Losano, João D A; Padín, Juan Fernando; Méndez-López, Iago; Angrimani, Daniel S R; García, Antonio G; Barnabe, Valquiria H; Nichi, Marcilio
2017-01-01
Studies have reported the importance of mitochondria in sperm functionality. However, for some species, the glycolytic pathway appears to be as important as oxidative phosphorylation in ATP synthesis and sperm kinetics. These mechanisms have not been fully elucidated for bovine spermatozoa. Therefore, the aim of this study was to evaluate the role of mitochondria and the glycolytic pathway in ATP synthesis, sperm movement patterns, and oxidative homeostasis of epididymal spermatozoa in bovine specimens. We observed that mitochondrial uncoupling with protonophores significantly reduced ATP levels. However, these levels were reestablished after stimulation of the glycolytic pathway. We verified the same pattern of results for sperm kinetic variables and the production of reactive oxygen species (ROS). Thus, we suggest that, after its appropriate stimulation, the glycolytic pathway is capable of maintaining ATP levels, sperm kinetic patterns, and oxidative balance of bovine epididymal spermatozoa submitted to mitochondrial uncoupling.
An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.
Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P
2017-07-15
Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an antagonist used to block P2X7 receptors, which reduced basal CBF by 85%. Additionally, increasing extracellular ATP levels (0.1-100 μm) increased CBF, maintaining a sustained response that was suppressed in the presence of carbenoxolone. We also show that high levels of ATP (1 mm), associated with inflammatory conditions, lowered basal CBF by reducing [Ca 2+ ] i and hemichannel functionality. In summary, we provide evidence indicating that airway epithelium ATP release is the molecular autocrine mechanism regulating basal ciliary activity and is also the mediator of the ciliary response to chemical stimulation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Hemoglobin Function in Stored Blood.
1974-08-01
States during 1973. Several advantages over ACA) are important. Blood stored in CPD maintains higher ./ levels of 2,3-DPG (2,3- diphosphoglycerate ) and a...survival and ATP levels in stored blood is explained by the several functions of ATP which are necessary for cell viability. However, ATP levels do...not correlate with oxygen affinity during storage. Levels of 2,3-DPG determine oxygen affinity and thus hemoglobin function. (12,13) When normal levels
The Effect of Dihydroxyacetone on the Liquid Storage Properties of Human Blood.
Addition of dihydroxyacetone (DHA) to acid-citrate-phosphate (ACD) blood is effective in partially maintaining 2,3- diphosphoglycerate levels for a...period of 21 to 28 days. DHA has no effect on adenosine triphosphate (ATP) levels or cell viability. The overall effect of adenine with DHA is...unfavorable since it retards the effect of the DHA while only slightly raising ATP levels . DHA may be valuable in maintaining increased hemoglobin function levels throughout the present 21 day storage period. (Author)
The Energy Maintenance Theory of Aging: Maintaining Energy Metabolism to Allow Longevity.
Chaudhari, Snehal N; Kipreos, Edward T
2018-06-14
Fused, elongated mitochondria are more efficient in generating ATP than fragmented mitochondria. In diverse C. elegans longevity pathways, increased levels of fused mitochondria are associated with lifespan extension. Blocking mitochondrial fusion in these animals abolishes their extended longevity. The long-lived C. elegans vhl-1 mutant is an exception that does not have increased fused mitochondria, and is not dependent on fusion for longevity. Loss of mammalian VHL upregulates alternate energy generating pathways. This suggests that mitochondrial fusion facilitates longevity in C. elegans by increasing energy metabolism. In diverse animals, ATP levels broadly decreases with age. Substantial evidence supports the theory that increasing or maintaining energy metabolism promotes the survival of older animals. Increased ATP levels in older animals allow energy-intensive repair and homeostatic mechanisms such as proteostasis that act to prevent cellular aging. These observations support the emerging paradigm that maintaining energy metabolism promotes the survival of older animals. © 2018 WILEY Periodicals, Inc.
Burger, Patrick; Korsten, Herbert; De Korte, Dirk; Rombout, Eva; Van Bruggen, Robin; Verhoeven, Arthur J
2010-11-01
Current additive solutions (ASs) for red blood cells (RBCs) do not maintain constant 2,3-diphosphoglycerate (DPG) and adenosine triphosphate (ATP) levels during cold storage. We have previously shown that with a new AS called phosphate-adenine-glucose-guanosine-gluconate-mannitol (PAGGGM), both 2,3-DPG and ATP could be maintained throughout storage for 35 days. In this study, the mechanism underlying the effect of PAGGGM on RBC storage was studied in more detail. By using double-erythrocytapheresis units (leukoreduced), a direct comparison could be made between the current AS saline-adenine-glucose-mannitol (SAGM) and the experimental solution PAGGGM. During cold storage, several in vitro characteristics were analyzed. In agreement with our previous findings with single RBCs, PAGGGM maintained 2,3-DPG and ATP levels for 35 days of cold storage. Furthermore, glucose consumption and lactate production were higher in PAGGGM units during the first 21 days of cold storage. Fructose-1,6-diphophate and dihydroxyacetone phosphate levels were also increased during the first 21 days of storage in PAGGGM units. These results indicate that it is likely that phosphofructokinase (PFK) activity is enhanced in PAGGGM units relative to SAGM units. After 21 days, PFK activity also decreases in PAGGGM units, but sufficient metabolic reserve in these units prevents depletion of 2,3-DPG and ATP. © 2010 American Association of Blood Banks.
Complete inhibition of creatine kinase in isolated perfused rat hearts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fossel, E.T.; Hoefeler, H.
1987-01-01
Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts aremore » able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.« less
Tributyltin-induced apoptosis requires glycolytic adenosine trisphosphate production.
Stridh, H; Fava, E; Single, B; Nicotera, P; Orrenius, S; Leist, M
1999-10-01
The toxicity of tributyltin chloride (TBT) involves Ca(2+) overload, cytoskeletal damage, and mitochondrial failure leading to cell death by apoptosis or necrosis. Here, we examined whether the intracellular ATP level modulates the mode of cell death after exposure to TBT. When Jurkat cells were energized by the mitochondrial substrate, pyruvate, low concentrations of TBT (1-2 microM) triggered an immediate depletion of intracellular ATP followed by necrotic death. When ATP levels were maintained by the addition of glucose, the mode of cell death was typically apoptotic. Glycolytic ATP production was required for apoptosis at two distinct steps. First, maintenance of adequate ATP levels accelerated the decrease of mitochondrial membrane potential, and the release of the intermembrane proteins adenylate kinase and cytochrome c from mitochondria. A possible role of the adenine nucleotide exchanger in this first ATP-dependent step is suggested by experiments performed with the specific inhibitor, bongkrekic acid. This substance delayed cytochrome c release in a manner similar to that caused by ATP depletion. Second, caspase activation following cytochrome c release was only observed in ATP-containing cells. Bcl-2 had only a minor effect on TBT-triggered caspase activation or cell death. We conclude that intracellular ATP concentrations control the mode of cell death in TBT-treated Jurkat cells at both the mitochondrial and caspase activation levels.
Monitoring ATP dynamics in electrically active white matter tracts
Trevisiol, Andrea; Saab, Aiman S; Winkler, Ulrike; Marx, Grit; Imamura, Hiromi; Möbius, Wiebke; Kusch, Kathrin; Nave, Klaus-Armin; Hirrlinger, Johannes
2017-01-01
In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders. DOI: http://dx.doi.org/10.7554/eLife.24241.001 PMID:28414271
Jung, Seung-Ryoung; Deng, Yi; Kushmerick, Christopher; Asbury, Charles L; Hille, Bertil; Koh, Duk-Su
2018-06-19
The stability of organic dyes against photobleaching is critical in single-molecule tracking and localization microscopy. Since oxygen accelerates photobleaching of most organic dyes, glucose oxidase is commonly used to slow dye photobleaching by depleting oxygen. As demonstrated here, pyranose-2-oxidase slows bleaching of Alexa647 dye by ∼20-fold. However, oxygen deprivation may pose severe problems for live cells by reducing mitochondrial oxidative phosphorylation and ATP production. We formulate a method to sustain intracellular ATP levels in the presence of oxygen scavengers. Supplementation with metabolic intermediates including glyceraldehyde, glutamine, and α-ketoisocaproate maintained the intracellular ATP level for at least 10 min by balancing between FADH 2 and NADH despite reduced oxygen levels. Furthermore, those metabolites supported ATP-dependent synthesis of phosphatidylinositol 4,5-bisphosphate and internalization of PAR2 receptors. Our method is potentially relevant to other circumstances that involve acute drops of oxygen levels, such as ischemic damage in the brain or heart or tissues for transplantation.
Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival
Khacho, Mireille; Tarabay, Michelle; Patten, David; Khacho, Pamela; MacLaurin, Jason G.; Guadagno, Jennifer; Bergeron, Richard; Cregan, Sean P.; Harper, Mary-Ellen; Park, David S.; Slack, Ruth S.
2014-01-01
Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. PMID:24686499
The Role of Light–Dark Regulation of the Chloroplast ATP Synthase
Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; ...
2017-07-24
The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas thosemore » expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Secdependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. But, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Thus, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead, ATP synthase redox regulation may be impacting a number of cellular processes such as (1) the accumulation of chloroplast proteins and/or ions or (2) the responses of photosynthesis to rapid changes in light intensity. A model highlighting the complex interplay between ATP synthase regulation and pmf in maintaining various chloroplast functions in the dark is presented.« less
The Role of Light–Dark Regulation of the Chloroplast ATP Synthase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.
The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas thosemore » expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Secdependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. But, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Thus, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead, ATP synthase redox regulation may be impacting a number of cellular processes such as (1) the accumulation of chloroplast proteins and/or ions or (2) the responses of photosynthesis to rapid changes in light intensity. A model highlighting the complex interplay between ATP synthase regulation and pmf in maintaining various chloroplast functions in the dark is presented.« less
The Role of Light-Dark Regulation of the Chloroplast ATP Synthase.
Kohzuma, Kaori; Froehlich, John E; Davis, Geoffry A; Temple, Joshua A; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A; Kramer, David M
2017-01-01
The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se . Instead, ATP synthase redox regulation may be impacting a number of cellular processes such as (1) the accumulation of chloroplast proteins and/or ions or (2) the responses of photosynthesis to rapid changes in light intensity. A model highlighting the complex interplay between ATP synthase regulation and pmf in maintaining various chloroplast functions in the dark is presented. Significance Statement: We uncover an unexpected role for thioredoxin modulation of the chloroplast ATP synthase in regulating the dark-stability of the photosynthetic apparatus, most likely by controlling thylakoid membrane transport of proteins and ions.
The Role of Light–Dark Regulation of the Chloroplast ATP Synthase
Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; Temple, Joshua A.; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A.; Kramer, David M.
2017-01-01
The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead, ATP synthase redox regulation may be impacting a number of cellular processes such as (1) the accumulation of chloroplast proteins and/or ions or (2) the responses of photosynthesis to rapid changes in light intensity. A model highlighting the complex interplay between ATP synthase regulation and pmf in maintaining various chloroplast functions in the dark is presented. Significance Statement: We uncover an unexpected role for thioredoxin modulation of the chloroplast ATP synthase in regulating the dark-stability of the photosynthetic apparatus, most likely by controlling thylakoid membrane transport of proteins and ions. PMID:28791032
Energy metabolism of intervertebral disc under mechanical loading.
Wang, Chong; Gonzales, Silvia; Levene, Howard; Gu, Weiyong; Huang, Chun-Yuh Charles
2013-11-01
Intervertebral disc (IVD) degeneration is closely associated with low back pain (LBP), which is a major health concern in the U.S. Cellular biosynthesis of extracellular matrix (ECM), which is important for maintaining tissue integrity and preventing tissue degeneration, is an energy demanding process. Due to impaired nutrient support in avascular IVD, adenosine triphosphate (ATP) supply could be a limiting factor for maintaining normal ECM synthesis. Therefore, the objective of this study was to investigate the energy metabolism in the annulus fibrosus (AF) and nucleus pulposus (NP) of porcine IVD under static and dynamic compressions. Under compression, pH decreased and the contents of lactate and ATP increased significantly in both AF and NP regions, suggesting that compression can promote ATP production via glycolysis and reduce pH by increasing lactate accumulation. A high level of extracellular ATP content was detected in the NP region and regulated by compressive loading. Since ATP can serve not only as an intra-cellular energy currency, but also as a regulator of a variety of cellular activities extracellularly through the purinergic signaling pathway, our findings suggest that compression-mediated ATP metabolism could be a novel mechanobiological pathway for regulating IVD metabolism. © 2013 Orthopaedic Research Society.
Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S.; Soya, Hideaki
2017-01-01
Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry–based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain. PMID:28515312
Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S; Soya, Hideaki
2017-06-13
Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry-based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain.
Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand.
Yaniv, Yael; Juhaszova, Magdalena; Lyashkov, Alexey E; Spurgeon, Harold A; Sollott, Steven J; Lakatta, Edward G
2011-11-01
In sinoatrial node cells (SANC), Ca(2+) activates adenylate cyclase (AC) to generate a high basal level of cAMP-mediated/protein kinase A (PKA)-dependent phosphorylation of Ca(2+) cycling proteins. These result in spontaneous sarcoplasmic-reticulum (SR) generated rhythmic Ca(2+) oscillations during diastolic depolarization, that not only trigger the surface membrane to generate rhythmic action potentials (APs), but, in a feed-forward manner, also activate AC/PKA signaling. ATP is consumed to pump Ca(2+) to the SR, to produce cAMP, to support contraction and to maintain cell ionic homeostasis. Since feedback mechanisms link ATP-demand to ATP production, we hypothesized that (1) both basal ATP supply and demand in SANC would be Ca(2+)-cAMP/PKA dependent; and (2) due to its feed-forward nature, a decrease in flux through the Ca(2+)-cAMP/PKA signaling axis will reduce the basal ATP production rate. O(2) consumption in spontaneous beating SANC was comparable to ventricular myocytes (VM) stimulated at 3 Hz. Graded reduction of basal Ca(2+)-cAMP/PKA signaling to reduce ATP demand in rabbit SANC produced graded ATP depletion (r(2)=0.96), and reduced O(2) consumption and flavoprotein fluorescence. Neither inhibition of glycolysis, selectively blocking contraction nor specific inhibition of mitochondrial Ca(2+) flux reduced the ATP level. Feed-forward basal Ca(2+)-cAMP/PKA signaling both consumes ATP to drive spontaneous APs in SANC and is tightly linked to mitochondrial ATP production. Interfering with Ca(2+)-cAMP/PKA signaling not only slows the firing rate and reduces ATP consumption, but also appears to reduce ATP production so that ATP levels fall. This distinctly differs from VM, which lack this feed-forward basal cAMP/PKA signaling, and in which ATP level remains constant when the demand changes. Published by Elsevier Ltd.
Modeling the effects of hypoxia on ATP turnover in exercising muscle
NASA Technical Reports Server (NTRS)
Arthur, P. G.; Hogan, M. C.; Bebout, D. E.; Wagner, P. D.; Hochachka, P. W.
1992-01-01
Most models of metabolic control concentrate on the regulation of ATP production and largely ignore the regulation of ATP demand. We describe a model, based on the results of Hogan et al. (J. Appl. Physiol. 73: 728-736, 1992), that incorporates the effects of ATP demand. The model is developed from the premise that a unique set of intracellular conditions can be measured at each level of ATP turnover and that this relationship is best described by energetic state. Current concepts suggest that cells are capable of maintaining oxygen consumption in the face of declines in the concentration of oxygen through compensatory changes in cellular metabolites. We show that these compensatory changes can cause significant declines in ATP demand and result in a decline in oxygen consumption and ATP turnover. Furthermore we find that hypoxia does not directly affect the rate of anaerobic ATP synthesis and associated lactate production. Rather, lactate production appears to be related to energetic state, whatever the PO2. The model is used to describe the interaction between ATP demand and ATP supply in determining final ATP turnover.
Komlódi, T; Tretter, L
2017-09-01
Methylene blue (MB), a potential neuroprotective agent, is efficient in various neurodegenerative disease models. Beneficial effects of MB have been attributed to improvements in mitochondrial functions. Substrate-level phosphorylation (SLP) results in the production of ATP independent from the ATP synthase (ATP-ase). In energetically compromised mitochondria, ATP produced by SLP can prevent the reversal of the adenine nucleotide translocase and thus the hydrolysis of glycolytic ATP. The aim of the present study was to investigate the effect of MB on mitochondrial SLP catalysed by succinyl-CoA ligase. Measurements were carried out on isolated guinea pig cortical mitochondria respiring on α-ketoglutarate, glutamate, malate or succinate. The mitochondrial functions and parameters like ATP synthesis, oxygen consumption, membrane potential, and NAD(P)H level were followed online, in parallel with the redox state of MB. SLP-mediated ATP synthesis was measured in the presence of inhibitors for ATP-ase and adenylate kinase. In the presence of the ATP-ase inhibitor oligomycin MB stimulated respiration with all of the respiratory substrates. However, the rate of ATP synthesis increased only with substrates α-ketoglutarate and glutamate (forming succinyl-CoA). MB efficiently stimulated SLP and restored the membrane potential in mitochondria also with the combined inhibition of Complex I and ATP synthase. ATP formed by SLP alleviated the energetic insufficiency generated by the lack of oxidative phosphorylation. Thus, the MB-mediated stimulation of SLP might be important in maintaining the energetic competence of mitochondria and in preventing the mitochondrial hydrolysis of glycolytic ATP. The mitochondrial effects of MB are explained by the ability to accept electrons from reducing equivalents and transfer them to cytochrome c bypassing the respiratory Complexes I and III. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nisin depletes ATP and proton motive force in mycobacteria.
Chung, H J; Montville, T J; Chikindas, M L
2000-12-01
This study examined the inhibitory effect of nisin and its mode of action against Mycobacterium smegmatis, a non-pathogenic species of mycobacteria, and M. bovis-Bacill Carmette Guerin (BCG), a vaccine strain of pathogenic M. bovis. In agar diffusion assays, 2.5 mg ml(-1) nisin was required to inhibit M. bovis-BCG. Nisin caused a slow, gradual, time- and concentration-dependent decrease in internal ATP levels in M. bovis-BCG, but no ATP efflux was detected. In mycobacteria, nisin decreased both components of proton motive force (membrane potential, Delta Psi and Delta pH) in a time- and concentration-dependent manner. However, mycobacteria maintained their intracellular ATP levels during the initial time period of Delta Psi and Delta pH dissipation. These data suggest that the mechanism of nisin in mycobacteria is similar to that in food-borne pathogens.
Tourmente, Maximiliano; Villar-Moya, Pilar; Varea-Sánchez, María; Luque-Larena, Juan J; Rial, Eduardo; Roldan, Eduardo R S
2015-09-01
Sperm viability, acrosome integrity, motility, and swimming velocity are determinants of male fertility and exhibit an extreme degree of variation among closely related species. Many of these sperm parameters are associated with sperm ATP content, which has led to predictions of trade-offs between ATP content and sperm motility and velocity. Selective pressures imposed by sperm competition have been proposed as evolutionary causes of this pattern of diversity in sperm traits. Here, we examine variation in sperm viability, acrosome integrity, motility, swimming velocity, and ATP content over time, among 18 species of closely related muroid rodents, to address the following questions: (a) Do sperm from closely related species vary in ATP content after a period of incubation? (b) Are these differences in ATP levels related to differences in other sperm traits? (c) Are differences in ATP content and sperm performance over time explained by the levels of sperm competition in these species? Our results revealed a high degree of interspecific variability in changes in sperm ATP content, acrosome integrity, sperm motility and swimming velocity over time. Additionally, species with high sperm competition levels were able to maintain higher levels of sperm motility and faster sperm swimming velocity when they were incubated under conditions that support sperm survival. Furthermore, we show that the maintenance of such levels of sperm performance is correlated with the ability of sperm to sustain high concentrations of intracellular ATP over time. Thus, sperm competition may have an important role maximizing sperm metabolism and performance and, ultimately, the fertilizing capacity of spermatozoa. © 2015 by the Society for the Study of Reproduction, Inc.
Energy status of ripening and postharvest senescent fruit of litchi (Litchi chinensis Sonn.)
2013-01-01
Background Recent studies have demonstrated that cellular energy is a key factor switching on ripening and senescence of fruit. However, the factors that influence fruit energy status remain largely unknown. Results HPLC profiling showed that ATP abundance increased significantly in developing preharvest litchi fruit and was strongly correlated with fruit fresh weight. In contrast, ATP levels declined significantly during postharvest fruit senescence and were correlated with the decrease in the proportion of edible fruit. The five gene transcripts isolated from the litchi fruit pericarp were highly expressed in vegetative tissues and peaked at 70 days after flowering (DAF) consistent with fruit ADP concentrations, except for uncoupling mitochondrial protein 1 (UCP1), which was predominantly expressed in the root, and ATP synthase beta subunit (AtpB), which was up-regulated significantly before harvest and peaked 2 days after storage. These results indicated that the color-breaker stage at 70 DAF and 2 days after storage may be key turning points in fruit energy metabolism. Transcript abundance of alternative oxidase 1 (AOX1) increased after 2 days of storage to significantly higher levels than those of LcAtpB, and was down-regulated significantly by exogenous ATP. ATP supplementation had no significant effect on transcript abundance of ADP/ATP carrier 1 (AAC1) and slowed the changes in sucrose non-fermenting-1-related kinase 2 (SnRK2) expression, but maintained ATP and energy charge levels, which were correlated with delayed senescence. Conclusions Our results suggest that senescence of litchi fruit is closely related with energy. A surge of LcAtpB expression marked the beginning of fruit senescence. The findings may provide a new strategy to extend fruit shelf life by regulating its energy level. PMID:23547657
ATP-driven and AMPK-independent autophagy in an early branching eukaryotic parasite.
Li, Feng-Jun; Xu, Zhi-Shen; Soo, Andy D S; Lun, Zhao-Rong; He, Cynthia Y
2017-04-03
Autophagy is a catabolic cellular process required to maintain protein synthesis, energy production and other essential activities in starved cells. While the exact nutrient sensor(s) is yet to be identified, deprivation of amino acids, glucose, growth factor and other nutrients can serve as metabolic stimuli to initiate autophagy in higher eukaryotes. In the early-branching unicellular parasite Trypanosoma brucei, which can proliferate as procyclic form (PCF) in the tsetse fly or as bloodstream form (BSF) in animal hosts, autophagy is robustly triggered by amino acid deficiency but not by glucose depletion. Taking advantage of the clearly defined adenosine triphosphate (ATP) production pathways in T. brucei, we have shown that autophagic activity depends on the levels of cellular ATP production, using either glucose or proline as a carbon source. While autophagosome formation positively correlates with cellular ATP levels; perturbation of ATP production by removing carbon sources or genetic silencing of enzymes involved in ATP generation pathways, also inhibited autophagy. This obligate energy dependence and the lack of glucose starvation-induced autophagy in T. brucei may reflect an adaptation to its specialized, parasitic life style.
Zhou, Bujin; Chen, Peng; Khan, Aziz; Zhao, Yanhong; Chen, Lihong; Liu, Dongmei; Liao, Xiaofang; Kong, Xiangjun; Zhou, Ruiyang
2017-01-01
Cytoplasmic male sterility (CMS) is a maternally inherited trait that results in the production of dysfunctional pollen. Based on reliable reference gene-normalized real-time quantitative PCR (RT-qPCR) data, examining gene expression profile can provide valuable information on the molecular mechanism of kenaf CMS. However, studies have not been conducted regarding selection of reference genes for normalizing RT-qPCR data in the CMS and maintainer lines of kenaf crop. Therefore, we studied 10 candidate reference genes (ACT3, ELF1A, G6PD, PEPKR1, TUB, TUA, CYP, GAPDH, H3, and 18S) to assess their expression stability at three stages of pollen development in CMS line 722A and maintainer line 722B of kenaf. Five computational statistical approaches (GeNorm, NormFinder, ΔCt, BestKeeper, and RefFinder) were used to evaluate the expression stability levels of these genes. According to RefFinder and GeNorm, the combination of TUB, CYP, and PEPKR1 was identified as an internal control for the accurate normalization across all sample set, which was further confirmed by validating the expression of HcPDIL5-2a. Furthermore, the combination of TUB, CYP, and PEPKR1 was used to differentiate the expression pattern of five mitochondria F1F0-ATPase subunit genes (atp1, atp4, atp6, atp8, and atp9) by RT-qPCR during pollen development in CMS line 722A and maintainer line 722B. We found that atp1, atp6, and atp9 exhibited significantly different expression patterns during pollen development in line 722A compared with line 722B. This is the first systematic study of reference genes selection for CMS and will provide useful information for future research on the gene expressions and molecular mechanisms underlying CMS in kenaf. PMID:28919905
Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells.
Buravkova, L B; Rylova, Y V; Andreeva, E R; Kulikov, A V; Pogodina, M V; Zhivotovsky, B; Gogvadze, V
2013-10-01
Multipotent mesenchymal stromal cells (MMSCs) are minimally differentiated precursors with great potential to transdifferentiate. These cells are quite resistant to oxygen limitation, suggesting that a hypoxic milieu can be physiological for MMSCs. Human MMSCs isolated from adipose tissue were grown at various oxygen concentrations. Alteration in cell immunophenotype was determined by flow cytometry after staining with specific antibodies. Concentrations of glucose and lactate were determined using the Biocon colorimetric test. Cellular respiration was assessed using oxygen electrode. The modes of cell death were analyzed by flow cytometry after staining with Annexin V and propidium iodide. We found that permanent oxygen deprivation attenuated cellular ATP levels in these cells, diminishing mitochondrial ATP production but stimulating glycolytic ATP production. At the same time, permanent hypoxia did not affect MMSCs' viability, stimulated their proliferation and reduced their capacity to differentiate. Further, permanent hypoxia decreased spontaneous cell death by MMSCs. Under hypoxic conditions glycolysis provides sufficient energy to maintain MMSCs in an uncommitted state. These findings are of interest not only for scientific reasons, but also in practical terms. Oxygen concentration makes an essential contribution to MMSC physiology and should be taken into account in the setting of protocols for cellular therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
A non-neuronal cholinergic system regulates cellular ATP levels to maintain cell viability.
Oikawa, Shino; Iketani, Mitsue; Kakinuma, Yoshihiko
2014-01-01
We previously suggested that a non-neuronal cholinergic system modulates energy metabolism through the mitochondria. However, the mechanisms responsible for making this system crucial remained undetermined. In this study, we developed a fusion protein expression vector containing a luciferase gene fused to the folic acid receptor-α gene. This protein of the vector was confirmed to target the plasma membrane of transfected HEK293 cells, and vector-derived luciferase activities and ATP levels in viable cells were positively correlated (r = 0.599). Using this luciferase vector, choline acetyltransferase (ChAT)-expressing cells (i.e., cells with an activated non-neuronal cholinergic system) had increased cellular ATP levels. ChAT-expressing cells also had upregulated IGF-1R and Glut-1 protein expressions as well as increased glucose uptake. This activated non-neuronal cholinergic system with efficient glucose metabolism rendered cells resistant to serum depletion-induced cell death. Our results indicate that a non-neuronal cholinergic system is involved in sustaining ATP levels to render cells resistant to a nutrient-deficient environment. © 2014 S. Karger AG, Basel.
Conley, K E; Kemper, W F; Crowther, G J
2001-09-01
This paper proposes a mechanism responsible for setting the sustainable level of muscle performance. Our contentions are that the sustainable work rate is determined (i) at the muscle level, (ii) by the ability to maintain ATP supply and (iii) by the products of glycolysis that may inhibit the signal for oxidative phosphorylation. We argue below that no single factor 'limits' sustainable performance, but rather that the flux through and the interaction between glycolysis and oxidative phosphorylation set the level of sustainable ATP supply. This argument is based on magnetic resonance spectroscopy measurements of the sources and sinks for energy in vivo in human muscle and rattlesnake tailshaker muscle during sustained contractions. These measurements show that glycolysis provides between 20% (human muscle) and 40% (tailshaker muscle) of the ATP supply during sustained contractions in these muscles. We cite evidence showing that this high glycolytic flux does not reflect an O(2) limitation or mitochondria operating at their capacity. Instead, this flux reflects a pathway independent of oxidative phosphorylation for ATP supply during aerobic exercise. The consequence of this high glycolytic flux is accumulation of H(+), which we argue inhibits the rise in the signal activating oxidative phosphorylation, thereby restricting oxidative ATP supply to below the oxidative capacity. Thus, both glycolysis and oxidative phosphorylation play important roles in setting the highest steady-state ATP synthesis flux and thereby determine the sustainable level of work by exercising muscle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Joon-Seok; Lee, Cheol-Koo, E-mail: cklee2005@korea.ac.kr
Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeastmore » by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.« less
Increased Glycolytic ATP Synthesis Is Associated with Tafenoquine Resistance in Leishmania major▿
Manzano, José Ignacio; Carvalho, Luis; Pérez-Victoria, José M.; Castanys, Santiago; Gamarro, Francisco
2011-01-01
Tafenoquine (TFQ), an 8-aminoquinoline used to treat and prevent Plasmodium infections, could represent an alternative therapy for leishmaniasis. Indeed, TFQ has shown significant leishmanicidal activity both in vitro and in vivo, where it targets Leishmania mitochondria and activates a final apoptosis-like process. In order not to jeopardize the life span of this potential antileishmania drug, it is important to determine the likelihood that Leishmania will develop resistance to TFQ and the mechanisms of resistance induced. To address this issue, a TFQ-resistant Leishmania major promastigote line (R4) was selected. This resistance, which is unstable in a drug-free medium (revertant line), was maintained in intramacrophage amastigote forms, and R4 promastigotes were found to be cross-resistant to other 8-aminoquinolines. A decreased TFQ uptake, which is probably associated with an alkalinization of the intracellular pH rather than drug efflux, was observed for both the R4 and revertant lines. TFQ induces a decrease in ATP synthesis in all Leishmania lines, although total ATP levels were maintained at higher values in R4 parasites. In contrast, ATP synthesis by glycolysis was significantly increased in R4 parasites, whereas mitochondrial ATP synthesis was similar to that in wild-type parasites. We therefore conclude that increased glycolytic ATP synthesis is the main mechanism underlying TFQ resistance in Leishmania. PMID:21199921
Increased glycolytic ATP synthesis is associated with tafenoquine resistance in Leishmania major.
Manzano, José Ignacio; Carvalho, Luis; Pérez-Victoria, José M; Castanys, Santiago; Gamarro, Francisco
2011-03-01
Tafenoquine (TFQ), an 8-aminoquinoline used to treat and prevent Plasmodium infections, could represent an alternative therapy for leishmaniasis. Indeed, TFQ has shown significant leishmanicidal activity both in vitro and in vivo, where it targets Leishmania mitochondria and activates a final apoptosis-like process. In order not to jeopardize the life span of this potential antileishmania drug, it is important to determine the likelihood that Leishmania will develop resistance to TFQ and the mechanisms of resistance induced. To address this issue, a TFQ-resistant Leishmania major promastigote line (R4) was selected. This resistance, which is unstable in a drug-free medium (revertant line), was maintained in intramacrophage amastigote forms, and R4 promastigotes were found to be cross-resistant to other 8-aminoquinolines. A decreased TFQ uptake, which is probably associated with an alkalinization of the intracellular pH rather than drug efflux, was observed for both the R4 and revertant lines. TFQ induces a decrease in ATP synthesis in all Leishmania lines, although total ATP levels were maintained at higher values in R4 parasites. In contrast, ATP synthesis by glycolysis was significantly increased in R4 parasites, whereas mitochondrial ATP synthesis was similar to that in wild-type parasites. We therefore conclude that increased glycolytic ATP synthesis is the main mechanism underlying TFQ resistance in Leishmania.
Button, Brian; Picher, Maryse; Boucher, Richard C
2007-01-01
In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na+-channel-mediated Na+ absorption and stimulation of Cl− secretion through CFTR and the Ca2+-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749
Feng, Rui; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Yu, Lifeng; Hao, Liying; Kameyama, Masaki
2014-05-01
The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.
Metabolic studies with NMR spectroscopy of the alga Dunaliella salina trapped within agarose beads.
Bental, M; Pick, U; Avron, M; Degani, H
1990-02-22
A technique for the entrapment of the unicellular algae Dunaliella salina in agarose beads and their perfusion during NMR measurements is presented. The trapped cells maintained their ability to proliferate under normal growth conditions, and remained viable and stable under steady-state conditions for long periods during NMR measurements. Following osmotic shock in the dark, prominent changes were observed in the intracellular level of ATP and polyphosphates, but little to no changes in the intracellular pH or orthoposphate content. When cells were subjected to hyperosmotic shock, the ATP level decreased. The content of NMR-visible polyphosphates decreased as well, presumably due to the production of longer, NMR-invisible structures. Following hypoosmotic shock, the ATP content increased and longer polyphosphates were broken down to shorter, more mobile polymers.
Effect of oxygenated perfluorocarbon on isolated islets during transportation.
Terai, Sachio; Tsujimura, Toshiaki; Li, Shiri; Hori, Yuichi; Toyama, Hirochika; Shinzeki, Makoto; Matsumoto, Ippei; Kuroda, Yoshikazu; Ku, Yonson
2010-08-01
Previous studies demonstrated the efficacy of the two-layer method (TLM) using oxygenated perfluorochemicals (PFC) for pancreas preservation. The current study investigated the effect of oxygenated PFC on isolated islets during transportation. Purified rat islets were stored in an airtight conical tube for 24h in RPMI culture medium at 22 degrees C or University of Wisconsin solution (UW) at 4 degrees C, either with or without oxygenated PFC. After storage, the islets were assessed for in vitro viability by static incubation (SI), FDA/PI staining, and energy status (ATP, energy charge, and ADP/ATP ratio) and for in vivo viability by a transplantation study. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality almost equally in both in vitro and in vivo assessments. The ATP levels and energy status in the groups with PFC were significantly lower than those without PFC. The groups with PFC showed a significantly higher ADP/ATP ratio than those without PFC. In the transplantation study, blood glucose levels and AUC in the UW+PFC group were significantly higher than those in UW group. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality equally under the conditions for islet transportation. The addition of oxygenated PFC, while advantageous for pancreas preservation, is not useful for islet transportation. Copyright 2010 Elsevier Inc. All rights reserved.
Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function
NASA Astrophysics Data System (ADS)
Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Parameswaran, Harikrishnan; Wellman, Tyler J.; Martinez, Nuria; Allen, Philip G.; Frey, Urs; Suki, Béla
2015-10-01
Cells can be exposed to irregular mechanical fluctuations, such as those arising from changes in blood pressure. Here, we report that ATP production, assessed through changes in mitochondrial membrane potential, is downregulated in vascular smooth muscle cells in culture exposed to monotonous stretch cycles when compared with cells exposed to a variable cyclic stretch that incorporates physiological levels of cycle-by-cycle variability in stretch amplitude. Variable stretch enhances ATP production by increasing the expression of ATP synthase’s catalytic domain, cytochrome c oxidase and its tyrosine phosphorylation, mitofusins and PGC-1α. Such a fluctuation-driven mechanotransduction mechanism is mediated by motor proteins and by the enhancement of microtubule-, actin- and mitochondrial-network complexity. We also show that, in aorta rings isolated from rats, monotonous stretch downregulates--whereas variable stretch maintains--physiological vessel-wall contractility through mitochondrial ATP production. Our results have implications for ATP-dependent and mechanosensitive intracellular processes.
The AMPK β2 subunit is required for energy homeostasis during metabolic stress.
Dasgupta, Biplab; Ju, Jeong Sun; Sasaki, Yo; Liu, Xiaona; Jung, Su-Ryun; Higashida, Kazuhiko; Lindquist, Diana; Milbrandt, Jeffrey
2012-07-01
AMP activated protein kinase (AMPK) plays a key role in the regulatory network responsible for maintaining systemic energy homeostasis during exercise or nutrient deprivation. To understand the function of the regulatory β2 subunit of AMPK in systemic energy metabolism, we characterized β2 subunit-deficient mice. Using these mutant mice, we demonstrated that the β2 subunit plays an important role in regulating glucose, glycogen, and lipid metabolism during metabolic stress. The β2 mutant animals failed to maintain euglycemia and muscle ATP levels during fasting. In addition, β2-deficient animals showed classic symptoms of metabolic syndrome, including hyperglycemia, glucose intolerance, and insulin resistance when maintained on a high-fat diet (HFD), and were unable to maintain muscle ATP levels during exercise. Cell surface-associated glucose transporter levels were reduced in skeletal muscle from β2 mutant animals on an HFD. In addition, they displayed poor exercise performance and impaired muscle glycogen metabolism. These mutant mice had decreased activation of AMPK and deficits in PGC1α-mediated transcription in skeletal muscle. Our results highlight specific roles of AMPK complexes containing the β2 subunit and suggest the potential utility of AMPK isoform-specific pharmacological modulators for treatment of metabolic, cardiac, and neurological disorders.
Chen, Lin; Zhou, Yige; He, Zhenyun; Liu, Qin; Lai, Shaojuan; Yang, Hongshun
2018-06-15
The effects of exogenous ATP on the postharvest quality, browning and softening of mung bean (Vigna radiata) sprouts were evaluated. ATP treatment significantly alleviated the quality loss and browning events during the storage of 3 days. It also reduced the oxidant damage by inducing high activities of peroxidase (9.3-13.9%) and superoxide dismutase (8.8-10.3%) which scavenged the reactive oxygen species (ROS) effectively. Transcriptional results indicated that ATP treatment decreased VrPL1, VrPME and VrPG1 gene expression levels more than 2 folds at some time points. Furthermore, the atomic force microscope (AFM) images revealed that the pectin degradation was notably slowed by ATP treatment and the width and height of pectin backbone were better maintained (47.1% and 45.6% higher than control without ATP treatment). The cooperative effects of ROS scavenging and decreased expressions of pectin-related genes might contribute to the deferred pectin deterioration and firmness loss by ATP treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hrebinyk, S M; Artemenko, O Iu; Hryniuk, I I; Perepelitsyna, O M; Matyshevs'ka, O P
2009-01-01
The comparative study of extracellular ATP (ATP0) effect on free cytosolic calcium concentration ([Ca2+]i) in normal (isolated rat thymocytes) and transformed (leukosis MT-4 line) T-cells was carried out. Addition of 1 mM ATP to Ca-free incubation medium of both types of cells, loaded with indo-1, had no effect on [Ca2+]i level. Upon subsequent addition of 1 mM CaCl2 to the incubation medium the rapid and significant increase of [Ca2+]i in MT-4 cells was registered. This effect was maintained within 10 min and was not inhibited by phospholipase C inhibitor 0.2 mM neomycin, that was induced by cation entry into the cells from the extracellular medium. Both types of cells were shown to demonstrate ecto-ATPase activity in the presence of 1 mM MgCl2 or CaC12 in the incubation medium. Estimation of kinetic parameters has indicated that the maximum rate of extracellular ATP hydrolysis by MT-4 cells is higher and Mg2+ and Ca2+ activation constants are lower as compared to respective parameters of ATP hydrolysis by thymocytes. The possible functional significance of the increased level of ecto-ATPase activity in malignantly transformed cells is discussed.
Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress
NASA Technical Reports Server (NTRS)
Cleland, R. E.; Fujiwara, T.; Lucas, W. J.
1994-01-01
Cell-to-cell transport of small molecules and ions occurs in plants through plasmodesmata. Plant roots are frequently subjected to localized anaerobic stress, with a resultant decrease in ATP. In order to determine the effect of this stress on plasmodesmal transport, fluorescent dyes of increasing molecular weight (0.46 to 1OkDa) were injected into epidermal and cortical cells of 3-day-old wheat roots, and their movement into neighboring cells was determined by fluorescence microscopy. Anaerobiosis was generated by N2 gas or simulated by the presence of sodium azide, both of which reduced the ATP levels in the tissue by over 80%. In the absence of such stress, the upper limit for movement, or size exclusion limit (SEL), of cortical plasmodesmata was <1 kDa. The ATP analogue TNP-ADP (mw 681) moved across the plasmodesmata of unstressed roots, indicating that plasmodesmata may be conduits for nucleotide (ATP and ADP) exchange between cells. Upon imposition of stress, the SEL rose to between 5 and 10 kDa. This response of plasmodesmata to a decrease in the level of ATP suggests that they are constricted by an ATP-dependent process so as to maintain a restricted SEL. When roots are subjected to anaerobic stress, an increase in SEL may permit enhanced delivery of sugars to the affected cells of the root where anaerobic respiration could regenerate the needed ATP.
Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets?
Masino, Susan A.; Geiger, Jonathan D.
2015-01-01
Abnormal neuronal signaling caused by metabolic changes characterizes several neurological disorders, and in some instances metabolic interventions provide therapeutic benefits. Indeed, altering metabolism either by fasting or by maintaining a low-carbohydrate (ketogenic) diet might reduce epileptic seizures and offer neuroprotection in part because the diet increases mitochondrial biogenesis and brain energy levels. Here we focus on a novel hypothesis that a ketogenic diet-induced change in energy metabolism increases levels of ATP and adenosine, purines that are critically involved in neuron–glia interactions, neuromodulation and synaptic plasticity. Enhancing brain bioenergetics (ATP) and increasing levels of adenosine, an endogenous anticonvulsant and neuroprotective molecule, might help with understanding and treating a variety of neurological disorders. PMID:18471903
O'Brien, William G; Berka, Vladimir; Tsai, Ah-Lim; Zhao, Zhaoyang; Lee, Cheng Chi
2015-08-07
Erythrocytes are the key target in 5'-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3(-/-) mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism.
Creatine maintains intestinal homeostasis and protects against colitis.
Turer, Emre; McAlpine, William; Wang, Kuan-Wen; Lu, Tianshi; Li, Xiaohong; Tang, Miao; Zhan, Xiaoming; Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Murray, Anne R; Beutler, Bruce
2017-02-14
Creatine, a nitrogenous organic acid, replenishes cytoplasmic ATP at the expense of mitochondrial ATP via the phosphocreatine shuttle. Creatine levels are maintained by diet and endogenous synthesis from arginine and glycine. Glycine amidinotransferase (GATM) catalyzes the rate-limiting step of creatine biosynthesis: the transfer of an amidino group from arginine to glycine to form ornithine and guanidinoacetate. We screened 36,530 third-generation germline mutant mice derived from N -ethyl- N -nitrosourea-mutagenized grandsires for intestinal homeostasis abnormalities after oral administration of dextran sodium sulfate (DSS). Among 27 colitis susceptibility phenotypes identified and mapped, one was strongly correlated with a missense mutation in Gatm in a recessive model of inheritance, and causation was confirmed by CRISPR/Cas9 gene targeting. Supplementation of homozygous Gatm mutants with exogenous creatine ameliorated the colitis phenotype. CRISPR/Cas9-targeted ( Gatm c/c ) mice displayed a normal peripheral immune response and immune cell homeostasis. However, the intestinal epithelium of the Gatm c/c mice displayed increased cell death and decreased proliferation during DSS treatment. In addition, Gatm c/c colonocytes showed increased metabolic stress in response to DSS with higher levels of phospho-AMPK and lower levels of phosphorylation of mammalian target of rapamycin (phospho-mTOR). These findings establish an in vivo requirement for rapid replenishment of cytoplasmic ATP within colonic epithelial cells in the maintenance of the mucosal barrier after injury.
Creatine maintains intestinal homeostasis and protects against colitis
Turer, Emre; McAlpine, William; Wang, Kuan-wen; Lu, Tianshi; Li, Xiaohong; Tang, Miao; Zhan, Xiaoming; Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Murray, Anne R.; Beutler, Bruce
2017-01-01
Creatine, a nitrogenous organic acid, replenishes cytoplasmic ATP at the expense of mitochondrial ATP via the phosphocreatine shuttle. Creatine levels are maintained by diet and endogenous synthesis from arginine and glycine. Glycine amidinotransferase (GATM) catalyzes the rate-limiting step of creatine biosynthesis: the transfer of an amidino group from arginine to glycine to form ornithine and guanidinoacetate. We screened 36,530 third-generation germline mutant mice derived from N-ethyl-N-nitrosourea–mutagenized grandsires for intestinal homeostasis abnormalities after oral administration of dextran sodium sulfate (DSS). Among 27 colitis susceptibility phenotypes identified and mapped, one was strongly correlated with a missense mutation in Gatm in a recessive model of inheritance, and causation was confirmed by CRISPR/Cas9 gene targeting. Supplementation of homozygous Gatm mutants with exogenous creatine ameliorated the colitis phenotype. CRISPR/Cas9-targeted (Gatmc/c) mice displayed a normal peripheral immune response and immune cell homeostasis. However, the intestinal epithelium of the Gatmc/c mice displayed increased cell death and decreased proliferation during DSS treatment. In addition, Gatmc/c colonocytes showed increased metabolic stress in response to DSS with higher levels of phospho-AMPK and lower levels of phosphorylation of mammalian target of rapamycin (phospho-mTOR). These findings establish an in vivo requirement for rapid replenishment of cytoplasmic ATP within colonic epithelial cells in the maintenance of the mucosal barrier after injury. PMID:28137860
KATP Channel Mutations and Neonatal Diabetes.
Shimomura, Kenju; Maejima, Yuko
2017-09-15
Since the discovery of the K ATP channel in 1983, numerous studies have revealed its physiological functions. The K ATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K ATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K ATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K ATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.
Response of the water-water cycle to the change in photorespiration in tobacco.
Huang, Wei; Yang, Ying-Jie; Hu, Hong; Zhang, Shi-Bao
2016-04-01
Photosynthetic electron transport produces ATP and NADPH, which are used by the primary metabolism. The production and consumption of ATP and NADPH must be balanced to maintain steady-state rates of CO2 assimilation and photorespiration. It has been indicated that the water-water cycle (WWC) is indispensable for driving photosynthesis via increasing ATP/NADPH production. However, the relationship between the WWC and photorespiration is little known. We tested the hypothesis that the WWC responds to change in photorespiration by balancing ATP/NADPH ratio. Measurements of gas exchange and chlorophyll fluorescence were conducted in tobacco plants supplied with high (HN-plants) or low nitrogen concentration (LN-plants). The WWC was activated under high light but not low light in both HN-plants and LN-plants. HN-plants had significantly higher capacities of the WWC and photorespiration than LN-plants. Under high light, the relative high WWC activation in HN-plants was accompanied with relative low levels of NPQ compared LN-plants, suggesting that the main role of the WWC under high light was to favor ATP synthesis but not to activate NPQ. Interestingly, the activation of WWC was positively correlated to the electron flow devoted to RuBP oxygenation, indicating that the WWC plays an important role in energy balancing when photorespiration is high. We conclude that the WWC is an important flexible mechanism to optimize the stoichiometry of the ATP/NADPH ratio responding to change in photorespiration. Furthermore, HN-plants enhance the WWC activity to maintain higher rates of CO2 assimilation and photorespiration. Copyright © 2016 Elsevier B.V. All rights reserved.
Santacruz, Lucia; Arciniegas, Antonio Jose Luis; Darrabie, Marcus; Mantilla, Jose G; Baron, Rebecca M; Bowles, Dawn E; Mishra, Rajashree; Jacobs, Danny O
2017-08-01
Creatine (Cr), phosphocreatine (PCr), and creatine kinases (CK) comprise an energy shuttle linking ATP production in mitochondria with cellular consumption sites. Myocytes cannot synthesize Cr: these cells depend on uptake across the cell membrane by a specialized creatine transporter (CrT) to maintain intracellular Cr levels. Hypoxia interferes with energy metabolism, including the activity of the creatine energy shuttle, and therefore affects intracellular ATP and PCr levels. Here, we report that exposing cultured cardiomyocytes to low oxygen levels rapidly diminishes Cr transport by decreasing V max and K m Pharmacological activation of AMP-activated kinase (AMPK) abrogated the reduction in Cr transport caused by hypoxia. Cr supplementation increases ATP and PCr content in cardiomyocytes subjected to hypoxia, while also significantly augmenting the cellular adaptive response to hypoxia mediated by HIF-1 activation. Our results indicate that: (1) hypoxia reduces Cr transport in cardiomyocytes in culture, (2) the cytoprotective effects of Cr supplementation are related to enhanced adaptive physiological responses to hypoxia mediated by HIF-1, and (3) Cr supplementation increases the cellular ATP and PCr content in RNCMs exposed to hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Martinez-Cruz, O; Calderon de la Barca, A M; Uribe-Carvajal, S; Muhlia-Almazan, A
2012-08-01
The effect of hypoxia and re-oxygenation on the mitochondrial complex F(O)F(1)-ATP synthase was investigated in the whiteleg shrimp Litopenaeus vannamei. A 660 kDa protein complex isolated from mitochondria of the shrimp muscle was identified as the ATP synthase complex. After 10h at hypoxia (1.5-2.0 mg oxygen/L), the concentration of L-lactate in plasma increased significantly, but the ATP amount and the concentration of ATPβ protein remained unaffected. Nevertheless, an increase of 70% in the ATPase activity was detected, suggesting that the enzyme may be regulated at a post-translational level. Thus, during hypoxia shrimp are able to maintain ATP amounts probably by using some other energy sources as phosphoarginine when an acute lack of energy occurs. During re-oxygenation, the ATPase activity decreased significantly and the ATP production continued via the electron transport chain and oxidative phosphorylation. The results obtained showed that shrimp faces hypoxia partially by hydrolyzing the ATP through the reaction catalyzed by the mitochondrial ATPase which increases its activity. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Ling; Sun, Han; Kitazawa, Hiroaki; Wang, Xiangyou
2017-07-01
Browning is one of the main problems in senescence of mushrooms, and it is also one of the most important attributes accounting for the loss of the quality and reduction in market value. In order to study the relationship between the energy metabolism and the browning of white mushroom under high O 2 dynamic-controlled atmosphere (HO-DCA), mushrooms were stored in 100% O 2 (SCA1), 80% O 2 + 20% CO 2 (SCA2), 100% O 2 for three days and then transferred into the treatment of 80% O 2 + 20% CO 2 (HO-DCA) at 2 ± 1 ℃ and air as control. In this study, adenosine triphosphate (ATP) content, energy charge level, sensory evaluation, browning of surface and flesh, cell membrane integrity, exogenous ATP, polyphenol oxidase (PPO) and peroxidase (POD) activity and genes encoding PPO of the white mushroom were investigated. These were all closely related to the browning of products. The optimal storage condition of the HO-DCA treatment could delay the browning of pericarp and flesh tissues of the mushrooms, inhibit PPO activity and reduce the relative expression levels of the three genes encoding PPO. Meanwhile, it maintained moderate POD activity, good sensory properties and cell membrane integrity in a certain extent and thus slowed down the senescence of mushrooms. Results indicated that there was a positive correlation between the ATP content and whitening index ( r = 0.901). In addition, HO-DCA maintained a higher ATP level, prolonged the storage time to 28 days and it might be an ideal strategy for preserving the quality of mushroom during storage.
Seibel, Brad A; Häfker, N Sören; Trübenbach, Katja; Zhang, Jing; Tessier, Shannon N; Pörtner, Hans-Otto; Rosa, Rui; Storey, Kenneth B
2014-07-15
The jumbo squid, Dosidicus gigas, can survive extended forays into the oxygen minimum zone (OMZ) of the Eastern Pacific Ocean. Previous studies have demonstrated reduced oxygen consumption and a limited anaerobic contribution to ATP production, suggesting the capacity for substantial metabolic suppression during hypoxic exposure. Here, we provide a more complete description of energy metabolism and explore the expression of proteins indicative of transcriptional and translational arrest that may contribute to metabolic suppression. We demonstrate a suppression of total ATP demand under hypoxic conditions (1% oxygen, PO2 =0.8 kPa) in both juveniles (52%) and adults (35%) of the jumbo squid. Oxygen consumption rates are reduced to 20% under hypoxia relative to air-saturated controls. Concentrations of arginine phosphate (Arg-P) and ATP declined initially, reaching a new steady state (~30% of controls) after the first hour of hypoxic exposure. Octopine began accumulating after the first hour of hypoxic exposure, once Arg-P breakdown resulted in sufficient free arginine for substrate. Octopine reached levels near 30 mmol g(-1) after 3.4 h of hypoxic exposure. Succinate did increase through hypoxia but contributed minimally to total ATP production. Glycogenolysis in mantle muscle presumably serves to maintain muscle functionality and balance energetics during hypoxia. We provide evidence that post-translational modifications on histone proteins and translation factors serve as a primary means of energy conservation and that select components of the stress response are altered in hypoxic squids. Reduced ATP consumption under hypoxia serves to maintain ATP levels, prolong fuel store use and minimize the accumulation of acidic intermediates of anaerobic ATP-generating pathways during prolonged diel forays into the OMZ. Metabolic suppression likely limits active, daytime foraging at depth in the core of the OMZ, but confers an energetic advantage over competitors that must remain in warm, oxygenated surface waters. Moreover, the capacity for metabolic suppression provides habitat flexibility as OMZs expand as a result of climate change. © 2014. Published by The Company of Biologists Ltd.
