes in riverine nitrogen input affects biogeochemical cycling and dissolved oxygen concentrations in Chesapeake Bay, a land-estuarine-ocean biogeochemical modeling system has been developed for this region. Riverine inputs of nitrogen to the Bay are computed from a terrestrial ecosystem model (the Dynamic Land Ecosystem Model; DLEM) that resolves riverine discharge variability on scales of days to years. This temporally varying discharge is then used as input to the estuarine-carbon-biogeochemical model embedded in the Regional Modeling System (ROMS), which provides estimates of the oxygen concentrations and nitrogen fluxes within the Bay as well as advective exports from the Bay to the adjacent Mid-Atlantic Bight shelf. Simulation results from this linked modeling system for the present (early 2000s) have been extensively evaluated with in situ and remotely sensed data. Longer-term simulations are used to isolate the effect of increased riverine nitrogen loading on dissolved oxygen concentrations and biogeochemical cycling within the Chesapeake Bay.
NASA Astrophysics Data System (ADS)
Koçak, M.; Kubilay, N.; Tuğrul, S.; Mihalopoulos, N.
2010-12-01
Aerosol and rainwater samples have been collected at a rural site located on the coastline of the Eastern Mediterranean, Erdemli, Turkey between January 1999 and December 2007. Riverine sampling was carried out at five Rivers (Ceyhan, Seyhan, Göksu, Berdan and Lamas) draining into the Northeastern Levantine Basin (NLB) between March 2002 and July 2007. Samples have been analyzed for macronutrients of phosphate, silicate, nitrate and ammonium (PO43-, Sidiss, NO3- and NH4+). Phosphate and silicate in aerosol and rainwater showed higher and larger variations during the transitional period when air flows predominantly originate from North Africa and Middle East/Arabian Peninsula. Deficiency of alkaline material have been found to be the main reason of the acidic rain events whilst high pH values (>7) have been associated with high Sidiss concentrations due to sporadic dust events. In general, lowest nitrate and ammonium concentrations in aerosol and rainwater have been associated with air flow from the Mediterranean Sea. Comparison of atmospheric with riverine fluxes demonstrated that DIN and PO43- fluxes to NLB have been dominated by atmosphere (~90% and ~60% respectively) whereas the input of Si was mainly derived from riverine runoff (~90%). N/P ratios in the atmospheric deposition (233); riverine discharge (28) revealed that NLB receives excessive amounts of DIN and this unbalanced P and N inputs may provoke even more phosphorus deficiency. Observed molar Si/N ratio suggested Si limitation relative to nitrogen might cause a switch from diatom dominated communities to non-siliceous populations particularly at coastal NLB.
Roussel, Jean-Marc; Perrier, Charles; Erkinaro, Jaakko; Niemelä, Eero; Cunjak, Richard A; Huteau, Dominique; Riera, Pascal
2014-02-01
Stable isotope analysis of organic matter in sediment records has long been used to track historical changes in productivity and carbon cycling in marine and lacustrine ecosystems. While flow dynamics preclude stratigraphic measurements of riverine sediments, such retrospective analysis is important for understanding biogeochemical cycling in running waters. Unique collections of riverine fish scales were used to analyse δ(15) N and δ(13) C variations in the food web of two European rivers that experience different degrees of anthropogenic pressure. Over the past four decades, dissolved inorganic N loading remained low and constant in the Teno River (70°N, Finland); in contrast, N loading increased fourfold in the Scorff River (47°N, France) over the same period. Archived scales of Atlantic salmon parr, a riverine life-stage that feeds on aquatic invertebrates, revealed high δ(15) N values in the Scorff River reflecting anthropogenic N inputs to that riverine environment. A strong correlation between dissolved inorganic N loads and δ(13) C values in fish scales was observed in the Scorff River, whereas no trend was found in the Teno River. This result suggests that anthropogenic N-nutrients enhanced atmospheric C uptake by primary producers and its transfer to fish. Our results illustrate for the first time that, as for lakes and marine ecosystems, historical changes in anthropogenic N loading can affect C cycling in riverine food webs, and confirm the long-term interactions between N and C biogeochemical cycles in running waters. © 2013 John Wiley & Sons Ltd.
John F. Lehmkuhl
1999-01-01
I studied the landscape dynamics, organization, and productivity of a toll-grass and riverine forest mosaic in the eastern portion of Chitwan National Park, Nepal. Aerial photograph interpretation, releve sampling, experimental plots, models, and foraging studies were done. A model of landscape dynamics showed that fluvia1 action controlled landscape organization. Ten...
Riverine Carbon and the Sedimentary Record on the Continental Shelves
2004-09-30
Riverine Carbon and the Sedimentary Record on the Continental Shelves Stefano Miserocchi Istituto Scienze Marine, Sezione Geologia Marina...formerly Istituto di Geologia Marina) Consiglio Nazionale delle Ricerche Via Gobetti, 101 40129 Bologna, Italy phone: +39 (051) 6398880 Fax. +39 (051... Geologia Marina,,(formerly Istituto di Geologia Marina),Consiglio Nazionale delle Ricerche,,Via Gobetti, 101,40129 Bologna, Italy, , 8. PERFORMING
Improving the U.S. Navy Riverine Capability: Lessons from the Colombian Experience
2007-12-01
29 A. EVOLUTIONARY RESPONSE TO THREATS .................................. 30 1. La Violencia ...and joint familiarity of terms within coordinating units.38 As defined in the CNA report, logistics might be affected by the type of medical...riverine transformation associated with each. Four specific events will be addressed: the period of La Violencia that took place from 1948 to 1957
McPhee, M V; Whited, D C; Kuzishchin, K V; Stanford, J A
2014-07-01
This study explored the relationship between riverine physical complexity, as determined from remotely sensed metrics, and anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss. The proportion of anadromy (estimated fraction of individuals within a drainage that are anadromous) was correlated with riverine complexity, but this correlation appeared to be driven largely by a confounding negative relationship between drainage area and the proportion of anadromy. Genetic diversity decreased with latitude, was lower in rivers with only non-anadromous individuals and also decreased with an increasing ratio of floodplain area to total drainage area. Anadromy may be less frequent in larger drainages due to the higher cost of migration associated with reaches farther from the ocean, and the negative relationship between genetic diversity and floodplain area may be due to lower effective population size resulting from greater population fluctuations associated with higher rates of habitat turnover. Ultimately, the relationships between riverine physical complexity and migratory life history or genetic diversity probably depend on the spatial scale of analysis. © 2014 The Fisheries Society of the British Isles.
Cukrov, Neven; Mlakar, Marina; Cuculić, Vlado; Barisić, Delko
2009-06-01
Spatial distribution of (238)U and (226)Ra activities in sediment columns along the Krka River and estuary, were studied using gamma spectrometry. Markedly different (238)U and (226)Ra activities between riverine, estuarine and marine sediments were observed. Distribution of these radionuclides, as well as their anthropogenic and natural origin, was evaluated by activity measurements, taking into account sedimentation rates estimated by (137)Cs distribution in sediment columns. Naturally present (238)U and (226)Ra activities were highest in riverine and lowest in marine sediments. (238)U and (226)Ra activities in historic riverine sediments revealed anthropogenic influence from town of Knin, which diminished for 15-20% in 1990s due to warfare that caused stop of industrial, agricultural and transport activities. Drainage of the flysch material naturally elevates (238)U and (226)Ra activities in the vicinity of its inflow in the upper part of estuary. (238)U and (226)Ra from the phosphate ore discharge in the port of Sibenik did not spread further in estuary, which was also confirmed by (238)U and (226)Ra activities detected in Mytilus sp. mussels' tissue.
Marjorie M. Holland; Melvin L. Warren; John A. Stanturf; [Editors
2002-01-01
The conference focused on recent work in freshwater wetlands [both natural and constructed] with a view toward understanding wetland processes in a watershed context. Since humans have played important roles in watershed dynamics for years, attention was given to the human dimensions of wetland and watershed uses. Contributed sessions were organized on: biogeochemical...
What's Upstream? GIS's critical role in developing nutrient ...
Eutrophication due to excess levels of nitrogen and phosphorus can seriously impair ecological function in estuaries. Protective criteria for nutrients are difficult to establish because the source can vary spatially and seasonally, originate either from the watershed or the ocean, and be natural or anthropogenic. GIS tools and processes can help in developing nutrient criteria by establishing reference conditions representative of natural background nutrient levels. Along the Oregon Coast in the Pacific Northwest, the primary source of nutrients in the wet season (November-April) is generally riverine. We delineated and extracted explicit spatial data from watersheds upstream of riverine water quality monitoring stations for parametric comparison to recorded nutrient levels. The SPARROW model (Wise and Johnson, 2011) was used to estimate relative contributions of nutrient sources at each station. Both raster and vector spatial data were used and include land use / land cover, demography, geology, terrain, precipitation and forest type. The relationships of nutrients to spatial data were then explored as an approach to establishing the reference expectation. The abstract introduces Geographic Information Systems (GIS) tools and processes employed for research conducted under the Safe and Sustainable Water Resources (SSWR) Task 2.3A, entitled “Nutrient Management for Sustainability of Aquatic Ecosystems.” One of the goals of the EPA Office of Water is to
The EPA’s Environmental Monitoring and Assessment Program large-river assessment protocol was applied to assess the ecological condition, major stressors, and likely human disturbances of the mainstem Malheur River, OR. We used inflatable rafts to allow launching and retrieving ...
Contaminants Of Emerging Concern Within The Mainstem Of The Ohio River And its Tributaries
Contaminants of emerging concern such as PPCPs, alkylphenols, EDCs, and PFCs in waterways have been of increasing public concern. The extent and persistence of their occurrence in surface waters remains unclear. Though there are many sources of these contaminants, research has ...
Patterns of Ground Water Movement in a Portion of the Willamette River Floodplain, Oregon
In reaches unconstrained by revetments, the Willamette River and its floodplain along its lowland mainstem is a continually evolving system. Several channel reconstruction and restoration projects have been implemented or planned in order to obtain beneficial services along the r...
Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.
2018-01-01
Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.
Huang, Jr-Chuan; Lee, Tsung-Yu; Lin, Teng-Chiu; Hein, Thomas; Lee, Li-Chin; Shih, Yu-Ting; Kao, Shuh-Ji; Shiah, Fuh-Kwo; Lin, Neng-Huei
2016-01-01
Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities have substantially altered the N cycle, both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind of the most rapidly industrializing eastern coast of China, can be a demonstration site for extremely high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds with similar climatic and landscape settings but classified into low, moderate, and highly disturbed categories based on population density to illustrate their differences in nitrogen inputs (through atmospheric N deposition, synthetic fertilizers, and human emission) and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ~ 3800 kg N km−2 yr−1, approximately 18 times the global average. The average riverine DIN export ratios are 0.30−0.51, which are much higher than the averages of 0.20−0.25 of large rivers around the world, indicating excessive N input relative to ecosystem demand or retention capacity. The low disturbed watersheds have a high N retention capacity and DIN export ratios of 0.06−0.18 in spite of the high N input (~ 4900 kg N km−2 yr−1). The high retention capacity is likely due to effective uptake by secondary forests in the watersheds. The moderately disturbed watersheds show a linear increase in DIN export with increases in total N inputs and mean DIN export ratios of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watersheds is the greater proportion of agricultural land cover in the moderately disturbed watersheds. Thus, their greater DIN export could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have a lower proportional N retention capacity and that reforestation could be an effective land management practice to reduce riverine DIN export. The export ratios of the highly disturbed watersheds are very high, 0.42–0.53, suggesting that much of the N input is transported downstream directly, and urges the need to increase the proportion of households connected to a sewage system and improve the effectiveness of wastewater treatment systems. The increases in the riverine DIN export ratio along the gradient of human disturbance also suggest a gradient in N saturation in subtropical Taiwan. Our results help to improve our understanding of factors controlling riverine DIN export and provide empirical evidence that calls for sound N emission/pollution control measures. PMID:27212969
Huang, Jr-Chuan; Lee, Tsung-Yu; Lin, Teng-Chiu; Hein, Thomas; Lee, Li-Chin; Shih, Yu-Ting; Kao, Shuh-Ji; Shiah, Fuh-Kwo; Lin, Neng-Huei
Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities have substantially altered the N cycle, both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind of the most rapidly industrializing eastern coast of China, can be a demonstration site for extremely high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds with similar climatic and landscape settings but classified into low, moderate, and highly disturbed categories based on population density to illustrate their differences in nitrogen inputs (through atmospheric N deposition, synthetic fertilizers, and human emission) and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ~ 3800 kg N km -2 yr -1 , approximately 18 times the global average. The average riverine DIN export ratios are 0.30-0.51, which are much higher than the averages of 0.20-0.25 of large rivers around the world, indicating excessive N input relative to ecosystem demand or retention capacity. The low disturbed watersheds have a high N retention capacity and DIN export ratios of 0.06-0.18 in spite of the high N input (~ 4900 kg N km -2 yr -1 ). The high retention capacity is likely due to effective uptake by secondary forests in the watersheds. The moderately disturbed watersheds show a linear increase in DIN export with increases in total N inputs and mean DIN export ratios of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watersheds is the greater proportion of agricultural land cover in the moderately disturbed watersheds. Thus, their greater DIN export could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have a lower proportional N retention capacity and that reforestation could be an effective land management practice to reduce riverine DIN export. The export ratios of the highly disturbed watersheds are very high, 0.42-0.53, suggesting that much of the N input is transported downstream directly, and urges the need to increase the proportion of households connected to a sewage system and improve the effectiveness of wastewater treatment systems. The increases in the riverine DIN export ratio along the gradient of human disturbance also suggest a gradient in N saturation in subtropical Taiwan. Our results help to improve our understanding of factors controlling riverine DIN export and provide empirical evidence that calls for sound N emission/pollution control measures.
NASA Astrophysics Data System (ADS)
Huang, J.-C.; Lee, T.-Y.; Lin, T.-C.; Hein, T.; Lee, L.-C.; Shih, Y.-T.; Kao, S.-J.; Shiah, F.-K.; Lin, N.-H.
2015-10-01
Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities has substantially altered N cycle both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind to the most rapidly industrializing east coast of China can be a demonstration site for extreme high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds classified into low-, moderate-, and highly-disturbed categories based on population density to illustrate their differences in nitrogen inputs through atmospheric N deposition, synthetic fertilizers and human emission and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ~ 3800 kg N km-2 yr-1, approximately 18-fold higher than the global average mostly due to the large input of synthetic fertilizers. The average riverine DIN export ratio is 0.30-0.51, which is much higher than the average of 0.20-0.25 of large rivers around the world indicating excessive N input relative to ecosystem demand or retention capacity. The low-disturbed watersheds, despite of high N input, only export 0.06-0.18 of the input so were well buffered to changes in input quantity suggesting high efficiency of nitrogen usage or high N retention capacity of the less disturbed watersheds. The high retention capacity probably is due to the effective uptake by secondary forests in the watersheds. The moderate-disturbed watersheds show a linear increase of output with increases in total N inputs and a mean DIN export ratio of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watershed is the relative proportions of agricultural land and forests, not the built-up lands. Thus, their greater DIN export quantity could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have lower proportional N retention capacity and that reforestation could be an effective land management practice to reduce riverine DIN export. The export ratio of the highly-disturbed watersheds is 0.42-0.53, which is very high and suggests that much of the N input is transported downstream and the need of improvement in wastewater treatment capacity or sewerage systems. The increases in riverine DIN export ratio along with the gradient of human disturbance indicates a gradient in N saturation in subtropical Taiwan. Our results help to understand factors controlling riverine DIN export and provide a sound basis for N emissions/pollution control.
NASA Astrophysics Data System (ADS)
Huang-Chuan, Jr.; Lee, Tsung-Yu; Lin, Teng-Chiu; Hein, Thomas; Lee, Li-Chin; Shih, Yu-Ting; Kao, Shuh-Ji; Shiah, Fuh-Kwo; Lin, Neng-Huei
2016-03-01
Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities have substantially altered the N cycle, both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind of the most rapidly industrializing eastern coast of China, can be a demonstration site for extremely high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds with similar climatic and landscape settings but classified into low, moderate, and highly disturbed categories based on population density to illustrate their differences in nitrogen inputs (through atmospheric N deposition, synthetic fertilizers, and human emission) and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ˜ 3800 kg N km-2 yr-1, approximately 18 times the global average. The average riverine DIN export ratios are 0.30-0.51, which are much higher than the averages of 0.20-0.25 of large rivers around the world, indicating excessive N input relative to ecosystem demand or retention capacity. The low disturbed watersheds have a high N retention capacity and DIN export ratios of 0.06-0.18 in spite of the high N input (˜ 4900 kg N km-2 yr-1). The high retention capacity is likely due to effective uptake by secondary forests in the watersheds. The moderately disturbed watersheds show a linear increase in DIN export with increases in total N inputs and mean DIN export ratios of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watersheds is the greater proportion of agricultural land cover in the moderately disturbed watersheds. Thus, their greater DIN export could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have a lower proportional N retention capacity and that reforestation could be an effective land management practice to reduce riverine DIN export. The export ratios of the highly disturbed watersheds are very high, 0.42-0.53, suggesting that much of the N input is transported downstream directly, and urges the need to increase the proportion of households connected to a sewage system and improve the effectiveness of wastewater treatment systems. The increases in the riverine DIN export ratio along the gradient of human disturbance also suggest a gradient in N saturation in subtropical Taiwan. Our results help to improve our understanding of factors controlling riverine DIN export and provide empirical evidence that calls for sound N emission/pollution control measures.
Abe, T; Ohtsuka, R; Watanabe, M; Yoshida, M; Futatsuka, M
1995-06-01
The Kenyah Dayak in East Kalimantan (Indonesia), who migrated from their mountainous homeland to a riverine village in the 1940s, have subsisted on slash-and-burn rice cultivation. To cope with rapidly increasing population, the villagers have not changed their farming practice to increase land productivity but instead have exploited fields in remote riverbanks, using motorized canoes.
Increasing Flood Risk due to Run-off Outflow near Estuarine City during Storm Event
NASA Astrophysics Data System (ADS)
Son, S.; Lee, C.; Do, K.; Jung, T.
2017-12-01
Tropical cyclone easily causes inundation damage to low-lying coastal area and the damage may be amplified due to tide motion, sea-level rise, riverine discharges. Specifically, typhoons are accompanied by intensive rainfall, which will of course raise the river water level and thus enhance the flooding damages. If the tidal cycle coincides the high water, flooding will be even aggravated. In the present study, we simulated storm surge motions at the coastal area considering combined effects of tidal and river discharge with aim to improve the accuracy of flooding prediction. The quasi 3-dimension ocean circulation model, Delf3D was used which solves the unsteady shallow water equation in the 2D and 3D. Since Delft3D is much applicable to accommodate the indirect flooding factors such as riverine discharge and short waves, outer-coupled modeling system was established to account for combined tide-surge-riverine discharge effects. In such integrated system, 11 tidal constituents were input as open boundary condition using TPXO 7.2 model, while the water level per unit time was preliminary calculated by HEC-HMS model and input as the upstream boundary conditions for river inside the domain. Typhoon MAEMI which attacked Masan city located at southern coast of South Korea and caused severe inundation damages in 2003 was selected for the study event. Basic information for typhoon such as path, wind speed, atmospheric pressure every 3 hours was provided by the Korea Meteorological Agency and was adopted. The simulation was implemented with tide and storm surge boundary conditions focusing on the target area, Masan, while the additional consideration on the discharge of the river inside the domain was also made. Simulated water level at the fixed location was compared to the observation for its verification and the extent of inundation areas of Masan were compared between observed and calculated. The marginal contribution of riverine discharge on the flooding area(or depth) was assessed by comparing tide-surge with tide-surge-riverine discharge simulations. Finally, the importance of the specific consideration on the riverine discharge during storm surge modeling can be addressed.
Characteristics of Riverine DIN Export in Subtropical High-standing Island, Taiwan
NASA Astrophysics Data System (ADS)
Huang, J. C.; Kao, S. J.; Lee, T. Y.; Lin, T. C.
2016-12-01
Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities has substantially altered nitrogen cycle both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind to the most rapidly industrializing east coast of China can be a demonstration site for extreme high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds with similar climatic and landscape settings, but classified into low-, moderate-, and highly-disturbed categories based on population density to illustrate their differences in nitrogen inputs through atmospheric N deposition, synthetic fertilizer and human emission and DIN export ratios. Our results showed that the island-wide average riverine DIN export is 3800 kg-N/km2yr, approximately 18-fold higher than the global average mostly due to the large input of synthetic fertilizer. The average riverine DIN export ratio is 0.30-0.51, which is much higher than the average of 0.20-0.25 of large rivers around the world indicating excessive N input relative to ecosystem demand or retention capacity. The low-disturbed watersheds despite of high input only export 0.06-0.18 of the input and well buffered to changes in input quantity suggesting high efficiency of nitrogen usage or high N retention capacity of the less disturbed watersheds. The moderate-disturbed watersheds show a linear increase of output with increases in total N inputs and a mean DIN export ratio of 0.20 to 0.31. The main differences in land use between low and moderately disturbed watershed are the relative proportions of agricultural land and forests, not the built-up lands. The export ratio of the highly-disturbed watersheds is 0.42-0.53, which is very high and suggests that much of the N input is transported downstream. The increases in riverine DIN export ratio along with the gradient of human disturbance in subtropical Taiwan shows a gradient in excess N saturation. Our results help to understand factors controlling riverine DIN export and provide a sound basis for N emissions/pollution control.
A gap analysis and comprehensive conservation strategy for riverine ecosystems of Missouri
Sowa, Scott P.; Annis, Gust; Morey, Michael E.; Diamond, David D.
2007-01-01
North America harbors an astounding proportion of the world's freshwater species, but it is facing a freshwater biodiversity crisis. A first step to slowing the loss of biodiversity involves identifying gaps in existing efforts to conserve biodiversity and prioritizing opportunities to fill these gaps. In this monograph we detail two separate, but complementary, conservation planning efforts - a Gap Analysis (GAP) and a State Wildlife Action Plan (WAP) - for Missouri that address this first step. The goal of the Missouri Aquatic GAP Project was to identify riverine ecosystems, habitats, and species not adequately represented (i.e., gaps) within existing conservation lands. The goal of the freshwater component of the Missouri Wildlife Action Plan was to identify and map a set of conservation-opportunity areas (COAs) that holistically represent all riverine ecosystems, habitats, and species in Missouri. Since conservation planning is a geographical exercise, both efforts utilized geographic information systems (GIS). Four principal GIS data sets were used in each planning effort: (1) a hierarchical riverine ecosystem classification, (2) predicted species distributions, (3) public ownership/stewardship, and (4) a human-threat index. Results of the gap analyses are not encouraging. Forty five, mostly rare, threatened, or endangered, species are not represented in lands set aside for conserving biodiversity. Results also illustrate the fragmented nature of conservation lands, which are mainly situated in the uplands and fail to provide connectivity among riverine habitats. Furthermore, many conservation lands are severely threatened by an array of human disturbances. In contrast, results of the WAP provide hope that relatively intact riverine ecosystems still exist. A total of 158 COAs, representing ∼6% of the total kilometers of stream in Missouri, were selected for the WAP. This illustrates that a wide spectrum of biodiversity can be represented within a small portion of the total resource base, but the area of conservation concern is often much larger. Identifying priority riverscapes for conservation is an important first step toward effective biodiversity conservation. Yet, achieving the ultimate goal of conserving biodiversity will require vigilance on the part of all responsible parties, with particular attention to addressing and coordinating the many remaining logistical tasks.
CHANGES IN FISH ASSEMBLAGE STRUCTURE IN THE MAINSTEM WILLAMETTE RIVER, OREGON
The Willamette River has a mean annual discharge of 680 m3s-1. In the 1940s it was polluted by organic wastes, resulting in low dissolved oxygen concentrations and floating and benthic sludge deposits that hindered salmon migration and navigation. Following basin-wide secondary...
Effect of Main-stem Dams on Zooplankton Communities of the Missouri River (USA)
We examined the distribution and abundance of zooplankton from 146 sites on the Missouri River and found large shifts in the dominance of major taxa between management zones of this regulated river. Crustacean zooplankton were dominant in the inter-reservoir zone of the river, an...
This paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold-water species. The analysis integrates hydrologic, natural science and eco...
A PREDICTIVE MODEL FOR ANTI-DEGRADATION MONITORING OF THE DELAWARE RIVER
The non-tidal portion of the Delaware River consists of many large sections designated as Wild and Scenic Rivers and passes through two national parks. Although there is increasing pressure on the watershed, large sections of the mainstem of the river can be considered to be in m...
CONNECTICUT RIVER FISH TISSUE CONTAMINANT STUDY (2000): ECOLOGICAL AND HUMAN HEALTH RISK SCREENING
The study targeted commonly caught recreational fish, as well as other fish that are important in the river food chain. Smallmouth bass, white suckers and yellow perch were collected during 2000 from the mainstem of the Connecticut River and composite samples were analyzed for t...
A COMPARISON OF APPROACHES TO PRIORITIZING SITES FOR RIPARIAN RESTORATION
This study compares the results of Olson and Harris (1997) and Russell et al.(1997)in their work to prioritize sites for riparian restoration in the San Luis Rey River watershed. Olson and Harris defined reaches of the mainstem and evaluated the relative potential for restoration...
Williams, Donald R.; Sams, James I.; Mulkerrin, Mary E.
1996-01-01
This report describes the results of a study by the U.S. Geological Survey, done in cooperation with the Somerset Conservation District, to locate and sample abandoned coal-mine discharges in the Stonycreek River Basin, to prioritize the mine discharges for remediation, and to determine the effects of the mine discharges on water quality of the Stonycreek River and its major tributaries. From October 1991 through November 1994, 270 abandoned coal-mine discharges were located and sampled. Discharges from 193 mines exceeded U.S. Environmental Protection Agency effluent standards for pH, discharges from 122 mines exceeded effluent standards for total-iron concentration, and discharges from 141 mines exceeded effluent standards for total-manganese concentration. Discharges from 94 mines exceeded effluent standards for all three constituents. Only 40 mine discharges met effluent standards for pH and concentrations of total iron and total manganese.A prioritization index (PI) was developed to rank the mine discharges with respect to their loading capacity on the receiving stream. The PI lists the most severe mine discharges in a descending order for the Stonycreek River Basin and for subbasins that include the Shade Creek, Paint Creek, Wells Creek, Quemahoning Creek, Oven Run, and Pokeytown Run Basins.Passive-treatment systems that include aerobic wetlands, compost wetlands, and anoxic limestone drains (ALD's) are planned to remediate the abandoned mine discharges. The successive alkalinity-producing-system treatment combines ALD technology with the sulfate reduction mechanism of the compost wetland to effectively remediate mine discharge. The water quality and flow of each mine discharge will determine which treatment system or combination of treatment systems would be necessary for remediation.A network of 37 surface-water sampling sites was established to determine stream-water quality during base flow. A series of illustrations show how water quality in the mainstem deteriorates downstream because of inflows from tributaries affected by acidic mine discharges. From the upstream mainstem site (site 801) to the outflow mainstem site (site 805), pH decreased from 6.8 to 4.2, alkalinity was completely depleted by inflow acidities, and total-iron discharges increased from 30 to 684 pounds per day. Total-manganese and total-sulfate discharges increased because neither constituent precipitates readily. Also, discharges of manganese and sulfate entering the mainstem from tributary streams have a cumulative effect.Oven Run and Pokeytown Run are two small tributary streams significantly affected by acidic mine drainage (AMD) that flow into the Stonycreek River near the town of Hooversville. The Pokeytown Run inflow is about 0.5 mile downstream from the Oven Run inflow. These two streams are the first major source of AMD flowing into the Stonycreek River. Data collected on the Stonycreek River above the Oven Run inflow and below the Pokeytown Run inflow show a decrease in pH from 7.6 to 5.1, a decrease in alkalinity concentration from 42 to 2 milligrams per liter, an increase in total sulfate discharge from 18 to 41 tons per day, and an increase in total iron discharge from 29 to 1,770 pounds per day. Data collected at three mainstem sites on the Stonycreek River below Oven Run and Pokeytown Run show a progressive deterioration in river water quality from AMD.Shade Creek and Paint Creek are other tributary streams to the Stonycreek River that have a significant negative effect on water quality of the Stonycreek River. One third of the abandoned-mine discharges sampled were in the Shade Creek and Paint Creek Basins.
Apportioning riverine DIN load to export coefficients of land uses in an urbanized watershed.
Shih, Yu-Ting; Lee, Tsung-Yu; Huang, Jr-Chuan; Kao, Shuh-Ji; Chang
2016-08-01
The apportionment of riverine dissolved inorganic nitrogen (DIN) load to individual land use on a watershed scale demands the support of accurate DIN load estimation and differentiation of point and non-point sources, but both of them are rarely quantitatively determined in small montane watersheds. We introduced the Danshui River watershed of Taiwan, a mountainous urbanized watershed, to determine the export coefficients via a reverse Monte Carlo approach from riverine DIN load. The results showed that the dynamics of N fluctuation determines the load estimation method and sampling frequency. On a monthly sampling frequency basis, the average load estimation of the methods (GM, FW, and LI) outperformed that of individual method. Export coefficient analysis showed that the forest DIN yield of 521.5kg-Nkm(-2)yr(-1) was ~2.7-fold higher than the global riverine DIN yield (mainly from temperate large rivers with various land use compositions). Such a high yield was attributable to high rainfall and atmospheric N deposition. The export coefficient of agriculture was disproportionately larger than forest suggesting that a small replacement of forest to agriculture could lead to considerable change of DIN load. The analysis of differentiation between point and non-point sources showed that the untreated wastewater (non-point source), accounting for ~93% of the total human-associated wastewater, resulted in a high export coefficient of urban. The inclusion of the treated and untreated wastewater completes the N budget of wastewater. The export coefficient approach serves well to assess the riverine DIN load and to improve the understanding of N cascade. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schroth, A. W.
2015-12-01
Metals and phosphorous are essential micro and macronutrients in aquatic ecosystems, and redox sensitive colloidal and particulate metal (oxy)hydroxide phases can be particularly reactive carriers of solid phase P, as well as other nutrients and/or pollutants in riverine chemical loads. High flow events driven by storms and/or snow or glacial melt often dominate the annual load of such constituents, yet remain poorly understood from a biogeochemical perspective. Our research examines the biogeochemical nature of riverine metal and P loads during targeted high flow events to determine to what extent, and under what environmental conditions, are the concentration and biogeochemical composition of riverine loads of P, Fe, and Mn disproportionately high and relatively reactive v. inert. We present a suite of biogeochemical data derived from water and suspended sediment samples that were collected during these events in multiple catchments and over different seasons within the hydrologic year. We examine the size partitioning (particulate, colloidal, 'truly dissolved') of riverine Fe, Mn, and P during events in glaciated, boreal-forested, and agriculturalized catchments of Vermont and Alaska. Suspended sediment loads are also characterized by relative redox sensitivity to examine the potential reactivity of Fe, Mn, and P in sediment transported during particular events. We demonstrate that metal and P concentration, size partitioning, and redox sensitivity differs both seasonally and by land cover, which is due to different source environments and flow paths that are preferentially activated during high discharge. The conceptual model herein developed is critical to understanding the biogeochemical nature of event-based riverine loads, and how this could evolve with changing frequency and severity of high flow events or land cover associated with climate change and landscape management.
NASA Astrophysics Data System (ADS)
St Laurent, Jacques; Mazumder, Asit
2012-12-01
The potential for riverine drinking source water to become contaminated with pathogens is related to the production and transport of fecal waste from within the local catchment area. Identifying specific relationships between land-use types and fecal contamination in riverine water provides an indication of the risk associated with land-use change and helps to target mitigation measures toward land-use types of concern. Fecal coliform (FC) data from 42 riverine sites across British Columbia (BC), Canada, were examined in relation to land-use composition (including 16 land-use types) in the local catchment area. FC concentration significantly increased in relation to anthropogenic land-use impacts but was negatively associated with undisturbed and high-elevation land types. Regression tree analysis identified that highest FC concentrations occurred in catchments characterized by more than 12.5% agricultural land and more than 1.6% urban land. Furthermore, the risk of violation of the BC partial treatment raw drinking water quality guideline for FC concentration (100 CFU 100 mL-1) increased in relation to agricultural impacts. Additional factors, such as sewage treatment discharge, low dilution in smaller streams, and higher temperatures, were associated with higher FC concentration among sites with similar levels of agricultural development. These results identify land-use types that present the greatest threat to riverine contamination, namely agricultural and urban land, and indicate the proportion of such land use associated with high contamination. Land use should be managed and source water protection should be targeted in light of these results so as to minimize the risk of surface water exposure to fecal contaminants.
East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.
2015-01-01
As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool–riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors.
Evaluating Investment in Missouri River Restoration: The Missouri River Effects Analysis
NASA Astrophysics Data System (ADS)
Jacobson, R. B.; Fischenich, C. J.; Buenau, K. E.
2014-12-01
In excess of $700 million has been spent over the last 10 years on restoration of the Missouri River. During this time, restoration efforts have focused progressively on avoidance of jeopardy for three threatened or endangered species: interior least tern (Sternula antillarum), piping plover (Charadrius melodus), and the pallid sturgeon (Scaphirhynchus albus). In 2013, the US Army Corps of Engineers, the US Fish and Wildlife Service, and Missouri River stakeholders (through the Missouri River Recovery Implementation Committee) commissioned an Effects Analysis (EA; Murphy and Weiland, 2011) to evaluate the effects of this effort on the three species' populations and to project effects of future restoration. The EA includes synthesis of existing abiotic and biotic scientific information relating to species population processes, distributions, and habitat needs, as well as development of conceptual and quantitative models linking river context to its management and to species' responses. The EA also includes design of the next generation of hypothesis-driven science to support adaptive management of the species and the river. The Missouri River EA faces the challenge of evaluating how management of North America's largest reservoir storage system, 600 km of non-channelized mainstem, and nearly 1,200 km of channelized mainstem contribute to species' population dynamics. To support EA needs, the US Army Corps of Engineers is developing a new generation of reservoir simulation and routing models for the Missouri River basin, coupled with components to evaluate ecological and socio-economic metrics. The EA teams are developing coordinated models relating management to functional habitats and species' responses. A particular challenge faced by the EA is communicating the very different uncertainties in population dynamics between well-documented birds and the enigmatic fish, and the implications of this disparity in decision making, implementation, and adaptive management strategies.
Limnological and fishery studies on Lake Sharpe, a main-stem Missouri River reservoir
June, Fred C.; Beckman, L.G.; Elrod, J.H.; O'Bryan, G.K.; Vogel, D.A.