Vanderwee, M A; Humphrey, S M; Gavin, J B; Armiger, L C
1981-01-01
Transmural slices from the left anterior papillary muscle of dog hearts were maintained for 120 min in a moist atmosphere at 37 degrees C. At 15-min intervals tissue samples were taken for estimation of adenosine triphosphate (ATP) and glucose-6-phosphate (G6P) and for electron microscopic examination. At the same time the deformability under standard load of comparable regions of an adjacent slice of tissue was measured. ATP levels fell rapidly during the first 45 to 75 min after excision of the heart. During a subsequent further decline in ATP, the mean deformability of myocardium fell from 30 to 12% indicating the development of rigor mortis. Conversely, G6P levels increased during the first decline in adenosine triphosphate but remained relatively steady thereafter. Whereas many of the myocardial cells fixed after 5 min contracted on contact with glutaraldehyde, all cells examined after 15 to 40 min were relaxed. A progressive increase in the proportion of contracted cells was observed during the rapid increase in myocardial rigidity. During this late contraction the cells showed morphological evidence of irreversible injury. These findings suggest that ischaemic myocytes contract just before actin and myosin become strongly linked to maintain the state of rigor mortis.
ATP monitoring technology for microbial growth control in potable water systems
NASA Astrophysics Data System (ADS)
Whalen, Patrick A.; Whalen, Philip J.; Cairns, James E.
2006-05-01
ATP (Adenosine Triphosphate) is the primary energy transfer molecule present in all living biological cells on Earth. ATP cannot be produced or maintained by anything but a living organism, and as such, its measurement is a direct indication of biological activity. The main advantage of ATP as a biological indicator is the speed of the analysis - from collecting the sample to obtaining the result, only minutes are required. The technology to measure ATP is already widely utilized to verify disinfection efficacy in the food industry and is also commonly applied in industrial water processes such as cooling water systems to monitor microbial growth and biocide applications. Research has indicated that ATP measurement technology can also play a key role in such important industries as potable water distribution and biological wastewater treatment. As will be detailed in this paper, LuminUltra Technologies has developed and applied ATP measurement technologies designed for any water type, and as such can provide a method to rapidly and accurately determine the level of biological activity in drinking water supplies. Because of its speed and specificity to biological activity, ATP measurement can play a key role in defending against failing drinking water quality, including those encountered during routine operation and also bioterrorism.
The Role of Reactive-Oxygen-Species in Microbial Persistence and Inflammation
Spooner, Ralee; Yilmaz, Özlem
2011-01-01
The mechanisms of chronic infections caused by opportunistic pathogens are of keen interest to both researchers and health professionals globally. Typically, chronic infectious disease can be characterized by an elevation in immune response, a process that can often lead to further destruction. Reactive-Oxygen-Species (ROS) have been strongly implicated in the aforementioned detrimental response by host that results in self-damage. Unlike excessive ROS production resulting in robust cellular death typically induced by acute infection or inflammation, lower levels of ROS produced by host cells are increasingly recognized to play a critical physiological role for regulating a variety of homeostatic cellular functions including growth, apoptosis, immune response, and microbial colonization. Sources of cellular ROS stimulation can include “danger-signal-molecules” such as extracellular ATP (eATP) released by stressed, infected, or dying cells. Particularly, eATP-P2X7 receptor mediated ROS production has been lately found to be a key modulator for controlling chronic infection and inflammation. There is growing evidence that persistent microbes can alter host cell ROS production and modulate eATP-induced ROS for maintaining long-term carriage. Though these processes have yet to be fully understood, exploring potential positive traits of these “injurious” molecules could illuminate how opportunistic pathogens maintain persistence through physiological regulation of ROS signaling. PMID:21339989
Tsai, Shang-Ru; Yin, Rui; Huang, Ying-Ying; Sheu, Bor-Ching; Lee, Si-Chen; Hamblin, Michael R.
2015-01-01
Background Low-Level Light Therapy (LLLT) is used to stimulate healing, reduce pain and inflammation, and preserve tissue from dying. LLLT has been shown to protect cells in culture from dying after various cytotoxic insults, and LLLT is known to increase the cellular ATP content. Previous studies have demonstrated that maintaining a sufficiently high ATP level is necessary for the efficient induction and execution of apoptosis steps after photodynamic therapy (PDT). Methods We asked whether LLLT would protect cells from cytotoxicity due to PDT, or conversely whether LLLT would enhance the efficacy of PDT mediated by mono-L-aspartyl chlorin(e6) (NPe6). Increased ATP could lead to enhanced cell uptake of NPe6 by the energy dependent process of endocytosis, and also to more efficient apoptosis. In this study, human osteosarcoma cell line MG-63 was subjected to 1.5 J/cm2 of 810 nm near infrared radiation (NIR) followed by addition of 10 μM NPe6 and after 2 h incubation by 1.5 J/cm2 of 652 nm red light for PDT. Results PDT combined with LLLT led to higher cell death and increased intracellular reactive oxygen species compared to PDT alone. The uptake of NPe6 was moderately increased by LLLT, and cellular ATP was increased. The mitochondrial respiratory chain inhibitor antimycin A abrogated the LLLT-induced increase in cytotoxicity. Conclusions Taken together, these results demonstrate that LLLT potentiates NPe6-mediated PDT via increased ATP synthesis and is a potentially promising strategy that could be applied in clinical PDT. PMID:25462575
Verónica Donoso, M; Hernández, Felipe; Villalón, Tania; Acuña-Castillo, Claudio; Pablo Huidobro-Toro, J
2018-06-01
Endothelial cells participate in extracellular ATP release elicited by mechanosensors. To characterize the dynamic interactions between mechanical and chemical factors that modulate ATP secretion by the endothelium, we assessed and compared the mechanisms participating in the spontaneous (basal) and mechanically stimulated secretion using primary cultures of rat mesentery endothelial cells. ATP/metabolites were determined in the cell media prior to (basal) and after cell media displacement or a picospritzer buffer puff used as mechanical stimuli. Mechanical stimulation increased extracellular ATP that peaked within 1 min, and decayed to basal values in 10 min. Interruption of the vesicular transport route consistently blocked the spontaneous ATP secretion. Cells maintained in media lacking external Ca 2+ elicited a spontaneous rise of extracellular ATP and adenosine, but failed to elicit a further extracellular ATP secretion following mechanical stimulation. 2-APB, a TRPV agonist, increased the spontaneous ATP secretion, but reduced the mechanical stimulation-induced nucleotide release. Pannexin1 or connexin blockers and gadolinium, a Piezo1 blocker, reduced the mechanically induced ATP release without altering spontaneous nucleotide levels. Moreover, thrombin or related agonists increased extracellular ATP secretion elicited by mechanical stimulation, without modifying spontaneous release. In sum, present results allow inferring that the spontaneous, extracellular nucleotide secretion is essentially mediated by ATP containing vesicles, while the mechanically induced secretion occurs essentially by connexin or pannexin1 hemichannel ATP transport, a finding fully supported by results from Panx1 -/- rodents. Only the latter component is modulated by thrombin and related receptor agonists, highlighting a novel endothelium-smooth muscle signaling role of this anticoagulant.
Percival, Justin M.; Siegel, Michael P.; Knowels, Gary; Marcinek, David J.
2013-01-01
Given the crucial roles for mitochondria in ATP energy supply, Ca2+ handling and cell death, mitochondrial dysfunction has long been suspected to be an important pathogenic feature in Duchenne muscular dystrophy (DMD). Despite this foresight, mitochondrial function in dystrophin-deficient muscles has remained poorly defined and unknown in vivo. Here, we used the mdx mouse model of DMD and non-invasive spectroscopy to determine the impact of dystrophin-deficiency on skeletal muscle mitochondrial localization and oxidative phosphorylation function in vivo. Mdx mitochondria exhibited significant uncoupling of oxidative phosphorylation (reduced P/O) and a reduction in maximal ATP synthesis capacity that together decreased intramuscular ATP levels. Uncoupling was not driven by increased UCP3 or ANT1 expression. Dystrophin was required to maintain subsarcolemmal mitochondria (SSM) pool density, implicating it in the spatial control of mitochondrial localization. Given that nitric oxide-cGMP pathways regulate mitochondria and that sildenafil-mediated phosphodiesterase 5 inhibition ameliorates dystrophic pathology, we tested whether sildenafil's benefits result from decreased mitochondrial dysfunction in mdx mice. Unexpectedly, sildenafil treatment did not affect mitochondrial content or oxidative phosphorylation defects in mdx mice. Rather, PDE5 inhibition decreased resting levels of ATP, phosphocreatine and myoglobin, suggesting that sildenafil improves dystrophic pathology through other mechanisms. Overall, these data indicate that dystrophin-deficiency disrupts SSM localization, promotes mitochondrial inefficiency and restricts maximal mitochondrial ATP-generating capacity. Together these defects decrease intramuscular ATP and the ability of mdx muscle mitochondria to meet ATP demand. These findings further understanding of how mitochondrial bioenergetic dysfunction contributes to disease pathogenesis in dystrophin-deficient skeletal muscle in vivo. PMID:23049075
Mitochondrial electron transport and glycolysis are coupled in articular cartilage.
Martin, J A; Martini, A; Molinari, A; Morgan, W; Ramalingam, W; Buckwalter, J A; McKinley, T O
2012-04-01
Although the majority of the adenosine triphosphate (ATP) in chondrocytes is made by glycolysis rather than by oxidative phosphorylation in mitochondria there is evidence to suggest that reactive oxygen species produced by mitochondrial electron transport (ET) help to maintain cellular redox balance in favor of glycolysis. The objective of this study was to test this hypothesis by determining if rotenone, which inhibits ET and blocks oxidant production inhibits glycolytic ATP synthesis. Bovine osteochondral explants were treated with rotenone, an ET inhibitor; or oligomycin an ATP synthase inhibitor; or 2-fluoro-2-deoxy-D-glucose, a glycolysis inhibiter; or peroxide, an exogenous oxidant; or mitoquinone (MitoQ), a mitochondria-targeted anti-oxidant. Cartilage extracts were assayed for ATP, nicotine adenine dinucleotide (NAD+/H), and culture medium was assayed for pyruvate and lactate after 24 h of treatment. Imaging studies were used to measure superoxide production in cartilage. Rotenone and 2-FG caused a significant decline in cartilage ATP (P < 0.001). In contrast, ATP levels were not affected by oligomycin. Peroxide treatment blocked rotenone effects on ATP, while treatment with MitoQ significantly suppressed ATP levels. Rotenone and 2-FG caused a significant decline in pyruvate, but not in lactate production. NADH:NAD+ ratios decreased significantly in both rotenone and 2-FG-treated explants (P < 0.05). Rotenone also significantly reduced superoxide production. These findings showing a link between glycolysis and ET are consistent with previous reports on the critical need for oxidants to support normal chondrocyte metabolism. They suggest a novel role for mitochondria in cartilage homeostasis that is independent of oxidative phosphorylation. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon
2011-01-01
The copper-transporting P1B-type ATPases (Cu-ATPases) ATP7A and ATP7B are key regulators of physiological copper levels. They function to maintain intracellular copper homeostasis by delivering copper to secretory compartments and by trafficking toward the cell periphery to export excess copper. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and toxicity disorders, Menkes and Wilson diseases, respectively. This report describes the interaction between the Cu-ATPases and clusterin and demonstrates a chaperone-like role for clusterin in facilitating their degradation. Clusterin interacted with both ATP7A and ATP7B in mammalian cells. This interaction increased under conditions of oxidative stress and with mutations in ATP7B that led to its misfolding and mislocalization. A Wilson disease patient mutation (G85V) led to enhanced ATP7B turnover, which was further exacerbated when cells overexpressed clusterin. We demonstrated that clusterin-facilitated degradation of mutant ATP7B is likely to involve the lysosomal pathway. The knockdown and overexpression of clusterin increased and decreased, respectively, the Cu-ATPase-mediated copper export capacity of cells. These results highlight a new role for intracellular clusterin in mediating Cu-ATPase quality control and hence in the normal maintenance of copper homeostasis, and in promoting cell survival in the context of disease. Based on our findings, it is possible that variations in clusterin expression and function could contribute to the variable clinical expression of Menkes and Wilson diseases. PMID:21242307
Tsai, Shang-Ru; Yin, Rui; Huang, Ying-Ying; Sheu, Bor-Ching; Lee, Si-Chen; Hamblin, Michael R
2015-03-01
Low-level light therapy (LLLT) is used to stimulate healing, reduce pain and inflammation, and preserve tissue from dying. LLLT has been shown to protect cells in culture from dying after various cytotoxic insults, and LLLT is known to increase the cellular ATP content. Previous studies have demonstrated that maintaining a sufficiently high ATP level is necessary for the efficient induction and execution of apoptosis steps after photodynamic therapy (PDT). We asked whether LLLT would protect cells from cytotoxicity due to PDT, or conversely whether LLLT would enhance the efficacy of PDT mediated by mono-l-aspartyl chlorin(e6) (NPe6). Increased ATP could lead to enhanced cell uptake of NPe6 by the energy dependent process of endocytosis, and also to more efficient apoptosis. In this study, human osteosarcoma cell line MG-63 was subjected to 1.5J/cm(2) of 810nm near infrared radiation (NIR) followed by addition of 10μM NPe6 and after 2h incubation by 1.5J/cm(2) of 652nm red light for PDT. PDT combined with LLLT led to higher cell death and increased intracellular reactive oxygen species compared to PDT alone. The uptake of NPe6 was moderately increased by LLLT, and cellular ATP was increased. The mitochondrial respiratory chain inhibitor antimycin A abrogated the LLLT-induced increase in cytotoxicity. Taken together, these results demonstrate that LLLT potentiates NPe6-mediated PDT via increased ATP synthesis and is a potentially promising strategy that could be applied in clinical PDT. Copyright © 2014 Elsevier B.V. All rights reserved.
Zeng, Zhaobin; Jing, Da; Zhang, Xiaodong; Duan, Yinzhong; Xue, Feng
2015-10-01
Energy metabolism is essential for maintaining function and substance metabolism in osteoblasts. However, the role of cyclic stretch in regulating osteoblastic energy metabolism and the underlying mechanisms remain poorly understood. In this study, we found that cyclic stretch (10% elongation at 0.1 Hz) significantly enhanced glucose consumption, lactate levels (determined using a glucose/lactate assay kit), intracellular adenosine triphosphate (ATP) levels (quantified using rLuciferase/Luciferin reagent) and the mRNA expression of energy metabolism-related enzymes [mitochondrial ATP synthase, L-lactate dehydrogenase A (LDHA) and enolase 1; measured by RT-qPCR], and increased the phosphorylation levels of Akt, mammalian target of rapamycin (mTOR) and p70s6k (measured by western blot analysis) in human osteoblast‑like MG‑63 cells. Furthermore, the inhibition of Akt or mTOR with an antagonist (wortmannin or rapamycin) suppressed the stretch-induced increase in glucose consumption, lactate levels, intracellular ATP levels and the expression of mitochondrial ATP synthase and LDHA, indicating the significance of the Akt/mTOR/p70s6k pathway in regulating osteoblastic energy metabolism in response to mechanical stretch. Thus, we concluded that cyclic stretch regulates energy metabolism in MG‑63 cells partially through the Akt/mTOR/p70s6k signaling pathway. The present findings provide novel insight into osteoblastic mechanobiology from the perspective of energy metabolism.
AMP-activated protein kinase, stress responses and cardiovascular diseases
WANG, Shaobin; SONG, Ping; ZOU, Ming-Hui
2012-01-01
AMPK (AMP-activated protein kinase) is one of the key players in maintaining intracellular homoeostasis. AMPK is well known as an energy sensor and can be activated by increased intracellular AMP levels. Generally, the activation of AMPK turns on catabolic pathways that generate ATP, while inhibiting cell proliferation and biosynthetic processes that consume ATP. In recent years, intensive investigations on the regulation and the function of AMPK indicates that AMPK not only functions as an intracellular energy sensor and regulator, but is also a general stress sensor that is important in maintaining intracellular homoeostasis during many kinds of stress challenges. In the present paper, we will review recent literature showing that AMPK functions far beyond its proposed energy sensor and regulator function. AMPK regulates ROS (reactive oxygen species)/redox balance, autophagy, cell proliferation, cell apoptosis, cellular polarity, mitochondrial function and genotoxic response, either directly or indirectly via numerous downstream pathways under physiological and pathological conditions. PMID:22390198
CO2-dependent metabolic modulation in red blood cells stored under anaerobic conditions
Dumont, Larry J.; D'Alessandro, Angelo; Szczepiorkowski, Zbigniew M.; Yoshida, Tatsuro
2015-01-01
Background Anaerobic RBC storage reduces oxidative damage, maintains ATP & 2,3-diphosphoglycerate (DPG) levels and has superior 24hr recovery at 6weeks compared to standard storage. This study will determine if removal of CO2 during O2 depletion by gas exchange may affect RBC during anaerobic storage. Methods This is a matched 3 arm study (n=14): control, O2&CO2 depleted with Ar (AN), O2 depleted with 95%Ar/5%CO2 (AN[CO2]). RBC in additives AS-3 or OFAS3 were evenly divided into 3 bags, and anaerobic conditions were established by gas exchange. Bags were stored 1-6°C in closed chambers under anaerobic conditions or ambient air, sampled weekly for up to 9weeks for a panel of in vitro tests. A full metabolomics screening was conducted for the first 4 weeks of storage. Results Purging with Ar (AN) results in alkalization of the RBC and increased glucose consumption. The addition of 5%CO2 to the purging gas prevented CO2 loss with an equivalent starting and final pH and lactate to control bags (p>0.5, days0-21). ATP levels are higher in AN[CO2] (p<0.0001). DPG was maintained beyond 2 weeks in the AN arm (p<0.0001). Surprisingly, DPG was lost at the same rate in both control and AN[CO2] arms (p=0.6). Conclusion Maintenance of ATP in the AN[CO2] arm demonstrates that ATP production is not solely a function of the pH effect on glycolysis. CO2 in anaerobic storage prevented the maintenance of DPG, and DPG production appears to be pH dependent. CO2 as well as O2 depletion provides metabolic advantage for stored RBC. PMID:26477888
A Quantitative Study of Oxygen as a Metabolic Regulator
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabera, Marco E.
2000-01-01
An acute reduction in oxygen delivery to a tissue is associated with metabolic changes aimed at maintaining ATP homeostasis. However, given the complexity of the human bio-energetic system, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). In particular, we are interested in determining mechanisms relating cellular oxygen concentration to observed metabolic responses at the cellular, tissue, organ, and whole body levels and in quantifying how changes in tissue oxygen availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study; we extend a previously developed mathematical model of human bioenergetics, to provide a physicochemical framework that permits quantitative understanding of oxygen as a metabolic regulator. Specifically, the enhancement - sensitivity analysis - permits studying the effects of variations in tissue oxygenation and parameters controlling cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The analysis can distinguish between parameters that must be determined accurately and those that require less precision, based on their effects on model predictions. This capability may prove to be important in optimizing experimental design, thus reducing use of animals.
Rafikov, Ruslan; Kumar, Sanjiv; Hou, Yali; Oishi, Peter E.; Datar, Sanjeev A.; Raff, Gary; Fineman, Jeffrey R.; Black, Stephen M.
2012-01-01
Objective Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. Methods and Results siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Conclusion Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow. PMID:22962578
Yildirim, Vehpi; Vadrevu, Suryakiran; Thompson, Benjamin; Satin, Leslie S; Bertram, Richard
2017-07-01
Plasma insulin oscillations are known to have physiological importance in the regulation of blood glucose. In insulin-secreting β-cells of pancreatic islets, K(ATP) channels play a key role in regulating glucose-dependent insulin secretion. In addition, they convey oscillations in cellular metabolism to the membrane by sensing adenine nucleotides, and are thus instrumental in mediating pulsatile insulin secretion. Blocking K(ATP) channels pharmacologically depolarizes the β-cell plasma membrane and terminates islet oscillations. Surprisingly, when K(ATP) channels are genetically knocked out, oscillations in islet activity persist, and relatively normal blood glucose levels are maintained. Compensation must therefore occur to overcome the loss of K(ATP) channels in K(ATP) knockout mice. In a companion study, we demonstrated a substantial increase in Kir2.1 protein occurs in β-cells lacking K(ATP) because of SUR1 deletion. In this report, we demonstrate that β-cells of SUR1 null islets have an upregulated inward rectifying K+ current that helps to compensate for the loss of K(ATP) channels. This current is likely due to the increased expression of Kir2.1 channels. We used mathematical modeling to determine whether an ionic current having the biophysical characteristics of Kir2.1 is capable of rescuing oscillations that are similar in period to those of wild-type islets. By experimentally testing a key model prediction we suggest that Kir2.1 current upregulation is a likely mechanism for rescuing the oscillations seen in islets from mice deficient in K(ATP) channels.
Glycolysis and Mitochondrial Respiration in Mouse LDHC-Null Sperm1
Odet, Fanny; Gabel, Scott; London, Robert E.; Goldberg, Erwin; Eddy, Edward M.
2013-01-01
ABSTRACT We demonstrated previously that a knockout (KO) of the lactate dehydrogenase type C (Ldhc) gene disrupted male fertility and caused a considerable reduction in sperm glucose consumption, ATP production, and motility. While that study used mice with a mixed genetic background, the present study used C57BL/6 (B6) and 129S6 (129) Ldhc KO mice. We found that B6 KO males were subfertile and 129 KO males were infertile. Sperm from 129 wild-type (WT) mice have a lower glycolytic rate than sperm from B6 WT mice, resulting in a greater reduction in ATP production in 129 KO sperm than in B6 KO sperm. The lower glycolytic rate in 129 sperm offered a novel opportunity to examine the role of mitochondrial respiration in sperm ATP production and motility. We observed that in media containing a mitochondrial substrate (pyruvate or lactate) as the sole energy source, ATP levels and progressive motility in 129 KO sperm were similar to those in 129 WT sperm. However, when glucose was added, lactate was unable to maintain ATP levels or progressive motility in 129 KO sperm. The rate of respiration (ZO2) was high when 129 KO or WT sperm were incubated with lactate alone, but addition of glucose caused a reduction in ZO2. These results indicate that in the absence of glucose, 129 sperm can produce ATP via oxidative phosphorylation, but in the presence of glucose, oxidative phosphorylation is suppressed and the sperm utilize aerobic glycolysis, a phenomenon known as the Crabtree effect. PMID:23486916
Lelong-Rebel, Isabelle H; Cardarelli, Carol O
2005-01-01
Membrane vesicles from the multidrug-resistant KB-V1 and KB-C1 cell lines overexpressing P-glycoprotein (Pgp), responsible for pleiotropic chemotherapeutic agents resistance, were solubilized with octyl-glucoside (OG-EX) and further fractionated on DEAE-sepharose column with increased concentrations of NaCl. The fraction containing Pgp (F3) was reconstituted into proteoliposomes (F3-PLP). Comparisons of the phosphorylation levels of Pgp achieved throughout the purification and reconstitution steps were addressed in this study. The [delta32 P] ATP-driven phosphorylation of Pgp was strongly increased in OG-EX, decreased in F3 and not detected in F3-PLP, when compared to Pgp phosphorylation in native plasma membrane vesicles. [delta32 P]ATP-phosphorylation of Pgp in F3-PLP could be restored by exogenously added PKC or by the catalytic sub-unit of PKA. The vanadate-induced hyperphosphorylation effect on Pgp by [delta32 P]ATP observed with plasma membrane vesicles was maintained in OG-EX, but was lost in F3 and did not enable labelling in F3-PLP. Enhancement of [delta32 P]-labelling of native Pgp via [delta32 P]ATP combined with GTP was maintained and also triggered phosphorylation of purified/reconstituted Pgp in F3-PLP as well. Altogether, our data suggest differential phosphorylation patterns of the transporter linked to environmental molecular composition (lipids, presence of detergent) and structure (unfolded versus embedded). In addition, restoration by GTP of Pgp phosphorylation by [delta32 P]ATP in the frame of F3-PLP suggests intra-molecular modulations and hints that other phosphorylation sites and processes, different from the classic ones involving PKC and/or PKA, may participate in the transporter's mechanism.
Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang
2015-09-01
Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg(2+) as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. © 2015 American Society of Plant Biologists. All Rights Reserved.
Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdanov, Alexander V., E-mail: a.zhdanov@ucc.ie; Waters, Alicia H.C.; Golubeva, Anna V.
2015-01-01
Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP,more » produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.« less
de Korte, Dirk; Kleine, Mya; Korsten, Herbert G H; Verhoeven, Arthur J
2008-06-01
Current additive solutions (ASs) for red cells (RBCs) do not maintain a constant level of critical metabolites such as adenosine triphosphate (ATP) and 2,3-diphosphoglycerate acid (2,3-DPG) during cold storage. From the literature it is known that the intracellular pH is an important determinant of RBC metabolism. Therefore, a new, alkaline, AS was developed with the aim to allow cold storage of RBCs with stable product characteristics. Whole blood-derived RBCs (leukoreduced) were resuspended in experimental medium phosphate-adenine-guanosine-glucose-gluconate-mannitol (PAGGG-M; pH 8.2) with and without washing in the same medium. During cold storage several in vitro variables, such as intracellular pH, 2,3-DPG, ATP, and hemolysis, were analyzed. During cold storage, RBCs resuspended in PAGGG-M showed a constant ATP level (approx. 6 mumol/g Hb) and a very limited hemolysis (<0.2%). The 2,3-DPG content showed an increase until Day 21 (150% of initial level), followed by a slow decrease, with at Day 35 still 100 percent of the initial level. RBCs washed in PAGGG-M even showed a continuous increase of 2,3-DPG during 35 days, with a maximum level of 200 percent of the initial value. The effect of PAGGG-M appears to be related to long-lasting effects of the initial intracellular pH shortly after production. Resuspension of RBCs in our alkaline medium PAGGG-M resulted in a RBC unit of high quality during storage for up to at least 35 days, with 2,3-DPG levels of higher than 10 mumol per g Hb, hemolysis of less than 0.2 percent, and ATP levels of higher than 5 mumol per g Hb.
Chen, Lin; Tan, Glenna Jue Tong; Pang, Xinyi; Yuan, Wenqian; Lai, Shaojuan; Yang, Hongshun
2018-06-25
The role of energy status in germination and sprouting of broccoli seeds was investigated by exogenous ATP and DNP treatments. With the synthesis of adenylates from 38.82 to 142.69 mg·100 g -1 DW, the nutritive components (soluble sugar, proteins, pigments, and phenolics) and AAs were increased during germination and early sprouting (day 5). Elements of the BoSnRK2 pathway were down-regulated by more than 2 fold under the energy charge feedback inhibition. At the end of sprouting (day 7), energy depletion resulted in slowdown or reduced nutritional accumulation and antioxidant capacities. Exogenous ATP depressed the BoSnRK2 pathway by maintaining the energy status at high levels and further promoted the nutrition and antioxidant levels. It also prevented the energy depletion at day 7. On the contrary, DNP reduced the ATP contents (16.10-26.86%) and activated the BoSnRK2 pathway. It also notably suppressed the energy-consuming activities including germination, sprouts growth, and secondary metabolic synthesis.
Anand, Sanjeev K; Gaba, Amit; Singh, Jaswant; Tikoo, Suresh K
2014-02-01
Viruses modulate the functions of mitochondria by translocating viral proteins to the mitochondria. Subcellular fractionation and sensitivity to proteinase K/Triton X-100 treatment of mitochondrial fractions of bovine adenovirus (BAdV)-3-infected/transfected cells suggested that core protein pVII localizes to the mitochondria and contains a functional mitochondrial localization signal. Moreover, mitochondrial localization of BAdV-3 pVII appears to help in the retention of mitochondrial Ca(2+), inducing a significant increase in the levels of ATP and maintaining the mitochondrial membrane potential (MMP) in transfected cells. In contrast, mitochondrial localization of BAdV-3 pVII has no significant effect on the levels of cytoplasmic Ca(2+) and reactive oxygen species production in the transfected cells. Consistent with these results, expression of pVII in transfected cells treated with staurosporine decreased significantly the activation of caspase-3. Our results suggested that BAdV-3 pVII localizes to mitochondria, and interferes with apoptosis by inhibiting loss of the MMP and by increasing mitochondrial Ca(2+) and ATP production.
S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics.
Módis, Katalin; Ju, YoungJun; Ahmad, Akbar; Untereiner, Ashley A; Altaany, Zaid; Wu, Lingyun; Szabo, Csaba; Wang, Rui
2016-11-01
Mammalian cells can utilize hydrogen sulfide (H 2 S) to support mitochondrial respiration. The aim of our study was to explore the potential role of S-sulfhydration (a H 2 S-induced posttranslational modification, also known as S-persulfidation) of the mitochondrial inner membrane protein ATP synthase (F1F0 ATP synthase/Complex V) in the regulation of mitochondrial bioenergetics. Using a biotin switch assay, we have detected S-sulfhydration of the α subunit (ATP5A1) of ATP synthase in response to exposure to H 2 S in vitro. The H 2 S generator compound NaHS induced S-sulfhydration of ATP5A1 in HepG2 and HEK293 cell lysates in a concentration-dependent manner (50-300μM). The activity of immunocaptured mitochondrial ATP synthase enzyme isolated from HepG2 and HEK293 cells was stimulated by NaHS at low concentrations (10-100nM). Site-directed mutagenesis of ATP5A1 in HEK293 cells demonstrated that cysteine residues at positions 244 and 294 are subject to S-sulfhydration. The double mutant ATP synthase protein (C244S/C294S) showed a significantly reduced enzyme activity compared to control and the single-cysteine-mutated recombinant proteins (C244S or C294S). To determine whether endogenous H 2 S plays a role in the basal S-sulfhydration of ATP synthase in vivo, we compared liver tissues harvested from wild-type mice and mice deficient in cystathionine-gamma-lyase (CSE, one of the three principal mammalian H 2 S-producing enzymes). Significantly reduced S-sulfhydration of ATP5A1 was observed in liver homogenates of CSE -/- mice, compared to wild-type mice, suggesting a physiological role for CSE-derived endogenous H 2 S production in the S-sulfhydration of ATP synthase. Various forms of critical illness (including burn injury) upregulate H 2 S-producing enzymes and stimulate H 2 S biosynthesis. In liver tissues collected from mice subjected to burn injury, we detected an increased S-sulfhydration of ATP5A1 at the early time points post-burn. At later time points (when systemic H 2 S levels decrease) S-sulfhydration of ATP5A1 decreased as well. In conclusion, H 2 S induces S-sulfhydration of ATP5A1 at C244 and C294. This post-translational modification may be a physiological mechanism to maintain ATP synthase in a physiologically activated state, thereby supporting mitochondrial bioenergetics. The sulfhydration of ATP synthase may be a dynamic process, which may be regulated by endogenous H 2 S levels under various pathophysiological conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, P; Ba, Z F; Morrison, M H; Ayala, A; Dean, R E; Chaudry, I H
1992-04-01
Although ATP-MgCl2 improves hepatocellular function in a nonheparinized model of trauma-hemorrhage and crystalloid resuscitation, it remains unknown whether the beneficial effects of this agent are due to downregulation of the release of the inflammatory cytokines, tumor necrosis factor (TNF), and interleukin-6 (IL-6) under those conditions. To study this, rats underwent a 5-cm laparotomy (i.e., trauma induced) and were bled to and maintained at a mean arterial pressure of 40 mm Hg until 40% of maximum bleedout volume was returned in the form of Ringer's lactate (RL). The animals were then resuscitated with four times the volume of shed blood with RL over 60 min. ATP-MgCl2 (50 mumoles/kg body weight each) or an equivalent volume of normal saline was infused intravenously for 95 min. This infusion was started during the last 15 min of RL resuscitation. Plasma levels of TNF and IL-6 were measured at 1.5 hr after the completion of resuscitation by cytokine-dependent cellular assays. Hepatic blood flow was determined by in vivo indocyanine green clearance (corrected by hepatic extraction ratio for indocyanine green), radioactive microspheres, and [3H]-galactose clearance techniques. The results indicate that the levels of circulating TNF and IL-6 increased significantly in the hemorrhaged-resuscitated animals. ATP-MgCl2 treatment, however, markedly decreased the synthesis and/or release of these cytokines to levels similar to the sham group. The markedly decreased hepatic blood flow (as determined by three different methods) and hepatic extraction ratio for indocyanine green were also restored by ATP-MgCl2 treatment.(ABSTRACT TRUNCATED AT 250 WORDS)
Khodorov, B I; Storozhevykh, T P; Surin, A M; Yuryavichyus, A I; Sorokina, E G; Borodin, A V; Vinskaya, N P; Khaspekov, L G; Pinelis, V G
2002-01-01
Data obtained in studies of the nature of the correlation which we have previously observed [10,17] between mitochondrial depolarization and the level of disruption of Ca2+ homeostasis in cultivated brain neuronsare summarized. Experiments were performed on cultured cerebellar granule cells loaded with Fura-2-AM or rhodamine 123 to measure changes in cytoplasmic Ca2+ and mitochondrial potential during pathogenic treatments of the cells. Prolonged exposure to 100 microM glutamate induced a reversible increase in [Ca2+]i, which was accompanied by only a small degree of mitochondrial depolarization. A sharp increase in this mitochondrial depolarization, induced by addition of 3 mM NaCN or 300 microM dinitrophenol (DNP) to the glutamate-containing solution, resulted in further increase in [Ca2+]i, due to blockade of electrophoretic mitochondrial Ca2+ uptake. Prolonged exposure to CN- or DNP in the post-glutamate period maintained [Ca2+]i at a high level until the metabolic inhibitors were removed. In most cells, this plateau was characterized by low sensitivity to removal of external Ca2+, demonstrating that the mechanisms of Ca2+ release from neurons were disrupted. Addition of oligomycin, a blocker of mitochondrial ATP synthase/ATPase, to the solution containing glutamate and CN- or DNP eliminated the post-glutamate plateau. Parallel experiments with direct measurements of intracellular ATP levels ([ATP]) showed that profound mitochondrial depolarization induced by CN- or DNP sharply enhanced the drop in ATP due to glutamate, while oligomycin significantly weakened this effect of the metabolic inhibitors. Analysis of these data led to the conclusion that blockade of mitochondrial Ca2+ uptake and inhibition of ATP synthesis resulted from mitochondrial depolarization and plays a key role in the mechanism disrupting [Ca2+]i homeostasis after toxic exposure to glutamate.
Structural correlates of the creatine transporter function regulation: the undiscovered country.
Santacruz, Lucia; Jacobs, Danny O
2016-08-01
Creatine (Cr) and phosphocreatine constitute an energy shuttle that links ATP production in mitochondria to subcellular locations of ATP consumption. Cells in tissues that are reliant on this energy shuttle, such as myocytes and neurons, appear to have very limited ability to synthesize creatine. Therefore, these cells depend on Cr uptake across the cell membrane by a specialized creatine transporter (CrT solute carrier SLC6A8) in order to maintain intracellular creatine levels. Cr supplementation has been shown to have a beneficial effect in numerous in vitro and in vivo models, particularly in cases of oxidative stress, and is also widely used by athletes as a performance enhancement nutraceutical. Intracellular creatine content is maintained within narrow limits. However, the physiological and cellular mechanisms that mediate Cr transport during health and disease (such as cardiac failure) are not understood. In this narrative mini-review, we summarize the last three decades of research on CrT structure, function and regulation.
CO2 -dependent metabolic modulation in red blood cells stored under anaerobic conditions.
Dumont, Larry J; D'Alessandro, Angelo; Szczepiorkowski, Zbigniew M; Yoshida, Tatsuro
2016-02-01
Anaerobic red blood cell (RBC) storage reduces oxidative damage, maintains adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG) levels, and has superior 24-hour recovery at 6 weeks compared to standard storage. This study will determine if removal of CO2 during O2 depletion by gas exchange may affect RBCs during anaerobic storage. This is a matched three-arm study (n = 14): control, O2 and CO2 depleted with Ar (AN), and O2 depleted with 95%Ar/5%CO2 (AN[CO2 ]). RBCs in additives AS-3 or OFAS-3 were evenly divided into three bags, and anaerobic conditions were established by gas exchange. Bags were stored at 1 to 6°C in closed chambers under anaerobic conditions or ambient air, sampled weekly for up to 9 weeks for a panel of in vitro tests. A full metabolomics screening was conducted for the first 4 weeks of storage. Purging with Ar (AN) results in alkalization of the RBC and increased glucose consumption. The addition of 5% CO2 to the purging gas prevented CO2 loss with an equivalent starting and final pH and lactate to control bags (p > 0.5, Days 0-21). ATP levels are higher in AN[CO2 ] (p < 0.0001). DPG was maintained beyond 2 weeks in the AN arm (p < 0.0001). Surprisingly, DPG was lost at the same rate in both control and AN[CO2 ] arms (p = 0.6). Maintenance of ATP in the AN[CO2 ] arm demonstrates that ATP production is not solely a function of the pH effect on glycolysis. CO2 in anaerobic storage prevented the maintenance of DPG, and DPG production appears to be pH dependent. CO2 as well as O2 depletion provides metabolic advantage for stored RBCs. © 2015 AABB.
Kanjanamekanant, K; Luckprom, P; Pavasant, P
2013-04-01
Mechanical stress is an important factor in maintaining homeostasis of the periodontium. Interleukin-1beta (IL-1β) and adenosine triphosphate (ATP) are considered potent inflammatory mediators. In macrophages, ATP-activated P2X7 receptor is involved in IL-1β processing and release. Our previous works demonstrated mechanical stress-induced expression of osteopontin and RANKL through the ATP/P2Y1 receptor in human periodontal ligament (HPDL) cells. This study was designed to examine the effect of mechanical stress on IL-1β expression in HPDL cells, as well as the mechanism and involvement of ATP and the P2 purinergic receptor. Cultured HPDL cells were treated with continuous compressive loading. IL-1β expression was analyzed at both mRNA and protein levels, using RT-PCR and ELISA, respectively. Cell viability was examined using the MTT assay. ATP was also used to stimulate HPDL cells. Inhibitors, antagonists and the small interfering RNA (siRNA) technique were used to investigate the role of ATP and the specific P2 subtypes responsible for IL-1β induction along with the intracellular mechanism. Mechanical stress could up-regulate IL-1β expression through the release of ATP in HPDL cells. ATP alone was also capable of increasing IL-1β expression. The induction of IL-1β was markedly inhibited by inhibitors and by siRNA targeting the P2X7 receptor. ATP-stimulated IL-1β expression was also diminished by intracellular calcium inhibitors. Our work clearly indicates the capability of HPDL cells to respond directly to mechanical stimulation. The results signified the important roles of ATP/P2 purinergic receptors, as well as intracellular calcium signaling, in mechanical stress-induced inflammation via up-regulation of the proinflammatory cytokine, IL-1β, in HPDL cells. © 2012 John Wiley & Sons A/S.
Davila, M Plaza; Muñoz, P Martin; Bolaños, J M Gallardo; Stout, T A E; Gadella, B M; Tapia, J A; da Silva, C Balao; Ferrusola, C Ortega; Peña, F J
2016-12-01
To investigate the hypothesis that oxidative phosphorylation is a major source of ATP to fuel stallion sperm motility, oxidative phosphorylation was suppressed using the mitochondrial uncouplers CCCP and 2,4,-dinitrophenol (DNP) and by inhibiting mitochondrial respiration at complex IV using sodium cyanide or at the level of ATP synthase using oligomycin-A. As mitochondrial dysfunction may also lead to oxidative stress, production of reactive oxygen species was monitored simultaneously. All inhibitors reduced ATP content, but oligomycin-A did so most profoundly. Oligomycin-A and CCCP also significantly reduced mitochondrial membrane potential. Sperm motility almost completely ceased after the inhibition of mitochondrial respiration and both percentage of motile sperm and sperm velocity were reduced in the presence of mitochondrial uncouplers. Inhibition of ATP synthesis resulted in the loss of sperm membrane integrity and increased the production of reactive oxygen species by degenerating sperm. Inhibition of glycolysis by deoxyglucose led to reduced sperm velocities and reduced ATP content, but not to loss of membrane integrity. These results suggest that, in contrast to many other mammalian species, stallion spermatozoa rely primarily on oxidative phosphorylation to generate the energy required for instance to maintain a functional Na + /K + gradient, which is dependent on an Na + -K + antiporter ATPase, which relates directly to the noted membrane integrity loss. Under aerobic conditions, however, glycolysis also provides the energy required for sperm motility. © 2016 Society for Reproduction and Fertility.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Cabrera, Marco
2000-01-01
An acute reduction in oxygen delivery to skeletal muscle is generally associated with profound derangements in substrate metabolism. Given the complexity of the human bioenergetic system and its components, it is difficult to quantify the interaction of cellular metabolic processes to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in oxygen availability affect the pathways of ATP synthesis and their regulation. In this study, we apply a previously developed mathematical model of human bioenergetics to study effects of ischemia during periods of increased ATP turnover (e.g., exercise). By using systematic sensitivity analysis the oxidative phosphorylation rate was found to be the most important rate parameter affecting lactate production during ischemia under resting conditions. Here we examine whether mild exercise under ischemic conditions alters the relative importance of pathways and parameters previously obtained.
Mitochondrial respiratory control is lost during growth factor deprivation.
Gottlieb, Eyal; Armour, Sean M; Thompson, Craig B
2002-10-01
The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-x(L), restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control.
γ-Tocotrienol Protects against Mitochondrial Dysfunction and Renal Cell Death
Bakajsova, Diana; Hayes, Corey; Hauer-Jensen, Martin; Compadre, Cesar M.
2012-01-01
Oxidative stress is a major mechanism of a variety of renal diseases. Tocopherols and tocotrienols are well known antioxidants. This study aimed to determine whether γ-tocotrienol (GT3) protects against mitochondrial dysfunction and renal proximal tubular cell (RPTC) injury caused by oxidants. Primary cultures of RPTCs were injured by using tert-butyl hydroperoxide (TBHP) in the absence and presence of GT3 or α-tocopherol (AT). Reactive oxygen species (ROS) production increased 300% in TBHP-injured RPTCs. State 3 respiration, oligomycin-sensitive respiration, and respiratory control ratio (RCR) decreased 50, 63, and 47%, respectively. The number of RPTCs with polarized mitochondria decreased 54%. F0F1-ATPase activity and ATP content decreased 31 and 65%, respectively. Cell lysis increased from 3% in controls to 26 and 52% at 4 and 24 h, respectively, after TBHP exposure. GT3 blocked ROS production, ameliorated decreases in state 3 and oligomycin-sensitive respirations and F0F1-ATPase activity, and maintained RCR and mitochondrial membrane potential (ΔΨm) in injured RPTCs. GT3 maintained ATP content, blocked RPTC lysis at 4 h, and reduced it to 13% at 24 h after injury. Treatment with equivalent concentrations of AT did not block ROS production and cell lysis and moderately improved mitochondrial respiration and coupling. This is the first report demonstrating the protective effects of GT3 against RPTC injury by: 1) decreasing production of ROS, 2) improving mitochondrial respiration, coupling, ΔΨm, and F0F1-ATPase function, 3) maintaining ATP levels, and 4) preventing RPTC lysis. Our data suggest that GT3 is superior to AT in protecting RPTCs against oxidant injury and may prove therapeutically valuable for preventing renal injury associated with oxidative stress. PMID:22040679
Haythorne, Elizabeth; Hamilton, D Lee; Findlay, John A; Beall, Craig; McCrimmon, Rory J; Ashford, Michael L J
2016-12-01
Individuals with Type 1 diabetes (T1D) are often exposed to recurrent episodes of hypoglycaemia. This reduces hormonal and behavioural responses that normally counteract low glucose in order to maintain glucose homeostasis, with altered responsiveness of glucose sensing hypothalamic neurons implicated. Although the molecular mechanisms are unknown, pharmacological studies implicate hypothalamic ATP-sensitive potassium channel (K ATP ) activity, with K ATP openers (KCOs) amplifying, through cell hyperpolarization, the response to hypoglycaemia. Although initial findings, using acute hypothalamic KCO delivery, in rats were promising, chronic exposure to the KCO NN414 worsened the responses to subsequent hypoglycaemic challenge. To investigate this further we used GT1-7 cells to explore how NN414 affected glucose-sensing behaviour, the metabolic response of cells to hypoglycaemia and K ATP activity. GT1-7 cells exposed to 3 or 24 h NN414 exhibited an attenuated hyperpolarization to subsequent hypoglycaemic challenge or NN414, which correlated with diminished K ATP activity. The reduced sensitivity to hypoglycaemia was apparent 24 h after NN414 removal, even though intrinsic K ATP activity recovered. The NN414-modified glucose responsiveness was not associated with adaptations in glucose uptake, metabolism or oxidation. K ATP inactivation by NN414 was prevented by the concurrent presence of tolbutamide, which maintains K ATP closure. Single channel recordings indicate that NN414 alters K ATP intrinsic gating inducing a stable closed or inactivated state. These data indicate that exposure of hypothalamic glucose sensing cells to chronic NN414 drives a sustained conformational change to K ATP , probably by binding to SUR1, that results in loss of channel sensitivity to intrinsic metabolic factors such as MgADP and small molecule agonists. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mashimo, Keiko; Arthur, Peter G; Ohno, Youkichi
2015-01-01
Mitochondria are target subcellular organelles of ethanol. In this study, the effects of ethanol on protein composition was examined with 2-dimensional electrophoresis of protein extracts from cultured neonatal rat cardiomyocytes exposed to 100 mM ethanol for 24 hours. A putative β subunit of mitochondrial ATP synthase was increased, which was confirmed by Western blot. The cellular protein abundances in the α and β subunits of ATP synthase increased in dose (0, 10, 50, and 100 mM) - and time (0.5 hour and 24 hours) -dependent manners. The DNA microarray analysis of total RNA extract demonstrated that gene expression of the corresponding messenger RNAs of these subunit proteins did not significantly alter due to 24-hour ethanol exposure. Therefore, protein expression of these nuclear-encoded mitochondrial proteins may be regulated at the translational, rather than the transcriptional, level. Alternatively, degradation of these subunit proteins might be decreased. Additionally, cellular ATP content of cardiomyocytes scarcely decreased following 24-hour exposure to any examined concentrations of ethanol. Previous studies, together with this study, have demonstrated that protein abundance of the α subunit or β subunit or both subunits of ATP synthase after ethanol exposure or dysfunctional conditions might differ according to tissue: significant increases in heart but decreases in liver and brain. Thus, it is suggested that the abundance of subunit proteins of mitochondrial ATP synthase in the ethanol-exposed heart, being different from that in the liver and brain, should increase dose-dependently through either translational upregulation or decreased degradation or both to maintain ATP production, as the heart requires much more energy than other tissues for continuing sustained contractions.
Interlaboratory comparison of red-cell ATP, 2,3-diphosphoglycerate and haemolysis measurements.
Hess, J R; Kagen, L R; van der Meer, P F; Simon, T; Cardigan, R; Greenwalt, T J; AuBuchon, J P; Brand, A; Lockwood, W; Zanella, A; Adamson, J; Snyder, E; Taylor, H L; Moroff, G; Hogman, C
2005-07-01
Red blood cell (RBC) storage systems are licensed based on their ability to prevent haemolysis and maintain RBC 24-h in vivo recovery. Preclinical testing includes measurement of RBC ATP as a surrogate for recovery, 2,3-diphosphoglycerate (DPG) as a surrogate for oxygen affinity, and free haemoglobin, which is indicative of red cell lysis. The reproducibility of RBC ATP, DPG and haemolysis measurements between centres was investigated. Five, 4-day-old leucoreduced AS-1 RBC units were pooled, aliquotted and shipped on ice to 14 laboratories in the USA and European Union (EU). Each laboratory was to sample the bag twice on day 7 and measure RBC ATP, DPG, haemoglobin and haemolysis levels in triplicate on each sample. The variability of results was assessed by using coefficients of variation (CV) and analysis of variance. Measurements were highly reproducible at the individual sites. Between sites, the CV was 16% for ATP, 35% for DPG, 2% for total haemoglobin and 54% for haemolysis. For ATP and total haemoglobin, 94 and 80% of the variance in measurements was contributed by differences between sites, and more than 80% of the variance for DPG and haemolysis measurements came from markedly discordant results from three sites and one site, respectively. In descending order, mathematical errors, unvalidated analytical methods, a lack of shared standards and fluid handling errors contributed to the variability in measurements from different sites. While the methods used by laboratories engaged in RBC storage system clinical trials demonstrated good precision, differences in results between laboratories may hinder comparative analysis. Efforts to improve performance should focus on developing robust methods, especially for measuring RBC ATP.
Krah, Alexander
2015-10-01
ATP synthases are molecular motors, which synthesize ATP, the ubiquitous energy source in all living cells. They use an electrochemical gradient to drive a rotation in the membrane embedded Fo domain, namely the c-ring, causing a conformational change in the soluble F1 domain which leads to the catalytic event. In the opposite fashion, they can also hydrolyse ATP to maintain the ion gradient across the membrane. To prevent wasteful ATP hydrolysis, bacteria and mammals have developed peculiar mechanistic features in addition to a common one, namely MgADP inhibition. Here I discuss the distinct ATPase inhibition mechanism in mitochondrial (IF1) and bacterial (subunits ε and ζ) F-type ATP synthases, based on available structural, biophysical and biochemical data. Copyright © 2015 Elsevier Ltd. All rights reserved.
Meisslitzer-Ruppitsch, Claudia; Röhrl, Clemens; Ranftler, Carmen; Neumüller, Josef; Vetterlein, Monika; Ellinger, Adolf; Pavelka, Margit
2011-02-01
In this study, the ceramide-enriched trans-Golgi compartments representing sites of synthesis of sphingomyelin and higher organized lipids were visualized in control and ATP-depleted hepatoma and endothelial cells using internalization of BODIPY-ceramide and the diaminobenzidine photooxidation method for combined light-electron microscopical exploration. Metabolic stress induced by lowering the cellular ATP-levels leads to reorganizations of the Golgi apparatus and the appearance of tubulo-glomerular bodies and networks. The results obtained with three different protocols, in which BODIPY-ceramide either was applied prior to, concomitantly with, or after ATP-depletion, revealed that the ceramide-enriched compartments reorganize together with other parts of the Golgi apparatus under these conditions. They were found closely associated with and integrated in the tubulo-glomerular bodies formed in response to ATP-depletion. This is in line with the changes of the staining patterns obtained with the Helix pomatia lectin and the GM130 and TGN46 immuno-reactions occurring in response to ATP-depletion and is confirmed by 3D electron tomography. The 3D reconstructions underlined the glomerular character of the reorganized Golgi apparatus and demonstrated continuities of ceramide positive and negative parts. Most interestingly, BODIPY-ceramide becomes concentrated in compartments of the tubulo-glomerular Golgi bodies, even though the reorganization took place before BODIPY-ceramide administration. This indicates maintained functionalities although the regular Golgi stack organization is abolished; the results provide novel insights into Golgi structure-function relationships, which might be relevant for cells affected by metabolic stress.
Adenosine Phosphates in Germinating Radish (Raphanus sativus L.) Seeds 1
Moreland, Donald E.; Hussey, Griscelda G.; Shriner, Carole R.; Farmer, Fred S.
1974-01-01
Changes in concentrations of adenosine phosphates (AMP, ADP, and ATP), oxygen utilization, and fresh weights were measured during the first 48 hours after imbibition of water by quiescent radish seeds (Raphanus sativus L.) at 22.5 C. The changes in ATP concentrations, oxygen utilization, and fresh weights followed a triphasic time course, characterized by a rapid initial increase, which extended from 0 to approximately 1.5 hours, a lag phase from 1.5 to 16 hours, and a sharp linear increase from 16 to 48 hours. In unimbibed seeds, the concentrations of ATP, ADP, and AMP were <0.1, 0.9, and 2.2 nmoles/seed, respectively. After imbibition of water by the quiescent seeds, for 1 hour, the ATP concentration had increased to 2.5, and ADP and AMP concentrations had decreased to 0.3 and 0.1 nmole/seed, respectively. These early changes occurred also in seeds maintained under anaerobic conditions (argon), or when treated with either 5 mm fluoroacetate, or 5 mm iodoacetate. The concentrations of ADP and AMP did not change significantly from 1 to 48 hours. The termination of the lag phase at 16 hours correlated with radicle emergence. Cell division in the radicles was initiated at approximately 28 hours. ATP concentrations in seeds maintained under argon or treated with fluoroacetate remained relatively constant from approximately 2 to 48 hours. In contrast, the ATP concentration of iodoacetate-treated seeds decreased curvilinearly from 4 to 48 hours. Oxidative phosphorylation was estimated to have contributed 15, 20, and 65% of the pool ATP at 1.5, 16, and 48 hours, respectively. PMID:16658928
Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium.
Yuan, Yang; Peng, Li; Gong-Hua, Hu; Lu, Dai; Xia-Li, Zhong; Yu, Zhou; Cai-Gao, Zhong
2012-06-01
This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.
Nakano, Masaki; Imamura, Hiromi; Sasaoka, Norio; Yamamoto, Masamichi; Uemura, Norihito; Shudo, Toshiyuki; Fuchigami, Tomohiro; Takahashi, Ryosuke; Kakizuka, Akira
2017-08-01
Parkinson's disease is assumed to be caused by mitochondrial dysfunction in the affected dopaminergic neurons in the brain. We have recently created small chemicals, KUSs (Kyoto University Substances), which can reduce cellular ATP consumption. By contrast, agonistic ligands of ERRs (estrogen receptor-related receptors) are expected to raise cellular ATP levels via enhancing ATP production. Here, we show that esculetin functions as an ERR agonist, and its addition to culture media enhances glycolysis and mitochondrial respiration, leading to elevated cellular ATP levels. Subsequently, we show the neuroprotective efficacies of KUSs, esculetin, and GSK4716 (an ERRγ agonist) against cell death in Parkinson's disease models. In the surviving neurons, ATP levels and expression levels of α-synuclein and CHOP (an ER stress-mediated cell death executor) were all rectified. We propose that maintenance of ATP levels, by inhibiting ATP consumption or enhancing ATP production, or both, would be a promising therapeutic strategy for Parkinson's disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Mitochondrial respiratory control is lost during growth factor deprivation
Gottlieb, Eyal; Armour, Sean M.; Thompson, Craig B.
2002-01-01
The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-xL, restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control. PMID:12228733
Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.
Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D
2017-01-29
Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.
Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin
2014-08-01
Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.
Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds
Marín-Aguilar, Fabiola; Pavillard, Luis E.; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D.
2017-01-01
Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases. PMID:28146060
Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D.
2015-01-01
Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065
Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis.
Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La
2013-01-01
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.
Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis
Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La
2013-01-01
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration. PMID:23986700
Takiguchi, Shunichi; Ayaori, Makoto; Yakushiji, Emi; Nishida, Takafumi; Nakaya, Kazuhiro; Sasaki, Makoto; Iizuka, Maki; Uto-Kondo, Harumi; Terao, Yoshio; Yogo, Makiko; Komatsu, Tomohiro; Ogura, Masatsune; Ikewaki, Katsunori
2018-05-10
Reverse cholesterol transport (RCT) is a major mechanism by which HDL (high-density lipoprotein) protects against atherosclerosis. Endothelial lipase (EL) reportedly reduces HDL levels, which, in theory, would increase atherosclerosis. However, it remains unclear whether EL affects RCT in vivo. Adenoviral vectors expressing EL or luciferase were intravenously injected into mice, and a macrophage RCT assay was performed. As expected, hepatic EL overexpression markedly reduced HDL levels. In parallel, plasma 3 H-cholesterol counts from the EL-expressing mice decreased by 85% compared with control. Surprisingly, there was no difference in fecal 3 H-cholesterol excretion between the groups. Kinetic studies revealed increased catabolism/hepatic uptake of 3 HDL-cholesteryl ether, resulting in no change in fecal HDL-cholesteryl ester excretion in the mice. To explore underlying mechanisms for the preservation of RCT despite low HDL levels in the EL-expressing mice, we investigated the effects of hepatic SR-BI (scavenger receptor class B type I) knockdown. RCT assay revealed that knockdown of SR-BI alone reduced fecal excretion of macrophage-derived 3 H-cholesterol. Interestingly, hepatic EL overexpression under SR-BI inhibition further attenuated fecal tracer counts as compared with control. Finally, we observed that EL overexpression enhanced in vivo RCT under pharmacological inhibition of hepatic ABCA1 (ATP-binding cassette transporter A1) by probucol. Hepatic EL expression compensates for reduced macrophage-derived cholesterol efflux to plasma because of low HDL levels by promoting cholesterol excretion to bile/feces via an SR-BI pathway, maintaining overall RCT in vivo. In contrast, EL-modified HDL might negatively regulate RCT via hepatic ABCA1. Despite extreme hypoalphalipoproteinemia, RCT is maintained in EL-expressing mice via SR-BI/ABCA1-dependent pathways. © 2018 American Heart Association, Inc.
Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D.; Moreno, Herman; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2014-01-01
Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa++ amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5–10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement. PMID:24575037
Real-Time Noninvasive Assessment of Pancreatic ATP Levels During Cold Preservation
Scott, W.E.; Matsumoto, S.; Tanaka, T.; Avgoustiniatos, E.S.; Graham, M.L.; Williams, P.C.; Tempelman, L.A.; Sutherland, D.E.; Hering, B.J.; Hammer, B.E.; Papas, K.K.
2008-01-01
31P-NMR spectroscopy was utilized to investigate rat and porcine pancreatic ATP:Pi ratios to assess the efficacy of existing protocols for cold preservation (CP) in maintaining organ quality. Following sacrifice, rat pancreata were immediately excised or left enclosed in the body for 15 minutes of warm ischemia (WI). After excision, rat pancreata were stored at 6°C to 8°C using histidine-tryptophan-ketoglutarate solution (HTK) presaturated with air (S1), HTK presaturated with O2 (S2), or the HTK/perfluorodecalin two-layer method (TLM) with both liquids presaturated with O2 (S3). 31P-NMR spectra were sequentially collected at 3, 6, 9, 12, and 24 hours of CP from pancreata stored with each of the three protocols examined. The ATP:Pi ratio for rat pancreata exposed to 15 minutes of WI and stored with S3 increased during the first 9 hours of CP, approaching values observed for organs procured with no WI. A marked reduction in the ATP:Pi ratio was observed beyond 12 hours of CP with S3. After 6 hours of CP, the ATP:Pi ratio was highest for S3, substantially decreased for S2, and below detection for S1. In sharp contrast to the rat model, ATP was barely detectable in porcine pancreata exposed to minimal warm ischemia (<15 minutes) stored with the TLM regardless of CP time. We conclude that 31P-NMR spectroscopy is a powerful tool that can be used to (1) noninvasively evaluate pancreata prior to islet isolation, (2) assess the efficacy of different preservation protocols, (3) precisely define the timing of reversible versus irreversible damage, and (4) assess whether intervention will extend this timing. PMID:18374082
Lowery, Ryan P; Joy, Jordan M; Rathmacher, John A; Baier, Shawn M; Fuller, John C; Shelley, Mack C; Jäger, Ralf; Purpura, Martin; Wilson, Stephanie M C; Wilson, Jacob M
2016-07-01
Lowery, RP, Joy, JM, Rathmacher, JA, Baier, SM, Fuller, JC Jr, Shelley, MC II, Jäger, R, Purpura, M, Wilson, SMC, and Wilson, JM. Interaction of beta-hydroxy-beta-methylbutyrate free acid and adenosine triphosphate on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res 30(7): 1843-1854, 2016-Adenosine-5'-triphosphate (ATP) supplementation helps maintain performance under high fatiguing contractions and with greater fatigue recovery demands also increase. Current evidence suggests that the free acid form of β-hydroxy-β-methylbutyrate (HMB-FA) acts by speeding regenerative capacity of skeletal muscle after high-intensity or prolonged exercise. Therefore, we investigated the effects of 12 weeks of HMB-FA (3 g) and ATP (400 mg) administration on lean body mass (LBM), strength, and power in trained individuals. A 3-phase double-blind, placebo-, and diet-controlled study was conducted. Phases consisted of an 8-week periodized resistance training program (phase 1), followed by a 2-week overreaching cycle (phase 2), and a 2-week taper (phase 3). Lean body mass was increased by a combination of HMB-FA/ATP by 12.7% (p < 0.001). In a similar fashion, strength gains after training were increased in HMB-FA/ATP-supplemented subjects by 23.5% (p < 0.001). Vertical jump and Wingate power were increased in the HMB-FA/ATP-supplemented group compared with the placebo-supplemented group, and the 12-week increases were 21.5 and 23.7%, respectively. During the overreaching cycle, strength and power declined in the placebo group (4.3-5.7%), whereas supplementation with HMB-FA/ATP resulted in continued strength gains (1.3%). In conclusion, HMB-FA and ATP in combination with resistance exercise training enhanced LBM, power, and strength. In addition, HMB-FA plus ATP blunted the typical response to overreaching, resulting in a further increase in strength during that period. It seems that the combination of HMB-FA/ATP could benefit those who continuously train at high levels such as elite athletes or military personnel.
Theoretical studies of the ATP hydrolysis mechanism of myosin.
Okimoto, N; Yamanaka, K; Ueno, J; Hata, M; Hoshino, T; Tsuda, M
2001-11-01
The ATP hydrolysis mechanism of myosin was studied using quantum chemical (QM) and molecular dynamics calculations. The initial model compound for QM calculations was constructed on the basis of the energy-minimized structure of the myosin(S1dc)-ATP complex, which was determined by molecular mechanics calculations. The result of QM calculations suggested that the ATP hydrolysis mechanism of myosin consists of a single elementary reaction in which a water molecule nucleophilically attacked gamma-phosphorus of ATP. In addition, we performed molecular dynamics simulations of the initial and final states of the ATP hydrolysis reaction, that is, the myosin-ATP and myosin-ADP.Pi complexes. These calculations revealed roles of several amino acid residues (Lys185, Thr186, Ser237, Arg238, and Glu459) in the ATPase pocket. Lys185 maintains the conformation of beta- and gamma-phosphate groups of ATP by forming the hydrogen bonds. Thr186 and Ser237 are coordinated to a Mg(2+) ion, which interacts with the phosphates of ATP and therefore contributes to the stabilization of the ATP structure. Arg238 and Glu459, which consisted of the gate of the ATPase pocket, retain the water molecule acting on the hydrolysis at the appropriate position for initiating the hydrolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shertzer, Howard G.; Genter, Mary Beth; Shen, Dongxiao
2006-12-15
Mitochondria generate ATP and participate in signal transduction and cellular pathology and/or cell death. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) decreases hepatic ATP levels and generates mitochondrial oxidative DNA damage, which is exacerbated by increasing mitochondrial glutathione redox state and by inner membrane hyperpolarization. This study identifies mitochondrial targets of TCDD that initiate and sustain reactive oxygen production and decreased ATP levels. One week after treating mice with TCDD, liver ubiquinone (Q) levels were significantly decreased, while rates of succinoxidase and Q-cytochrome c oxidoreductase activities were increased. However, the expected increase in Q reduction state following TCDD treatment did not occur; instead, Q wasmore » more oxidized. These results could be explained by an ATP synthase defect, a premise supported by the unusual finding that TCDD lowers ATP/O ratios without concomitant changes in respiratory control ratios. Such results suggest either a futile cycle in ATP synthesis, or hydrolysis of newly synthesized ATP prior to release. The TCDD-mediated decrease in Q, concomitant with an increase in respiration, increases complex 3 redox cycling. This acts in concert with glutathione to increase membrane potential and reactive oxygen production. The proposed defect in ATP synthase explains both the greater respiratory rates and the lower tissue ATP levels.« less
Knutson, F; Lööf, H; Högman, C F
1999-10-01
Although whole blood intended for component preparation is commonly left to cool at ambient temperature, knowledge is insufficient concerning what effects this may have on red blood cell (RBC) quality, in particular after a prolonged hold. Whole blood collected in CPD was incubated at 20 degrees C and 28 degrees C for 6 h designed as a paired study. Blood components were prepared and the red blood cell concentrates (RBCs) were stored for 28 days at 4 degrees C +/- 2 degrees C. Blood gases, pH, glucose, lactate, adenosine triphosphate (ATP), 2,3-diphosphoglycerate (2,3-DPG) and plasma myeloperoxidase (MPO) were investigated. After 6 h the 2,3-DPG concentrations had lowered to 88% (20 degrees C) and 54% (28 degrees C) of initial levels, respectively. The difference was significant and was maintained for 28 days, although, at low levels from day 7 (28 degrees C) and day 14 (20 degrees C) of storage. ATP was maintained at the initial level in both groups during the first 6 h of storage but after component separation the levels were significantly higher in the 28 degrees C group during the first 5 days. The release of myeloperoxidase (MPO) was significantly higher in the non-cooled group than in the cooled group. Pre-separation holding for 6 h of whole blood at temperatures of 28 degrees C causes a great and rapid loss of 2,3-DPG and considerable formation of acid metabolites resulting in clearly subnormal 2,3-DPG levels even on day 1. Active pre-separation cooling to 20 degrees C is to be recommended.
High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner.
Li, Shuai; Zhou, Ti; Li, Cen; Dai, Zhiyu; Che, Di; Yao, Yachao; Li, Lei; Ma, Jianxing; Yang, Xia; Gao, Guoquan
2014-01-01
Gastric cancer and breast cancer have a clear tendency toward metastasis and invasion to the microenvironment predominantly composed of adipocytes. Oleic acid is an abundant monounsaturated fatty acid that releases from adipocytes and impinges on different energy metabolism responses. The effect and underlying mechanisms of oleic acid on highly metastatic cancer cells are not completely understood. We reported that AMP-activated protein kinase (AMPK) was obviously activated in highly aggressive carcinoma cell lines treated by oleic acid, including gastric carcinoma HGC-27 and breast carcinoma MDA-MB-231 cell lines. AMPK enhanced the rates of fatty acid oxidation and ATP production and thus significantly promoted cancer growth and migration under serum deprivation. Inactivation of AMPK attenuated these activities of oleic acid. Oleic acid inhibited cancer cell growth and survival in low metastatic carcinoma cells, such as gastric carcinoma SGC7901 and breast carcinoma MCF-7 cell lines. Pharmacological activation of AMPK rescued the cell viability by maintained ATP levels by increasing fatty acid β-oxidation. These results indicate that highly metastatic carcinoma cells could consume oleic acid to maintain malignancy in an AMPK-dependent manner. Our findings demonstrate the important contribution of fatty acid oxidation to cancer cell function.
Purpura, Martin; Rathmacher, John A; Sharp, Matthew H; Lowery, Ryan P; Shields, Kevin A; Partl, Jeremy M; Wilson, Jacob M; Jäger, Ralf
2017-01-01
Oral adenosine-5'-triphosphate (ATP) administration has failed to increase plasma ATP levels; however, chronic supplementation with ATP has shown to increase power, strength, lean body mass, and blood flow in trained athletes. The purpose of this study was to investigate the effects of ATP supplementation on postexercise ATP levels and on muscle activation and excitability and power following a repeated sprint bout. In a double-blind, placebo-controlled, randomized design, 42 healthy male individuals were given either 400 mg of ATP as disodium salt or placebo for 2 weeks prior to an exercise bout. During the exercise bout, muscle activation and excitability (ME, ratio of power output to muscle activation) and Wingate test peak power were measured during all sprints. ATP and metabolites were measured at baseline, after supplementation, and immediately following exercise. Oral ATP supplementation prevented a drop in ATP, adenosine-5'-diphosphate (ADP), and adenosine-5'-monophosphate (AMP) levels postexercise (p < 0.05). No group by time interaction was observed for muscle activation. Following the supplementation period, muscle excitability significantly decreased in later bouts 8, 9, and 10 in the placebo group (-30.5, -28.3, and -27.9%, respectively; p < 0.02), whereas ATP supplementation prevented the decline in later bouts. ATP significantly increased Wingate peak power in later bouts compared to baseline (bout 8: +18.3%, bout 10: +16.3%). Oral ATP administration prevents exercise-induced declines in ATP and its metabolite and enhances peak power and muscular excitability, which may be beneficial for sports requiring repeated high-intensity sprinting bouts.
Visualization and Measurement of ATP Levels in Living Cells Replicating Hepatitis C Virus Genome RNA
Ando, Tomomi; Imamura, Hiromi; Suzuki, Ryosuke; Aizaki, Hideki; Watanabe, Toshiki; Wakita, Takaji; Suzuki, Tetsuro
2012-01-01
Adenosine 5′-triphosphate (ATP) is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV), a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET)-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome. PMID:22396648
Bryan, Ruth; Jiang, Zewei; Friedman, Matthew; Dadachova, Ekaterina
2011-10-01
Previously we have shown that growth of melanized fungi is stimulated by low levels of gamma radiation. The goal of this study was to examine the effects of visible light, UV light, and gamma radiation on the energy level (ATP concentration) in melanized Cryptococcus neoformans cells. Melanized C. neoformans cells as well as non-melanized controls were subjected to visible, UV or gamma radiation, and ATP was quantified by measuring the amount of light emitted by the ATP-dependent reaction of luciferase with luciferin. We found that all three forms of radiation led to a reduction in the ATP levels in melanized C. neoformans cells. This points to a universal melanin-related mechanism underlying observation of ATP decrease in irradiated melanized cells. In contrast, in non-melanized cells visible light led to increase in ATP levels; gamma radiation did not cause any changes while UV exposure resulted in some ATP decrease, however, much less pronounced than in melanized cells. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Santo-Domingo, Jaime; Chareyron, Isabelle; Broenimann, Charlotte; Lassueur, Steve; Wiederkehr, Andreas
2017-08-15
Chloramphenicol and several other antibiotics targeting bacterial ribosomes inhibit mitochondrial protein translation. Inhibition of mitochondrial protein synthesis leads to mitonuclear protein imbalance and reduced respiratory rates as confirmed here in HeLa and PC12 cells. Unexpectedly, respiration in INS-1E insulinoma cells and primary human islets was unaltered in the presence of chloramphenicol. Resting respiratory rates and glucose stimulated acceleration of respiration were also not lowered when a range of antibiotics including, thiamphenicol, streptomycin, gentamycin and doxycycline known to interfere with bacterial protein synthesis were tested. However, chloramphenicol efficiently reduced mitochondrial protein synthesis in INS-1E cells, lowering expression of the mtDNA encoded COX1 subunit of the respiratory chain but not the nuclear encoded ATP-synthase subunit ATP5A. Despite a marked reduction of the essential respiratory chain subunit COX1, normal respiratory rates were maintained in INS-1E cells. ATP-synthase dependent respiration was even elevated in chloramphenicol treated INS-1E cells. Consistent with these findings, glucose-dependent calcium signaling reflecting metabolism-secretion coupling in beta-cells, was augmented. We conclude that antibiotics targeting mitochondria are able to cause mitonuclear protein imbalance in insulin secreting cells. We hypothesize that in contrast to other cell types, compensatory mechanisms are sufficiently strong to maintain normal respiratory rates and surprisingly even result in augmented ATP-synthase dependent respiration and calcium signaling following glucose stimulation. The result suggests that in insulin secreting cells only lowering COX1 below a threshold level may result in a measurable impairment of respiration. When focusing on mitochondrial function, care should be taken when including antibiotics targeting translation for long-term cell culture as depending on the sensitivity of the cell type analyzed, respiration, mitonuclear protein imbalance or down-stream signaling may be altered. Copyright © 2017 Elsevier Inc. All rights reserved.
Glucose recruits K(ATP) channels via non-insulin-containing dense-core granules.
Yang, Shao-Nian; Wenna, Nancy Dekki; Yu, Jia; Yang, Guang; Qiu, Hua; Yu, Lina; Juntti-Berggren, Lisa; Köhler, Martin; Berggren, Per-Olof
2007-09-01
beta cells rely on adenosine triphosphate-sensitive potassium (K(ATP)) channels to initiate and end glucose-stimulated insulin secretion through changes in membrane potential. These channels may also act as a constituent of the exocytotic machinery to mediate insulin release independent of their electrical function. However, the molecular mechanisms whereby the beta cell plasma membrane maintains an appropriate number of K(ATP) channels are not known. We now show that glucose increases K(ATP) current amplitude by increasing the number of K(ATP) channels in the beta cell plasma membrane. The effect was blocked by inhibition of protein kinase A (PKA) as well as by depletion of extracellular or intracellular Ca(2+). Furthermore, glucose promoted recruitment of the potassium inward rectifier 6.2 to the plasma membrane, and intracellular K(ATP) channels localized in chromogranin-positive/insulin-negative dense-core granules. Our data suggest that glucose can recruit K(ATP) channels to the beta cell plasma membrane via non-insulin-containing dense-core granules in a Ca(2+)- and PKA-dependent manner.
Cardiac Metabolism in Heart Failure - Implications beyond ATP production
Doenst, Torsten; Nguyen, T. Dung; Abel, E. Dale
2013-01-01
The heart has a high rate of ATP production and turnover which is required to maintain its continuous mechanical work. Perturbations in ATP generating processes may therefore affect contractile function directly. Characterizing cardiac metabolism in heart failure revealed several metabolic alterations termed metabolic remodeling, ranging from changes in substrate utilization to mitochondrial dysfunction, ultimately resulting in ATP deficiency and impaired contractility. However, ATP depletion is not the only relevant consequence of metabolic remodeling during heart failure. By providing cellular building blocks and signaling molecules, metabolic pathways control essential processes such as cell growth and regeneration. Thus, alterations in cardiac metabolism may also affect the progression to heart failure by mechanisms beyond ATP supply. Our aim is therefore to highlight that metabolic remodeling in heart failure not only results in impaired cardiac energetics, but also induces other processes implicated in the development of heart failure such as structural remodeling and oxidative stress. Accordingly, modulating cardiac metabolism in heart failure may have significant therapeutic relevance that goes beyond the energetic aspect. PMID:23989714
Shetty, Pavan K; Galeffi, Francesca; Turner, Dennis A.
2014-01-01
Prolonged hypoxia leads to irreversible loss of neuronal function and metabolic impairment of nicotinamide adenine dinucleotide recycling (between NAD+ and NADH) immediately after reoxygenation, resulting in NADH hyperoxidation. We test whether addition of nicotinamide (to enhance NAD+ levels) or PARP-1 inhibition (to prevent consumption of NAD+) can be effective in improving either loss of neuronal function or hyperoxidation following severe hypoxic injury in hippocampal slices. After severe, prolonged hypoxia (maintained for 3 min after spreading depression) there was hyperoxidation of NADH following reoxygenation, an increased soluble NAD+/NADH ratio, loss of neuronal field excitatory post-synaptic potential (fEPSP) and decreased ATP content. Nicotinamide incubation (5 mM) 2 hr prior to hypoxia significantly increased total NAD(H) content, improved neuronal recovery, enhanced ATP content, and prevented NADH hyperoxidation. The nicotinamide-induced increase in total soluble NAD(H) was more significant in the cytosolic compartment than within mitochondria. Prolonged incubation with PJ-34 (>1hr) led to enhanced baseline NADH fluorescence prior to hypoxia, as well as improved neuronal recovery, NADH hyperoxidation and ATP content on recovery from severe hypoxia and reoxygenation. In this acute model of severe neuronal dysfunction prolonged incubation with either nicotinamide or PJ-34 prior to hypoxia improved recovery of neuronal function, enhanced NADH reduction and ATP content, but neither treatment restored function when administered during or after prolonged hypoxia and reoxygenation. PMID:24184921
Motility, ATP levels and metabolic enzyme activity of sperm from bluegill (Lepomis macrochirus).
Burness, Gary; Moyes, Christopher D; Montgomerie, Robert
2005-01-01
Male bluegill displays one of two life history tactics. Some males (termed "parentals") delay reproduction until ca. 7 years of age, at which time they build nests and actively courts females. Others mature precociously (sneakers) and obtain fertilizations by cuckolding parental males. In the current study, we studied the relations among sperm motility, ATP levels, and metabolic enzyme activity in parental and sneaker bluegill. In both reproductive tactics, sperm swimming speed and ATP levels declined in parallel over the first 60 s of motility. Although sneaker sperm initially had higher ATP levels than parental sperm, by approximately 30 s postactivation, no differences existed between tactics. No differences were noted between tactics in swimming speed, percent motility, or the activities of key metabolic enzymes, although sperm from parentals had a higher ratio of creatine phosphokinase (CPK) to citrate synthase (CS). In both tactics, with increasing CPK and CS activity, sperm ATP levels increased at 20 s postactivation, suggesting that capacities for phosphocreatine hydrolysis and aerobic metabolism may influence interindividual variation in rates of ATP depletion. Nonetheless, there was no relation between sperm ATP levels and either swimming speed or percent of sperm that were motile. This suggests that interindividual variation in ATP levels may not be the primary determinant of variation in sperm swimming performance in bluegill.
Gross, Christian H.; Parsons, Jonathan D.; Grossman, Trudy H.; Charifson, Paul S.; Bellon, Steven; Jernee, James; Dwyer, Maureen; Chambers, Stephen P.; Markland, William; Botfield, Martyn; Raybuck, Scott A.
2003-01-01
DNA gyrase is a bacterial type II topoisomerase which couples the free energy of ATP hydrolysis to the introduction of negative supercoils into DNA. Amino acids in proximity to bound nonhydrolyzable ATP analog (AMP · PNP) or novobiocin in the gyrase B (GyrB) subunit crystal structures were examined for their roles in enzyme function and novobiocin resistance by site-directed mutagenesis. Purified Escherichia coli GyrB mutant proteins were complexed with the gyrase A subunit to form the functional A2B2 gyrase enzyme. Mutant proteins with alanine substitutions at residues E42, N46, E50, D73, R76, G77, and I78 had reduced or no detectable ATPase activity, indicating a role for these residues in ATP hydrolysis. Interestingly, GyrB proteins with P79A and K103A substitutions retained significant levels of ATPase activity yet demonstrated no DNA supercoiling activity, even with 40-fold more enzyme than the wild-type enzyme, suggesting that these amino acid side chains have a role in the coupling of the two activities. All enzymes relaxed supercoiled DNA to the same extent as the wild-type enzyme did, implying that only ATP-dependent reactions were affected. Mutant genes were examined in vivo for their abilities to complement a temperature-sensitive E. coli gyrB mutant, and the activities correlated well with the in vitro activities. We show that the known R136 novobiocin resistance mutations bestow a significant loss of inhibitor potency in the ATPase assay. Four new residues (D73, G77, I78, and T165) that, when changed to the appropriate amino acid, result in both significant levels of novobiocin resistance and maintain in vivo function were identified in E. coli. PMID:12604539
Mailloux, Ryan J.; Florian, Maria; Chen, Qixuan; Yan, Jin; Petrov, Ivan; Coughlan, Melanie C.; Laziyan, Mahemuti; Caldwell, Don; Lalande, Michelle; Patry, Dominique; Gagnon, Claude; Sarafin, Kurtis; Truong, Jocelyn; Chan, Hing Man; Ratnayake, Nimal; Li, Nanqin; Willmore, William G.; Jin, Xiaolei
2014-01-01
Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure to ethanol. PMID:25222487
Dudimah, Fred D; Odman-Ghazi, Sabah O; Hatcher, Frank; Whalen, Margaret M
2007-01-01
The purpose of this study was to investigate the role that tributyltin (TBT)-induced decreases in ATP levels may play in TBT-induced decreases in the tumor lysing (lytic) function of natural killer (NK) cells. NK cells are a subset of lymphocytes that act as an initial immune defense against tumor cells and virally infected cells. TBT is an environmental contaminant that has been detected in human blood, which has been shown to interfere with ATP synthesis. Previous studies have shown that TBT is able to decrease very significantly the lytic function of NK cells. In this study NK cells were exposed to various concentrations of TBT and to two other compounds that interfere with ATP synthesis (rotenone a complex I inhibitor and oligomycin an ATP synthase inhibitor) for various lengths of time before determining the levels of ATP and lytic function. Exposures of NK cells to 10, 25, 50 and 100 nm TBT did not significantly reduce ATP levels after 24 h. However, these same exposures caused significant decreases in cytotoxic function. Studies of brief 1 h exposures to a range of TBT, rotenone and oligomycin concentrations followed by 24 h, 48 h and 6 day periods in compound-free media prior to assaying for ATP levels or cytotoxic function showed that each of the compounds caused persistent decreases in ATP levels and lytic function of NK cells. Exposures to 0.05-5 microm rotenone or oligomycin for 1 h reduced ATP levels by 20-25% but did not have any measurable effect on the ability of NK cells to lyse tumor cells. ATP levels were also decreased by about 20-25% after 24 h or 48 h exposures to rotenone or oligomycin (0.5 microm ), and the lytic function was decreased by about 50%. The results suggest that TBT-induced decreases in ATP levels were not responsible for the loss of cytotoxic function seen at 1 h and 24 h. However, TBT-induced decreases of NK-ATP levels may be at least in part responsible for losses of NK-cytotoxic function seen after 48 h and 6 day exposures. Copyright 2006 John Wiley & Sons, Ltd.
Lima, Kelly Goulart; Krause, Gabriele Catyana; da Silva, Elisa Feller Gonçalves; Xavier, Léder Leal; Martins, Léo Anderson Meira; Alice, Laura Manzoli; da Luz, Luiza Bueno; Gassen, Rodrigo Benedetti; Filippi-Chiela, Eduardo Cremonese; Haute, Gabriela Viegas; Garcia, Maria Claudia Rosa; Funchal, Giselle Afonso; Pedrazza, Leonardo; Reghelin, Camille Kirinus; de Oliveira, Jarbas Rodrigues
2018-04-01
Octyl gallate (OG) is an antioxidant that has shown anti-tumor, anti-diabetic and anti-amyloidogenic activities. Mitochondria play an important role in hepatocellular carcinoma, mainly by maintaining accelerated cellular proliferation through the production of ATP. Thus, the mitochondria may be a target for antitumor therapies. Here, we investigated the effects of OG in the hepatocarcinoma cell line (HepG2) and the mechanisms involved. We report, for the first time, that treatment with OG for 24h inhibited HepG2 cell growth by decreasing mitochondrial activity and mass, which led to the reduction of ATP levels. This reduction in the energy supply triggered a decrease in Ki67 protein expression, leading cells to cycle arrest. In addition, treatment with two doses of OG for 48h induced loss of mitochondrial functionality, mitochondrial swelling and apoptosis. Finally, we report that HepG2 cells had no resistance to treatment after multiple doses. Collectively, our findings indicate that metabolic dysregulation and Ki67 protein reduction are key events in the initial anti-proliferative action of OG, whereas mitochondrial swelling and apoptosis induction are involved in the action mechanism of OG after prolonged exposure. This suggests that OG targets mitochondria, thus representing a candidate for further research on therapies for hepatocarcinoma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wagner, Stephen; Skripchenko, Andrey; Thompson-Montgomery, Dedeene
2002-09-01
Limited photoinactivation kinetics, use of low-volume 30 percent Hct RBCs, and hemolysis have restricted the practicality of the use of dimethylmethylene blue (DMMB) and light for RBC decontamination. A flow-cell system was developed to rapidly treat larger volumes of oxygenated 45 percent Hct RBCs with high-intensity red light. CPD-whole blood was WBC reduced, RBCs were diluted in additive solutions (either Adsol or Erythrosol), and suspensions were subsequently oxygenated by gas overlay. Intracellular or extracellular VSV and DMMB were sequentially added. VSV-infected RBC suspensions (45% Hct) were passed through 1-mm-thick flow cells and illuminated. Samples were titered for VSV, stored for up to 42 days, and assayed for Hb, supernatant potassium, ATP, and MCV. The use of oxygenated RBCs resulted in rapid and reproducible photoinactivaton of > or = 6.6 log extracellular and approximately 4.0 log intracellular VSV independent of additive solution. Phototreated Adsol RBCs exhibited more than 10 times greater hemolysis and 30 percent greater MCV during storage than identically treated Erythrosol RBCs. Phototreatment caused RBC potassium leakage from RBCs in both additive solutions. ATP levels were better preserved in Erythrosol than Adsol RBCs. A rapid, reproducible, and robust method for photoinactivating model virus in RBC suspensions was developed. Despite improved hemolysis and ATP levels in Erythrosol-phototreated RBCs, storage properties were not maintained for 42 days.
Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela
2015-01-01
We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583
Mass-Specific Metabolic Rate Influences Sperm Performance through Energy Production in Mammals
Tourmente, Maximiliano; Roldan, Eduardo R. S.
2015-01-01
Mass-specific metabolic rate, the rate at which organisms consume energy per gram of body weight, is negatively associated with body size in metazoans. As a consequence, small species have higher cellular metabolic rates and are able to process resources at a faster rate than large species. Since mass-specific metabolic rate has been shown to constrain evolution of sperm traits, and most of the metabolic activity of sperm cells relates to ATP production for sperm motility, we hypothesized that mass-specific metabolic rate could influence sperm energetic metabolism at the cellular level if sperm cells maintain the metabolic rate of organisms that generate them. We compared data on sperm straight-line velocity, mass-specific metabolic rate, and sperm ATP content from 40 mammalian species and found that the mass-specific metabolic rate positively influences sperm swimming velocity by (a) an indirect effect of sperm as the result of an increased sperm length, and (b) a direct effect independent of sperm length. In addition, our analyses show that species with higher mass-specific metabolic rate have higher ATP content per sperm and higher concentration of ATP per μm of sperm length, which are positively associated with sperm velocity. In conclusion, our results suggest that species with high mass-specific metabolic rate have been able to evolve both long and fast sperm. Moreover, independently of its effect on the production of larger sperm, the mass-specific metabolic rate is able to influence sperm velocity by increasing sperm ATP content in mammals. PMID:26371474
Bonatto, Ana C; Souza, Emanuel M; Oliveira, Marco A S; Monteiro, Rose A; Chubatsu, Leda S; Huergo, Luciano F; Pedrosa, Fábio O
2012-08-01
PII are signal-transducing proteins that integrate metabolic signals and transmit this information to a large number of proteins. In proteobacteria, PII are modified by GlnD (uridylyltransferase/uridylyl-removing enzyme) in response to the nitrogen status. The uridylylation/deuridylylation cycle of PII is also regulated by carbon and energy signals such as ATP, ADP and 2-oxoglutarate (2-OG). These molecules bind to PII proteins and alter their tridimensional structure/conformation and activity. In this work, we determined the effects of ATP, ADP and 2-OG levels on the in vitro uridylylation of Herbaspirillum seropedicae PII proteins, GlnB and GlnK. Both proteins were uridylylated by GlnD in the presence of ATP or ADP, although the uridylylation levels were higher in the presence of ATP and under high 2-OG levels. Under excess of 2-OG, the GlnB uridylylation level was higher in the presence of ATP than with ADP, while GlnK uridylylation was similar with ATP or ADP. Moreover, in the presence of ADP/ATP molar ratios varying from 10/1 to 1/10, GlnB uridylylation level decreased as ADP concentration increased, whereas GlnK uridylylation remained constant. The results suggest that uridylylation of both GlnB and GlnK responds to 2-OG levels, but only GlnB responds effectively to variation on ADP/ATP ratio.
Atomic Spectra Bibliography Databases at NIST
NASA Astrophysics Data System (ADS)
Kramida, Alexander
2010-03-01
NIST's Atomic Spectroscopy Data Center maintains three online Bibliographic Databases (BD) [http://physics.nist.gov/PhysRefData/ASBib1/index.html]: -- Atomic Energy Levels and Spectra (AEL BD), Atomic Transition Probability (ATP BD), and Atomic Spectral Line Broadening (ALB BD). This year marks new releases of these BDs -- AEL BD v.2.0, ATP BD v.9.0, and ALB DB v.3.0. These releases incorporate significant improvements in the quantity and quality of bibliographic data since the previous versions published first in 2006. The total number of papers in the three DBs grew from 20,000 to 30,000. The data search is now made easier, and the returned content is enriched with direct links to online journal articles and universal Digital Object Identifiers. Statistics show a nearly constant flow of new publications on atomic spectroscopy, about 600 new papers published each year since 1968. New papers are inserted in our BDs every two weeks on average.
Zhang, Jiao Jiao; Jo, Jin Oh; Huynh, Do Luong; Mongre, Raj Kumar; Ghosh, Mrinmoy; Singh, Amit Kumar; Lee, Sang Baek; Mok, Young Sun; Hyuk, Park; Jeong, Dong Kee
2017-02-07
This study was conducted to determine the effects of argon plasma on the growth of soybean [Glycine max (L.) Merr.] sprouts and investigate the regulation mechanism of energy metabolism. The germination and growth characteristics were modified by argon plasma at different potentials and exposure durations. Upon investigation, plasma treatment at 22.1 kV for 12 s maximized the germination and seedling growth of soybean, increasing the concentrations of soluble protein, antioxidant enzymes, and adenosine triphosphate (ATP) as well as up-regulating ATP a1, ATP a2, ATP b1, ATP b2, ATP b3, target of rapamycin (TOR), growth-regulating factor (GRF) 1-6, down-regulating ATP MI25 mRNA expression, and increasing the demethylation levels of the sequenced region of ATP a1, ATP b1, TOR, GRF 5, and GRF 6 of 6-day-old soybean sprouts. These observations indicate that argon plasma promotes soybean seed germination and sprout growth by regulating the demethylation levels of ATP, TOR, and GRF.
NASA Astrophysics Data System (ADS)
Zhang, Jiao Jiao; Jo, Jin Oh; Huynh, Do Luong; Mongre, Raj Kumar; Ghosh, Mrinmoy; Singh, Amit Kumar; Lee, Sang Baek; Mok, Young Sun; Hyuk, Park; Jeong, Dong Kee
2017-02-01
This study was conducted to determine the effects of argon plasma on the growth of soybean [Glycine max (L.) Merr.] sprouts and investigate the regulation mechanism of energy metabolism. The germination and growth characteristics were modified by argon plasma at different potentials and exposure durations. Upon investigation, plasma treatment at 22.1 kV for 12 s maximized the germination and seedling growth of soybean, increasing the concentrations of soluble protein, antioxidant enzymes, and adenosine triphosphate (ATP) as well as up-regulating ATP a1, ATP a2, ATP b1, ATP b2, ATP b3, target of rapamycin (TOR), growth-regulating factor (GRF) 1-6, down-regulating ATP MI25 mRNA expression, and increasing the demethylation levels of the sequenced region of ATP a1, ATP b1, TOR, GRF 5, and GRF 6 of 6-day-old soybean sprouts. These observations indicate that argon plasma promotes soybean seed germination and sprout growth by regulating the demethylation levels of ATP, TOR, and GRF.
Shetty, Pavan K; Sadgrove, Matthew P; Galeffi, Francesca; Turner, Dennis A
2012-01-01
The use of energy substrates, such as lactate and pyruvate, has been shown to improve synaptic function when administered during glucose deprivation. In the present study, we investigated whether prolonged incubation with monocarboxylate (pyruvate or lactate) prior rather than during glucose deprivation can also sustain synaptic and metabolic function. Pyruvate pre-incubation(3-4h) significantly prolonged (>25 min) the tolerance of rat hippocampal slices to delayed glucose deprivation compared to control and lactate pre-incubated slices, as revealed by field excitatory post synaptic potentials (fEPSPs); pre-incubation with pyruvate also reduced the marked decrease in NAD(P)H fluorescence resulting from glucose deprivation. Moreover, pyruvate exposure led to the enhancement of glycogen stores with time, compared to glucose alone (12 μmol/g tissue at 4h vs. 3.5 μmol/g tissue). Prolonged resistance to glucose deprivation following exogenous pyruvate incubation was prevented by glycogenolysis inhibitors, suggesting that enhanced glycogen mediates the delay in synaptic activity failure. The application of an adenosine A1 receptor antagonist enhanced glycogen utilization and prolonged the time to synaptic failure, further confirming this hypothesis of the importance of glycogen. Moreover, tissue levels of ATP were also significantly maintained during glucose deprivation in pyruvate pretreated slices compared to control and lactate. In summary, these experiments indicate that pyruvate exposure prior to glucose deprivation significantly increased the energy buffering capacity of hippocampal slices, particularly by enhancing internal glycogen stores, delaying synaptic failure during glucose deprivation by maintaining ATP levels, and minimizing the decrease in the levels of NAD(P)H. Copyright © 2011 Elsevier Inc. All rights reserved.
Knape, L; Hambraeus, A; Lytsy, B
2015-10-01
The adenosine triphosphate (ATP) method is widely accepted as a quality control method to complement visual assessment, in the specifications of requirements, when purchasing cleaning contractors in Swedish hospitals. To examine whether the amount of biological load, as measured by ATP on frequently touched near-patient surfaces, had been reduced after an intervention; to evaluate the correlation between visual assessment and ATP levels on the same surfaces; to identify aspects of the performance of the ATP method as a tool in evaluating hospital cleanliness. A prospective intervention study in three phases was carried out in a medical ward and an intensive care unit (ICU) at a regional hospital in mid-Sweden between 2012 and 2013. Existing cleaning procedures were defined and baseline tests were sampled by visual inspection and ATP measurements of ten frequently touched surfaces in patients' rooms before and after intervention. The intervention consisted of educating nursing staff about the importance of hospital cleaning and direct feedback of ATP levels before and after cleaning. The mixed model showed a significant decrease in ATP levels after the intervention (P < 0.001). Relative light unit values were lower in the ICU. Cleanliness as judged by visual assessments improved. In the logistic regression analysis, there was a significant association between visual assessments and ATP levels. Direct feedback of ATP levels, together with education and introduction of written cleaning protocols, were effective tools to improve cleanliness. Visual assessment correlated with the level of ATP but the correlation was not absolute. The ATP method could serve as an educational tool for staff, but is not enough to assess hospital cleanliness in general as only a limited part of a large area is covered. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
General anesthetics cause mitochondrial dysfunction and reduction of intracellular ATP levels
Kishikawa, Jun-ichi; Inoue, Yuki; Fujikawa, Makoto; Nishimura, Kenji; Nakanishi, Atsuko; Tanabe, Tsutomu; Imamura, Hiromi
2018-01-01
General anesthetics are indispensable for effective clinical care. Although, the mechanism of action of general anesthetics remains controversial, lipid bilayers and proteins have been discussed as their targets. In this study, we focused on the relationship between cellular ATP levels and general anesthetics. The ATP levels of nematodes and cultured mammalian cells were decreased by exposure to three general anesthetics: isoflurane, pentobarbital, and 1-phenoxy-2-propanol. Furthermore, these general anesthetics abolished mitochondrial membrane potential, resulting in the inhibition of mitochondrial ATP synthesis. These results suggest that the observed decrease of cellular ATP level is a common phenomenon of general anesthetics. PMID:29298324
Buler, Marcin; Aatsinki, Sanna-Mari; Izzi, Valerio; Hakkola, Jukka
2012-01-01
Metformin inhibits ATP production in mitochondria and this may be involved in the anti-hyperglycemic effects of the drug. Sirtuin 3 (SIRT3) is a mitochondrial protein deacetylase that regulates the function of the electron transport chain and maintains basal ATP yield. We hypothesized that metformin treatment could diminish mitochondrial ATP production through downregulation of SIRT3 expression. Glucagon and cAMP induced SIRT3 mRNA in mouse primary hepatocytes. Metformin prevented SIRT3 induction by glucagon. Moreover, metformin downregulated constitutive expression of SIRT3 in primary hepatocytes and in the liver in vivo. Estrogen related receptor alpha (ERRα) mediates regulation of Sirt3 gene by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). ERRα mRNA expression was regulated in a similar manner as SIRT3 mRNA by glucagon, cAMP and metformin. However, a higher metformin concentration was required for downregulation of ERRα than SIRT3. ERRα siRNA attenuated PGC-1α mediated induction of SIRT3, but did not affect constitutive expression. Overexpression of the constitutively active form of AMP-activated protein kinase (AMPK) induced SIRT3 mRNA, indicating that the SIRT3 downregulation by metformin is not mediated by AMPK. Metformin reduced the hepatocyte ATP level. This effect was partially counteracted by SIRT3 overexpression. Furthermore, metformin decreased mitochondrial SIRT3 protein levels and this was associated with enhanced acetylation of several mitochondrial proteins. However, metformin increased mitochondrial mass in hepatocytes. Altogether, our results indicate that metformin attenuates mitochondrial expression of SIRT3 and suggest that this mechanism is involved in regulation of energy metabolism by metformin in the liver and may contribute to the therapeutic action of metformin. PMID:23166782
Hendriks, Koen D W; Lupi, Eleonora; Hardenberg, Maarten C; Hoogstra-Berends, Femke; Deelman, Leo E; Henning, Robert H
2017-11-14
Hibernators show superior resistance to ischemia and hypothermia, also outside the hibernation season. Therefore, hibernation is a promising strategy to decrease cellular damage in a variety of fields, such as organ transplantation. Here, we explored the role of mitochondria herein, by comparing epithelial cell lines from a hibernator (hamster kidney cells, HaK) and a non-hibernator (human embryonic kidney cells, HEK293) during cold preservation at 4 °C and rewarming. Cell survival (Neutral Red), ATP and MDA levels, mitochondrial membrane potential (MMP), mitochondrial morphology (using fluorescent probes) and metabolism (seahorse XF) were assessed. Hypothermia induced dispersion of the tubular mitochondrial network, a loss of MMP, increased oxygen radical (MDA) and decreased ATP production in HEK293. In contrast, HaK maintained MMP and ATP production without an increase in oxygen radicals during cooling and rewarming, resulting in superior cell survival compared to HEK293. Further, normothermic HaK showed a dispersed mitochondrial network and higher respiratory and glycolysis capacity compared to HEK293. Disclosing the mechanisms that hibernators use to counteract cell death in hypothermic and ischemic circumstances may help to eventually improve organ preservation in a variety of fields, including organ transplantation.
Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko
2015-12-18
Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes.
Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko
2015-01-01
Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes. PMID:26677804
(13)C-metabolic flux analysis in S-adenosyl-L-methionine production by Saccharomyces cerevisiae.
Hayakawa, Kenshi; Kajihata, Shuichi; Matsuda, Fumio; Shimizu, Hiroshi
2015-11-01
S-Adenosyl-L-methionine (SAM) is a major biological methyl group donor, and is used as a nutritional supplement and prescription drug. Yeast is used for the industrial production of SAM owing to its high intracellular SAM concentrations. To determine the regulation mechanisms responsible for such high SAM production, (13)C-metabolic flux analysis ((13)C-MFA) was conducted to compare the flux distributions in the central metabolism between Kyokai no. 6 (high SAM-producing) and S288C (control) strains. (13)C-MFA showed that the levels of tricarboxylic acid (TCA) cycle flux in SAM-overproducing strain were considerably increased compared to those in the S228C strain. Analysis of ATP balance also showed that a larger amount of excess ATP was produced in the Kyokai 6 strain because of increased oxidative phosphorylation. These results suggest that high SAM production in Kyokai 6 strains could be attributed to enhanced ATP regeneration with high TCA cycle fluxes and respiration activity. Thus, maintaining high respiration efficiency during cultivation is important for improving SAM production. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Abdelmalek, Manal F.; Lazo, Mariana; Horska, Alena; Bonekamp, Susanne; Lipkin, Edward W.; Balasubramanyam, Ashok; Bantle, John P.; Johnson, Richard J.; Diehl, Anna Mae; Clark, Jeanne M.
2012-01-01
Fructose consumption predicts increased hepatic fibrosis in those with nonalcoholic fatty liver disease (NAFLD). Due to its ability to lower hepatic adenosine triphosphate (ATP) levels, habitual fructose consumption could result in more hepatic ATP depletion and impaired ATP recovery. The degree of ATP depletion following an intravenous fructose challenge test in low versus high fructose consumers was assessed. We evaluated diabetic adults enrolled in the Look AHEAD Fatty Liver Ancillary Study (n=244) for whom dietary fructose consumption estimated by a 130-item Food Frequency questionnaire, hepatic ATP measured by phosphorus MRS (31P MRS) and uric acid (UA) levels were performed (n=105). In a subset of participants (n=25), an intravenous fructose challenge was utilized to assess change in hepatic ATP content. The relationships between dietary fructose, UA and hepatic ATP depletion at baseline and following intravenous fructose challenge was evaluated in low (<15 g/d) vs. high (≥15 g/d) fructose consumers. High dietary fructose consumers had slightly lower baseline hepatic ATP levels and a greater absolute change in hepatic α-ATP/Pi ratio (0.08 vs. 0.03, p=0.05) and γ-ATP /Pi ratio following an intravenous fructose challenge (0.03 vs. 0.06, p=0.06). Patients with high UA (≥5.5 mg/dl) showed a lower minimum liver ATP/Pi ratio post-fructose challenge (4.5 vs. 7.0, p = 0.04). Conclusions High fructose consumption depletes hepatic ATP and impairs recovery from ATP depletion following an intravenous fructose challenge. Subjects with high UA show a greater nadir in hepatic ATP in response to fructose. Both high dietary fructose intake and elevated UA level may predict more severe hepatic ATP depletion in response to fructose and hence may be risk factors for the development and progression of NAFLD. PMID:22467259
Dellero, Younès; Lamothe-Sibold, Marlène; Jossier, Mathieu; Hodges, Michael
2015-09-01
Metabolic and physiological analyses of glutamate:glyoxylate aminotransferase 1 (GGT1) mutants were performed at the global leaf scale to elucidate the mechanisms involved in their photorespiratory growth phenotype. Air-grown ggt1 mutants showed retarded growth and development, that was not observed at high CO2 (3000 μL L(-1) ). When compared to wild-type (WT) plants, air-grown ggt1 plants exhibited glyoxylate accumulation, global changes in amino acid amounts including a decrease in serine content, lower organic acid levels, and modified ATP/ADP and NADP(+) /NADPH ratios. When compared to WT plants, their net CO2 assimilation rates (An ) were 50% lower and this mirrored decreases in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents. High CO2 -grown ggt1 plants transferred to air revealed a rapid decrease of An and photosynthetic electron transfer rate while maintaining a high energetic state. Short-term (a night period and 4 h of light) transferred ggt1 leaves accumulated glyoxylate and exhibited low serine contents, while other amino acid levels were not modified. RuBisCO content, activity and activation state were not altered after a short-term transfer while the ATP/ADP ratio was lowered in ggt1 rosettes. However, plant growth and RuBisCO levels were both reduced in ggt1 leaves after a long-term (12 days) acclimation to air from high CO2 when compared to WT plants. The data are discussed with respect to a reduced photorespiratory carbon recycling in the mutants. It is proposed that the low An limits nitrogen-assimilation, this decreases leaf RuBisCO content until plants attain a new homeostatic state that maintains a constant C/N balance and leads to smaller, slower growing plants. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Christian, Sherri L; Ross, Austin P; Zhao, Huiwen W; Kristenson, Heidi J; Zhan, Xinhua; Rasley, Brian T; Bickler, Philip E; Drew, Kelly L
2009-01-01
Oxygen–glucose deprivation (OGD) initiates a cascade of intracellular responses that culminates in cell death in sensitive species. Neurons from Arctic ground squirrels (AGS), a hibernating species, tolerate OGD in vitro and global ischemia in vivo independent of temperature or torpor. Regulation of energy stores and activation of mitogen-activated protein kinase (MAPK) signaling pathways can regulate neuronal survival. We used acute hippocampal slices to investigate the role of ATP stores and extracellular signal-regulated kinase (ERK)1/2 and Jun NH2-terminal kinase (JNK) MAPKs in promoting survival. Acute hippocampal slices from AGS tolerated 30 mins of OGD and showed a small but significant increase in cell death with 2 h OGD at 37°C. This tolerance is independent of hibernation state or season. Neurons from AGS survive OGD despite rapid ATP depletion by 3 mins in interbout euthermic AGS and 10 mins in hibernating AGS. Oxygen–glucose deprivation does not induce JNK activation in AGS and baseline ERK1/2 and JNK activation is maintained even after drastic depletion of ATP. Surprisingly, inhibition of ERK1/2 or JNK during OGD had no effect on survival, whereas inhibition of JNK increased cell death during normoxia. Thus, protective mechanisms promoting tolerance to OGD by AGS are downstream from ATP loss and are independent of hibernation state or season. PMID:18398417
Rolland, Stéphane G.; Motori, Elisa; Memar, Nadin; Hench, Jürgen; Frank, Stephan; Winklhofer, Konstanze F.; Conradt, Barbara
2013-01-01
Mitochondrial morphology changes in response to various stimuli but the significance of this is unclear. In a screen for mutants with abnormal mitochondrial morphology, we identified MMA-1, the Caenorhabditis elegans homolog of the French Canadian Leigh Syndrome protein LRPPRC (leucine-rich pentatricopeptide repeat containing). We demonstrate that reducing mma-1 or LRPPRC function causes mitochondrial hyperfusion. Reducing mma-1/LRPPRC function also decreases the activity of complex IV of the electron transport chain, however without affecting cellular ATP levels. Preventing mitochondrial hyperfusion in mma-1 animals causes larval arrest and embryonic lethality. Furthermore, prolonged LRPPRC knock-down in mammalian cells leads to mitochondrial fragmentation and decreased levels of ATP. These findings indicate that in a mma-1/LRPPRC–deficient background, hyperfusion allows mitochondria to maintain their functions despite a reduction in complex IV activity. Our data reveal an evolutionary conserved mechanism that is triggered by reduced complex IV function and that induces mitochondrial hyperfusion to transiently compensate for a drop in the activity of the electron transport chain. PMID:23878239
Salgado, J Cristian; Andrews, Barbara A; Ortuzar, Maria Fernanda; Asenjo, Juan A
2008-01-18
The prediction of the partition behaviour of proteins in aqueous two-phase systems (ATPS) using mathematical models based on their amino acid composition was investigated. The predictive models are based on the average surface hydrophobicity (ASH). The ASH was estimated by means of models that use the three-dimensional structure of proteins and by models that use only the amino acid composition of proteins. These models were evaluated for a set of 11 proteins with known experimental partition coefficient in four-phase systems: polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate and dextran and considering three levels of NaCl concentration (0.0% w/w, 0.6% w/w and 8.8% w/w). The results indicate that such prediction is feasible even though the quality of the prediction depends strongly on the ATPS and its operational conditions such as the NaCl concentration. The ATPS 0 model which use the three-dimensional structure obtains similar results to those given by previous models based on variables measured in the laboratory. In addition it maintains the main characteristics of the hydrophobic resolution and intrinsic hydrophobicity reported before. Three mathematical models, ATPS I-III, based only on the amino acid composition were evaluated. The best results were obtained by the ATPS I model which assumes that all of the amino acids are completely exposed. The performance of the ATPS I model follows the behaviour reported previously, i.e. its correlation coefficients improve as the NaCl concentration increases in the system and, therefore, the effect of the protein hydrophobicity prevails over other effects such as charge or size. Its best predictive performance was obtained for the PEG/dextran system at high NaCl concentration. An increase in the predictive capacity of at least 54.4% with respect to the models which use the three-dimensional structure of the protein was obtained for that system. In addition, the ATPS I model exhibits high correlation coefficients in that system being higher than 0.88 on average. The ATPS I model exhibited correlation coefficients higher than 0.67 for the rest of the ATPS at high NaCl concentration. Finally, we tested our best model, the ATPS I model, on the prediction of the partition coefficient of the protein invertase. We found that the predictive capacities of the ATPS I model are better in PEG/dextran systems, where the relative error of the prediction with respect to the experimental value is 15.6%.
Fraser, Graham M.; Goldman, Daniel; Ellis, Christopher G.