1987-01-01
Lake Sharpe, the most recent of six main-stem Missouri River reservoirs to be impounded, began to fill in November 1963 and became fully operational in July 1966. At full pool it is 137 km long, and has a surface area of 22,600 ha and a volume of 2.34 km". It is operated as a flow-through power generation system that reregulates discharges from upstream Lake Oahe. Major changes in the water-management regimen during 1966-75 were increased summer discharges beginning in 1969 and increased peaking operations beginning in 1973. Lake Sharpe had a relatively short aging process because it filled rapidly, the water level remained relatively stable, and the waterexchange rate was high. Consequently, most physical, chemical, and biological characteristics were remarkably uniform during 1966–75. The temperature regimen was largely governed by inflow from Lake Oahe. Although the water mass warmed during summer, thermal stratification was generally transient, limited to the lower reservoir, and more common during periods of relatively low discharge rates in 1966–68 than in later years. Variation in turbidity was striking; the midsection of the reservoir was generally most turbid. Chemical ion composition of the water tended to be uniform; observed differences were localized and associated with tributary inflows. Phytoplankton abundance reached its highest levels during 1970–75. Composition of the zooplankton community changed during 1966–75; the abundance of cyclopoid copepods decreased and that of calanoid copepods and cladocerans increased. Total abundance varied during the 10-year period, but without apparent trend. Variation in abundance appeared to be associated with discharge rate, water temperature, and turbidity. The benthic community in 1967-68 consisted mostly of chironomid larvae, which were uniformly distributed over the length of the reservoir.
A Non-Equilibrium Sediment Transport Model for Coastal Inlets and Navigation Channels
2011-01-01
exchange of water , sediment, and nutrients between estuaries and the ocean. Because of the multiple interacting forces (waves, wind, tide, river...in parallel using OpenMP. The CMS takes advantage of the Surface- water Modeling System (SMS) interface for grid generation and model setup, as well...as for plotting and post- processing (Zundel, 2000). The circulation model in the CMS (called CMS-Flow) computes the unsteady water level and
Williams, Bradley S; D'Amico, Ellen; Kastens, Jude H; Thorp, James H; Flotemersch, Joseph E; Thoms, Martin C
2013-09-01
River systems consist of hydrogeomorphic patches (HPs) that emerge at multiple spatiotemporal scales. Functional process zones (FPZs) are HPs that exist at the river valley scale and are important strata for framing whole-watershed research questions and management plans. Hierarchical classification procedures aid in HP identification by grouping sections of river based on their hydrogeomorphic character; however, collecting data required for such procedures with field-based methods is often impractical. We developed a set of GIS-based tools that facilitate rapid, low cost riverine landscape characterization and FPZ classification. Our tools, termed RESonate, consist of a custom toolbox designed for ESRI ArcGIS®. RESonate automatically extracts 13 hydrogeomorphic variables from readily available geospatial datasets and datasets derived from modeling procedures. An advanced 2D flood model, FLDPLN, designed for MATLAB® is used to determine valley morphology by systematically flooding river networks. When used in conjunction with other modeling procedures, RESonate and FLDPLN can assess the character of large river networks quickly and at very low costs. Here we describe tool and model functions in addition to their benefits, limitations, and applications.
Koblmüller, S; Sefc, K M; Duftner, N; Katongo, C; Tomljanovic, T; Sturmbauer, C
2008-01-01
Some of the diversity of lacustrine cichlid fishes has been ascribed to sympatric divergence, whereas diversification in rivers is generally driven by vicariance and geographic isolation. In the riverine Pseudocrenilabrus philander species complex, several morphologically highly distinct populations are restricted to particular river systems, sinkholes and springs in southern Africa. One of these populations consists of a prevalent yellow morph in sympatry with a less frequent blue morph, and no individuals bear intermediate phenotypes. Genetic variation in microsatellites and AFLP markers was very low in both morphs and one single mtDNA haplotype was fixed in all samples, indicating a very young evolutionary age and small effective population size. Nevertheless, the nuclear markers detected low but significant differentiation between the two morphs. The data suggest recent and perhaps sympatric divergence in the riverine habitat.
Advancing under Fire: Wartime Change and the U.S. Military
2008-12-01
against enemy bunkers (Friedman, 1987 ). Eventually, TF 117 exhausted the limits of what could be achieved through riverine craft landings against a...changed out while afloat (Friedman, 1987 ). Despite its shortcomings, the “swift” boat carried the brunt of the early riverine work. It was not...in production for over 20 years ( Eisler , Morrison, & Vanden Brook, 2007). However, as the problem was viewed as requiring an immediate solution and
Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.
Huang, Hong; Zhang, Baifa; Lu, Jun
2014-01-01
We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.
Hacon, Sandra S; Dórea, José G; Fonseca, Márlon de F; Oliveira, Beatriz A; Mourão, Dennys S; Ruiz, Claudia M V; Gonçalves, Rodrigo A; Mariani, Carolina F; Bastos, Wanderley R
2014-02-26
In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics.
Both riverine detritus and dissolved nutrients drive lagoon fisheries
NASA Astrophysics Data System (ADS)
Bonthu, Subbareddy; Ganguly, Dipnarayan; Ramachandran, Purvaja; Ramachandran, Ramesh; Pattnaik, Ajit K.; Wolanski, Eric
2016-12-01
The net ecosystem metabolism in lagoons has often been estimated from the net budget of dissolved nutrients. Such is the case of the LOICZ estuarine biogeochemistry nutrient budget model that considers riverine dissolved nutrients, but not riverine detritus. However the neglect of detritus can lead to inconsistencies; for instance, it results in an estimate of 5-10 times more seaward export of nutrients than there is import from rivers in Chilika Lagoon, India. To resolve that discrepancy the UNESCO estuarine ecohydrology model, that considers both dissolved nutrients and detritus, was used and, for Chilika Lagoon, it reproduced successfully the spatial distribution of salinity, dissolved nutrients, phytoplankton and zooplankton as well as the fish yield data. Thus the model suggests that the riverine input of both detritus and dissolved nutrients supports the pelagic food web. The model also reproduces well the observation of decreased fish yield when the mouth of the lagoon was choked in the 1990s, demonstrating the importance of the physics that determine the flushing rate of waterborne matter. Thus, both farming in the watershed by driving the nutrient and detritus inputs to the lagoon, and dredging and engineering management of the mouth by controlling the flushing rate of the lagoon, have a major influence on fish stocks in the lagoon.
NASA Astrophysics Data System (ADS)
Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.
2015-11-01
Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.
Jakovac, Catarina Conte; Dutrieux, Loïc Paul; Siti, Latifah; Peña-Claros, Marielos; Bongers, Frans
2017-01-01
Shifting cultivation is the main land-use system transforming landscapes in riverine Amazonia. Increased concentration of the human population around villages and increasing market integration during the last decades may be causing agricultural intensification. Studies have shown that agricultural intensification, i.e. higher number of swidden-fallow cycles and shorter fallow periods, reduces crop productivity of swiddens and the regrowth capacity of fallows, undermining the resilience of the shifting cultivation system as a whole. We investigated the temporal and spatial dynamics of shifting cultivation in Brazilian Amazonia to test the hypotheses that (i) agriculture has become more intensive over time, and (ii) patterns of land-use intensity are related to land accessibility and human population density. We applied a breakpoint-detection algorithm to Landsat time-series spanning three decades (1984-2015) and retrieved the temporal dynamics of shifting cultivation fields, which go through alternating phases of crop production (swidden) and secondary forest regrowth (fallow). We found that fallow-period length has decreased from 6.4 to 5.1 years on average, and that expansion over old-growth forest has slowed down over time. Shorter fallow periods and higher frequency of slash and burn cycles are practiced closer to residences and around larger villages. Our results indicate that shifting cultivation in riverine Amazonia has gone through a process of agricultural intensification in the past three decades. The resulting landscape is predominantly covered by young secondary forests (≤ 12 yrs old), and 20% of it have gone through intensive use. Reversing this trend and avoiding the negative consequences of agricultural intensification requires land use planning that accounts for the constraints of land use in riverine areas.
Dutrieux, Loïc Paul; Siti, Latifah; Peña-Claros, Marielos; Bongers, Frans
2017-01-01
Shifting cultivation is the main land-use system transforming landscapes in riverine Amazonia. Increased concentration of the human population around villages and increasing market integration during the last decades may be causing agricultural intensification. Studies have shown that agricultural intensification, i.e. higher number of swidden-fallow cycles and shorter fallow periods, reduces crop productivity of swiddens and the regrowth capacity of fallows, undermining the resilience of the shifting cultivation system as a whole. We investigated the temporal and spatial dynamics of shifting cultivation in Brazilian Amazonia to test the hypotheses that (i) agriculture has become more intensive over time, and (ii) patterns of land-use intensity are related to land accessibility and human population density. We applied a breakpoint-detection algorithm to Landsat time-series spanning three decades (1984–2015) and retrieved the temporal dynamics of shifting cultivation fields, which go through alternating phases of crop production (swidden) and secondary forest regrowth (fallow). We found that fallow-period length has decreased from 6.4 to 5.1 years on average, and that expansion over old-growth forest has slowed down over time. Shorter fallow periods and higher frequency of slash and burn cycles are practiced closer to residences and around larger villages. Our results indicate that shifting cultivation in riverine Amazonia has gone through a process of agricultural intensification in the past three decades. The resulting landscape is predominantly covered by young secondary forests (≤ 12 yrs old), and 20% of it have gone through intensive use. Reversing this trend and avoiding the negative consequences of agricultural intensification requires land use planning that accounts for the constraints of land use in riverine areas. PMID:28727828
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gough, M.A.; Fauzi, R.; Mantoura, C.
The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterized terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial landmore » plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary ligin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. Preliminary mass balance calculations applied to the global ocean margin suggest riverine sources of both particulate lignin and cutin are important and that most (>95%) deposition of recognizable land plant biopolymers occurs in shelf seas. 74 refs., 7 figs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang
The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scalesmore » of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanrahan, T.P.
2009-01-08
The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement estimates for fall of 2000 indicate more than 9000 adult fall Chinook salmon returned to this area, accounting for more than 2100 redds within a 5 km section of river.« less
For several species of salmonids (Oncorhynchus and Salvelinus spp.) inhabiting Pacific coastal temperate streams, juvenile fish have been recorded moving between mainstem and tributary habitats during the transition from the summer dry season to the winter wet season. Movement co...
Historic unconstrained, unregulated streamflow along the upper mainstem of the Willamette River, Oregon, produced a floodplain of coalescent bars supporting a mosaic of vegetation patches. We sampled the contemporary vegetation of 42 bars formed 3 to 64 + years ago in four, 1 km...
A predictive model for anti-degradation monitoring of the Delaware River mainstem
The non-tidal portion of the Delaware River can be considered to be in minimally disturbed condition, but there is increasing pressure on the watershed. Thus, the primary goal of this research was to develop a monitoring tool that can be used by the Delaware River Basin Commissi...
Andy Dolloff; Craig Roghair; Colin Krause; John Moran; Allison Cochran; Mel Warren; Susan Adams; Wendell Haag
2016-01-01
Dams convert riverine habitat to a series of reaches or zones where differences in flow, habitat, and biota, both downstream and in reservoirs, are obvious and well described. At the upstream extent of a reservoir, however, is a transitional reach or zone that contains characteristics of riverine habitat both in the upper reservoir and in tributaries connected to the...
Index of surface-water stations in Texas, January 1984
Carrillo, E.R.; Buckner, H.D.
1984-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2 the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1985
Carrillo, E.R.; Buckner, H.D.; Rawson, Jack
1984-01-01
This index shows the station number -and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1987
Rawson, Jack; Carrillo, E.R.; Buckner, H.D.
1987-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
Index of surface-water stations in Texas, January 1988
Rawson, Jack; Carrillo, E.R.; Buckner, H.D.
1988-01-01
This index shows the station number and name, latitude and longitude, type of data collected, and the office principally responsible for the data collection (table 1). An 8-digit permanent numerical designation for gaging stations has been adopted on a nationwide basis; stations are numbered and listed in downstream order. In the downstream direction along the main stem, all stations on a tributary entering above a main-stem station are listed before that station. A tributary entering between two main-stem stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. To indicate the rank of any tributary on which a gaging station is situated and the stream to which it is an immediate tributary, each indention in the listing of gaging stations represent one rank. This downstream order and system of indention show which gaging stations are on tributaries between any two stations on a main stem and the rank of the tributary on which each gaging station is situated. On plates 1 and 2, the 8-digit station number is abbreviated because of space limitation.
Low PCB concentrations observed in American eel (Anguilla rostrata) in six Hudson River tributaries
Limburg, K.E.; Machut, L.S.; Jeffers, P.; Schmidt, R.E.
2008-01-01
We analyzed 73 eels, collected in 2004 and 2005 above the head of tide in six Hudson River tributaries, for total PCBs, length, weight, age, and nitrogen stable isotope ratios (??15N). Mean total PCB concentration (wet weight basis) was 0.23 ppm ?? 0.08 (standard error), with a range of 0.008 to 5.4 ppm. A majority of eels (84) had concentrations below 0.25 ppm, and only seven eels (10%) had concentrations exceeding 0.5 ppm. Those eels with higher PCB concentrations were ???12 yr; there was a weak correlation of PCB concentration with ??15N and also with weight. Compared to recent (2003) data from the mainstem of the Hudson River estuary, these results indicate that tributaries are generally much less contaminated with PCBs. We hypothesize that those tributary eels with high PCB concentrations were relatively recent immigrants from the mainstem. Given concern over the possible adverse effects of PCBs on eel reproduction, these tributaries may serve as refugia. Therefore, providing improved access to upland tributaries may be critically important to this species. ?? 2008 Northeastern Naturalist.
NASA Astrophysics Data System (ADS)
Najamuddin; Surahman
2017-10-01
Surface sediments were collected from seventeen stations in Jeneberang waters (riverine, estuarine, and marine). Lead (Pb) and zinc (Zn) concentrations were determined by atomic absorption spectrometry, and the speciation of metals was obtained by a sequential extraction procedure. Dispersion of Pb and Zn were found higher in the riverine and marine samples than the estuarine samples. Following speciation, the metals were found similar composition of fraction in the riverine and estuarine samples but any different in the marine samples. The results indicated that there is a change of dispersion pattern and speciation composition of metals due to the presence of the dam that lies at the boundary between the estuary and the river. The toxicity unit was indicated low toxicity level; pollution level was in weakly to moderately polluted while the aquatic environment risk attributed were no risky to light risk.
Particle Tracking Model Transport Process Verification: Diffusion Algorithm
2015-07-01
sediment densities in space and time along with final particle fates (Demirbilek et al. 2004; Davies et al. 2005; McDonald et al. 2006; Lackey and... McDonald 2007). Although a versatile model currently utilized in various coastal, estuarine, and riverine applications, PTM is specifically designed to...Algorithm 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7
NASA Astrophysics Data System (ADS)
Cienciala, P.; Nelson, A. D.
2017-12-01
The field of fluvial eco-geomorphology strives to improve the understanding of interactions between physical and biological processes in running waters. This body of research has greatly contributed to the advancement of integrated river science and management. Arguably, the most popular research themes in eco-geomorphology include hydrogemorphic controls of habitat quality and effects of disturbances such as floods, sediment transport events or sediment accumulation. However, in contrast to the related field of ecology, the distinction between direct and indirect mechanisms which may affect habitat quality and biotic response to disturbance has been poorly explored in eco-geomorphic research. This knowledge gap poses an important challenge for interpretations of field observations and model development. In this research, using the examples of benthic invertebrates and fish, we examine the importance of direct and indirect influences that geomorphic and hydraulic processes may exert on stream biota. We also investigate their implications for modeling of organism-habitat relationships. To achieve our goal, we integrate field and remote sensing data from montane streams in the Pacific Northwest region with habitat models. Preliminary results indicate that indirect hydrogeomorphic influences of stream organisms, such as those mediated by altered availability of food resources, can be as important as direct influences (e.g. physical disturbance). We suggest that these findings may also have important implications for modeling of riverine habitat.
Jäger, Christoph G; Borchardt, Dietrich
2018-04-07
In riverine ecosystems primary production is principally possible in two habitats: in the benthic layer by sessile algae and in the surface water by planktonic algae being transported downstream. The relevance of these two habitats generally changes along the rivers' continuum. However, analyses of the interaction of algae in these two habitats and their controlling factors in riverine ecosystems are, so far, very rare. We use a simplified advection-diffusion model system combined with ecological process kinetics to analyse the interaction of benthic and planktonic algae and nutrients along idealised streams and rivers at regional to large scales. Because many of the underlying processes affecting algal dynamics are influenced by depth, we focus particularly on the impact of river depth on this interaction. At constant environmental conditions all state variables approach stable spatial equilibria along the river, independent of the boundary conditions at the upstream end. Because our model is very robust against changes of turbulent diffusion and stream velocity, these spatial equilibria can be analysed by a simplified ordinary differential equation (ode) version of our model. This model variant reveals that at shallower river depths, phytoplankton can exist only when it is subsidised by detaching benthic algae, and in turn, at deeper river depths, benthic algae can exist only in low biomasses which are subsidised by sinking planktonic algae. We generalise the spatial dynamics of the model system using different conditions at the upstream end of the model, which mimic various natural or anthropogenic factors (pristine source, dam, inflow of a waste water treatment plant, and dilution from e.g. a tributary) and analyse how these scenarios influence different aspects of the longitudinal spatial dynamics of the full spatial model: the relation of spatial equilibrium to spatial maximum, the distance to the spatial maximum, and the response length. Generally, our results imply that shallow systems recover within significantly shorter distances from spatially distinct disturbances when compared to deep systems, independent of the type of disturbance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Light, Helen M.; Darst, Melanie R.; Lewis, Lori J.; Howell, David A.
2002-01-01
A study relating hydrologic conditions, soils, and vegetation of floodplain forests to river flow was conducted in the lower Suwannee River, Florida, from 1996 to 2000. The study was done by the U.S. Geological Survey in cooperation with the Suwannee River Water Management District to help determine the minimum flows and levels required for wetlands protection. The study area included forests within the 10-year floodplain of the Suwannee River from its confluence with the Santa Fe River to the tree line (lower limit of forests) near the Gulf of Mexico, and covered 18,600 hectares (ha) of forests, 75 percent of which were wetlands and 25 percent uplands. The floodplain was divided into three reaches, riverine, upper tidal, and lower tidal, based on changes in hydrology, vegetation, and soils with proximity to the coast. The Suwannee River is the second largest river in Florida in terms of average discharge. Median flow at the confluence of the Suwannee and Santa Fe Rivers is approximately 181 cubic meters per second (m3/s) or 6,480 cubic feet per second (ft3/s) (1933-99). At the upper end of the riverine reach, river stages are unaffected by tides and have a typical annual range of 4.1 meters (m). Tides affect river stages at low and medium flows in the upper tidal reach, and at all flows in the lower tidal reach. Median tidal range at the mouth of the Suwannee River is about 1 m. Salinity of river water in the lower tidal reach increases with decreasing flow and proximity to the Gulf of Mexico. Vertically averaged salinity in the river near the tree line is typically about 5 parts per thousand at medium flow. Land-surface elevation and topographic relief in the floodplain decrease with proximity to the coast. Elevations range from 4.1 to 7.3 m above sea level at the most upstream riverine transect and from 0.3 to 1.3 m above sea level on lower tidal transects. Surface soils in the riverine reach are predominantly mineral and dry soon after floods recede except in swamps. Surface soils in upper and lower tidal reaches are predominantly organic, saturated mucks. In the downstream part of the lower tidal reach, conductivities of surface soils are high enough (greater than 4 milli-mhos per centimeter) to exclude many tree species that are intolerant of salinity. Species richness of canopy and subcanopy plants in wetland forests in the lower Suwannee River is high compared to other river floodplains in North America. A total of 77 tree, shrub, and woody vine species were identified in the canopy and subcanopy of floodplain wetland forests (n = 8,376). Fourteen specific forest types were mapped using digitized aerial photographs, defined from vegetative sampling, and described in terms of plant species composition. For discussion purposes, some specific wetland types were combined, resulting in three general wetland forest types for each reach. Riverine high bottomland hardwoods have higher canopy species richness than all other forest types (40-42 species), with Quercus virginiana the most important canopy tree by basal area. The canopy composition of riverine low bottomland hardwoods is dominated by five species with Quercus laurifolia the most important by basal area. Riverine swamps occur in the lowest and wettest areas with Taxodium distichum the most important canopy species by basal area. Upper tidal bottomland hardwoods are differentiated from riverine forests by the presence of Sabal palmetto in the canopy. Upper tidal mixed forests and swamps are differentiated from riverine forests, in part, by the presence of Fraxinus profunda in the canopy. Nyssa aquatica, the most important canopy species by basal area in upper tidal swamps, is absent from most forests in the lower tidal reach where its distribution is probably restricted by salinity. Hydric hammocks, a wetland type that is rare outside of Florida, are found in the lower tidal reach and are flooded every 1-2 years by either storm surge or river floods. Lowe
Seasonal movements and habitat use of Potamodromous Rainbow Trout across a complex Alaska riverscape
Fraley, Kevin M.; Falke, Jeffrey A.; Yanusz, Richard; Ivey, Sam S.
2016-01-01
Potamodromous Rainbow Trout Oncorhynchus mykiss are an important ecological and recreational resource in freshwater ecosystems of Alaska, and increased human development, hydroelectric projects, and reduced escapement of Chinook Salmon Oncorhynchus tshawytscha may threaten their populations. We used aerial and on-the-ground telemetry tracking, a digital landscape model, and resource selection functions to characterize seasonal movements and habitat use of 232 adult (>400 mm FL) Rainbow Trout across the complex, large (31,221 km2) Susitna River basin of south-central Alaska during 2003–2004 and 2013–2014. We found that fish overwintered in main-stem habitats near tributary mouths from November to April. After ice-out in May, fish ascended tributaries up to 51 km to spawn and afterward moved downstream to lower tributary reaches, assumedly to intercept egg and flesh subsidies provided by spawning salmonids in July and August. Fish transitioned back to main-stem overwintering habitats at the onset of autumn when salmonid spawning waned. Fidelity to tributaries where fish were initially tagged varied across seasons but was high (>0.75) in three out of four drainages. Model-averaged resource selection functions suggested that Rainbow Trout habitat use varied seasonally; fish selected low-gradient, sinuous, main-stem stream reaches in the winter, reaches with suitably sized substrate during spawning, larger reaches during the feeding season prior to the arrival of spawning salmonids, and reaches with high Chinook Salmon spawning habitat potential following the arrival of adult fish. We found little difference in movement patterns between males and females among a subset of fish for which sex was determined using genetic analysis. As most Rainbow Trout undertake extensive movements within and among tributaries and make use of a variety of seasonal habitats to complete their life histories, it will be critical to take a basinwide approach to their management (i.e., habitat protection and angling bag limits) in light of anticipated land-use changes.
The dynamics of sediment size and transient erosional signals in heterogeneous lithologies
NASA Astrophysics Data System (ADS)
Lyons, N. J.; Gasparini, N. M.; Crosby, B. T.; Wehrs, K.; Willenbring, J. K.
2017-12-01
Sediment supply and transport dynamics convey, transform, and destroy climatic and tectonic signals in channels and depositional landforms. The South Fork Eel River (SFER) in the northern California Coast Ranges, USA exhibits characteristics suggestive of transient landscape adjustment: strath terraces, knickpoints, and headwater terrain eroding more slowly than downstream areas. A tectonically-induced uplift wave is commonly invoked as the driver of transience in this region. The wave is attributed to the northward migration of the Mendocino Triple Junction (MTJ). Nested basin-mean erosion rates calculated from 10Be detrital quartz sand increase down the mainstem of the SFER, roughly coinciding with the direction of MTJ migration. This erosion trend is attributed to the proportion of adjusted and unadjusted landscape portions upstream of the locations where the nested 10Be samples were collected. Adjusted and unadjusted landscape portions are separated by a broad knickzone that contains 28% of relief along the mainstem. Knickzone propagation and considerable stream incision is suggested by projection of the upper SFER above the knickzone through the highest flight of strath terraces. Field observations and outcomes of numerical simulations using the Landlab modeling framework are incompatible with uplift modeled as a wave. Alternative uplift and variable sediment flux scenarios more reliably predict the pattern of terraces, knickpoints, and accelerated erosion. In the natural landscape, landforms and erosion rates follow the patterns expected for transient erosion along the mainstem, although a local base level lowering signal is not resolvable in many tributaries. Topographic relief, presence of knickpoints, and rock properties differ in the SFER tributaries. The tributaries draining mélange are over-steepened by boulders detached from hillslopes by earthflows. Here, we propose a framework in which rock properties and sediment size are a key control upon preservation of a base level change signal in low order streams. This result implies that transient erosion signals inferred using topography can be transformed or destroyed in certain lithologies, complicating efforts to infer climatic and tectonic history from topography.
Fish assemblages in the Upper Esopus Creek, NY: Current status, variability, and controlling factors
Baldigo, Barry P.; George, Scott D.; Keller, Walter T
2015-01-01
The Upper Esopus Creek receives water diversions from a neighboring basin through the Shandaken Tunnel (the portal) from the Schoharie Reservoir. Although the portal is closed during floods, mean flows and turbidity of portal waters are generally greater than in Esopus Creek above their confluence. These conditions could potentially affect local fish assemblages, yet such effects have not been assessed in this highly regulated stream. We studied water quality, hydrology, temperature, and fish assemblages at 18 sites in the Upper Esopus Creek during 2009–2011 to characterize the effects of the portal input on resident-fish assemblages and to document the status of the fishery resource. In general, fish-community richness increased by 2–3 species at mainstem sites near the portal, and median density and biomass of fish communities at sites downstream of the portal were significantly lower than they were at sites upstream of the portal. Median densities of Salmo trutta (Brown Trout) and all trout species were significantly lower than at mainstem sites downstream from the portal—25.1 fish/0.1 ha and 148.9 fish/0.1 ha, respectively—than at mainstem sites upstream from the portal—68.8 fish/0.1 ha and 357.7 fish/0.1 ha, respectively—yet median biomass for Brown Trout and all trout did not differ between sites from both reaches. The median density of young-of-year Brown Trout at downstream sites (9.3 fish/0.1 ha) was significantly lower than at upstream sites (33.9 fish/0.1 ha). Waters from the portal appeared to adversely affect the density and biomass of young-of-year Brown Trout, but lower temperatures and increased flows also improved habitat quality for mature trout at downstream sites during summer. These findings, and those from companion studies, indicate that moderately turbid waters from the portal had few if any adverse impacts on trout populations and overall fish communities in the Upper Esopus Creek during this study.
Krstolic, Jennifer L.; Johnson, Gregory C.; Ostby, Brett J.K.
2013-01-01
Chemical, physical, and biological data were collected during 2009-2011 as part of a study of the Clinch River in Virginia and Tennessee. The data from this study, data-collection methods, and laboratory analytical methods used in the study are documented in this report. The study was conducted to describe the conditions of the Clinch River and to determine if there are measurable differences in chemical, physical, or biological characteristics in a segment of the river where freshwater mussel populations are in decline, have low density, richness, little to no recruitment, and lack endangered species (low-quality reach) compared to a segment of the river where mussel assemblages have relatively high density, richness, evidence of recruitment, and support endangered species (high-quality reach). Five continuous water-quality monitors were installed and operated on the mainstem of the Clinch River and two tributaries. Discrete water-quality sample sets were collected during base-flow and stormflow conditions two sites on the Clinch River and on the Guest River, a tributary to the Clinch River predominantly in the Appalachian Plateaus Physiographic Province. Base-flow water-quality samples were collected in July and August 2011 at 15 sites along the mainstem of the Clinch River. Other analyses included longitudinal sampling along the mainstem of the Clinch River at 10 sites to evaluate bed-sediment chemistry, habitat condition, and mollusk community status. In situ freshwater mussel growth and mortality experiments were conducted with hatchery propogated Villosa iris (rainbow mussels). Tissue from the V. iris as well as tissue from 16 Actinonaias pectorosa mussels were analyzed for trace metals, and V. iris mussel tissue was analyzed for organic compounds. Data collected during this investigation were analyzed by various U.S. Geological Survey or U.S. Fish and Wildlife Service laboratories.
Movements of fluvial Bonneville cutthroat trout in the Thomas Fork of the Bear River, Idaho-Wyoming
Colyer, W.T.; Kershner, J.L.; Hilderbrand, R.H.
2005-01-01
The majority of interior subspecies of cutthroat trout Oncorhynchus clarkii have been extirpated from large rivers by anthropogenic activities that have fragmented habitats and introduced nonnative competitors. Selective pressures against migratory behaviors and main-stem river occupation, coupled with conservation strategies that isolate genetically pure populations above barriers, have restricted gene flow and prevented expression of the fluvial life history in many populations. Existing knowledge about the movements and home range requirements of fluvial cutthroat trout is, therefore, limited. Our objectives in this study were to (1) determine the extent of seasonal home ranges and mobility of Bonneville cutthroat trout O. c. utah (BCT) in the Thomas Fork and main-stem Bear River and (2) evaluate the role of a water diversion structure functioning as a seasonal migration barrier to fish movement. We implanted 55 BCT in the Thomas Fork of the Bear River, Idaho, with radio transmitters and located them bimonthly in 1999–2000 and weekly in 2000–2001. We found fish to be more mobile than previously reported. Individuals above the diversion barrier occupied substantially larger home ranges than those below the barrier (analysis of variance: P = 0.0003; median = 2,225 m above barrier; median = 500 m below barrier) throughout our study, and they moved more frequently (mean, 0.89 movements/contact; range, 0.57–1.00) from October 2000 through March 2001 than fish below the barrier (mean, 0.45 movements/contact; range, 0.00–1.00). During the spring of both years, we located radio-tagged fish in both upstream and neighboring tributaries as far as 86 km away from our study site. Our results document the existence of a fluvial component of BCT in the Bear River and its tributaries and suggest that successful efforts at conservation of these fish must focus on main-stem habitats and the maintenance of seasonal migration corridors.
Deforestation in Amazonia impacts riverine carbon dynamics
NASA Astrophysics Data System (ADS)
Langerwisch, Fanny; Walz, Ariane; Rammig, Anja; Tietjen, Britta; Thonicke, Kirsten; Cramer, Wolfgang
2016-12-01
Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20 % (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60 % due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40 % under the most severe deforestation and climate change scenario. These changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself as well as in the adjacent Atlantic Ocean.
Perera-García, Martha A; Mendoza-Carranza, Manuel; Contreras-Sánchez, Wilfrido M; Huerta-Ortíz, Maricela; Pérez-Sánchez, Eunice
2011-06-01
In Southeastern Mexico, Centropomus undecimalis is an important fish species of sport and commercial fisheries for coastal and riverine communities. Fisheries along rivers and coasts depend on migratory habits of this species, and these movements are probably related to reproduction. In spite of its economic importance, few studies have been conducted focusing on its reproductive biology, and this research aims to analyze these habits. Samples (fork length, somatic and gonads weight, and macroscopic maturity stages) were obtained from organisms collected by fishermen from the largest fishing cooperatives along the coastal and riverine areas of Tabasco, from July 2006 to March 2008. Fish size ranged from 34 to 112 cm fork length, with an average age of 6.42 years for males and 9.12 years for females. In riverine areas, fish sizes ranged from 30 to 85 cm and the average age was 5.5 years for males and 6.6 years for females. Significant differences were recorded between lengths of males and females from the two areas (Kruskal-Wallis, p < 0.05). The male:female ratio was 1:0.68 in the coast, and 1:0.16 in riverine areas. The length-weight relationship did not vary between both sexes among areas (ANCOVA, p > 0.05). A curve for eviscerated weight was calculated for both sexes, for coastal fishes SW = 0.0059 (FL)3.07, and the riverine ones SW = 0.0086 (FL) 2.98, with an isometric growth (b = 3). The period of maximum reproduction was from July to August, with temperatures of 28 to 30 degrees C. A significant correlation between the gonadosomatic index (GSI) and rainfall was recorded for samples of both males and females from coastal areas (r = 0.63, r = 0.70) whereas only one positive correlation was recorded for riverine females (r = 0.57). The size at first maturity (L50) was estimated at 60 cm and 80 cm (FL), corresponding to 5.5 and 8.5 years of age, for males and females, respectively. An important proportion of mature females of eight years and older, suggests that these ages contribute significantly to the reproductive biomass. The results indicate that due to changes in the exploitation period, we recommend to protect populations of the common snook.
Process-based reference conditions: An alternative approach for managed river systems
NASA Astrophysics Data System (ADS)
Grams, P.; Melis, T.; Wright, S.; Schmidt, J.; Topping, D.
2008-12-01
Physical reference conditions, whether based on historic information or the condition of nearby less impaired systems, provide necessary information that contributes to an assessment of stream condition and the nature of channel transformation. In many cases, however, the utility of this traditional 'reference' approach may end at the assessment stage and not be applicable to establishing and implementing restoration goals. Ongoing impacts such as continued existence of an upstream dam or the persistence of invasive vegetation may render restoration based on a physical reference infeasible. In these circumstances, an alternative approach is to identify and describe reference processes in place of physical reference conditions. This is the case for the Colorado River where large dams, a commitment to hydropower production, and legal mandates for regional distribution and off- channel consumption of water greatly reduce the relevance of historical conditions in setting goals for rehabilitation. In this setting, two strategies are available for setting reference conditions. One is maintenance of post-dam sediment mass balance, which attempts to ensure that the channel does not continue to degrade or aggrade and that riverine habitats do not continue to diverge from their historical condition. Post- dam sediment mass balance can be quantified at a reconnaissance or project scale. The second strategy is to define key processes that maintain the native ecosystem. These processes may, or may not, be consistent with maintenance of sediment mass balance, but they may be key to rejuvenation of spawning and rearing habitats, maintenance of historical ranges of temperature and turbidity, maintenance of a sustainable food base for the native aquatic community, or maintaining other riverine resources. Both strategies require careful monitoring of processes (e.g. sediment flux), which may add considerably to the cost and complexity of a monitoring program. An additional challenge in adopting the second strategy is that it is difficult to define when a process is adequately restored, since many ecosystem processes collectively limit recovery of populations of native communities.
[A health survey in riverine communities in Amazonas State, Brazil].
Gama, Abel Santiago Muri; Fernandes, Tiótrefis Gomes; Parente, Rosana Cristina Pereira; Secoli, Silvia Regina
2018-02-19
Population-based health surveys are important tools for identifying disease determinants, especially in regions with widely dispersed populations and low health system coverage. The aim of this study was to describe the principal methodological aspects and to describe the socioeconomic, demographic, and health characteristics of the riverine populations of Coari, Amazonas State, Brazil. This was a population-based cross-sectional study in river-dwelling communities in the rural area of Coari, from April to July 2015. The probabilistic cluster sample consisted of 492 individuals. The results showed that the majority of the river-dwellers were females (53%), had up to 9 years of schooling (68.5%), and earned a monthly family income equivalent to one-third the minimum wage. The health problems reported in the previous 30 days featured conditions involving pain (45.2%). The main healthcare resources were allopathic medicines (70.3%), exceeding herbal remedies (44.3%). The river-dwellers travel an average of 60.4km and take some 4.2 hours to reach the urban area of Coari. The riverine population generally presents low economic status and limited access to the urban area. Health problems are mostly solved with allopathic medicines. Geographic characteristics, as barriers to access to health services and to improvements in living conditions for the riverine population, can limit the collection of epidemiological data on these populations.
Hacon, Sandra S.; Dórea, José G.; Fonseca, Márlon de F.; Oliveira, Beatriz A.; Mourão, Dennys S.; Ruiz, Claudia M. V.; Gonçalves, Rodrigo A.; Mariani, Carolina F.; Bastos, Wanderley R.