2016-01-01
Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices. PMID:27829071
Sové, Richard J; Fraser, Graham M; Goldman, Daniel; Ellis, Christopher G
2016-01-01
Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.
Establishing and Monitoring an Aseptic Workspace for Building the MOMA Mass Spectrometer
NASA Technical Reports Server (NTRS)
Lalime, Erin
2016-01-01
Mars Organic Molecule Analyzer (MOMA) is an instrument suite on the ESA ExoMars 2018 Rover, and the Mass Spectrometer (MOMA-MS) is being built at Goddard Space Flight Center (GSFC). As MOMA-MS is a life-detection instrument and it thus falls in the most stringent category of Planetary Protection (PP) biological cleanliness requirements. Less than 0.03 sporem2 is allowed in the instrument sample path. In order to meet these PP requirements, MOMA-MS must be built and maintained in a low bioburden environment. The MOMA-MS project at GSFC maintains three cleanrooms with varying levels of bioburden control. The Aseptic Assembly Cleanroom has the highest level of control, applying three different bioburden reducing methods: 70 IPA, 7.5 Hydrogen Peroxide, and Ultra-Violet C light. The three methods are used in rotation and each kills microbes by a different mechanism, reducing the likelihood of microorganisms developing resistance to all three. The Integration and Mars Chamber Cleanrooms use less biocidal cleaning, with the option to deploy extra techniques as necessary. To support the monitoring of cleanrooms and verification that MOMA-MS hardware meets PP requirements, a new Planetary Protection lab was established that currently has the capabilities of standard growth assays for spore or vegetative bacteria, rapid bioburden analysis that detects Adenosine Triphosphate (ATP), plus autoclave and DHMR verification. The cleanrooms are monitored both for vegetative microorganisms and by rapid ATP assay, and a clear difference in bioburden is observed between the aseptic the other cleanroom.
Metabolic Cooperative Control of Electrolyte Levels by Adenosine Triphosphate in the Frog Muscle
Gulati, J.; Ochsenfeld, M. M.; Ling, G. N.
1971-01-01
This study examines the effects of metabolic inhibitors on the content of cellular K, Na, and adenosine triphosphate (ATP). ATP and K are seen to fall in the inhibited tissues. The ATP content is correlated with the K content. The role of ATP is examined according to a recent biophysical approach. It is suggested that ATP may control the electrolyte levels by inducing conformational changes in the cytoplasmic proteins. PMID:5316285
Wang, Lina; Hu, Lei; Grygorczyk, Ryszard; Shen, Xueyong; Schwarz, Wolfgang
2015-01-01
Low-level-laser therapy (LLLT) is an effective complementary treatment, especially for anti-inflammation and wound healing in which dermis or mucus mast cells (MCs) are involved. In periphery, MCs crosstalk with neurons via purinergic signals and participate in various physiological and pathophysiological processes. Whether extracellular ATP, an important purine in purinergic signaling, of MCs and neurons could be modulated by irradiation remains unknown. In this study, effects of red-laser irradiation on extracellular ATP content of MCs and dorsal root ganglia (DRG) neurons were investigated and underlying mechanisms were explored in vitro. Our results show that irradiation led to elevation of extracellular ATP level in the human mast cell line HMC-1 in a dose-dependent manner, which was accompanied by elevation of intracellular ATP content, an indicator for ATP synthesis, together with [Ca(2+)]i elevation, a trigger signal for exocytotic ATP release. In contrast to MCs, irradiation attenuated the extracellular ATP content of neurons, which could be abolished by ARL 67156, a nonspecific ecto-ATPases inhibitor. Our results suggest that irradiation potentiates extracellular ATP of MCs by promoting ATP synthesis and release and attenuates extracellular ATP of neurons by upregulating ecto-ATPase activity. The opposite responses of these two cell types indicate complex mechanisms underlying LLLT.
Carvalho, Arselio P.
1968-01-01
Calcium retained at binding sites of the sarcoplasmic reticulum membranes isolated from rabbit skeletal muscle requires 10-5 – 10-4 M ATP to exchange with 45Ca added to the medium. The ATP requirement for Ca exchangeability was observed with respect to the "intrinsic" Ca of the reticulum membranes and the fraction of Ca that is "actively" bound in the presence of ATP. Furthermore, a concentration of free Ca in the medium higher than 10-8 M is required for ATP to promote Ca exchangeability. This exchangeability is not influenced by caffeine, quinine, procaine, and tetracaine, and Ca that is either nonexchangeable (in the absence of ATP) or exchangeable (in the presence of ATP) is released by 1–5 mM quinine or tetracaine, but neither caffeine (6 mM) nor procaine (2–5 mM) has this effect. Quinine or tetracaine also releases Ca and Mg bound passively to the reticulum membranes. A possible role of ATP in maintaining the integrity of cellular membranes is discussed, and the effects of caffeine, quinine, and of local anesthetics on the binding of Ca by the isolated reticulum are related to the effects of these agents on 45Ca fluxes and on the twitch output observed in whole muscles. PMID:19873636
Moreira, Otacilio C; Rios, Priscila F; Barrabin, Hector
2005-07-15
The bidentate complex of ATP with Cr(3+), CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca(2+)-ATPase and the Na(+),K(+)-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca(2+) and Na(+), respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca(2+)-ATPase. The complex inhibited with similar efficiency the Ca(2+)-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T(1/2)=30 min at 37 degrees C) with a K(i)=28+/-9 microM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg(2+) but unaltered when Ca(2+) was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca(2+) occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La(3+) with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca(2+) at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca(2+) promoted by the plasma membrane Ca(2+)-ATPase goes through an enzymatic phospho-intermediate that maintains Ca(2+) ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.
Ackerman, Cheri M; Weber, Peter K; Xiao, Tong; Thai, Bao; Kuo, Tiffani J; Zhang, Emily; Pett-Ridge, Jennifer; Chang, Christopher J
2018-03-01
Copper is essential for eukaryotic life, and animals must acquire this nutrient through the diet and distribute it to cells and organelles for proper function of biological targets. Indeed, mutations in the central copper exporter ATP7A contribute to a spectrum of diseases, including Menkes disease, with symptoms ranging from neurodegeneration to lax connective tissue. As such, a better understanding of the fundamental impacts of ATP7A mutations on in vivo copper distributions is of relevance to those affected by these diseases. Here we combine metal imaging and optical imaging techniques at a variety of spatial resolutions to identify tissues and structures with altered copper levels in the Calamity gw71 zebrafish model of Menkes disease. Rapid profiling of tissue slices with LA-ICP-MS identified reduced copper levels in the brain, neuroretina, and liver of Menkes fish compared to control specimens. High resolution nanoSIMS imaging of the neuroretina, combined with electron and confocal microscopies, identified the megamitochondria of photoreceptors as loci of copper accumulation in wildtype fish, with lower levels of megamitochondrial copper observed in Calamity gw71 zebrafish. Interestingly, this localized copper decrease does not result in impaired photoreceptor development or altered megamitochondrial morphology, suggesting the prioritization of copper at sufficient levels for maintaining essential mitochondrial functions. Together, these data establish the Calamity gw71 zebrafish as an optically transparent in vivo model for the study of neural copper misregulation, illuminate a role for the ATP7A copper exporter in trafficking copper to the neuroretina, and highlight the utility of combining multiple imaging techniques for studying metals in whole organism settings with spatial resolution.
Owen, Barbara A. L.; Lang, Walter; McMurray, Cynthia T.
2010-01-01
Summary Here, we report that MSH2/MSH3 maintains lesion specificity for small loops by a distinctly different mechanism than does MHSH2/MSH6 for single base mismatches. ADP and ATP have no preference for the subunits of hMSH2/MSH3. Upon lesion binding, however, hMSH2/MSH3 adopts a single “nucleotide signature” in which one ADP binds within the hMSH2 subunit and the hMSH3 subunit is empty. On the lesion, ADP-hMSH2/MSH3-empty binds and hydrolyzes ATP in the empty hMSH3 subunit, which reduces ADP affinity and increases ATP affinity for the hMSH2 subunit. ADP/ATP exchange converts (CA)4-loop-bound ADP-MSH2/MSH3-ATP into an ATP-hMSH2/MSH3-ADP intermediate in which ATP hydrolysis is inhibited in the hMSH2 subunit. We propose a model in which lesion binding converts hMSH2/MSH3 into a distinct nucleotide-bound form, and poises it to be a molecular sensor for lesion specificity. PMID:19377479
Bawden, S J; Stephenson, M C; Ciampi, E; Hunter, K; Marciani, L; Macdonald, I A; Aithal, G P; Morris, P G; Gowland, P A
2016-06-01
Impaired homeostasis of hepatic ATP has been associated with NAFLD. An intravenous fructose infusion has been shown to be an effective challenge to monitor the depletion and subsequent recovery of hepatic ATP reserves using (31)P MRS. The purpose of this study was to evaluate the effects of an oral rather than intravenous fructose challenge on hepatic ATP reserves in healthy subjects. Self-reported healthy males were recruited. Following an overnight fast, baseline liver glycogen and lipid levels were measured using Magnetic Resonance Spectroscopy (MRS). Immediately after consuming a 500 ml 75 g fructose drink (1275 kJ) subjects were scanned continuously for 90 min to acquire dynamic (31)P MRS measurements of liver ATP reserves. A significant effect on ATP reserves was observed across the time course (P < 0.05). Mean ATP levels reached a minimum at 50 min which was markedly lower than baseline (80 ± 17% baseline, P < 0.05). Subsequently, mean values tended to rise but did not reach statistical significance above minimum. The time to minimum ATP levels across subjects was negatively correlated with BMI (R(2) = 0.74, P < 0.005). Rates of ATP recovery were not significantly correlated with BMI or liver fat levels, but were negatively correlated with baseline glycogen levels (R(2) = 0.7, P < 0.05). Depletion of ATP reserves can be measured non-invasively following an oral fructose challenge using (31)P MRS. BMI is the best predictor of postprandial ATP homeostasis following fructose consumption. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Del-Saz, Néstor Fernández; Romero-Munar, Antonia; Alonso, David; Aroca, Ricardo; Baraza, Elena; Flexas, Jaume; Ribas-Carbo, Miquel
2017-11-01
Growth and maintenance partly depend on both respiration and ATP production during oxidative phosphorylation in leaves. Under stress, ATP is needed to maintain the accumulated biomass. ATP production mostly proceeds from the cytochrome oxidase pathway (COP), while respiration via the alternative oxidase pathway (AOP) may decrease the production of ATP per oxygen consumed, especially under phosphorus (P) limitation and salinity conditions. Symbiosis with arbuscular mycorrhizal (AM) fungi is reputed by their positive effect on plant growth under stress at mature stages of colonization; however, fungal colonization may decrease plant growth at early stages. Thus, the present research is based on the hypothesis that AM fungus colonization will increase both foliar respiration and ATP production at mature stages of plant growth while decreasing them both at early stages. We used the oxygen-isotope-fractionation technique to study the in vivo respiratory activities and ATP production of the COP and AOP in AM and non-AM (NM) tobacco plants grown under P-limiting and saline conditions in sand at different growth stages (14, 28 and 49days). Our results suggest that AM symbiosis represents an ATP cost detrimental for shoot growth at early stages, whilst it represents a benefit on ATP allowing for faster rates of growth at mature stages, even under salinity conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.
Enhancement of succinate yield by manipulating NADH/NAD+ ratio and ATP generation.
Li, Jiaojiao; Li, Yikui; Cui, Zhiyong; Liang, Quanfeng; Qi, Qingsheng
2017-04-01
We previously engineered Escherichia coli YL104 to efficiently produce succinate from glucose. In this study, we investigated the relationships between the NADH/NAD + ratio, ATP level, and overall yield of succinate production by using glucose as the carbon source in YL104. First, the use of sole NADH dehydrogenases increased the overall yield of succinate by 7% and substantially decreased the NADH/NAD + ratio. Second, the soluble fumarate reductase from Saccharomyces cerevisiae was overexpressed to manipulate the anaerobic NADH/NAD + ratio and ATP level. Third, another strategy for reducing the ATP level was applied by introducing ATP futile cycling for improving succinate production. Finally, a combination of these methods exerted a synergistic effect on improving the overall yield of succinate, which was 39% higher than that of the previously engineered strain YL104. The study results indicated that regulation of the NADH/NAD + ratio and ATP level is an efficient strategy for succinate production.
Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G
2000-01-18
ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.
Sánchez-Duarte, E; Trujillo, X; Cortés-Rojo, C; Saavedra-Molina, A; Camargo, G; Hernández, L; Huerta, M; Montoya-Pérez, R
2017-04-01
Fatigue is a phenomenon in which force reduction has been linked to impairment of several biochemical processes. In skeletal muscle, the ATP-sensitive potassium channels (K ATP ) are actively involved in myoprotection against metabolic stress. They are present in sarcolemma and mitochondria (mitoK ATP channels). K + channel openers like nicorandil has been recognized for their ability to protect skeletal muscle from ischemia-reperfusion injury, however, the effects of nicorandil on fatigue in slow skeletal muscle fibers has not been explored, being the aim of this study. Nicorandil (10 μM), improved the muscle function reversing fatigue as increased post-fatigue tension in the peak and total tension significantly with respect to the fatigued condition. However, this beneficial effect was prevented by the mitoK ATP channel blocker 5-hydroxydecanoate (5-HD, 500 μM) and by the free radical scavenger N-2-mercaptopropionyl glycine (MPG, 1 mM), but not by the nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, 100 μM). Nicorandil also decreased lipid peroxidation and maintained both reduced glutathione (GSH) levels and an elevated GSH/GSSG ratio, whereas total glutathione (TGSH) remained unaltered during post-fatigue tension. In addition, NO production, measured through nitrite concentrations was significantly increased with nicorandil during post-fatigue tension; this increase remained unaltered in the presence of nicorandil plus L-NAME, nonetheless, this effect was reversed with nicorandil plus MPG. Hence, these results suggest that nicorandil improves the muscle function reversing fatigue in slow skeletal muscle fibers of chicken through its effects not only as a mitoK ATP channel opener but also as NO donor and as an antioxidant.
Chevrollier, Arnaud; Loiseau, Dominique; Gautier, Fabien; Malthièry, Yves; Stepien, Georges
2005-01-01
Under hypoxic conditions, mitochondrial ATP production ceases, leaving cells entirely dependent on their glycolytic metabolism. The cytoplasmic and intramitochondrial ATP/ADP ratios, partly controlled by the adenine nucleotide translocator (ANT), are drastically modified. In dividing and growing cells that have a predominantly glycolytic metabolism, the ANT isoform 2, which has kinetic properties allowing ATP import into mitochondria, is over-expressed in comparison to control cells. We studied the cellular metabolic and proliferative response to hypoxia in two transformed human cell lines with different metabolic backgrounds: HepG2 and 143B, and in their rho(o) derivatives, i.e., cells with no mitochondrial DNA. Transformed 143B and rho(o) cells continued their proliferation whereas HepG2 cells, with a more differentiated phenotype, arrested their cell-cycle at the G(1)/S checkpoint. Hypoxia induced an increase in glycolytic activity, correlated to an induction of VEGF and hexokinase II (HK II) expression. Thus, according to their tumorigenicity, transformed cells may adopt one of two distinct behaviors to support hypoxic stress, i.e., proliferation or quiescence. Our study links the constitutive glycolytic activity and ANT2 expression levels of transformed cells with the loss of cell-cycle control after oxygen deprivation. ATP import by ANT2 allows cells to maintain their mitochondrial integrity while acquiring insensitivity to any alterations in the proteins involved in oxidative phosphorylation. This loss of cell dependence on oxidative metabolism is an important factor in the development of tumors.
Intrinsic and extrinsic uncoupling of oxidative phosphorylation.
Kadenbach, Bernhard
2003-06-05
This article reviews parameters of extrinsic uncoupling of oxidative phosphorylation (OxPhos) in mitochondria, based on induction of a proton leak across the inner membrane. The effects of classical uncouplers, fatty acids, uncoupling proteins (UCP1-UCP5) and thyroid hormones on the efficiency of OxPhos are described. Furthermore, the present knowledge on intrinsic uncoupling of cytochrome c oxidase (decrease of H(+)/e(-) stoichiometry=slip) is reviewed. Among the three proton pumps of the respiratory chain of mitochondria and bacteria, only cytochrome c oxidase is known to exhibit a slip of proton pumping. Intrinsic uncoupling was shown after chemical modification, by site-directed mutagenesis of the bacterial enzyme, at high membrane potential DeltaPsi, and in a tissue-specific manner to increase thermogenesis in heart and skeletal muscle by high ATP/ADP ratios, and in non-skeletal muscle tissues by palmitate. In addition, two mechanisms of respiratory control are described. The first occurs through the membrane potential DeltaPsi and maintains high DeltaPsi values (150-200 mV). The second occurs only in mitochondria, is suggested to keep DeltaPsi at low levels (100-150 mV) through the potential dependence of the ATP synthase and the allosteric ATP inhibition of cytochrome c oxidase at high ATP/ADP ratios, and is reversibly switched on by cAMP-dependent phosphorylation. Finally, the regulation of DeltaPsi and the production of reactive oxygen species (ROS) in mitochondria at high DeltaPsi values (150-200 mV) are discussed.
Hu, Qingsong; Suzuki, Gen; Young, Rebeccah F; Page, Brian J; Fallavollita, James A; Canty, John M
2009-07-01
We performed the present study to determine whether hibernating myocardium is chronically protected from ischemia. Myocardial tissue was rapidly excised from hibernating left anterior descending coronary regions (systolic wall thickening = 2.8 +/- 0.2 vs. 5.4 +/- 0.3 mm in remote myocardium), and high-energy phosphates were quantified by HPLC during simulated ischemia in vitro (37 degrees C). At baseline, ATP (20.1 +/- 1.0 vs. 26.7 +/- 2.1 micromol/g dry wt, P < 0.05), ADP (8.1 +/- 0.4 vs. 10.3 +/- 0.8 micromol/g, P < 0.05), and total adenine nucleotides (31.2 +/- 1.3 vs. 40.1 +/- 2.9 micromol/g, P < 0.05) were depressed compared with normal myocardium, whereas total creatine, creatine phosphate, and ATP-to-ADP ratios were unchanged. During simulated ischemia, there was a marked attenuation of ATP depletion (5.6 +/- 0.9 vs. 13.7 +/- 1.7 micromol/g at 20 min in control, P < 0.05) and mitochondrial respiration [145 +/- 13 vs. 187 +/- 11 ng atoms O(2).mg protein(-1).min(-1) in control (state 3), P < 0.05], whereas lactate accumulation was unaffected. These in vitro changes were accompanied by protection of the hibernating heart from acute stunning during demand-induced ischemia. Thus, despite contractile dysfunction at rest, hibernating myocardium is ischemia tolerant, with reduced mitochondrial respiration and slowing of ATP depletion during simulated ischemia, which may maintain myocyte viability.
Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A
2018-02-01
Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.
Omidbakhsh, Navid; Ahmadpour, Faraz; Kenny, Nicole
2014-01-01
Background Meters based on adenosine triphosphate (ATP) bioluminescence measurements in relative light units (RLU) are often used to rapidly assess the level of cleanliness of environmental surfaces in healthcare and other settings. Can such ATP measurements be adversely affected by factors such as soil and cleaner-disinfectant chemistry? Objective This study tested a number of leading ATP meters for their sensitivity, linearity of the measurements, correlation of the readings to the actual microbial contamination, and the potential disinfectant chemicals’ interference in their readings. Methods First, solutions of pure ATP in various concentrations were used to construct a standard curve and determine linearity and sensitivity. Serial dilutions of a broth culture of Staphylococcus aureus, as a representative nosocomial pathogen, were then used to determine if a given meter’s ATP readings correlated with the actual CFUs. Next, various types of disinfectant chemistries were tested for their potential to interfere with the standard ATP readings. Results All four ATP meters tested herein demonstrated acceptable linearity and repeatability in their readings. However, there were significant differences in their sensitivity to detect the levels of viable microorganisms on experimentally contaminated surfaces. Further, most disinfectant chemistries tested here quenched the ATP readings variably in different ATP meters evaluated. Conclusions Apart from their limited sensitivity in detecting low levels of microbial contamination, the ATP meters tested were also prone to interference by different disinfectant chemistries. PMID:24940751
The Use of ATP-MgCl2 in the Treatment of Injury and Shock.
1986-07-31
and trauma. In: Altura BM, Lefer AM, Schumer W (eds), The Handbook of Shock and Trauma, Vol 1, New York, Raven Press, pp 227-240, 1983. 10. Chaudry...bled rapidly within 10 minutes to a mean arterial pressure of 27 + 2mnmg and maintained at this level for" hours or until 40% of the shed bloo had to...contacted Dr. David Reynolds in Iowa and made irrangements to visit his laboratory. Dr. Reynolds did set up a primate hevprhagic shock model during
Nicotinamide extends replicative lifespan of human cells.
Kang, Hyun Tae; Lee, Hyung Il; Hwang, Eun Seong
2006-10-01
We found that an ongoing application of nicotinamide to normal human fibroblasts not only attenuated expression of the aging phenotype but also increased their replicative lifespan, causing a greater than 1.6-fold increase in the number of population doublings. Although nicotinamide by itself does not act as an antioxidant, the cells cultured in the presence of nicotinamide exhibited reduced levels of reactive oxygen species (ROS) and oxidative damage products associated with cellular senescence, and a decelerated telomere shortening rate without a detectable increase in telomerase activity. Furthermore, in the treated cells growing beyond the original Hayflick limit, the levels of p53, p21WAF1, and phospho-Rb proteins were similar to those in actively proliferating cells. The nicotinamide treatment caused a decrease in ATP levels, which was stably maintained until the delayed senescence point. Nicotinamide-treated cells also maintained high mitochondrial membrane potential but a lower respiration rate and superoxide anion level. Taken together, in contrast to its demonstrated pro-aging effect in yeast, nicotinamide extends the lifespan of human fibroblasts, possibly through reduction in mitochondrial activity and ROS production.
Adenosine triphosphate (ATP) reduces amyloid-β protein misfolding in vitro.
Coskuner, Orkid; Murray, Ian V J
2014-01-01
Alzheimer's disease (AD) is a devastating disease of aging that initiates decades prior to clinical manifestation and represents an impending epidemic. Two early features of AD are metabolic dysfunction and changes in amyloid-β protein (Aβ) levels. Since levels of ATP decrease over the course of the disease and Aβ is an early biomarker of AD, we sought to uncover novel linkages between the two. First and remarkably, a GxxxG motif is common between both Aβ (oligomerization motif) and nucleotide binding proteins (Rossmann fold). Second, ATP was demonstrated to protect against Aβ mediated cytotoxicity. Last, there is structural similarity between ATP and amyloid binding/inhibitory compounds such as ThioT, melatonin, and indoles. Thus, we investigated whether ATP alters misfolding of the pathologically relevant Aβ42. To test this hypothesis, we performed computational and biochemical studies. Our computational studies demonstrate that ATP interacts strongly with Tyr10 and Ser26 of Aβ fibrils in solution. Experimentally, both ATP and ADP reduced Aβ misfolding at physiological intracellular concentrations, with thresholds at ~500 μM and 1 mM respectively. This inhibition of Aβ misfolding is specific; requiring Tyr10 of Aβ and is enhanced by magnesium. Last, cerebrospinal fluid ATP levels are in the nanomolar range and decreased with AD pathology. This initial and novel finding regarding the ATP interaction with Aβ and reduction of Aβ misfolding has potential significance to the AD field. It provides an underlying mechanism for published links between metabolic dysfunction and AD. It also suggests a potential role of ATP in AD pathology, as the occurrence of misfolded extracellular Aβ mirrors lowered extracellular ATP levels. Last, the findings suggest that Aβ conformation change may be a sensor of metabolic dysfunction.
Genomic Analysis of ATP Efflux in Saccharomyces cerevisiae
Peters, Theodore W.; Miller, Aaron W.; Tourette, Cendrine; Agren, Hannah; Hubbard, Alan; Hughes, Robert E.
2015-01-01
Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes. PMID:26585826
Yu, Corey H; Yang, Nan; Bothe, Jameson; Tonelli, Marco; Nokhrin, Sergiy; Dolgova, Natalia V; Braiterman, Lelita; Lutsenko, Svetlana; Dmitriev, Oleg Y
2017-11-03
The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by apo -Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C.
Lamontagne Boulet, Maxime; Isabelle, Charles; Guay, Isabelle; Brouillette, Eric; Langlois, Jean-Philippe; Jacques, Pierre-Étienne; Rodrigue, Sébastien; Brzezinski, Ryszard; Beauregard, Pascale B; Bouarab, Kamal; Boyapelly, Kumaraswamy; Boudreault, Pierre-Luc; Marsault, Éric; Malouin, François
2018-06-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of deadly hospital-acquired infections. The discovery of anti- Staphylococcus antibiotics and new classes of drugs not susceptible to the mechanisms of resistance shared among bacteria is imperative. We recently showed that tomatidine (TO), a steroidal alkaloid from solanaceous plants, possesses potent antibacterial activity against S. aureus small-colony variants (SCVs), the notoriously persistent form of this bacterium that has been associated with recurrence of infections. Here, using genomic analysis of in vitro -generated TO-resistant S. aureus strains to identify mutations in genes involved in resistance, we identified the bacterial ATP synthase as the cellular target. Sequence alignments were performed to highlight the modified sequences, and the structural consequences of the mutations were evaluated in structural models. Overexpression of the atpE gene in S. aureus SCVs or introducing the mutation found in the atpE gene of one of the high-level TO-resistant S. aureus mutants into the Bacillus subtilis atpE gene provided resistance to TO and further validated the identity of the cellular target. FC04-100, a TO derivative which also possesses activity against non-SCV strains, prevents high-level resistance development in prototypic strains and limits the level of resistance observed in SCVs. An ATP synthesis assay allowed the observation of a correlation between antibiotic potency and ATP synthase inhibition. The selectivity index (inhibition of ATP production by mitochondria versus that of bacterial ATP synthase) is estimated to be >10 5 -fold for FC04-100. Copyright © 2018 American Society for Microbiology.
Strain Background Modifies Phenotypes in the ATP8B1-Deficient Mouse
Vargas, Julie C.; Xu, Hongmei; Groen, Annamiek; Paulusma, Coen C.; Grenert, James P.; Pawlikowska, Ludmila; Sen, Saunak; Elferink, Ronald P. J. Oude; Bull, Laura N.
2010-01-01
Background Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency. Methodology/Principal Findings We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains. Conclusions/Significance Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease. PMID:20126555
Cheng, Yuanhua; Hogarth, Kaley A.; O'Sullivan, M. Lynne; Regnier, Michael
2015-01-01
Dilated cardiomyopathy (DCM) is a major type of heart failure resulting from loss of systolic function. Naturally occurring canine DCM is a widely accepted experimental paradigm for studying human DCM. 2-Deoxyadenosine triphosphate (dATP) can be used by myosin and is a superior energy substrate over ATP for cross-bridge formation and increased systolic function. The objective of this study was to evaluate the beneficial effect of dATP on contractile function of cardiac myofibrils from dogs with naturally occurring DCM. We measured actomyosin NTPase activity and contraction/relaxation properties of isolated myofibrils from nonfailing (NF) and DCM canine hearts. NTPase assays indicated replacement of ATP with dATP significantly increased myofilament activity in both NF and DCM samples. dATP significantly improved maximal tension of DCM myofibrils to the NF sample level. dATP also restored Ca2+ sensitivity of tension that was reduced in DCM samples. Similarly, dATP increased the kinetics of contractile activation (kACT), with no impact on the rate of cross-bridge tension redevelopment (kTR). Thus, the activation kinetics (kACT/kTR) that were reduced in DCM samples were restored for dATP to NF sample levels. dATP had little effect on relaxation. The rate of early slow-phase relaxation was slightly reduced with dATP, but its duration was not, nor was the fast-phase relaxation or times to 50 and 90% relaxation. Our findings suggest that myosin utilization of dATP improves cardiac myofibril contractile properties of naturally occurring DCM canine samples, restoring them to NF levels, without compromising relaxation. This suggests elevation of cardiac dATP is a promising approach for the treatment of DCM. PMID:26497964
Cheng, Yuanhua; Hogarth, Kaley A; O'Sullivan, M Lynne; Regnier, Michael; Pyle, W Glen
2016-01-01
Dilated cardiomyopathy (DCM) is a major type of heart failure resulting from loss of systolic function. Naturally occurring canine DCM is a widely accepted experimental paradigm for studying human DCM. 2-Deoxyadenosine triphosphate (dATP) can be used by myosin and is a superior energy substrate over ATP for cross-bridge formation and increased systolic function. The objective of this study was to evaluate the beneficial effect of dATP on contractile function of cardiac myofibrils from dogs with naturally occurring DCM. We measured actomyosin NTPase activity and contraction/relaxation properties of isolated myofibrils from nonfailing (NF) and DCM canine hearts. NTPase assays indicated replacement of ATP with dATP significantly increased myofilament activity in both NF and DCM samples. dATP significantly improved maximal tension of DCM myofibrils to the NF sample level. dATP also restored Ca(2+) sensitivity of tension that was reduced in DCM samples. Similarly, dATP increased the kinetics of contractile activation (kACT), with no impact on the rate of cross-bridge tension redevelopment (kTR). Thus, the activation kinetics (kACT/kTR) that were reduced in DCM samples were restored for dATP to NF sample levels. dATP had little effect on relaxation. The rate of early slow-phase relaxation was slightly reduced with dATP, but its duration was not, nor was the fast-phase relaxation or times to 50 and 90% relaxation. Our findings suggest that myosin utilization of dATP improves cardiac myofibril contractile properties of naturally occurring DCM canine samples, restoring them to NF levels, without compromising relaxation. This suggests elevation of cardiac dATP is a promising approach for the treatment of DCM. Copyright © 2016 the American Physiological Society.
25-hydroxycholecalciferol stimulation of muscle metabolism.
Birge, S J; Haddad, J G
1975-01-01
Intact diaphragms from vitamin D-deficient rats were incubated in vitro with [3H]leucine. Oral administration of 10 mug (400 U) of cholecalciferol 7 h before incubation increased leucine incorporation into diaphragm muscle protein by 136% (P less than 0.001) of the preparation from untreated animals. Nephrectomy did not obliterate this response. ATP content of the diaphragm muscle was also enhanced 7 h after administration of the vitamin. At 4 h after administration of cholecalciferol, serum phosphorus concentration was reduced by 0.7 mg/100 ml (P less than 0.025) and the rate of inorganic 32PO4 accumulation by diaphragm muscle was increased by 18% (P less than 0.025) over the untreated animals. Increasing serum phosphate concentration of the vitamin D-deficient animals by dietary supplementation with phosphate for 3 days failed to significantly enhance leucine incorporation into protein. However, supplementation of the rachitogenic, vitamin D-deficient diet with phosphorus for 3 wk stimulated the growth of the animal and muscle ATP levels. This increase in growth and muscle ATP content attributed to the addition of phosphorus to the diet was less than the increase in growth and muscle ATP levels achieved by the addition of both phosphorus and vitamin D to the diet. To eliminate systemic effects of the vitamin, the epitrochlear muscle of the rat foreleg of vitamin D-depleted rats was maintained in tissue culture. Addition of 20 ng/ml of 25-hydroxycholecalciferol (25-OHD3) to the medium enhanced ATP content of the muscle and increased leucine incorporation into protein. Vitamin D3 at a concentration of 20 mug/ml and 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) at a concentration of 500 pg/ml were without effect. Analysis of muscle cytosol in sucrose density gradients revealed a protein fraction which specifically bound 25-OHD3 and which demonstrated a lesser affinity for 1,25-(OH)2D3. These studies suggest that 25-OHD3 may influence directly the intracellular accumulation of phosphate by muscle and thereby play an important role in the maintenance of muscle metabolism and function. PMID:1184737
Sigruener, Alexander; Wolfrum, Christian; Boettcher, Alfred; Kopf, Thomas; Liebisch, Gerhard; Orsó, Evelyn; Schmitz, Gerd
2017-01-01
Sequence variants near the human gene for P4-type ATPase, class V, type 10D (ATP10D) were shown to significantly associate with circulating hexosylceramide d18:1/16:0 and d18:1/24:1 levels, obesity, insulin resistance, plasma high density lipoprotein (HDL), coronary stenotic index and intracranial atherosclerotic index. In mice Atp10d is associated with HDL modulation and C57BL/6 mice expressing a truncated, non-functional form of ATP10D easily develop obesity and insulin resistance on high-fat diet. We analyzed metabolic differences of ATP10D deficient C57BL/6J wild type and ATP10D transgenic C57BL/6J BAC129 mice. ATP10D transgenic mice gain 25% less weight on high-fat diet concomitant with a reduced increase in fat cell mass but independent of adipocyte size change. ATP10D transgenic mice also had 26% lower triacylglycerol levels with approximately 76% bound to very low density lipoprotein while in ATP10D deficient wild type mice 57% are bound to low density lipoprotein. Furthermore increased oxygen consumption and CO2 production, 38% lower glucose and 69% lower insulin levels and better insulin sensitivity were observed in ATP10D transgenic mice. Besides decreased hexosylceramide species levels were detected. Part of these effects may be due to reduced hepatic stearoyl-CoA desaturase 1 (SCD1) expression in ATP10D transgenic mice, which was reflected by altered fatty acid and lipid species patterns. There was a significant decrease in the hepatic 18:1 to 18:0 free fatty acid ratio in transgenic mice. The ratio of 16:1 to 16:0 was not significantly different. Interestingly both ratios were significantly reduced in plasma total fatty acids. In summary we found that ATP10D reduces high-fat diet induced obesity and improves insulin sensitivity. ATP10D transgenic mice showed altered hepatic expression of lipid-metabolism associated genes, including Scd1, along with changes in hepatic and plasma lipid species and plasma lipoprotein pattern.
Herrick, James; St Cyr, John
2008-01-01
Every cell needs energy, i.e., adenosine triphosphate (ATP), to carry out its function. Decreased oxygen levels, decreased blood flow, and other stressful conditions can drastically effect the intracellular concentrations of these energy compounds. Skeletal muscle, unlike the heart, can address this drop in ATP by employing the myokinase reaction, ultimately producing ATP with a subsequent elevation in adenosine monophosphate (AMP). Ribose, a naturally occurring 5-carbon monosaccharide, is a key component of RNA, DNA (which has deoxyribose), acetyl coenzyme A, and ATP. Each cell produces its own ribose, involved in the pentose phosphate pathway (PPP), to aid in ATP production. States of ischemia and/or hypoxia can severely lower levels of cellular energy compounds in the heart, with an associated compromise in cellular processes, ultimately reflected in altered function. Ribose appears to provide a solution to the problem in replenishing the depressed ATP levels and improving functional status of patients afflicted with cardiovascular diseases.
Scantland, Sara; Tessaro, Irene; Macabelli, Carolina H; Macaulay, Angus D; Cagnone, Gaël; Fournier, Éric; Luciano, Alberto M; Robert, Claude
2014-09-01
Although the oocyte is the largest cell in the body and an unavoidable phase in life, its physiology is still poorly understood, and other cell types provide little insight into its unique nature. Even basic cellular functions in the oocyte such as energy metabolism are not yet fully understood. It is known that the mitochondria of the female gamete exhibit an immature form characterized by limited energy production from glucose and oxidative phosphorylation. We show that the bovine oocyte uses alternative means to maintain ATP production during maturation, namely, the adenosine salvage pathway. Meiosis resumption is triggered by destruction of cyclic AMP by phosphodiesterases producing adenosine monophosphate that is converted into ATP by adenylate kinases and creatine kinases. Inhibition of these enzymes decreased ATP production, and addition of their substrates restored ATP production in denuded oocytes. Addition of phosphocreatine to the oocyte maturation medium influenced the phenotype of the resulting blastocysts. We propose a model in which adenylate kinases and creatine kinases act as drivers of ATP production from added AMP during oocyte maturation. © 2014 by the Society for the Study of Reproduction, Inc.
Exercise hyperaemia: magnitude and aspects on regulation in humans
Saltin, Bengt
2007-01-01
The primary function of the cardiovascular system is to supply oxygen to tissues and organs in the body. When muscles contract the aerobic demands are met by an increase in oxygen delivery both at the systemic and the regional levels, a match that is very close and holds at submaximal exercise and when small muscle group contract also at vigorous intensities. The level of muscle perfusion reached is 250 ml min−1 (100 g)−1 in muscle of sedentary subjects and in endurance-trained athletes 400 ml min−1 (100 g)−1 has been reported. These levels of peak exercise hyperaemia equal what has been observed in other species. One consequence of these high muscle blood flows is that the human heart cannot support an optimal blood flow in whole body exercise (arms and legs combined) and sympathetically mediated vasoconstriction, also in arterioles feeding active limb muscles, contributes to matching peripheral resistance in order to maintain blood pressure. Respiratory muscles appear to have a higher priority for a blood flow than limb and torso muscles. There is no consensus in regard to which locally produced substances elicit the vasodilatation when muscle contracts. In addition to NO, data are presented for various metabolites of arachidonic acid and also on ATP, possibly released from the red cells. Using blockers of nitric oxide synthase (l-NMMA or l-NAME) and the enzymes producing epoxyeicosatrienoic acid (EET) (sulpaphenozole or tetraetylammonium chloride) or prostaglandins (indomethacin), muscle blood flow may be reduced by up to 25–40%. Evaluating the exact role of ATP has to await further studies in humans and especially the use of specific ATP receptor blockers. PMID:17640931
Prakasam, Gopinath; Singh, Rajnish Kumar; Iqbal, Mohammad Askandar; Saini, Sunil Kumar; Tiku, Ashu Bhan; Bamezai, Rameshwar N K
2017-09-15
Preferential expression of the low-activity (dimeric) M2 isoform of pyruvate kinase (PK) over its constitutively active splice variant M1 isoform is considered critical for aerobic glycolysis in cancer cells. However, our results reported here indicate co-expression of PKM1 and PKM2 and their possible physical interaction in cancer cells. We show that knockdown of either PKM1 or PKM2 differentially affects net PK activity, viability, and cellular ATP levels of the lung carcinoma cell lines H1299 and A549. The stable knockdown of PK isoforms in A549 cells significantly reduced the cellular ATP level, whereas in H1299 cells the level of ATP was unaltered. Interestingly, the PKM1/2 knockdown in H1299 cells activated AMP-activated protein kinase (AMPK) signaling and stimulated mitochondrial biogenesis and autophagy to maintain energy homeostasis. In contrast, knocking down either of the PKM isoforms in A549 cells lacking LKB1, a serine/threonine protein kinase upstream of AMPK, failed to activate AMPK and sustain energy homeostasis and resulted in apoptosis. Moreover, in a similar genetic background of silenced PKM1 or PKM2, the knocking down of AMPKα1/2 catalytic subunit in H1299 cells induced apoptosis. Our findings help explain why previous targeting of PKM2 in cancer cells to control tumor growth has not met with the expected success. We suggest that this lack of success is because of AMPK-mediated energy metabolism rewiring, protecting cancer cell viability. On the basis of our observations, we propose an alternative therapeutic strategy of silencing either of the PKM isoforms along with AMPK in tumors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Regulation of Cellular Calcium in Vestibular Supporting Cells by Otopetrin 1
Kim, Euysoo; Hyrc, Krzysztof L.; Speck, Judith; Lundberg, Yunxia W.; Salles, Felipe T.; Kachar, Bechara; Goldberg, Mark P.; Warchol, Mark E.
2010-01-01
Otopetrin 1 (OTOP1) is a multitransmembrane domain protein, which is essential for mineralization of otoconia, the calcium carbonate biominerals required for vestibular function, and the normal sensation of gravity. The mechanism driving mineralization of otoconia is poorly understood, but it has been proposed that supporting cells and a mechanism to maintain high concentrations of calcium are critical. Using Otop1 knockout mice and a utricular epithelial organ culture system, we show that OTOP1 is expressed at the apex of supporting cells and functions to increase cytosolic calcium in response to purinergic agonists, such as adenosine 5′-triphosphate (ATP). This is achieved by blocking mobilization of calcium from intracellular stores in an extracellular calcium-dependent manner and by mediating influx of extracellular calcium. These data support a model in which OTOP1 acts as a sensor of the extracellular calcium concentration near supporting cells and responds to ATP in the endolymph to increase intracellular calcium levels during otoconia mineralization. PMID:20554841
Hida, Kyoko; Kikuchi, Hiroshi; Maishi, Nako; Hida, Yasuhiro
2017-08-01
Drug resistance is a major problem in anticancer therapy. ATP-binding cassette (ABC) transporters have a role in the multidrug resistance. A new regimen of chemotherapy has been proposed, called "metronomic chemotherapy". Metronomic chemotherapy is the frequent, regular administration of drug doses designed to maintain low, but active, concentrations of chemotherapeutic drugs over prolonged periods of time, without causing serious toxicities. Metronomic chemotherapy regimens were developed to optimize the antitumor efficacy of agents that target the tumor vasculature instead of tumor cells, and to reduce toxicity of antineoplastic drugs [1]. Nevertheless, recent studies revealed that ABC transporters are expressed at a higher level in the endothelium in the tumor. To avoid resistance to metronomic anti-angiogenic chemotherapy, ABC transporter inhibition of tumor endothelial cells may be a promising strategy. In this mini-review, we discuss the possible mechanism of resistance to metronomic chemotherapy from the viewpoint of tumor endothelial cell biology, focusing on ABC transporters. Copyright © 2017. Published by Elsevier B.V.
Establishing and monitoring an aseptic workspace for building the MOMA mass spectrometer
NASA Astrophysics Data System (ADS)
Lalime, Erin N.; Berlin, David
2016-09-01
Mars Organic Molecule Analyzer (MOMA) is an instrument suite on the European Space Agency (ESA) ExoMars 2020 Rover, and the Mass Spectrometer (MOMA-MS) is being built at Goddard Space Flight Center (GSFC). MOMA-MS is a life-detection instrument and thus falls in the most stringent category of Planetary Protection (PP) biological cleanliness requirements. Less than 0.03 spore/m2 are allowed in the instrument sample path. In order to meet these PP requirements, MOMA-MS must be built and maintained in a low bioburden environment. The MOMA-MS project at GSFC maintains three clean rooms with varying levels of bioburden control. The Aseptic Assembly Clean room has the highest level of control, applying three different bioburden reducing methods: 70% Isopropyl Alcohol (IPA), 7.5% Hydrogen Peroxide, and Ultra-Violet C (UVC) light. The three methods are used in rotation and each kills microorganisms by a different mechanism, reducing the likelihood of microorganisms developing resistance to all three. The Integration and Mars Chamber Clean rooms use less biocidal cleaning, with the option to deploy extra techniques as necessary. To support the monitoring of clean rooms and verification that MOMA-MS hardware meets PP requirements, a new Planetary Protection lab was established that currently has the capabilities of standard growth assays for spore or vegetative bacteria, rapid bioburden analysis that detects Adenosine Triphosphate (ATP), plus autoclave and Dry Heat microbial Reduction (DHMR) verification. The clean rooms are monitored for vegetative microorganisms and by rapid ATP assay, and a clear difference in bioburden is observed between the aseptic and other clean room.
Establishing and Monitoring an Aseptic Workspace for Building the MOMA Mass Spectrometer
NASA Technical Reports Server (NTRS)
Lalime, Erin N.; Berlin, David
2016-01-01
Mars Organic Molecule Analyzer (MOMA) is an instrument suite on the European Space Agency (ESA) ExoMars 2020 Rover, and the Mass Spectrometer (MOMA-MS) is being built at Goddard Space Flight Center (GSFC). MOMA-MS is a life-detection instrument and thus falls in the most stringent category of Planetary Protection (PP) biological cleanliness requirements. Less than 0.03 spore/m2 are allowed in the instrument sample path. In order to meet these PP requirements, MOMA-MS must be built and maintained in a low bioburden environment. The MOMA-MS project at GSFC maintains three clean rooms with varying levels of bioburden control. The Aseptic Assembly Clean room has the highest level of control, applying three different bioburden reducing methods: 70% Isopropyl Alcohol (IPA), 7.5% Hydrogen Peroxide, and Ultra-Violet C (UVC) light. The three methods are used in rotation and each kills microorganisms by a different mechanism, reducing the likelihood of microorganisms developing resistance to all three. The Integration and Mars Chamber Clean rooms use less biocidal cleaning, with the option to deploy extra techniques as necessary. To support the monitoring of clean rooms and verification that MOMA-MS hardware meets PP requirements, a new Planetary Protection lab was established that currently has the capabilities of standard growth assays for spore or vegetative bacteria, rapid bioburden analysis that detects Adenosine Triphosphate (ATP), plus autoclave and Dry Heat microbial Reduction (DHMR) verification. The clean rooms are monitored for vegetative microorganisms and by rapid ATP assay, and a clear difference in bioburden is observed between the aseptic and other clean room.
2012-01-01
Background Nutritional supplements designed to increase adenosine 5′-triphosphate (ATP) concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity exercise. Oral ATP supplements have beneficial effects in some but not all studies examining physical performance. One of the remaining questions is whether orally administered ATP is bioavailable. We investigated whether acute supplementation with oral ATP administered as enteric-coated pellets led to increased concentrations of ATP or its metabolites in the circulation. Methods Eight healthy volunteers participated in a cross-over study. Participants were given in random order single doses of 5000 mg ATP or placebo. To prevent degradation of ATP in the acidic environment of the stomach, the supplement was administered via two types of pH-sensitive, enteric-coated pellets (targeted at release in the proximal or distal small intestine), or via a naso-duodenal tube. Blood ATP and metabolite concentrations were monitored by HPLC for 4.5 h (naso-duodenal tube) or 7 h (pellets) post-administration. Areas under the concentration vs. time curve were calculated and compared by paired-samples t-tests. Results ATP concentrations in blood did not increase after ATP supplementation via enteric-coated pellets or naso-duodenal tube. In contrast, concentrations of the final catabolic product of ATP, uric acid, were significantly increased compared to placebo by ~50% after administration via proximal-release pellets (P = 0.003) and naso-duodenal tube (P = 0.001), but not after administration via distal-release pellets. Conclusions A single dose of orally administered ATP is not bioavailable, and this may explain why several studies did not find ergogenic effects of oral ATP supplementation. On the other hand, increases in uric acid after release of ATP in the proximal part of the small intestine suggest that ATP or one of its metabolites is absorbed and metabolized. Uric acid itself may have ergogenic effects, but this needs further study. Also, more studies are needed to determine whether chronic administration of ATP will enhance its oral bioavailability. PMID:22510240
Effects of turbidity, sediment, and polyacrylamide on native freshwater mussels
Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.
2018-01-01
Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.
Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana
2013-01-01
ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies. PMID:24282497
Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana
2013-01-01
ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.
Zhang, Lianshan; Liang, Libin; Tong, Tong; Qin, Yuguo; Xu, Yanping; Tong, Xinglong
2016-10-01
Context Recently, adenosine triphosphate (ATP) was occasionally found to decrease the triglyceride (TG) levels in several hyperlipidemic patients in our clinical practice. Objective The study investigates the anti-hyperlipidemic effects of ATP in a high-fat fed rabbit model and hyperlipidemic patients. Materials and methods Twenty-four rabbits were randomly divided into three groups of eight animals each as follows: normal diet, high-fat diet and high-fat diet + ATP group. ATP supplementation (40 mg/day) was started at the 20th day and lasted for 10 days. Serum concentrations of total cholesterol (TC), TG, LDL-C, HDL-C were measured on the 20th day and 30th day. Heart, liver and aorta were subjected histopathological examination. Twenty outpatients diagnosed primary hyperlipidemia took ATP at a dose of 60 mg twice a day for 1 week. Results Feeding rabbits with a high-fat diet resulted in a significant elevation of lipid parameters including TC, TG, LDL-C, VLDL-C compared to the normal diet group (p < 0.01). ATP treatment significantly decreased serum TG level (p < 0.01), whilst other parameters remained statistically unaltered. Meanwhile, ATP significantly reduced the thickness of fat layer in cardiac epicardium (p < 0.05) and pathological gradation of ballooning degeneration in hepatocytes (p < 0.05). After taking ATP for 1 week, hyperlipidemia patients exhibited a significant decrease of TG (p < 0.01), but other lipid parameters had no significant change. Discussion and conclusion The study indicates that ATP selectively decreases serum TG levels in high-fat diet rabbits and hyperlipidemic patients. Therefore, ATP supplementation may provide an effective approach to control TG level.
Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport
NASA Technical Reports Server (NTRS)
Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.
2003-01-01
Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.
Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum.
Mizumori, Misa; Ham, Maggie; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada
2009-07-15
Regulation of localized extracellular pH (pH(o)) maintains normal organ function. An alkaline microclimate overlying the duodenal enterocyte brush border protects the mucosa from luminal acid. We hypothesized that intestinal alkaline phosphatase (IAP) regulates pH(o) due to pH-sensitive ATP hydrolysis as part of an ecto-purinergic pH regulatory system, comprised of cell-surface P2Y receptors and ATP-stimulated duodenal bicarbonate secretion (DBS). To test this hypothesis, we measured DBS in a perfused rat duodenal loop, examining the effect of the competitive alkaline phosphatase inhibitor glycerol phosphate (GP), the ecto-nucleoside triphosphate diphosphohydrolase inhibitor ARL67156, and exogenous nucleotides or P2 receptor agonists on DBS. Furthermore, we measured perfusate ATP concentration with a luciferin-luciferase bioassay. IAP inhibition increased DBS and luminal ATP output. Increased luminal ATP output was partially CFTR dependent, but was not due to cellular injury. Immunofluorescence localized the P2Y(1) receptor to the brush border membrane of duodenal villi. The P2Y(1) agonist 2-methylthio-ADP increased DBS, whereas the P2Y(1) antagonist MRS2179 reduced ATP- or GP-induced DBS. Acid perfusion augmented DBS and ATP release, further enhanced by the IAP inhibitor l-cysteine, and reduced by the exogenous ATPase apyrase. Furthermore, MRS2179 or the highly selective P2Y(1) antagonist MRS2500 co-perfused with acid induced epithelial injury, suggesting that IAP/ATP/P2Y signalling protects the mucosa from acid injury. Increased DBS augments IAP activity presumably by raising pH(o), increasing the rate of ATP degradation, decreasing ATP-mediated DBS, forming a negative feedback loop. The duodenal epithelial brush border IAP-P2Y-HCO(3-) surface microclimate pH regulatory system effectively protects the mucosa from acid injury.
Moghadam, Ali Asghar; Ebrahimie, Eemaeil; Taghavi, Seyed Mohsen; Niazi, Ali; Babgohari, Mahbobeh Zamani; Deihimi, Tahereh; Djavaheri, Mohammad; Ramezani, Amin
2013-07-01
A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.
The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments
Vargas, Sergio; Larsen, Morten; Elemans, Coen PH; Canfield, Donald E
2018-01-01
Animals have a carefully orchestrated relationship with oxygen. When exposed to low environmental oxygen concentrations, and during periods of increased energy expenditure, animals maintain cellular oxygen homeostasis by enhancing internal oxygen delivery, and by enabling the anaerobic production of ATP. These low-oxygen responses are thought to be controlled universally across animals by the hypoxia-inducible factor (HIF). We find, however, that sponge and ctenophore genomes lack key components of the HIF pathway. Since sponges and ctenophores are likely sister to all remaining animal phyla, the last common ancestor of extant animals likely lacked the HIF pathway as well. Laboratory experiments show that the marine sponge Tethya wilhelma maintains normal transcription under oxygen levels down to 0.25% of modern atmospheric saturation, the lowest levels we investigated, consistent with the predicted absence of HIF or any other HIF-like pathway. Thus, the last common ancestor of all living animals could have metabolized aerobically under very low environmental oxygen concentrations. PMID:29402379
Hasan, Djo; Blankman, Paul; Nieman, Gary F
2017-09-01
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.
Experimental ocean acidification alters the allocation of metabolic energy
Pan, T.-C. Francis; Applebaum, Scott L.; Manahan, Donal T.
2015-01-01
Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors. PMID:25825763
Experimental ocean acidification alters the allocation of metabolic energy.
Pan, T-C Francis; Applebaum, Scott L; Manahan, Donal T
2015-04-14
Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.
Li, Guanwu; Tsao, Sai-Wah; Chiu, Jen-Fu
2016-01-01
Arsenic and benzo[β]pyrene (B[a]P) are common contaminants in developing countries. Many studies have investigated the consequences of arsenic and/or B[a]P-induced cellular transformation, including altered metabolism. In the present study, we show that, in addition to elevated glycolysis, B[a]P/arsenic-induced transformation also stimulates oxidative phosphorylation (OXPHOS). Proteomic data and immunoblot studies demonstrated that enzymatic activities, involved in both glycolysis and OXPHOS, are upregulated in the primary transformed rat lung epithelial cell (TLEC) culture, as well as in subcloned TLEC cell lines (TMCs), indicating that OXPHOS was active and still contributed to energy production. LEC expression, of the glycolytic enzyme phosphoglycerate mutase (PGAM) and the TCA cycle enzyme alpha-ketoglutarate dehydrogenase (OGDH), revealed an alternating cyclic pattern of glycolysis and OXPHOS during cell transformation. We also found that the expression levels of hypoxia-inducible factor-1β were consistent with the pattern of glycolysis during the course of transformation. Low doses of an ATP synthase inhibitor depleted endogenous ATP levels to a greater extent in TLECs, compared to parental LECs, indicating greater sensitivity of B[a]P/arsenic-transformed cells to ATP depletion. However, TLEC cells exhibited better survival under hypoxia, possibly due to further induction of anaerobic glycolysis. Collectively, our data indicate that B[a]P/arsenic-transformed cells can maintain energy production through upregulation of both glycolysis and OXPHOS. Selective inhibition of metabolic pathways may serve as a therapeutic option for cancer therapy. PMID:27276679
Schiffer, Tomas A; Gustafsson, Håkan; Palm, Fredrik
2018-05-30
The kidneys receive approximately 25% of cardiac output, which is a prerequisite in order to maintain sufficient glomerular filtration rate. However, both intrarenal regional renal blood flow and tissue oxygen levels are heterogeneous with decreasing levels in the inner part of the medulla. These differences in combination with the heterogeneous metabolic activity of the different nephron segment located in the different parts of the kidney may constitute a functional problem when challenged. The proximal tubule and the medullary thick ascending limb of Henle are considered to have the highest metabolic rate, which is relating to the high mitochondria content needed to sustain sufficient ATP production from oxidative phosphorylation in order to support high electrolyte transport activity in these nephron segments. Interestingly, the cells located in kidney medulla functions at the verge of hypoxia and the mitochondria may have adapted to the surrounding environment. However, little is known about intrarenal differences in mitochondria function. We therefore investigated functional differences between mitochondria isolated from kidney cortex and medulla of healthy normoglycemic rats were estimated using high-resolution respirometry. The results demonstrate that medullary mitochondria had a higher degree of coupling, are more efficient and have higher oxygen affinity, which would make them more suitable to function in an environment with limited oxygen supply. Furthermore, these results support the hypothesis that mitochondria of medullary cells have adapted to the normal hypoxic in vivo situation as a strategy of sustaining ATP production in a suboptimal environment.
GOLGI IN COPPER HOMEOSTASIS: A VIEW FROM THE MEMBRANE TRAFFICKING FIELD
Polishchuk, Roman; Lutsenko, Svetlana
2013-01-01
Copper is essential for a variety of important biological processes as a cofactor and regulator of many enzymes. Incorporation of copper into the secreted and plasma membrane-targeted cuproenzymes takes place in Golgi, a compartment central for normal copper homeostasis. The Golgi complex harbors copper-transporting ATPases, ATP7A and ATP7B, that transfer copper from the cytosol into Golgi lumen for incorporation into copper-dependent enzymes. The Golgi complex also sends these ATPases to appropriate post-Golgi destinations to ensure correct Cu fluxes in the body and to avoid potentially toxic copper accumulation. Mutations in ATP7A or ATP7B or in the proteins that regulate their trafficking affect their exit from Golgi or subsequent retrieval to this organelle. This, in turn, disrupts the homeostatic Cu balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease). Research over the last decade has yielded significant insights into the enzymatic properties and cell biology of the copper-ATPases. However, the mechanisms through which the Golgi regulates trafficking of ATP7A/7B and, therefore, maintain Cu homeostasis remain unclear. This review summarizes current data on the role of the Golgi in Cu metabolism and outlines questions and challenges that should be addressed to understand ATP7A and ATP7B trafficking mechanisms in health and disease. PMID:23846821
Kim, Ha Won; Chan, Qilin; Afton, Scott E; Caruso, Joseph A; Lai, Barry; Weintraub, Neal L; Qin, Zhenyu
2012-02-01
The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.
Huang, Hong; Yan, Youyi; Zuo, Zhong; Yang, Lin; Li, Bin; Song, Yu; Liao, Linchuan
2010-09-01
Although the change in adenosine phosphate levels in muscles may contribute to the development of rigor mortis, the relationship between their levels and the onset and development of rigor mortis has not been well elucidated. In the current study, levels of the adenosine phosphates including adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in gastrocnemius at various postmortem intervals of 180 rats from different death modes were detected by high performance liquid chromatography. The results showed that the levels of ATP and ADP significantly decreased along with the postmortem period of rats from different death mode whereas the AMP level remained the same. In addition, it was found that changes in the ATP levels in muscles after death correlated well with the development of rigor mortis. Therefore, the ATP level could serve as a reference parameter for the deduction of rigor mortis in forensic science.
Napolitano, Michael J; Shain, Daniel H
2004-01-01
A diverse group of glacially obligate organisms coexist on temperate glaciers between Washington State and Alaska. A fundamental challenge for these and other cold-adapted species is the necessity to maintain an energy flux capable of sustaining life at low physiological temperatures. We show here that ice-adapted psychrophiles from four kingdoms (Animalia, Eubacteria, Fungi, Protista) respond to temperature fluctuations in a similar manner; namely, ATP levels and the total adenylate pool increase as temperatures fall (within their viable temperature limits, respectively), yet growth rate increases with temperature. By contrast, mesophilic representatives of each kingdom respond in an opposite manner (i.e. adenylates increase with temperature). These observations suggest that elevated adenylate levels in psychrophiles may offset inherent reductions in molecular diffusion at low physiological temperatures. PMID:15503992
Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid
2016-09-01
Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.
Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways
Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.
2013-01-01
The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023
Wigington, Callie P.; Morris, Kevin J.; Newman, Laura E.; Corbett, Anita H.
2016-01-01
Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function. PMID:27563065
Emergence of Critical Behavior in β-Cell Network
NASA Astrophysics Data System (ADS)
Westacott, Matthew; Hraha, Thomas; McClatchey, Mason; Pozzoli, Marina; Benninger, Richard
2014-03-01
The β-cell is a cell type located in the Islet of Langerhans, a micro-organ of the pancreas which maintains glucose homeostasis through secretion of insulin. An electrophysiological process governing insulin release occurs through initial uptake of blood glucose and generation of ATP which inhibits the ATP sensitive potassium channel (K-ATP) causing membrane depolarization (activation). Neighboring β-cells are electrically coupled through gap junctions which allow passage of cationic molecules, creating a network of coupled electrical oscillators. Cells exhibiting hyperpolzarized (inactive) membrane potential affect behavior of neighboring cells by electrically suppressing their depolarization. Here we observe critical behavior between global active-inactive states by increasing the number of inactive elements with the K-ATP inhibitor Diazoxide and a tunable ATP insensitive transgenic mouse model. We show this behavior occurs due to from cell-cell coupling as mice lacking β-cell gap junctions show no critical behavior. Also, a computational β-cell model was expanded to construct a coupled β-cell network and we show this model replicates the critical behavior seen in-vitro.While electrical activity of single β-cells is well studied these data highlight a newly defined characteristic of their emergent multicellular behavior within the Islet of Langerhans and may elucidate pathophysiology of Diabetes due to mutations in the K-ATP channel.
Yue, Hai-Yuan; Bieberich, Erhard; Xu, Jianhua
2017-08-01
At rat calyx of Held terminals, ATP was required not only for slow endocytosis, but also for rapid phase of compensatory endocytosis. An ATP-independent form of endocytosis was recruited to accelerate membrane retrieval at increased activity and temperature. ATP-independent endocytosis primarily involved retrieval of pre-existing membrane, which depended on Ca 2+ and the activity of neutral sphingomyelinase but not clathrin-coated pit maturation. ATP-independent endocytosis represents a non-canonical mechanism that can efficiently retrieve membrane at physiological conditions without competing for the limited ATP at elevated neuronal activity. Neurotransmission relies on membrane endocytosis to maintain vesicle supply and membrane stability. Endocytosis has been generally recognized as a major ATP-dependent function, which efficiently retrieves more membrane at elevated neuronal activity when ATP consumption within nerve terminals increases drastically. This paradox raises the interesting question of whether increased activity recruits ATP-independent mechanism(s) to accelerate endocytosis at the same time as preserving ATP availability for other tasks. To address this issue, we studied ATP requirement in three typical forms of endocytosis at rat calyx of Held terminals by whole-cell membrane capacitance measurements. At room temperature, blocking ATP hydrolysis effectively abolished slow endocytosis and rapid endocytosis but only partially inhibited excess endocytosis following intense stimulation. The ATP-independent endocytosis occurred at calyces from postnatal days 8-15, suggesting its existence before and after hearing onset. This endocytosis was not affected by a reduction of exocytosis using the light chain of botulinum toxin C, nor by block of clathrin-coat maturation. It was abolished by EGTA, which preferentially blocked endocytosis of retrievable membrane pre-existing at the surface, and was impaired by oxidation of cholesterol and inhibition of neutral sphingomyelinase. ATP-independent endocytosis became more significant at 34-35°C, and recovered membrane by an amount that, on average, was close to exocytosis. The results of the present study suggest that activity and temperature recruit ATP-independent endocytosis of pre-existing membrane (in addition to ATP-dependent endocytosis) to efficiently retrieve membrane at nerve terminals. This less understood endocytosis represents a non-canonical mechanism regulated by lipids such as cholesterol and sphingomyelinase. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism
Hijaz, Faraj; Ebert, Timothy A.; Rogers, Michael E.
2016-01-01
ABSTRACT Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. “Candidatus Liberibacter asiaticus” (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides. IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular and biochemical levels. The growth of the plant-pathogenic bacteria in the hemolymph of their vectors indicated that the hemolymph contains all the necessary nutrients for their growth. In addition to nutrients, “Candidatus Liberibacter asiaticus” (CLas) can take up energetic nucleotides, such as ATP, from its vector, Diaphorina citri, using ATP translocase. In this study, we found that the CLas pathogen manipulates the energy metabolism of its insect vector. The accumulation of ATP in CLas-infected D. citri psyllids indicated that CLas induces ATP production to fulfill its need for this energetic compound. As a result of ATP accumulation, a shorter life span and altered feeding behavior were observed. These findings increase our knowledge of insect transmission of the persistent-circulative-propagative type of plant pathogens vectored by insects. PMID:28039132
Vassilopoulos, Athanassios; Pennington, J. Daniel; Andresson, Thorkell; Rees, David M.; Bosley, Allen D.; Fearnley, Ian M.; Ham, Amy; Flynn, Charles Robb; Hill, Salisha; Rose, Kristie Lindsey; Kim, Hyun-Seok; Walker, John E.
2014-01-01
Abstract Aims: Adenosine triphosphate (ATP) synthase uses chemiosmotic energy across the inner mitochondrial membrane to convert adenosine diphosphate and orthophosphate into ATP, whereas genetic deletion of Sirt3 decreases mitochondrial ATP levels. Here, we investigate the mechanistic connection between SIRT3 and energy homeostasis. Results: By using both in vitro and in vivo experiments, we demonstrate that ATP synthase F1 proteins alpha, beta, gamma, and Oligomycin sensitivity-conferring protein (OSCP) contain SIRT3-specific reversible acetyl-lysines that are evolutionarily conserved and bind to SIRT3. OSCP was further investigated and lysine 139 is a nutrient-sensitive SIRT3-dependent deacetylation target. Site directed mutants demonstrate that OSCPK139 directs, at least in part, mitochondrial ATP production and mice lacking Sirt3 exhibit decreased ATP muscle levels, increased ATP synthase protein acetylation, and an exercise-induced stress-deficient phenotype. Innovation: This work connects the aging and nutrient response, via SIRT3 direction of the mitochondrial acetylome, to the regulation of mitochondrial energy homeostasis under nutrient-stress conditions by deacetylating ATP synthase proteins. Conclusion: Our data suggest that acetylome signaling contributes to mitochondrial energy homeostasis by SIRT3-mediated deacetylation of ATP synthase proteins. Antioxid. Redox Signal. 21, 551–564. PMID:24252090
Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells
Mello, Paola de Andrade; Filippi-Chiela, Eduardo Cremonese; Nascimento, Jéssica; Beckenkamp, Aline; Santana, Danielle Bertodo; Kipper, Franciele; Casali, Emerson André; Nejar Bruno, Alessandra; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Wink, Marcia Rosângela; Lenz, Guido; Buffon, Andréia
2014-01-01
In cervical cancer, HPV infection and disruption of mechanisms involving cell growth, differentiation, and apoptosis are strictly linked with tumor progression and invasion. Tumor microenvironment is ATP and adenosine rich, suggesting a role for purinergic signaling in cancer cell growth and death. Here we investigate the effect of extracellular ATP on human cervical cancer cells. We find that extracellular ATP itself has a small cytotoxic effect, whereas adenosine formed from ATP degradation by ectonucleotidases is the main factor responsible for apoptosis induction. The level of P2×7 receptor seemed to define the main cytotoxic mechanism triggered by ATP, since ATP itself eliminated a small subpopulation of cells that express high P2×7 levels, probably through its activation. Corroborating these data, blockage or knockdown of P2×7 only slightly reduced ATP cytotoxicity. On the other hand, cell viability was almost totally recovered with dipyridamole, an adenosine transporter inhibitor. Moreover, ATP-induced apoptosis and signaling—p53 increase, AMPK activation, and PARP cleavage—as well as autophagy induction were also inhibited by dipyridamole. In addition, inhibition of adenosine conversion into AMP also blocked cell death, indicating that metabolization of intracellular adenosine originating from extracellular ATP is responsible for the main effects of the latter in human cervical cancer cells. PMID:25103241
Groen, Annemiek; Romero, Marta Rodriguez; Kunne, Cindy; Hoosdally, Sarah J; Dixon, Peter H; Wooding, Carol; Williamson, Catherine; Seppen, Jurgen; Van den Oever, Karin; Mok, Kam S; Paulusma, Coen C; Linton, Kenneth J; Oude Elferink, Ronald P J
2011-11-01
Progressive familial intrahepatic cholestasis can be caused by mutations in ABCB4 or ATP8B1; each encodes a protein that translocates phospholipids, but in opposite directions. ABCB4 flops phosphatidylcholine from the inner to the outer leaflet, where it is extracted by bile salts. ATP8B1, in complex with the accessory protein CDC50A, flips phosphatidylserine in the reverse direction. Abcb4(-/-) mice lack biliary secretion of phosphatidylcholine, whereas Atp8b1-deficient mice have increased excretion of phosphatidylserine into bile. Each system is thought to have a role protecting the canalicular membrane from bile salts. To investigate the relationship between the mechanisms of ABCB4 and ATP8B1, we expressed the transporters separately and together in cultured cells and studied viability and phospholipid transport. We also created mice with disruptions in ABCB4 and ATP8B1 (double knockouts) and studied bile formation and hepatic damage in mice fed bile salts. Overexpression of ABCB4 was toxic to HEK293T cells; the toxicity was counteracted by coexpression of the ATP8B1-CDC50A complex. In Atp8b1-deficient mice, bile salts induced extraction of phosphatidylserine and ectoenzymes from the canalicular membrane; this process was not observed in the double-knockout mice. ATP8B1 is required for hepatocyte function, particularly in the presence of ABCB4. This is most likely because the phosphatidylserine flippase complex of ATP8B1-CDC50A counteracts the destabilization of the membrane that occurs when ABCB4 flops phosphatidylcholine. Lipid asymmetry is therefore important for the integrity of the canalicular membrane; ABCB4 and ATP8B1 cooperate to protect hepatocytes from bile salts. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Spaans, Floor; Melgert, Barbro N; Borghuis, Theo; Klok, Pieter A; de Vos, Paul; Bakker, Winston W; van Goor, Harry; Faas, Marijke M
2014-09-01
Changes in the systemic immune response are found in preeclampsia. This may be related to high extracellular adenosine triphosphate (ATP) levels. The question arose whether ATP could affect immune responses in pregnancy. Previously, we investigated whether ATP affected monocyte activation and subpopulations. Here, we investigated ATP-induced changes in other immune cell populations in pregnant rats, systemically and in the kidney, an affected organ in preeclampsia. Using flow cytometry or immunohistochemistry, blood and kidney leukocytes were studied in pregnant and non-pregnant rats at different intervals after ATP or saline infusion. Adenosine triphosphate (ATP) infusion induced increased peripheral blood non-classical monocytes and decreased T lymphocyte subsets in pregnant rats only, higher glomerular macrophage and T lymphocyte numbers in non-pregnant animals 1 day after infusion, and higher glomerular macrophage numbers in pregnant rats 6 days after infusion. Adenosine triphosphate (ATP) infusion in pregnant rats induced a pregnancy-specific inflammatory response. Increased ATP levels could potentially contribute to development of the inflammatory response of preeclampsia. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaluation of a hygiene monitor for detection of contamination in dental surgeries.
Douglas, C W; Rothwell, P S
1991-05-11
Routines for disinfecting working surfaces in dental surgeries are difficult to monitor without time-consuming and labour-intensive microbiological techniques, yet effective monitoring is a vital part of cross-infection control. Easy to use, on-site methods would be valuable in this context. This study evaluates a portable monitor, the Biotrace Hygiene Monitor, which uses bioluminescence to measure adenosine triphosphate (ATP) on surfaces. Under laboratory conditions, the ability of the monitor to detect whole saliva and Streptococcus sanguis was determined and, in the general practice environment, the level of ATP on surfaces in five dental surgeries was assessed. The minimum amount of saliva detectable was 0.5 microliters and in surgeries, the monitor readily identified numerous surfaces with fairly high levels of ATP. Routine cleaning methods sometimes left ATP on surfaces at levels which represented a cross-infection risk, if it is assumed that the ATP derived from patients' saliva. Modification of cleaning methods resulted in a reduction of ATP levels to within that which could be considered reasonably practicably safe. It is concluded that the Biotrace Hygiene Monitor offers a simple and valuable means of monitoring dental practice cleaning routines.
Ambruso, D R; Hawkins, B; Johnson, D L; Fritzberg, A R; Klingensmith, W C; McCabe, E R
1986-06-01
Conditions for blood storage are chosen to assure adequate levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG). Because of the invasive nature of the techniques, biochemical assays are not routinely used to measure levels of these compounds in stored blood. However, 31P NMR spectroscopy measures phosphorylated intermediates in intact cells and could be used without disruption of the storage pack. We compared levels of ATP and 2,3-DPG measured by 31P spectroscopy and standard enzyme-linked biochemical assays in whole blood (WB) and packed red blood cells (PRBCs) at weekly intervals during a 35-day storage period. NMR demonstrated a marked decrease in 2,3-DPG and an increase in inorganic phosphate after the first week of storage. No significant differences in ATP concentrations were seen in WB during the storage period, but a significant decrease in ATP in PRBCs was documented. There was good agreement in levels of ATP and 2,3-DPG measured by NMR and biochemical techniques. 31P NMR spectroscopy is a noninvasive technique for measuring ATP and 2,3-DPG which has a potential use in quality assurance of stored blood.
Bracke, A; Schäfer, S; von Bohlen Und Halbach, V; Klempin, F; Bente, K; Bracke, K; Staar, D; van den Brandt, J; Harzsch, S; Bader, M; Wenzel, U O; Peters, J; von Bohlen Und Halbach, O
2018-02-23
The (pro)renin receptor [(P)RR], also known as ATP6AP2 [ATPase 6 accessory protein 2], is highly expressed in the brain. ATP6AP2 plays a role in early brain development, adult hippocampal neurogenesis and in cognitive functions. Lack of ATP6AP2 has deleterious effects, and mutations of ATP6AP2 in humans are associated with, e.g. X-linked intellectual disability. However, little is known about the effects of over-expression of ATP6AP2 in the adult brain. We hypothesized that mice over-expressing ATP6AP2 in the brain might exhibit altered neuroanatomical features and behavioural responses. To this end, we investigated heterozygous transgenic female mice and confirmed increased levels of ATP6AP2 in the brain. Our data show that over-expression of ATP6AP2 does not affect adult hippocampal neurogenesis, exercise-induced cell proliferation, or dendritic spine densities in the hippocampus. Only a reduced ventricular volume on the gross morphological level was found. However, ATP6AP2 over-expressing mice displayed altered exploratory behaviour with respect to the hole-board and novel object recognition tests. Moreover, primary adult hippocampal neural stem cells over-expressing ATP6AP2 exhibit a faster cell cycle progression and increased cell proliferation. Together, in contrast to the known deleterious effects of ATP6AP2 depletion, a moderate over-expression results in moderate behavioural changes and affects cell proliferation rate in vitro.
Inhibition of the purinergic pathway prolongs mouse lung allograft survival.
Liu, Kaifeng; Vergani, Andrea; Zhao, Picheng; Ben Nasr, Moufida; Wu, Xiao; Iken, Khadija; Jiang, Dawei; Su, Xiaofeng; Fotino, Carmen; Fiorina, Paolo; Visner, Gary A
2014-08-01
Lung transplantation has limited survival with current immunosuppression. ATP is released from activated T cells, which act as costimulatory molecules through binding to the purinergic receptor P2XR7. We investigated the role of blocking the ATP/purinergic pathway, primarily P2XR7, using its inhibitor oxidized ATP (oATP) in modulating rejection of mouse lung allografts. Mouse lung transplants were performed using mice with major histocompatibility complex mismatch, BALB/c to C57BL6. Recipients received suramin or oATP, and lung allografts were evaluated 15 to ≥ 60 days after transplantation. Recipients were also treated with oATP after the onset of moderate to severe rejection to determine its ability to rescue lung allografts. Outcomes measures included lung function, histology, thoracic imaging, and allo-immune responses. Blocking purinergic receptors with the nonselective inhibitor suramin or with the P2XR7-selective inhibitor oATP reduced acute rejection and prolonged lung allograft survival for ≥ 60 days with no progression in severity. There were fewer inflammatory cells within lung allografts, less rejection, and improved lung function, which was maintained over time. CD4 and CD8 T cells were reduced within lung allografts with impaired activation with prolonged impairment of CD8 responses. In vitro, oATP reduced CD8 activation of Th1 inflammatory cytokines IFN-γ and TNF-α and cytolytic machinery, granzyme B. Cotreatment with immunosuppressive agents, cyclosporine, rapamycin, or CTLA-4Ig resulted in no additive benefits, and oATP alone resulted in better outcomes than cyclosporine alone. This study illustrates a potential new pathway to target in hopes of prolonging survival of lung transplant recipients.
Reis, M; Farage, M; de Souza, A C; de Meis, L
2001-11-16
The sarcoplasmic reticulum Ca(2+)-ATPase transports Ca(2+) using the chemical energy derived from ATP hydrolysis. Part of the chemical energy is used to translocate Ca(2+) through the membrane (work) and part is dissipated as heat. The amount of heat produced during catalysis increases after formation of the Ca(2+) gradient across the vesicle membrane. In the absence of gradient (leaky vesicles) the amount of heat produced/mol of ATP cleaved is half of that measured in the presence of the gradient. After formation of the gradient, part of the ATPase activity is not coupled to Ca(2+) transport. We now show that NaF can impair the uncoupled ATPase activity with discrete effect on the ATPase activity coupled to Ca(2+) transport. For the control vesicles not treated with NaF, after formation of the gradient only 20% of the ATP cleaved is coupled to Ca(2+) transport, and the caloric yield of the total ATPase activity (coupled plus uncoupled) is 22.8 kcal released/mol of ATP cleaved. In contrast, the vesicles treated with NaF consume only the ATP needed to maintain the gradient, and the caloric yield of ATP hydrolysis is 3.1 kcal/mol of ATP. The slow ATPase activity measured in vesicles treated with NaF has the same Ca(2+) dependence as the control vesicles. This demonstrates unambiguously that the uncoupled activity is an actual pathway of the Ca(2+)-ATPase rather than a contaminating phosphatase. We conclude that when ATP hydrolysis occurs without coupled biological work most of the chemical energy is dissipated as heat. Thus, uncoupled ATPase activity appears to be the mechanistic feature underlying the ability of the Ca(2+)-ATPase to modulated heat production.
Shiroguchi, Katsuyuki; Chin, Harvey F; Hannemann, Diane E; Muneyuki, Eiro; De La Cruz, Enrique M; Kinosita, Kazuhiko
2011-04-01
Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed "strokes"; the "power stroke" is the force-generating swinging of the myosin light chain-binding "neck" domain relative to the motor domain "head" while bound to actin; the "recovery stroke" is the necessary initial motion that primes, or "cocks," myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a "hand over hand" mechanism in which the trailing head detaches and steps forward ∼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s) attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ∼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥ 5 k(B)T of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery stroke contributes to unidirectional stepping of myosin Va.
Dietary protein deficiency reduces lysosomal and nonlysosomal ATP-dependent proteolysis in muscle
NASA Technical Reports Server (NTRS)
Tawa, N. E. Jr; Kettelhut, I. C.; Goldberg, A. L.
1992-01-01
When rats are fed a protein deficient (PD) diet for 7 days, rates of proteolysis in skeletal muscle decrease by 40-50% (N. E. Tawa, Jr., and A. L. Goldberg. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E317-325, 1992). To identify the underlying biochemical adaptations, we measured different proteolytic processes in incubated muscles. The capacity for intralysosomal proteolysis, as shown by sensitivity to methylamine or lysosomal protease inhibitors, fell 55-75% in muscles from PD rats. Furthermore, extracts of muscles of PD rats showed 30-70% lower activity of many lysosomal proteases, including cathepsins B, H, and C, and carboxypeptidases A and C, as well as other lysosomal hydrolases. The fall in cathepsin B and proteolysis was evident by 3 days on the PD diet, and both returned to control levels 3 days after refeeding of the normal diet. In muscles maintained under optimal conditions, 80-90% of protein breakdown occurs by nonlysosomal pathways. In muscles of PD rats, this ATP-dependent process was also 40-60% slower. Even though overall proteolysis decreased in muscles of PD rats, their capacity for Ca(2+)-dependent proteolysis increased (by 66%), as did the activity of the calpains (+150-250%). Thus the lysosomal and the ATP-dependent processes decrease coordinately and contribute to the fall in muscle proteolysis in PD animals.
Alford, Lea M; Stoddard, Daniel; Li, Jennifer H; Hunter, Emily L; Tritschler, Douglas; Bower, Raqual; Nicastro, Daniela; Porter, Mary E; Sale, Winfield S
2016-06-01
We developed quantitative assays to test the hypothesis that the N-DRC is required for integrity of the ciliary axoneme. We examined reactivated motility of demembranated drc cells, commonly termed "reactivated cell models." ATP-induced reactivation of wild-type cells resulted in the forward swimming of ∼90% of cell models. ATP-induced reactivation failed in a subset of drc cell models, despite forward motility in live drc cells. Dark-field light microscopic observations of drc cell models revealed various degrees of axonemal splaying. In contrast, >98% of axonemes from wild-type reactivated cell models remained intact. The sup-pf4 and drc3 mutants, unlike other drc mutants, retain most of the N-DRC linker that interconnects outer doublet microtubules. Reactivated sup-pf4 and drc3 cell models displayed nearly wild-type levels of forward motility. Thus, the N-DRC linker is required for axonemal integrity. We also examined reactivated motility and axoneme integrity in mutants defective in tubulin polyglutamylation. ATP-induced reactivation resulted in forward swimming of >75% of tpg cell models. Analysis of double mutants defective in tubulin polyglutamylation and different regions of the N-DRC indicate B-tubule polyglutamylation and the distal lobe of the linker region are both important for axonemal integrity and normal N-DRC function. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chen, Yawei; Tan, Tianwei
2018-05-23
In the biosynthesis of S-adenosylmethionine (SAM) in baker's yeast ( Saccharomyces cerevisiae), ATP functions as both a precursor and a driving force. However, few published reports have dealt with the control of ATP concentration using genetic design. In this study we have adopted a new ATP regulation strategy in yeast for enhancing SAM biosynthesis, including altering NADH availability and regulating the oxygen supply. Different ATP regulation systems were designed based on the introduction of water-forming NADH oxidase, Vitreoscilla hemoglobin, and phosphite dehydrogenase in combination with overexpression of the gene SAM2. Via application of this strategy, after 28 h cultivation, the SAM titer in the yeast strain ABYSM-2 reached a maximum level close to 55 mg/L, an increase of 67% compared to the control strain. The results show that the ATP regulation strategy is a valuable tool for SAM production and might further enhance the synthesis of other ATP-driven metabolites in yeast.
Walker, Berkley J; Strand, Deserah D; Kramer, David M; Cousins, Asaph B
2014-05-01
Photosynthesis captures light energy to produce ATP and NADPH. These molecules are consumed in the conversion of CO2 to sugar, photorespiration, and NO3(-) assimilation. The production and consumption of ATP and NADPH must be balanced to prevent photoinhibition or photodamage. This balancing may occur via cyclic electron flow around photosystem I (CEF), which increases ATP/NADPH production during photosynthetic electron transport; however, it is not clear under what conditions CEF changes with ATP/NADPH demand. Measurements of chlorophyll fluorescence and dark interval relaxation kinetics were used to determine the contribution of CEF in balancing ATP/NADPH in hydroponically grown Arabidopsis (Arabidopsis thaliana) supplied different forms of nitrogen (nitrate versus ammonium) under changes in atmospheric CO2 and oxygen. Measurements of CEF were made under low and high light and compared with ATP/NADPH demand estimated from CO2 gas exchange. Under low light, contributions of CEF did not shift despite an up to 17% change in modeled ATP/NADPH demand. Under high light, CEF increased under photorespiratory conditions (high oxygen and low CO2), consistent with a primary role in energy balancing. However, nitrogen form had little impact on rates of CEF under high or low light. We conclude that, according to modeled ATP/NADPH demand, CEF responded to energy demand under high light but not low light. These findings suggest that other mechanisms, such as the malate valve and the Mehler reaction, were able to maintain energy balance when electron flow was low but that CEF was required under higher flow.
Syed, Samreen K; Kauffman, Audra L; Beavers, Lisa S; Alston, James T; Farb, Thomas B; Ficorilli, James; Marcelo, Marialuisa C; Brenner, Martin B; Bokvist, Krister; Barrett, David G; Efanov, Alexander M
2013-11-15
Extracellular ATP released from pancreatic β-cells acts as a potent insulinotropic agent through activation of P2 purinergic receptors. Ectonucleotidases, a family of membrane-bound nucleotide-metabolizing enzymes, regulate extracellular ATP levels by degrading ATP and related nucleotides. Ectonucleotidase activity affects the relative proportion of ATP and its metabolites, which in turn will impact the level of purinergic receptor stimulation exerted by extracellular ATP. Therefore, we investigated the expression and role of ectonucleotidases in pancreatic β-cells. Of the ectonucleotidases studied, only ENTPD3 (gene encoding the NTPDase3 enzyme) mRNA was detected at fairly abundant levels in human and mouse pancreatic islets as well as in insulin-secreting MIN6 cells. ARL67156, a selective ectonucleotidase inhibitor, blocked degradation of extracellular ATP that was added to MIN6 cells. The compound also decreased degradation of endogenous ATP released from cells. Measurements of insulin secretion in MIN6 cells as well as in mouse and human pancreatic islets demonstrated that ARL67156 potentiated glucose-dependent insulin secretion. Downregulation of NTPDase3 expression in MIN6 cells with the specific siRNA replicated the effects of ARL67156 on extracellular ATP hydrolysis and insulin secretion. Our results demonstrate that NTPDase3 is the major ectonucleotidase in pancreatic β-cells in multiple species and that it modulates insulin secretion by controlling activation of purinergic receptors.
Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.
Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S
2014-04-01
Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training. © Georg Thieme Verlag KG Stuttgart · New York.
A highly stable blood meal alternative for rearing Aedes and Anopheles mosquitoes.
Baughman, Ted; Peterson, Chelsea; Ortega, Corrie; Preston, Sarah R; Paton, Christopher; Williams, Jessica; Guy, Amy; Omodei, Gavin; Johnson, Brian; Williams, Helen; O'Neill, Scott L; Ritchie, Scott A; Dobson, Stephen L; Madan, Damian
2017-12-01
We investigated alternatives to whole blood for blood feeding of mosquitoes with a focus on improved stability and compatibility with mass rearing programs. In contrast to whole blood, an artificial blood diet of ATP-supplemented plasma was effective in maintaining mosquito populations and was compatible with storage for extended periods refrigerated, frozen, and as a lyophilized powder. The plasma ATP diet supported rearing of both Anopheles and Aedes mosquitoes. It was also effective in rearing Wolbachia-infected Aedes mosquitoes, suggesting compatibility with vector control efforts.
Patel, B A
2014-02-01
Mechanical stimulation of the mucosal epithelium results in increased serotonin (5-HT) release from enterochromaffin (EC) cells. Little is known about how this process varies in different regions of the intestinal tract; however, purines are felt to play a role. We studied the relationship between mechanical stimulation, adenosine triphosphate (ATP), and 5-HT release from ileal and colonic mucosal tissue. Amperometric recordings of ATP and 5-HT were carried out using an ATP biosensor and boron-doped diamond microelectrode. Levels of extracellular ATP and 5-HT were monitored using high performance liquid chromatography. Under basal conditions, 5-HT levels were significantly decreased in the ileum (p < 0.001) but not the colon in the presence of the P2 antagonist suramin (100 μM). Ecto-ATPase inhibitor ARL67156 (10 μM) elevated ATP levels in the ileum and colon (both p < 0.001), but only 5-HT levels in the ileum (p < 0.001). Exogenous ATP increased 5-HT release in the presence of tetrodotoxin in the ileum (p < 0.001), but had not effect in the colon. Mechanical stimulation increased levels of 5-HT in the ileum (p < 0.001) and colon (p < 0.01), but levels returned to baseline in the presence of suramin and MRS2179 in the ileum. The onset of 5-HT release was delayed following mechanical stimulation. The rise time of the ATP response was quicker than that of 5-HT during mechanical stimulation. During mechanical stimulation of the mucosal epithelium, ATP mediates 5-HT release from EC cells in the ileum, but not the colon. Mucosal 5-HT signaling following mechanical stimulation is varied in different regions of the intestinal tract. © 2013 John Wiley & Sons Ltd.
Chlorella protects against hydrogen peroxide-induced pancreatic β-cell damage.
Lin, Chia-Yu; Huang, Pei-Jane; Chao, Che-Yi
2014-12-01
Oxidative stress has been implicated in the etiology of pancreatic β-cell dysfunction and diabetes. Studies have shown that chlorella could be important in health promotion or disease prevention through its antioxidant capacity. However, whether chlorella has a cytoprotective effect in pancreatic β-cells remains to be elucidated. We investigated the protective effects of chlorella on H2O2-induced oxidative damage in INS-1 (832/13) cells. Chlorella partially restored cell viability after H2O2 toxicity. To further investigate the effects of chlorella on mitochondria function and cellular oxidative stress, we analyzed mitochondria membrane potential, ATP concentrations, and cellular levels of reactive oxygen species (ROS). Chlorella prevented mitochondria disruption and maintained cellular ATP levels after H2O2 toxicity. It also normalized intracellular levels of ROS to that of control in the presence of H2O2. Chlorella protected cells from apoptosis as indicated by less p-Histone and caspase 3 activation. In addition, chlorella not only enhanced glucose-stimulated insulin secretion (GSIS), but also partially restored the reduced GSIS after H2O2 toxicity. Our results suggest that chlorella is effective in amelioration of cellular oxidative stress and destruction, and therefore protects INS-1 (832/13) cells from H2O2-induced apoptosis and increases insulin secretion. Chlorella should be studied for use in the prevention or treatment of diabetes.
Hu, Jun; Xia, Yuxian
2016-07-01
The migratory locust is one of the most destructive agricultural pests worldwide. ATP synthase (F0 F1 -ATPase) uses proton or sodium motive force to produce 90% of the cellular ATP, and the α-subunit of F1 -ATP synthase (ATP5A) is vital for F1 -ATP synthase. Here, we tested whether ATP5A could be a potential target for RNAi-mediated pest management of L. migratoria. Lm-ATP5A was cloned and characterised. Lm-ATP5A is expressed in all tissues. Injection of 100 ng of the double-stranded RNA of ATP5A (dsATP5A) knocked down the transcription of the target gene and caused mortality in 1.5-5 days. The Lm-ATP5A protein level, the oligomycin-sensitive ATP synthetic and hydrolytic activities and the ATP content were correspondingly reduced following dsATP5A injection. These findings demonstrated the essential roles of Lm-ATP5A in L. migratoria and identified it as a potential target for insect pest control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania
2016-01-01
In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise. Copyright © 2015 Elsevier Inc. All rights reserved.
Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.
Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi
2016-10-07
Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Carta, Sonia; Penco, Federica; Lavieri, Rosa; Martini, Alberto; Dinarello, Charles Anthony; Gattorno, Marco; Rubartelli, Anna
2015-01-01
Cell stress is implicated in triggering bouts of systemic inflammation in patients with autoinflammatory disorders. Blood monocytes from patients affected by NLRP3-mediated cryopyrin-associated periodic syndromes (CAPS) release greater amounts of IL-1β than monocytes from unaffected subjects. Here we show that stress lowers the threshold of activation; blood monocytes from CAPS patients maintain the high levels of secreted IL-1β (fivefold) and IL-18 (10-fold) when stimulated with 1,000-fold less LPS than that required for full IL-1β secretion in control subjects. Unexpectedly, IL-1α secretion is increased 10-fold, indicating that inflammatory episodes in CAPS may not be entirely a result of IL-1β but may also involve IL-1α. In CAPS monocytes, LPS induces the externalization of copious amounts of ATP (10-fold), which drive IL-1β, IL-18, and IL-1α release via activation of the P2X purinoceptor 7. This enhanced ATP release appears to be the link between cell stress and increased cytokine secretion in CAPS. In the later phase after LPS stimulation, CAPS monocytes undergo oxidative stress, which impairs production of the anti-inflammatory IL-1 receptor antagonist (IL-1Ra). Remarkably, IL-1Ra secretion is fully restored by treatment with antioxidants. In two patients with the same NLRP3 mutation, but different disease severity, monocytes from the mildly affected patient exhibited more efficient redox response, lower ATP secretion, and more balanced cytokine production. Thus, the robustness of the individual antioxidant response increases the tolerance to stress and reduces the negative effect of the disease. Pharmacologic block of P2X purinoceptor 7 and improved stress tolerance may represent novel treatment strategies in stress-associated inflammatory diseases. PMID:25730877
Ney, R. L.; Hochella, N. J.; Grahame-Smith, D. G.; Dexter, R. N.; Butcher, R. W.
1969-01-01
A spontaneously occurring rat adrenocortical carcinoma which produces corticosterone was maintained by transplantation. The carcinoma appeared to utilize corticosterone biosynthetic steps similar to those of the normal adrenal, but the tumor produced only about 1-10% as much corticosterone per unit tissue weight as nontumorous adrenal glands. The tumor demonstrated little or no increase in corticosterone production in response to adrenocorticotropic hormone (ACTH) either in vivo or in vitro. In normal adrenals, ACTH increases the activity of adenyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to adenosine-3′,5′-monophosphate (cyclic AMP), the latter then serving as an intracellular regulator of steroidogenesis. ACTH failed to increase cyclic AMP levels in the tumor in vivo or in slices in vitro, conditions under which there were 50- and 20-fold increases in nontumorous adrenals. However, in homogenates fortified with exogenous ATP, adenyl cyclase activity was comparable in the tumor and adrenals, and cyclic AMP formation was increased 3-fold by ACTH in each. As measured in homogenates, the tumor did not possess a greater ability to destroy cyclic AMP than did normal adrenals. Although ATP levels in the carcinoma were found to be considerably lower than those in normal adrenals, it was not clear that this finding can explain the inability of ACTH to increase cyclic AMP levels in intact tumor cells. While the failure to normally influence cyclic AMP levels in the carcinoma cells could be an important factor in the lack of a steroid response to ACTH, several lines of evidence suggest that the tumor possesses one or more additional abnormalities in the regulation of steroidogenesis. First, in the absence of ACTH stimulation, the tissue concentrations of cyclic AMP were comparable in the tumor and in nontumorous adrenals, but these cyclic AMP levels were associated with a lower level of steroidogenesis in the tumor. Second, tumor slices failed to increase corticosterone production when incubated with cyclic AMP, in contrast to 5-fold increases observed with nontumorous adrenals. PMID:4390412
Huang, Ching‐Ying; Kuo, Wei‐Ting; Huang, Chung‐Yen; Lee, Tsung‐Chun; Chen, Chin‐Tin; Peng, Wei‐Hao; Lu, Kuo‐Shyan; Yang, Chung‐Yi
2016-01-01
Key points Intestinal ischaemia causes epithelial death and crypt dysfunction, leading to barrier defects and gut bacteria‐derived septic complications.Enteral glucose protects against ischaemic injury; however, the roles played by glucose metabolites such as pyruvate and ATP on epithelial death and crypt dysfunction remain elusive.A novel form of necrotic death that involves the assembly and phosphorylation of receptor interacting protein kinase 1/3 complex was found in ischaemic enterocytes.Pyruvate suppressed epithelial cell death in an ATP‐independent manner and failed to maintain crypt function. Conversely, replenishment of ATP partly restored crypt proliferation but had no effect on epithelial necroptosis in ischaemic gut.Our data argue against the traditional view of ATP as the main cytoprotective factor by glucose metabolism, and indicate a novel anti‐necroptotic role of glycolytic pyruvate under ischaemic stress. Abstract Mesenteric ischaemia/reperfusion induces epithelial death in both forms of apoptosis and necrosis, leading to villus denudation and gut barrier damage. It remains unclear whether programmed cell necrosis [i.e. receptor‐interacting protein kinase (RIP)‐dependent necroptosis] is involved in ischaemic injury. Previous studies have demonstrated that enteral glucose uptake by sodium‐glucose transporter 1 ameliorated ischaemia/reperfusion‐induced epithelial injury, partly via anti‐apoptotic signalling and maintenance of crypt proliferation. Glucose metabolism is generally assumed to be cytoprotective; however, the roles played by glucose metabolites (e.g. pyruvate and ATP) on epithelial cell death and crypt dysfunction remain elusive. The present study aimed to investigate the cytoprotective effects exerted by distinct glycolytic metabolites in ischaemic gut. Wistar rats subjected to mesenteric ischaemia were enterally instilled glucose, pyruvate or liposomal ATP. The results showed that intestinal ischaemia caused RIP1‐dependent epithelial necroptosis and villus destruction accompanied by a reduction in crypt proliferation. Enteral glucose uptake decreased epithelial cell death and increased crypt proliferation, and ameliorated mucosal histological damage. Instillation of cell‐permeable pyruvate suppressed epithelial cell death in an ATP‐independent manner and improved the villus morphology but failed to maintain crypt function. Conversely, the administration of liposomal ATP partly restored crypt proliferation but did not reduce epithelial necroptosis and histopathological injury. Lastly, glucose and pyruvate attenuated mucosal‐to‐serosal macromolecular flux and prevented enteric bacterial translocation upon blood reperfusion. In conclusion, glucose metabolites protect against ischaemic injury through distinct modes and sites, including inhibition of epithelial necroptosis by pyruvate and the promotion of crypt proliferation by ATP. PMID:27121603
Aerobic plate counts and ATP levels correlate with Listeria monocytogenes detection in retail delis.
Hammons, Susan R; Stasiewicz, Matthew J; Roof, Sherry; Oliver, Haley F
2015-04-01
Listeria monocytogenes is a foodborne pathogen that causes an estimated 1,591 cases of illness and 255 deaths annually in the United States, the majority of which are attributed to ready-to-eat deli meats processed in retail delis. Because retail delis distribute product directly to consumers, rapid methods to validate cleaning and sanitation are needed to improve retail food safety. This study investigated the relationships among ATP levels, standard aerobic plate count (APC), and L. monocytogenes presence in fully operational delis. Fifteen full-service delis were concurrently sampled for ATP, APC, and L. monocytogenes during preoperational hours once monthly for 3 months. Fifteen additional delis were recruited for 6 months of operational sampling (n = 30). A 1-log increase in APC was equivalent to a 3.3-fold increase in the odds of detecting L. monocytogenes (P < 0.001) and a 1.9-log increase in L monocytogenes population (P = 0.03). An ATP level increase of 1 log relative light unit correlated to a 0.22-log increase in APC (P < 0.001). A preoperational ATP level mean increase by 1 log relative light unit increased the odds of detecting L. monocytogenes concurrently fourfold. A 0.5-log increase in mean ATP level during preoperational sampling corresponded to a 2% increase in the predicted L. monocytogenes prevalence during operation (P < 0.01). Additionally, 10 statistically representative sites were identified and recommended for use in sanitation monitoring programs. Our data support the use of ATP as a rapid method to validate effective cleaning and sanitation to reduce L. monocytogenes in retail delis.
Anderson, James D.
1977-01-01
The ATP content of soybean (Glycine max [L.] Merr. cv. Kent) axes incubated for 3 hours in 1 mm solutions of adenine and adenosine increased over 100% and 75%, respectively, over axes incubated in water. The increase in ATP was primarily due to the conversion of these purines to nucleotides via the nucleotide salvage pathway. The ATP formed was in a metabolically active pool because label from adenine was incorporated into acid-insoluble material. Adenine also increased the levels of GTP, UTP, and CTP, but not to the extent of the ATP level. PMID:16660165
Zhang, Rong; Shao, Ming; Han, Xu; Wang, Chuan; Li, Yong; Hu, Bin; Pang, Daiwen; Xie, Zhixiong
2017-01-01
Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs) biosynthesis in the Δ atp1 , Δ atp2 , Δ atp14 , and Δ atp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S -adenosylmethionine, the product that would accumulate when ATP is accrued). This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications.
Zhang, Rong; Shao, Ming; Han, Xu; Wang, Chuan; Li, Yong; Hu, Bin; Pang, Daiwen; Xie, Zhixiong
2017-01-01
Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs) biosynthesis in the Δatp1, Δatp2, Δatp14, and Δatp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S-adenosylmethionine, the product that would accumulate when ATP is accrued). This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications. PMID:28579774
Koller, Heiko; Schmidt, Rene; Mayer, Michael; Hitzl, Wolfgang; Zenner, Juliane; Midderhoff, Stefan; Middendorf, Stefan; Graf, Nicolaus; Gräf, Nicolaus; Resch, H; Wilke, Hans-Joachim; Willke, Hans-Joachim
2010-12-01
Clinical studies reported frequent failure with anterior instrumented multilevel cervical corpectomies. Hence, posterior augmentation was recommended but necessitates a second approach. Thus, an author group evaluated the feasibility, pull-out characteristics, and accuracy of anterior transpedicular screw (ATPS) fixation. Although first success with clinical application of ATPS has already been reported, no data exist on biomechanical characteristics of an ATPS-plate system enabling transpedicular end-level fixation in advanced instabilities. Therefore, we evaluated biomechanical qualities of an ATPS prototype C4-C7 for reduction of range of motion (ROM) and primary stability in a non-destructive setup among five constructs: anterior plate, posterior all-lateral mass screw construct, posterior construct with lateral mass screws C5 + C6 and end-level fixation using pedicle screws unilaterally or bilaterally, and a 360° construct. 12 human spines C3-T1 were divided into two groups. Four constructs were tested in group 1 and three in group 2; the ATPS prototypes were tested in both groups. Specimens were subjected to flexibility test in a spine motion tester at intact state and after 2-level corpectomy C5-C6 with subsequent reconstruction using a distractable cage and one of the osteosynthesis mentioned above. ROM in flexion-extension, axial rotation, and lateral bending was reported as normalized values. All instrumentations but the anterior plate showed significant reduction of ROM for all directions compared to the intact state. The 360° construct outperformed all others in terms of reducing ROM. While there were no significant differences between the 360° and posterior constructs in flexion-extension and lateral bending, the 360° constructs were significantly more stable in axial rotation. Concerning primary stability of ATPS prototypes, there were no significant differences compared to posterior-only constructs in flexion-extension and axial rotation. The 360° construct showed significant differences to the ATPS prototypes in flexion-extension, while no significant differences existed in axial rotation. But in lateral bending, the ATPS prototype and the anterior plate performed significantly worse than the posterior constructs. ATPS was shown to confer increased primary stability compared to the anterior plate in flexion-extension and axial rotation with the latter yielding significance. We showed that primary stability after 2-level corpectomy reconstruction using ATPS prototypes compared favorably to posterior systems and superior to anterior plates. From the biomechanical point, the 360° instrumentation was shown the most efficient for reconstruction of 2-level corpectomies. Further studies will elucidate whether fatigue testing will enhance the benefit of transpedicular anchorage with posterior constructs and ATPS.
Heinrich, A; Andó, RD; Túri, G; Rózsa, B; Sperlágh, B
2012-01-01
BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K+ concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K+, with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca2+-free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K+-evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels. LINKED ARTICLE This article is commented on by Sershen, pp. 1000–1002 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02072.x PMID:22394324
ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion.
Cater, Michael A; La Fontaine, Sharon; Shield, Kristy; Deal, Yolanda; Mercer, Julian F B
2006-02-01
The Wilson protein (ATP7B) regulates levels of systemic copper by excreting excess copper into bile. It is not clear whether ATP7B translocates excess intrahepatic copper directly across the canalicular membrane or sequesters this copper into exocytic vesicles, which subsequently fuse with canalicular membrane to expel their contents into bile. The aim of this study was to clarify the mechanism underlying ATP7B-mediated copper detoxification by investigating endogenous ATP7B localization in the HepG2 hepatoma cell line and its ability to mediate vesicular sequestration of excess intracellular copper. Immunofluorescence microscopy was used to investigate the effect of copper concentration on the localization of endogenous ATP7B in HepG2 cells. Copper accumulation studies to determine whether ATP7B can mediate vesicular sequestration of excess intracellular copper were performed using Chinese hamster ovary cells that exogenously expressed wild-type and mutant ATP7B proteins. In HepG2 cells, elevated copper levels stimulated trafficking of ATP7B to pericanalicular vesicles and not to the canalicular membrane as previously reported. Mutation of an endocytic retrieval signal in ATP7B caused the protein to constitutively localize to vesicles and not to the plasma membrane, suggesting that a vesicular compartment(s) is the final trafficking destination for ATP7B. Expression of wild-type and mutant ATP7B caused Chinese hamster ovary cells to accumulate copper in vesicles, which subsequently undergo exocytosis, releasing copper across the plasma membrane. This report provides compelling evidence that the primary mechanism of biliary copper excretion involves ATP7B-mediated vesicular sequestration of copper rather than direct copper translocation across the canalicular membrane.
Nishikawa, Taichiro; Bellance, Nadège; Damm, Aaron; Bing, Han; Zhu, Zhen; Handa, Kan; Yovchev, Mladen I; Sehgal, Vasudha; Moss, Tyler J; Oertel, Michael; Ram, Prahlad T; Pipinos, Iraklis I; Soto-Gutierrez, Alejandro; Fox, Ira J; Nagrath, Deepak
2014-06-01
The cause of hepatic failure in the terminal stages of chronic injury is unknown. Cellular metabolic adaptations in response to the microenvironment have been implicated in cellular breakdown. To address the role of energy metabolism in this process we studied mitochondrial number, respiration, and functional reserve, as well as cellular adenosine-5'-triphosphate (ATP) production, glycolytic flux, and expression of glycolysis related genes in isolated hepatocytes from early and terminal stages of cirrhosis using a model that produces hepatic failure from irreversible cirrhosis in rats. To study the clinical relevance of energy metabolism in terminal stages of chronic liver failure, we analyzed glycolysis and energy metabolism related gene expression in liver tissue from patients at different stages of chronic liver failure according to Child-Pugh classification. Additionally, to determine whether the expression of these genes in early-stage cirrhosis (Child-Pugh Class A) is related to patient outcome, we performed network analysis of publicly available microarray data obtained from biopsies of 216 patients with hepatitis C-related Child-Pugh A cirrhosis who were prospectively followed up for a median of 10years. In the early phase of cirrhosis, mitochondrial function and ATP generation are maintained by increasing energy production from glycolytic flux as production from oxidative phosphorylation falls. At the terminal stage of hepatic injury, mitochondria respiration and ATP production are significantly compromised, as the hepatocytes are unable to sustain the increased demand for high levels of ATP generation from glycolysis. This impairment corresponds to a decrease in glucose-6-phosphatase catalytic subunit and phosphoglucomutase 1. Similar decreased gene expression was observed in liver tissue from patients at different stages of chronic liver injury. Further, unbiased network analysis of microarray data revealed that expression of these genes was down regulated in the group of patients with poor outcome. An adaptive metabolic shift, from generating energy predominantly from oxidative phosphorylation to glycolysis, allows maintenance of energy homeostasis during early stages of liver injury, but leads to hepatocyte dysfunction during terminal stages of chronic liver disease because hepatocytes are unable to sustain high levels of energy production from glycolysis. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Scopes, Robert K.
1974-01-01
By using a reconstituted glycolytic system and a highly active adenosine triphosphatase (ATPase), the metabolism during muscular tetanic contraction was simulated and observed. With an ATPase activity somewhat greater than can be maintained in muscle tissue, phosphocreatine was rapidly and completely utilized, lactate production commenced about 5s after the ATPase was added and after 15s adenine nucleotides were lost through deamination to IMP. By 40s, all metabolism ceased because of complete loss of adenine mononucleotides. With a lower ATPase activity, glycolytic regeneration of ATP was capable of maintaining the ATP concentration at its initial value and even by 80s, only one-half of the phosphocreatine had been utilized. No deamination occurred in this time. It is suggested that the metabolic events observed in the simulated system are basically the same as occur in muscle doing heavy work. PMID:4275706
Baldissera, Matheus D; Souza, Carine F; Júnior, Guerino B; Verdi, Camila Marina; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Vizzotto, Bruno S; Baldisserotto, Bernardo
2017-09-01
Cytosolic and mitochondrial creatine kinases (CK), through the creatine kinase-phosphocreatine (CK/PCr) system, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. However, the effects of bacterial infections on the kidney remain poorly understood and are limited only to histopathological analyses. Thus, the aim of this study was to investigate the involvement of cytosolic and mitochondrial CK activities in renal energetic homeostasis in silver catfish experimentally infected with Aeromonas caviae. Cytosolic CK activity decreased in infected animals, while mitochondrial CK activity increased compared to uninfected animals. Moreover, the activity of the sodium-potassium pump (Na + , K + -ATPase) decreased in infected animals compared to uninfected animals. Based on this evidence, it can be concluded that the inhibition of cytosolic CK activity by A. caviae causes an impairment on renal energy homeostasis through the depletion of adenosine triphosphate (ATP) levels. This contributes to the inhibition of Na + , K + -ATPase activity, although the mitochondrial CK activity acted in an attempt to restore the cytosolic ATP levels through a feedback mechanism. In summary, A. caviae infection causes a severe energetic imbalance in infected silver catfish, which may contribute to disease pathogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
The role of the AMP-activated protein kinase in the regulation of energy homeostasis.