2014-01-01
In the Amazon Basin, naturally occurring methylmercury bioaccumulates in fish, which is a key source of protein consumed by riverine populations. The hydroelectric power-plant project at Santo Antônio Falls allows us to compare the Hg exposure of riverine populations sparsely distributed on both sides of the Madeira river before the area is to be flooded. From 2009 to 2011, we concluded a population survey of the area (N = 2,008; representing circa 80% of community residents) that estimated fish consumption and mercury exposure of riverine populations with different degrees of lifestyle related to fish consumption. Fish samples from the Madeira river (N = 1,615) and 110 species were analyzed for Hg. Hair-Hg was significantly lower (p < 0.001) in less isolated communities near to the capital of Porto Velho (median 2.32 ppm) than in subsistence communities in the Cuniã Lake, 180 km from Porto Velho city (median 6.3 ppm). Fish Hg concentrations ranged from 0.01 to 6.06 µg/g, depending on fish size and feeding behavior. Currently available fish in the Madeira river show a wide variability in Hg concentrations. Despite cultural similarities, riparians showed hair-Hg distribution patterns that reflect changes in fish-eating habits driven by subsistence characteristics. PMID:24577285
Modeling riverine nutrient transport to the Baltic Sea: a large-scale approach.
Mörth, Carl-Magnus; Humborg, Christoph; Eriksson, Hanna; Danielsson, Asa; Medina, Miguel Rodriguez; Löfgren, Stefan; Swaney, Dennis P; Rahm, Lars
2007-04-01
We developed for the first time a catchment model simulating simultaneously the nutrient land-sea fluxes from all 105 major watersheds within the Baltic Sea drainage area. A consistent modeling approach to all these major watersheds, i.e., a consistent handling of water fluxes (hydrological simulations) and loading functions (emission data), will facilitate a comparison of riverine nutrient transport between Baltic Sea subbasins that differ substantially. Hot spots of riverine emissions, such as from the rivers Vistula, Oder, and Daugava or from the Danish coast, can be easily demonstrated and the comparison between these hot spots, and the relatively unperturbed rivers in the northern catchments show decisionmakers where remedial actions are most effective to improve the environmental state of the Baltic Sea, and, secondly, what percentage reduction of riverine nutrient loads is possible. The relative difference between measured and simulated fluxes during the validation period was generally small. The cumulative deviation (i.e., relative bias) [Sigma(Simulated - Measured)/Sigma Measured x 100 (%)] from monitored water and nutrient fluxes amounted to +8.2% for runoff, to -2.4% for dissolved inorganic nitrogen, to +5.1% for total nitrogen, to +13% for dissolved inorganic phosphorus and to +19% for total phosphorus. Moreover, the model suggests that point sources for total phosphorus compiled by existing pollution load compilations are underestimated because of inconsistencies in calculating effluent loads from municipalities.
Export of dissolved carbonaceous and nitrogenous substances in rivers of the "Water Tower of Asia".
Qu, Bin; Sillanpää, Mika; Kang, Shichang; Yan, Fangping; Li, Zhiguo; Zhang, Hongbo; Li, Chaoliu
2018-03-01
Rivers are critical links in the carbon and nitrogen cycle in aquatic, terrestrial, and atmospheric environments. Here riverine carbon and nitrogen exports in nine large rivers on the Tibetan Plateau - the "Water Tower of Asia" - were investigated in the monsoon season from 2013 to 2015. Compared with the world average, concentrations of dissolved inorganic carbon (DIC, 30.7mg/L) were high in river basins of the plateau due to extensive topographic relief and intensive water erosion. Low concentrations of dissolved organic carbon (DOC, 1.16mg/L) were likely due to the low temperature and unproductive land vegetation environments. Average concentrations of riverine DIN (0.32mg/L) and DON (0.35 mg/L) on the Tibetan Plateau were close to the world average. However, despite its predominantly pristine environment, discharge from agricultural activities and urban areas of the plateau has raised riverine N export. In addition, DOC/DON ratio (C/N, ~6.5) in rivers of the Tibetan Plateau was much lower than the global average, indicating that dissolved organic carbon in the rivers of this region might be more bioavailable. Therefore, along with global warming and anthropogenic activities, increasing export of bioavailable riverine carbon and nitrogen from rivers of the Tibetan Plateau can be expected in the future, which will possibly influence the regional carbon and nitrogen cycle. Copyright © 2017. Published by Elsevier B.V.
Linking soil DOC production rates and transport processes from landscapes to sub-basin scales
NASA Astrophysics Data System (ADS)
Tian, Y. Q.; Yu, Q.; Li, J.; Ye, C.
2014-12-01
Recent research rejects the traditional perspective that dissolved organic carbon (DOC) component in global carbon cycle are simply trivial, and in fact evidence demonstrates that lakes likely mediate carbon dynamics on a global scale. Riverine and estuarine carbon fluxes play a critical role in transporting and recycling carbon and nutrients, not only within watersheds but in their receiving waters. However, the underlying mechanisms that drive carbon fluxes, from land to rivers, lake and oceans, remain poorly understood. This presentation will report a research result of the scale-dependent DOC production rate in coastal watersheds and DOC transport processes in estuarine regions. We conducted a series of controlled experiments and field measurements for examining biogeochemical, biological, and geospatial variables that regulate downstream processing on global-relevant carbon fluxes. Results showed that increased temperatures and raised soil moistures accelerate decomposition rates of organic matter with significant variations between vegetation types. The measurements at meso-scale ecosystem demonstrated a good correlation to bulk concentration of DOC monitored in receiving waters at the outlets of sub-basins (R2 > 0.65). These field and experimental measurements improved the model of daily carbon exports through below-ground processes as a function of the organic matter content of surface soils, forest litter supply, and temperature. The study demonstrated a potential improvement in modeling the co-variance of CDOM and DOC with the unique terrestrial sources. This improvement indicated a significant promise for monitoring riverine and estuarine carbon flux from satellite images. The technical innovations include deployments of 1) mini-ecosystem (mesocosms) with soil as replicate controlled experiments for DOC production and leaching rates, and 2) aquatic mesocosms for co-variances of DOC and CDOM endmembers, and an instrumented incubation experiment for determining degradation rates.
The Removal of Terrestrial Dissolved Organic Matter in Coastal Regions by Photo-Flocculation Process
NASA Astrophysics Data System (ADS)
Abdulla, H. A.; Mopper, K.
2015-12-01
The fate of terrestrial dissolved organic matter (tDOM) as it moves to open ocean was the focus of many studies for the last three decades, most of these studies were focused on three major removal processes: 1) Photochemical mineralization of tDOM (conversion to inorganic forms); 2) Microbial oxidation; and 3) Mixing-induced flocculation. Based on recent estimations, the combination of theses removal processes accounts for ~20-35% of the loss of tDOM in estuaries and coastal regions; which is far from closing the gap between the riverine fluxes of tDOM and the amount of tDOM detected in the open ocean. In a preliminary experiment to determine if photo-flocculation indeed occurs at pH values and ionic strengths found in estuaries. A 0.1-μm filtered riverine was diluted 1:1 with artificial seawater and MilliQ water to yield final salinities ranging from 0 - 15; the pH of the saline samples was ranged from 6-8. Photo-flocculation was observed for all salinities, with particles organic carbon (POC) values ranged from 3.2 to 8.5% of the original DOC. Interestingly, the composition of the Photo-flocculated particles in the saline samples was markedly different from the zero salinity samples as shown in their FT-IR spectra. The photo-flocculated particles that formed in the saline samples appear to be rich in carbohydrate and amide functionalities (protein-like), while containing insignificant deprotonated carboxylate. While the flocs that formed in freshwater (salinity zero) are richer in deprotonated carboxyl groups, and relatively depleted in carbohydrate functionality.
Wright, S.A.; Schoellhamer, D.H.
2005-01-01
[1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju
2009-03-02
The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review ofmore » the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found that this river channel classification system was a good predictor at the scale of a river reach ({approx}1 km) of where fall Chinook salmon would spawn. Using this two-dimensional river channel index, we selected study areas that were representative of the geomorphic classes. A total of nine study sites distributed throughout the middle 27 km of the Reach (study area) were investigated. Four of the study sites were located between river kilometer 575 and 580 in a section of the river where fall Chinook salmon have not spawned since aerial surveys were initiated in the 1940s; four sites were located in the spawning reach (river kilometer [rkm] 590 to 603); and one site was located upstream of the spawning reach (rkm 605).« less
Darst, Melanie R.; Light, Helen M.; Lewis, Lori J.
2002-01-01
Ground-cover vegetation was surveyed in wetland forests in the lower Suwannee River floodplain, Florida, in a study conducted by the U.S. Geological Survey in cooperation with the Suwannee River Water Management District from 1996 to 1999. Increased water use in the basin, supplied primarily from ground water, could reduce ground-water discharge to the river and flows in the lower Suwannee River. Many of the 282 ground-cover species found in wetland forests of the floodplain have distributions that are related to flow-dependent hydrologic characteristics of forest types, and their distributions would change if flows were reduced. Overall species diversity in the floodplain might decrease, and the composition of ground-cover vegetation in all forest types might change with flow reductions. The study area included forests within the 10-year floodplain of the lower Suwannee River from its confluence with the Santa Fe River to the lower limit of forests near the Gulf of Mexico. The floodplain is divided into three reaches (riverine, upper tidal, and lower tidal) due to variations in hydrology, vegetation, and soils with proximity to the coast. The riverine (non-tidal) reach had the greatest number of total species (203) and species unique to that reach (81). Mitchella repens, Toxicodendron radicans, and Axonopus furcatus were the most frequently dominant species in riverine bottomland hardwoods. Free-floating aquatic species, such as Spirodela punctata and Lemna valdiviana, were the dominant species in the wettest riverine swamps. The upper tidal reach had the lowest number of total species (116), only two species unique to that reach, and the lowest density of ground cover (26 percent). Panicum commutatum and Crinum americanum were frequent dominant species in upper tidal forests. The lower tidal reach had the highest ground-cover density (43 percent) and the second highest number of total species (183) and number of species unique to that reach (55). Saururus cernuus and species of Carex were frequently dominant in lower tidal swamps. Lower tidal hammocks, the most elevated lower tidal forests, were dominated by Osmunda cinnamomea and Chasmanthium laxum. Flow reductions in the lower Suwannee River could change the flow-dependent hydrologic characteristics of wetland forests. Decreases in inundation and saturation in riverine forests could result in a decrease in the number and extent of semi-permanently inundated ponds. As a result, several species of free-floating, aquatic plants that grow only in riverine floodplain ponds might decrease in abundance or disappear if flows were reduced. Decreases in inundation and saturation could also result in a shift to more upland species in all riverine forests and upper tidal bottomland hardwoods. Upland species and some exotic species might increase in abundance in the floodplain, invading forests where hydrologic conditions have been altered by flow reductions. Depth and duration of inundation due to river flooding could decrease in all riverine and upper tidal forests, probably resulting in a shift of species to those that are typically found in forests with shallower, shorter-duration floods. Salinity in the lower tidal reach and adjacent areas of the upper tidal reach might increase with flow reductions, and the distribution of species might change due to varying tolerances of salinity among species. Species with low salt-tolerance unique to the lower tidal reach might disappear from the floodplain, and species with high salinity tolerance could increase in abundance, replacing less salt-tolerant species.
Geomorphic characteristics and classification of Duluth-area streams, Minnesota
Fitzpatrick, Faith A.; Peppler, Marie C.; DePhilip, Michele M.; Lee, Kathy E.
2006-01-01
In 2003 and 2004, a geomorphic assessment of streams in 20 watersheds in the Duluth, Minn., area was conducted to identify and summarize geomorphic characteristics, processes, disturbance mechanisms, and potential responses to disturbance. Methods used to assess the streams included watershed characterization, descriptions of segment slopes and valley types, historical aerial photograph interpretation, and rapid field assessments and intensive field surveys of stream reaches. Geomorphic conditions were summarized into a segment-scale classification with 15 categories mainly based on drainage-network position and slope, and, secondarily, based on geologic setting, valley type, and dominant geomorphic processes. Main causes of geomorphic disturbance included historical logging and agriculture, and ongoing urban development, human-caused channel alterations, road and storm sewer drainage, ditching, hiking trails, and gravel pits or quarries. Geomorphic responses to these disturbances are dependent on a combination of drainage-network position, slope, and geologic setting. Geologic setting is related to drainage-network position because the geologic deposits parallel the Lake Superior shoreline. Headwater streams in large watersheds flow over glacial deposits above altitudes of about 1,200 feet (ft). Headwater tributaries and upper main stems have ditch-like channels with gentle slopes and no valleys. Urban development and road drainage cause increased runoff and flood peaks in these segments resulting in channel widening. Below about 1,200 ft, main-stem segments generally are affected by bedrock type and structure and have steep slopes and confined or entrenched valleys. Increases in flood peaks do not cause incision or widening in the bedrock-controlled valleys; instead, the flow and scour areas are expanded. Feeder tributaries to these main stems have steep, confined valleys and may be sources for sediment from urban areas, road runoff, or storm sewer outfalls. Main-stem segments near the glacial deposits/surficial bedrock contact (1,000–1,200 ft) have the most potential for response to disturbance because they tend to have narrow valleys with sandy glacial lakeshore deposits and moderate slopes. Increases in flood peaks (from upstream increases in runoff) increase the potential for landslides and mass wasting from valley sides as well as channel widening.
Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs
Arimitsu, Mayumi L.; Hobson, Keith A.; Webber, D'Arcy N.; Piatt, John F.; Hood, Eran W.; Fellman, Jason B.
2018-01-01
Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidies to glacier-marine habitats by developing a multi-trophic level Bayesian three-isotope mixing model. We utilized large gradients in stable (δ13C, δ15N, δ2H) and radiogenic (Δ14C) isotopes that trace riverine and marine organic matter sources as they are passed from lower to higher trophic levels in glacial-marine habitats. We also compared isotope ratios between glacial-marine and more oceanic habitats. Based on isotopic measurements of potential baseline sources, ambient water and tissues of marine consumers, estimates of the riverine organic matter source contribution to upper trophic-level species including fish and seabirds ranged from 12% to 44%. Variability in resource use among similar taxa corresponded to variation in species distribution and life histories. For example, riverine organic matter assimilation by the glacier-nesting seabirds Kittlitz's murrelet (Brachyramphus brevirostris) was greater than that of the forest-nesting marbled murrelet (B. marmoratus). The particulate and dissolved organic carbon in glacial runoff and near surface coastal waters was aged (12100–1500 years BP 14C-age) but dissolved inorganic carbon and biota in coastal waters were young (530 years BP 14C-age to modern). Thus terrestrial-derived subsidies in marine food webs were primarily composed of young organic matter sources released from glacier ecosystems and their surrounding watersheds. Stable isotope compositions also revealed a divergence in food web structure between glacial-marine and oceanic sites. This work demonstrates linkages between terrestrial and marine ecosystems, and facilitates a greater understanding of how climate-driven changes in freshwater runoff have the potential to alter food web dynamics within coastal marine ecosystems in Alaska.
Aged Riverine Particulate Organic Carbon in Four UK Catchments
NASA Astrophysics Data System (ADS)
Adams, Jessica; Tipping, Edward; Bryant, Charlotte; Helliwell, Rachel; Toberman, Hannah; Quinton, John
2016-04-01
The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO14C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO14C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO14C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-14C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO14C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO14C in rivers draining catchments with low erosion rates.
NASA Astrophysics Data System (ADS)
Lee, Li-Chin; Huang, -Chuan, Jr.; Lee, Tsung-Yu; Shih, Yu-Ting
2015-04-01
Extreme increase of anthropogenic nitrogen (e.g. fertilizer and excretion) has altered the nitrogen cycling and terrestrial ecosystems. Taiwan located between eastern Asia and Oceania is the hotspot of global riverine DIN (dissolved inorganic nitrogen, including NH4, NO3, and NO2) export, but rarely documented comprehensively. Totally 50 catchments, covering 2/3 of this island, with different anthropogenic activities are involved in this study. The monthly sampling for NH4 and seasonal sampling for NO3 and NO2 supplemented with daily discharge are used to estimate the riverine DIN export. Meanwhile, the landscape characteristics, land-use, and population density are also used to discriminate the characteristics of riverine DIN export. Results showed that the observed riverine DIN concentration and yield vary from 17.7-603.5 μM and 575.0-15588.9 kg-N km-2 yr-1 corresponding to the increase of anthropogenic activities. The arithmetic mean of DIN concentration and yield are 126.7μM and 3594.7 kg-N km-2 yr-1, respectively. The unexpected high yields can attribute to abundant precipitation, heavy fertilizer application, and high population. For concentration variation, no significant variation can be found in the pristine and agriculture-dominated catchments, whereas the strong dilution effect in the wet season is characterized in the intensively-disturbed catchments. Although there are some seasonal variations in concentration, the yields in wet season are almost doubled than that in dry season indicating the strong control of streamflow. For speciation, NH4 is the dominant species in intensively-disturbed catchment, but NO3 dominates the DIN composition for the pristine and agriculture-dominated catchments. Our result can provide a strong basis for supplementary estimation for regional to global study and DIN export control which is the aim of the Kampala Declaration on global nitrogen management. Keywords: dissolved inorganic nitrogen, anthropogenic nitrogen, Taiwan.
Sources of nitrate yields in the Mississippi River Basin.
David, Mark B; Drinkwater, Laurie E; McIsaac, Gregory F
2010-01-01
Riverine nitrate N in the Mississippi River leads to hypoxia in the Gulf of Mexico. Several recent modeling studies estimated major N inputs and suggested source areas that could be targeted for conservation programs. We conducted a similar analysis with more recent and extensive data that demonstrates the importance of hydrology in controlling the percentage of net N inputs (NNI) exported by rivers. The average fraction of annual riverine nitrate N export/NNI ranged from 0.05 for the lower Mississippi subbasin to 0.3 for the upper Mississippi River basin and as high as 1.4 (4.2 in a wet year) for the Embarras River watershed, a mostly tile-drained basin. Intensive corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] watersheds on Mollisols had low NNI values and when combined with riverine N losses suggest a net depletion of soil organic N. We used county-level data to develop a nonlinear model ofN inputs and landscape factors that were related to winter-spring riverine nitrate yields for 153 watersheds within the basin. We found that river runoff times fertilizer N input was the major predictive term, explaining 76% of the variation in the model. Fertilizer inputs were highly correlated with fraction of land area in row crops. Tile drainage explained 17% of the spatial variation in winter-spring nitrate yield, whereas human consumption of N (i.e., sewage effluent) accounted for 7%. Net N inputs were not a good predictor of riverine nitrate N yields, nor were other N balances. We used this model to predict the expected nitrate N yield from each county in the Mississippi River basin; the greatest nitrate N yields corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota across Iowa, Illinois, Indiana, and Ohio. This analysis can be used to guide decisions about where efforts to reduce nitrate N losses can be most effectively targeted to improve local water quality and reduce export to the Gulf of Mexico.
Effects of Anthropogenic Nitrogen Loading on Riverine Nitrogen Export in the Northeastern USA
NASA Astrophysics Data System (ADS)
Boyer, E. W.; Goodale, C. L.; Howarth, R. W.
2001-05-01
Human activities have greatly altered the nitrogen (N) cycle, accelerating the rate of N fixation in landscapes and delivery of N to water bodies. To examine the effects of anthropogenic N inputs on riverine N export, we quantified N inputs and riverine N loss for 16 catchments along a latitudinal profile from Maine to Virginia, which encompass a range of climatic variability and are major drainages to the coast of the North Atlantic Ocean. We quantified inputs of N to each catchment: atmospheric deposition, fertilizer application, agricultural and forest biological N fixation, and the net import of N in food and feed. We compared these inputs with N losses from the system in riverine export. The importance of the relative sources varies widely by watershed and is related to land use. Atmospheric deposition was the largest source (>60%) to the forested catchments of northern New England (e.g., Penobscot and Kennebec); import of N in food was the largest source of N to the more populated regions of southern New England (e.g., Charles and Blackstone); and agricultural inputs were the dominant N sources in the Mid-Atlantic region (e.g., Schuylkill and Potomac). Total N inputs to each catchment increased with percent cover in agriculture and urban land, and decreased with percent forest. Over the combined area of the catchments, net atmospheric deposition was the largest single source input (34%), followed by imports of N in food and feed (24%), fixation in agricultural lands (21%), fertilizer use (15%), and fixation in forests (6%). Riverine export of N is well correlated with N inputs, but it accounts for only a fraction (28%) of the total N inputs. This work provides an understanding of the sources of N in landscapes, and highlights how human activities impact N cycling in the northeast region.
Serra-Casas, Elisa; Manrique, Paulo; Ding, Xavier C.; Carrasco-Escobar, Gabriel; Alava, Freddy; Gave, Anthony; Rodriguez, Hugo; Contreras-Mancilla, Juan; Rosas-Aguirre, Angel; Speybroeck, Niko; González, Iveth J.
2017-01-01
Background Loop-mediated isothermal DNA amplification (LAMP) methodology offers an opportunity for point-of-care (POC) molecular detection of asymptomatic malaria infections. However, there is still little evidence on the feasibility of implementing this technique for population screenings in isolated field settings. Methods Overall, we recruited 1167 individuals from terrestrial (‘road’) and hydric (‘riverine’) communities of the Peruvian Amazon for a cross-sectional survey to detect asymptomatic malaria infections. The technical performance of LAMP was evaluated in a subgroup of 503 samples, using real-time Polymerase Chain Reaction (qPCR) as reference standard. The operational feasibility of introducing LAMP testing in the mobile screening campaigns was assessed based on field-suitability parameters, along with a pilot POC-LAMP assay in a riverine community without laboratory infrastructure. Results LAMP had a sensitivity of 91.8% (87.7–94.9) and specificity of 91.9% (87.8–95.0), and the overall accuracy was significantly better among samples collected during road screenings than riverine communities (p≤0.004). LAMP-based diagnostic strategy was successfully implemented within the field-team logistics and the POC-LAMP pilot in the riverine community allowed for a reduction in the turnaround time for case management, from 12–24 hours to less than 5 hours. Specimens with haemolytic appearance were regularly observed in riverine screenings and could help explaining the hindered performance/interpretation of the LAMP reaction in these communities. Conclusions LAMP-based molecular malaria diagnosis can be deployed outside of reference laboratories, providing similar performance as qPCR. However, scale-up in remote field settings such as riverine communities needs to consider a number of logistical challenges (e.g. environmental conditions, labour-intensiveness in large population screenings) that can influence its optimal implementation. PMID:28982155
Changes in fish assemblage structure in the main-stem Willamette River, Oregon
The Willamette River if Oregon’s largest river, with a basin area of 29,800 km² and a mean annual discharge of 680 m³/3. Beginning in the 1890s, the channel was greatly simplified for navigation. By the 1940s, it was polluted by organic wastes, which resulted in low dissolved o...
Water Quality Conditions in the Missouri River Mainstem System. 2010 Report
2011-11-01
year period 2006 through 2010. .......................................... 191 Plate 25. Estimated biomass, number of species , and percent...site GARLK1512DW during 2010. ............................................................... 264 Plate 98. Estimated biomass, number of species ...of species , and percent composition (based on biomass) by taxonomic grouping for zooplankton tow samples collected in Lake Oahe at Sites OAHLK1073A
We evaluated the number of sites that would yield relatively precise estimates of physical, chemical, and biological condition for six raftable rivers 100-200 km long and 20-120 m wide. We used a probability design to select 20 sites on each of two rivers in Washington and four ...
Fluid temperatures: Modeling the thermal regime of a river network
Rhonda Mazza; Ashley Steel
2017-01-01
Water temperature drives the complex food web of a river network. Aquatic organisms hatch, feed, and reproduce in thermal niches within the tributaries and mainstem that comprise the river network. Changes in water temperature can synchronize or asynchronize the timing of their life stages throughout the year. The water temperature fluctuates over time and place,...
Dogwood Anthracnose and its Spread in the South
Robert L. Anderson; John L. Knighten; Keith Langdon; Floyd Hedrix; Ron Roncadori
In the 15 years since it was first reported in the United States, dogwood anthracnose (caused by Discula destructive sp. nov.) has spread rapidly and caused serious losses among flowering dogwoods (Cornus florida L.), particularly in the South. Infection begins in leaves and spreads to twigs and branches, which dieback. Main-stem infections cause cankers, which kill...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... Intent To Prepare an Environmental Assessment and Conduct San Joaquin River Chinook Salmon Scoping... Chinook salmon to the mainstem of the San Joaquin River. The document contained incorrect contact... second column, correct the e-mail address that was listed as SJRSpringSalmon@noaa.gov to read SJRSpring...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
... Intent To Prepare an Environmental Assessment and to Conduct San Joaquin River Chinook Salmon Scoping... of spring-run Chinook salmon to the mainstem of the San Joaquin River. DATES: NMFS will conduct a..., Sacramento, CA 95814. Comments may also be submitted electronically to SJRSpringSalmon@nooa.gov . Comments...
NASA Astrophysics Data System (ADS)
Le Fouest, Vincent; Matsuoka, Atsushi; Manizza, Manfredi; Shernetsky, Mona; Tremblay, Bruno; Babin, Marcel
2018-03-01
Future climate warming of the Arctic could potentially enhance the load of terrigenous dissolved organic carbon (tDOC) of Arctic rivers due to increased carbon mobilization within watersheds. A greater flux of tDOC might impact the biogeochemical processes of the coastal Arctic Ocean (AO) and ultimately its capacity to absorb atmospheric CO2. In this study, we show that sea-surface tDOC concentrations simulated by a physical-biogeochemical coupled model in the Canadian Beaufort Sea for 2003-2011 compare favorably with estimates retrieved by satellite imagery. Our results suggest that, over spring-summer, tDOC of riverine origin contributes to 35 % of primary production and that an equivalent of ˜ 10 % of tDOC is exported westwards with the potential of fueling the biological production of the eastern Alaskan nearshore waters. The combination of model and satellite data provides promising results to extend this work to the entire AO so as to quantify, in conjunction with in situ data, the expected changes in tDOC fluxes and their potential impact on the AO biogeochemistry at basin scale.
Livelihood Cycle and Vulnerability of Rural Households to Climate Change and Hazards in Bangladesh.
Alam, G M Monirul
2017-05-01
Rural riverine households in Bangladesh are confronted with many climate-driven hazards, including riverbank erosion, which results in loss of productive land and other natural resources of the riverine households, and thus threatens their livelihoods and food security. This study assesses the main drivers of vulnerability and livelihood cycle of vulnerable riparian households in Bangladesh. The study utilises the IPCC framework of vulnerability and develops a weighted approach by employing the livelihood vulnerability index and the climate vulnerability index. The results reveal that the livelihood vulnerability index and the climate vulnerability index differ across locations, however, a high index value for both measures indicates the households' high livelihood vulnerability to climate change and hazards. The main drivers that influence the vulnerability dimensions are livelihood strategies and access to food, water and health facilities. These hazard-prone households are also vulnerable due to their existing low livelihood status that leads to a vicious cycle of poverty. The findings of this study are crucial for policymakers to formulate and implement effective strategies and programs to minimise vulnerability and to enhance the local adaptation processes in order to improve such households' livelihood across Bangladesh.
Livelihood Cycle and Vulnerability of Rural Households to Climate Change and Hazards in Bangladesh
NASA Astrophysics Data System (ADS)
Alam, G. M. Monirul
2017-05-01
Rural riverine households in Bangladesh are confronted with many climate-driven hazards, including riverbank erosion, which results in loss of productive land and other natural resources of the riverine households, and thus threatens their livelihoods and food security. This study assesses the main drivers of vulnerability and livelihood cycle of vulnerable riparian households in Bangladesh. The study utilises the IPCC framework of vulnerability and develops a weighted approach by employing the livelihood vulnerability index and the climate vulnerability index. The results reveal that the livelihood vulnerability index and the climate vulnerability index differ across locations, however, a high index value for both measures indicates the households' high livelihood vulnerability to climate change and hazards. The main drivers that influence the vulnerability dimensions are livelihood strategies and access to food, water and health facilities. These hazard-prone households are also vulnerable due to their existing low livelihood status that leads to a vicious cycle of poverty. The findings of this study are crucial for policymakers to formulate and implement effective strategies and programs to minimise vulnerability and to enhance the local adaptation processes in order to improve such households' livelihood across Bangladesh.
Twumasi, Yaw A.; Merem, Edmund C.
2007-01-01
In the Sub-Saharan African region of the River Niger Basin, where none of the major rivers is fully contained within the borders of a single nation, riverine ecosystem health monitoring is essential for survival. Even the globally proclaimed goals of sustainability and environmental security in the region are unattainable without using geospatial technologies of remote sensing and Geographic Information Systems (GIS) as conduits for environmental health within shared waters. Yet the systematic study of the nature of cooperation between states over shared water resources in troubled areas of the Middle East continues to dominate the literature with minimal coverage of the Sub-Saharan Africa experience and the role of GIS and remote sensing in monitoring the problem. Considering the intense ecosystem stress inflicted on River Niger by human activities and natural forces emanating from upstream and downstream nations. Researching the growing potential for acute riverine ecosystem decline among the nations of Niger and Mali along the River Niger Basin with the latest advances in spatial information technology as a decision support tool not only helps in ecosystem recovery and the avoidance of conflicts, but it has the potentials to bring countries much closer through information exchange. While the nature of the problem remains compounded due to the depletion of available water resources and environmental resources within shared waters, the lack of information exchange extracts ecological costs from all players. This is essential as the Niger Basin nations move towards a multinational watershed management as a conduit for sustainability. To confront these problems, some research questions with relevance to the paper have been posed. The questions include, Have there been any declines in the riverine ecosystem of the study area? What are the effects and what factors trigger the changes? What mitigation measures are in place for dealing with the problems? The first objective of the paper is to develop a new framework for analyzing the health of riverine ecosystems while the second objective seeks a contribution to the literature. The third objective is to design a geo-spatial tool for riverine ecosystem management and impact analysis. The fourth objective is to measure the nature of change in riverine environments with the latest advances in geo-spatial information technologies and methods. In terms of methodology, the paper relies on primary data sources analyzed with descriptive statistics, GIS techniques and remote sensing. The sections in the paper consist of a review of the major environmental effects and factors associated with the problem as well as mitigation measures in Mali and Niger. The paper concludes with some recommendations. The results point to growing modification along the riverine environments of the Mali and Niger portions of the River Niger Basin due to a host of factors. PMID:17617682
Cope, W.G.; Holliman, F.M.; Kwak, T.J.; Oakley, N.C.; Lazaro, P.R.; Shea, D.; Augspurger, T.; Law, J.M.; Henne, J.P.; Ware, K.M.
2011-01-01
The aim of this study was to determine the suitability of water quality in the Roanoke River of North Carolina for supporting shortnose sturgeon Acipenser brevirostrum, an endangered species in the United States. Fathead minnows Pimephales promelas were also evaluated alongside the sturgeon as a comparative species to measure potential differences in fish survival, growth, contaminant accumulation, and histopathology in a 28-day in situ toxicity test. Captively propagated juvenile shortnose sturgeon (total length 49??8mm, mean??SD) and fathead minnows (total length 39??3mm, mean??SD) were used in the test and their outcomes were compared to simultaneous measurements of water quality (temperature, dissolved oxygen, pH, conductivity, total ammonia nitrogen, hardness, alkalinity, turbidity) and contaminant chemistry (metals, polycyclic aromatic hydrocarbons, organochlorine pesticides, current use pesticides, polychlorinated biphenyls) in river water and sediment. In the in situ test, there were three non-riverine control sites and eight riverine test sites with three replicate cages (25??15-cm (OD) clear plexiglass with 200-??m tear-resistant Nitex?? screen over each end) of 20 shortnose sturgeon per cage at each site. There was a single cage of fathead minnows also deployed at each site alongside the sturgeon cages. Survival of caged shortnose sturgeon among the riverine sites averaged 9% (range 1.7-25%) on day 22 of the 28-day study, whereas sturgeon survival at the non-riverine control sites averaged 64% (range 33-98%). In contrast to sturgeon, only one riverine deployed fathead minnow died (average 99.4% survival) over the 28-day test period and none of the control fathead minnows died. Although chemical analyses revealed the presence of retene (7-isopropyl-1-methylphenanthrene), a pulp and paper mill derived compound with known dioxin-like toxicity to early life stages of fish, in significant quantities in the water (251-603ngL-1) and sediment (up to 5000ngg-1 dry weight) at several river sites, no correlation was detected of adverse water quality conditions or measured contaminant concentrations to the poor survival of sturgeon among riverine test sites. Histopathology analysis determined that the mortality of the river deployed shortnose sturgeon was likely due to liver and kidney lesions from an unknown agent(s). Given the poor survival of shortnose sturgeon (9%) and high survival of fathead minnows (99.4%) at the riverine test sites, our study indicates that conditions in the Roanoke River are incongruous with the needs of juvenile shortnose sturgeon and that fathead minnows, commonly used standard toxicity test organisms, do not adequately predict the sensitivity of shortnose sturgeon. Therefore, additional research is needed to help identify specific limiting factors and management actions for the enhancement and recovery of this imperiled fish species. Published 2010. This article is a US Government work and is in the public domain in the USA.
Twumasi, Yaw A; Merem, Edmund C
2007-06-01
In the Sub-Saharan African region of the River Niger Basin, where none of the major rivers is fully contained within the borders of a single nation, riverine ecosystem health monitoring is essential for survival. Even the globally proclaimed goals of sustainability and environmental security in the region are unattainable without using geospatial technologies of remote sensing and Geographic Information Systems (GIS) as conduits for environmental health within shared waters. Yet the systematic study of the nature of cooperation between states over shared water resources in troubled areas of the Middle East continues to dominate the literature with minimal coverage of the Sub- Saharan Africa experience and the role of GIS and remote sensing in monitoring the problem. Considering the intense ecosystem stress inflicted on River Niger by human activities and natural forces emanating from upstream and downstream nations. Researching the growing potential for acute riverine ecosystem decline among the nations of Niger and Mali along the River Niger Basin with the latest advances in spatial information technology as a decision support tool not only helps in ecosystem recovery and the avoidance of conflicts, but it has the potentials to bring countries much closer through information exchange. While the nature of the problem remains compounded due to the depletion of available water resources and environmental resources within shared waters, the lack of information exchange extracts ecological costs from all players. This is essential as the Niger Basin nations move towards a multinational watershed management as a conduit for sustainability. To confront these problems, some research questions with relevance to the paper have been posed. The questions include, Have there been any declines in the riverine ecosystem of the study area? What are the effects and what factors trigger the changes? What mitigation measures are in place for dealing with the problems? The first objective of the paper is to develop a new framework for analyzing the health of riverine ecosystems while the second objective seeks a contribution to the literature. The third objective is to design a geo-spatial tool for riverine ecosystem management and impact analysis. The fourth objective is to measure the nature of change in riverine environments with the latest advances in geo-spatial information technologies and methods. In terms of methodology, the paper relies on primary data sources analyzed with descriptive statistics, GIS techniques and remote sensing. The sections in the paper consist of a review of the major environmental effects and factors associated with the problem as well as mitigation measures in Mali and Niger. The paper concludes with some recommendations. The results point to growing modification along the riverine environments of the Mali and Niger portions of the River Niger Basin due to a host of factors.