Carling, David
2007-01-01
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that plays a major role in maintaining energy homeostasis. Within individual cells, AMPK is activated by a rise in the AMP:ATP ratio that occurs following a fall in ATP levels. AMPK is also regulated by the adipokines, adiponectin and leptin, hormones that are secreted from adipocytes. Activation of AMPK requires phosphorylation of threonine 172 within the catalytic subunit by either LKB1 or calcium/calmodulin dependent protein kinase kinase beta (CaMKKbeta). AMPK regulates a wide range of metabolic pathways, including fatty acid oxidation, fatty acid synthesis, glycolysis and gluconeogenesis. In peripheral tissues, activation of AMPK leads to responses that are beneficial in counteracting the deleterious effects that arise in the metabolic syndrome. Recent studies have demonstrated that modulation of AMPK activity in the hypothalamus plays a role in feeding. A decrease in hypothalamic AMPK activity is associated with decreased feeding, whereas activation of AMPK leads to increased food intake. Furthermore, signalling pathways in the hypothalamus lead to changes in AMPK activity in peripheral tissues, such as skeletal muscle, via the sympathetic nervous system (SNS). AMPK, therefore, provides a mechanism for monitoring changes in energy metabolism within individual cells and at the level of the whole body.
Intracellular energy depletion triggers programmed cell death during petal senescence in tulip.
Azad, A K; Ishikawa, Takayuki; Ishikawa, Takahiro; Sawa, Y; Shibata, H
2008-01-01
Programmed cell death (PCD) in petals provides a model system to study the molecular aspects of organ senescence. In this study, the very early triggering signal for PCD during the senescence process from young green buds to 14-d-old petals of Tulipa gesneriana was determined. The opening and closing movement of petals of intact plants increased for the first 3 d and then gradually decreased. DNA degradation and cytochrome c (Cyt c) release were clearly observed in 6-d-old flowers. Oxidative stress or ethylene production can be excluded as the early signal for petal PCD. In contrast, ATP was dramatically depleted after the first day of flower opening. Sucrose supplementation to cut flowers maintained their ATP levels and the movement ability for a longer time than in those kept in water. The onset of DNA degradation, Cyt c release, and petal senescence was also delayed by sucrose supplementation to cut flowers. These results suggest that intracellular energy depletion, rather than oxidative stress or ethylene production, may be the very early signal to trigger PCD in tulip petals.
Intracellular energy depletion triggers programmed cell death during petal senescence in tulip
Azad, A. K.; Ishikawa, Takayuki; Ishikawa, Takahiro; Shibata, H.
2008-01-01
Programmed cell death (PCD) in petals provides a model system to study the molecular aspects of organ senescence. In this study, the very early triggering signal for PCD during the senescence process from young green buds to 14-d-old petals of Tulipa gesneriana was determined. The opening and closing movement of petals of intact plants increased for the first 3 d and then gradually decreased. DNA degradation and cytochrome c (Cyt c) release were clearly observed in 6-d-old flowers. Oxidative stress or ethylene production can be excluded as the early signal for petal PCD. In contrast, ATP was dramatically depleted after the first day of flower opening. Sucrose supplementation to cut flowers maintained their ATP levels and the movement ability for a longer time than in those kept in water. The onset of DNA degradation, Cyt c release, and petal senescence was also delayed by sucrose supplementation to cut flowers. These results suggest that intracellular energy depletion, rather than oxidative stress or ethylene production, may be the very early signal to trigger PCD in tulip petals. PMID:18515833
Hebbal, M; Ankola, A V
2012-10-01
To develop a special oral health education technique and compare plaque scores before and after health education. Non-randomised before and after comparison trial without controls. The final study population comprised of 96 visually impaired children aged 6-18 years old. Silness and Loe plaque index scores were recorded at baseline. 'Audio tactile performance technique' (ATP Technique) a specially designed health education method was used to educate these children regarding oral hygiene maintenance. Periodic reinforcement of health education was performed at an interval of 9 months. Re-examination was carried out after 18 months of health education to assess plaque scores. Wilcoxon's sign rank test and paired t test was used to assess the difference between the scores before and after health education. There was increase in frequency of tooth brushing after health education. The mean plaque scores pre- and post-health education were 1.41 (+/-0.58) and 0.63 (+/-0.39) respectively. The difference was statistically significant (p<0.001). Visually impaired children could maintain an acceptable level of oral hygiene when taught using special customised methods.
Method of detecting and counting bacteria in body fluids
NASA Technical Reports Server (NTRS)
Chappelle, E. W.; Picciolo, G. L. (Inventor)
1973-01-01
A novel method is reported for determining bacterial levels in urine samples, which method depends on the quantitative determination of bacterial adenosine triphosphate (ATP) in the presence of non-bacterial ATP. After the removal of non-bacterial ATP, the bacterial ATP is released by cell rupture and is measured by an enzymatic bioluminescent assay using an enzyme obtained from the firefly.
Taniane, Caitlin; Farrell, Geoffrey; Arias, Irwin M.; Lippincott-Schwartz, Jennifer; Fu, Dong
2016-01-01
Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury. PMID:27792760
Veale, Margaret F; Healey, Geraldine; Sran, Amrita; Payne, Katherine A; Zia, Majid; Sparrow, Rosemary L
2015-01-01
Extended room temperature (RT) hold of whole blood (WB) may affect the quality of red blood cell (RBC) components produced from these donations. The availability of better RBC additive solutions (ASs) may help reduce the effects. A new AS, AS-7 (SOLX, Haemonetics Corporation), was investigated for improved in vitro quality of RBCs prepared from WB held overnight at RT. Sixteen WB units were held for 21.4 hours ± 40 minutes at 22°C on cooling plates before processing. Each pair of ABO-matched WB units were pooled, divided into a WB filter pack containing saline-adenine-glucose-mannitol (control) and a LEUKOSEP WB-filter pack containing SOLX, and processed according to manufacturer's instructions. RBCs were stored at 2 to 6°C and sampled weekly until expiry. Glycophorin A (GPA+) and annexin V-binding microparticles (MPs) were quantitated using flow cytometry. Osmotic fragility, intracellular pH (pHi), adenosine triphosphate (ATP), 2,3-diphosphoglycerate (2,3-DPG), and routine quality variables were measured. Adhesion of RBCs to human endothelial cells (ECs) was evaluated by flow perfusion under low shear stress (0.5 dyne/cm(2) ), similar to low blood flow in microvessels. ATP and 2,3-DPG levels were improved for SOLX-RBCs. SOLX-RBCs maintained higher pHi, increased resistance to hypotonic stress, and reduced numbers of GPA+ MPs. No significant difference was observed between annexin V binding to MPs or adhesion of RBCs to ECs under shear stress. SOLX-stored RBCs showed increased osmotic resistance, pHi, and reduced GPA+ MPs and together with higher ATP and 2,3-DPG levels demonstrated improved in vitro RBC quality measures during 42 days of storage. © 2014 AABB.
Lange, Sofie C; Winkler, Ulrike; Andresen, Lars; Byhrø, Mathilde; Waagepetersen, Helle S; Hirrlinger, Johannes; Bak, Lasse K
2015-12-01
We have previously shown that synaptic transmission fails in cultured neurons in the presence of lactate as the sole substrate. Thus, to test the hypothesis that the failure of synaptic transmission is a consequence of insufficient energy supply, ATP levels were monitored employing the ATP biosensor Ateam1.03YEMK. While inducing synaptic activity by subjecting cultured neurons to two 30 s pulses of NMDA (30 µM) with a 4 min interval, changes in relative ATP levels were measured in the presence of lactate (1 mM), glucose (2.5 mM) or the combination of the two. ATP levels reversibly declined following NMDA-induced neurotransmission activity, as indicated by a reversible 10-20 % decrease in the response of the biosensor. The responses were absent when the NMDA receptor antagonist memantine was present. In the presence of lactate alone, the ATP response dropped significantly more than in the presence of glucose following the 2nd pulse of NMDA (approx. 10 vs. 20 %). Further, cytosolic Ca(2+) homeostasis during NMDA-induced synaptic transmission is partially inhibited by verapamil indicating that voltage-gated Ca(2+) channels are activated. Lastly, we showed that cytosolic Ca(2+) homeostasis is supported equally well by both glucose and lactate, and that a pulse of NMDA causes accumulation of Ca(2+) in the mitochondrial matrix. In summary, we have shown that ATP homeostasis during neurotransmission activity in cultured neurons is supported by both glucose and lactate. However, ATP homeostasis seems to be negatively affected by the presence of lactate alone, suggesting that glucose is needed to support neuronal energy metabolism during activation.
Thymosin-beta(4) changes the conformation and dynamics of actin monomers.
De La Cruz, E M; Ostap, E M; Brundage, R A; Reddy, K S; Sweeney, H L; Safer, D
2000-01-01
Thymosin-beta(4) (Tbeta(4)) binds actin monomers stoichiometrically and maintains the bulk of the actin monomer pool in metazoan cells. Tbeta(4) binding quenches the fluorescence of N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (AEDANS) conjugated to Cys(374) of actin monomers. The K(d) of the actin-Tbeta(4) complex depends on the cation and nucleotide bound to actin but is not affected by the AEDANS probe. The different stabilities are determined primarily by the rates of dissociation. At 25 degrees C, the free energy of Tbeta(4) binding MgATP-actin is primarily enthalpic in origin but entropic for CaATP-actin. Binding is coupled to the dissociation of bound water molecules, which is greater for CaATP-actin than MgATP-actin monomers. Proteolysis of MgATP-actin, but not CaATP-actin, at Gly(46) on subdomain 2 is >12 times faster when Tbeta(4) is bound. The C terminus of Tbeta(4) contacts actin near this cleavage site, at His(40). By tritium exchange, Tbeta(4) slows the exchange rate of approximately eight rapidly exchanging amide protons on actin. We conclude that Tbeta(4) changes the conformation and structural dynamics ("breathing") of actin monomers. The conformational change may reflect the unique ability of Tbeta(4) to sequester actin monomers and inhibit nucleotide exchange. PMID:10777749
Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yun
The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with themore » firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification mainly used a fluorescence method; CL detection is limited because of the difficulty to introduce enough D-luciferin molecules. Since dehydration could easily cause proper size holes in bacterial cell membranes and facilitate D-luciferin diffusion, we used this method and recorded CL from individual cells each hour after induction. The CL light intensity from each individual cell was integrated and gene expression levels of two strain types were compared. Based on our calculation, the overall sensitivity of our system is already approaching the single enzyme level. The median enzyme number inside a single bacterium from the higher expression strain after 2 hours induction was quantified to be about 550 molecules. Finally we imaged ATP release from astrocyte cells. Upon mechanical stimulation, astrocyte cells respond by increasing intracellular Ca 2+ level and releasing ATP to extracellular spaces as signaling molecules. The ATP release imaged by direct CL imaging using free firefly luciferase and D-luciferin outside cells reflects the transient release as well as rapid ATP diffusion. Therefore ATP release detection at the cell surface is critical to study the ATP release mechanism and signaling propagation pathway. We realized this cell surface localized ATP release imaging detection by immobilizing firefly luciferase to streptavidin beads that attached to the cell surface via streptavidin-biotin interactions. Both intracellular Ca 2+ propagation wave and extracellular ATP propagation wave at the cell surface were recorded with fluorescence and CL respectively. The results imply that at close distances from the stimulation center (<120 μm) extracellular ATP pathway is faster, while at long distances (>120 μm) intracellular Ca 2+ signaling through gap junctions seems more effective.« less
Kobayashi, M; Takatori, T; Nakajima, M; Saka, K; Iwase, H; Nagao, M; Niijima, H; Matsuda, Y
1999-01-01
We examined the postmortem changes in the levels of ATP, glycogen and lactic acid in two masticatory muscles and three leg muscles of rats. The proportion of fibre types of the muscles was determined with NIH image software. The ATP levels in the white muscles did not decrease up to 1 h after death, and the ATP levels 1 and 2 h after death in the white muscles were higher than those in the red muscles with a single exception. The glycogen level at death and 1 h after death and the lactic acid level 1 h after death in masticatory muscles were lower than in the leg muscles. It is possible that the differences in the proportion of muscle fibre types and in glycogen level in muscles influences the postmortem change in ATP and lactic acid, which would accelerate or retard rigor mortis of the muscles.
Nath, Sunil
2017-05-01
Theories of biological energy coupling in oxidative phosphorylation (OX PHOS) and photophosphorylation (PHOTO PHOS) are reviewed and applied to ATP synthesis by an experimental system containing purified ATP synthase reconstituted into liposomes. The theories are critically evaluated from the standpoint of the principle of electrical neutrality. It is shown that the obligatory requirement to maintain overall electroneutrality of bulk aqueous phases imposes strong constraints on possible theories of energy coupling and molecular mechanisms of ATP synthesis. Mitchell's chemiosmotic theory is found to violate the electroneutrality of bulk aqueous phases and is shown to be untenable on these grounds. Purely electroneutral mechanisms or mechanisms where the anion/countercation gradient is dissipated or simply flows through the lipid bilayer are also shown to be inadequate. A dynamically electrogenic but overall electroneutral mode of ion transport postulated by Nath's torsional mechanism of energy transduction and ATP synthesis is shown to be consistent both with the experimental findings and the principle of electrical neutrality. It is concluded that the ATP synthase functions as a proton-dicarboxylic acid anion cotransporter in OX PHOS or PHOTO PHOS. A logical chemical explanation for the selection of dicarboxylic acids as intermediates in OX PHOS and PHOTO PHOS is suggested based on the pioneering classical thermodynamic work of Christensen, Izatt, and Hansen. The nonequilibrium thermodynamic consequences for theories in which the protons originate from water vis-a-vis weak organic acids are compared and contrasted, and several new mechanistic and thermodynamic insights into biological energy transduction by ATP synthase are offered. These considerations make the new theory of energy coupling more complete, and lead to a deeper understanding of the molecular mechanism of ATP synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Program Directors' Perceptions of Undergraduate Athletic Training Student Retention
Bowman, Thomas G.; Hertel, Jay; Mazerolle, Stephanie M.; Dodge, Thomas M.; Wathington, Heather D.
2015-01-01
Context: The average retention rate for students enrolled in undergraduate athletic training programs (ATPs) nationwide has been reported to be 81%, and slightly more than half of program directors (PDs) have indicated that retention of athletic training students (ATSs) is a problem. However, why PDs do or do not believe ATS retention is problematic is unknown. Objective: To determine why PDs do or do not believe ATS retention is problematic. Design: Qualitative study. Setting: Undergraduate ATPs. Patients or Other Participants: We obtained responses from 177 of the 343 PDs (51.6%). Using data saturation as a guide, we randomly selected 16 PDs from the survey responses to participate in follow-up telephone interviews; 8 believed retention was a problem and 8 did not. Data Collection and Analysis: During audio-recorded telephone interviews, we asked PDs why they thought retention was or was not a problem for athletic training education. Following verbatim transcription, we used grounded theory to analyze the interview data and maintained trustworthiness by using intercoder agreement, member checks, and peer review. Results: Program directors believed that retaining ATSs was a problem because students lack information regarding athletic training and the rigor of the ATP. Program directors were consistent in their perception that ATPs do not have a retention challenge because of the use of a secondary admissions process. This finding was likely based on personal use of a secondary admissions process in the ATPs these PDs lead. Conclusions: Program directors who lead ATPs that struggle to retain ATSs should consider using a secondary admissions process. During the preprofessional phase of the ATP, faculty and staff should work to socialize students to the demands of the ATP and the professional lives of athletic trainers. PMID:25259613
Program directors' perceptions of undergraduate athletic training student retention.
Bowman, Thomas G; Hertel, Jay; Mazerolle, Stephanie M; Dodge, Thomas M; Wathington, Heather D
2015-02-01
The average retention rate for students enrolled in undergraduate athletic training programs (ATPs) nationwide has been reported to be 81%, and slightly more than half of program directors (PDs) have indicated that retention of athletic training students (ATSs) is a problem. However, why PDs do or do not believe ATS retention is problematic is unknown. To determine why PDs do or do not believe ATS retention is problematic. Qualitative study. Undergraduate ATPs. We obtained responses from 177 of the 343 PDs (51.6%). Using data saturation as a guide, we randomly selected 16 PDs from the survey responses to participate in follow-up telephone interviews; 8 believed retention was a problem and 8 did not. During audio-recorded telephone interviews, we asked PDs why they thought retention was or was not a problem for athletic training education. Following verbatim transcription, we used grounded theory to analyze the interview data and maintained trustworthiness by using intercoder agreement, member checks, and peer review. Program directors believed that retaining ATSs was a problem because students lack information regarding athletic training and the rigor of the ATP. Program directors were consistent in their perception that ATPs do not have a retention challenge because of the use of a secondary admissions process. This finding was likely based on personal use of a secondary admissions process in the ATPs these PDs lead. Program directors who lead ATPs that struggle to retain ATSs should consider using a secondary admissions process. During the preprofessional phase of the ATP, faculty and staff should work to socialize students to the demands of the ATP and the professional lives of athletic trainers.
Tolbutamide attenuates diazoxide-induced aggravation of hypoxic cell injury.
Pissarek, M; Reichelt, C; Krauss, G J; Illes, P
1998-11-23
ATP-dependent potassium (KATP) channels of neurons are closed in the presence of physiological levels of intracellular ATP and open when ATP is depleted during hypoxia or metabolic damage. The present study investigates hypoxic alterations of purine and pyrimidine nucleotide levels supposed to intracellularly modulate KATP channels. In addition, the effects of the KATP channel activator diazoxide and its antagonist tolbutamide were investigated on ATP, GTP, CTP and UTP levels in slices of the parietal cortex. Hypoxia was evoked by saturation of the medium with 95% N2-5% CO2 instead of 95% O2-5% CO2 for 5 min. Nucleotide contents were measured by anion-exchange HPLC in neutralized perchloric acid extracts obtained from slices frozen immediately at the end of incubation. Hypoxia per se decreased purine and pyrimidine nucleoside triphosphate contents. Thus, ATP and GTP contents were reduced to 69.9 and 77.6% of the respective normoxic levels. UTP and CTP contents were even more decreased (to 60.9 and 41.6%),, probably because the salvage pathway of these pyrimidine nucleotides is less effective than that of the purine nucleotides ATP and GTP. While tolbutamide (30 microM) had no effect on the hypoxia-induced decrease of nucleotides, diazoxide at 300, but not 30 microM aggravated the decline of ATP, UTP and CTP to 51.8, 37.5 and 28.5% of the contents observed at normoxia; GTP levels also showed a tendency to decrease after diazoxide application. Tolbutamide (300 microM) antagonized the effects of diazoxide (300 but not 30 microM aggravated the decline of ATP, UTP and CTP to 51.8, 37.5 and 28.5% of the contents observed at normoxia; GTP levels also showed a tendency to decrease after diazoxide application. Tolbutamide (300 microM) antagonized the effects of diazoxide (300 MicroM). Nucleoside diphosphate (ADP, GDP and UDP) levels were uniformly increased by hypoxia. There was no hypoxia-induced increase of ADP contents in the presence of tolbutamide (300 microM). The ATP/ADP, GTP/GDP and UTP/UDP ratios uniformly declined at a low pO2. However, only the ATP/ADP ratio was decreased further by diazoxide (300 microM). The observed alterations in nucleotide contents may be of importance for long- and short-term processes related to acute cerebral hypoxia. Thus, hypoxia-induced alterations of purine and pyrimidine nucleotide levels may influence the open state of KATP-channels during the period of reversible hypoxic cerebral injury. Furthermore, alterations during the irreversible period of cerebral injury may also arise, as a consequence of decreased pyrimidine nucleotide contents affecting cell survival viaprotein and DNA synthesis.
2007-06-01
box with the dip slides provides application instructions and illustrates acceptable bacteria levels. Both dip slide and Biotrace ATP Luminometer...Control Good Control Poor Control Biotrace ATP Planktonic 100 to 300 RLU 300 to 1000 RLU >1000 RLU Dip Tube Anaerobic Bacteria 0 organism/mL ɝ...completed monthly to record biocide levels and bacteria tests. Another biocide test method, the Biotrace ATP Luminometer, measures planktonic
The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.
Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard
2015-05-22
HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T
2012-11-23
NRF-1 regulates mediators of neuronal activity and energy generation. NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and β1. NRF-1 functionally regulates mediators of energy consumption in neurons. NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between energy consumption, energy generation, and neuronal activity at the molecular level.
Diadenosine tetraphosphate-gating of cardiac K(ATP) channels requires intact actin cytoskeleton.
Jovanović, S; Jovanović, A
2001-09-01
Diadenosine polyphosphates (ApnA) have been recently discovered in the heart, and their levels found to be regulated by ischemia. These signaling molecules are believed to regulate cellular processes that alarm a cell to metabolic stress. In particular, changes in cardiac diadenosine polyphosphates (ApnA) levels may contribute to the regulation of ATP-sensitive K+ (K(ATP)) channel activity, an ion channel that couples the cellular metabolic state with membrane excitability. A feature of myocardial ischemia is the disruption of the actin cytoskeleton which critically regulates the behavior of K(ATP) channels. Whether the integrity of actin microfilaments regulates the interaction of ApnA with K(ATP) channels is not known. The inside-out configuration of the patch-clamp technique was applied to cardiomyocytes isolated from guinea-pig heart. Following patch excision, the prototype dinucleotide, diadenosine tetraphosphate (Ap4A), inhibited K(ATP) channel opening. Treatment of the internal side of membrane patches with either cytochalasin B or DNase I, disrupters of the actin cytoskeleton, prevented Ap4A-induced inhibition of K(ATP) channel opening. Application of purified actin to DNase-treated membrane patches restored the ability of Ap4A to close K(ATP) channels. This study shows that inhibition of cardiac K(ATP) channel by Ap4A, a putative alarmone, requires intact subsarcolemmal actin network. Such interaction between K(ATP) channels, the cardiomyocyte cytoskeleton and intracellular Ap4A could affect different channel-dependent functions.
Martínez-Zamora, Ana; Meseguer, Salvador; Esteve, Juan M; Villarroya, Magda; Aguado, Carmen; Enríquez, J Antonio; Knecht, Erwin; Armengod, M-Eugenia
2015-01-01
GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function.
NASA Astrophysics Data System (ADS)
Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Sreekumaran Nair, K.
2003-06-01
Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. cytochrome c oxidase | NADH dehydrogenase subunit IV | amino acids | citrate synthase
Interactions of RadB, a DNA repair protein in archaea, with DNA and ATP.
Guy, Colin P; Haldenby, Sam; Brindley, Amanda; Walsh, David A; Briggs, Geoffrey S; Warren, Martin J; Allers, Thorsten; Bolt, Edward L
2006-04-21
The RecA family of recombinases (RecA, Rad51, RadA and UvsX) catalyse strand-exchange between homologous DNA molecules by utilising conserved DNA-binding modules and a common core ATPase domain. RadB was identified in archaea as a Rad51-like protein on the basis of conserved ATPase sequences. However, RadB does not catalyse strand exchange and does not turn over ATP efficiently. RadB does bind DNA, and here we report a triplet of residues (Lys-His-Arg) that is highly conserved at the RadB C terminus, and is crucial for DNA binding. This is consistent with the motif forming a "basic patch" of highly conserved residues identified in an atomic structure of RadB from Thermococcus kodakaraensis. As the triplet motif is conserved at the C terminus of XRCC2 also, a mammalian Rad51-paralogue, we present a phylogenetic analysis that clarifies the relationship between RadB, Rad51-paralogues and recombinases. We investigate interactions between RadB and ATP using genetics and biochemistry; ATP binding by RadB is needed to promote survival of Haloferax volcanii after UV irradiation, and ATP, but not other NTPs, induces pronounced conformational change in RadB. This is the first genetic analysis of radB, and establishes its importance for maintaining genome stability in archaea. ATP-induced conformational change in RadB may explain previous reports that RadB controls Holliday junction resolution by Hjc, depending on the presence or the absence of ATP.
Functional analysis of mutations in the ATP loop of the Wilson disease copper transporter, ATP7B.
Luoma, Leiah M; Deeb, Taha M M; Macintyre, Georgina; Cox, Diane W
2010-05-01
Wilson disease (WND) is an autosomal recessive disorder resulting from mutation of ATP7B. Transport of copper by ATP7B from the trans-Golgi of hepatocytes into apical membrane-trafficked vesicles for excretion in the bile is the major means of copper elimination from the body. Although copper is an essential nutrient, homeostasis must be carefully maintained. If homeostasis is disrupted, copper can accumulate within the liver, kidney, cornea, and/or brain. The range of organs affected leads to clinical heterogeneity and difficulty in WND diagnosis. Sequencing of ATP7B is an important adjunct for diagnosis but has led to the discovery of many novel missense variants. Although prediction programs are available, functional characterization is essential for determining the consequence of novel variants. We have tested 12 missense variants localized to the ATP loop of ATP7B and compared three predictive programs (SIFT, PolyPhen, and Align-GVGD). We found p.L1043P, p.G1000R, p.G1101R, p.I1102T, p.V1239G, and p.D1267V deleterious; p.G1176E and p.G1287S intermediate; p.E1173G temperature sensitive; p.T991M and p.I1148T mild; and p.R1228T functioning as wild type. We found that SIFT most often agreed with functional data (92%), compared with PolyPhen (83%) and Align-GVGD (67%). We conclude that variants found to negatively affect function likely contribute to the WND phenotype in patients. (c) 2010 Wiley-Liss, Inc.
Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium.
Zhang, Wenlin; Li, Hongde; Ogando, Diego G; Li, Shimin; Feng, Matthew; Price, Francis W; Tennessen, Jason M; Bonanno, Joseph A
2017-02-01
Corneal endothelium (CE) is among the most metabolically active tissues in the body. This elevated metabolic rate helps the CE maintain corneal transparency by its ion and fluid transport properties, which when disrupted, leads to visual impairment. Here we demonstrate that glutamine catabolism (glutaminolysis) through TCA cycle generates a large fraction of the ATP needed to maintain CE function, and this glutaminolysis is severely disrupted in cells deficient in NH 3 :H + cotransporter Solute Carrier Family 4 Member 11 (SLC4A11). Considering SLC4A11 mutations leads to corneal endothelial dystrophy and sensorineural deafness, our results indicate that SLC4A11-associated developmental and degenerative disorders result from altered glutamine catabolism. Overall, our results describe an important metabolic mechanism that provides CE cells with the energy required to maintain high level transport activity, reveal a direct link between glutamine metabolism and developmental and degenerative neuronal diseases, and suggest an approach for protecting the CE during ophthalmic surgeries. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Wang, Xu-Zhen; Jin, Zhan-Kui; Tian, Xiao-Hui; Xue, Wu-Jun; Tian, Pu-Xun; Ding, Xiao-Ming; Zheng, Jin; Li, Yang; Jing, Xin; Luo, Zi-Zhen
2014-01-01
Peripheral blood CD4+ T cell adenosine triphosphate (ATP) release has been reported to be an adjunct tool to evaluate global cellular immune response in solid-organ transplant recipients. However, the correlation between the ATP level and rejection was controversial. The aim of this prospective clinical study was to explore the association between the intracellular ATP level and the occurrence, progression, and treatment of acute rejection (AR) episodes, determine the predicting value of intracellular ATP level for AR in kidney transplant (KT) recipients. In the period of October 2011 to October 2012, 140 KT recipients were recruited and followed for six months after transplantation. Patients were categorized into stable group and AR group according to their clinical course. Whole blood samples were collected pretransplantation, and at 7, 14, 21, and 28days, and at 2, 3, 4, 5 and 6months post-transplantation. Additional blood samples were obtained from AR patients on the day AR occurred, on the day before and 3 and 7days after intravenous anti-rejection therapy started, and on the day when AR reversed. The intracellular ATP in CD4+ T cells was detected by ImmuKnow Immune Cell Function Assay according to the manufacturer's instruction. The absolute number of CD4+ T cells and the trough levels of tacrolimus and cyclosporine were also measured. The ATP level detected on the day AR occurred (627.07±149.85ng/ml) was obviously higher than that of the stable group (320.48±149.11ng/ml, P<0.05). ATP value decreased to 265.35±84.33ng/m at the end of anti-rejection therapy, which was obviously lower than that measured on the day before the anti-rejection therapy started (665.87±162.85ng/ml, P<0.05). ROC analysis revealed that increased intracellular adenosine triphosphate level showed better sensitivity and specificity than those obtained using single time point detection (89.5% vs 85.0%;95.0% vs 88.9%). The best cutoff value was 172.55ng/ml. A positive correlation between the intracellular ATP level and absolute CD4+ T cell number (r=0.656, P<0.001) was found in the patients with CD4+ T cell counts <200/μl. Copyright © 2013 Elsevier B.V. All rights reserved.
Esaki, Masatoshi; Johjima-Murata, Ai; Islam, Md Tanvir; Ogura, Teru
2018-01-01
The ATP-powered protein degradation machinery plays essential roles in maintaining protein homeostasis in all organisms. Robust proteolytic activities are typically sequestered within protein complexes to avoid the fatal removal of essential proteins. Because the openings of proteolytic chambers are narrow, substrate proteins must undergo unfolding. AAA superfamily proteins (ATPases associated with diverse cellular activities) are mostly located at these openings and regulate protein degradation appropriately. The 26S proteasome, comprising 20S peptidase and 19S regulatory particles, is the major ATP-powered protein degradation machinery in eukaryotes. The 19S particles are composed of six AAA proteins and 13 regulatory proteins, and bind to both ends of a barrel-shaped proteolytic chamber formed by the 20S peptidase. Several recent studies have reported that another AAA protein, Cdc48, can replace the 19S particles to form an alternative ATP-powered proteasomal complex, i.e., the Cdc48-20S proteasome. This review focuses on our current knowledge of this alternative proteasome and its possible linkage to amyotrophic lateral sclerosis.
Tümer, Z; Petris, M; Zhu, S; Mercer, J; Bukrinski, J; Bilz, S; Baerlocher, K; Horn, N; Møller, L B
2017-11-01
Menkes disease (MD) is a lethal disorder characterized by severe neurological symptoms and connective tissue abnormalities; and results from malfunctioning of cuproenzymes, which cannot receive copper due to a defective intracellular copper transporting protein, ATP7A. Early parenteral copper-histidine supplementation may modify disease progression substantially but beneficial effects of long-term treatment have been recorded in only a few patients. Here we report on the eldest surviving MD patient (37 years) receiving early-onset and long-term copper treatment. He has few neurological symptoms without connective tissue disturbances; and a missense ATP7A variant, p.(Pro852Leu), which results in impaired protein trafficking while the copper transport function is spared. These findings suggest that some cuproenzymes maintain their function when sufficient copper is provided to the cells; and underline the importance of early initiated copper treatment, efficiency of which is likely to be dependent on the mutant ATP7A function. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Comparison of heavy metal toxicity in continuous flow and batch reactors
NASA Astrophysics Data System (ADS)
Sengor, S. S.; Gikas, P.; Moberly, J. G.; Peyton, B. M.; Ginn, T. R.
2009-12-01
The presence of heavy metals may significantly affect microbial growth. In many cases, small amounts of particular heavy metals may stimulate microbial growth; however, larger quantities may result in microbial growth reduction. Environmental parameters, such as growth pattern may alter the critical heavy metal concentration, above which microbial growth stimulation turns to growth inhibition. Thus, it is important to quantify the effects of heavy metals on microbial activity for understanding natural or manmade biological reactors, either in situ or ex situ. Here we compare the toxicity of Zn and Cu on Arthrobacter sp., a heavy metal tolerant microorganism, under continuous flow versus batch reactor operations. Batch and continuous growth tests of Arthrobacter sp. were carried out at various individual and combined concentrations of Zn and Cu. Biomass concentration (OD) was measured for both the batch and continuous reactors, whereas ATP, oxygen uptake rates and substrate concentrations were additionally measured for the continuous system. Results indicated that Cu was more toxic than Zn under all conditions for both systems. In batch reactors, all tested Zn concentrations up to 150 uM showed a stimulatory effect on microbial growth. However, in the case of mixed Zn and Cu exposures, the presence of Zn either eliminated (at the 50 uM level both Zn and Cu) or reduced by ~25% (at the 100 and 150 uM levels both Zn and Cu) the Cu-induced inhibition. In the continuous system, only one test involved combined Cu (40uM) and Zn (125uM) and this test showed similar results to the 40uM Cu continuous test, i.e., no reduction in inhibition. The specific ATP concentration, i.e., ATP/OD, results for the continuous reactor showed an apparent recovery for both Cu-treated populations, although neither the OD nor glucose data showed any recovery. This may reflect that the individual microorganisms that survived after the addition of heavy metals, kept maintaining the usual ATP levels, as before metal addition. The last may imply a short of adaptation by some microorganisms to the presence of heavy metals. Overall, the batch reactor tests underestimated significantly the heavy metal inhibition, as compared to the continuous flow reactors. Therefore, the results of batch reactor tests should be used with some caution when heavy metal inhibition is to be interpreted for continuous flow natural environmental systems, such as rivers or wetlands.
NASA Astrophysics Data System (ADS)
Dimiduk, D.; Caylor, M.; Williamson, D.; Larson, L.
1995-01-01
The High Altitude Balloon Experiment demonstration of Acquisition, Tracking, and Pointing (HABE-ATP) is a system built around balloon-borne payload which is carried to a nominal 26-km altitude. The goal is laser tracking thrusting theater and strategic missiles, and then pointing a surrogate laser weapon beam, with performance levels end a timeline traceable to operational laser weapon system requirements. This goal leads to an experiment system design which combines hardware from many technology areas: an optical telescope and IR sensors; an advanced angular inertial reference; a flexible multi-level of actuation digital control system; digital tracking processors which incorporate real-time image analysis and a pulsed, diode-pumped solid state tracking laser. The system components have been selected to meet the overall experiment goals of tracking unmodified boosters at 50- 200 km range. The ATP system on HABE must stabilize and control a relative line of sight between the platform and the unmodified target booster to a 1 microrad accuracy. The angular pointing reference system supports both open loop and closed loop track modes; GPS provides absolute position reference. The control system which positions the line of sight for the ATP system must sequence through accepting a state vector handoff, closed-loop passive IR acquisition, passive IR intermediate fine track, active fine track, and then finally aimpoint determination and maintenance modes. Line of sight stabilization to fine accuracy levels is accomplished by actuating wide bandwidth fast steering mirrors (FSM's). These control loops off-load large-amplitude errors to the outer gimbal in order to remain within the limited angular throw of the FSM's. The SWIR acquisition and MWIR intermediate fine track sensors (both PtSi focal planes) image the signature of the rocket plume. After Hard Body Handover (HBHO), active fine tracking is conducted with a visible focal plane viewing the laser-illuminated target rocket body. The track and fire control performance must be developed to the point that an aimpoint can be selected, maintained, and then track performance scored with a low-power 'surrogate' weapon beam. Extensive instrumentation monitors not only the optical sensors and the video data, but all aspects of each of the experiment subsystems such as the control system, the experiment flight vehicle, and the tracker. Because the system is balloon-borne and recoverable, it is expected to fly many times during its development program.
Mitochondrial flashes regulate ATP homeostasis in the heart
Wang, Xianhua; Zhang, Xing; Wu, Di; Huang, Zhanglong; Hou, Tingting; Jian, Chongshu; Yu, Peng; Lu, Fujian; Zhang, Rufeng; Sun, Tao; Li, Jinghang; Qi, Wenfeng; Wang, Yanru; Gao, Feng; Cheng, Heping
2017-01-01
The maintenance of a constant ATP level (‘set-point’) is a vital homeostatic function shared by eukaryotic cells. In particular, mammalian myocardium exquisitely safeguards its ATP set-point despite 10-fold fluctuations in cardiac workload. However, the exact mechanisms underlying this regulation of ATP homeostasis remain elusive. Here we show mitochondrial flashes (mitoflashes), recently discovered dynamic activity of mitochondria, play an essential role for the auto-regulation of ATP set-point in the heart. Specifically, mitoflashes negatively regulate ATP production in isolated respiring mitochondria and, their activity waxes and wanes to counteract the ATP supply-demand imbalance caused by superfluous substrate and altered workload in cardiomyocytes. Moreover, manipulating mitoflash activity is sufficient to inversely shift the otherwise stable ATP set-point. Mechanistically, the Bcl-xL-regulated proton leakage through F1Fo-ATP synthase appears to mediate the coupling between mitoflash production and ATP set-point regulation. These findings indicate mitoflashes appear to constitute a digital auto-regulator for ATP homeostasis in the heart. DOI: http://dx.doi.org/10.7554/eLife.23908.001 PMID:28692422
Human RAD50 makes a functional DNA-binding complex.
Kinoshita, Eri; van Rossum-Fikkert, Sari; Sanchez, Humberto; Kertokalio, Aryandi; Wyman, Claire
2015-06-01
The MRE11-RAD50-NBS1 (MRN) complex has several distinct functions in DNA repair including important roles in both non-homologous end-joining (NHEJ) and homologous recombination (HR). The biochemical activities of MR(N) have been well characterized implying specific functional roles for the components. The arrangement of proteins in the complex implies interdependence of their biochemical activities making it difficult to separate specific functions. We obtained purified human RAD50 and observed that it binds ATP, undergoes ATP-dependent conformational changes as well as having ATPase activity. Scanning force microscopy analysis clearly showed that RAD50 binds DNA although not as oligomers. RAD50 alone was not functional in tethering DNA molecules. ATP increased formation of RAD50 multimers which were however globular lacking extended coiled coils, in contrast to the MR complex where ATP induced oligomers have obvious coiled coils protruding from a central domain. These results suggest that MRE11 is important in maintaining the structural arrangement of RAD50 in the protein complex and perhaps has a role in reinforcing proper alignment of the coiled coils in the ATP-bound state. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Swelling and Contraction of Corn Mitochondria 1
Stoner, C. D.; Hanson, J. B.
1966-01-01
A survey has been made of the properties of corn mitochondria in swelling and contraction. The mitochondria swell spontaneously in KCl but not in sucrose. Aged mitochondria will swell rapidly in sucrose if treated with citrate or EDTA. Swelling does not impair oxidative phosphorylation if bovine serum albumin is present. Contraction can be maintained or initiated with ATP + Mg or an oxidizable substrate, contraction being more rapid with the substrate. Magnesium is not required for substrate powered contraction. Contraction powered by ATP is accompanied by the release of phosphate. Oligomycin inhibits both ATP-powered contraction and the release of phosphate. However, it does not affect substrate-powered contraction. Substrate powered contraction is inhibited by electron-transport inhibitors. The uncoupler, carbonyl cyanide m-chlorophenyl hydrazone, accelerates swelling and inhibits both ATP-and substrate-powered contraction. However, the concentrations required are well in excess of those required to produce uncoupling and to accelerate adenosine triphosphatase; the concentrations required inhibit respiration in a phosphorylating medium. Phosphate is a very effective inhibitor of succinate-powered contraction. Neither oligomycin nor Mg affects the phosphate inhibition. Phosphate is less inhibitory with the ATP-powered contraction. The results are discussed in terms of a hypothesis that contraction is associated with a nonphosphorylated high energy intermediate of oxidative phosphorylation. Images PMID:16656248
Armesto, Paula; Campinho, Marco A; Rodríguez-Rúa, Ana; Cousin, Xavier; Power, Deborah M; Manchado, Manuel; Infante, Carlos
2014-09-01
In the present work, five genes encoding different Na(+),K(+) ATPase (NKA) α-isoforms in the teleost Solea senegalensis are described for the first time. Sequence analysis of predicted polypeptides revealed a high degree of conservation across teleosts and mammals. Phylogenetic analysis clustered the five genes into three main clades: α1 (designated atp1a1a and atp1a1b), α2 (designated atp1a2) and α3 (designated atp1a3a and atp1a3b) isoforms. Transcriptional analysis in larvae showed distinct expression profiles during development. In juvenile tissues, the atp1a1a gene was highly expressed in osmoregulatory organs, atp1a2 in skeletal muscle, atp1a1b in brain and heart and atp1a3a and atp1a3b mainly in brain. Quantification of mRNA abundance after a salinity challenge showed that atp1a1a transcript levels increased significantly in the gill of soles transferred to high salinity water (60 ppt). In contrast, atp1a3a transcripts increased at low salinity (5 ppt). In situ hybridization (ISH) analysis revealed that the number of ionocytes expressing atp1a1a transcripts in the primary gill filaments was higher at 35 and 60 ppt than at 5 ppt and remained undetectable or at very low levels in the lamellae at 5 and 35 ppt but increased at 60 ppt. Immunohistochemistry showed a higher number of positive cells in the lamellae. Whole-mount analysis of atp1a1a mRNA in young sole larvae revealed that it was localized in gut, pronephric tubule, gill, otic vesicle, yolk sac ionocytes and chordacentrum. Moreover, atp1a1a mRNAs increased at mouth opening (3 DPH) in larvae incubated at 36 ppt with a greater signal in gills. Copyright © 2014 Elsevier Inc. All rights reserved.
Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja
2014-04-15
Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.
ATP: A Coherent View for School Advanced Level Studies in Biology.
ERIC Educational Resources Information Center
Gayford, Chris
1986-01-01
Discusses how instruction of biological concepts as ATP cellular energetics is related to fundamental physical science understandings. Reviews areas of common misconceptions and confusions. Summarizes results of a study which investigated students' knowledge and perception of difficulty associated with the topic of energy and ATP. (ML)
Control of maximum metabolic rate in humans: dependence on performance phenotypes.
Hochachka, Peter W; Burelle, Yan
2004-01-01
Borrowing from metabolic control analysis the concept of control coefficients or ci values, defined as fractional change in MMR/fractional change in the capacity of any given step in ATP turnover, we used four performance phenotypes to compare mechanisms of control of aerobic maximum metabolic rate (MMR): (i) untrained sedentary (US) subjects, as a reference group against which to compare (ii) power trained (PT), (iii) endurance trained (ET), and (iv) high altitude adapted native (HA) subject groups. Sprinters represented the PT group; long distance runners illustrated the ET group; and Andean natives represented the HA group. Numerous recent studies have identified contributors to control on both the adenosine triphosphate (ATP) supply side and the ATP demand side of ATP turnover. From the best available evidence it appears that at MMR all five of the major steps in energy delivery (namely, ventilation, pulmonary diffusion, cardiac output, tissue capillary--mitochondrial O2 transfer, and aerobic cell metabolism per se) approach an upper functional ceiling, with control strength being distributed amongst the various O2 flux steps. On the energy demand side, the situation is somewhat simplified since at MMR approximately 90% of O2-based ATP synthesis is used for actomyosin (AM) and Ca2+ ATPases; at MMR these two ATP demand rates also appear to be near an upper functional ceiling. In consequence, at MMR the control contributions or ci values are distributed amongst all seven major steps in ATP supply and ATP demand pathways right to the point of fatigue. Relative to US (the reference group), in PT subjects at MMR control strength shifts towards O2 delivery steps (ventilation, pulmonary diffusion, and cardiac output); here physiological regulation clearly dominates MMR control. In contrast in ET and HA subjects at MMR control shifts towards the energy demand steps (AM and Ca2+ ATPases), and more control strength is focussed on tissue level ATP supply and ATP demand. One obvious advantage of the ET and HA biochemical-level control is improved metabolite homeostasis. Additionally, with some reserve capacity in the O2 delivery steps, the focussing of control on ATP turnover at the tissue level has allowed nature to improve on an 'endurance machine' design.
The role of the urothelium and ATP in mediating detrusor smooth muscle contractility.
Santoso, Aneira Gracia Hidayat; Sonarno, Ika Ariyani Bte; Arsad, Noor Aishah Bte; Liang, Willmann
2010-11-01
To examine the contractility of urothelium-intact (+UE) and urothelium-denuded (-UE) rat detrusor strips under adenosine triphosphate (ATP) treatment. Purinergic signaling exists in the bladder but both the inhibitory effect of ATP on detrusor contractions and the function of urothelial ATP are not established. Detrusor strips were obtained from bladders of young adult rats. Isometric tension from both transverse and longitudinal contractions was measured using a myograph. The muscarinic agonist carbachol (CCh) was used to induce contractions, which were under the influences of different concentrations of ATP. In both +UE and -UE strips, 1 mM ATP suppressed CCh-induced contractions. In longitudinal contractions, ATP added to the inhibitory effect of urothelium on CCh responses. Removal of the urothelium, but with exogenous ATP added, recovered the CCh responses to the same level as in +UE strips with no added ATP. Transverse contractions were less susceptible to ATP in the presence of urothelium. We showed that the urothelium and ATP suppressed CCh-induced contractions to a similar extent. The findings suggest an inhibitory role of urothelial ATP in mediating detrusor smooth muscle contractility, which may be impaired in diseased bladders. Copyright © 2010 Elsevier Inc. All rights reserved.
Knull, H R; Bronstein, W W; Porter, P J
1978-09-15
The levels of ATP and ATP plus DPG were significantly elevated in erythrocytes from Down's syndrome patients when compared to erythrocytes from age matched controls. The hemoglobin content and hematocrit values were significantly reduced. The resultant tendency towards anemia probably explains the elevation in metabolite levels.
Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse.
Lucas, Sarah J; Michel, Christophe B; Marra, Vincenzo; Smalley, Joshua L; Hennig, Matthias H; Graham, Bruce P; Forsythe, Ian D
2018-05-01
Synapses have high energy demands which increase during intense activity. We show that presynaptic terminals can utilise extracellular glucose or lactate to generate energy to maintain synaptic transmission. Reducing energy substrates induces a metabolic stress: presynaptic ATP depletion impaired synaptic transmission through a reduction in the number of functional synaptic vesicle release sites and a slowing of vesicle pool replenishment, without a consistent change in release probability. Metabolic function is compromised in many pathological conditions (e.g. stroke, traumatic brain injury and neurodegeneration). Knowledge of how synaptic transmission is constrained by metabolic stress, especially during intense brain activity, will provide insights to improve cognition following pathological insults. The synapse has high energy demands, which increase during intense activity. Presynaptic ATP production depends on substrate availability and usage will increase during activity, which in turn could influence transmitter release and information transmission. We investigated transmitter release at the mouse calyx of Held synapse using glucose or lactate (10, 1 or 0 mm) as the extracellular substrates while inducing metabolic stress. High-frequency stimulation (HFS) and recovery paradigms evoked trains of EPSCs monitored under voltage-clamp. Whilst postsynaptic intracellular ATP was stabilised by diffusion from the patch pipette, depletion of glucose increased EPSC depression during HFS and impaired subsequent recovery. Computational modelling of these data demonstrated a reduction in the number of functional release sites and slowed vesicle pool replenishment during metabolic stress, with little change in release probability. Directly depleting presynaptic terminal ATP impaired transmitter release in an analogous manner to glucose depletion. In the absence of glucose, presynaptic terminal metabolism could utilise lactate from the aCSF and this was blocked by inhibition of monocarboxylate transporters (MCTs). MCT inhibitors significantly suppressed transmission in low glucose, implying that lactate is a presynaptic substrate. Additionally, block of glycogenolysis accelerated synaptic transmission failure in the absence of extracellular glucose, consistent with supplemental supply of lactate by local astrocytes. We conclude that both glucose and lactate support presynaptic metabolism and that limited availability, exacerbated by high-intensity firing, constrains presynaptic ATP, impeding transmission through a reduction in functional presynaptic release sites as vesicle recycling slows when ATP levels are low. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Insect heat shock proteins during stress and diapause.
King, Allison M; MacRae, Thomas H
2015-01-07
Insect heat shock proteins include ATP-independent small heat shock proteins and the larger ATP-dependent proteins, Hsp70, Hsp90, and Hsp60. In concert with cochaperones and accessory proteins, heat shock proteins mediate essential activities such as protein folding, localization, and degradation. Heat shock proteins are synthesized constitutively in insects and induced by stressors such as heat, cold, crowding, and anoxia. Synthesis depends on the physiological state of the insect, but the common function of heat shock proteins, often working in networks, is to maintain cell homeostasis through interaction with substrate proteins. Stress-induced expression of heat shock protein genes occurs in a background of protein synthesis inhibition, but in the course of diapause, a state of dormancy and increased stress tolerance, these genes undergo differential regulation without the general disruption of protein production. During diapause, when ATP concentrations are low, heat shock proteins may sequester rather than fold proteins.
Imaging extracellular ATP with a genetically-encoded, ratiometric fluorescent sensor
Conley, Jason M.
2017-01-01
Extracellular adenosine triphosphate (ATP) is a key purinergic signal that mediates cell-to-cell communication both within and between organ systems. We address the need for a robust and minimally invasive approach to measuring extracellular ATP by re-engineering the ATeam ATP sensor to be expressed on the cell surface. Using this approach, we image real-time changes in extracellular ATP levels with a sensor that is fully genetically-encoded and does not require an exogenous substrate. In addition, the sensor is ratiometric to allow for reliable quantitation of extracellular ATP fluxes. Using live-cell microscopy, we characterize sensor performance when expressed on cultured Neuro2A cells, and we measure both stimulated release of ATP and its clearance by ectonucleotidases. Thus, this proof-of-principle demonstrates a first-generation sensor to report extracellular ATP dynamics that may be useful for studying purinergic signaling in living specimens. PMID:29121644
Trivedi, Malav S; Holger, Dana; Bui, Anh Tuyet; Craddock, Travis J A; Tartar, Jaime L
2017-01-01
Sleep is critical for repair as well as the rejuvenation processes in the body and many of these functions are regulated via underlying cellular metabolic homeostasis. Changes in sleep pattern are reported to alter such metabolic function resulting in altered disease susceptibility or behavior. Here, we measured the extent to which overnight total sleep deprivation (SD) in young adult humans can influence systemic (plasma-derived) redox-metabolism including the major antioxidant, glutathione as well as DNA methylation levels. Nineteen participants (n = 19, μ age = 21, SD = 3.09) underwent morning testing before and after overnight total SD. Biochemical measures before and after SD revealed that glutathione, ATP, cysteine, and homocysteine levels were significantly reduced following one night of sleep deprivation (all p's < 0.01). Parallel to the well-recognized fact that sleep deprivation (maintaining wakefulness) uses up metabolic reserves, we observed that morning cortisol levels were blunted after sleep deprivation. There were no significant correlations between self-reported or actigraphy-measured sleep and the biochemical measurements, strongly indicating that prior sleep behavior did not have any direct influence on the biochemical measures taken at baseline or after sleep deprivation. Results from the current investigation supports the previous literature implicating the induction of oxidative stress and ATP depletion with sleep deprivation. Furthermore, such altered antioxidant status can also induce downstream epigenetic changes. Although we did not measure the specific genes that were altered under the influence of such sleep deprivation, such epigenetic changes could potentially contribute towards disease predisposition.
Townsend, Alexandra D; Wilken, Gerald H; Mitchell, Kyle K; Martin, R Scott; Macarthur, Heather
2016-06-15
Sympathetic nerves are known to release three neurotransmitters: norepinephrine, ATP, and neuropeptide Y that play a role in controlling vascular tone. This paper focuses on the co-release of norepinephrine and ATP from the mesenteric arterial sympathetic nerves of the rat. In this paper, a quantification technique is described that allows simultaneous detection of norepinephrine and ATP in a near-real-time fashion from the isolated perfused mesenteric arterial bed of the rat. Simultaneous detection is enabled with 3-D printing technology, which is shown to help integrate the perfusate with different detection methods (norepinephrine by microchip-based amperometery and ATP by on-line chemiluminescence). Stimulated levels relative to basal levels of norepinephrine and ATP were found to be 363nM and 125nM, respectively (n=6). The limit of detection for norepinephrine is 80nM using microchip-based amperometric detection. The LOD for on-line ATP detection using chemiluminescence is 35nM. In previous studies, the co-transmitters have been separated and detected with HPLC techniques. With HPLC, the samples from biological preparations have to be derivatized for ATP detection and require collection time before analysis. Thus real-time measurements are not made and the delay in analysis by HPLC can cause degradation. In conclusion, the method described in the paper can be used to successfully detect norepinephrine and ATP simultaneously and in a near-real-time fashion. Copyright © 2016 Elsevier B.V. All rights reserved.
A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase.