Population Viability Analysis of Riverine Fishes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, P.; Chandler, J.; Jager, H.I.
Many utilities face conflkts between two goals: cost-efficient hydropower generation and protecting riverine fishes. Research to develop ecological simulation tools that can evaluate alternative mitigation strategies in terms of their benefits to fish populations is vital to informed decision-making. In this paper, we describe our approach to population viability analysis of riverine fishes in general and Snake River white sturgeon in particular. We are finding that the individual-based modeling approach used in previous in-stream flow applications is well suited to addressing questions about the viability of species of concern for several reasons. Chief among these are: (1) the abiIity tomore » represent the effects of individual variation in life history characteristics on predicted population viabili~, (2) the flexibili~ needed to quanti~ the ecological benefits of alternative flow management options by representing spatial and temporal variation in flow and temperaturty and (3) the flexibility needed to quantifi the ecological benefits of non-flow related manipulations (i.e., passage, screening and hatchery supplementation).« less
Esterhuizen, Johan; Rayaisse, Jean Baptiste; Tirados, Inaki; Mpiana, Serge; Solano, Philippe; Vale, Glyn A.; Lehane, Michael J.; Torr, Stephen J.
2011-01-01
Control of the Riverine (Palpalis) group of tsetse flies is normally achieved with stationary artificial devices such as traps or insecticide-treated targets. The efficiency of biconical traps (the standard control device), 1×1 m black targets and small 25×25 cm targets with flanking nets was compared using electrocuting sampling methods. The work was done on Glossina tachinoides and G. palpalis gambiensis (Burkina Faso), G. fuscipes quanzensis (Democratic Republic of Congo), G. f. martinii (Tanzania) and G. f. fuscipes (Kenya). The killing effectiveness (measured as the catch per m2 of cloth) for small targets plus flanking nets is 5.5–15X greater than for 1 m2 targets and 8.6–37.5X greater than for biconical traps. This has important implications for the costs of control of the Riverine group of tsetse vectors of sleeping sickness. PMID:21829743
The South Carolina bridge-scour envelope curves
Benedict, Stephen T.; Feaster, Toby D.; Caldwell, Andral W.
2016-09-30
The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a series of three field investigations to evaluate historical, riverine bridge scour in the Piedmont and Coastal Plain regions of South Carolina. These investigations included data collected at 231 riverine bridges, which lead to the development of bridge-scour envelope curves for clear-water and live-bed components of scour. The application and limitations of the South Carolina bridge-scour envelope curves were documented in four reports, each report addressing selected components of bridge scour. The current investigation (2016) synthesizes the findings of these previous reports into a guidance manual providing an integrated procedure for applying the envelope curves. Additionally, the investigation provides limited verification for selected bridge-scour envelope curves by comparing them to field data collected outside of South Carolina from previously published sources. Although the bridge-scour envelope curves have limitations, they are useful supplementary tools for assessing the potential for scour at riverine bridges in South Carolina.
NASA Astrophysics Data System (ADS)
Andersson, A.; Brugel, S.; Paczkowska, J.; Rowe, O. F.; Figueroa, D.; Kratzer, S.; Legrand, C.
2018-05-01
Phytoplankton and heterotrophic bacteria are key groups at the base of aquatic food webs. In estuaries receiving riverine water with a high content of coloured allochthonous dissolved organic matter (ADOM), phytoplankton primary production may be reduced, while bacterial production is favoured. We tested this hypothesis by performing a field study in a northerly estuary receiving nutrient-poor, ADOM-rich riverine water, and analyzing results using multivariate statistics. Throughout the productive season, and especially during the spring river flush, the production and growth rate of heterotrophic bacteria were stimulated by the riverine inflow of dissolved organic carbon (DOC). In contrast, primary production and photosynthetic efficiency (i.e. phytoplankton growth rate) were negatively affected by DOC. Primary production related positively to phosphorus, which is the limiting nutrient in the area. In the upper estuary where DOC concentrations were the highest, the heterotrophic bacterial production constituted almost 100% of the basal production (sum of primary and bacterial production) during spring, while during summer the primary and bacterial production were approximately equal. Our study shows that riverine DOC had a strong negative influence on coastal phytoplankton production, likely due to light attenuation. On the other hand DOC showed a positive influence on bacterial production since it represents a supplementary food source. Thus, in boreal regions where climate change will cause increased river inflow to coastal waters, the balance between phytoplankton and bacterial production is likely to be changed, favouring bacteria. The pelagic food web structure and overall productivity will in turn be altered.
Parry, L E; Chapman, P J; Palmer, S M; Wallage, Z E; Wynne, H; Holden, J
2015-09-15
Peatlands are important sources of fluvial carbon. Previous research has shown that riverine dissolved organic carbon (DOC) concentrations are largely controlled by soil type. However, there has been little work to establish the controls of riverine DOC within blanket peatlands that have not undergone major disturbance from drainage or burning. A total of 119 peatland catchments were sampled for riverine DOC and water colour across three drainage basins during six repeated sampling campaigns. The topographic characteristics of each catchment were determined from digital elevation models. The dominant vegetation cover was mapped using 0.5m resolution colour infrared aerial images, with ground-truthed validation revealing 82% accuracy. Forward and backward stepwise regression modelling showed that mean slope was a strong (and negative) determinant of DOC and water colour in blanket peatland river waters. There was a weak role for plant functional type in determining DOC and water colour. At the basin scale, there were major differences between the models depending on the basin. The dominance of topographic predictors of DOC found in our study, combined with a weaker role of vegetation type, paves the way for developing improved planning tools for water companies operating in peatland catchments. Using topographic data and aerial imagery it will be possible to predict which tributaries will typically yield lower DOC concentrations and which are therefore more suitable and cost-effective as raw water intakes. Copyright © 2015 Elsevier B.V. All rights reserved.
Methane distribution and oxidation around the Lena Delta in summer 2013
NASA Astrophysics Data System (ADS)
Bussmann, Ingeborg; Hackbusch, Steffen; Schaal, Patrick; Wichels, Antje
2017-11-01
The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The predicted increases in global temperatures are expected to cause the permafrost areas surrounding the Lena Delta to melt at increasing rates. This melting will result in high amounts of methane reaching the waters of the Lena and the adjacent Laptev Sea. The only biological sink that can lower methane concentrations within this system is methane oxidation by methanotrophic bacteria. However, the polar estuary of the Lena River, due to its strong fluctuations in salinity and temperature, is a challenging environment for bacteria. We determined the activity and abundance of aerobic methanotrophic bacteria by a tracer method and by the quantitative polymerase chain reaction. We described the methanotrophic population with a molecular fingerprinting method (monooxygenase intergenic spacer analysis), as well as the methane distribution (via a headspace method) and other abiotic parameters, in the Lena Delta in September 2013. The median methane concentrations were 22 nmol L-1 for riverine water (salinity (S) < 5), 19 nmol L-1 for mixed water (5 < S < 20) and 28 nmol L-1 for polar water (S > 20). The Lena River was not the source of methane in surface water, and the methane concentrations of the bottom water were mainly influenced by the methane concentration in surface sediments. However, the bacterial populations of the riverine and polar waters showed similar methane oxidation rates (0.419 and 0.400 nmol L-1 d-1), despite a higher relative abundance of methanotrophs and a higher estimated diversity in the riverine water than in the polar water. The methane turnover times ranged from 167 days in mixed water and 91 days in riverine water to only 36 days in polar water. The environmental parameters influencing the methane oxidation rate and the methanotrophic population also differed between the water masses. We postulate the presence of a riverine methanotrophic population that is limited by sub-optimal temperatures and substrate concentrations and a polar methanotrophic population that is well adapted to the cold and methane-poor polar environment but limited by a lack of nitrogen. The diffusive methane flux into the atmosphere ranged from 4 to 163 µmol m2 d-1 (median 24). The diffusive methane flux accounted for a loss of 8 % of the total methane inventory of the investigated area, whereas the methanotrophic bacteria consumed only 1 % of this methane inventory. Our results underscore the importance of measuring the methane oxidation activities in polar estuaries, and they indicate a population-level differentiation between riverine and polar water methanotrophs.
Fishes of the big muddy river drainage with emphasis on historical changes
Brooks M. Burr; Melvin L. Warren
1999-01-01
The Big Muddy River, a lowland stream located in southwestern Illinois and draining an area of about 6,182 km2, contains a moderately diverse fish fauna of 106 species. The river is properly named, as the mainstem carried historically and continues to transport great quantities of silt. Historically, a large portion of the watershed was wooded,...
Large woody debris budgets in the Caspar Creek Experimental Watersheds
Sue Hilton
2012-01-01
Monitoring of large woody debris (LWD) in the two mainstem channels of the Caspar Creek Experimental Watersheds since 1998, combined with older data from other work in the watersheds, gives estimates of channel wood input rates, survival, and outputs in intermediate-sized channels in coastal redwood forests. Input rates from standing trees for the two reaches over a 15...
Dalton J. Hance; Lisa M. Ganio; Kelly M. Burnett; Joseph L. Ebersole
2016-01-01
For several species of salmonids, Oncorhynchus and Salvelinus spp., inhabiting Pacific coastal temperate streams, juvenile fish have been recorded moving between main-stem and tributary habitats during the transition from the summer dry season to the winter wet season. Movement connecting summer and winter habitats may be particularly important for...
NASA Astrophysics Data System (ADS)
Cooper, C.; Nayegandhi, A.; Faux, R.
2013-12-01
Small-footprint, green wavelength airborne LiDAR systems can provide seamless topography across the land-water interface at very high spatial resolution. These data have the potential to improve floodplain modeling, fisheries habitat assessments, stream restoration efforts, and other applications by continuously mapping shallow water depths that are difficult or impossible to measure using traditional ground-based or water-borne survey techniques. WSI (Corvallis, Oregon) in collaboration with Dewberry, (Tampa, Florida) and Riegl (Orlando, Florida), deployed the Riegl VQ-820-G hydrographic airborne laser scanner to map riverine and lacustrine environments from Oregon to Minnesota. Discussion will focus on the ability to accurately map depth and underwater structure, as well as riparian vegetation and terrain under different conditions. Results indicate that depth penetration varies with both water (i.e. clarity and surface conditions) and bottom conditions (i.e. substrate, depth, and landform). Depth penetration was typically limited to 1 Secchi depth or less across selected project areas. As an example, the green LiDAR system effectively mapped 83% of a shallow water river system, the Sandy River, with typical depths ranging from 0-2.5 meters. WSI will show quantitative comparisons of Green LiDAR surveys against more traditional methods such as rod or sonar surveys. WSI will also discuss advantages and limitations of Green LiDAR surveys for bathymetric modeling including survey accuracy, density, and efficiency along with data processing challenges not inherent with traditional NIR LiDAR processing.
NASA Astrophysics Data System (ADS)
Bailly, J. S.; Dartevelle, M.; Delenne, C.; Rousseau, A.
2017-12-01
Floodplain and major river bed topography govern many river biophysical processes during floods. Despite the grow of direct topographic measurements from LiDARS on riverine systems, it still room to develop methods for large (e.g. deltas) or very local (e.g. ponds) riverine systems that take advantage of information coming from simple SAR or optical image processing on floodplain, resulting from waterbodies delineation during flood up or down, and producing ordered coutour lines. The next challenge is thus to exploit such data in order to estimate continuous topography on the floodplain combining heterogeneous data: a topographic points dataset and a located but unknown and ordered contourline dataset. This article is comparing two methods designed to estimate continuous topography on the floodplain mixing ordinal coutour lines and continuous topographic points. For both methods a first estimation step is to value each contourline with elevation and a second step is next to estimate the continuous field from both topographic points and valued contourlines. The first proposed method is a stochastic method starting from multigaussian random-fields and conditional simualtion. The second is a deterministic method based on radial spline fonction for thin layers used for approximated bivariate surface construction. Results are first shown and discussed from a set of synoptic case studies presenting various topographic points density and topographic smoothness. Next, results are shown and discuss on an actual case study in the Montagua laguna, located in the north of Valparaiso, Chile.
NASA Astrophysics Data System (ADS)
Brown, T. G.; Lespez, L.; Sear, D. A.; Houben, P.; Klimek, K.
2016-12-01
Floodplain and major river bed topography govern many river biophysical processes during floods. Despite the grow of direct topographic measurements from LiDARS on riverine systems, it still room to develop methods for large (e.g. deltas) or very local (e.g. ponds) riverine systems that take advantage of information coming from simple SAR or optical image processing on floodplain, resulting from waterbodies delineation during flood up or down, and producing ordered coutour lines. The next challenge is thus to exploit such data in order to estimate continuous topography on the floodplain combining heterogeneous data: a topographic points dataset and a located but unknown and ordered contourline dataset. This article is comparing two methods designed to estimate continuous topography on the floodplain mixing ordinal coutour lines and continuous topographic points. For both methods a first estimation step is to value each contourline with elevation and a second step is next to estimate the continuous field from both topographic points and valued contourlines. The first proposed method is a stochastic method starting from multigaussian random-fields and conditional simualtion. The second is a deterministic method based on radial spline fonction for thin layers used for approximated bivariate surface construction. Results are first shown and discussed from a set of synoptic case studies presenting various topographic points density and topographic smoothness. Next, results are shown and discuss on an actual case study in the Montagua laguna, located in the north of Valparaiso, Chile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Russell W.; Skalski, John R.
Wetlands in the Columbia River estuary are actively being restored by reconnecting these habitats to the estuary, making more wetland habitats available to rearing and migrating juvenile salmon. Concurrently, thousands of acoustically tagged juvenile salmonids are released into the Columbia River to estimate their survival as they migrate through the estuary. Here, we develop a release-recapture model that makes use of these tagged fish to measure the success of wetland restoration projects in terms of their contribution to populations of juvenile salmon. Specifically, our model estimates the fraction of the population that enter the wetland, survival within the wetland, andmore » the mean residence time of fish within the wetland. Furthermore, survival in mainstem Columbia River downstream of the wetland can be compared between fish that remained the mainstem and entered the wetland. These conditional survival estimates provide a means of testing whether the wetland improves the subsequent survival of juvenile salmon by fostering growth or improving their condition. Implementing such a study requires little additional cost because it takes advantage of fish already released to estimate survival through the estuary. Thus, such a study extracts the maximum information at minimum cost from research projects that typically cost millions of dollars annually.« less
Konieczki, Alice D.; Graf, Julia B.; Carpenter, Michael C.
1997-01-01
An 8-day period of planned release of water at 1,275 cubic meters per second from Glen Canyon Dam in March and April 1996 provided an opportunity to collect data on river stage, streamflow, water chemistry, and sediment transport at discharges above powerplant releases. The U.S. Geological Survey collected data at five streamflow-gaging stations on the mainstem of the Colorado River and four on tributaries during the controlled flood. River-stage data were collected at an additional 29 locations, and suspended-sediment data were collected at 4 of the 5 mainstem streamflow-gaging stations. In addition, measurements of reach-average flow velocity were made using a dye tracer, and water-surface slope was measured in reaches adjacent to three of the streamflow-gaging stations. Sand-storage changes caused by the controlled flood were documented by measuring bed elevation of the channel at cross sections before and after the controlled releases at the network of 120 monumented locations. This report presents selected data in tabular and graphical form. The data presented in the report are available in electronic form.
NASA Astrophysics Data System (ADS)
Zheng, Ying; Waldron, Susan; Flowers, Hugh
2015-04-01
Peatlands are an important terrestrial carbon reserve and a principal source of dissolved organic carbon (DOC) to the fluvial environment (Wallage et al. 2006). Recently it has been observed that DOC concentrations [DOC] in surface waters have increased in Europe and North America (Monteith et al. 2007). This has been attributed primarily to reduced acid deposition. However, land use change can also release C from peat soils. A significant land use change in Scotland is hosting windfarms. Whether windfarm construction causes such impacts has been a research focus, particularly considering fluvial losses, but usually assessing if there are changes in DOC concentration rather than composition. Our study area is a peaty catchment that hosts wind turbines, has peat restoration activities and forest felling and is drained by two streams. We are using UV-visible and fluorescence spectrophotometry to assess if there are differences between the two steams or temporal changes in DOC composition. We will present data from samples collected since February 2014. The parameters we are focusing on are SUVA254, E4/E6 and E2/E4 ratios as these are indicators of DOC aromaticity, humic acid (HA): fulvic acid (FA) ratio and the proportion of humic substances in DOC (Weishaar, 2003; Spencer et al. 2007; Graham et al. 2012). To assess these we have measured UV-visible absorbance spectra from 200 nm to 800 nm. Meanwhile sample fluorescence emission and excitation matrix (EEM) will be applied with the PARAFAC model to obtain more information about the variations in humic substances in this catchment. Our current analysis indicates spatial differences not only in DOC concentration but also in composition. For example, the mainstem draining the windfarm area had a smaller [DOC] but higher E4/E6 and lower E2/E4 ratio values than the tributary draining an area of felled forestry. This may be indicative of more HAs in the mainstem DOC. Seasonal variations have also been observed. Both streams had high [DOC] in summer and autumn compared to spring. While E2/E4 ratios were steady in both streams, a more variable E4/E6 ratio in the mainstem may suggest DOC composition changed more over time than in the tributary which had a relatively stable E4/E6 ratio. [DOC] fell in both streams during the summer drought period but a corresponding fall in SUVA254 in the mainstem but not the tributary is further evidence of differences in DOC composition between the two streams. Such spatial and temporal understanding is needed to understand if, and how, land use influences the composition of the DOC exported. References: Graham M. C. et al. 2012. Processes controlling manganese distributions and associations in organic-rich freshwater aquatic systems: The example of Loch Bradan, Scotland. Science of the Total Environment, 424, 239-250. Monteith D. et al. 2007. Dissolved organic carbon trends resulting from changes in atmospheric chemistry. Nature,450, 537-540. Spencer R.G.M, Bolton L. and Baker A. 2007. Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations.Water Research, 41 (13):2941-2950. Wallage Z.E., Holden, J. and McDonald, A.T. 2006. Drain blocking: An effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland. Science of the total environment, 367, 811-821. Weishaar J.L. et al. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37(20): 4702-4708.
Anderson, Chauncey W.
2007-01-01
Construction of a selective withdrawal tower at Cougar Reservoir in the South Fork McKenzie River, Oregon, during 2002-05 resulted in a prolonged release of sediment and high-turbidity water to downstream reaches throughout the summer of 2002, with additional episodic releases during storms in the following winters. Suspended-sediment concentrations and loads at five continuously monitored turbidity and discharge gaging stations were estimated using regression methods. Deposition in salmonid spawning beds was measured using infiltration bags. Stations were located upstream and downstream of Cougar Reservoir in the South Fork McKenzie River, in the mainstem of the McKenzie River upstream of the South Fork and downstream of Blue River, and in Blue River downstream of Blue River Reservoir. During 2002, Cougar Reservoir released approximately 17,000 tons of suspended sediment into the South Fork McKenzie River, or more than twice the incoming load from the South Fork upstream of the reservoir. In 2003 and 2004, the release of sediment from Cougar Reservoir decreased to 10,900 and 4,100 tons, respectively. Although Cougar Reservoir likely was a substantial source of sediment to the lower reaches during water years 2002 and 2003, the lack of continuous turbidity monitoring at stations other than the South Fork McKenzie River prior to January 2003 prevents quantification of the actual contribution to the mainstem. During water year 2004, the only year with complete records at all sites, Cougar Reservoir released about 24 percent (4,100 tons) of the sediment load estimated on the mainstem near Vida (16,900 tons); however, the relative contribution of Cougar Reservoir is expected to have been substantially larger during 2002 and 2003 when the newly exposed river channel in the upper reaches of the reservoir was actively eroding and migrating. Deposition of fine (less than 0.063-millimeter diameter) sediment into spawning beds, measured with the use of deployed infiltration bags, was greatest downstream of Cougar and Blue River Reservoirs (1.0 and 1.2 percent of total sediments, respectively). Deposition was least in the high-energy, unregulated environments (about 0.25 percent) of the South Fork McKenzie River above Cougar Reservoir and in the mainstem above the South Fork, and intermediate near Vida, the most downstream site on the mainstem. DDT, applied throughout much of the upper McKenzie River drainage basin to control spruce budworm during the 1950s, was detected in the South Fork near Rainbow in the form of its metabolites DDD and DDE in fine sediment captured in the infiltration bags. DDE also was detected in infiltration bags deployed in the McKenzie River near Vida, downstream of the South Fork. All concentrations of DDD and DDE were less than the aquatic-life criterion for bed sediment. DDT species were not detected in water samples, including samples collected during large storms. The reservoir apparently acted as a trap for sediment and DDT throughout the course of its existence, facilitating degradation of the trapped DDT, and may have been a source for both during the construction period in 2002-05, but the lack of detections during storms indicates that DDT transport was small. Transport of detectable amounts of DDT likely was limited to periods of high suspended-sediment concentrations (greater than 75-100 milligrams per liter). Infiltration bags were deployed during August 2003-July 2004 and were a useful device for measuring fine-sediment deposition and for chemical analysis of the deposited material. Deposition of fine-grained sediment downstream of the flood-control dams may be reduced if bed-moving events can be periodically reintroduced to those reaches.
Habitat Suitability Index Models: Alewife and blueback herring
Pardue, Garland B.
1983-01-01
Alewives and blueback herring are anadromous clupeids found along the Atlantic coast in marine, estuarine, and riverine habitats, depending upon life stage. Both are important commercial species, used fresh or salted for human consumption, and used as crab bait, fish meal (particularly in animal food manufacturing), and fish oil. Alewife and blueback herring are marketed collectively as 'river herring,' a term that will be used for both species in this report. River herring play important ecological roles. In marine, estuarine, and riverine food webs, they occupy a level between zooplankton, their principal food, and piscivores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Allen B.
1999-07-01
This Annual Report provides a detailed overview of watershed restoration accomplishments achieved by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and project partners in the Upper Grande Ronde River Basin under contract with the Bonneville Power Administration (BPA) during the period July 1, 1997 through June 30, 1998. The Contract Agreement entitled McCoy Meadows Watershed Restoration Project (Project No.96-83-01) includes habitat restoration planning, design, and implementation in two project areas--the McCoy Meadows Ranch located in the Meadow, McCoy, and McIntyre Creek subbasins on private land and the Mainstem Grande Ronde River Habitat Enhancement Project located on private andmore » National Forest System lands near Bird Tract Springs along the Grande Ronde River. During the contract period, the CTUIR and partners (Mark and Lorna Tipperman, landowners), Oregon Department of Environmental Quality (ODEQ), U.S. Environmental Protection Agency (EPA), Oregon Department of Fish and Wildlife (ODFW), and Natural Resource Conservation Service (NRCS) initiated phase 1 construction of the McCoy Meadows Restoration Project. Phase 1 involved reintroduction of a segment of McCoy Creek from its existing channelized configuration into a historic meander channel. Project efforts included bioengineering and tree/shrub planting and protection, transporting salvaged cottonwood tree boles and limbs from offsite source to the project area for utilization by resident beaver populations for forage and dam construction materials, relocation of existing BPA/ODFW riparian corridor fencing to outer edges of meadow floodplain, establishment of pre-project photo points, and coordination of other monitoring and evaluation efforts being led by other project partners including groundwater monitoring wells, channel cross sections, water quality monitoring stations, juvenile population sampling index sites, redd surveys, and habitat surveys. Project activities also included coordination with the U.S. Forest Service, Wallowa-Whitman National Forest, LaGrande Ranger District (USFS) on the Forest Road 2137 (McIntyre Road) Relocation and Obliteration Project and the McCoy Creek crossing. The USFS completed engineering designs under the cooperative effort for the McCoy Creek crossing. Project activities accomplished on the Upper Mainstem Large Wood Addition Project included placement of approximately 120 whole trees to enhance instream structural diversity, pool habitat quality, streambank stability, and improved floodplain morphology. Project activities accomplished on the Mainstem Grande Ronde Habitat Enhancement Project included coordination with landowners (Shauna Musgrove of Cuhna Ranches, Dean Stone, and the Wallowa-Whitman National Forest, LaGrande Ranger District) to develop a habitat enhancement/restoration project opportunity along a 3 mile section of the mainstem Grande Ronde River and major tributaries including the lower reaches of Bear Creek and Jordan Creek. Upon securing an agreement with the landowners, project partners including the CTUIR, ODFW, NRCS, and USFS initiated development of project objectives and site-specific designs. By June 1998, project designs were completed and preparations nearly complete to initiate onsite project construction.« less
NASA Astrophysics Data System (ADS)
Anderson, M. R.; Rivkin, R. B.
2016-02-01
Petroleum hydrocarbon discharges related to fossil fuel exploitation have the potential to alter microbial processes in the upper ocean. While the ecotoxicological effects of such inputs are commonly evaluated, the potential for eutrophication from the constituent organic and inorganic nutrients has been largely ignored. Hydrocarbons from natural seeps and anthropogenic sources represent a measurable source of organic carbon for surface waters. The most recent (1989-1997) estimate of average world-wide input of hydrocarbons to the sea is 1.250 x 1012 g/yr ≈ 1.0 x 1012g C/year. Produced water from offshore platforms is the largest waste stream from oil and gas exploitation and contributes significant quantities of inorganic nutrients such as N, P and Fe. In coastal areas where such inputs are a significant source of these nutrients, model studies show the potential to shift production toward smaller cells and net heterotrophy. The consequences of these nutrient sources for coastal systems and semi enclosed seas are complex and difficult to predict, because (1) there is a lack of comprehensive data on inputs and in situ concentrations and (2) the is no conceptual or quantitative framework to consider their effects on ocean biogeochemical processes. Here we use examples from the North Sea (produced water discharges 1% total riverine input and NH4 3% of the annual riverine nitrogen load), the South China Sea (total petroleum hydrocarbons = 10-1750 μg/l in offshore waters), and the Gulf of Mexico (seeps = 76-106 x 109 gC/yr, Macondo blowout 545 x 109 gC) to demonstrate how hydrocarbon and produced water inputs can influence basin scale biogeochemical and ecosystem processes and to propose a framework to consider these effects on larger scales.
Ecosystem-level consequences of migratory faunal depletion caused by dams
Freeman, Mary C.; Pringle, C.M.; Greathouse, E.A.; Freeman, B.J.; Limburg, K.E.; Waldman, J.R.
2003-01-01
Humans have been damming rivers for millennia, and our more ambitious efforts over the past century have arguably altered river ecosystems more extensively than any other anthropogenic activity. Effects of damming on river biota include decimation of migratory fauna (e.g., diadromous and potamodromous fishes and crustaceans), lost fisheries, and imperilment of obligate riverine taxa. Although effects of dams on biota have been widely documented, ecosystem-level consequences of faunal depletion caused by dams are only beginning to be appreciated. We discuss consequences to river ecosystems of altering distributions and abundances of migratory fauna, which often provide trophic subsidies and may strongly influence the structure of local habitats and communities. It is well documented that anadromous fishes can provide a major input of nutrients and energy to freshwater systems when spawning adults return from the sea. Other less-studied taxa that migrate between distinct portions of riverine systems (e.g., acipencerids, catostomids, and prochilodontids) may similarly provide trophic transfers within undammed river systems, in addition to modifying local communities and habitats through feeding and spawning activities. Experimental faunal exclusions have demonstrated strong potential effects of some amphidromous shrimps and potamodromous fishes on benthic organic matter and algal and invertebrate communities. Depletion of these animals above dams is likely to significantly affect ecosystem processes such as primary production and detrital processing. The decline of freshwater mussels isolated by dams from their migratory fish hosts has likely lowered stream productivity, nutrient retention and benthic stability. Greater focus on effects of dams on ecosystem processes, as mediated by faunal change, would improve our ability to assess the costs and benefits of future river management strategies.
Marine geochemical cycles of the alkali elements and boron: the role of sediments
NASA Astrophysics Data System (ADS)
James, Rachael H.; Palmer, Martin R.
2000-09-01
We have analysed the concentrations of Li, K, Rb, Cs, and B, and the isotopic ratios of Li and B of a suite of pore fluids recovered from ODP Sites 1037 (Leg 169; Escanaba Trough) and 1034 (Leg 169S; Saanich Inlet). In addition, we have analysed dissolved K, Rb, and Cs concentrations for estuarine mixing of the Ganges-Brahmaputra river system. Together, these data sets have been used to assess the role of sediments in the marine geochemical cycles of the alkali elements and boron. Uptake onto clay minerals during estuarine mixing removes 20-30% of the riverine input of dissolved Cs and Rb to the oceans. Prior to this study, the only other recognised sink of Rb and Cs was uptake during low-temperature alteration of the oceanic crust. Even with this additional sink there is an excess of inputs over outputs in their modern oceanic mass balance. Pore fluid data show that Li and Rb are transferred into marine sediments during early diagenesis. However, modeling of the Li isotope systematics of the pore fluids from Site 1037 shows that seawater Li taken up during marine sedimentation can be readily returned to solution in the presence of less hydrated cations, such as NH 4+. This process also appears to result in high concentrations of pore fluid Cs (relative to local seawater) due to expulsion of adsorbed Cs from cation exchange sites. Flux calculations based on pore fluid data for a series of ODP sites indicate that early diagenesis of clay sediments removes around 8% of the modern riverine input of dissolved Li. Although NH 4+-rich fluids do result in a flux of Cs to the oceans, on the global scale this input only augments the modern riverine Cs flux by ˜3%. Nevertheless, this may have implications for the fate of radioactive Cs in the natural environment and waste repositories.
Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.
Arimitsu, Mayumi L; Hobson, Keith A; Webber, D'Arcy N; Piatt, John F; Hood, Eran W; Fellman, Jason B
2018-01-01
Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidies to glacier-marine habitats by developing a multi-trophic level Bayesian three-isotope mixing model. We utilized large gradients in stable (δ 13 C, δ 15 N, δ 2 H) and radiogenic (Δ 14 C) isotopes that trace riverine and marine organic matter sources as they are passed from lower to higher trophic levels in glacial-marine habitats. We also compared isotope ratios between glacial-marine and more oceanic habitats. Based on isotopic measurements of potential baseline sources, ambient water and tissues of marine consumers, estimates of the riverine organic matter source contribution to upper trophic-level species including fish and seabirds ranged from 12% to 44%. Variability in resource use among similar taxa corresponded to variation in species distribution and life histories. For example, riverine organic matter assimilation by the glacier-nesting seabirds Kittlitz's murrelet (Brachyramphus brevirostris) was greater than that of the forest-nesting marbled murrelet (B. marmoratus). The particulate and dissolved organic carbon in glacial runoff and near surface coastal waters was aged (12100-1500 years BP 14 C-age) but dissolved inorganic carbon and biota in coastal waters were young (530 years BP 14 C-age to modern). Thus terrestrial-derived subsidies in marine food webs were primarily composed of young organic matter sources released from glacier ecosystems and their surrounding watersheds. Stable isotope compositions also revealed a divergence in food web structure between glacial-marine and oceanic sites. This work demonstrates linkages between terrestrial and marine ecosystems, and facilitates a greater understanding of how climate-driven changes in freshwater runoff have the potential to alter food web dynamics within coastal marine ecosystems in Alaska. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Kuwabara, J. S.; Topping, B. R.; Lynch, D. D.; Murphy, F.; Carter, J. L.; Lindenberg, M.
2007-12-01
Hypoxic, environmentally stressful conditions for endangered fish populations have been generated over the past century by an annual phytoplankton bloom in Upper Klamath Lake, OR. The bloom is consistently dominated by the nitrogen-fixing cyanophyte Aphanizomenon flos-aquae (AFA), thus a quantitative understanding of processes affecting the transport of biologically available phosphorus (P), presumably the limiting nutrient, is critical for resource management in the lake. This work was undertaken to help develop sound remediation or restoration strategies, and to set realistic expectations for water-quality improvements. Particle-reactive phosphate can adsorb or complex onto particles that settle and accumulate in the lake bed. Biogeochemical processes near the sediment-water interface can remobilize particle-bound P and generate a benthic flux of bioavailable P. This study provides estimates of the benthic flux of dissolved macronutrients (i.e., phosphorus and nitrogen species) before, during and after the period of: (1) increased water-column nutrient concentrations that cannot be accounted for by riverine inputs, and (2) the annual bloom of AFA. Benthic flux of dissolved orthophosphate was consistently positive (i.e., out of the sediment into the overlying water column) and ranged between 0.5 and 6.1 mg m-2 d-1. Assuming a lake area of 200 km2, this converts to a mass flux to the entire lake of 8,000 to 100,000 kg over a 3-month AFA bloom season which is comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was that dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 100 mg m-2 d-1; also comparable to riverine inputs. In contrast, dissolved nitrate exhibited a consistently negative flux (consumed by the sediment) with values ranging between -20 to -0.1 mg m-2 d-1. Macroinvertebrate densities of the order of 105 individuals-m-2 suggest that the diffusive-flux estimates may be significantly lower than actual values due to bioturbation. Although phosphorus is a logical choice for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-metal results in the form of coordinated benthic flux, water-column and tributary-inlet data suggest that iron availability to primary producers in the lake is possibly a limiting factor.
Andersen, Douglas C.; Adair, Elizabeth Carol; Nelson, Sigfrid Mark; Binkley, Dan
2014-01-01
Restoration of riparian forest productivity lost as a consequence of flow regulation is a common management goal in dryland riverine ecosystems. In the northern hemisphere, dryland river floodplain trees often include one or another species of Populus, which are fast-growing, nutrient-demanding trees. Because the trees are phreatophytic in drylands, and have water needs met in whole or in part by a shallow water table, their productivity may be limited by nitrogen (N) availability, which commonly limits primary productivity in mesic environments. We added 20 g N m−2 in a 2-m radius around the base of mature Populus fremontii along each of a regulated and free-flowing river in semiarid northwest Colorado, USA (total n = 42) in order to test whether growth is constrained by low soil N. Twelve years after fertilization, we collected increment cores from these and matched unfertilized trees and compared radial growth ratios (growth in the 3-year post-fertilization period/growth in the 3-year pre-fertilization period) in paired t tests. We expected a higher mean ratio in the fertilized trees. No effect from fertilization was detected, nor was a trend evident on either river. An alternative test using analysis of covariance (ANCOVA) produced a similar result. Our results underscore the need for additional assessment of which and to what extent factors other than water control dryland riverine productivity. Positive confirmation of adequate soil nutrients at these and other dryland riparian sites would bolster the argument that flow management is necessary and sufficient to maximize productivity and enhance resilience in affected desert riverine forests.
Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.
2012-01-01
Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.
Eggers, Sabine; Parks, Maria; Grupe, Gisela; Reinhard, Karl J.
2011-01-01
During the early Holocene two main paleoamerican cultures thrived in Brazil: the Tradição Nordeste in the semi-desertic Sertão and the Tradição Itaparica in the high plains of the Planalto Central. Here we report on paleodietary singals of a Paleoamerican found in a third Brazilian ecological setting – a riverine shellmound, or sambaqui, located in the Atlantic forest. Most sambaquis are found along the coast. The peoples associated with them subsisted on marine resources. We are reporting a different situation from the oldest recorded riverine sambaqui, called Capelinha. Capelinha is a relatively small sambaqui established along a river 60 km from the Atlantic Ocean coast. It contained the well-preserved remains of a Paleoamerican known as Luzio dated to 9,945±235 years ago; the oldest sambaqui dweller so far. Luzio's bones were remarkably well preserved and allowed for stable isotopic analysis of diet. Although artifacts found at this riverine site show connections with the Atlantic coast, we show that he represents a population that was dependent on inland resources as opposed to marine coastal resources. After comparing Luzio's paleodietary data with that of other extant and prehistoric groups, we discuss where his group could have come from, if terrestrial diet persisted in riverine sambaquis and how Luzio fits within the discussion of the replacement of paleamerican by amerindian morphology. This study adds to the evidence that shows a greater complexity in the prehistory of the colonization of and the adaptations to the New World. PMID:21935369
Kinzel, P.J.; Nelson, J.M.; Heckman, A.K.
2009-01-01
Over the past century, flow regulation and vegetation encroachment have reduced active channel widths along the central Platte River, Nebraska. During the last two decades, an annual program of in-channel vegetation management has been implemented to stabilize or expand active channel widths. Vegetation management practices are intended to enhance riverine habitats which include nocturnal roosting habitat for sandhill cranes. Evaluating the success of other management treatments such as streamflow modification requires an understanding of how flow shapes the sandbars in the river and how sandbar morphology interacts with flow to create crane habitat. These linkages were investigated along a 1-km managed river reach by comparing the spatial pattern of riverine roosts and emergent sandbars identified with aerial infrared imagery to variables computed with a two-dimensional hydraulic model. Nocturnal observations made multiple years showed that the area and patterns of riverine roosts and emergent sandbars and the densities of cranes within roosts changed with stage. Despite sandbar vegetation management, low flows were concentrated into incised channels rather than spread out over broad sandbars. The flow model was used to compute hydraulic variables for identical streamflows through two sandbar morphologies; one following a period of relatively high flow and the other following the low-flow period. Compared with the simulation using the morphology from the antecedent high flow, the simulation using the morphology from the antecedent low flow produced a smaller quantity of available wetted area. These remote-sensing observations and hydraulic simulations illustrate the importance of considering flow history when designing streamflows to manage in-channel habitat for cranes.
Eggers, Sabine; Parks, Maria; Grupe, Gisela; Reinhard, Karl J
2011-01-01
During the early Holocene two main paleoamerican cultures thrived in Brazil: the Tradição Nordeste in the semi-desertic Sertão and the Tradição Itaparica in the high plains of the Planalto Central. Here we report on paleodietary singals of a Paleoamerican found in a third Brazilian ecological setting--a riverine shellmound, or sambaqui, located in the Atlantic forest. Most sambaquis are found along the coast. The peoples associated with them subsisted on marine resources. We are reporting a different situation from the oldest recorded riverine sambaqui, called Capelinha. Capelinha is a relatively small sambaqui established along a river 60 km from the Atlantic Ocean coast. It contained the well-preserved remains of a Paleoamerican known as Luzio dated to 9,945±235 years ago; the oldest sambaqui dweller so far. Luzio's bones were remarkably well preserved and allowed for stable isotopic analysis of diet. Although artifacts found at this riverine site show connections with the Atlantic coast, we show that he represents a population that was dependent on inland resources as opposed to marine coastal resources. After comparing Luzio's paleodietary data with that of other extant and prehistoric groups, we discuss where his group could have come from, if terrestrial diet persisted in riverine sambaquis and how Luzio fits within the discussion of the replacement of paleamerican by amerindian morphology. This study adds to the evidence that shows a greater complexity in the prehistory of the colonization of and the adaptations to the New World.
Geochemical and isotopic tracing of water in nested southern Minnesota corn-belt watersheds.
Magner, J A; Alexander, S C
2002-01-01
Land-use changes over the last century in southern Minnesota have influenced riverine water chemistry. A nested watershed approach was used to examine hydrologic pathways of water movement in this now agriculturally intensive region. From field scale subsurface tile-drains of the Beauford ditch to the respective outlets of the Cobb River and Blue Earth River, more than 125 samples were collected for major dissolved ions and isotopes between March 1994 and June 1996 over a range of climatic conditions that included snowmelt and storm-flows. Results indicate that riverine water chemistry is dominated by subsurface tile-drained row crop agriculture. In the mid-1990s, regional ground water discharge into the Cobb and Blue Earth Rivers comprised less than 10% of the total flow based on ionic mixing calculations. Ammonia, present in manure or as anhydrous, is readily exchanged in the soil. This ion exchange releases increasing ratios of magnesium, sodium and strontium relative to calcium, the dominant cation. Soil thaw and snowmelt recharge influenced March-April tile-drain and ditch water isotopic values. Light deltaD values increased as spring infiltration-derived water was displaced from the soil zone by heavier summer precipitation. Delta15N followed a similar but opposite pattern with relatively heavy March-April tile-drain and ditch values trending to lighter delta15N through the growing season. The future of southern Minnesota riverine water quality is closely linked to the management of the landscape. To improve the riverine environment, land owners and managers will need to address cropping systems, fertilization practices and drainage.
Effects of recent logging on the main channel of North Fork Caspar Creek
Thomas E. Lisle; Michael Napolitano
1998-01-01
The response of the mainstem channel of North Fork Caspar Creek to recent logging is examined by time trends in bed load yield, scour and fill at resurveyed cross sections, and the volume and fine-sediment content of pools. Companion papers report that recent logging has increased streamflow during the summer and moderate winter rainfall events, and blowdowns from...
Ulery, R.L.; Brown, M.F.
1995-01-01
Review of all available data showed that pesticides were detected to a substantial degree in various sample media over the time period covered by this report. The authors were able to locate little pesticide-sample data for ground water or for tributary streams because sampling efforts historically have been concentrated on the mainstem Trinity River.
Primary mucoepidermoid carcinoma of the lung with prominent clear cells
Fink, David D.; Lomas, Angela M.; Roden, Anja C.; Shah, Prashant C.
2017-01-01
Mucoepidermoid carcinoma of the lung is a rare malignancy of salivary gland-type origin. We report a case of a 21-year-old man with a right mainstem bronchus mass composed predominantly of clear cells. This case represents a rare primary pulmonary low-grade mucoepidermoid carcinoma positive for MAML2 rearrangement by fluorescence in situ hybridization with a prominent clear cell component. PMID:28670072
Water Quality Conditions in the Missouri River Mainstem System 2007 Report
2008-06-01
Inicrocystins, and phytoplankton taxa occmTence and relative abundance . 3.1.2 BACTERIA MONITORING AT SWIMMING BEACHES The Distiict has cooperated with the... abundant algae throughout the entire sampling period based on percent composition (Plates 80 - 83). The Shannon-Weaver genera diversity indices...most abundant algae based on percent composition (Plate 180). The Shannon-Weaver genera diversity indices calculated for the 18 phytoplankton samples
An analysis of phenotypic selection in natural stands of northern red oak (Quercus rubra L.)
Jeffery W. Stringer; David B. Wagner; Scott E. Schlarbaum; Daniel B. Houston
1995-01-01
Comparison of growth and stem quality parameters of 19-year-old progeny from superior and comparison trees indicates that rigorous phenotypic selection of trees in natural stands may not be an efficient method of parent tree selection for Quercus rubra L. Total tree height, dbh, number of branches in the butt log, fork height, and number of mainstem...
Sources and temporal dynamics of arsenic in a New Jersey watershed, USA
Barringer, J.L.; Bonin, J.L.; DeLuca, M.J.; Romagna, T.; Cenno, K.; Alebus, M.; Kratzer, T.; Hirst, B.
2007-01-01
We examined potential sources and the temporal dynamics of arsenic (As) in the slightly alkaline waters of the Wallkill River, northwestern New Jersey, where violations of water-quality standards have occurred. The study design included synoptic sampling of stream water and bed sediments in tributaries and the mainstem, hyporheic-zone/ground water on the mainstem, and seasonal and diurnal sampling of water at selected mainstem sites. The river valley is bordered by gneiss and granite highlands and shale lowlands and underlain by glacial deposits over faulted dolomites and the Franklin Marble. Ore bodies in the Marble, which have been mined for rare Zn ore minerals, also contain As minerals. Tributaries, which drain predominantly forested and agricultural land, contributed relatively little As to the river. The highest concentrations of As (up to 34????g/L) emanated from the outlet of man-made Lake Mohawk at the river's headwaters; these inputs varied substantially with season-high during warm months, low during cold months, apparently because of biological activity in the lake. Dissolved As concentrations were lower (3.3????g/L) in river water than those in ground water discharging into the riverbed (22????g/L) near the now-closed Franklin Mine. High total As concentrations (100-190??mg/kg) on the < 0.63????m fraction of bed sediments near the mine apparently result from sorption of the As in the ground-water discharge as well as from the As minerals in the streambed. As concentrations in river water were diluted during high stream flow in fall, winter and spring, and concentrated during low flow in summer. In unfiltered samples from a wetlands site, diurnal cycles in trace-element concentrations occurred; As concentrations appeared to peak during late afternoon as pH increased, but Fe, Mn, and Zn concentrations peaked shortly after midnight. The temporal variability of As and its presence at elevated concentrations in ground water and sediments as well as streamwater demonstrate the importance of (1) sampling a variety of media and (2) determining the time scales of As variability to fully characterize its passage through a river system. ?? 2007 Elsevier B.V. All rights reserved.
Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2006 - September 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Mueller, Robert P.; Murray, Katherine J.
2008-08-08
From 1999 through 2007, the Fish and Wildlife Program of the Bonneville Power Administration funded a project to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Data were collected to ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. The projects objectives are consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats tomore » the production of salmon in the Columbia River Basin. Because of the influence of mainstem habitat on salmon production, there is a continued need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. During FY 2007, Pacific Northwest National Laboratory focused on (1) locating and mapping deep-water fall Chinook salmon and chum salmon spawning areas, (2) investigating the interaction between groundwater and surface water near fall Chinook and chum salmon spawning areas, and (3) providing in-season hyporheic temperature and water surface elevation data to assist state agencies with emergence timing and redd dewatering estimates. This report documents the studies and tasks performed by PNNL during FY 2007. Chapter 1 provides a description of the searches conducted for deepwater redds-adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates and evaluations of redd dewatering.« less
NASA Astrophysics Data System (ADS)
Minear, J. T.; Wright, S. A.
2015-12-01
In this study, we investigate the sediment dynamics of the low-flow channel of the Santa Ana River that is formed by wastewater discharges and contains some of the last remaining habitat of the Santa Ana Sucker (Catostomus santaanae). The Santa Ana River is a highly-modified river draining the San Bernardino Mountains and Inland Empire metropolitan area east of Los Angeles. Home to over 4 million people, the watershed provides habitat for the federally-threatened Santa Ana Sucker, which presently reside within the mainstem Santa Ana River in a reach supported by year-round constant discharges from water treatment plants. The nearly constant low-flow wastewater discharges and infrequent runoff events create a small, approximately 8 m wide, inset channel within the approximately 300 m wide mainstem channel that is typically dry except for large flood flows. The sediment dynamics within the inset channel are characterized by constantly evolving bed substrate and sediment transport rates, and occasional channel avulsions. The sediment dynamics have large influence on the Sucker, which rely on coarse-substrate (gravel and cobble) for their food production. In WY 2013 through the present, we investigated the sediment dynamics of the inset channel using repeat bathymetric and substrate surveys, bedload sampling, and discharge measurements. We found two distinct phases of the inset channel behavior: 1. 'Reset' flows, where sediment-laden mainstem discharges from upstream runoff events result in sand deposition in the inset channel or avulse the inset channel onto previously dry riverbed; and 2. 'Winnowing' flows, whereby the sand within the inset channel is removed by clear-water low flows from the wastewater treatment plant discharges. Thus, in contrast to many regulated rivers where high flows are required to flush fine sediments from the bed (for example, downstream from dams), in the Santa Ana River the low flows from wastewater treatment plants serve as the flushing flows that gradually remove sand and expose the coarser substrate. In effect, the inset channel is analogous to a flume subject to periodic sediment loading events from upstream (runoff events) with long periods of negligible upstream sediment supply between the events (wastewater discharges).
NASA Astrophysics Data System (ADS)
Bouillon, Steven; Yambélé, Athanase; Gillikin, David P.; Teodoru, Cristian; Darchambeau, François; Lambert, Thibault; Borges, Alberto V.
2014-05-01
The Oubangui is a major right-bank tributary of the Congo River, draining an area of ~500,000 km² of mainly wooded savannahs. Here, we describe data on the physico-chemical characteristics and biogeochemistry of contrasting tributaries within the central Oubangui catchment collected during 3 field surveys between 2010 and 2012, with land use ranging from wooded savannahs to humid tropical rainforest. Compared to data from two years of sampling at high temporal resolution on the mainstem river in Bangui (Central African Republic), these tributaries show a remarkably wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity and total alkalinity (TA)) in rivers draining dense rainforests to those more typical for (sub)tropical savannah systems. Based on carbon stable isotope data (δ13C), the majority of sites show a corresponding dominance of C3-derived organic matter, with a tendency for increased C4 contributions the more turbid sites such as the Mpoko River. δ13C of dissolved organic carbon (DOC) were generally similar to those of particulate organic carbon (POC) across the different tributaries. δ13C of dissolved inorganic carbon (DIC) ranged between -28.1 ‰ in low-TA rainforest (blackwater) rivers to -5.8 ‰ in the mainstem Oubangui. These variations were strongly correlated to both partial pressure of CO2 (pCO2) and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the dominant weathering regime (silicate versus carbonate weathering) on DIC and CO2 fluxes. All tributaries were consistently oversaturated in dissolved greenhouse gases (CH4, N2O, and CO2) with respect to atmospheric equilibrium, with highest levels observed in rivers draining rainforest vegetation. The high diversity observed within this subcatchment of the Congo River basin is equivalent to that observed in much larger, heterogeneous catchments, and underscores the importance of sampling at the wider scale, covering the variability in subcatchment characteristics, to improve our understanding of biogeochemical cycling in the Congo Basin.
Tracing nitrates and sulphates in river basins using isotope techniques.
Rock, L; Mayer, B
2006-01-01
The objective of this paper is to outline how stable isotope techniques can contribute to the elucidation of the sources and the fate of riverine nitrate and sulphate in watershed studies. The example used is the Oldman River Basin (OMRB), located in southern Alberta (Canada). Increasing sulphate concentrations and decreasing delta(34)S values along the flowpath of the Oldman River indicate that oxidation of pyrite in tills is a major source of riverine sulphate in the agriculturally used portion of the OMRB. Chemical and isotopic data showed that manure-derived nitrogen contributes significantly to the increase in nitrate concentrations in the Oldman River and its tributaries draining agricultural land. It is suggested that hydrological conditions control agricultural return flows to the surface water bodies in southern Alberta and impart significant seasonal variations on concentrations and isotopic compositions of riverine nitrate. Combining isotopic, chemical, and hydrometric data permitted us to estimate the relative contribution of major sources to the total solute fluxes. Hence, we submit that isotopic measurements can make an important contribution to the identification of nutrient and pollutant sources and to river basin management.
Diet breadth and variability in Sander spp. inferred from stable isotopes
Fincel, M.J.; Chipps, Steven R.; Graeb, B.D.S.; Brown, M.L.
2016-01-01
We used stable isotopes of carbon and nitrogen to evaluate trophic similarity between sauger Sander canadensis and walleye S. vitreus in three Missouri River impoundments characterized by unique differences in riverine habitat. Mean δ15N was similar for sauger and walleye in each reservoir ranging from 15.7 to 17.8‰ for sauger and 15.2 to 17.7‰ for walleye. However, mean δ13C was greater for sauger (−24‰) than for walleye (−25‰) in Lake Oahe (lacustrine habitat), where rainbow smelt Osmerus mordax is an important prey species for walleye. Variation in δ15N and δ13C values was similar between walleye and sauger in Lewis and Clark Lake (riverine habitat), but was greater for sauger than for walleye in Lake Oahe, implying that in pelagic environments, sauger exhibit a larger diet breadth and lower diet consistency compared with walleyes. Isotope analyses support observations from traditional gut content studies that diet overlap between sauger and walleye varies with environmental conditions and is more similar in riverine food webs than in large lakes and impoundments.
A distributed analysis of Human impact on global sediment dynamics
NASA Astrophysics Data System (ADS)
Cohen, S.; Kettner, A.; Syvitski, J. P.
2012-12-01
Understanding riverine sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. Ever increasing human activity during the Anthropocene have affected sediment dynamics in two major ways: (1) an increase is hillslope erosion due to agriculture, deforestation and landscape engineering and (2) trapping of sediment in dams and other man-made reservoirs. The intensity and dynamics between these man-made factors vary widely across the globe and in time and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment flux and water discharge model (WBMsed) to compare a pristine (without human input) and disturbed (with human input) simulations. Using these 50 year simulations we will show and discuss the complex spatial and temporal patterns of human effect on riverine sediment flux and water discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, R.K.; Chowdhury, S.
The aim of this paper is to access the influence of water quality both on the occurrence of, and utilization by, elephants (Elephas maximus) in a riverine habitat. Mining operations and other anthropogenic changes to natural river systems have caused degradation of the ecosystem for elephants. A decline in their numbers has been seen throughout the Singhbhum Forests, India due to fragmentation and loss of habitat. The need to preserve and restore the habitat of the elephant is accepted, but until the factors that influence their distribution are known and understood, suitable management plans cannot be implemented. The study areamore » was the catchment of the river Koina where waste discharge from an iron oremine and processing plant impact upon water quality. The study period from April 1995 to March 1996 looked at sections of the river where unregulated mine discharge was made, and where regulation through tailing ponds controlled total suspended solids (TSS) output from the mine waste water to the river system. Various physico-chemical parameters recorded at seven sampling stations were quantified. Principal Component Analysis (PCA) segregated the key parameters in determining the discharge levels of both regulated and unregulated discharge at various sites.« less
Andersen, D.C.; Shafroth, P.B.; Pritekel, C.M.; O'Neill, M. W.
2011-01-01
The ecological effects of beaver in warm-desert streams are poorly documented, but potentially significant. For example, stream water and sediment budgets may be affected by increased evaporative losses and sediment retention in beaver ponds. We measured physical attributes of beaver pond and adjacent lotic habitats on a regulated Sonoran Desert stream, the Bill Williams River, after ???11 flood-free months in Spring 2007 and Spring 2008. Neither a predicted warming of surface water as it passed through a pond nor a reduction in dissolved oxygen in ponds was consistently observed, but bed sediment sorted to finest in ponds as expected. We observed a river segment-scale downstream rise in daily minimum stream temperature that may have been influenced by the series of ??100 beaver ponds present. Channel cross-sections surveyed before and after an experimental flood (peak flow 65 m3/s) showed net aggradation on nine of 13 cross-sections through ponds and three of seven through lotic reaches. Our results indicate that beaver affect riverine processes in warm deserts much as they do in other biomes. However, effects may be magnified in deserts through the potential for beaver to alter the stream thermal regime and water budget. ?? Society of Wetland Scientists 2011.
Peng, Xianzhi; Tan, Jianhua; Tang, Caiming; Yu, Yiyi; Wang, Zhendi
2008-01-01
A feasible method has been optimized to simultaneously determine multiclass antibiotic residues, including sulfonamides, fluoroquinolones, trimethoprim, and chloramphenicol in urban riverine water and wastewater by off-line solid phase extraction and high-performance liquid chromatography coupled with a diode-array ultraviolet detector and a fluorescence detector. Internal standard and standard addition methods were used in combination to identify and quantify these antibiotics to compensate for the matrix interference. The method quantification limits (MQLs) were determined to be 0.035 to 0.100 microg/L and 0.100 to 0.300 microg/L for the riverine water and wastewater, respectively. Recoveries of the investigated antibiotics ranged from 63 to 126%. Sulfamethoxazole was the most frequently detected antibiotic residue in Guangzhou section of the Major Pearl River, South China, with a maximum level of 0.510 microg/L. Fluoroquinolone antibiotics were relatively less detected with a maximum level of 0.459 microg/L. The maximum concentration of sulfamethoxazole reached 5.597 microg/L in the raw wastewater from a large-scale sewage treatment plant in Guangzhou city. Around 30% of sulfamethoxazole might survive the primary clarification and biotreatment processes in the sewage treatment plant. None of the investigated antibiotics have been found above MQLs in the final effluent after chlorine disinfection.
Miles, N G; West, R J
2011-03-01
Warm-water riverine fish assemblages were investigated downstream of an impoundment before and after thermal stratification and the associated cold-water pollution was prevented using an aeration system. Temperatures below the dam significantly increased after installation of the aeration system and this correlated with an increased abundance and greater number of species downstream. Overall, aeration appeared to be beneficial for both the lake (upstream) and the downstream riverine environments. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Habitat Suitability Index Models: Yellow perch
Krieger, Douglas A.; Terrell, James W.; Nelson, Patrick C.
1983-01-01
A review and synthesis of existing information were used to develop riverine and lacustrine habitat models for yellow perch (Perca flavescens). The models are scaled to produce an index of habitat suitability between 0 (unsuitable habitat) to 1 (optimally suitable habitat) for riverine, lacustrine, and palustrine habitat in the 48 contiguous United States. Habitat Suitability Indexes (HSI's) are designed for use with the Habitat Evaluation Procedures developed by the U.S. Fish and Wildlife Service. Also included are discussions of Suitability Index (SI) curves as used in the Instream Flow Incremental Methodology (IFIM) and SI curves available for an IFIM analysis of yellow perch habitat.
The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region
NASA Astrophysics Data System (ADS)
Moore, S. E.; Stabeno, P. J.
2016-02-01
The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.
Conceptualizing and communicating ecological river restoration: Chapter 2
Jacobson, Robert B.; Berkley, Jim
2011-01-01
We present a general conceptual model for communicating aspects of river restoration and management. The model is generic and adaptable to most riverine settings, independent of size. The model has separate categories of natural and social-economic drivers, and management actions are envisioned as modifiers of naturally dynamic systems. The model includes a decision-making structure in which managers, stakeholders, and scientists interact to define management objectives and performance evaluation. The model depicts a stress to the riverine ecosystem as either (1) deviation in the regimes (flow, sediment, temperature, light, biogeochemical, and genetic) by altering the frequency, magnitude, duration, timing, or rate of change of the fluxes or (2) imposition of a hard structural constraint on channel form. Restoration is depicted as naturalization of those regimes or removal of the constraint. The model recognizes the importance of river history in conditioning future responses. Three hierarchical tiers of essential ecosystem characteristics (EECs) illustrate how management actions typically propagate through physical/chemical processes to habitat to biotic responses. Uncertainty and expense in modeling or measuring responses increase in moving from tiers 1 to 3. Social-economic characteristics are shown in a parallel structure that emphasizes the need to quantify trade-offs between ecological and social-economic systems. Performance measures for EECs are also hierarchical, showing that selection of measures depend on participants’ willingness to accept uncertainty. The general form is of an adaptive management loop in which the performance measures are compared to reference conditions or success criteria and the information is fed back into the decision-making process.
Photochemical studies of the Eastern Caribbean: An introductory overview
NASA Astrophysics Data System (ADS)
Zika, Rod G.; Milne, Peter J.; Zafiriou, Oliver C.
1993-02-01
This special section of the Journal of Geophysical Research reports a multi-investigator study of a number of sunlight-initiated photoprocesses taking place in the varied biogeochemical and oceanographic environment found in the tropical Eastern Caribbean and Orinoco River delta in the spring and fall of 1988. Principal conceptual themes that were addressed by the program included (1) the characterization of the role of dissolved organic matter as the main chromophore initiating photoprocesses in surface seawater, (2) the determination of the fluxes and pathways of reactants and transient species involved in oxygen photoredox chemistry, and (3) the continuing development of chemical mapping strategies, including observing and modelling reactive phototransient distribution in terms of their sources, mixing, and fates. Ancillary supporting studies included observation of water mass tracers, dissolved trace gases, atmospheric components, nutrients and the geochemistry of estuarine mixing processes in an important continental margin. The observational and mechanistic investigations reported here feature a number of novel or improved methods allied with some advanced underway sampling, sensing and computing facilities that were implemented aboard the R/V Columbus Iselin. Results from the study showed large-scale (˜1000 km) seasonal variations in surface water photoreactivity, optical and biooptical characteristics over much of the Caribbean basin. These changes resulted from seasonally varying riverine inputs of organic chromophores, nutrients and suspended material. Smaller scale (10-100 km) studies carried out in the Orinoco delta and the Gulf of Paria showed that estuarine mixing processes did not affect major net removal of dissolved organic matter, consistent with the hypothesis that riverine chromophore input plays a dominant role in open-water photochemistry.
Zheng, Shiling; Wang, Bingchen; Liu, Fanghua; Wang, Oumei
2017-11-01
Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNA-based terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The results also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.
Water Quality Conditions in the Missouri River Mainstem System: 2008 Report
2009-09-01
aluminum, arsenic, cadmium , chromium, copper, cyanide, lead, nickel, selenium, silver, and zinc . The acute and chronic water quality standards criteria for... adipose , etc.) tend to accumulate toxicants at different rates. Therefore, when used as an indicator, fish tissue analysis typically uses whole...for metals (i.e., cadmium , chromium, copper, lead, nickel, silver, and zinc ) are based on hardness. Criteria shown for those metals were calculated
Persistence of historical logging impacts on channel form in mainstem North Fork Caspar Creek
Michael B. Napolitano
1998-01-01
The old-growth redwood forest of North Fork Caspar Creek was clear-cut logged between 1860 and 1904. Transportation of logs involved construction of a splash dam in the headwaters of North Fork Caspar Creek. Water stored behind the dam was released during large storms to enable log drives. Before log drives could be conducted, the stream channel had to be prepared by...
Molecular Profiles for Lung Cancer Pathogenesis and Detection in U.S. Veterans
2014-12-01
smokers [7]. In addition, modulation of global gene expression in the normal epithelium in health smokers is similar in the large and small airways...previously shown that gene-expression profiles in cytologically normal mainstem bronchus epithelium can distinguish smokers with and without lung cancer...spatially mapping the molecular field of injury associated with smoking-related lung cancer. In smokers undergoing resection of lung lesions, high
Clemens, Benjamin J.; Wyss, Lance A.; McCoun, Rebecca; Courter, Ian; Schwabe, Lawrence; Peery, Christopher; Schreck, Carl B.; Spice, Erin K.; Docker, Margaret F.
2017-01-01
Studies using neutral loci suggest that Pacific lamprey, Entosphenus tridentatus, lack strong spatial genetic population structure. However, it is unknown whether temporal genetic population structure exists. We tested whether adult Pacific lamprey: (1) show temporal genetic population structure; and (2) migrate different distances between years. We non-lethally sampled lamprey for DNA in 2009 and 2010 and used eight microsatellite loci to test for genetic population structure. We used telemetry to record the migration behaviors of these fish. Lamprey were assignable to three moderately differentiated genetic clusters (FST = 0.16–0.24 for all pairwise comparisons): one cluster was composed of individuals from 2009, and the other two contained individuals from 2010. The FST value between years was 0.13 and between genetic clusters within 2010 was 0.20. A total of 372 (72.5%) fish were detected multiple times during their migrations. Most fish (69.9%) remained in the mainstem Willamette River; the remaining 30.1% migrated into tributaries. Eighty-two lamprey exhibited multiple back-and-forth movements among tributaries and the mainstem, which may indicate searching behaviors. All migration distances were significantly greater in 2010, when the amplitude of river discharge was greater. Our data suggest genetic structuring between and within years that may reflect different cohorts.
Zimmerman, C.E.; Reeves, G.H.
2002-01-01
Comparisons of strontium:calcium (Sr:Ca) ratios in otolith primordia and freshwater growth regions were used to identify the progeny of steelhead Oncorhynchus mykiss (anadromous rainbow trout) and resident rainbow trout in the Deschutes River, Oregon. We cultured progeny of known adult steelhead and resident rainbow trout to confirm the relationship between Sr:Ca ratios in otolith primordia and the life history of the maternal parent. The mean (??SD) Sr:Ca ratio was significantly higher in the otolith primordia of the progeny of steelhead (0.001461 ?? 0.00029; n = 100) than in those of the progeny of resident rainbow trout (0.000829 ?? 0.000012; n = 100). We used comparisons of Sr:Ca ratios in the primordia and first-summer growth regions of otoliths to determine the maternal origin of unknown O. mykiss juveniles (n = 272) collected from rearing habitats within the main-stem Deschutes River and tributary rearing habitats and thus to ascertain the relative proportion of each life history morph in each rearing habitat. Resident rainbow trout fry dominated the bi-monthly samples collected from main-stem rearing habitats between May and November 1995. Steelhead fry dominated samples collected from below waterfalls on two tributaries in 1996 and 1998.
Population demographics for the federally endangered dwarf wedgemussel
Galbraith, Heather S.; Lellis, William A.; Cole, Jeffrey C.; Blakeslee, Carrie J.; St. John White, Barbara
2016-01-01
The dwarf wedgemussel, Alasmidonta heterodon, is a federally endangered freshwater mussel species inhabiting several Atlantic Slope rivers. Studies on population demographics of this species are necessary for status assessment and directing recovery efforts. We conducted qualitative and quantitative surveys for dwarf wedgemussel in the mainstem Delaware River and in four of its tributaries (Big Flat Brook, Little Flat Brook, Neversink River, and Paulinskill River). Population range, relative abundance, size, size structure, and sex ratio were quantified within each river. Total dwarf wedgemussel population size for the surveyed rivers in the Delaware Basin was estimated to be 14,432 individuals (90% confidence limits, 7,961-26,161). Our results suggest that the historically robust Neversink River population has declined, but that this population persists and substantial populations remain in other tributaries. Sex ratios were generally female-biased, and small individuals (<10 mm) found in all rivers indicate recent recruitment. Dwarf wedgemussel was most often found at the surface of the sediment (not buried below) in shallow quadrats (<2.00 m) comprised of small substrate (sand in tributaries; cobble in the mainstem) and minimal aquatic macrophytes. Long-term monitoring, continued surveys for new populations, and assessments of reproductive success are needed to further understand dwarf wedgemussel viability within the Delaware River Basin.
Burdick, S.M.; Hightower, J.E.
2006-01-01
In 1998, the Quaker Neck Dam was removed from the Neuse River near Goldsboro, North Carolina, restoring access to more than 120 km of potential main-stem spawning habitat and 1,488 km of potential tributary spawning habitat to anadromous fishes. We used plankton sampling and standardized electrofishing to examine the extent to which anadromous fishes utilized this restored spawning habitat in 2003 and 2004. Evidence of spawning activity was detected upstream of the former dam site for three anadromous species: American shad Alosa sapidissima, hickory shad A. mediocris, and striped bass Morone saxatilis. The percentages of eggs and larvae collected in the restored upstream habitat were greater in 2003, when spring flows were high, than in 2004. River reaches where spawning occurred were estimated from egg stage and water velocity data. Spawning of American shad and striped bass occurred primarily in main-stem river reaches that were further upstream during the year of higher spring flows. Hickory shad generally spawned in downstream reaches and in tributaries above and below the former dam site. These results demonstrate that anadromous fishes will take advantage of upper basin spawning habitat restored through dam removal as long as instream flows are adequate to facilitate upstream migration.
Neonatal repair of right interrupted aortic arch with cerebro-myocardial perfusion technique.
Takeuchi, Koh; Masuzawa, Akihiro; Kobayashi, Jotaro; Tsuchiya, Keiji
2011-10-01
Right interrupted aortic arch and descending aorta is exceedingly rare and most likely cause respiratory presentation, since patent ductus arteriosus (PDA) courses over the right mainstem bronchus. We report a case of successful neonatal biventricular repair of a right interrupted aortic arch (type B), with an aberrant right subclavian artery ventricular septal defect (VSD) in a 2.7 kg term neonate with DiGeorge syndrome. Patient presented in severe respiratory distress and acidosis at one day old. Two-dimensional (2D) echocardiography revealed aortic arch interruption beyond the common carotid arteries with large perimembranous outlet VSD. Aortic annulus diameter was 4.8 mm and there was no left ventricle (LV) outflow tract obstruction. Three-dimensional (3D) CT-scan confirmed these findings and identified a right-sided ductal arch that continued over the right mainstem bronchus into a right-sided descending aorta and aberrant right subclavian artery. Brachiocephalic perfusion and ductal perfusion was employed for cooling during cardiopulmonary bypass. Under deep hypothermia (27 °C rectal temperature), selective cerebro-myocardial perfusion was used for successful aortic arch repair without sacrificing the aberrant right subclavian artery. A direct tension-free anastomosis was attained. Her postoperative course was uneventful and her respiratory symptoms disappeared postoperatively. Early surgical correction is mandatory for these patients with unique anatomy and presentation.
Carbon Emission from Tibet Plateau Rivers: a Case Study of the Yellow River Headwater Region
NASA Astrophysics Data System (ADS)
Lu, X. X.; Yang, X.; Tian, M. Y.; Su, Y. R.; Ran, L.; Hu, H. Z.; Yu, R. H.
2017-12-01
Global warming will have major impacts on the high-altitude environments, including glacier retreats and permafrost thawing. Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. Study on riverine sediment and carbon fluxes from permafrost thawing and glacial retreat at high latitudes can help to identify the potential hazards of carbon emissions and provide scientific references for formulating climate adaptation strategy. The headwater region of the Yellow River, located in the north eastern Tibetan Plateau, retains a huge amount of organic carbon stored in the widely distributed meadow and steppe soils, which has been and will be affected by climate change. For example, carbon storage in the Ruoergai (Zoige) wetlands surrounded by mountain glaciers and permafrost is estimated at 23.2 Gt, representing a very high percentage of the soil carbon in the entire Tibet Plateau. Global warming will have far-reaching impacts on riverine sediment and carbon fluxes in this region. However, the amount of riverine carbon released by glacier retreat and permafrost thawing has not been well studied in this region. This talk will report our results obtained from 4 rounds of field campaign in the headwater region of the Yellow River, with a focus of the river and stream systems in the Ruoergai peatland and the Anyemaqen glacier. Our preliminary results indicated that riverine carbon emission from the headwater region was much higher than our previous report estimated from water chemistry data. With increase in temperature the rivers in Himalayas and Tibet Plateau are potential carbon source areas.
NASA Astrophysics Data System (ADS)
Kasurinen, V.; Aarnos, H.; Vähätalo, A.
2015-06-01
In order to assess the production of biologically labile photoproducts (BLPs) from non-labile riverine dissolved organic carbon (DOC), we collected water samples from ten major rivers, removed labile DOC and mixed the residual non-labile DOC with artificial seawater for microbial and photochemical experiments. Bacteria grew on non-labile DOC with a growth efficiency of 11.5% (mean; range from 3.6 to 15.3%). Simulated solar radiation transformed a part of non-labile DOC into BLPs, which stimulated bacterial respiration and production, but did not change bacterial growth efficiency (BGE) compared to the non-irradiated dark controls. In the irradiated water samples, the amount of BLPs stimulating bacterial production depended on the photochemical bleaching of chromophoric dissolved organic matter (CDOM). The apparent quantum yields for BLPs supporting bacterial production ranged from 9.5 to 76 (mean 39) (μmol C mol photons-1) at 330 nm. The corresponding values for BLPs supporting bacterial respiration ranged from 57 to 1204 (mean 320) (μmol C mol photons-1). According to the calculations based on spectral apparent quantum yields and local solar radiation, the annual production of BLPs ranged from 21 (St. Lawrence) to 584 (Yangtze) mmol C m-2 yr-1 in the plumes of the examined rivers. Complete photobleaching of riverine CDOM in the coastal ocean was estimated to produce 10.7 Mt C BLPs yr-1 from the rivers examined in this study and globally 38 Mt yr-1 (15% of riverine DOC flux from all rivers), which support 4.1 Mt yr-1 of bacterial production and 33.9 Mt yr-1 bacterial respiration.