Ahmad, Zulfiqar; Hassan, Sherif S; Azim, Sofiya
2017-11-20
For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phytochemicals is based on tradition or word of mouth with few evidence-based studies. Moreover, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become pertinent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of dietary phytochemicals are known to inhibit ATP synthase. Structural modifications of phytochemicals have been shown to increase the inhibitory potency and extent of inhibition. Sitedirected mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can result in selective binding and inhibition of microbial ATP synthase. In this review, the therapeutic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective targeting of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase
Ahmad, Zulfiqar; Hassan, Sherif S.; Azim, Sofiya
2017-01-01
For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phy-tochemicals is based on tradition or word of mouth with few evidence-based studies. Moreo-ver, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become perti-nent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of die-tary phytochemicals are known to inhibit ATP synthase. Structural modifications of phyto-chemicals have been shown to increase the inhibitory potency and extent of inhibition. Site-directed mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can re-sult in selective binding and inhibition of microbial ATP synthase. In this review, the therapeu-tic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective target-ing of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. PMID:28831918
Yuksel, C; Du, F; Ravichandran, C; Goldbach, J R; Thida, T; Lin, P; Dora, B; Gelda, J; O'Connor, L; Sehovic, S; Gruber, S; Ongur, D; Cohen, B M
2015-09-01
Converging evidence suggests bioenergetic abnormalities in bipolar disorder (BD). In the brain, phosphocreatine (PCr) acts a reservoir of high-energy phosphate (HEP) bonds, and creatine kinases (CK) catalyze the transfer of HEP from adenosine triphosphate (ATP) to PCr and from PCr back to ATP, at times of increased need. This study examined the activity of this mechanism in BD by measuring the levels of HEP molecules during a stimulus paradigm that increased local energy demand. Twenty-three patients diagnosed with BD-I and 22 healthy controls (HC) were included. Levels of phosphorus metabolites were measured at baseline and during visual stimulation in the occipital lobe using (31)P magnetic resonance spectroscopy at 4T. Changes in metabolite levels showed different patterns between the groups. During stimulation, HC had significant reductions in PCr but not in ATP, as expected. In contrast, BD patients had significant reductions in ATP but not in PCr. In addition, PCr/ATP ratio was lower at baseline in patients, and there was a higher change in this measure during stimulation. This pattern suggests a disease-related failure to replenish ATP from PCr through CK enzyme catalysis during tissue activation. Further studies measuring the CK flux in BD are required to confirm and extend this finding.
Lyoo, In Kyoon; Demopulos, Christina M; Hirashima, Fuyuki; Ahn, Kyung Heup; Renshaw, Perry F
2003-08-01
Oral choline administration has been reported to increase brain phosphatidylcholine levels. As phospholipid synthesis for maintaining membrane integrity in mammalian brain cells consumes approximately 10-15% of the total adenosine triphosphate (ATP) pool, an increased availability of brain choline may lead to an increase in ATP consumption. Given reports of genetic studies, which suggest mitochondrial dysfunction, and phosphorus (31P) magnetic resonance spectroscopy (MRS) studies, which report dysfunction in high-energy phosphate metabolism in patients with bipolar disorder, the current study is designed to evaluate the role of oral choline supplementation in modifying high-energy phosphate metabolism in subjects with bipolar disorder. Eight lithium-treated patients with DSM-IV bipolar disorder, rapid cycling type were randomly assigned to 50 mg/kg/day of choline bitartrate or placebo for 12 weeks. Brain purine, choline and lithium levels were assessed using 1H- and 7Li-MRS. Patients received four to six MRS scans, at baseline and weeks 2, 3, 5, 8, 10 and 12 of treatment (n = 40 scans). Patients were assessed using the Clinical Global Impression Scale (CGIS), the Young Mania Rating Scale (YRMS) and the Hamilton Depression Rating Scale (HDRS) at each MRS scan. There were no significant differences in change-from-baseline measures of CGIS, YMRS, and HDRS, brain choline/creatine ratios, and brain lithium levels over a 12-week assessment period between the choline and placebo groups or within each group. However, the choline treatment group showed a significant decrease in purine metabolite ratios from baseline (purine/n-acetyl aspartate: coef = -0.08, z = -2.17, df = 22, p = 0.030; purine/choline: coef = -0.12, z = -1.97, df = 22, p = 0.049) compared to the placebo group, controlling for brain lithium level changes. Brain lithium level change was not a significant predictor of purine ratios. The current study reports that oral choline supplementation resulted in a significant decrease in brain purine levels over a 12-week treatment period in lithium-treated patients with DSM-IV bipolar disorder, rapid-cycling type, which may be related to the anti-manic effects of adjuvant choline. This result is consistent with mitochondrial dysfunction in bipolar disorder inadequately meeting the demand for increased ATP production as exogenous oral choline administration increases membrane phospholipid synthesis.
Vezir, Özden; Çömelekoğlu, Ülkü; Sucu, Nehir; Yalın, Ali Erdinç; Yılmaz, Şakir Necat; Yalın, Serap; Söğüt, Fatma; Yaman, Selma; Kibar, Kezban; Akkapulu, Merih; Koç, Meryem İlkay; Seçer, Didem
2017-08-01
In this study, we aimed to investigate the role of ATP-sensitive potassium (K ATP ) channel, Na + /K + -ATPase activity, and intracellular calcium levels on the vasodilatory effect of N-acetylcysteine (NAC) in thoracic aorta by using electrophysiological and molecular techniques. Rat thoracic aorta ring preparations and cultured thoracic aorta cells were divided into four groups as control, 2mM NAC, 5mM NAC, and 10mM NAC. Thoracic aorta rings were isolated from rats for measurements of relaxation responses and Na + /K + -ATPase activity. In the cultured thoracic aorta cells, we measured the currents of K ATP channel, the concentration of intracellular calcium and mRNA expression level of K ATP channel subunits (KCNJ8, KCNJ11, ABCC8 and ABCC9). The relaxation rate significantly increased in all NAC groups compared to control. Similarly, Na + /K + - ATPase activity also significantly decreased in NAC groups. Outward K ATP channel current significantly increased in all NAC groups compared to the control group. Intracellular calcium concentration decreased significantly in all groups with compared control. mRNA expression level of ABCC8 subunit significantly increased in all NAC groups compared to the control group. Pearson correlation analysis showed that relaxation rate was significantly associated with K ATP current, intracellular calcium concentration, Na + /K + -ATPase activity and mRNA expression level of ABCC8 subunit. Our findings suggest that NAC relaxes vascular smooth muscle cells through a direct effect on K ATP channels, by increasing outward K+ flux, partly by increasing mRNA expression of K ATP subunit ABCC8, by decreasing in intracellular calcium and by decreasing in Na + /K + -ATPase activity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Serrano, K; Levin, E; Chen, D; Hansen, A; Turner, T R; Kurach, J; Reidel, A; Boecker, W F; Acker, J P; Devine, D V
2016-04-01
Di-2-ethylhexyl phthalate (DEHP) is a blood bag plasticizer. It is also a toxin, raising concerns for vulnerable populations, for example, neonates and infants. Here, the in vitro quality of red cell concentrates (RCC) stored in paediatric bags formulated with alternative plasticizers to DEHP was compared. RCC were pooled and split into polyvinylchloride (PVC)/DEHP, PVC/1,2-cyclohexanedicarboxylic acid diisononyl ester (DINCH) or PVC/butyryl trihexyl citrate (BTHC) bags. Quality was assessed on storage days 5, 21, 35 and 43. Metabolism differed among the bags: pCO2 levels were lowest and pO2 were highest in BTHC bags. Glucose consumption and lactate production suggested higher metabolic rates in BTHC bags. ATP levels were best maintained in DINCH bags (day 43 mean level: 2·86 ± 0·29 μmol/g Hb). RCC in BTHC bags had the greatest potassium release (54·6 ± 3·0 mm on day 43). From day 21, haemolysis was higher in BTHC bags (P < 0·01) and by day 43 had exceeded 0·8% (0·85 ± 0·10%). RCC in BTHC bags showed more microparticle formation than RCC in DEHP or DINCH bags. The results suggest that the BTHC formulation used was detrimental to RBC quality. DINCH bags could be a viable alternative to DEHP: they outperformed DEHP bags energetically, with better maintenance of ATP levels. © 2015 International Society of Blood Transfusion.
Bele, Tanja; Fabbretti, Elsa
2016-08-01
P2X3 receptors, gated by extracellular ATP, are expressed by sensory neurons and are involved in peripheral nociception and pain sensitization. The ability of P2X3 receptors to transduce extracellular stimuli into neuronal signals critically depends on the dynamic molecular partnership with the calcium/calmodulin-dependent serine protein kinase (CASK). The present work used trigeminal sensory neurons to study the impact that activation of P2X3 receptors (evoked by the agonist α,β-meATP) has on the release of endogenous ATP and how CASK modulates this phenomenon. P2X3 receptor function was followed by ATP efflux via Pannexin1 (Panx1) hemichannels, a mechanism that was blocked by the P2X3 receptor antagonist A-317491, and by P2X3 silencing. ATP efflux was enhanced by nerve growth factor, a treatment known to potentiate P2X3 receptor function. Basal ATP efflux was not controlled by CASK, and carbenoxolone or Pannexin silencing reduced ATP release upon P2X3 receptor function. CASK-controlled ATP efflux followed P2X3 receptor activity, but not depolarization-evoked ATP release. Molecular biology experiments showed that CASK was essential for the transactivation of Panx1 upon P2X3 receptor activation. These data suggest that P2X3 receptor function controls a new type of feed-forward purinergic signaling on surrounding cells, with consequences at peripheral and spinal cord level. Thus, P2X3 receptor-mediated ATP efflux may be considered for the future development of pharmacological strategies aimed at containing neuronal sensitization. P2X3 receptors are involved in sensory transduction and associate to CASK. We have studied in primary sensory neurons the molecular mechanisms downstream P2X3 receptor activation, namely ATP release and partnership with CASK or Panx1. Our data suggest that CASK and P2X3 receptors are part of an ATP keeper complex, with important feed-forward consequences at peripheral and central level. © 2016 International Society for Neurochemistry.
Shyng, S.-L.; Barbieri, A.; Gumusboga, A.; Cukras, C.; Pike, L.; Davis, J. N.; Stahl, P. D.; Nichols, C. G.
2000-01-01
ATP-sensitive potassium channels (KATP channels) regulate cell excitability in response to metabolic changes. KATP channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K+ channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), activate KATP channels and antagonize ATP inhibition of KATP channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP2 levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed KATP channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K1/2, the half maximal inhibitory concentration, ≈ 60 μM) than the sensitivities from control cells (K1/2 ≈ 10 μM). An inactive form of the PIP5K had little effect on the K1/2 of wild-type channels but increased the ATP-sensitivity of a mutant KATP channel that has an intrinsically lower ATP sensitivity (from K1/2 ≈ 450 μM to K1/2 ≈ 100 μM), suggesting a decrease in membrane PIP2 levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP2 and PI-3,4,5-P3 levels, is a significant determinant of the physiological nucleotide sensitivity of KATP channels. PMID:10639183
Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA.
Lee, Eun-Jin; Groisman, Eduardo A
2012-06-13
The facultative intracellular pathogen Salmonella enterica resides within a membrane-bound compartment inside macrophages. This compartment must be acidified for Salmonella to survive within macrophages, possibly because acidic pH promotes expression of Salmonella virulence proteins. We reasoned that Salmonella might sense its surroundings have turned acidic not only upon protonation of the extracytoplasmic domain of a protein sensor but also by an increase in cytosolic ATP levels, because conditions that enhance the proton gradient across the bacterial inner membrane stimulate ATP synthesis. Here we report that an increase in cytosolic ATP promotes transcription of the coding region for the virulence gene mgtC, which is the most highly induced horizontally acquired gene when Salmonella is inside macrophages. This transcript is induced both upon media acidification and by physiological conditions that increase ATP levels independently of acidification. ATP is sensed by the coupling/uncoupling of transcription of the unusually long mgtC leader messenger RNA and translation of a short open reading frame located in this region. A mutation in the mgtC leader messenger RNA that eliminates the response to ATP hinders mgtC expression inside macrophages and attenuates Salmonella virulence in mice. Our results define a singular example of an ATP-sensing leader messenger RNA. Moreover, they indicate that pathogens can interpret extracellular cues by the impact they have on cellular metabolites.
Maldonado, Claudio; Pushpakumar, Sathnur B; Perez-Abadia, Gustavo; Arumugam, Sengodagounder; Lane, Andrew N
2013-05-01
Ischemia-reperfusion injury is a devastating complication that occurs in allotransplantation and replantation of limbs. Over the years, several preservation strategies have been used to conserve the critical levels of intracellular adenosine triphosphate (ATP) during ischemia to sustain the ion gradients across the membranes and thus the tissue viability. The administration of exogenous ATP to ischemic tissues is known to provide beneficial effects during reperfusion, but it is unclear whether it provides protection during ischemia. The purpose of the present study was to determine the effect of ATP administration on high-energy phosphate levels in ischemic skeletal muscle and to examine the role of purinergic and adenosine receptors in mediating the response to exogenous ATP. The extensor digitorum longus muscles of Fischer rats were subjected to ischemia and treated with different concentrations of ATP with or without purinergic and adenosine receptor blockers. Phosphorus-31 nuclear magnetic resonance spectroscopy was used to measure the rate of decay of ATP, phosphocreatine (PCr), and the formation of adenosine monophosphate and acidification. Phosphorylated compounds were analyzed using a simple model of energy metabolism, and the PCr half-life was used as an index of internal depletion of ATP to distinguish between intracellular and extracellular ATP. PCr decay was rapid in all muscle groups and was followed by gradual ATP decay. The half-life of PCr was significantly longer in the ATP-treated muscles than in the vehicle controls and was maximally prolonged by treating with slow hydrolyzing adenosine 5'-O-(3-thio)triphosphate. Purinoceptor (P2X) blockade with ATP treatment significantly increased the half-life of PCr, and adenosine receptor blockers blunted the response. Administration of adenosine to ischemic muscles significantly increased the half-life of PCr compared with that in the vehicle controls. Exogenous ATP administration to ischemic skeletal muscles appears to spare intracellular energy by acting primarily through adenosine receptors. Copyright © 2013 Elsevier Inc. All rights reserved.
Oliveira, Olga; Ferreira, Sónia; Reis, Maria Júlia; Oliveira, José Carlos; Correia-de-Sá, Paulo
2013-01-01
Background Nowadays, there is a considerable bulk of evidence showing that ATP has a prominent role in the regulation of human urinary bladder function and in the pathophysiology of detrusor overactivity. ATP mediates nonadrenergic-noncholinergic detrusor contractions in overactive bladders. In vitro studies have demonstrated that uroepithelial cells and cholinergic nerves from overactive human bladder samples (OAB) release more ATP than controls. Here, we compared the urinary ATP concentration in samples collected non-invasively from OAB women with detrusor overactivity and age-matched controls. Methods Patients with neurologic diseases, history of malignancy, urinary tract infections or renal impairment (creatinine clearance <70 ml/min) were excluded. All patients completed a 3-day voiding diary, a 24 h urine collection and blood sampling to evaluate creatinine clearance. Urine samples collected during voluntary voids were immediately freeze-preserved for ATP determination by the luciferin-luciferase bioluminescence assay; for comparison purposes, samples were also tested for urinary nerve growth factor (NGF) by ELISA. Results The urinary content of ATP, but not of NGF, normalized to patients’ urine creatinine levels (ATP/Cr) or urinary volume (ATP.Vol) were significantly (P<0.05) higher in OAB women with detrusor overactivity (n = 34) than in healthy controls (n = 30). Significant differences between the two groups were still observed by boosting urinary ATP/Cr content after water intake, but these were not detected for NGF/Cr. In OAB patients, urinary ATP/Cr levels correlated inversely with mean voided volumes determined in a 3-day voiding diary. Conclusion A high area under the receiver operator characteristics (ROC) curve (0.741; 95% CI 0.62–0.86; P<0.001) is consistent with urinary ATP/Cr being a highly sensitive dynamic biomarker for assessing detrusor overactivity in women with OAB syndrome. PMID:23741373
Loss of the clock protein PER2 shortens the erythrocyte life span in mice.
Sun, Qi; Zhao, Yue; Yang, Yunxia; Yang, Xiao; Li, Minghui; Xu, Xi; Wen, Dan; Wang, Junsong; Zhang, Jianfa
2017-07-28
Cell proliferation and release from the bone marrow have been demonstrated to be controlled by circadian rhythms in both humans and mice. However, it is unclear whether local circadian clocks in the bone marrow influence physiological functions and life span of erythrocytes. Here, we report that loss of the clock gene Per2 significantly decreased erythrocyte life span. Mice deficient in Per2 were more susceptible to acute stresses in the erythrocytes, becoming severely anemic upon phenylhydrazine, osmotic, and H 2 O 2 challenges. 1 H NMR-based metabolomics analysis revealed that the Per2 depletion causes significant changes in metabolic profiles of erythrocytes, including increased lactate and decreased ATP levels compared with wild-type mice. The lower ATP levels were associated with hyperfunction of Na + /K + -ATPase activity in Per2 -null erythrocytes, and inhibition of Na + /K + -ATPase activity by ouabain efficiently rescued ATP levels. Per2 -null mice displayed increased levels of Na + /K + -ATPase α1 (ATP1A1) in the erythrocyte membrane, and transfection of Per2 cDNA into the erythroleukemic cell line TF-1 inhibited Atp1a1 expression. Furthermore, we observed that PER2 regulates Atp1a1 transcription through interacting with trans-acting transcription factor 1 (SP1). Our findings reveal that Per2 function in the bone marrow is required for the regulation of life span in circulating erythrocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Purified human MDR 1 modulates membrane potential in reconstituted proteoliposomes.
Howard, Ellen M; Roepe, Paul D
2003-04-01
Human multidrug resistance (hu MDR 1) cDNA was fused to a P. shermanii transcarboxylase biotin acceptor domain (TCBD), and the fusion protein was heterologously overexpressed at high yield in K(+)-uptake deficient Saccharomyces cerevisiae yeast strain 9.3, purified by avidin-biotin chromatography, and reconstituted into proteoliposomes (PLs) formed with Escherichia coli lipid. As measured by pH- dependent ATPase activity, purified, reconstituted, biotinylated MDR-TCBD protein is fully functional. Dodecyl maltoside proved to be the most effective detergent for the membrane solubilization of MDR-TCBD, and various salts were found to significantly affect reconstitution into PLs. After extensive analysis, we find that purified reconstituted MDR-TCBD protein does not catalyze measurable H(+) pumping in the presence of ATP. In the presence of physiologic [ATP], K(+)/Na(+) diffusion potentials monitored by either anionic oxonol or cationic carbocyanine are easily established upon addition of valinomycin to either control or MDR-TCBD PLs. However, in the absence of ATP, although control PLs still maintain easily measurable K(+)/Na(+) diffusion potentials upon addition of valinomycin, MDR-TCBD PLs do not. Dissipation of potential by MDR-TCBD is clearly [ATP] dependent and also appears to be Cl(-) dependent, since replacing Cl(-) with equimolar glutamate restores the ability of MDR-TCBD PLs to form a membrane potential in the absence of physiologic [ATP]. The data are difficult to reconcile with models that might propose ATP-catalyzed "pumping" of the fluorescent probes we use and are more consistent with electrically passive anion transport via MDR-TCBD protein, but only at low [ATP]. These observations may help to resolve the confusing array of data related to putative ion transport by hu MDR 1 protein.
Briant, Linford J B; Dodd, Michael S; Chibalina, Margarita V; Rorsman, Nils J G; Johnson, Paul R V; Carmeliet, Peter; Rorsman, Patrik; Knudsen, Jakob G
2018-06-12
Glucagon, the principal hyperglycemic hormone, is secreted from pancreatic islet α cells as part of the counter-regulatory response to hypoglycemia. Hence, secretory output from α cells is under high demand in conditions of low glucose supply. Many tissues oxidize fat as an alternate energy substrate. Here, we show that glucagon secretion in low glucose conditions is maintained by fatty acid metabolism in both mouse and human islets, and that inhibiting this metabolic pathway profoundly decreases glucagon output by depolarizing α cell membrane potential and decreasing action potential amplitude. We demonstrate, by using experimental and computational approaches, that this is not mediated by the K ATP channel, but instead due to reduced operation of the Na + -K + pump. These data suggest that counter-regulatory secretion of glucagon is driven by fatty acid metabolism, and that the Na + -K + pump is an important ATP-dependent regulator of α cell function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Perini, Alessandro Paoletti; Kutyifa, Valentina; Veazie, Peter; Daubert, James P; Schuger, Claudio; Zareba, Wojciech; McNitt, Scott; Rosero, Spencer; Tompkins, Christine; Padeletti, Luigi; Moss, Arthur J
2017-07-01
Effects of implantable cardioverter/defibrillator (ICD) shocks and antitachycardia pacing (ATP) on anxiety and quality of life (QoL) in ICD patients are poorly understood. We evaluated changes in QoL from baseline to 9-month follow-up using the EQ-5D questionnaire in patients enrolled in the Multicenter Automatic Defibrillator Implantation Trial-Reduce Inappropriate Therapy (MADIT-RIT) (n=1,268). We assessed anxiety levels using the Florida Shock Anxiety Scale (1-10 score) in patients with appropriate or inappropriate shocks or ATP compared to those with no ICD therapy during the first 9 months postimplant. The analysis was stratified by number of ATP or shocks (0-1 vs ≥2) and adjusted for covariates. In MADIT-RIT, 15 patients (1%) had ≥2 appropriate shocks, 38 (3%) had ≥2 appropriate ATPs. Two or more inappropriate shocks were delivered in 16 patients (1%); ≥2 inappropriate ATPs, in 70. In multivariable analysis, patients with ≥2 appropriate shocks had higher levels of shock-related anxiety than those with ≤1 appropriate shock (P<.01). Furthermore, ≥2 inappropriate shocks produced more anxiety than ≤1 inappropriate shock (P=.005). Consistently, ≥2 appropriate ATPs resulted in more anxiety than ≤1 (P=.028), whereas the number of inappropriate ATPs showed no association with anxiety levels (P=.997). However, there was no association between QoL and appropriate or inappropriate ATP/shock (all P values > .05). In MADIT-RIT, ≥2 appropriate or inappropriate ICD shocks and ≥2 appropriate ATPs are associated with more anxiety at 9-month follow-up despite no significant changes in the assessment of global QoL by the EQ-5D questionnaire. Innovative ICD programming reducing inappropriate therapies may help deal with patient concerns about the device. Copyright © 2017 Elsevier Inc. All rights reserved.
31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes.
Petersen, A; Kristensen, S R; Jacobsen, J P; Hørder, M
1990-08-17
Absolute 31P-NMR measurements of ATP, ADP and 2,3-diphosphoglycerate (2,3-DPG) in oxygenated and partly deoxygenated human erythrocytes, compared to measurements by standard assays after acid extraction, show that ATP is only 65% NMR visible, ADP measured by NMR is unexpectedly 400% higher than the enzymatic measurement and 2,3-DPG is fully NMR visible, regardless of the degree of oxygenation. These results show that binding to hemoglobin is unlikely to cause the decreased visibility of ATP in human erythrocytes as deoxyhemoglobin binds the phosphorylated metabolites more tightly than oxyhemoglobin. The high ADP visibility is unexplained. The levels of free Mg2+ [( Mg2+]free) in human erythrocytes are 225 mumol/l at an oxygen saturation of 98.6% and instead of the expected increase, the level decreased to 196 mumol/l at an oxygen saturation of 38.1% based on the separation between the alpha- and beta-ATP peaks. [Mg2+]free in the erythrocytes decreased to 104 mumol/l at a high 2,3-DPG concentration of 25.4 mmol/l red blood cells (RBC) and a normal ATP concentration of 2.05 mmol/l RBC. By increasing the ATP concentration to 3.57 mmol/l RBC, and with a high 2,3-DPG concentration of 24.7 mmol/l RBC, the 31P-NMR measured [Mg2+]free decreased to 61 mumol/l. These results indicate, that the 31P-NMR determined [Mg2+]free in human erythrocytes, based solely on the separation of the alpha- and beta-ATP peaks, does not give a true measure of intracellular free Mg2+ changes with different oxygen saturation levels. Furthermore the measurement is influenced by the concentration of the Mg2+ binding metabolites ATP and 2,3-DPG. Failure to take these factors into account when interpreting 31P-NMR data from human erythrocytes may explain some discrepancies in the literature regarding [Mg2+]free.
Mallo, Natalia; Lamas, Jesús; de Felipe, Ana-Paula; Sueiro, Rosa-Ana; Fontenla, Francisco; Leiro, José-Manuel
2016-10-01
The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anphizoic and marine euryhaline ciliate Philasterides dicentrarchi. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPi), Ca(2+) and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. P. dicentrarchi possesses a pyrophosphatase (H(+)-PPase) that pumps H(+) through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca(2+) storage). We evaluated the effects of Ca(2+) and ATP on H (+)-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPi and inorganic molecules that affect osmolarity. Addition of PPi led to acidification of the intracellular compartments, while the addition of ATP, CaCl2 and bisphosphonates analogous of PPi and Ca(2+) metabolism regulators led to alkalinization and a decrease in H(+)-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca(2+) accumulation and downregulation of H(+)-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for maintaining the intracellular pH homeostasis necessary for survival of ciliates and their adaptation to salt stress, which they will presumably face during the endoparasitic phase, in which the salinity levels are lower than in their natural environment. Copyright © 2016 Elsevier Inc. All rights reserved.
Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells.
Mello, Paola de Andrade; Filippi-Chiela, Eduardo Cremonese; Nascimento, Jéssica; Beckenkamp, Aline; Santana, Danielle Bertodo; Kipper, Franciele; Casali, Emerson André; Nejar Bruno, Alessandra; Paccez, Juliano Domiraci; Zerbini, Luiz Fernando; Wink, Marcia Rosângela; Lenz, Guido; Buffon, Andréia
2014-10-01
In cervical cancer, HPV infection and disruption of mechanisms involving cell growth, differentiation, and apoptosis are strictly linked with tumor progression and invasion. Tumor microenvironment is ATP and adenosine rich, suggesting a role for purinergic signaling in cancer cell growth and death. Here we investigate the effect of extracellular ATP on human cervical cancer cells. We find that extracellular ATP itself has a small cytotoxic effect, whereas adenosine formed from ATP degradation by ectonucleotidases is the main factor responsible for apoptosis induction. The level of P2 × 7 receptor seemed to define the main cytotoxic mechanism triggered by ATP, since ATP itself eliminated a small subpopulation of cells that express high P2 × 7 levels, probably through its activation. Corroborating these data, blockage or knockdown of P2 × 7 only slightly reduced ATP cytotoxicity. On the other hand, cell viability was almost totally recovered with dipyridamole, an adenosine transporter inhibitor. Moreover, ATP-induced apoptosis and signaling-p53 increase, AMPK activation, and PARP cleavage-as well as autophagy induction were also inhibited by dipyridamole. In addition, inhibition of adenosine conversion into AMP also blocked cell death, indicating that metabolization of intracellular adenosine originating from extracellular ATP is responsible for the main effects of the latter in human cervical cancer cells. © 2014 Mello et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Traverse, Jay H; Chen, YingJie; Hou, MingXiao; Li, Yunfang; Bache, Robert J
2007-06-08
K(+)(ATP) channels are important metabolic regulators of coronary blood flow (CBF) that are activated in the setting of reduced levels of ATP or perfusion pressure. In the normal heart, blockade of K(+)(ATP) channels results in a approximately 20% reduction in resting CBF but does not impair the increase in CBF that occurs during exercise. In contrast, adenosine receptor blockade fails to alter CBF or myocardial oxygen consumption (MVO(2)) in the normal heart but contributes to the increase in CBF during exercise when vascular K(+)(ATP) channels are blocked. Congestive heart failure (CHF) is associated with a decrease in CBF that is matched to a decrease in MVO(2) suggesting downregulation of myocardial energy utilization. Because myocardial ATP levels and coronary perfusion pressure are reduced in CHF, this study was undertaken to examine the role of K(+)(ATP) channels and adenosine in dogs with pacing-induced CHF. Myocardial blood flow (MBF) and MVO(2) were measured during rest and treadmill exercise before and after K(+)(ATP) channel blockade with glibenclamide (50 microg/kg/min ic) or adenosine receptor blockade with 8-phenyltheophylline (8-PT; 5 mg/kg iv). Inhibition of K(+)(ATP) channels resulted in a decrease in CBF and MVO(2) at rest and during exercise without a change in the relationship between CBF and MVO(2). In contrast, adenosine receptor blockade caused a significant increase in CBF that occurred secondary to an increase of MVO(2). These findings demonstrate that coronary K(+)(ATP) channel activity contribute to the regulation of resting MBF in CHF, and that endogenous adenosine may act to inhibit MVO(2) in the failing heart.
Spragg, R G; Hinshaw, D B; Hyslop, P A; Schraufstätter, I U; Cochrane, C G
1985-01-01
To investigate mechanisms whereby oxidant injury of cells results in cell dysfunction and death, cultured endothelial cells or P388D1 murine macrophage-like cells were exposed to oxidants including H2O2, O2-. (generated by the enzymatic oxidation of xanthine), or to stimulated polymorphonuclear leukocytes (PMN). Although Trypan Blue exclusion was not diminished before 30 min, cellular ATP was found to fall to less than 30% of control values within 3 min of exposure to 5 mM H2O2. Stimulated PMN plus P388D1 caused a 50% fall in cellular ATP levels. During the first minutes of oxidant injury, total adenylate content of cells fell by 85%. Cellular ADP increased 170%, AMP increased 900%, and an 83% loss of ATP was accompanied by a stoichiometric increase in IMP and inosine. Calculated energy charge [(ATP + 1/2 AMP)/(ATP + ADP + AMP)] fell from 0.95 to 0.66. Exposure of P388D1 to oligomycin plus 2-deoxyglucose (which inhibit oxidative and glycolytic generation of ATP, respectively) resulted in a rate of ATP fall similar to that induced by H2O2. In addition, nucleotide alterations induced by exposure to oligomycin plus 2-deoxyglucose were qualitatively similar to those induced by the oxidant. Loss of cell adenylates could not be explained by arrest of de novo purine synthesis or increased ATP consumption by the Na+-K+ ATPase or the mitochondrial F0-ATPase. These results indicate that H2O2 causes a rapid and profound fall in cellular ATP levels similar to that seen when ATP production is arrested by metabolic inhibitors. PMID:2997279
Defining the Role of ATP Hydrolysis in Mitotic Segregation of Bacterial Plasmids
Ah-Seng, Yoan; Rech, Jérôme; Lane, David; Bouet, Jean-Yves
2013-01-01
Hydrolysis of ATP by partition ATPases, although considered a key step in the segregation mechanism that assures stable inheritance of plasmids, is intrinsically very weak. The cognate centromere-binding protein (CBP), together with DNA, stimulates the ATPase to hydrolyse ATP and to undertake the relocation that incites plasmid movement, apparently confirming the need for hydrolysis in partition. However, ATP-binding alone changes ATPase conformation and properties, making it difficult to rigorously distinguish the substrate and cofactor roles of ATP in vivo. We had shown that mutation of arginines R36 and R42 in the F plasmid CBP, SopB, reduces stimulation of SopA-catalyzed ATP hydrolysis without changing SopA-SopB affinity, suggesting the role of hydrolysis could be analyzed using SopA with normal conformational responses to ATP. Here, we report that strongly reducing SopB-mediated stimulation of ATP hydrolysis results in only slight destabilization of mini-F, although the instability, as well as an increase in mini-F clustering, is proportional to the ATPase deficit. Unexpectedly, the reduced stimulation also increased the frequency of SopA relocation over the nucleoid. The increase was due to drastic shortening of the period spent by SopA at nucleoid ends; average speed of migration per se was unchanged. Reduced ATP hydrolysis was also associated with pronounced deviations in positioning of mini-F, though time-averaged positions changed only modestly. Thus, by specifically targeting SopB-stimulated ATP hydrolysis our study reveals that even at levels of ATPase which reduce the efficiency of splitting clusters and the constancy of plasmid positioning, SopB still activates SopA mobility and plasmid positioning, and sustains near wild type levels of plasmid stability. PMID:24367270
Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways
Okada, Seiko F.; Ribeiro, Carla M. P.; Sesma, Juliana I.; Seminario-Vidal, Lucia; Abdullah, Lubna H.; van Heusden, Catharina; Lazarowski, Eduardo R.
2013-01-01
ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion. PMID:23763446
Oropesa, Manuel; de la Mata, Mario; Maraver, Juan Garrido; Cordero, Mario D; Cotán, David; Rodríguez-Hernández, Angeles; Domínguez-Moñino, Irene; de Miguel, Manuel; Navas, Plácido; Sánchez-Alcázar, José A
2011-04-01
Microtubule cytoskeleton is reformed during apoptosis, forming a cortical structure beneath plasma membrane, which plays an important role in preserving cell morphology and plasma membrane integrity. However, the maintenance of the apoptotic microtubule network (AMN) during apoptosis is not understood. In the present study, we examined apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells. We demonstrate that AMN was organized in apoptotic cells with high ATP levels and hyperpolarized mitochondria and, on the contrary, was dismantled in apoptotic cells with low ATP levels and mitochondrial depolarization. AMN disorganization after mitochondrial depolarization was associated with increased plasma membrane permeability assessed by enhancing LDH release and increased intracellular calcium levels. Living cell imaging monitoring of both, microtubule dynamics and mitochondrial membrane potential, showed that AMN persists during apoptosis coinciding with cycles of mitochondrial hyperpolarization. Eventually, AMN was disorganized when mitochondria suffered a large depolarization and cell underwent secondary necrosis. AMN stabilization by taxol prevented LDH release and calcium influx even though mitochondria were depolarized, suggesting that AMN is essential for plasma membrane integrity. Furthermore, high ATP levels and mitochondria polarization collapse after oligomycin treatment in apoptotic cells suggest that ATP synthase works in "reverse" mode during apoptosis. These data provide new explanations for the role of AMN and mitochondria during apoptosis.
The second case of a young man with L-arginine-induced acute pancreatitis.
Binet, Quentin; Dufour, Inès; Agneessens, Emmanuel; Debongnie, Jean-Claude; Aouattah, Tarik; Covas, Angélique; Coche, Jean-Charles; De Koninck, Xavier
2018-04-21
Dietary supplementation of arginine has been used by numerous world-class athletes and professional bodybuilders over the past 30 years. L-Arginine indeed enhances muscular power and general performance via maintaining ATP level. However, L-arginine is also known to induce acute pancreatitis in murine models. We report the case of young man presenting with upper abdominal pain and increased serum lipase levels. Contrast-enhanced computed tomography confirms a mild acute pancreatitis. Common etiologies have been ruled out and toxicological anamnestic screening reveals the intake of protein powder. This is, to the best of our knowledge, the second case in human of arginine-induced acute pancreatitis. This case report suggests that every patient presenting with acute pancreatitis without obvious etiology should be evaluated for the intake of toxics other than alcohol, including L-arginine.
Schloesser, Anke; Esatbeyoglu, Tuba; Piegholdt, Stefanie; Dose, Janina; Ikuta, Naoko; Okamoto, Hinako; Ishida, Yoshiyuki; Terao, Keiji; Matsugo, Seiichi; Rimbach, Gerald
2015-01-01
Brain aging is accompanied by a decrease in mitochondrial function. In vitro studies suggest that tocotrienols, including γ- and δ-tocotrienol (T3), may exhibit neuroprotective properties. However, little is known about the effect of dietary T3 on mitochondrial function in vivo. In this study, we monitored the effect of a dietary T3/γ-cyclodextrin complex (T3CD) on mitochondrial membrane potential and ATP levels in the brain of 21-month-old mice. Mice were fed either a control diet or a diet enriched with T3CD providing 100 mg T3 per kg diet for 6 months. Dietary T3CD significantly increased mitochondrial membrane potential and ATP levels compared to those of controls. The increase in MMP and ATP due to dietary T3CD was accompanied by an increase in the protein levels of the mitochondrial transcription factor A (TFAM). Furthermore, dietary T3CD slightly increased the mRNA levels of superoxide dismutase, γ-glutamyl cysteinyl synthetase, and heme oxygenase 1 in the brain. Overall, the present data suggest that T3CD increases TFAM, mitochondrial membrane potential, and ATP synthesis in the brains of aged mice. PMID:26301044
Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon
2012-01-01
ATP7A and ATP7B are copper-transporting P1B-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and COMMD1 were previously identified as interacting partners of these Cu-ATPases. In this study, we confirmed that clusterin and COMMD1 interact to down-regulate both ATP7A and ATP7B. Overexpression and knockdown of clusterin/COMMD1 decreased and increased, respectively, endogenous levels of ATP7A and ATP7B, consistent with a role in facilitating Cu-ATPase degradation. We demonstrate that whereas the clusterin/ATP7B interaction was enhanced by oxidative stress or mutation of ATP7B, the COMMD1/ATP7B interaction did not change under oxidative stress conditions, and only increased with ATP7B mutations that led to its misfolding. Clusterin and COMMD1 facilitated the degradation of ATP7B containing the same Wilson disease-causing C-terminal mutations via different degradation pathways, clusterin via the lysosomal pathway and COMMD1 via the proteasomal pathway. Furthermore, endogenous ATP7B existed in a complex with clusterin and COMMD1, but these interactions were neither competitive nor cooperative and occurred independently of each other. Together these data indicate that clusterin and COMMD1 represent alternative and independent systems regulating Cu-ATPase quality control, and consequently contributing to the maintenance of copper homeostasis. PMID:22130675
Hansen, Adele; Yi, Qi-Long; Acker, Jason P
2013-08-01
Washing of red blood cell concentrates (RCCs) is required for potassium-sensitive transfusion recipients, including neonates in need of large-volume transfusions. When open, nonsterile washing systems are used, postwash outdate time is limited to 24 hours, often leading to problems providing the component to the patient before expiry. A closed, automated cell processor, the ACP 215 from Haemonetics Corporation, was used to wash RCCs and determine optimal pre- and postwash storage times. Two postwash storage solutions, additive solution (AS)-3 and saline-adenine-glucose-mannitol (SAGM), were compared. The in vitro quality of leukoreduced RCCs, prepared from citrate-phosphate-dextrose-anticoagulated whole blood, was determined postwash and compared to existing guidelines for RCC quality (hemoglobin content, hematocrit, and hemolysis) and predetermined criteria for ATP and supernatant potassium levels. A criterion for visual hemolysis was also applied. The prewash storage time, postwash storage time, and the postwash resuspension solution all contributed to RCC quality postwash. Levels of hemolysis were greater when washed RCCs were resuspended in SAGM (p = 0.01), while AS-3 proved worse at maintaining ATP levels postwash (p < 0.01). Immediately postwash, all units had supernatant K+ levels below the detection limit of the instrument (<1 mmol/L), but these increased to above acceptable levels within 14 days. Based on all acceptance criteria, a maximum 14-day prewash storage period and 7-day postwash storage period in SAGM preservative was found to be optimal. The longer outdate time postwashing should help lessen challenges in providing components to patients before expiry. © 2013 American Association of Blood Banks.
Kanno, Nanako; Matsuura, Katsumi; Haruta, Shin
2018-03-29
Purple photosynthetic bacteria utilize light energy for growth. We previously demonstrated that light energy contributed to prolonging the survival of multiple purple bacteria under carbon-starved conditions. In order to clarify the effects of illumination on metabolic states under carbon-starved, non-growing conditions, we herein compared the metabolic profiles of starved cells in the light and dark using the purple bacterium, Rhodopseudomonas palustris. The metabolic profiles of starved cells in the light were markedly different from those in the dark. After starvation for 5 d in the light, cells showed increases in the amount of ATP and the NAD + /NADH ratio. Decreases in the amounts of most metabolites related to glycolysis and the TCA cycle in energy-rich starved cells suggest the active utilization of these metabolites for the modification of cellular components. Starvation in the dark induced the consumption of cellular compounds such as amino acids, indicating that the degradation of these cellular components produced ATP in order to maintain viability under energy-poor conditions. The present results suggest that intracellular energy levels alter survival strategies under carbon-starved conditions through metabolism.
Dale, M P; Hackney, D D
1987-12-15
A method for analysis of positional isotope exchange (PIX) during ATP in equilibrium with HOH oxygen exchange is presented that uses a two-step degradation of ATP resulting in cleavage of the beta P-O gamma P bond. This cleavage yields Pi derived from the gamma-phosphoryl of ATP that contains all four of the gamma oxygens. Both PIX between the beta,gamma-bridge and beta-nonbridge positions and washout of the gamma-nonbridge oxygens can be simultaneously followed by using ATP labeled with 17O at the beta-nonbridge positions and 18O at the beta,gamma-bridge and gamma-nonbridge positions. Application of this method to ATP in equilibrium with HOH exchange during single turnovers of myosin indicates that the bulk of the ATP undergoes rapid washout of gamma-nonbridge oxygens in the virtual absence of PIX. At 25 degrees C with subfragment 1 the scrambling rate is at the limit of detectability of approximately 0.001 s-1, which is 50-fold slower than the steady-state rate. This corresponds to a probability of scrambling for the beta-oxygens of bound ADP of 1 in 10,000 for each cycle of reversible hydrolysis of bound ATP. A fraction of the ATP, however, does not undergo rapid washout. With myosin and stoichiometric ATP at 0 degrees C, this fraction corresponds to 10% of the ATP remaining at 36 s, or 2% of the initial ATP, and an equivalent level of ATP is found that does not bind irreversibly to myosin in a cold chase experiment. A significant level of apparent PIX is observed with subfragment 1 in the fraction that resists washout, and this apparent PIX is shown to be due to contaminant adenylate kinase activity. This apparent PIX due to adenylate kinase provides a possible explanation for the PIX observed by Geeves et al. [Geeves, M. A., Webb, M. R., Midelfort, C. F., & Trentham, D. R. (1980) Biochemistry 19, 4748-4754] with subfragment 1.
Gokey, Jason J; Dasgupta, Agnik; Amack, Jeffrey D
2015-11-01
Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. Copyright © 2015 Elsevier Inc. All rights reserved.
Gokey, Jason J.; Dasgupta, Agnik; Amack, Jeffrey D.
2015-01-01
Asymmetric fluid flows generated by motile cilia in a transient ‘organ of asymmetry’ are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H+-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer’s vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures—neuromasts and olfactory placodes—suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. PMID:26254189
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... Proposed Rule Change 1. Purpose Currently, the Exchange aggregates all of an ATP Holder's volume at the trading permit level for purposes of the Firm Proprietary Manual tiers. Recently, certain ATP Holders have... this filing, the Exchange proposes to allow its ATP Holders to elect to have their Firm Proprietary...
Tinker, Andrew; Aziz, Qadeer; Thomas, Alison
2014-01-01
ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system. © 2013 The British Pharmacological Society.
Extraction and quantification of adenosine triphosphate in mammalian tissues and cells.
Chida, Junji; Kido, Hiroshi
2014-01-01
Adenosine 5'-triphosphate (ATP) is the "energy currency" of organisms and plays central roles in bioenergetics, whereby its level is used to evaluate cell viability, proliferation, death, and energy transmission. In this chapter, we describe an improved and efficient method for extraction of ATP from tissues and cells using phenol-based reagents. The chaotropic extraction reagents reported so far co-precipitate ATP with insoluble proteins during extraction and with salts during neutralization. In comparison, the phenol-based reagents extract ATP well without the risks of co-precipitation. The extracted ATP can be quantified by the luciferase assay or high-performance liquid chromatography.
Pancreas Oxygen Persufflation Increases ATP Levels as Shown by Nuclear Magnetic Resonance
Scott, W.E.; Weegman, B.P.; Ferrer-Fabrega, J.; Stein, S.A.; Anazawa, T.; Kirchner, V.A.; Rizzari, M.D.; Stone, J.; Matsumoto, S.; Hammer, B.E.; Balamurugan, A.N.; Kidder, L.S.; Suszynski, T.M.; Avgoustiniatos, E.S.; Stone, S.G.; Tempelman, L.A.; Sutherland, D.E.R.; Hering, B.J.; Papas, K.K.
2010-01-01
Background Islet transplantation is a promising treatment for type 1 diabetes. Due to a shortage of suitable human pancreata, high cost, and the large dose of islets presently required for long-term diabetes reversal; it is important to maximize viable islet yield. Traditional methods of pancreas preservation have been identified as suboptimal due to insufficient oxygenation. Enhanced oxygen delivery is a key area of improvement. In this paper, we explored improved oxygen delivery by persufflation (PSF), ie, vascular gas perfusion. Methods Human pancreata were obtained from brain-dead donors. Porcine pancreata were procured by en bloc viscerectomy from heparinized donation after cardiac death donors and were either preserved by either two-layer method (TLM) or PSF. Following procurement, organs were transported to a 1.5-T magnetic resonance (MR) system for 31P nuclear magnetic resonance spectroscopy to investigate their bioenergetic status by measuring the ratio of adenosine triphosphate to inorganic phosphate (ATP:Pi) and for assessing PSF homogeneity by MRI. Results Human and porcine pancreata can be effectively preserved by PSF. MRI showed that pancreatic tissue was homogeneously filled with gas. TLM can effectively raise ATP:Pi levels in rat pancreata but not in larger porcine pancreata. ATP:Pi levels were almost undetectable in porcine organs preserved with TLM. When human or porcine organs were preserved by PSF, ATP:Pi was elevated to levels similar to those observed in rat pancreata. Conclusion The methods developed for human and porcine pancreas PSF homogeneously deliver oxygen throughout the organ. This elevates ATP levels during preservation and may improve islet isolation outcomes while enabling the use of marginal donors, thus expanding the usable donor pool. PMID:20692395
Chen, Hailong; Wang, Zhou; Wang, Zhilai; Dou, Jie; Zhou, Changlin
2016-04-01
S-adenosyl-L-methionine (SAM), biosynthesized from methionine and ATP, exhibited diverse pharmaceutical applications. To enhance SAM accumulation in S. cerevisiae CGMCC 2842 (wild type), improvement of methionine and ATP availability through MET6 and SAM2 co-expression combined with sodium citrate feeding was investigated here. Feeding 6 g/L methionine at 12 h into medium was found to increase SAM accumulation by 38 % in wild type strain. Based on this result, MET6, encoding methionine synthase, was overexpressed, which caused a 59 % increase of SAM. To redirect intracellular methionine into SAM, MET6 and SAM2 (encoding methionine adenosyltransferase) were co-expressed to obtain the recombinant strain YGSPM in which the SAM accumulation was 2.34-fold of wild type strain. The data obtained showed that co-expression of MET6 and SAM2 improved intracellular methionine availability and redirected the methionine to SAM biosynthesis. To elevate intracellular ATP levels, 6 g/L sodium citrate, used as an auxiliary energy substrate, was fed into the batch fermentation medium, and an additional 19 % increase of SAM was observed after sodium citrate addition. Meanwhile, it was found that addition of sodium citrate improved the isocitrate dehydrogenase activity which was associated with the intracellular ATP levels. The results demonstrated that addition of sodium citrate improved intracellular ATP levels which promoted conversion of methionine into SAM. This study presented a feasible approach with considerable potential for developing highly SAM-productive strains based on improving methionine and ATP availability.
Baker, Mark A; Hetherington, Louise; Ecroyd, Heath; Roman, Shaun D; Aitken, R John
2004-01-15
The capacitation of mammalian spermatozoa involves the activation of a cAMP-mediated signal transduction pathway that drives tyrosine phosphorylation via mechanisms that are unique to this cell type. Controversy surrounds the impact of extracellular calcium on this process, with positive and negative effects being recorded in independent publications. We clearly demonstrate that the presence of calcium in the external medium decreases tyrosine phosphorylation in both human and mouse spermatozoa. Under these conditions, a rise in intracellular pH was recorded, however, this event was not responsible for the observed changes in phosphotyrosine expression. Rather, the impact of calcium on tyrosine phosphorylation in these cells was associated with an unexpected change in the intracellular availability of ATP. Thus, the ATP content of both human and mouse spermatozoa fell significantly when these cells were incubated in the presence of external calcium. Furthermore, the removal of glucose, or addition of 2-deoxyglucose, decreased ATP levels within human spermatozoon populations and induced a corresponding decline in phosphotyrosine expression. In contrast, the mitochondrial inhibitor rotenone had no effect on either ATP levels or tyrosine phosphorylation. Addition of the affinity-labeling probe 8-N3 ATP confirmed our prediction that spermatozoa have many calcium-dependent ATPases. Moreover, addition of the ATPase inhibitor thapsigargin, increased intracellular calcium levels, decreased ATP and suppressed tyrosine phosphorylation. Based on these findings, the present study indicates that extracellular calcium suppresses tyrosine phosphorylation by decreasing the availability of intracellular ATP, and not by activating tyrosine phosphatases or inhibiting tyrosine kinases as has been previously suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanazawa, Atsuko; Ostendorf, Elisabeth; Kohzuma, Kaori
In wild type plants, decreasing CO 2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf). The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b 6f complex. Here in this paper, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO 2. The increased thylakoid proton conductivitymore » (g H +) in cfq results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO 2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.« less
Kanazawa, Atsuko; Ostendorf, Elisabeth; Kohzuma, Kaori; ...
2017-05-03
In wild type plants, decreasing CO 2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf). The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b 6f complex. Here in this paper, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO 2. The increased thylakoid proton conductivitymore » (g H +) in cfq results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO 2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.« less
The ATP/DNA Ratio Is a Better Indicator of Islet Cell Viability Than the ADP/ATP Ratio
Suszynski, T.M.; Wildey, G.M.; Falde, E.J.; Cline, G.W.; Maynard, K. Stewart; Ko, N.; Sotiris, J.; Naji, A.; Hering, B.J.; Papas, K.K.
2009-01-01
Real-time, accurate assessment of islet viability is critical for avoiding transplantation of nontherapeutic preparations. Measurements of the intracellular ADP/ATP ratio have been recently proposed as useful prospective estimates of islet cell viability and potency. However, dead cells may be rapidly depleted of both ATP and ADP, which would render the ratio incapable of accounting for dead cells. Since the DNA of dead cells is expected to remain stable over prolonged periods of time (days), we hypothesized that use of the ATP/DNA ratio would take into account dead cells and may be a better indicator of islet cell viability than the ADP/ATP ratio. We tested this hypothesis using mixtures of healthy and lethally heat-treated (HT) rat insulinoma cells and human islets. Measurements of ATP/DNA and ADP/ATP from the known mixtures of healthy and HT cells and islets were used to evaluate how well these parameters correlated with viability. The results indicated that ATP and ADP were rapidly (within 1 hour) depleted in HT cells. The fraction of HT cells in a mixture correlated linearly with the ATP/DNA ratio, whereas the ADP/ADP ratio was highly scattered, remaining effectively unchanged. Despite similar limitations in both ADP/ADP and ATP/DNA ratios, in that ATP levels may fluctuate significantly and reversibly with metabolic stress, the results indicated that ATP/DNA was a better measure of islet viability than the ADP/ATP ratio. PMID:18374063
Zhang, Fang; Su, Xin; Huang, Gang; Xin, Xiao-Feng; Cao, E-Hong; Shi, Yi; Song, Yong
2017-01-01
Adenosine triphosphate (ATP) is a key mediator to alert the immune dysfunction by acting on P2 receptors. Here, we found that allergen challenge caused an increase of ATP secretion in a murine model of neutrophilic asthma, which correlated well with neutrophil counts and interleukin-17 production. When ATP signaling was blocked by intratracheal administration of the ATP receptor antagonist suramin before challenge, neutrophilic airway inflammation, airway hyperresponsiveness, and Th17-type responses were reduced significantly. Also, neutrophilic inflammation was abrogated when airway ATP levels were locally neutralized using apyrase. Furthermore, ATP promoted the Th17 polarization of splenic CD4 + T cells from DO11.10 mice in vitro. In addition, ovalbumin (OVA) challenge induced neutrophilic inflammation and Th17 polarization in DO11.10 mice, whereas administration of suramin before challenge alleviated these parameters. Thus, ATP may serve as a marker of neutrophilic asthma, and local blockade of ATP signaling might provide an alternative method to prevent Th17-mediated airway inflammation in neutrophilic asthma.
Synergic effects of mycoplasmal lipopeptides and extracellular ATP on activation of macrophages.
Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro
2002-07-01
Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1 beta, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2',4'-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor kappa B inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor kappa B. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides.
Imaging Adenosine Triphosphate (ATP)
Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew
2016-01-01
Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provides valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific for ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies that are available to visualize ATP in living cells and identify areas where new tools and approaches are needed to expand our capabilities. PMID:27638696
Imaging Adenosine Triphosphate (ATP).
Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew
2016-08-01
Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities. © 2016 Marine Biological Laboratory.
Yang, Qin; Maluf, Nasib Karl; Catalano, Carlos Enrique
2008-11-28
The developmental pathways for a variety of eukaryotic and prokaryotic double-stranded DNA viruses include packaging of viral DNA into a preformed procapsid structure, catalyzed by terminase enzymes and fueled by ATP hydrolysis. In most instances, a capsid expansion process accompanies DNA packaging, which significantly increases the volume of the capsid to accommodate the full-length viral genome. "Decoration" proteins add to the surface of the expanded capsid lattice, and the terminase motors tightly package DNA, generating up to approximately 20 atm of internal capsid pressure. Herein we describe biochemical studies on genome packaging using bacteriophage lambda as a model system. Kinetic analysis suggests that the packaging motor possesses at least four ATPase catalytic sites that act cooperatively to effect DNA translocation, and that the motor is highly processive. While not required for DNA translocation into the capsid, the phage lambda capsid decoration protein gpD is essential for the packaging of the penultimate 8-10 kb (15-20%) of the viral genome; virtually no DNA is packaged in the absence of gpD when large DNA substrates are used, most likely due to a loss of capsid structural integrity. Finally, we show that ATP hydrolysis is required to retain the genome in a packaged state subsequent to condensation within the capsid. Presumably, the packaging motor continues to "idle" at the genome end and to maintain a positive pressure towards the packaged state. Surprisingly, ADP, guanosine triphosphate, and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) similarly stabilize the packaged viral genome despite the fact that they fail to support genome packaging. In contrast, the poorly hydrolyzed ATP analog ATP-gammaS only partially stabilizes the nucleocapsid, and a DNA is released in "quantized" steps. We interpret the ensemble of data to indicate that (i) the viral procapsid possesses a degree of plasticity that is required to accommodate the packaging of large DNA substrates; (ii) the gpD decoration protein is required to stabilize the fully expanded capsid; and (iii) nucleotides regulate high-affinity DNA binding interactions that are required to maintain DNA in the packaged state.