Balmonte, John Paul; Arnosti, Carol; Underwood, Sarah; McKee, Brent A; Teske, Andreas
2016-01-01
Riverine bacterial communities play an essential role in the biogeochemical coupling of terrestrial and marine environments, transforming elements and organic matter in their journey from land to sea. However, precisely due to the fact that rivers receive significant terrestrial input, the distinction between resident freshwater taxa vs. land-derived microbes can often become ambiguous. Furthermore, ecosystem perturbations could introduce allochthonous microbial groups and reshape riverine bacterial communities. Using full- and partial-length 16S ribosomal RNA gene sequences, we analyzed the composition of bacterial communities in the Tar River of North Carolina from November 2010 to November 2011, during which a natural perturbation occurred: the inundation of the lower reaches of an otherwise drought-stricken river associated with Hurricane Irene, which passed over eastern North Carolina in late August 2011. This event provided the opportunity to examine the microbiological, hydrological, and geochemical impacts of a disturbance, defined here as the large freshwater influx into the Tar River, superimposed on seasonal changes or other ecosystem variability independent of the hurricane. Our findings demonstrate that downstream communities are more taxonomically diverse and temporally variable than their upstream counterparts. More importantly, pre- vs. post-disturbance taxonomic comparison of the freshwater-dominant Betaproteobacteria class and the phylum Verrucomicrobia reveal a disturbance signature of previously undetected taxa of diverse origins. We use known traits of closely-related taxa to interpret the ecological function of disturbance-associated bacteria, and hypothesize that carbon cycling was enhanced post-disturbance in the Tar River, likely due to the flux of organic carbon into the system associated with the large freshwater pulse. Our analyses demonstrate the importance of geochemical and hydrological alterations in structuring bacterial communities, and illustrate the response of temperate riverine bacteria on fine taxonomic scales to a disturbance.
The C32 alkane-1,15-diol as a tracer for riverine input in coastal seas
NASA Astrophysics Data System (ADS)
Lattaud, Julie; Kim, Jung-Hyun; De Jonge, Cindy; Zell, Claudia; Sinninghe Damsté, Jaap S.; Schouten, Stefan
2017-04-01
Long chain alkyl diols are lipids that occur ubiquitously in marine sediments and are used as a proxy for sea surface temperature (SST), using the Long chain Diol Index (LDI), and for upwelling intensity/high nutrient conditions. The distribution of 1,13- and 1,15-diols has been documented in open marine and lacustrine sediments and suspended particulate matter, but rarely in coastal seas receiving a significant riverine, and thus continental organic matter, input. Here we studied the distribution of diols in four shelf seas with major river outflows: the Gulf of Lion, the Kara Sea, the Amazon shelf and the Berau delta, covering a wide range of climate conditions. The relative abundance of the C32 1,15-diol is consistently higher close to the river mouth and particularly in the suspended particulate matter of the rivers suggesting a terrigenous source. This is supported by statistical analysis which points out a significant positive correlation between the C32 1,15-diol and the Branched and Isoprenoid Tetraether index, a proxy reflecting soil and riverine input in marine environments. However, the C32 1,15-diol was not detected in soils and is unlikely to be derived from vegetation, suggesting that the C32 1,15-diol is mainly produced in rivers. This agrees with the observation that it is a dominant diol in most cultivated freshwater eustigmatophyte algae. We, therefore, suggest that the relative abundance of the C32 1,15-diol can potentially be used as a proxy for riverine organic matter input in shelf seas. Our results also show that long chain alkyl diols delivered by rivers can substantially affect LDI-reconstructed SSTs in coastal regions close to river mouths.
Watershed-scale drivers of air-water CO2 exchanges in two lagoonal, North Carolina (USA) estuaries
NASA Astrophysics Data System (ADS)
Van Dam, B.; Crosswell, J.; Anderson, I. C.; Paerl, H. W.
2017-12-01
Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology, but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3 mmol C m2 d-1 in the NeuseRE and NewRE, respectively. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Large-scale pCO2 variations were driven by changes in freshwater age (akin to residence time), which modulate nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO2 under-saturation was observed at intermediate freshwater ages, between 2-3 weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence overall ecosystem health and response to future perturbation.
Watershed-Scale Drivers of Air-Water CO2 Exchanges in Two Lagoonal North Carolina (USA) Estuaries
NASA Astrophysics Data System (ADS)
Van Dam, Bryce R.; Crosswell, Joseph R.; Anderson, Iris C.; Paerl, Hans W.
2018-01-01
Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3 mmol C m-2 d-1 in the NeuseRE and NewRE, respectively. Large-scale pCO2 variations were driven by changes in freshwater age, which modulates nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO2 undersaturation was observed at intermediate freshwater ages, between 2 and 3 weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence ecosystem biogeochemical cycling, trophic state, and response to future perturbations.
NASA Astrophysics Data System (ADS)
Wu, Jiawang; Böning, Philipp; Pahnke, Katharina; Tachikawa, Kazuyo; de Lange, Gert J.
2016-11-01
Hydroclimate variability has exerted a fundamental control on the alternating deposition of organic-lean marl and organic-rich sapropel sediments in the eastern Mediterranean Sea (EMS). However, the exact mechanisms regarding the freshwater sources and related changes are still debated. Here, Sr and Nd isotopes and high-resolution elemental data are used to constrain different riverine and eolian supplies to the central Mediterranean over the past 9.8 ka. The detrital sediments in core CP10BC, taken at the margin of the Libyan shelf in the southwestern Ionian Sea, can be described by a three-endmember mixing system based on Sr and Nd isotopic compositions. The same systematics can also be deduced from Ti and K compositional variability. The endmembers comprise: Saharan Dust, Aegean/Nile, and Libyan Soil, representing the eolian supply from North Africa, the riverine inputs from the Aegean/Nile areas, as well as the riverine and shelf-derived fluxes from the Libyan-Tunisian margin, respectively. For the sapropel S1 period in particular, we find important detrital supplies from fossil river/wadi systems along the Libyan-Tunisian margin, activated by intensified African monsoon precipitation. Combining the temporal profiles with the consistent variability observed in the 87Sr/86Sr-1000/Sr diagram, such Libyan contribution has been most prominent during the uppermost period of sapropel S1 in core CP10BC. This observation is in agreement with hydroclimate reconstructions of northwestern Libya. Comparison of the Sr-Nd isotope data between core CP10BC and four cores taken along a west-east transect throughout the EMS shows that this detrital supply originated mainly from western Libya/Tunisia, and was transported as far eastward as ∼25°E while being diluted by an increasing Nile contribution.
Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes
NASA Astrophysics Data System (ADS)
Fink, Gabriel; Wessels, Martin; Wüest, Alfred
2016-09-01
Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.
Arp, Christopher D; Cooper, David J
2004-03-01
We quantified annual sediment deposition, bank erosion, and sediment budgets in nine riverine wetlands that represented a watershed continuum for 1 year in the unregulated Yampa River drainage basin in Colorado. One site was studied for 2 years to compare responses to peak flow variability. Annual mean sediment deposition ranged from 0.01 kg/m(2) along a first-order subalpine stream to 21.8 kg/m(2) at a sixth-order alluvial forest. Annual mean riverbank erosion ranged from 3 kg/m-of-bank at the first-order site to 1000 kg/m at the 6(th)-order site. Total sediment budgets were nearly balanced at six sites, while net export from bank erosion occurred at three sites. Both total sediment deposition (R(2) = 0.86, p < 0.01) and bank erosion (R(2) = 0.77, p < 0.01) were strongly related to bankfull height, and channel sinuosity and valley confinement helped to explain additional variability among sites. The texture and organic fraction of eroded and deposited sediment were relatively similar in most sites and varied among sites by watershed position. Our results indicate that bank erosion generally balances sediment deposition in riverine wetlands, and we found no distinct zones of sediment retention versus export on a watershed continuum. Zones of apparent disequilibrium can occur in unregulated rivers due to factors such as incised channels, beaver activity, and cattle grazing. A primary function of many western riverine wetlands is sediment exchange, not retention, which may operate by transforming materials and compounds in temporary sediment pools on floodplains. These results are considered in the context of the Hydrogeomorphic approach being implemented by the U.S. government for wetland resource management.
Mitigating agrichemicals from an artificial runoff event using a managed riverine wetland.
Lizotte, Richard E; Shields, F Douglas; Murdock, Justin N; Kröger, Robert; Knight, Scott S
2012-06-15
We examined the mitigation efficiency of a managed riverine wetland amended with a mixture of suspended sediment, two nutrients (nitrogen and phosphorus), and three pesticides (atrazine, metolachlor, and permethrin) during a simulated agricultural runoff event. Hydrologic management of the 500 m-long, 25 m-wide riverine wetland was done by adding weirs at both ends. The agrichemical mixture was amended to the wetland at the upstream weir simulating a four-hour, ~1cm rainfall event from a 16ha agricultural field. Water samples (1L) were collected every 30 min within the first 4h, then every 4h until 48 h, and again on days 5, 7, 14, 21, and 28 post-amendment at distances of 0m, 10 m, 40 m, 300 m and 500 m from the amendment point within the wetland for suspended solids, nutrient, and pesticide analyses. Peak sediment, nutrient, and pesticide concentrations occurred within 3 h of amendment at 0m, 10 m, 40 m, and 300 m downstream and showed rapid attenuation of agrichemicals from the water column with 79-98%, 42-98%, and 63-98% decrease in concentrations of sediments, nutrients, and pesticides, respectively, within 48 h. By day 28, all amendments were near or below pre-amendment concentrations. Water samples at 500 m showed no changes in sediment or nutrient concentrations; pesticide concentrations peaked within 48 h but at ≤11% of upstream peak concentrations and had dissipated by day 28. Managed riverine wetlands≥1 ha and with hydraulic residence times of days to weeks can efficiently trap agricultural runoff during moderate (1cm) late-spring and early-summer rainfall events, mitigating impacts to receiving rivers. Published by Elsevier B.V.
Colombo, Michael J.; Grady, Stephen J.; Todd Trench, Elaine C.
2004-01-01
A consistent and pervasive pattern of nutrient enrichment was substantiated by water-quality sampling in the Quinebaug River and its tributaries in eastern Connecticut during water years 2000 and 2001. Median total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency?s recently recommended regional ambient water-qual-ity criteria for streams (0.71 and 0.031 milligrams per liter, respectively). Maximum total phosphorus concentrations exceeded 0.1 milligrams per liter at nearly half the sampled locations in the Quinebaug River Basin. Elevated total nitrogen and total phosphorus concentrations were measured at all stations on the mainstem of the Quinebaug River, the French River, and the Little River. Nutrient enrichment was related to municipal wastewater point sources at the sites on the mainstem of the Quinebaug River and French River, and to agricultural nonpoint nutrient sources in the Little River Basin. Nutrient enrichment and favorable physical factors have resulted in excessive, nuisance algal blooms during summer months, particularly in the numerous impoundments in the Quinebaug River system. Phytoplankton algal density as high as 85,000 cells per milliliter was measured during such nuisance blooms in water years 2000 and 2001. Different hydrologic conditions during the summers of 2000 and 2001 produced very different seston algal populations. Larger amounts of precipitation sustained higher streamflows in the summer of 2000 (than in 2001), which resulted in lower total algal abundance and inhibited the typical algal succession from diatoms to cyanobacteria. Despite this, nearly half of all seston chlorophyll-a concentrations measured during this study exceeded the recommended regional ambient stream-water-quality criterion (3.75 micrograms per liter), and seston chlorophyll-a concentrations as large as 42 micrograms per liter were observed in wastewa-ter-receiving reaches of the Quinebaug River. Estimates of primary productivity and respiration obtained from diel dissolved oxygen monitoring and from light- and dark-bottle dissolved oxygen measurements demonstrated that instream metabolic processes are consistent with a seston-algae dominant system. The highest estimated maximum primary productivity rate was 1.72 grams of oxygen per cubic meter per hour at the Quinebaug River at Jewett City during September 2001. The observed extremes in diel dissolved oxygen concentrations (less than 5 milligrams per liter) and pH (greater than 9) may periodically stress aquatic organisms in the Quinebaug River Basin.
NASA Astrophysics Data System (ADS)
Booth, D. B.; Ligon, F. K.; Sloat, M. R.; Amerson, B.; Ralph, S. C.
2007-12-01
The Copper River watershed is a critical resource for northeastern Pacific salmon, with annual escapements in the millions. The Tonsina River basin, a diverse 2100-km2 tributary to the Copper River that supports important salmonid populations, offers an opportunity to integrate watershed-scale channel network data with field reconnaissance of physical processes and observed distribution of salmonid species. Our long-term goals are to characterize habitats critical to different salmonid life stages, describe the geologic context and current geologic processes that support those habitats in key channel reaches, and predict their watershed-wide distribution. The overarching motivation for these goals is resource conservation, particularly in the face of increased human activity and long-term climate change. Channel geomorphology within the Tonsina River basin reflects inherited glacial topography. Combinations of drainage areas, slopes, channel confinement, and sediment-delivery processes are unique to this environment, giving rise to channel "types" that are recognizable but that do not occur in the same positions in the channel network as in nonglaciated landscapes. We also recognize certain channel forms providing fish habitat without analog in a nonglacial landscape, notably relict floodplain potholes from once-stranded and long-melted ice blocks. Salmonid species dominated different channel types within the watershed network. Sockeye salmon juveniles were abundant in the low-gradient, turbid mainstem; Chinook juveniles were also captured in the lower mainstem, with abundant evidence of spawning farther downstream. Coho juveniles were abundant in upper, relatively large tributaries, even those channels with cobble-boulder substrates and minimal woody debris that provide habitats more commonly utilized by Chinook in low-latitude systems. More detailed field sampling also revealed that patterns of species composition and abundance appeared related to small-scale differences in physical habitat features. For example, juvenile coho salmon used interstitial spaces between unembedded cobbles and boulders but were absent from adjacent habitat with high embeddedness. Thus high delivery rates of coarse sediment sustain critical rearing habitat that would otherwise be relatively inhospitable to fish. Using Chinook salmon as a focal species, we have integrated field- and map-based analyses to predict basin- scale geomorphic and biological constraints on the distribution of suitable spawning and rearing habitat. These analyses provide rapid guidance for where focused investigations or monitoring of key habitats should occur, a particularly important outcome where watersheds are large and field logistics are challenging. The predicted extent of suitable stream habitat within the study area represents a relatively minor fraction (ca. 10 percent) of the total stream channel network, suggesting that production of salmon from the study area depends on the maintenance of quality habitat in discrete, and relatively rare, reaches.
New Lepidocyrtus Bourlet, 1839 from riverine woodland in Hungary (Collembola, Entomobryidae).
Winkler, Daniel
2017-04-10
Systematic soil fauna survey of riverine and swamp woodland habitats in West Hungary provided the opportunity to describe the new species L. isabelleae sp. nov. belonging to the the Lepidocyrtus pallidus-serbicus group. The new species is characterized by the dorsal macrochaetae formula R0R1sR1R2STSo/00/0101+2, the absence of scales on the antennae and legs beyond coxae and an additional dorsolateral macrochaeta (a7) on Abd. III. On this occasion, the L. pallidus-serbicus group has been revised and reinterpreted, and a differentiation key for the derived L. serbicus group has been developed.
Net anthropogenic nitrogen inputs and nitrogen fluxes from Indian watersheds: An initial assessment
NASA Astrophysics Data System (ADS)
Swaney, D. P.; Hong, B.; Paneer Selvam, A.; Howarth, R. W.; Ramesh, R.; Purvaja, R.
2015-01-01
In this paper, we apply an established methodology for estimating Net Anthropogenic Nitrogen Inputs (NANI) to India and its major watersheds. Our primary goal here is to provide initial estimates of major nitrogen inputs of NANI for India, at the country level and for major Indian watersheds, including data sources and parameter estimates, making some assumptions as needed in areas of limited data availability. Despite data limitations, we believe that it is clear that the main anthropogenic N source is agricultural fertilizer, which is being produced and applied at a growing rate, followed by N fixation associated with rice, leguminous crops, and sugar cane. While India appears to be a net exporter of N in food/feed as reported elsewhere (Lassaletta et al., 2013b), the balance of N associated with exports and imports of protein in food and feedstuffs is sensitive to protein content and somewhat uncertain. While correlating watershed N inputs with riverine N fluxes is problematic due in part to limited available riverine data, we have assembled some data for comparative purposes. We also suggest possible improvements in methods for future studies, and the potential for estimating riverine N fluxes to coastal waters.
Costa Junior, José Maria Farah; Silva, Camile Irene Mota da; Lima, Abner Ariel da Silva; Rodrigues Júnior, Dario; Silveira, Luiz Carlos de Lima; Souza, Givago da Silva; Pinheiro, Maria da Conceição Nascimento
2018-03-01
Riverine communities are exposed to mercury due to the high ingestion of fish in their diet. In order to evaluate the levels of exposure in the Tapajós region, also assessing the fish ingestion frequency, a study was conducted in adults living in riverine communities in the municipality of Itaituba in the State of Pará. Hair samples were collected for the determination of total mercury and the weekly frequency data of fish ingestion was recorded. The mean concentration of total mercury varied from 7.25μg/g (in 2013) to 10.80μg/g (in 2014), with no significant difference being observed (p = 0.1436). As for fish ingestion frequency, the majority of the individuals evaluated revealed high consumption both in 2013 and in 2014. High levels of total mercury were observed only in those with high consumption of fish in both years. The importance of ongoing monitoring of exposure levels in humans should be stressed, basing itself on indices of tolerance of 6μg/g recommended by the World Health Organization, and investigation about the consumption of fish such that strategies for control and prevention are improved.
Urban Water and Riverine Quality: Participatory Science in Singapore
NASA Astrophysics Data System (ADS)
Higgitt, D. L.
2011-12-01
Singapore is a highly urbanised environment experiencing tropical monsoon hydrological regimes. A heavily engineered fluvial system has been developed over time to provide efficient drainage and reduce the area subject to flood risk. However, recent interest in ecosystem-based approaches to river management and the enhancement of the aesthetic and ecological 'quality' of riverine landscape, coupled with concerns about climate change, has challenged the prevailing engineering view. This is reflected in the Public Utility Board (PUB) ABC Waters Programme, which also seeks to develop community interest in riverine environments and engagement with water-related concerns. As part of a programme developing participatory GIS (PGIS) with school and university students, we have undertaken applications involving participant observation, reporting and analysis of water quality data and habitat quality based on a simplified version of the UK Environment Agency's River Habitat Survey. From an educational perspective, there is evidence that these PGIS initiatives raise environmental awareness and enhance geospatial thinking, particularly in relation to catchment management concepts. The extent to which participant-derived data can contribute to a citizen science of urban water quality and hence deliver some aspects of the community engagement sought after by the authorities, is a topic of debate.
NASA Technical Reports Server (NTRS)
Manguin, S.; Roberts, D. R.; Andre, R. G.; Rejmankova, E.; Hakre, S.
1996-01-01
Surveys for larvae of Anopheles darlingi Root were conducted in April, May, and August 1994 in riverine habitats of central Belize (Cayo and Belize districts). An. darlingi was present during both the dry and wet seasons. Larvae were encountered most frequently in patches of floating debris along river margins. The floating mats were often formed by bamboo hanging over the banks and dense submersed bamboo roots. Larvae were found less frequently in lake margins, small lagoons, and ground pools with submersed roots and patches of floating leaves or vegetation. In addition to their association with floating debris, larvae of An. darlingi were associated positively with shade and submersed plants in riverine environments. Samples from river habitats showed the larvae of Anopheles albimanus Wiedemann to be strongly associated with sun-exposed sites containing green or blue-green algae. Unlike An. darlingi, An. albimanus was an ubiquitous mosquito, the immatures of which occurred in a wide variety of riverine and nonriverine aquatic habitats. Based on published reports and our experience, the association of An. darlingi with river systems was verified, and its distribution in Central America and Mexico was mapped.
Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud
2016-09-01
The occurrence of n-alkanes and biomarkers (hopane and sterane) in surface sediments from Southwestern coasts of Caspian Sea and 28 rivers arriving to this lake, determined with a gas chromatography-mass spectrometry method, was used to assess the impacts of anthropogenic activities in the studied area. The concentrations of total n-alkanes (Σ21 n-alkane) in costal and riverine sediments varied from 249.2 to 3899.5 and 56 to 1622.4 μg g(-1), respectively. An evaluation of the source diagnostic indices indicated that petroleum related sources (petrogenic) were mainly contributed to n-alkanes in costal and most riverine sediments. Only the hydrocarbons in sediment of 3 rivers were found to be mainly of biogenic origin. Principal component analysis using hopane diagnostic ratios in costal and riverine sediments, and Anzali, Turkmenistan, and Azerbaijan oils were used to identify the sources of hydrocarbons in sediments. It was indicated that the anthropogenic contributions in most of the costal sediment samples are dominated with inputs of oil spills from Turkmenistan and Azerbaijan countries.
iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region
NASA Astrophysics Data System (ADS)
Sumi, S. J.; Ferreira, C.
2017-12-01
Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system simulations will help to develop a seamless integration with the boundary systems in the service-gap area with new insights into our scientific understanding of such complex systems. A visualization system is being developed to allow stake holders and the community to have access to the flood forecasting for their region with sufficient lead time.
Linking Watershed Nitrogen Sources with Nitrogen Dynamics in Rivers of Western Oregon, USA
NASA Astrophysics Data System (ADS)
Sobota, D. J.; Compton, J.; Goodwin, K. E.
2012-12-01
We constructed contemporary nitrogen (N) budgets for 25 river basins in the Willamette River Basin (WRB) of western Oregon, USA, to improve the understanding of how recent trends in human-driven N loading have influenced riverine N dynamics in the region. Nearly 20% of WRB stream length is currently in fair or poor condition because of high N concentrations. Additionally, nitrate contamination of drinking water affects at least 8,000 people in the WRB. We hypothesized that 1) the majority of N inputs in the WRB would originate from agricultural activities in lowland portions of watersheds, 2) annual riverine N yield (kg/ha/yr) would correspond to annual per area watershed N inputs, and 3) riverine N yields would be seasonal and highest during winter due to the region's Mediterranean climate. We calculated average annual N inputs for each study basin by summing newly available datasets describing spatially explicit N inputs of synthetic fertilizer, atmospheric deposition, crop biological N2 fixation, biological N2 fixation by red alder (Alnus rubra Bong.), livestock manure, and point sources for the period 1996 - 2007. Annual and seasonal riverine N exports were estimated with the USGS model LOADEST calibrated to N concentration data collected during the study period. We estimated that two-thirds of total N input to the WRB study basins in the 2000s came from synthetic fertilizer application. Nearly all fertilizer application occurred on the lowlands near watershed mouths. We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than to percent of agricultural area in the watershed. Low watershed N yields reflected a high proportion of watershed area in the forested Cascade Mountain Range, which received low N inputs mainly from atmospheric deposition. N yields from study basins were strongly seasonal, with at least 50%, and often 75%, of annual N yield occurring in fall and winter months. Our results suggest that that spatially explicit data on specific crop types and crop practices are valuable for explaining spatial and temporal variation of nutrient concentrations in WRB rivers. This emphasizes the need for careful tracking of non-point N inputs to inform water quality monitoring and management.
Mapping river bathymetry with a small footprint green LiDAR: Applications and challenges
Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.
2013-01-01
that environmental conditions and postprocessing algorithms can influence the accuracy and utility of these surveys and must be given consideration. These factors can lead to mapping errors that can have a direct bearing on derivative analyses such as hydraulic modeling and habitat assessment. We discuss the water and substrate characteristics of the sites, compare the conventional and remotely sensed river-bed topographies, and investigate the laser waveforms reflected from submerged targets to provide an evaluation as to the suitability and accuracy of the EAARL system and associated processing algorithms for riverine mapping applications.
A model for late Archean chemical weathering and world average river water
NASA Astrophysics Data System (ADS)
Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.
2017-01-01
Interpretations of the geologic record of late Archean near-surface environments depend very strongly on an understanding of weathering and resultant riverine transport to the oceans. The late Archean atmosphere is widely recognized to be anoxic (pO2,g =10-5 to 10-13 bars; pH2,g =10-3 to 10-5 bars). Detrital siderite (FeCO3), pyrite (FeS2), and uraninite (UO2) in late Archean sedimentary rocks also suggest anoxic conditions. However, whether the observed detrital minerals could have been thermodynamically stable during weathering and riverine transport under such an atmosphere remains untested. Similarly, interpretations of fluctuations recorded by trace metals and isotopes are hampered by a lack of knowledge of the chemical linkages between the atmosphere, weathering, riverine transport, and the mineralogical record. In this study, we used theoretical reaction path models to simulate the chemistry involved in rainwater and weathering processes under present-day and hypothetical Archean atmospheric boundary conditions. We included new estimates of the thermodynamic properties of Fe(II)-smectites as well as smectite and calcite solid solutions. Simulation of present-day weathering of basalt + calcite by world-average rainwater produced hematite, kaolinite, Na-Mg-saponite, and chalcedony after 10-4 moles of reactant minerals kg-1 H2O were destroyed. Combination of the resultant water chemistry with results for granitic weathering produced a water composition comparable to present-day world average river water (WARW). In contrast, under late Archean atmospheric conditions (pCO2,g =10-1.5 and pH2,g =10-5.0 bars), weathering of olivine basalt + calcite to the same degree of reaction produced kaolinite, chalcedony, and Na-Fe(II)-rich-saponite. Late Archean weathering of tonalite-trondhjemite-granodiorite (TTG) formed Fe(II)-rich beidellite and chalcedony. Combining the waters from olivine basalt and TTG weathering resulted in a model for late Archean WARW with the composition Na+-Ca2+-Fe2+-Mg2+-Cl--HCO-3-SiO2,aq. The pH of the water was 6.3 and it is much richer in HCO-3, and in Mg + Fe relative to Ca + Na, compared to present-day WARW. At higher pH2,g (e.g. 10-4.0 bars) organic acid anions could be metastable. Our results are consistent with the thermodynamic stability of Fe(II)-clays, pyrite, uraninite, and, under some conditions, siderite during weathering and riverine transport. Overall, our results provide a basis for assessing the formation of organic hazes and the mobility of trace elements and nutrients due to fluctuations of the late Archean atmosphere.
Simulation of flow and habitat conditions under ice, Cache la Poudre River - January 2006
Waddle, Terry
2007-01-01
The objectives of this study are (1) to describe the extent and thickness of ice cover, (2) simulate depth and velocity under ice at the study site for observed and reduced flows, and (3) to quantify fish habitat in this portion of the mainstem Cache la Poudre River for the current winter release schedule as well as for similar conditions without the 0.283 m3/s winter release.
John Wooster; Sue Hilton
2004-01-01
Large woody debris (LWD) was inventoried in 1999 in five streams where LWD was removed in the early 1980s, and no LWD has been artificially introduced since. All study sites are second order channels near the confluence of the South Fork and main-stem Eel River, California. Watershed contributing areas range from 4.7 to 17.4 km², and mean active channel widths...
Terrestrial plant biopolymers in marine sediments
NASA Astrophysics Data System (ADS)
Gough, Mark A.; Fauzi, R.; Mantoura, C.; Preston, Martin
1993-03-01
The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterised terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial land plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary lignin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations ( ca. 0.5 μgg-1 in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. To account for these observations, preferential offshore transport of finer and more degraded material is proposed. Nonspecific oxidation products dominated the gas chromatograms of NEA sediments, which appear to originate from marine sources of sedimentary organic carbon. Preliminary mass balance calculations applied to the global ocean margin suggest riverine sources of both particulate lignin and cutin are important and that most (>95%) deposition of recognisable land plant biopolymers occurs in shelf seas.
Do rivermouths alter nutrient and seston delivery to the nearshore?
Larson, James H.; Frost, Paul C.; Vallazza, Jon M.; Nelson, John; Richardson, William B.
2016-01-01
Tributary inputs to lakes and seas are often measured at riverine gages, upstream of lentic influence. Between these riverine gages and the nearshore zones of large waterbodies lie rivermouths, which may retain, transform and contribute materials to the nearshore zone. However, the magnitude and timing of these rivermouth effects have rarely been measured.During the summer of 2011, 23 tributary systems of the Laurentian Great Lakes were sampled from river to nearshore for dissolved and particulate carbon (C), nitrogen (N) and phosphorus (P) concentrations, as well as bulk seston and chlorophyll a concentrations. Three locations per system were sampled: in the upstream river, in the nearshore zone and at the outflow from the rivermouth to the lake. Using stable oxygen isotopes, a water-mixing model was developed to estimate the nutrient concentration that would occur at the rivermouth if mixing was strictly conservative (i.e. if no processing occurred within the rivermouth). Deviations between these conservative mixing estimates and measured nutrient concentrations were identified as rivermouth effects on nutrient concentrations.Rivermouths had higher concentration of C and P than nearshore areas and more chlorophyll athan upstream river waters. Compared to the conservative mixing model, rivermouths as a class appeared to be summer-time sources of N, P and chlorophyll a. Substantial among rivermouth variation occurred both in the effect size and direction for all constituents.Using principal component analysis, two groups of rivermouths were identified: rivermouths that had a large effect on most constituents and those that had very little effect on any of the measured constituents. ‘High-effect’ rivermouths had more abundant upstream croplands, which were presumably the sources of inorganic nutrients. Cross-validated models built using characteristics of the rivermouth were not good predictors of variation in rivermouth effects on most constituents.For consumers feeding on seston and microbes and vascular autotrophs directly taking up dissolved nutrients, rivermouths are more resource-rich than upstream riverine or nearby Great Lakes waters. Given declines over time in open-lake productivity within the Great Lakes, rivermouths may contribute more productivity than their size would suggest to the Great Lakes food web.
NASA Astrophysics Data System (ADS)
Laukert, Georgi; Frank, Martin; Bauch, Dorothea; Hathorne, Ed C.; Gutjahr, Marcus; Janout, Markus; Hölemann, Jens
2017-11-01
Marine neodymium (Nd) isotope and rare earth element (REE) compositions are valuable tracers for present and past ocean circulation and continental inputs. Yet their supply via high latitude estuaries is largely unknown. Here we present a comprehensive dissolved Nd isotope (expressed as εNd values) and REE data set together with seawater stable oxygen isotope (δ18O) compositions of samples from the Laptev Sea recovered in two Arctic summers and one winter. The Laptev Sea is a shallow Siberian Shelf sea characterized by extensive river-runoff, sea-ice production and ice transport into the Arctic Ocean. The large variability in εNd (-6 to -17), REE concentrations (16 to 600 pmol/kg for Nd) and REE patterns is controlled by freshwater supply from distinct riverine sources and open ocean Arctic Atlantic Water. Strikingly and contrary to expectations, except for cerium no evidence for significant release of REEs from particulate phases is found, which is attributed to low amounts of suspended particulate matter and high dissolved organic carbon concentrations present in the contributing rivers. Essentially all shelf waters are depleted in light (L)REEs, while the distribution of the heavy REEs shows a deficiency at the surface and a pronounced excess in the bottom layer. This distribution is consistent with REE removal through coagulation of riverine nanoparticles and colloids starting at salinities near 10 and resulting in a drop of all REE concentrations by ∼30%. With increasing salinity preferential LREE removal is observable reaching ∼75% for Nd at a salinity of 34. Although the delayed onset of dissolved REE removal contrasts with most previous observations from other estuarine environments, it agrees remarkably well with results from recent experiments simulating estuarine mixing of seawater with organic-rich river waters. In addition, melting and formation of sea ice leads to further REE depletion at the surface and strong REE enrichment near the shelf bottom as a function of ice melting and brine transfer, respectively. The ice-related processes significantly affect the distribution of dissolved REEs in high-latitude estuaries and likely also similarly contribute to the redistribution of other dissolved seawater constituents.
NASA Astrophysics Data System (ADS)
Fang, Y.; Chen, Y.; Tian, C.
2015-12-01
Black carbon (BC) derived from incomplete combustion of fossil fuels and biomass has received increasing attention due to their potential importance in a wide range of biogeochemical processes. China has been generally considered as the world's largest BC emitter. Due to a combination of the prevailing East Asia monsoon and large amounts of riverine outflow, BC released from China can be transported to the adjacent continental shelf seas, the Bohai Sea (BS) and Yellow Sea (YS). Based on measurements of BC in 191 surface sediments, 36 riverine water, and 2 seawater samples, as well as the reported BC data set of the aerosol samples in the Bohai Rim, the concentration, flux, and budget of BC in the BS and YS were investigated. The spatial distribution of the BC concentration in surface sediments was largely influenced by the regional hydrodynamic conditions, with high values mainly occurring in the central mud areas. The BC burial flux in the BS and YS ranged from 4 to 1100 μg/cm2/yr, and averaged 166 ± 200 μg/cm2/yr. The area-integrated sedimentary BC sink flux in the entire BS and YS was ~325 Gg/yr. The BC budget calculated in the BS showed that atmospheric deposition and riverine discharge played comparable importance in delivering BC to the BS, and sequestration to bottom sediments was the major BC output pattern, accounting for ~88% of the total input BC. Besides, we attempted to apportion the BC sources in the BS and YS surface sediments using PAHs (organic molecular proxies cogenerated with BC) and BC as an input data to the Positive Matrix Factorization (PMF) receptor model. Results showed that ~83% of the sediment BC was attributed to the combustion of fossil fuels, and the remaining ~17% was from biomass burning. Due to the differences in their production mechanisms and therefore physicochemical properties, the above distinction and quantification would help us better understand their different environmental behaviors in the complex continental shelf regimes.
Food supplies of stream-dwelling salmonids
Wipfli, Mark S.
2009-01-01
Much is known about the importance of the physical characteristics of salmonid habitat in Alaska and the Pacific Northwest, with far less known about the food sources and trophic processes within these habitats, and the role they play in regulating salmonid productivity. Freshwater food webs supporting salmonids in Alaska rely heavily on nutrient, detritus and prey subsidies from both marine and terrestrial ecosystems. Adult salmon provide a massive input of marine biomass to riverine ecosystems each year when they spawn, die, and decompose, and are a critical food source for young salmon in late summer and fall; riparian forests provide terrestrial invertebrates to streams, which at times comprise over half of the food ingested by stream-resident salmonids; and up-slope, fishless headwater streams are a year-round source of invertebrates and detritus for fish downstream. The quantity of these food resources vary widely depending on source, season, and spatial position within a watershed. Terrestrial invertebrate inputs from riparian habitats are generally the most abundant food source in summer. Juvenile salmonids in streams consume roughly equal amounts of freshwater and terrestrially-derived invertebrates during most of the growing season, but ingest substantial amounts of marine resources (salmon eggs and decomposing salmon tissue) when these food items are present. Quantity, quality, and timing of food resources all appear to be important driving forces in aquatic food web dynamics, community nutrition, and salmonid growth and survival in riverine ecosystems.
NASA Astrophysics Data System (ADS)
Tovar-Sánchez, Antonio; Sañudo-Wilhelmy, Sergio A.; Flegal, A. Russell
2004-08-01
Despite the fact that Co is an essential trace element for the growth of marine phytoplankton, there is very limited information on the cycling of this trace metal in the marine environment. We report here the distribution of dissolved (<0.4 μm) and particulate (>0.4 μm) Co in surface waters of the Hudson River Estuary (HRE) and San Francisco Bay (SFB). Samples were collected during several cruises (from 1990 to 1995 in SFB and from 1995 to 1997 in the HRE) along the whole salinity gradient. Dissolved Co concentrations (mean±1 standard deviation) were nearly identical in magnitude in both estuaries despite differences in climate, hydrography, riverine-flow conditions and land-usage (HRE=0.91±0.61 nM; SFB=1.12±0.69 nM). Dissolved Co levels in each system showed non-conservative distributions when plotted as a function of salinity, with increasing concentrations downstream from the riverine end-members. Desorption from suspended particulates and sewage inputs, therefore, seems to be the major processes responsible for the non-conservative behavior of Co observed. Mass balance estimates also indicated that most of the estuarine Co is exported out of both estuaries, indicating that they and other estuarine systems are principal sources of this essential trace element to the open ocean.
NASA Astrophysics Data System (ADS)
Smith, A. A.; Welch, C.; Stadnyk, T. A.
2018-05-01
Evapotranspiration (ET) partitioning is a growing field of research in hydrology due to the significant fraction of watershed water loss it represents. The use of tracer-aided models has improved understanding of watershed processes, and has significant potential for identifying time-variable partitioning of evaporation (E) from ET. A tracer-aided model was used to establish a time-series of E/ET using differences in riverine δ18O and δ2H in four northern Canadian watersheds (lower Nelson River, Manitoba, Canada). On average E/ET follows a parabolic trend ranging from 0.7 in the spring and autumn to 0.15 (three watersheds) and 0.5 (fourth watershed) during the summer growing season. In the fourth watershed wetlands and shrubs dominate land cover. During the summer, E/ET ratios are highest in wetlands for three watersheds (10% higher than unsaturated soil storage), while lowest for the fourth watershed (20% lower than unsaturated soil storage). Uncertainty of the ET partition parameters is strongly influenced by storage volumes, with large storage volumes increasing partition uncertainty. In addition, higher simulated soil moisture increases estimated E/ET. Although unsaturated soil storage accounts for larger surface areas in these watersheds than wetlands, riverine isotopic composition is more strongly affected by E from wetlands. Comparisons of E/ET to measurement-intensive studies in similar ecoregions indicate that the methodology proposed here adequately partitions ET.
Abdi, Reza; Yasi, Mehdi
2015-01-01
The assessment of environmental flows in rivers is of vital importance for preserving riverine ecosystem processes. This paper addresses the evaluation of environmental flow requirements in three reaches along a typical perennial river (the Zab transboundary river, in north-west Iran), using different hydraulic, hydrological and ecological methods. The main objective of this study came from the construction of three dams and inter-basin transfer of water from the Zab River to the Urmia Lake. Eight hydrological methods (i.e. Tennant, Tessman, flow duration curve analysis, range of variability approach, Smakhtin, flow duration curve shifting, desktop reserve and 7Q2&10 (7-day low flow with a 2- and 10-year return period)); two hydraulic methods (slope value and maximum curvature); and two habitat simulation methods (hydraulic-ecologic, and Q Equation based on water quality indices) were used. Ecological needs of the riverine key species (mainly Barbus capito fish), river geometries, natural flow regime and the environmental status of river management were the main indices for determining the minimum flow requirements. The results indicate that the order of 35%, 17% and 18% of the mean annual flow are to be maintained for the upper, middle and downstream river reaches, respectively. The allocated monthly flow rates in the three Dams steering program are not sufficient to preserve the Zab River life.
NASA Astrophysics Data System (ADS)
Foley, M. M.; Bellmore, J. R.; O'Connor, J. E.; Duda, J. J.; East, A. E.; Grant, G. E.; Anderson, C. W.; Bountry, J. A.; Collins, M. J.; Connolly, P. J.; Craig, L. S.; Evans, J. E.; Greene, S. L.; Magilligan, F. J.; Magirl, C. S.; Major, J. J.; Pess, G. R.; Randle, T. J.; Shafroth, P. B.; Torgersen, C. E.; Tullos, D.; Wilcox, A. C.
2017-07-01
Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.
Killingsworth, Bryan A; Bao, Huiming; Kohl, Issaku E
2018-05-17
Riverine dissolved sulfate (SO 4 2- ) sulfur and oxygen isotope variations reflect their controls such as SO 4 2- reduction and reoxidation, and source mixing. However, unconstrained temporal variability of riverine SO 4 2- isotope compositions due to short sampling durations may lead to mischaracterization of SO 4 2- sources, particularly for the pyrite-derived sulfate load. We measured the sulfur and triple-oxygen isotopes (δ 34 S, δ 18 O, and Δ' 17 O) of Mississippi River SO 4 2- with biweekly sampling between 2009 and 2013 to test isotopic variability and constrain sources. Sulfate δ 34 S and δ 18 O ranged from -6.3‰ to -0.2‰ and -3.6‰ to +8.8‰, respectively. Our sampling period captured the most severe flooding and drought in the Mississippi River basin since 1927 and 1956, respectively, and a first year of sampling that was unrepresentative of long-term average SO 4 2- . The δ 34 S SO4 data indicate pyrite-derived SO 4 2- sources are 74 ± 10% of the Mississippi River sulfate budget. Furthermore, pyrite oxidation is implicated as the dominant process supplying SO 4 2- to the Mississippi River, whereas the Δ' 17 O SO4 data shows 18 ± 9% of oxygen in this sulfate is sourced from air O 2 .
Significant human impact on the flux and δ(34)S of sulfate from the largest river in North America.
Killingsworth, Bryan A; Bao, Huiming
2015-04-21
Riverine dissolved sulfate (SO4(2-)) flux and sulfur stable isotope composition (δ(34)S) yield information on the sources and processes affecting sulfur cycling on different spatial and temporal scales. However, because pristine preindustrial natural baselines of riverine SO4(2-) flux and δ(34)S cannot be directly measured, anthropogenic impact remains largely unconstrained. Here we quantify natural and anthropogenic SO4(2-) flux and δ(34)S for North America's largest river, the Mississippi, by means of an exhaustive source compilation and multiyear monitoring. Our data and analysis show that, since before industrialization to the present, Mississippi River SO4(2-) has increased in flux from 7.0 to 27.8 Tg SO4(2-) yr(-1), and in mean δ(34)S from -5.0‰, within 95% confidence limits of -14.8‰ to 4.1‰ (assuming normal distribution for mixing model input parameters), to -2.7 ± 1.6‰, reflecting an impressive footprint of bedrocks particular to this river basin and human activities. Our first-order modern Mississippi River sulfate partition is 25 ± 6% natural and 75% ± 6% anthropogenic sources. Furthermore, anthropogenic coal usage is implicated as the dominant source of modern Mississippi River sulfate, with an estimated 47 ± 5% and 13% of total Mississippi River sulfate due to coal mining and burning, respectively.
NASA Astrophysics Data System (ADS)
Zhang, B.; Yao, Y.; Xu, R.; Yang, J.; WANG, Z.; Pan, S.; Tian, H.
2016-12-01
The atmospheric concentration of nitrous oxide (N2O), one of major greenhouse gases, has increased over 121% compared with the preindustrial level, and most of the increase arises from anthropogenic activities. Previous studies suggested that indirect emissions from global rivers remains a large source of uncertainty among all the N2O sources and restricted the assessment of N2O budget at both regional and global scales. Here, we have integrated a coupled biogeochemical model (DLEM) with observational data to quantify the magnitude and spatio-temporal variation of riverine N2O emission and attribute the environmental controls of indirect N2O emission from major rivers in the world. Our preliminary results indicate that the magnitude of indirect N2O emission from rivers is closely associated with the stream orders. To include N2O emissions from headwater streams is essential for reducing uncertainty in the estimation of indirect N2O emission. By implementing a set of factorial simulations, we have further quantified the relative contributions of climate, nitrogen deposition, nitrogen fertilizer use, and manure application to riverine N2O emission. Finally, this study has identified major knowledge gaps and uncertainties associated with model structure, parameters and input data that need to be improved in future research.
NASA Astrophysics Data System (ADS)
Vibhava, F.; Graham, W. D.; De Rooij, R.; Maxwell, R. M.; Martin, J. B.; Cohen, M. J.
2011-12-01
The Santa Fe River Basin (SFRB) consists of three linked hydrologic units: the upper confined region (UCR), semi-confined transitional region (Cody Escarpment, CE) and lower unconfined region (LUR). Contrasting geological characteristics among these units affect streamflow generation processes. In the UCR, surface runoff and surficial stores dominate whereas in the LCR minimal surface runoff occurs and flow is dominated by groundwater sources and sinks. In the CE region the Santa Fe River (SFR) is captured entirely by a sinkhole into the Floridan aquifer, emerging as a first magnitude spring 6 km to the south. In light of these contrasting hydrological settings, developing a predictive, basin scale, physically-based hydrologic simulation model remains a research challenge. This ongoing study aims to assess the ability of a fully-coupled, physically-based three-dimensional hydrologic model (PARFLOW-CLM), to predict hydrologic conditions in the SFRB. The assessment will include testing the model's ability to adequately represent surface and subsurface flow sources, flow paths, and travel times within the basin as well as the surface-groundwater exchanges throughout the basin. In addition to simulating water fluxes, we also are collecting high resolution specific conductivity data at 10 locations throughout the river. Our objective is to exploit hypothesized strong end-member separation between riverine source water geochemistry to further refine the PARFLOW-CLM representation of riverine mixing and delivery dynamics.
Foley, Melissa M.; Bellmore, James; O'Connor, James E.; Duda, Jeff; East, Amy E.; Grant, Gordon G.; Anderson, Chauncey; Bountry, Jennifer A.; Collins, Mathias J.; Connolly, Patrick J.; Craig, Laura S.; Evans, James E.; Greene, Samantha; Magilligan, Francis J.; Magirl, Christopher S.; Major, Jon J.; Pess, George R.; Randle, Timothy J.; Shafroth, Patrick B.; Torgersen, Christian E.; Tullos, Desiree D.; Wilcox, Andrew C.
2017-01-01
Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagne-Maynard, William C.; Ward, Nicholas D.; Keil, Richard G.
The Amazon River outgasses nearly an equivalent amount of CO 2 as the rainforest sequesters on an annual basis due to microbial decomposition of terrigenous and aquatic organic matter. Most research performed in the Amazon has been focused on unraveling the mechanisms driving CO 2 production since the recognition of a persistent state of CO 2 supersaturation. However, although the river system is clearly net heterotrophic, the interplay between primary production and respiration is an essential aspect to understanding the overall metabolism of the ecosystem and potential transfer of energy up trophic levels. For example, an efficient ecosystem is capablemore » of both decomposing high amounts of organic matter at lower trophic levels, driving CO 2 emissions, and accumulating energy/biomass in higher trophic levels, stimulating fisheries production. Early studies found minimal evidence for primary production in the Amazon River mainstem and it has since been assumed that photosynthesis is strongly limited by low light penetration attributed to the high sediment load. Here, we test this assumption by measuring the stable isotopic composition of O 2 (δ 18O-O 2) and O 2 saturation levels in the lower Amazon River from Óbidos to the river mouth and its major tributaries, the Xingu and Tapajós rivers, during high and low water periods. An oxygen mass balance model was developed to estimate the input of photosynthetic oxygen in the discrete reach from Óbidos to Almeirim, midway to the river mouth. Based on the oxygen mass balance we estimate that primary production occurred at a rate of 0.39 ± 0.24 g O m 3 d -1 at high water and 1.02 ± 0.55 g O m 3 d -1 at low water. This translates to 41 ± 24% of the rate of O 2 drawdown via respiration during high water and 67 ± 33% during low water. These primary production rates are 2-7 times higher than past estimates for the Amazon River mainstem. In conclusion, it is possible that at high water much of this productivity signal is the result of legacy advection from floodplains, whereas limited floodplain connectivity during low water implies that most of this signal is the result of in situ primary production in the Amazon River mainstem.« less
NASA Astrophysics Data System (ADS)
Wainger, Lisa; Yu, Hao; Gazenski, Kim; Boynton, Walter
2016-09-01
A major question in restoring estuarine water quality is whether local actions to manage excess nutrients can be effective, given that estuaries are also responding to tidal inputs from adjacent water bodies. Several types of statistical analysis were used to examine spatially-detailed and long-term water quality monitoring data in eight sub-estuaries of Chesapeake Bay. These sub-estuaries are likely to be similar to other shallow systems with moderate to long water residence times. Statistical cluster analysis of spatial water quality data suggested that estuaries had spatially distinct water quality zones and that the peak algal biomass (as measured by chlorophyll-a) was most often controlled by local watershed inputs in all but one estuary, although mainstem inputs affected most estuaries at some times and places. An elasticity indicator that compared inter-annual changes in sub-estuaries to parallel changes in the mainstem Chesapeake Bay supported the idea that water quality in sub-estuaries was not strongly coupled to the mainstem. A cross-channel zonation of water quality observed near the mouth of estuaries suggested that Bay influences were stronger on the right side of the lower channel (looking up estuary) at times in all estuaries, and was most common in small estuaries closest to the mouth of the primary water source to the estuary. Where Bay influences were strong, estuarine water quality would be expected to be less responsive to nutrient reductions made in the local watershed. Regression analysis was used to evaluate hypothesized relationships between environmental driver variables and average chlorophyll-a (chl-a) concentrations. Chl-a values were calculated from unusually detailed levels of spatial sampling, potentially providing a more comprehensive view of system conditions than that provided by traditional sparse sampling networks. The univariate models with the best data support to explain variability in averaged chl-a concentration were those that reflected water residence time. Of the land cover variables tested, septic density in the riparian zone explained the most variance in chl-a. The multivariate models that most improved upon the residence time effect added TN or TP flows (normalized by volume) and suggested that chl-a will be less responsive to nutrient reductions in estuaries that are poorly flushed.
NASA Astrophysics Data System (ADS)
Ritson, Jonathan P.; Brazier, Richard E.; Graham, Nigel J. D.; Freeman, Chris; Templeton, Michael R.; Clark, Joanna M.
2017-06-01
Drought conditions are expected to increase in frequency and severity as the climate changes, representing a threat to carbon sequestered in peat soils. Downstream water treatment works are also at risk of regulatory compliance failures and higher treatment costs due to the increase in riverine dissolved organic carbon (DOC) often observed after droughts. More frequent droughts may also shift dominant vegetation in peatlands from Sphagnum moss to more drought-tolerant species. This paper examines the impact of drought on the production and treatability of DOC from four vegetation litters (Calluna vulgaris, Juncus effusus, Molinia caerulea and Sphagnum spp.) and a peat soil. We found that mild droughts caused a 39.6 % increase in DOC production from peat and that peat DOC that had been exposed to oxygen was harder to remove by conventional water treatment processes (coagulation/flocculation). Drought had no effect on the amount of DOC production from vegetation litters; however large variation was observed between typical peatland species (Sphagnum and Calluna) and drought-tolerant grassland species (Juncus and Molinia), with the latter producing more DOC per unit weight. This would therefore suggest the increase in riverine DOC often observed post-drought is due entirely to soil microbial processes and DOC solubility rather than litter layer effects. Long-term shifts in species diversity may, therefore, be the most important impact of drought on litter layer DOC flux, whereas pulses related to drought may be observed in peat soils and are likely to become more common in the future. These results provide evidence in support of catchment management which increases the resilience of peat soils to drought, such as ditch blocking to raise water tables.
NASA Astrophysics Data System (ADS)
Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca
2017-04-01
The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.
Traving, Sachia J.; Rowe, Owen; Jakobsen, Nina M.; Sørensen, Helle; Dinasquet, Julie; Stedmon, Colin A.; Andersson, Agneta; Riemann, Lasse
2017-01-01
Increased river loads are projected as one of the major consequences of climate change in the northern hemisphere, leading to elevated inputs of riverine dissolved organic matter (DOM) and inorganic nutrients to coastal ecosystems. The objective of this study was to investigate the effects of elevated DOM on a coastal pelagic food web from the coastal northern Baltic Sea, in a 32-day mesocosm experiment. In particular, the study addresses the response of bacterioplankton to differences in character and composition of supplied DOM. The supplied DOM differed in stoichiometry and quality and had pronounced effects on the recipient bacterioplankton, driving compositional changes in response to DOM type. The shifts in bacterioplankton community composition were especially driven by the proliferation of Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Alpha- and Betaproteobacteria populations. The DOM additions stimulated protease activity and a release of inorganic nutrients, suggesting that DOM was actively processed. However, no difference between DOM types was detected in these functions despite different community compositions. Extensive release of re-mineralized carbon, nitrogen and phosphorus was associated with the bacterial processing, corresponding to 25–85% of the supplied DOM. The DOM additions had a negative effect on phytoplankton with decreased Chl a and biomass, particularly during the first half of the experiment. However, the accumulating nutrients likely stimulated phytoplankton biomass which was observed to increase towards the end of the experiment. This suggests that the nutrient access partially outweighed the negative effect of increased light attenuation by accumulating DOM. Taken together, our experimental data suggest that parts of the future elevated riverine DOM supply to the Baltic Sea will be efficiently mineralized by microbes. This will have consequences for bacterioplankton and phytoplankton community composition and function, and significantly affect nutrient biogeochemistry. PMID:28337180
Xu, Yihong; Pan, Shaoming; Gao, Jianhua; Hou, Xiaolin; Ma, Yongfu; Hao, Yongpei
2018-09-01
Plutonium (Pu) isotopes were first determined in surface and core sediment samples collected from the northern North Yellow Sea (NYS) to elucidate their source terms and deposition process as well as the response to catchment environmental changes of inflow rivers. 240 Pu/ 239 Pu atom ratios in all sediments showed the typical global fallout value of ∼0.18 without any influences from the nuclear weapons tests conducted recently in the North Korea or early in the Pacific Proving Ground. The large variation of 239+240 Pu activities (0.022-0.515 mBq/g) observed in surface sediments should be mainly attributed to the re-suspension and transportation of fine sediments influenced by the Liaonan Costal Current. Based on the two 239+249 Pu depth profiles with easily observed onset fallout levels (1952) and global fallout peaks (1963), 239+240 Pu served as a valid time mark in the coastal sedimentary system. Riverine input Pu contributed only 15-27% to the total global fallout inventory (92.5-108.8 Bq/m 2 ) in the northern NYS, much lower than that in the Yangtze River estuary (77-80%), indicating a better soil conservation in the northeast China due to higher forest coverage compared to the Yangtze River's drainage basin. The increase of riverine input Pu after 1980s reflected the more intense soil erosion degree caused by the land use and cover change due to the increment of human activities in the northeast China at the same period. Our results demonstrated that plutonium is a good indicator for studying sedimentary process and its response to the environment in the coastal area. Copyright © 2018 Elsevier Ltd. All rights reserved.
Transport and Fate of Nutrients Along the U.S. East Coast
NASA Astrophysics Data System (ADS)
Hofmann, E. E.; Narvaez, D.; Friedrichs, M. A. M.; Najjar, R.; Tian, H.; Hyde, K.; Mannino, A.; Signorini, S. R.; Wilkin, J.; St-Laurent, P.
2017-12-01
As part of a NASA-funded multi-investigator project, a land-estuarine-ocean biogeochemical modeling system was implemented and verified with remote sensing and in situ data to examine processes controlling fluxes on land, their coupling to riverine systems, the delivery of materials to estuaries and the coastal ocean, and marine ecosystem responses to these changing riverine inputs and changing climate forcing. This modeling system is being used to develop nutrient budgets for the U.S. east coast continental shelf and to examine seasonal and interannual variability in nutrient fluxes. An important aspect of these nutrient budgets is the transport and fate of nutrients released along the inner shelf. Results from a five-year simulation (2004 to 2008) that used tracer releases from the main rivers along the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) provide insights into transport pathways that connect the inner and outer continental shelf. Tracers released along the inner MAB spread along the shelf with a general southward and offshore transport. Inner shelf inputs from the large estuarine systems are transported to the mid and outer MAB shelf. Tracers that reach the mid to outer shelf can be entrained in the Gulf Stream. Export from the MAB to the SAB occurs during periods of southerly winds. Transport processes along the SAB are similar, but Gulf Stream entrainment is a larger component of tracer transport. Superimposed on the MAB and SAB transport patterns is considerable seasonal and interannual variability. The results from these retrospective simulations improve understanding of the coupling at the land-water interface and shelf-wide transport patterns that advance the ability to predict the effects of localized human impacts and broader-scale climate-related impacts on the U.S. east coast continental shelf system.
Floodplain dynamics control the age distribution of organic carbon in large rivers
NASA Astrophysics Data System (ADS)
Torres, M. A.; Limaye, A. B. S.; Ganti, V.; West, A. J.; Fischer, W. W.; Lamb, M. P.
2016-12-01
As sediments transit through river systems, they are temporarily stored within floodplains. This storage is important for geochemical cycles because it imparts a certain cadence to weathering processes and organic carbon cycling. However, the time and length scales over which these processes operate are poorly known. To address this, we developed a model for the distribution of storage times in floodplains and used it to make predictions of the age distribution of riverine particulate organic carbon (POC) that can be compared with data from a range of rivers.Using statistics generated from a numerical model of river meandering that accounts for the rates of lateral channel migration and the lengths of channel needed to exchange the sediment flux with the floodplain, we estimated the distribution of sediment storage times. Importantly, this approach consistently yields a heavy-tailed distribution of storage times. This finding, based on comprehensive simulations of a wide range of river conditions, arises because of geometrical constraints that lead to the preferential erosion and reworking of young deposits. To benchmark our model, we compared our results with meteoric 10Be data (a storage time proxy) from Amazonian rivers. Our model correctly predicts observed 10Be concentrations, and consequently appears to capture the correct characteristic timescales associated with floodplain storage. By coupling a simple model of carbon cycling with our floodplain storage model, we are able to make predictions about the radiocarbon content of riverine POC. We observe that floodplains with greater storage times tend to have biospheric POC with a lower radiocarbon content (after correcting bulk ages for contribution from radiocarbon-dead petrogenic carbon). This result confirms that storage plays a key role in setting the age of POC transported by rivers with important implications for the dynamics of the global carbon cycle.
Jergenson, Abigail M; Miller, David A W; Neuman-Lee, Lorin A; Warner, Daniel A; Janzen, Fredric J
2014-03-01
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture-mark-recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change.
Biophysical Interactions within Step-Pool Mountain Streams Following Wildfire
NASA Astrophysics Data System (ADS)
Parker, A.; Chin, A.; O'Dowd, A. P.
2014-12-01
Recovery of riverine ecosystems following disturbance is driven by a variety of interacting processes. Wildfires pose increasing disturbances to riverine landscapes, with rising frequencies and magnitudes owing to warming climates and increased fuel loads. The effects of wildfire include loss of vegetation, elevated runoff and flash floods, erosion and deposition, and changing biological habitats and communities. Understanding process interactions in post-fire landscapes is increasingly urgent for successful management and restoration of affected ecosystems. In steep channels, steps and pools provide prominent habitats for organisms and structural integrity in high energy environments. Step-pools are typically stable, responding to extreme events with recurrence intervals often exceeding 50 years. Once wildfire occurs, however, intensification of post-fire flood events can potentially overpower the inherent stability of these systems, with significant consequences for aquatic life and human well-being downstream. This study examined the short-term response of step-pool streams following the 2012 Waldo Canyon Fire in Colorado. We explored interacting feedbacks among geomorphology, hydrology, and ecology in the post-fire environment. At selected sites with varying burn severity, we established baseline conditions immediately after the fire with channel surveys, biological assessment using benthic macroinvertebrates, sediment analysis including pebble counts, and precipitation gauging. Repeat measurements after major storm events over several years enabled analysis of the interacting feedbacks among post-fire processes. We found that channels able to retain the step-pool structure changed less and facilitated recovery more readily. Step habitats maintained higher percentages of sensitive macroinvertebrate taxa compared to pools through post-fire floods. Sites burned with high severity experienced greater reduction in the percentage of sensitive taxa. The decimation of macroinvertebrates closely coincides with the physical destruction of the step-pool morphology. The role that step-pools play in enhancing the ecological quality of fluvial systems, therefore, provides a key focus for effective management and restoration of aquatic resources following wildfires.
Engineered river flow-through to improve mine pit lake and river values.
McCullough, Cherie D; Schultze, Martin
2018-05-30
Mine pit lakes may develop at mine closure when mining voids extend below groundwater levels and fill with water. Acid and metalliferous drainage (AMD) and salinity are common problems for pit lake water quality. Contaminated pit lake waters can directly present significant risk to both surrounding and regional communities and natural environmental values and limit beneficial end use opportunities. Pit lake waters can also discharge into surface and groundwater; or directly present risks to wildlife, stock and human end users. Riverine flow-through is increasingly proposed to mitigate or remediate pit lake water contamination using catchment scale processes. This paper presents the motivation and key processes and considerations for a flow-through pit lake closure strategy. International case studies as precedent and lessons for future application are described from pit lakes that use or propose flow-through as a key component of their mine closure design. Chemical and biological processes including dilution, absorption and flocculation and sedimentation can sustainably reduce pit lake contaminant concentrations to acceptable levels for risk and enable end use opportunities to be realised. Flow-through may be a valid mine closure strategy for pit lakes with poor water quality. However, maintenance of existing riverine system values must be foremost. We further suggest that decant river water quality may, in some circumstances, be improved; notably in examples of meso-eutrophic river waters flowing through slightly acidic pit lakes. Flow-through closure strategies must be scientifically justifiable and risk-based for both lake and receptors potentially affected by surface and groundwater transport. Due to the high-uncertainty associated with this complex strategy, biotic and physico-chemical attributes of both inflow and decant river reaches as well as lake should be well monitored. Monitoring should directly feed into an adaptive management framework discussed with key stakeholders with validation of flow-through as a sustainable strategy prior to mine relinquishment. Copyright © 2018 Elsevier B.V. All rights reserved.
The First 75 Years: History of Hydraulics Engineering at the Waterways Experiment Station
2004-01-01
Report, 10-12. Gilsonite is a variety of asphalt that occurs in the Uinta Basin of northeastern Utah. Haydite is an expanded shale or clay...River Fish Mitigation: Gas Abatement." 76. John George i11terview. 77. "SCT Completes Mainstem Project Ranking," Columbia Basin Bulletin: Weekly...view of the Mississippi Basin Model looking toward the Gulf of Mexico. (Ohio River Basin in lower right foreground; Atchafalaya Basin in extreme
Pathogen reduction co-benefits of nutrient best management practices
Wainger, Lisa A.; Barber, Mary C.
2016-01-01
Background Many of the practices currently underway to reduce nitrogen, phosphorus, and sediment loads entering the Chesapeake Bay have also been observed to support reduction of disease-causing pathogen loadings. We quantify how implementation of these practices, proposed to meet the nutrient and sediment caps prescribed by the Total Maximum Daily Load (TMDL), could reduce pathogen loadings and provide public health co-benefits within the Chesapeake Bay system. Methods We used published data on the pathogen reduction potential of management practices and baseline fecal coliform loadings estimated as part of prior modeling to estimate the reduction in pathogen loadings to the mainstem Potomac River and Chesapeake Bay attributable to practices implemented as part of the TMDL. We then compare the estimates with the baseline loadings of fecal coliform loadings to estimate the total pathogen reduction potential of the TMDL. Results We estimate that the TMDL practices have the potential to decrease disease-causing pathogen loads from all point and non-point sources to the mainstem Potomac River and the entire Chesapeake Bay watershed by 19% and 27%, respectively. These numbers are likely to be underestimates due to data limitations that forced us to omit some practices from analysis. Discussion Based on known impairments and disease incidence rates, we conclude that efforts to reduce nutrients may create substantial health co-benefits by improving the safety of water-contact recreation and seafood consumption. PMID:27904807
Pathogen reduction co-benefits of nutrient best management practices.
Richkus, Jennifer; Wainger, Lisa A; Barber, Mary C
2016-01-01
Many of the practices currently underway to reduce nitrogen, phosphorus, and sediment loads entering the Chesapeake Bay have also been observed to support reduction of disease-causing pathogen loadings. We quantify how implementation of these practices, proposed to meet the nutrient and sediment caps prescribed by the Total Maximum Daily Load (TMDL), could reduce pathogen loadings and provide public health co-benefits within the Chesapeake Bay system. We used published data on the pathogen reduction potential of management practices and baseline fecal coliform loadings estimated as part of prior modeling to estimate the reduction in pathogen loadings to the mainstem Potomac River and Chesapeake Bay attributable to practices implemented as part of the TMDL. We then compare the estimates with the baseline loadings of fecal coliform loadings to estimate the total pathogen reduction potential of the TMDL. We estimate that the TMDL practices have the potential to decrease disease-causing pathogen loads from all point and non-point sources to the mainstem Potomac River and the entire Chesapeake Bay watershed by 19% and 27%, respectively. These numbers are likely to be underestimates due to data limitations that forced us to omit some practices from analysis. Based on known impairments and disease incidence rates, we conclude that efforts to reduce nutrients may create substantial health co-benefits by improving the safety of water-contact recreation and seafood consumption.
NASA Astrophysics Data System (ADS)
Nelson, Nicholas C.; Erwin, Susannah O.; Schmidt, John C.
2013-10-01
Operations of Jackson Lake dam (JLD) have altered the hydrology and sediment transport capacity of the Snake River in Grand Teton National Park. Prior research has provided conflicting assessments of whether the downstream river was perturbed into sediment surplus or sediment deficit. In this paper, we present the results of an aerial photo analysis designed to evaluate whether the history of channel change indicates either significant deficit or surplus of sediment that could be expressed as narrowing or expansion of the channel over time. We analyze changes in braid index, channel width, channel activity, and net channel change of the Snake River based on four series of aerial photographs. Between 1945 and 1969, a period of relatively small main-stem floods, widespread deposition, and up to 31% reduction in channel width occurred throughout the Snake River. Between 1969 and 2002, a period of large main-stem floods, the style of channel change reversed with a decrease in braid index and an increase in channel width of up to 31%. These substantial changes in the channel downstream from the dam primarily occurred in multithread reaches, regardless of proximity to tributaries, and no temporal progression of channel narrowing or widening was observed. We demonstrate that channel change downstream from JLD is more temporally and longitudinally complex than previously described.
NASA Astrophysics Data System (ADS)
Samanta, Saumik; Dalai, Tarun K.
2016-12-01
In this study, the sources and the cycling of Ba have been evaluated in the Ganga (Hooghly) River estuary using the composition of the suspended sediments and the water samples collected during six seasons of contrasting water discharge over two years (2012 and 2013). In addition, the data on the samples of groundwater from areas adjacent to the estuary, and the industrial effluent water and urban wastewater draining into the estuary are presented. Selective extraction experiments were also performed on the suspended particulate matter of two seasons to assess the distribution of exchangeable concentrations of major ions and Ba. In the mixing zone, the variation patterns of the dissolved Ba concentrations show mid-salinity maxima and are similar to the patterns of variation of the particulate Mg/Al and Mg/Fe, suggesting that the production of dissolved Ba is linked to the adsorption of major ions on to the clay minerals and Fe-Mn oxyhydroxides in the particulate matter. The inference of coupled adsorption-desorption processes is supported by the observations that the particulate Ba/Mg and Ba/K ratios exhibit significant to strong negative correlations with the concentrations of Al, Fe and Mn. The observations of mid-salinity maxima for the concentrations of exchangeable Mg and K, and of the exchangeable Ba concentrations that decrease with salinity provide strong evidence that the solute-particle interactions is the major driver in regulating the dissolved Ba distributions in the estuary. The estimates of the quantity of desorbed Ba based on three different approaches suggest that desorption is sufficient to account for the calculated excess Ba (Baxs) concentrations. The contribution of Ba to the dissolved load via dissolution of the particulate carbonate phases is minor, up to 3% of the maximum Baxs concentrations. The estimates of anthropogenic contributions are insignificant, and account for ⩽2% of maximum Baxs in the estuary. Groundwater contributions are less significant and account for up to 5% of the annual Ba flux from the Hooghly estuary. The estimates of Ba flux show that annually (1.5-1.9) × 107 moles of Ba is transported by the Hooghly River. About (3.6-4.3) × 107 moles of Ba is generated annually in the estuary through desorption. Added together, the desorbed and riverine Ba fluxes generate a total Ba flux of (5.1-6.2) × 107 moles per year. Thus, the solute-particle interactions enhance the riverine Ba flux by >300%. A compilation of the available data shows that the enhancement of the riverine Ba flux and the fractions of desorbed Ba flux scale with (particulate matter flux/water flux) ratio in several estuaries of the world, suggesting that the process of solute-particle interactions is a major driver for the estuarine production of Ba on a global scale. Among the rivers considered in this study, the estuaries of the Hooghly River and the Ganges-Brahmaputra rivers, characterized by very high (sediment flux/water flux) ratio, depict the highest increase in the riverine Ba flux. This unique feature of the Ganga River system is inferred to be resulting from the collective impact of the tectonic activity and the monsoonal rainfall in the catchment areas.
Rolls, Robert J; Sternberg, David
2015-06-01
Water resource developments alter riverine environments by disrupting longitudinal connectivity, transforming lotic habitats, and modifying in-stream hydraulic conditions. Effective management of anthropogenic disturbances therefore requires an understanding of the range of potential ecosystem effects and the inherent traits symptomatic of elevated vulnerability to disturbance. Using 42 riverine fish native to South Eastern Australia as a case study, we quantified six morphological, behavioral, and life-history traits to classify species into groups reflecting potential differences in their response to ecosystem changes as a result of water resource development. Classification analysis identified five strategies based on fish life-history dispersal requirements, climbing potential, and habitat preference. These strategies in turn highlight the potential species at risk from the separate impacts of water resource development and inform management decisions to mitigate those risks. Swimming ability did not contribute to distinguishing species into functional groups, likely due to methodological inconsistencies in quantifying swimming performance that may ultimately hinder the ability of fish passage facilities to function within the physical capabilities of species at risk of habitat fragmentation. This study improves our ability to predict the performance of groups of species at risk from the multiple environmental changes imposed by humans and goes beyond broad-scale dispersal requirements as a predictor of individual species response.
NASA Astrophysics Data System (ADS)
Smith, J. P.; Muller, A. C.
2013-05-01
Predicting the fate and distribution of anthropogenic-sourced trace metals in riverine and estuarine systems is challenging due to multiple and varying source functions and dynamic physiochemical conditions. Between July 2011 and November 2012, sediment and water column samples were collected from over 20 sites in the tidal-fresh Potomac River estuary, Washington, DC near the outfall of the Blue Plains Advanced Wastewater Treatment Plant (BPWTP) for measurement of select trace metals. Field observations of water column parameters (conductivity, temperature, pH, turbidity) were also made at each sampling site. Trace metal concentrations were normalized to the "background" composition of the river determined from control sites in order to investigate the distribution BPWTP-sourced in local Potomac River receiving waters. Temporal differences in the observed distribution of trace metals were attributed to changes in the relative contribution of metals from different sources (wastewater, riverine, other) coupled with differences in the physiochemical conditions of the water column. Results show that normalizing near-source concentrations to the background composition of the water body and also to key environmental parameters can aid in predicting the fate and distribution of anthropogenic-sourced trace metals in dynamic riverine and estuarine systems like the tidal-fresh Potomac River.
Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Lepage, Hugo; Cerdan, Olivier; Lefèvre, Irène; Ayrault, Sophie
2014-04-03
Summer typhoons and spring snowmelt led to the riverine spread of continental Fukushima fallout to the coastal plains of Northeastern Japan and the Pacific Ocean. Four fieldwork campaigns based on measurement of radioactive dose rates in fine riverine sediment that has recently deposited on channel bed-sand were conducted between November 2011 and May 2013 to document the spread of fallout by rivers. After a progressive decrease in the fresh riverine sediment doses rates between 2011 and early spring in 2013, a fifth campaign conducted in November 2013 showed that they started to increase again after the occurrence of violent typhoons. We show that this increase in dose rates was mostly due to remobilization of contaminated material that was temporarily stored in river channels or, more importantly, in dam reservoirs of the region during the typhoons. In addition, supply of particles from freshly eroded soils in autumn 2013 was the most important in areas where decontamination works are under progress. Our results underline the need to monitor the impact of decontamination works and dam releases in the region, as they may provide a continuous source of radioactive contamination to the coastal plains and the Pacific Ocean during the coming years.
Fernandes, M B; Sicre, M A; Cardoso, J N; Macêdo, S J
1999-06-15
Sterols, n-alkanols, organic carbon (OC), C/N ratios and carbon isotope data (delta 13C) were investigated in sediments of the urban Capibaribe River estuary, NE Brazil, in order to assess allochthonous and autochthonous sources of organic matter (OM). Sedimentary OC values are high, but C/N ratios and delta 13C data generally fall within the range of values reported in other riverine systems, and suggest mixed inputs from aquatic and terrestrial matter. Mean values for total 4-desmethyl sterols and high molecular weight (HMW) n-alkanols are 11.0 micrograms/g and 2.8 micrograms/g, respectively. Sterols are found at highest levels in areas of enhanced urban outfalls. They can be related to major planktonic species growing in riverine waters. Stanol/stenol ratios suggest a high degree of alteration of the autochthonous OM as a result of elevated temperatures and microbiological proliferation. Even though sterols suggest the importance of autochthonous inputs to the river, HMW n-alkanols indicate major terrigenous accumulation at the mouth and 10 km upriver. Coprostanol and epicoprostanol levels are comparable to other sewage contaminated hydrosystems, but not as high as expected given the importance of sewage outfalls and low riverine water discharge. However, high (coprostanol)/(coprostanol + cholestanol) ratio values indicate that fecal contamination is significant.
Seasonal variation in physiological condition of Amblema plicata in the Upper Mississippi River
Monroe, E.M.; Newton, T.J.
2001-01-01
Measures of physiological condition are being used as sub-lethal endpoints in studies with unionids exposed to a variety of stressors, yet the natural seasonal variation in these measures are largely undocumented. We measured concentrations of glycogen in foot and mantle tissue and a tissue condition index (TCI) in Amblema plicata (Say 1817), about monthly, for 2 years in mussels that were: (1) obtained directly from the Upper Mississippi River (riverine group); and (2) relocated from the river into an artificial pond (relocated group). In both groups, we observed significant seasonal variation in all physiological indicators. Seasonal variation in glycogen was 72% in mantle and 52% in foot tissue and paralleled reproductive activity in this short-term breeder. In the relocated group, most of the variation in glycogen occurred during the first six months after relocation, suggesting that handling stress may have been a contributing factor. The significant seasonal variation in the TCI paralleled glycogen in riverine mussels. We observed tissue-specific differences in glycogen in the riverine group, but not in the relocated group. These data suggest that an interaction of environmental and biological factors influence the energetic status of mussels in natural populations. A better understanding of this variation is needed to interpret changes in physiological condition due to stressors such as relocation.
Channel Width Change as a Potential Sediment Source, Minnesota River Basin
NASA Astrophysics Data System (ADS)
Lauer, J. W.; Echterling, C.; Lenhart, C. F.; Rausch, R.; Belmont, P.
2017-12-01
Turbidity and suspended sediment are important management considerations along the Minnesota River. The system has experience large and relatively consistent increases in both discharge and channel width over the past century. Here we consider the potential role of channel cross section enlargement as a sediment source. Reach-average channel width was digitized from aerial images dated between 1937 and 2015 along multiple sub-reaches of the Minnesota River and its major tributaries. Many of the sub-reaches include several actively migrating bends. The analysis shows relatively consistent increases in width over time, with average increase rates of 0.4 percent per year. Extrapolation to the river network using a regional relationship for cross-sectional area vs. drainage area indicates that large tributaries and main-stem reaches account for most of the bankfull cross-sectional volume in the basin. Larger tributaries and the main stem thus appear more important for widening related sediment production than small tributaries. On a basin-wide basis, widening could be responsible for a gross supply of more sediment than has been gaged at several main-stem sites, indicating that there may be important sinks for both sand and silt/clay size material distributed throughout the system. Sediment storage is probably largest along the lowest-slope reaches of the main stem. While channel width appears to have adjusted relatively quickly in response to discharge and other hydraulic modifications, net storage of sediment in floodplains probably occurs sufficiently slowly that depth adjustment will lag width adjustment significantly. Detailed analysis of the lower Minnesota River using a river segmenting approach allows for a more detailed assessment of reach-scale processes. Away from channel cutoffs, elongation of the channel at eroding bends is consistent with rates observed on other actively migrating rivers. However, the sinuosity increase has been more than compensated by several natural and engineered cutoffs. The sinuosity change away from cutoffs probably plays a relatively modest role in the reach's sediment budget. However, point bars and abandoned oxbow lakes are important zones of sediment storage that may be large enough to account for much of the widening-related production of sand in the reach.
Water-quality, streamflow, and meteorological data for the Tualatin River Basin, Oregon, 1991-93
Doyle, M.C.; Caldwell, J.M.
1996-01-01
Surface-water-quality data, ground-water-quality data, streamflow data, field measurements, aquatic-biology data, meteorological data, and quality-assurance data were collected in the Tualatin River Basin from 1991 to 1993 by the U.S. Geological Survey (USGS) and the Unified Sewerage Agency of Washington County, Oregon (USA). The data from that study, which are part of this report, are presented in American Standard Code for Information Interchange (ASCII) format in subject-specific data files on a Compact Disk-Read Only Memory (CD-ROM). The text of this report describes the objectives of the study, the location of sampling sites, sample-collection and processing techniques, equipment used, laboratory analytical methods, and quality-assurance procedures. The data files on CD-ROM contain the analytical results of water samples collected in the Tualatin River Basin, streamflow measurements of the main-stem Tualatin River and its major tributaries, flow data from the USA wastewater-treatment plants, flow data from stations that divert water from the main-stem Tualatin River, aquatic-biology data, and meteorological data from the Tualatin Valley Irrigation District (TVID) Agrimet Weather Station located in Verboort, Oregon. Specific information regarding the contents of each data file is given in the text. The data files use a series of letter codes that distinguish each line of data. These codes are defined in data tables accompanying the text. Presenting data on CD-ROM offers several advantages: (1) the data can be accessed easily and manipulated by computers, (2) the data can be distributed readily over computer networks, and (3) the data may be more easily transported and stored than a large printed report. These data have been used by the USGS to (1) identify the sources, transport, and fate of nutrients in the Tualatin River Basin, (2) quantify relations among nutrient loads, algal growth, low dissolved-oxygen concentrations, and high pH, and (3) develop and calibrate a water- quality model that allows managers to test options for alleviating water-quality problems.
Sether, Bradley A.; Berkas, Wayne R.; Vecchia, Aldo V.
2004-01-01
Data were collected at 11 water-quality sampling sites in the upper Red River of the North (Red River) Basin from May 1997 through September 1999 to describe the water-quality characteristics of the upper Red River and to estimate constituent loads and flow-weighted average concentrations for major tributaries of the Red River upstream from the bridge crossing the Red River at Perley, Minn. Samples collected from the sites were analyzed for 5-day biochemical oxygen demand, bacteria, dissolved solids, nutrients, and suspended sediment.Concentration data indicated the median concentrations for most constituents and sampling sites during the study period were less than existing North Dakota and Minnesota standards or guidelines. However, more than 25 percent of the samples for the Red River at Perley, Minn., site had fecal coliform concentrations that were greater than 200 colonies per 100 milliliters, indicating an abundance of pathogens in the upper Red River Basin. Although total nitrite plus nitrate concentrations generally increased in a downstream direction, the median concentrations for all sites were less than the North Dakota suggested guideline of 1.0 milligram per liter. Total and dissolved phosphorus concentrations also generally increased in a downstream direction, but, for those constituents, the median concentrations for most sampling sites exceeded the North Dakota suggested guideline of 0.1 milligram per liter.For dissolved solids, nutrients, and suspended sediments, a relation between constituent concentration and streamflow was determined using the data collected during the study period. The relation was determined by a multiple regression model in which concentration was the dependent variable and streamflow was the primary explanatory variable. The regression model was used to compute unbiased estimates of annual loads for each constituent and for each of eight primary water-quality sampling sites and to compute the degree of uncertainty associated with each estimated annual load. The estimated annual loads for the eight primary sites then were used to estimate annual loads for five intervening reaches in the study area. Results were used as a screening tool to identify which subbasins contributed a disproportionate amount of pollutants to the Red River. To compare the relative water quality of the different subbasins, an estimated flow-weighted average (FWA) concentration was computed from the estimated average annual load and the average annual streamflow for each subbasin.The 5-day biochemical oxygen demands in the upper Red River Basin were fairly small, and medians ranged from 1 to 3 milligrams per liter. The largest estimated FWA concentration for dissolved solids (about 630 milligrams per liter) was for the Bois de Sioux River near Doran, Minn., site. The Otter Tail River above Breckenridge, Minn., site had the smallest estimated FWA concentration (about 240 milligrams per liter). The estimated FWA concentrations for dissolved solids for the main-stem sites ranged from about 300 to 500 milligrams per liter and generally increased in a downstream direction.The estimated FWA concentrations for total nitrite plus nitrate for the main-stem sites increased from about 0.2 milligram per liter for the Red River below Wahpeton, N. Dak., site to about 0.9 milligram per liter for the Red River at Perley, Minn., site. Much of the increase probably resulted from flows from the tributary sites and intervening reaches, excluding the Otter Tail River above Breckenridge, Minn., site. However, uncertainty in the estimated concentrations prevented any reliable conclusions regarding which sites or reaches contributed most to the increase.The estimated FWA concentrations for total ammonia for the main-stem sites increased from about 0.05 milligram per liter for the Red River above Fargo, N. Dak., site to about 0.15 milligram per liter for the Red River near Harwood, N. Dak., site. The increase resulted from a decrease in flows in the Red River above Fargo, N. Dak., to the Red River near Harwood, N. Dak., intervening reach and the large load for that reach.The estimated FWA concentrations for total organic nitrogen for the main-stem sites were relatively constant and ranged from about 0.5 to 0.7 milligram per liter. The relatively constant concentrations were in sharp contrast to the total nitrite plus nitrate concentrations, which increased about fivefold between the Red River below Wahpeton, N. Dak., site and the Red River at Perley, Minn., site.The Red River near Harwood, N. Dak., to the Red River at Perley, Minn., intervening reach had the largest estimated FWA concentration for total nitrogen (about 2.9 milligrams per liter), but the estimate was highly uncertain. The Otter Tail River above Breckenridge, Minn., site had the smallest concentration (about 0.6 milligram per liter). The estimated FWA concentrations for total nitrogen for the main-stem sites increased from about 0.9 milligram per liter for the Red River at Hickson, N. Dak., site to about 1.6 milligrams per liter for the Red River at Perley, Minn., site.The Sheyenne River at Harwood, N. Dak., site had the largest estimated FWA concentration for total phosphorus (about 0.5 milligram per liter). The Otter Tail River above Breckenridge, Minn., site had the smallest concentration (about 0.1 milligram per liter). The estimated FWA concentrations for total phosphorus for the main-stem sites increased from about 0.15 milligram per liter for the Red River below Wahpeton, N. Dak., site to about 0.35 milligram per liter for the Red River at Perley, Minn., site.The estimated FWA concentrations for suspended sediment for the main-stem sites increased from about 50 milligrams per liter for the Red River below Wahpeton, N. Dak., site to about 300 milligrams per liter for the Red River at Perley, Minn., site. Much of the increase occurred as a result of the large yield of suspended sediment from the Red River below Wahpeton, N. Dak., to the Red River at Hickson, N. Dak., intervening reach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Wayne
The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during Augustmore » and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5,138 juvenile Chinook and 4,913 steelhead during the spring of 2005. We estimated that 130,144 (95% CL's 97,133-168,409) Chinook emigrated from the upper John Day subbasin past our seining area in the Mainstem John Day River (river kilometers 274-296) between February 4 and June 16, 2005. We also estimated that 32,601 (95% CL's 29,651 and 36,264) Chinook and 47,921 (95% CL's 35,025 and 67,366) steelhead migrated past our Mainstem rotary screw trap at river kilometer (rkm) 326 between October 4, 2004 and July 6, 2005. We estimated that 20,193 (95% CL's 17,699 and 22,983) Chinook and 28,980 (95% CL's 19,914 and 43,705) steelhead migrated past our Middle Fork trap (rkm 24) between October 6, 2004 and June 17, 2005. Seventy three percent of PIT tagged steelhead migrants were age-2 fish, 13.8% were age-3, 12.7% were age-2, and 0.3% were age 4. Spring Chinook SAR for the 2002 brood year was estimated at 2.5% (100 returns of 4,000 PIT tagged smolts). Preliminary steelhead SAR (excluding 2-ocean fish) for the 2004 tagging year was estimated at 1.61% (60 returns of 3,732 PIT-tagged migrants).« less
Joseph, Robert L.; Green, W. Reed
1994-01-01
A study of the Yocum Creek Basin conducted between July 27 and August 3, 1993, described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 12 sites on the main stem of Yocum Creek and 2 tributaries during periods of low to moderate streamflow (less than 40 cubic feet per second). Water samples were collected from 5 wells and 12 springs located in the basin. In 14 surface- water samples, nitrite plus nitrate concentrations ranged from 1.3 to 3.8 milligrams per liter as nitrogen. Orthophosphorus concentrations ranged from 0.01 to 0.06 milligrams per liter as phosphorous. Fecal coliform bacteria counts ranged from 9 to 220 colonies per 100 milliliters, with a median of 49 colonies per 100 milliliters. Fecal streptococci bacteria counts ranged from 37 to 1,500 colonies per 100 milliliters with a median of 420 colonies per 100 milliliters. Analyses for selected metals collected near the mouth of Yocum Creek indicate that metals are not present in significant concen- trations in surface-water samples. Diel dissolved oxygen concentrations and temperatures were measured at two sites on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 6.2 to 9.9 milligrams per liter and temperatures ranged from 18.5 to 23.0 degrees Celsius. Dissolved oxygen concentrations were higher and tempentture values were lower at the upstream site than those at the downstream site. Five wells were sampled in the basin and dissolved ammonia was present in concentrations ranging from 0.01 to 0.07 milligrams per liter as nitrogen. Dissolved nitrite plus nitrate was present in wells, with concen- trations ranging from less than 0.02 to 6.0 milligrams per liter as nitrogen. Volatile organic compound samples were collected at two wells and two springs. Chloroform was the only volatile organic compound found to be above the detection limit. Analysis indicated that 0.2 micrograms per liter of chloroform was present in one spring-water sample. In springs sampled, nitrite plus nitrate concen- trations ranged from 1.4 to 7.0 milligrams per llter as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.2 to 0.49 milligrams per liter as nitrogen. Orthophosphorus concentrations ranged from 0.01 to 0.07 milligrams per liter as phosphorus. Fecal colfform bacteria counts ranged from 3 to 200 colonies per 100 milliliters, with a median of 18 colonies per 100 milliliters. Fecal streptococci bacteria counts ranged from 110 to more than 2,000 colonies per 100 milliliters with a median of 350 colonies per 100 milliliters. Large producing springs 1ocated in the mid to upper reaches of the basin contribute most of the flow to Yocum Creek. Streamflow increased an average of 29 percent on the mainstem of the stream. One losing reach was discovered on the mainstem of the stream and two losing reaches on tributaries to the mainstem. Surface flow steadily decreased along these reaches to the point where surface flow was not present, and the streambed became dry. These observations suggest that significant interaction exists between the underlying Springfield aquifer and surface flow in the Yocum Creek Basin.
Joseph, Robert L.; Green, W. Reed
1994-01-01
A study of the South Prong of Spavinaw Creek Basin conducted baween July 14 and July 23. 1993. described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 10 sites on the mainstem of the South Prong of Spavinaw Creek and from 4 sites on tributaries during periods of low to moderate streamflow (less than 11 cubic feet per second). Water samples were collected from 4 wells and 10 springs located in the basin. In 14 surface-water samples, nitrite plus nitrate concentrations ranged from 0.75 to 4.2 milligrams per liter as nitrogen (mg/L). Orthophosphorus concentrations ranged from 0 03 to O. 15 mg/L as phosphorus. Fecal coliform bacteria counts ranged from 61 to 1,400 colonies per 100 milliliters (col/lOO mL), with a median of 120 col/100 mL. Fecal streptococci bacteria counts ranged from 70 to greater than 2,000 col/100 mL with a median of 185 col/lOO mL. Analysis for selected metals collected at one surface-water sites indicates that concentrations were usually below the reporting limit. Diel dissolved oxygen concentrations and temperatures were measured at an upstream and downstream site on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 7.2 to 83 mg/L and temperatures ranged from 15.5 to 17.0 C. Dissolved oxygen concentrations were higher and temperature values were lower at lhe upstream site, which is located close to two springs that produce all of the flow at that site. Dissolved nitrite plus nitrate was present in all four wells sampled in the basin with concentrations ranging from 0.04 to 3.5 mg/L as nitrogen. Orthophosphorus was present in concentrations ranging from less than 0.01 to 0.07 mg/L as phosphorus. Volatile organic compound analyses in two wells indicate that toluene was present in both wells and chloroform was present in one well. All other volatile organic compounds were found to be below the reporting limits. Analysis for common constituents and selected metals indicated that fluoride concentrations in one well exceeded the U.S. Environmental Protection Agency's primary maximum contamination levels for drinking water. Analyses of water samples collected from springs indicate that nitrite plus nitrate concen- trations ranged from 0.43 to 3.9 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L at nitrogen. Orthophosphorus concentrations ranged from 0.02 to 0.09 mg/L as phosphorus. Fecal coliform bacteria counts ranged from less than 3 to more than 2,000 col/100 mL, with a median of 370 col/100 mL. Fecal streptococci bacteria counts ranged from less than 4 to greater than 2,000 col/100 mL with a median of 435 col/100 mL. Streamflow in nine reaches of the mainstream increased an average of 20 percent. Six losing reaches were identified during the study, one located on the mainstem and the other five located on tributaries to the mainstem.
Incorporating an approach to aid river and reservoir fisheries in an altered landscape
Brewer, Shannon K.; Shoup, Daniel E.; Dattillo, John
2018-01-01
Reservoir construction for human-use services alters connected riverine flow patterns and influences fish production. We sampled two pelagic fishes from two rivers and two reservoirs and related seasonal and annual hydrology patterns to the recruitment and growth of each species. River and reservoir populations of Freshwater Drum Aplodinotus grunniens reached similar ages (32 and 31, respectively). Likewise, longevity of Gizzard Shad Dorosoma cepedianum between the two systems was also similar (7 and 8 years, respectively). However, both species grew larger in the rivers compared to reservoir residents. Recruitment of Freshwater Drum in reservoirs was negatively related to water retention time (r2=0.59) suggesting moving water through the reservoir was beneficial. Riverine recruitment of Freshwater Drum populations was negatively related to the annual number of flow reversals and positively related to prespawn discharge (r2 = 0.33). Unlike Freshwater Drum, there was no relationship between flow metrics and Gizzard Shad recruitment in reservoirs. However, recruitment of riverine Gizzard Shad was positively related to high flow pulses during the prespawn and spawning seasons (r2 = 0.48). The growth of both species in reservoirs was positively related to the number of days each year that water levels were above the conservation pool. Growth of Freshwater Drum was also negatively related to minimum reservoir summer water levels (r2 = 0.84). Growth of both Freshwater Drum and Gizzard Shad occupying lotic systems was positively related to May (r2 = 0.86) and July discharge (r2 = 0.84), respectively. In general, growth and recruitment of the reservoir populations was more related to annual water patterns, whereas riverine fishes responded more to seasonal flow patterns. Results of this study provide important information on the relationship between hydrology and pelagic fish production in both rivers and reservoirs. This information is useful if agencies are interested in developing holistic river-reservoir water-allocation plans.
NASA Astrophysics Data System (ADS)
Siddiqui, M.; Ali, Z.
Deforestation / depletion in forest area threaten the sustainability of agricultural production systems and en-danger the economy of the country. Every year extensive areas of arable agricultural and forestlands are degraded and turned into wastelands, due to natural causes or human interventions. There are several causes of deforestation, such as expansion in agricultural area, urban development, forest fires, commercial logging, illicit cutting, grazing, constructions of dams / reservoirs and barrages, com munication links, etc. Depletion in forest cover, therefore, has an important impact on socio - economic development and ecological balance. High population growth rate in Pakistan is one of the main causes for the rapid deterioration of physical environment and natural resource base. In view of this, it is felt necessary to carryout land -u s e studies focusing on strategies for mapping the past and present conditions and extent of forests and rangelands using Satellite Remote Sensing (SRS) data and GIS t echnology. The SRS and GIS technology provides a possible means of monitoring and mapping changes occurring in natural resources and the environment on a continuing basis. The riverine forests of Sindh mostly grow along the River Indus in the flood plains, spread over an area of 241,000 ha are disappearing very rapidly. Construction of dams / barrages on the upper reaches of the River Indus for hydroelectric power and irrigation works have significantly reduced the discharge of fresh water into the lower Indus basin and as a result, 100,000 acres of forests have disappeared. Furthermore, the heavy floods that occurred in 1978, 1988, 1992 and 1997, altered the course of the River Indus in many places, especially in the lower reaches, this has also damaged the riverine forests of Sindh. An integrated approach involving analysis of SRS data from 1977 to 1998 and GIS technique have been used to evaluate the geographic ex-tent and distribution of the riverine forests of Sindh and to monitor temporal changes in the forest cover between 1977 &1990 and 1990 &1998. The integrated landuse forest cover maps of riverine forest, shows temporal changes in the forest cover between 1977 &1990 and 1990 &1998, as well as in the River Indus course. The digital thematic maps based on SRS data and GIS technology can supplement existing conventional ground based sources of information for monitoring changes in forest cover on a regular basis, which can be helpful for forest resource management and planning and monitoring environmental changes.
Management effects on greenhouse gas emissions from a fen covered with riverine silt
NASA Astrophysics Data System (ADS)
Bräuer, Melanie; Gatersleben, Peter; Tiemeyer, Bärbel
2017-04-01
Drainage is necessary to use peatlands for conventional agriculture, but this practice causes high emissions of the greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O). The effect of hydrological conditions and management on greenhouse gas (GHG) emissions from "true" peat soils is relatively well examined, but there is little data on GHG emissions from organic soils covered with mineral soil. Such a cover may either be man-made to improve the trafficability of the fields or natural, e.g. due to the deposition of riverine silt. Such mineral covers are widespread in North-Western Germany and other regions with intensively used peatlands. Here, we aim to evaluate the effect of management, water table depth and properties of the mineral cover on the emissions of CO2, N2O and methane (CH4). As the majority of peatlands in North-Western Germany, the study area is used as grassland. The area is artificially drained and intensively used (4 to 5 cuts per year, annual nitrogen fertilisation of 112 to 157 kg/ha). The fen peat with a thickness of 0.6 to 1.50 m is covered by riverine silt deposited by the river Weser. Six measurement sites have been chosen to represent typical agricultural management, soil properties and hydrological conditions of one hydrological management unit. The sites differ in the soil organic carbon (SOC) content of the riverine silt (4 - 15 % SOC), the occurrence of a ploughed horizon as well as water and agricultural management. We use static closed chambers to measure CO2, CH4 and N2O fluxes. CO2 measurement campaigns using transparent and opaque chambers and a portable IRGA take place every third or fourth week depending on season. CH4 and N2O samples are taken every second week and, in addition, on the first, third and seventh day after fertilizer application. Samples are analyzed by gas chromatography. First results show negligible CH4 fluxes due to low groundwater levels. Total N2O emissions reflected mainly the different fertilizer application rates although there were rarely specific N2O peaks directly after fertilizer application, probably due to low soil moisture during these periods. Estimated from the first six months of data, N2O emissions from peat soils covered with riverine silt are in the same range as emissions from true peat soils with comparable fertilisation rates. First results on CO2 emissions will be presented as well.
1988-08-01
present and likely to be encountered during excavation. Nonetheless, the four groups do provide an adequate method for representing the different ...It different from Report) Approved for Public Release; Distribution Unlimited IS. SUPPLEMENTARY NOTES IS. KEY WORDS (Continue on reverse M e II...between the dam embankment and the spillway. The two 800-foot long conduits would be constructed by open excavation and backfill method . Downstream
Improving the Representation of Estuarine Processes in Earth System Models
NASA Astrophysics Data System (ADS)
Sun, Q.; Whitney, M. M.; Bryan, F.; Tseng, Y. H.
2016-12-01
The exchange of freshwater between the rivers and estuaries and the open ocean represents a unique form of scale-interaction in the climate system. The local variability in the terrestrial hydrologic cycle is integrated by rivers over potentially large drainage basins (up to semi-continental scales), and is then imposed on the coastal ocean at the scale of a river mouth. Appropriately treating riverine freshwater discharge into the oceans in Earth system models is a challenging problem. Commonly, the river runoff is discharged into the ocean models with zero salinity and arbitrarily distributed either horizontally or vertically over several grid cells. Those approaches entirely neglect estuarine physical processes that modify river inputs before they reach the open ocean. A physically based Estuary Box Model (EBM) is developed to parameterize the mixing processes in estuaries. The EBM has a two-layer structure representing the mixing processes driven by tides and shear flow within the estuaries. It predicts the magnitude of the mixing driven exchange flow, bringing saltier lower-layer shelf water into the estuary to mix with river water prior to discharge to the upper-layer open ocean. The EBM has been tested against observations and high-resolution three-dimensional simulations of the Columbia River estuary, showing excellent agreement in the predictions of the strength of the exchange flow and the salinity of the discharged water, including modulation with the spring-neap tidal cycle. The EBM is implemented globally at every river discharge point of the Community Earth System Model (CESM). In coupled ocean-sea ice experiments driven by CORE surface forcing, the sea surface salinity (SSS) in the coastal ocean is increased globally compared to the standard model, contributing to a decrease in coastal stratification. The SSS near the mouths of some of the largest rivers is decreased due to the reduction in the area over which riverine fresh water is discharged. The results from experiments with the fully coupled CESM are broadly consistent, supporting the inclusion of the parameterization in CESM version 2 to be released in late 2016.
NASA Astrophysics Data System (ADS)
Frey, Karen E.; Sobczak, William V.; Mann, Paul J.; Holmes, Robert M.
2016-04-01
The Kolyma River in northeast Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport largely depends upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the ultraviolet-visible optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ˜ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorption coefficients were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow path. In particular, the spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. However, despite our observations of downstream shifts in DOM composition, we found a relatively constant proportion of DOC that was bioavailable ( ˜ 3-6 % of total DOC) regardless of relative water residence time along the flow path. This may be a consequence of two potential scenarios allowing for continual processing of organic material within the system, namely (a) aquatic microorganisms are acclimating to a downstream shift in DOM composition and/or (b) photodegradation is continually generating labile DOM for continued microbial processing of DOM along the flow-path continuum. Without such processes, we would otherwise expect to see a declining fraction of bioavailable DOC downstream with increasing residence time of water in the system. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the northeast Siberian region will become more hydrologically active, providing greater amounts of DOM to fluvial networks and ultimately to the Arctic Ocean. The ability to rapidly and comprehensively monitor shifts in the quantity and quality of DOM across the landscape is therefore critical for understanding potential future feedbacks within the Arctic carbon cycle.
[Care with the child's health and validation of an educational technology for riverside families].
Teixeira, Elizabeth; de Almeida Siqueira, Aldo; da Silva, Joselice Pereira; Lavor, Lília Cunha
2011-01-01
This study aimed to assess the knowledge and ways of caring for the child health 0-5 years between riverine (Phase 1), and to validate an educational technology (Phase 2). It was carried out a descriptive qualitative study. With the mothers, focus groups and content analysis were used, and with judges-specialists and target-public-applied, forms. The study revealed that the concern with the care of a child between the riverine families permeates the adversity daily, with dedication and commitment of these families in maintaining the health of their children. The sensitivity listening of mothers indicated the need for a closer relationship between nursing professionals and family. The validation of the educational technology was convergent, within the parameters considered adequate.
Swimming against the tide: resilience of a riverine turtle to recurrent extreme environmental events
Jergenson, Abigail M.; Miller, David A. W.; Neuman-Lee, Lorin A.; Warner, Daniel A.; Janzen, Fredric J.
2014-01-01
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture–mark–recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change. PMID:24621555
NASA Astrophysics Data System (ADS)
Wu, Xiao; Bi, Naishuang; Xu, Jingping; Nittrouer, Jeffrey A.; Yang, Zuosheng; Saito, Yoshiki; Wang, Houjie
2017-09-01
The presently active Yellow River (Huanghe) delta lobe has been formed since 1976 when the river was artificially diverted. The process and driving forces of morphological evolution of the present delta lobe still remain unclear. Here we examined the stepwise morphological evolution of the active Yellow River delta lobe including both the subaerial and the subaqueous components, and illustrated the critical roles of riverine discharge and sediment grain size in dominating the deltaic evolution. The critical sediment loads for maintaining the delta stability were also calculated from water discharge and sediment load measured at station Lijin, the last gauging station approximately 100 km upstream from the river mouth. The results indicated that the development of active delta lobe including both subaerial and subaqueous components has experienced four sequential stages. During the first stage (1976-1981) after the channel migration, the unchannelized river flow enhanced deposition within the channel and floodplain between Lijin station and the river mouth. Therefore, the critical sediment supply calculated by the river inputs obtained from station Lijin was the highest. However, the actual sediment load at this stage (0.84 Gt/yr) was more than twice of the critical sediment load ( 0.35 Gt/yr) for sustaining the active subaerial area, which favored a rapid seaward progradation of the Yellow River subaerial delta. During the second stage (1981-1996), the engineering-facilitated channelized river flow and the increase in median grain size of suspended sediment delivered to the sea resulted in the critical sediment load for keeping the delta stability deceasing to 0.29 Gt/yr. The active delta lobe still gradually prograded seaward at an accretion rate of 11.9 km2/yr at this stage as the annual sediment load at Lijin station was 0.55 Gt/yr. From 1996 to 2002, the critical sediment load further decreased to 0.15 Gt/yr with the sediment grain size increased to 22.5 μm; however, the delta suffered net erosion because of the insufficient sediment supply (0.11 Gt/yr). In the most recent stage (2002 - 2013), the intensive scouring of the lower river channel induced by the dam regulation provided relatively coarser sediment, which effectively reduced the critical sediment load to 0.06 Gt/yr, much lower than the corresponding sediment load at Lijin station ( 0.16 Gt/yr). Consequently, the subaerial Yellow River delta transitioned to a slight accretion phase. Overall, the evolution of the active Yellow River delta is highly correlated to riverine water and sediment discharge. The sediment supply for keeping the subaerial delta stability is inconstant and varying with the river channel morphology and sediment grain size. We conclude that the human-impacted riverine sediment discharge and grain-size composition play dominant roles in the stepwise morphological evolution of the active delta lobe.
Life in the fast lane: fish and foodweb structure in the main channel of large rivers
Dettmers, J.M.; Wahl, David H.; Soluk, D.A.; Gutreuter, S.
2001-01-01
We studied the main channel of the lower Illinois River and of the Mississippi River just upstream and downstream of its confluence with the Illinois River to describe the abundance, composition, and/or seasonal appearance of components of the main-channel community. Abundance of fishes in the main channel was high, especially adults. Most adult fishes were present in the main channel for either 3 or 4 seasons/y, indicating that fishes regularly reside in the main channel. We documented abundant zooplankton and benthic invertebrates in the main channel, and the presence of these food types in the diets of channel catfish and freshwater drum. All trophic levels were well represented in the main channel, indicating that the main channel supports a unique food web. The main channel also serves as an important energetic link with other riverine habitats (e.g., floodplains, secondary channels, backwater lakes) because of the mobility of resident fishes and because of the varied energy sources supplying this food web. It may be more realistic to view energy flow in large-river systems as a combination of 3 existing concepts, the river continuum concept (downstream transport), the flood pulse concept (lateral transport to the floodplain), and the riverine productivity model (autochthonous production). We urge additional research to quantify the links between the main channel and other habitat types in large rivers because of the apparent importance of main-channel processes in the overall structure and function of large-river ecosystems.
Autumn photoproduction of carbon monoxide in Jiaozhou Bay, China
NASA Astrophysics Data System (ADS)
Ren, Chunyan; Yang, Guipeng; Lu, Xiaolan
2014-06-01
Carbon monoxide (CO) plays a significant role in global warming and atmospheric chemistry. Global oceans are net natural sources of atmospheric CO. CO at surface ocean is primarily produced from the photochemical degradation of chromophoric dissolved organic matter (CDOM). In this study, the effects of photobleaching, temperature and the origin (terrestrial or marine) of CDOM on the apparent quantum yields (AQY) of CO were studied for seawater samples collected from Jiaozhou Bay. Our results demonstrat that photobleaching, temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The concentration, absorbance and fluorescence of CDOM exponentially decreased with increasing light dose. Terrestrial riverine organic matter could be more prone to photodegradation than the marine algae-derived one. The relationships between CO AQY and the dissolved organic carbon-specific absorption coefficient at 254 nm for the photobleaching study were nonlinear, whereas those of the original samples were strongly linear. This suggests that: 1) terrestrial riverine CDOM was more efficient than marine algae-derived CDOM for CO photoproduction; 2) aromatic and olefinic moieties of the CDOM pool were affected more strongly by degradation processes than by aliphatic ones. Water temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The photoproduction rate of CO in autumn was estimated to be 31.98 μmol m-2 d-1 and the total DOC photomineralization was equivalent to 3.25%-6.35% of primary production in Jiaozhou Bay. Our results indicate that CO photochemistry in coastal areas is important for oceanic carbon cycle.