Gated /sup 31/P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoubridge, E.A.; Radda, G.K.
1987-05-01
Rats were fed a diet containing 1% ..beta..-guanidino-propionic acid (GPA) for 6-12 wk to deplete their muscles of phosphocreatine (PCr). Gated /sup 31/P nuclear magnetic resonance (NMR) spectra were obtained from the gastrocnemius-plantaris muscle at various time points during either a 1- or 3-s isometric tetanic contraction using a surface coil. The energy cost of a 1-s tetanus in unfatigued control rat muscle was 48.4 ..mu..mol ATP x g dry wt/sup -1/ x s/sup -1/ and was largely supplied by PCr; anaerobic glycogenolysis was negligible. In GPA-fed rats PCr was undetectable after 400 ms. This had no effect on initialmore » force generated per gram, which was not significantly different from controls. Developed tension in a 3-s tetanus in GPA-fed rats could be divided into a peak phase (duration 0.8-0.9 s) and a plateau phase (65% peak tension) in which PCr was undetectable and the (ATP) was < 20% of that in control muscle. Energy from glycogenolysis was sufficient to maintain force generation at this submaximal level. Mean net glycogen utilization per 3-s tetanus was 78% greater than in control muscle. However, the observed decrease in intracellular pH was less than that expected from energy budget calculations, suggesting either increased buffering capacity or modulation of ATP hydrolysis in the muscles of GPA-fed rats. The results demonstrate that the transport role of PCr is not essential in contracting muscle in GPA-fed rats. PCr is probably important in this regard in the larger fibers of control muscle. Although fast-twitch muscles depleted of PCr have nearly twice the glycogen reserves of control muscle, glycogenolysis is limited in its capacity to fill the role of PCr as an energy buffer under conditions of maximum ATP turnover.« less
Tricarico, Domenico; Mele, Antonietta; Lundquist, Andrew L; Desai, Reshma R; George, Alfred L; Conte Camerino, Diana
2006-01-24
ATP-sensitive K(+) channels (K(ATP)) are an octameric complex of inwardly rectifying K(+) channels (Kir6.1 and Kir6.2) and sulfonylurea receptors (SUR1 and SUR2A/B), which are involved in several diseases. The tissue-selective expression of the subunits leads to different channels; however, the composition and role of the functional channel in native muscle fibers is not known. In this article, the properties of K(ATP) channels of fast-twitch and slow-twitch muscles were compared by combining patch-clamp experiments with measurements of gene expression. We found that the density of K(ATP) currents/area was muscle-type specific, being higher in fast-twitch muscles compared with the slow-twitch muscle. The density of K(ATP) currents/area was correlated with the level of Kir6.2 expression. SUR2A was the most abundant subunit expressed in all muscles, whereas the vascular SUR2B subunit was expressed but at lower levels. A significant expression of the pancreatic SUR1 was also found in fast-twitch muscles. Pharmacological experiments showed that the channel response to the SUR1 agonist diazoxide, SUR2A/B agonist cromakalim, SUR1 antagonist tolbutamide, and the SUR1/SUR2A/B-antagonist glibenclamide matched the SURs expression pattern. Muscle-specific K(ATP) subunit compositions contribute to the physiological performance of different muscle fiber types and determine the pharmacological actions of drugs modulating K(ATP) activity in muscle diseases.
ATP-induced changes in rat skeletal muscle contractility.
Gabdrakhmanov, A I; Khayrullin, A E; Grishin, C H; Ziganshin, A U
2015-01-01
Extracellular purine compounds, adenosine triphosphate (ATP) and adenosine, are involved in regulation of many cell functions, engaging in rapid and long-term cellular processes. The nucleotides, including ATP, exert their extracellular effects by influencing membrane P2 receptors. ATP outside of the cell rapidly is metabolized by the ecto-enzyme system to produce adenosine, which acts on separate adenosine (P1) receptors. Since adenosine and ATP often are functional antagonists, ATP degradation not only limits its effect, but also brings new ligand with different, often opposing, properties. Great variety and widespread of P2 and adenosine receptors in the body emphasize the important physiological and pathophysiological significance of these receptors, and make them very attractive as targets for potential drug action.The existence of several subtypes of P2 and adenosine receptors has been shown in the skeletal muscles. ATP as a co-transmitter is densely packed together with classical neurotransmitters in the presynaptic vesicles of vertebral motor units but until recently ATP was refused to have its own functional role there and was recognized only as a source of adenosine. However, on the eve of the third millennium there appeared data that ATP, released from the nerve ending and acting on presynaptic P2 receptors, suppresses subsequent quantum release of acetylcholine. The final product of its degradation, adenosine, performs a similar inhibitory effect acting on presynaptic adenosine receptors.Despite the fact that the mechanisms of presynaptic inhibitory action of ATP and other purines were studied earlier, the object of those studies was usually neuromuscular synapse of cold-blooded animals. The few studies, in which experiments were carried out on preparations of warm-blooded animals, described the basic effects of purines. These often were guided by the convenience of preparation of the synapses of the diaphragm. We think that those results cannot be considered as typical effects of ATP and other purines on skeletal muscles and could not be extrapolated to all warm-blooded animals. Furthermore the role of ATP and its derivatives in the accumulation of vertebrate muscular effort has not been investigated.It is known that in physiological conditions vertebrates may mobilize only up to a third of the maximum muscle force. Why the two-thirds of muscular strength are not used normally but may be used at stress, remains unknown.It is known that the body's adaptive response to stress is a change in the activity of the endocrine system. The leading role in this is given to catechol amines and glucocorticoids, mobilized in significant quantities in blood under stress.We have found previously that incubation of frog sartorius muscle with hydrocortisone resulted in a decrease of contraction amplitude. However, when hydrocortisone was used in combination with ATP, its inhibitory effect on contractile responses disappeared. It is interesting that hydrocortisone had no effect on the inhibitory effect of adenosine. In the following experiments, assessing the effect of hydrocortisone on rat soleus muscle, it was established that hydrocortisone and purines had similar inhibitory effect. When ATP and hydrocortisone were given together the same oppression occurred. To study the effects of ATP and adenosine on contraction parameters of rat skeletal muscle and assess the impact of the catechol amines on these processes. Contractions of rat soleus muscles were recorded isometrically by mechanical sensor Linton FSG-01 (UK) according to standard procedures. The average of muscle parameters received within 30 seconds (30 responses) was treated as one result. Amplitude and time characteristics of the curve reductions were estimated. During all experiments standard Krebs solution flowed through the bath continuously to which agents were added at necessary concentrations. All experimental animals were maintained and prepared for dissection under the European Convention for the Protection of Vertebrate Animals used in scientific experiments. All agents used in the study were supplied by Sigma Chemical Company Ltd. (UK), Tocris Cookson and Research Biochemicals International (USA). The concentration of 100 μM for adenosine is close to saturation [1], and for its predecessor ATP this concentration is created after the passage of a pulse through the synapse [2]. We used this concentration of purines to study the mechanism of action of adenosine and ATP on neuromuscular synapse.The effect of adenosine was partially inhibited in the presence of 100 μM 8-SPT, an antagonist of adenosine receptors. The contraction force of "fast" and "slow" rat skeletal muscles was raised by half in the presence of norepinephrine. In the presence of norepinephrine adenosine exerted its effect fully, but ATP by half reduced its depressor effect on the contraction force of both muscles. 1. Norepinephrine increases half times of the reduction of "fast" and "slow" skeletal muscle.2. In the presence of norepinephrine, inhibitory effect of adenosine on contraction force is maintained.3. Inhibitory effect of ATP on contraction force of studied skeletal muscles becomes twice less pronounced in the presence of norepinephrine.We think that reduction of ATP depressive effect on the skeletal muscle by norepinephrine may be an adaptive response to acute stress.
Chiesa, Scott T.; Trangmar, Steven J.; Ali, Leena; Lotlikar, Makrand D.; González‐Alonso, José
2017-01-01
New Findings What is the central question of this study? Skin and muscle blood flow increases with heating and decreases with cooling, but the temperature‐sensitive mechanisms underlying these responses are not fully elucidated. What is the main finding and its importance? We found that local tissue hyperaemia was related to elevations in ATP release from erythrocytes. Increasing intravascular ATP augmented skin and tissue perfusion to levels equal or above thermal hyperaemia. ATP release from isolated erythrocytes was altered by heating and cooling. Our findings suggest that erythrocytes are involved in thermal regulation of blood flow via modulation of ATP release. Local tissue perfusion changes with alterations in temperature during heating and cooling, but the thermosensitivity of the vascular ATP signalling mechanisms for control of blood flow during thermal interventions remains unknown. Here, we tested the hypotheses that the release of the vasodilator mediator ATP from human erythrocytes, but not from endothelial cells or other blood constituents, is sensitive to both increases and reductions in temperature and that increasing intravascular ATP availability with ATP infusion would potentiate thermal hyperaemia in limb tissues. We first measured blood temperature, brachial artery blood flow and plasma [ATP] during passive arm heating and cooling in healthy men and found that they increased by 3.0 ± 1.2°C, 105 ± 25 ml min−1 °C−1 and twofold, respectively, (all P < 0.05) with heating, but decreased or remained unchanged with cooling. In additional men, infusion of ATP into the brachial artery increased skin and deep tissue perfusion to levels equal or above thermal hyperaemia. In isolated erythrocyte samples exposed to different temperatures, ATP release increased 1.9‐fold from 33 to 39°C (P < 0.05) and declined by ∼50% at 20°C (P < 0.05), but no changes were observed in cultured human endothelial cells, plasma or serum samples. In conclusion, increases in plasma [ATP] and skin and deep tissue perfusion with limb heating are associated with elevations in ATP release from erythrocytes, but not from endothelial cells or other blood constituents. Erythrocyte ATP release is also sensitive to temperature reductions, suggesting that erythrocytes may function as thermal sensors and ATP signalling generators for control of tissue perfusion during thermal interventions. PMID:27859767
Rodriguez-Armenta, Chrystian; Uribe-Carvajal, Salvador; Rosas-Lemus, Monica; Chiquete-Felix, Natalia; Huerta-Ocampo, Jose Angel; Muhlia-Almazan, Adriana
2018-04-01
Mitochondrial ATP is synthesized by coupling between the electron transport chain and complex V. In contrast, physiological uncoupling of these processes allows mitochondria to consume oxygen at high rates without ATP synthesis. Such uncoupling mechanisms prevent reactive oxygen species overproduction. One of these mechanisms are the alternative redox enzymes from the mitochondrial respiratory chain, which may help cells to maintain homeostasis under stress independently of ATP synthesis. To date, no reports have been published on alternative redox enzymes in crustaceans mitochondria. Specific inhibitors were used to identify alternative redox enzymes in mitochondria isolated from Artemia franciscana nauplii, and the white shrimp, Litopenaeus vannamei. We report the presence of two alternative redox enzymes in the respiratory chain of A. franciscana nauplii, whose isolated mitochondria used glycerol-3-phosphate as a substrate, suggesting the existence of a glycerol-3-phosphate dehydrogenase. In addition, cyanide and octyl-gallate were necessary to fully inhibit this species' mitochondrial oxygen consumption, suggesting an alternative oxidase is present. The in-gel activity analysis confirmed that additional mitochondrial redox proteins exist in A. franciscana. A mitochondrial glycerol-3-phosphate dehydrogenase oxidase was identified by protein sequencing as part of a branched respiratory chain, and an alternative oxidase was also identified in this species by western blot. These results indicate different adaptive mechanisms from artemia to face environmental challenges related to the changing levels of oxygen concentration in seawater through their life cycles. No alternative redox enzymes were found in shrimp mitochondria, further efforts will determine the existence of an uncoupling mechanism such as uncoupling proteins.
PDGF-AA-induced filamentous mitochondria benefit dermal papilla cells in cellular migration.
Mifude, C; Kaseda, K
2015-06-01
Human dermal papilla cells (HDPCs) play essential roles in hair follicular morphogenesis and postnatal hair growth cycles. Previous reports demonstrated that platelet-derived growth factor-AA (PDGF-AA) enhanced the formation of dermal condensates in hair follicular development. Additionally, PDGF-AA induces/maintains the anagen phase of the hair cycle. It is likely that mitochondrial morphology and functions are tightly coupled with maintenance of these energy-demanding activities. However, little is known about the mitochondrial regulation in HDPCs. Thus, we investigated the PDGF-involved mitochondrial regulation in HDPCs. The mitochondrial morphologies of HDPCs were examined in the presence or absence of PDGF-AA under a fluorescent microscope. ATP production and cellular motility were investigated. The relationship between mitochondrial morphology and the cellular functions was discussed. We observed that primary HDPCs contained mitochondria with filamentous and/or rounded morphologies. Both types of mitochondria showed similar membrane potentials. Interestingly, in the presence of PDGF-AA, but not PDGF-BB, the balance between the two morphologies shifted towards the filamentous form. Concomitantly, both mitochondrial enzymatic activity and total cellular ATP level were augmented by PDGF-AA. These two parameters were closely correlated, suggesting the mitochondrial involvement in the PDGF-augmented ATP production. Moreover, PDGF-AA accelerated the migration of HDPCs in a gap-filling assay, but did not change the rate of cellular proliferation. Notably, filamentous mitochondria dominated migrating HDPCs. PDGF-AA benefits HDPCs in the process of migration, by increasing the number of filamentous mitochondria. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Wu, T; Dai, M; Shi, X R; Jiang, Z G; Nuttall, A L
2011-07-01
The cochlear lateral wall generates the endocochlear potential (EP), which creates a driving force for the hair cell transduction current and is essential for normal hearing. Blood flow at the cochlear lateral wall is critically important for maintaining the EP. The vulnerability of the EP to hypoxia suggests that the blood flow in the cochlear lateral wall is dynamically and precisely regulated to meet the changing metabolic needs of the cochlear lateral wall. It has been reported that ATP, an important extracellular signaling molecule, plays an essential role in regulating cochlear blood flow. However, the cellular mechanism underlying ATP-induced regional blood flow changes has not been investigated. In the current study, we demonstrate that 1) the P2X4 receptor is expressed in endothelial cells (ECs) of spiral ligament (SL) capillaries. 2) ATP elicits a characteristic current through P2X4 on ECs in a dose-dependent manner (EC(50) = 0.16 mM). The ATP current has a reversal potential at ∼0 mV; is inhibited by 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD), LaCl(3), pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt hydrate (PPADS), and extracellular acidosis; and is less sensitive to α,β-methyleneadenosine 5'-triphosphate (α,β-MeATP) and 2'- and 3'-O-(4-benzoyl-benzoyl) adenosine 5'-triphosphate (BzATP). 3) ATP elicits a transient increase of intracellular Ca(2+) in ECs. 4) In accordance with the above in vitro findings, perilymphatic ATP (1 mM) caused dilation in SL capillaries in vivo by 11.5%. N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME), a nonselective inhibitor of nitric oxide synthase, or 5-BDBD, the specific P2X4 inhibitor, significantly blocked the dilation. These findings support our hypothesis that extracellular ATP regulates cochlear lateral blood flow through P2X4 activation in ECs.
Busi, María V; Gómez-Casati, Diego F; Perales, Mariano; Araya, Alejandro; Zabaleta, Eduardo
2006-01-01
Mitochondria play an important role during sporogenesis in plants. The steady state levels of the nuclear-encoded mitochondrial complex I (nCI), PSST, TYKY and NADHBP transcripts increase in flowers of male-sterile plants with impairment of mitochondrial function generated by the expression of the unedited version of ATP9 (u-ATP9). This suggests a nuclear control of nCI genes in response to the mitochondrial flaw. To evaluate this hypothesis, transgenic plants carrying the GUS reporter gene, under the control of the PSST, TYKY and NADHBP promoters, were constructed. We present evidence that suppression by antisense strategy of the expression of u-ATP9 restores the normal levels of three nCI transcripts, indicating that the increase in PSST, TYKY and NADHBP in plants with a mitochondrial flaw occurs at the transcriptional level. The data presented here support the hypothesis that a mitochondrial dysfunction triggers a retrograde signaling which induce some nuclear-encoded mitochondrial genes. Moreover, these results demonstrate that this is a valuable experimental model for studying nucleus-mitochondria cross-talk events.
Xiao, Ning; Venton, B. Jill
2015-01-01
Dopaminergic signaling pathways are conserved between mammals and Drosophila, but the factors important for maintaining the functional pool of synaptic dopamine are not fully understood in Drosophila. In this study, we characterized the releasable and reserve dopamine pools in Drosophila larvae using ATP/ P2X2-mediated stimulation. Dopamine release was stable with stimulations performed at least every 5 min but decayed with stimulations performed 2 min apart or less, indicating the replenishment of the releasable pool occurred on a time scale between 2 and 5 min. Dopamine synthesis or uptake were pharmacologically inhibited with 3-iodotyrosine and cocaine, respectively, to evaluate their contributions to maintaining the releasable dopamine pool. We found that both synthesis and uptake were needed to maintain the releasable dopamine pool, with synthesis playing a major part in long-term replenishment and uptake being more important for short-term replenishment. These effects of synthesis and uptake on different time scales in Drosophila are analogous to mammals. However, unlike in mammals, cocaine did not activate a reserve pool of dopamine in Drosophila when using P2X2 stimulations. Our study shows that both synthesis and uptake replenish the releasable pool, providing a better understanding of dopamine regulation in Drosophila. PMID:25951875
Ma, Zhan; Cao, Manlin; Liu, Yiwen; He, Yiqing; Wang, Yingzhi; Yang, Cuixia; Wang, Wenjuan; Du, Yan; Zhou, Muqing; Gao, Feng
2010-08-01
F1Fo-ATP synthase was originally thought to exclusively locate in the inner membrane of the mitochondria. However, recent studies prove the existence of ectopic F1Fo-ATP synthase on the outside of the cell membrane. Ectopic ATP synthase was proposed as a marker for tumor target therapy. Nevertheless, the protein transport mechanism of the ectopic ATP synthase is still unclear. The specificity of the ectopic ATP synthase, with regard to tumors, is questioned because of its widespread expression. In the current study, we constructed green fluorescent protein-ATP5B fusion protein and introduced it into HepG2 cells to study the localization of the ATP synthase. The expression of ATP5B was analyzed in six cell lines with different 'malignancies'. These cells were cultured in both normal and tumor-like acidic and hypoxic conditions. The results suggested that the ectopic expression of ATP synthase is a consequence of translocation from the mitochondria. The expression and catalytic activity of ectopic ATP synthase were similar on the surface of malignant cells as on the surface of less malignant cells. Interestingly, the expression of ectopic ATP synthase was not up-regulated in tumor-like acidic and hypoxic microenvironments. However, the catalytic activity of ectopic ATP synthase was up-regulated in tumor-like microenvironments. Therefore, the specificity of ectopic ATP synthase for tumor target therapy relies on the high level of catalytic activity that is observed in acidic and hypoxic microenvironments in tumor tissues.
ATP Synthase Diseases of Mitochondrial Genetic Origin
Dautant, Alain; Meier, Thomas; Hahn, Alexander; Tribouillard-Tanvier, Déborah; di Rago, Jean-Paul; Kucharczyk, Roza
2018-01-01
Devastating human neuromuscular disorders have been associated to defects in the ATP synthase. This enzyme is found in the inner mitochondrial membrane and catalyzes the last step in oxidative phosphorylation, which provides aerobic eukaryotes with ATP. With the advent of structures of complete ATP synthases, and the availability of genetically approachable systems such as the yeast Saccharomyces cerevisiae, we can begin to understand these molecular machines and their associated defects at the molecular level. In this review, we describe what is known about the clinical syndromes induced by 58 different mutations found in the mitochondrial genes encoding membrane subunits 8 and a of ATP synthase, and evaluate their functional consequences with respect to recently described cryo-EM structures. PMID:29670542
ATP5B and ETFB metabolic markers in children with congenital hydronephrosis.
Zhao, Qi; Yang, Yi; Wang, Changlin; Hou, Ying; Chen, Hui
2016-12-01
Congenital obstructive nephropathy is the primary cause of chronic renal failure in children. Disorders of mitochondrial energy metabolism may be a primary factor underlying tubular cell apoptosis in hydronephrosis. The β-F1-ATPase (ATP5B) and electron transfer flavoprotein β subunit (ETFB) metabolic markers are involved in mitochondrial energy metabolism in other diseases. The aim of the present study was to evaluate whether ATP5B and ETFB are represented in the hydronephrotic kidney, and whether they are associated with the progression of hydronephrosis. The cohort examined consisted of 20 children with hydronephrosis, graded III and IV using the Society for Fetal Urology grading system, and a control group consisting of 20 patients with nephroblastoma. Reverse transcription‑quantitative polymerase chain reaction and immunoblot analyses were used to investigate the differential expression of genes and proteins in the two groups. The gene and protein expression levels of ATP5B and ETFB were upregulated in the hydronephrosis group. Correlation analyses revealed negative correlations between ATP5B, ETFB protein and split renal function (SRF). Receiver‑operator curve analysis found a diagnostic profile of the ETFB protein in identifying children with hydronephrosis with abnormal SRF (<45%). These results suggested that increasing levels of ATP5B and ETFB were associated with worsening renal injury. ATP5B and ETFB may be novel markers in hydronephrosis and require further detailed investigation.
ATP5B and ETFB metabolic markers in children with congenital hydronephrosis
Zhao, Qi; Yang, Yi; Wang, Changlin; Hou, Ying; Chen, Hui
2016-01-01
Congenital obstructive nephropathy is the primary cause of chronic renal failure in children. Disorders of mitochondrial energy metabolism may be a primary factor underlying tubular cell apoptosis in hydronephrosis. The β-F1-ATPase (ATP5B) and electron transfer flavoprotein β subunit (ETFB) metabolic markers are involved in mitochondrial energy metabolism in other diseases. The aim of the present study was to evaluate whether ATP5B and ETFB are represented in the hydronephrotic kidney, and whether they are associated with the progression of hydronephrosis. The cohort examined consisted of 20 children with hydronephrosis, graded III and IV using the Society for Fetal Urology grading system, and a control group consisting of 20 patients with nephroblastoma. Reverse transcription-quantitative polymerase chain reaction and immunoblot analyses were used to investigate the differential expression of genes and proteins in the two groups. The gene and protein expression levels of ATP5B and ETFB were upregulated in the hydronephrosis group. Correlation analyses revealed negative correlations between ATP5B, ETFB protein and split renal function (SRF). Receiver-operator curve analysis found a diagnostic profile of the ETFB protein in identifying children with hydronephrosis with abnormal SRF (<45%). These results suggested that increasing levels of ATP5B and ETFB were associated with worsening renal injury. ATP5B and ETFB may be novel markers in hydronephrosis and require further detailed investigation. PMID:27840937
Ho, Yu-Huai; Wang, Lih-Shinn; Jiang, Hui-Li; Chang, Chih-Hui; Hsieh, Chia-Jung; Chang, Dan-Chi; Tu, Hsin-Yu; Chiu, Tan-Yun; Chao, Huei-Jen; Tseng, Chun-Chieh
2016-06-09
Contaminated surfaces play an important role in the transmission of pathogens. We sought to establish a criterion that could indicate "cleanliness" using a sampling area-adjusted adenosine triphosphate (ATP) assay. In the first phase of the study, target surfaces were selected for swab sampling before and after daily cleaning; then, an aerobic colony count (ACC) plate assay of bacteria and antibiotic-resistant bacteria was conducted. ATP swabs were also tested, and the ATP readings were reported as relative light units (RLUs). The results of the ACC and ATP assays were adjusted according to the sampling area. During the second phase of the study, a new cleaning process employing sodium dichloroisocyanurate (NaDCC) was implemented for comparison. Using the criterion of 2.5 colony-forming units (CFU)/cm², 45% of the sampled sites were successfully cleaned during phase one of the study. During phase two, the pass rates of the surface samples (64%) were significantly improved, except under stringent (5 RLU/cm²) and lax (500 RLU) ATP criteria. Using receiver-operating characteristic curve analysis, the best cut-off point for an area-adjusted ATP level was 7.34 RLU/cm², which corresponded to culture-assay levels of <2.5 CFU/cm². An area adjustment of the ATP assay improved the degree of correlation with the ACC-assay results from weak to moderate.
Cole, Mark A.; Abd Jamil, Amira H.; Heather, Lisa C.; Murray, Andrew J.; Sutton, Elizabeth R.; Slingo, Mary; Sebag-Montefiore, Liam; Tan, Suat Cheng; Aksentijević, Dunja; Gildea, Ottilie S.; Stuckey, Daniel J.; Yeoh, Kar Kheng; Carr, Carolyn A.; Evans, Rhys D.; Aasum, Ellen; Schofield, Christopher J.; Ratcliffe, Peter J.; Neubauer, Stefan; Robbins, Peter A.; Clarke, Kieran
2016-01-01
The role of peroxisome proliferator-activated receptor α (PPARα)-mediated metabolic remodeling in cardiac adaptation to hypoxia has yet to be defined. Here, mice were housed in hypoxia for 3 wk before in vivo contractile function was measured using cine MRI. In isolated, perfused hearts, energetics were measured using 31P magnetic resonance spectroscopy (MRS), and glycolysis and fatty acid oxidation were measured using [3H] labeling. Compared with a normoxic, chow-fed control mouse heart, hypoxia decreased PPARα expression, fatty acid oxidation, and mitochondrial uncoupling protein 3 (UCP3) levels, while increasing glycolysis, all of which served to maintain normal ATP concentrations ([ATP]) and thereby, ejection fractions. A high-fat diet increased cardiac PPARα expression, fatty acid oxidation, and UCP3 levels with decreased glycolysis. Hypoxia was unable to alter the high PPARα expression or reverse the metabolic changes caused by the high-fat diet, with the result that [ATP] and contractile function decreased significantly. The adaptive metabolic changes caused by hypoxia in control mouse hearts were found to have occurred already in PPARα-deficient (PPARα−/−) mouse hearts and sustained function in hypoxia despite an inability for further metabolic remodeling. We conclude that decreased cardiac PPARα expression is essential for adaptive metabolic remodeling in hypoxia, but is prevented by dietary fat.—Cole, M. A., Abd Jamil, A. H., Heather, L. C., Murray, A. J., Sutton, E. R., Slingo, M., Sebag-Montefiore, L., Tan, S. C., Aksentijević, D., Gildea, O. S., Stuckey, D. J., Yeoh, K. K., Carr, C. A., Evans, R. D., Aasum, E., Schofield, C. J., Ratcliffe, P. J., Neubauer, S., Robbins, P. A., Clarke, K. On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury. PMID:27103577
Keeping the home fires burning†: AMP-activated protein kinase
2018-01-01
Living cells obtain energy either by oxidizing reduced compounds of organic or mineral origin or by absorbing light. Whichever energy source is used, some of the energy released is conserved by converting adenosine diphosphate (ADP) to adenosine triphosphate (ATP), which are analogous to the chemicals in a rechargeable battery. The energy released by the conversion of ATP back to ADP is used to drive most energy-requiring processes, including cell growth, cell division, communication and movement. It is clearly essential to life that the production and consumption of ATP are always maintained in balance, and the AMP-activated protein kinase (AMPK) is one of the key cellular regulatory systems that ensures this. In eukaryotic cells (cells with nuclei and other internal membrane-bound structures, including human cells), most ATP is produced in mitochondria, which are thought to have been derived by the engulfment of oxidative bacteria by a host cell not previously able to use molecular oxygen. AMPK is activated by increasing AMP or ADP (AMP being generated from ADP whenever ADP rises) coupled with falling ATP. Relatives of AMPK are found in essentially all eukaryotes, and it may have evolved to allow the host cell to monitor the output of the newly acquired mitochondria and step their ATP production up or down according to the demand. Structural studies have illuminated how AMPK achieves the task of detecting small changes in AMP and ADP, despite the presence of much higher concentrations of ATP. Recently, it has been shown that AMPK can also sense the availability of glucose, the primary carbon source for most eukaryotic cells, via a mechanism independent of changes in AMP or ADP. Once activated by energy imbalance or glucose lack, AMPK modifies many target proteins by transferring phosphate groups to them from ATP. By this means, numerous ATP-producing processes are switched on (including the production of new mitochondria) and ATP-consuming processes are switched off, thus restoring energy homeostasis. Drugs that modulate AMPK have great potential in the treatment of metabolic disorders such as obesity and Type 2 diabetes, and even cancer. Indeed, some existing drugs such as metformin and aspirin, which were derived from traditional herbal remedies, appear to work, in part, by activating AMPK. PMID:29343628
Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J; Amann, Markus; Richardson, Russell S
2017-05-01
Although all-out exercise protocols are commonly used, the physiological mechanisms underlying all-out exercise performance are still unclear, and an in-depth assessment of skeletal muscle bioenergetics is lacking. Therefore, phosphorus magnetic resonance spectroscopy ( 31 P-MRS) was utilized to assess skeletal muscle bioenergetics during a 5-min all-out intermittent isometric knee-extensor protocol in eight healthy men. Metabolic perturbation, adenosine triphosphate (ATP) synthesis rates, ATP cost of contraction, and mitochondrial capacity were determined from intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (P i ), diprotonated phosphate ([Formula: see text]), and pH. Peripheral fatigue was determined by exercise-induced alterations in potentiated quadriceps twitch force (Q tw ) evoked by supramaximal electrical femoral nerve stimulation. The oxidative ATP synthesis rate (ATP OX ) attained and then maintained peak values throughout the protocol, despite an ~63% decrease in quadriceps maximal force production. ThusATP OX normalized to force production (ATP OX gain) significantly increased throughout the exercise (1st min: 0.02 ± 0.01, 5th min: 0.04 ± 0.01 mM·min -1 ·N -1 ), as did the ATP cost of contraction (1st min: 0.048 ± 0.019, 5th min: 0.052 ± 0.015 mM·min -1 ·N -1 ). Additionally, the pre- to postexercise change in Q tw (-52 ± 26%) was significantly correlated with the exercise-induced change in intramuscular pH ( r = 0.75) and [Formula: see text] concentration ( r = 0.77). In conclusion, the all-out exercise protocol utilized in the present study elicited a "slow component-like" increase in intramuscular ATP OX gain as well as a progressive increase in the phosphate cost of contraction. Furthermore, the development of peripheral fatigue was closely related to the perturbation of specific fatigue-inducing intramuscular factors (i.e., pH and [Formula: see text] concentration). NEW & NOTEWORTHY The physiological mechanisms and skeletal muscle bioenergetics underlying all-out exercise performance are unclear. This study revealed an increase in oxidative ATP synthesis rate gain and the ATP cost of contraction during all-out exercise. Furthermore, peripheral fatigue was related to the perturbation in pH and deprotonated phosphate ion. These findings support the concept that the oxygen uptake slow component arises from within active skeletal muscle and that skeletal muscle force generating capacity is linked to the intramuscular metabolic milieu.
Zimanyi, Christina M; Chen, Percival Yang-Ting; Kang, Gyunghoon; Funk, Michael A; Drennan, Catherine L
2016-01-01
Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR ‘reads’ the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell. DOI: http://dx.doi.org/10.7554/eLife.07141.001 PMID:26754917
The post-rigor structure of myosin VI and implications for the recovery stroke
Ménétrey, Julie; Llinas, Paola; Cicolari, Jérome; Squires, Gaëlle; Liu, Xiaoyan; Li, Anna; Sweeney, H Lee; Houdusse, Anne
2008-01-01
Myosin VI has an unexpectedly large swing of its lever arm (powerstroke) that optimizes its unique reverse direction movement. The basis for this is an unprecedented rearrangement of the subdomain to which the lever arm is attached, referred to as the converter. It is unclear at what point(s) in the myosin VI ATPase cycle rearrangements in the converter occur, and how this would effect lever arm position. We solved the structure of myosin VI with an ATP analogue (ADP.BeF3) bound in its nucleotide-binding pocket. The structure reveals that no rearrangement in the converter occur upon ATP binding. Based on previously solved myosin structures, our structure suggests that no reversal of the powerstroke occurs during detachment of myosin VI from actin. The structure also reveals novel features of the myosin VI motor that may be important in maintaining the converter conformation during detachment from actin, and other features that may promote rapid rearrangements in the structure following actin detachment that enable hydrolysis of ATP. PMID:18046460
Genetics Home Reference: pyruvate kinase deficiency
... glucose is broken down to produce adenosine triphosphate (ATP), the cell's main energy source. PKLR gene mutations ... pyruvate kinase enzyme function, causing a shortage of ATP in red blood cells and increased levels of ...
Factors contributing to Korean teachers' attitudes toward students with epilepsy.
Lee, Sang-Ahm; Yim, Soo Bin; Rho, Young Il; Chu, Minkyung; Park, Hyeon Mi; Lee, Geun-ho; Park, Sung-Pa; Jung, Dae Soo
2011-02-01
We investigated factors contributing to teachers' attitudes toward students with epilepsy. Data were collected from 604 teachers in Korea. The questionnaire included the Scale of Attitudes Toward Persons with Epilepsy (ATPE) and a demographic and teaching experience survey. In stepwise linear regression analysis, ATPE Knowledge scores (P<0.001) and prior experience teaching a student with epilepsy (P=0.001) were identified as significant factors for ATPE Attitude scores. The ATPE Knowledge scores accounted for 50.1% of the variance in the Attitude scores, and experience teaching a student with epilepsy accounted only for 1.0%. Our finding that teachers' knowledge is the most important factor influencing teacher's attitudes toward epilepsy indicates that teachers should be provided with information about epilepsy universally, across geographic settings, educational levels, and experience levels. Copyright © 2010 Elsevier Inc. All rights reserved.
Li, Xian Liang; Man, Kwan; Ng, Kevin T; Lee, Terence K; Lo, Chung Mau; Fan, Sheung Tat
2004-09-01
Ischemia / reperfusion (I / R) injury is related to tissue graft energy status. Insulin, which is currently used in the University of Wisconsin (UW) preservation solution with insulin (UWI), is an anabolic hormone and was shown to exacerbate the hepatic I / R injury in our previous study. In this study, the energy status and regulation of metabolism genes by insulin were investigated in liver grafts preserved by UW solution. Insulin could significantly decrease adenosine triphosphate (ATP) level after 3 hours of preservation, as well as total adenine nucleotides (TANs) and energy charge (EC) levels. Energy regeneration deteriorated in the grafts preserved by insulin in terms of ATP and EC levels at 24 hours after transplantation. The insulin signal was transduced through the insulin receptor substrate-2 (IRS-2) pathway and the activity of IRS-2 was decreased gradually at the messenger ribonucleic acid (mRNA) level during cold preservation. Downstream targeting genes such as sterol regulatory element-binding protein-1c (SREBP-1c), glucokinase (GKC), and fatty acid synthase (FAS) genes, as well as phospho-glycogen synthase kinase-3beta (GSK-3beta) were activated and they showed the similar expression profiles during cold preservation. Lipoprotein metabolism was accelerated by insulin through upregulation of the activity of apolipoprotein C-III (Apo C-III) during cold preservation. The insulin-like growth factor-binding protein-1 pathway was inhibited during cold preservation. In conclusion, insulin in UW solution exacerbates hepatic I / R injury by energy depletion as the graft maintains its anabolic activity. The key enzyme activities of the energy-consuming process of glycogen and fatty acid synthesis as well as lipoprotein metabolism were accelerated by insulin through the IRS-2 / SREBP-1c pathway.
Scheer, Monika; Bischoff, Anna M; Kruzliak, Peter; Opatrilova, Radka; Bovell, Douglas; Büsselberg, Dietrich
2016-08-01
Adequate concentrations of ATP are required to preserve physiological cell functions and protect tissue from hypoxic damage. Decreased oxygen concentration results in ATP synthesis relying increasingly on the presence of phosphocreatine. The lack of ATP through hypoxic insult to neurons that generate or regulate respiratory function, would lead to the cessation of breathing (apnea). It is not clear whether creatine plays a role in maintaining respiratory phrenic nerve (PN) activity during hypoxic challenge. The aim of the study was to test the effects of exogenously applied creatine or creatine pyruvate in maintaining PN induced respiratory rhythm against the deleterious effects of severe hypoxic insult using Working Heart-Brainstem (WHB) preparations of juvenile Swiss type mice. WHB's were perfused with control perfusate or perfusate containing either creatine [100μM] or creatine pyruvate [100μM] prior to hypoxic challenge and PN activity recorded throughout. Results showed that severe hypoxic challenge resulted in an initial transient increase in PN activity, followed by a reduction in that activity leading to respiratory apnea. The results demonstrated that perfusing the WHB preparation with creatine or creatine pyruvate, significantly reduced the onset of apnea compared to control conditions, with creatine pyruvate being the more effective substance. Overall, creatine and creatine pyruvate each produced time-dependent degrees of protection against severe hypoxic-induced disturbances of PN activity. The underlying protective mechanisms are unknown and need further investigations. Copyright © 2016 Elsevier Inc. All rights reserved.
Synergic Effects of Mycoplasmal Lipopeptides and Extracellular ATP on Activation of Macrophages
Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro
2002-01-01
Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1β, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2′,4′-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor κB inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor κB. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides. PMID:12065499
ATP6V1H regulates the growth and differentiation of bone marrow stromal cells.
Li, Lin; Yang, Shaoqing; Zhang, Yanli; Ji, Dongrui; Jin, Zuolin; Duan, Xiaohong
2018-05-18
ATP6V1H encodes subunit H of vacuolar ATPase (V-ATPase) and may regulate osteoclastic function. The deficiency of ATP6V1H caused bone loss in human, mouse and zebrafish. In this report, we identified the mechanisms by which ATP6V1H regulates proliferation and differentiation of bone marrow stromal cells (BMSCs). We found that ATP6V1H was expressed in BMSCs, andAtp6v1h +/- BMSCs exhibited the lower proliferation rate, cell cycle arrest and reduced osteogenic differentiation capacity, as well as the increased adipogenic potentials. Histologic analysis confirmed less bone formation and more fatty degeneration in Atp6v1h +/- mice in the different age groups. Q-PCR analysis revealed that loss of ATP6V1H function downregulated the mRNA level of TGF-β1 receptor, and its binding molecule, subunit β of adaptor protein complex 2 (AP-2), suggesting ATP6V1H regulates the proliferation and differentiation of BMSCs by interacting with TGF-β receptor I and AP-2 complex. Copyright © 2018. Published by Elsevier Inc.
Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun
2014-03-01
Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Kumar, Akhilesh; Bachhawat, Anand Kumar
2010-03-01
Cystinosis, an inherited disease caused by a defect in the lysosomal cystine transporter (CTNS), is characterized by renal proximal tubular dysfunction. Adenosine triphosphate (ATP) depletion appears to be a key event in the pathophysiology of the disease, even though the manner in which ATP depletion occurs is still a puzzle. We present a model that explains how a futile cycle that is generated between two ATP-utilizing enzymes of the gamma-glutamyl cycle leads to ATP depletion. The enzyme gamma-glutamyl cysteine synthetase (gamma-GCS), in the absence of cysteine, forms 5-oxoproline (instead of the normal substrate, gamma-glutamyl cysteine) and the 5-oxoproline is converted into glutamate by the ATP-dependant enzyme, 5-oxoprolinase. Thus, in cysteine-limiting conditions, glutamate is cycled back into glutamate via 5-oxoproline at the cost of two ATP molecules without production of glutathione and is the cause of the decreased levels of glutathione synthesis, as well as the ATP depletion observed in these cells. The model is also compatible with the differences seen in the human patients and the mouse model of cystinosis, where renal failure is not observed.
Khattab, M M; Al-Hrasen, M N
2006-04-01
Both ATP and diadenosine tetraphosphate (AP(4)A) produced a dose-dependent contraction of rat isolated urinary bladder rings. The AP(4)A dose-response curve was to the left of that of ATP, and the maximum response was greater than that produced by ATP. Mechanical removal of the urothelium increased the contractile response to ATP by between 53% and 71%, and that to AP(4)A by 42% (at highest AP(4)A concentration) to 68% at lower concentration. Inhibition of Cu/Zn superoxide dismutase with diethylthiocarbamate (DETCA, 5 mm) significantly reduced the ATP-evoked contraction by 31% (at high ATP concentration) to 40% at low ATP concentration. Similarly, the AP(4)A-induced contractions were significantly decreased by 27% at low AP(4)A level to 38% at higher concentrations. Induction of exogenous superoxide anion stress by the use of the superoxide anion generator, pyrogallol (0.5 mm), significantly decreased both ATP- and AP(4)A-induced contractions of the rat urinary bladder over the whole dose range. Contractile responses to ATP decreased by 36-40%, and those to AP(4)A by 44-49%. In conclusion, the urinary bladder urothelium exerts an inhibitory control over the purinergic contractility produced by adenine mononucleotides and dinucleotides. Superoxide anion stress, whether endogenous or exogenous, attenuates the ATP-induced as well as AP(4)A-induced contractility.
Yu, Corey H; Dolgova, Natalia V; Dmitriev, Oleg Y
2017-04-01
Copper transporters ATP7A and ATP7B regulate copper levels in the human cells and deliver copper to the biosynthetic pathways. ATP7A and ATP7B belong to the P-type ATPases and share much of the domain architecture and the mechanism of ATP hydrolysis with the other, well-studied, enzymes of this type. A unique structural feature of the copper ATPases is the chain of six cytosolic metal-binding domains (MBDs), which are believed to be involved in copper-dependent regulation of the activity and intracellular localization of these enzymes. Although the structures of all the MBDs have been solved, the mechanism of copper-dependent regulation of ATP7B and ATP7A, the roles of individual MBDs, and the relationship between the regulatory and catalytic copper binding are still unknown. We describe the structure and dynamics of the MBDs, review the current knowledge about their functional roles and propose a mechanism of regulation of ATP7B by copper-dependent changes in the dynamics and conformation of the MBD chain. Transient interactions between the MBDs, rather than transitions between distinct static conformations are likely to form the structural basis of regulation of the ATP-dependent copper transporters in human cells. © 2016 IUBMB Life, 69(4):226-235, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis.
Stefanelli, C; Bonavita, F; Stanic', I; Farruggia, G; Falcieri, E; Robuffo, I; Pignatti, C; Muscari, C; Rossoni, C; Guarnieri, C; Caldarera, C M
1997-01-01
In quiescent thymocytes, mitochondrial de-energization was not correlated to apoptotic death. In fact, thymocytes treated with oligomycin, a highly specific inhibitor of ATP synthase, alone or with atractyloside to block ATP translocation from the cytoplasm, were alive, even if their mitochondria were depolarized, as revealed by flow cytometry after Rhodamine 123 staining. Furthermore, oligomycin was a powerful inhibitor of apoptosis induced in rat thymocytes by dexamethasone and, to a lesser extent, by the calcium ionophore A23187 and etoposide, but was without effect when apoptosis was induced by staurosporine, and increased cell death in mitogen-treated thymocytes. The inhibition of apoptosis was confirmed by morphological criteria, inhibition of inter-nucleosomal DNA fragmentation and inhibition of the loss of membrane integrity. The anti-apoptotic effect of oligomycin in cells treated with A23187 or etoposide was correlated to the inhibition of protein synthesis, while inhibition of apoptosis induced by dexamethasone, already evident at an oligomycin concentration of 10 ng/ml, was instead strictly correlated to the effect exerted on the cellular ATP level. Thymocyte apoptosis triggered by dexamethasone was blocked or delayed by inhibitors of respiratory-chain uncouplers, inhibitors of ATP synthase and antioxidants: a lasting protection from dexamethasone-induced apoptosis was always correlated to a drastic and rapid reduction in ATP level (31-35% of control), while a delay in the death process was characterized by a moderate decrease in ATP (73-82% of control). Oligomycin inhibited the specific binding of radioactive corticosteroid to thymocyte nuclei, confirming the inhibitory effect of ATP depletion on glucocorticoid binding and suggesting that ATP depletion is a common mediator of the anti-apoptotic action of different effectors in glucocorticoid-induced apoptosis. In conclusion, the reported data indicate that ATP may act as a cellular modulator of some forms of apoptosis, depending on the death trigger, and that in quiescent cells the de-energization of mitochondria is not necessarily linked to apoptosis. PMID:9148768
Kucharczyk, Roza; Ezkurdia, Nahia; Couplan, Elodie; Procaccio, Vincent; Ackerman, Sharon H.; Blondel, Marc; di Rago, Jean-Paul
2010-01-01
Summary Several human neurological disorders have been associated with various mutations affecting mitochondrial enzymes involved in cellular ATP production. One of these mutations, T9176C in the mitochondrial DNA (mtDNA), changes a highly conserved leucine residue into proline at position 217 of the mitochondrially encoded Atp6p (or a) subunit of the F1FO-ATP synthase. The consequences of this mutation on the mitochondrial ATP synthase are still poorly defined. To gain insight into the primary pathogenic mechanisms induced by T9176C, we have investigated the consequences of this mutation on the ATP synthase of yeast where Atp6p is also encoded by the mtDNA. In vitro, yeast atp6-T9176C mitochondria showed a 30% decrease in the rate of ATP synthesis. When forcing the F1FO complex to work in the reverse mode, i.e. F1-catalyzed hydrolysis of ATP coupled to proton transport out of the mitochondrial matrix, the mutant showed a normal proton-pumping activity and this activity was fully sensitive to oligomycin, an inhibitor of the ATP synthase proton channel. However, under conditions of maximal ATP hydrolytic activity, using non-osmotically protected mitochondria, the mutant ATPase activity was less efficiently inhibited by oligomycin (60% inhibition versus 85% for the wild type control). BN-PAGE analyses revealed that atp6-T9176C yeast accumulated rather good levels of fully assembled ATP synthase complexes. However, a number of subcomplexes (F1, Atp9p-ring, unassembled α-F1 subunits) could be detected as well, presumably because of a decreased stability of Atp6p within the ATP synthase. Although the oxidative phosphorylation capacity was reduced in atp6-T9176C yeast, the number of ATP molecules synthesized per electron transferred to oxygen was similar compared with wild type yeast. It can therefore be inferred that the coupling efficiency within the ATP synthase was mostly unaffected and that the T9176C mutation did not increase the proton permeability of the mitochondrial inner membrane. PMID:20056103
Pandey, Bharati; Grover, Sonam; Goyal, Sukriti; Kumari, Anchala; Singh, Aditi; Jamal, Salma; Kaur, Jagdeep; Grover, Abhinav
2018-01-17
The enzyme Pantothenate synthetase (PS) represents a potential drug target in Mycobacterium tuberculosis. Its X-ray crystallographic structure has demonstrated the significance and importance of conserved active site residues including His44, His47, Asn69, Gln72, Lys160 and Gln164 in substrate binding and formation of pantoyl adenylate intermediate. In the current study, molecular mechanism of decreased affinity of the enzyme for ATP caused by alanine mutations was investigated using molecular dynamics (MD) simulations and free energy calculations. A total of seven systems including wild-type + ATP, H44A + ATP, H47A + ATP, N69A + ATP, Q72A + ATP, K160A + ATP and Q164A + ATP were subjected to 50 ns MD simulations. Docking score, MM-GBSA and interaction profile analysis showed weak interactions between ATP (substrate) and PS (enzyme) in H47A and H160A mutants as compared to wild-type, leading to reduced protein catalytic activity. However, principal component analysis (PCA) and free energy landscape (FEL) analysis revealed that ATP was strongly bound to the catalytic core of the wild-type, limiting its movement to form a stable complex as compared to mutants. The study will give insight about ATP binding to the PS at the atomic level and will facilitate in designing of non-reactive analogue of pantoyl adenylate which will act as a specific inhibitor for PS.
Studies of the Interaction of Human Malaria Parasites with the Metabolism of the Host Red Cell.
1977-06-15
thalassemia trait have significantly lower levels of ATP per red cell than individuals who do not have thalassemia trait. We confirmed this in Sardinia and...it raises the interesting possibility that the protective effect of thalassemia may be due to a major genetic modifying influence on levels of ATP. C
Bragina, Olga; Gurjanova, Karina; Krishtal, Jekaterina; Kulp, Maria; Karro, Niina; Tõugu, Vello; Palumaa, Peep
2015-06-01
Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumta, U.S.; Gurnani, S.U.; Sahasrabudhe, M.B.
1957-09-01
The influence of total-body irradiation on the levels of creatine phosphate (CP), adenosine triphosphate (ATP) and inorganic phosphorus (IP) in muscle has been investigated in rats. CP and ATP levels decrease by about 33% while those of 1P increase 4 times in irradiated rats. Studies on the influence of irradiation on the excretion of creatine, creatinine, and N'-methyl- nicotinamide in urine show that the excretion of creatine and N'-methyl- nlcotinamide is increased two-fold while that of creatinine is increased by 160%. It is suggested that the low levels of creatine phosphate are probably due to an impairment in the phosphorylationmore » of creatine or due to an adaptive breakdown of creatine phosphate leading to increased excretion of creatine and creatinine. (auth)« less
Di Pietro, Valentina; Amorini, Angela Maria; Tavazzi, Barbara; Vagnozzi, Roberto; Logan, Ann; Lazzarino, Giacomo; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio
2014-01-01
To characterize the molecular mechanisms of N-acetylaspartate (NAA) metabolism following traumatic brain injury (TBI), we measured the NAA, adenosine triphosphate (ATP) and adenosine diphosphate (ADP) concentrations and calculated the ATP/ADP ratio at different times from impact, concomitantly evaluating the gene and protein expressions controlling NAA homeostasis (the NAA synthesizing and degrading enzymes N-acetyltransferase 8-like and aspartoacylase, respectively) in rats receiving either mild or severe TBI. The reversible changes in NAA induced by mild TBI were due to a combination of transient mitochondrial malfunctioning with energy crisis (decrease in ATP and in the ATP/ADP ratio) and modulation in the gene and protein levels of N-acetyltransferase 8-like and increase of aspartoacylase levels. The irreversible decrease in NAA following severe TBI, was instead characterized by profound mitochondrial malfunctioning (constant 65% decrease of the ATP/ADP indicating permanent impairment of the mitochondrial phosphorylating capacity), dramatic repression of the N-acetyltransferase 8-like gene and concomitant remarkable increase in the aspartoacylase gene and protein levels. The mechanisms underlying changes in NAA homeostasis following graded TBI might be of note for possible new therapeutic approaches and will help in understanding the effects of repeat concussions occurring during particular periods of the complex NAA recovery process, coincident with the so called window of brain vulnerability. PMID:24515258
Mechanical vs. manual cleaning of hospital beds: a prospective intervention study.
Hopman, J; Nillesen, M; de Both, E; Witte, J; Teerenstra, S; Hulscher, M; Voss, A
2015-06-01
Cleaning regimens for hospital beds were evaluated in the context of a rising prevalence of highly resistant micro-organisms and increasing financial pressure on healthcare systems. Dutch hospitals have to choose between standardized, mechanical bed-washers advised in national guidance and manual cleaning. To evaluate the quality of mechanical and manual bed-cleaning regimens. The multi-faceted analysis of bed-cleaning regimens consisted of three steps. In Step 1, the training of the domestic service team was evaluated. In Step 2, the cleaning quality of manual and mechanical regimens was assessed. Soiled beds, obtained at random, from different departments were evaluated using microbiological analysis (N = 40) and ATP (N = 20). ATP and microbiological contamination were measured in five predetermined locations on all beds. In Step 3, manual cleaning was introduced over a two-month pilot study at the surgical short-stay unit, and beds from other departments were processed according to the 'gold standard' mechanical cleaning. ATP levels were evaluated in three locations on 300 beds after cleaning. Training was found to improve the quality of cleaning significantly. Mechanical cleaning resulted in significantly lower ATP levels than manual cleaning. Mechanical cleaning shows less variation and results in consistently lower ATP levels than manual cleaning. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Fedan, J. S.
1987-01-01
The effects of incubating the guinea-pig isolated vas deferens in the presence of adenine nucleotides (adenosine triphosphate, ATP; adenosine diphosphate, ADP; and adenosine monophosphate, AMP), or in the presence of their phosphorothioate analogues (adenosine 5'-O-(3-thiotriphosphate), ATP gamma S; adenosine 5'-O-(2-thiodiphosphate), ADP beta S; and adenosine 5'-monophosphorothioate, AMP alpha S), on contractile responses to ATP were compared. After challenge with a low (1 microM) or high (300 microM) concentration of ATP to obtain control responses, one vas deferens of a pair was incubated for 5 min with one of the adenine nucleotides, while the contralateral preparation was incubated with the corresponding phosphorothioate analogue. At the conclusion of the incubation the preparations were challenged again with ATP. Incubation with AMP or AMP alpha S resulted in a transient potentiation of responses to 1 microM and 300 microM ATP. The potentiation following incubation with AMP alpha S was larger than that produced by AMP. After incubation with ADP, ADP beta S, ATP and ATP gamma S, responses to 1 microM ATP were decreased, while those to 300 microM ATP were unaffected. Thus, incubation with AMP and AMP alpha S results in potentiation, rather than inhibition, of ATP-induced responses. On the other hand, 5'-diphosphate, 5'-triphosphate, 5'-O-(2-thiodiphosphate) and 5'-O-(3-thiotriphosphate) moieties on adenosine have no effect or cause autoinhibition. These results indicate that AMP exerts a potentiating effect on reactivity to exogenous ATP. AMP arising from the enzymatic degradation of ATP might modulate the level of response to ATP released endogenously as a cotransmitter. PMID:3038248
Hotra, Adam; Suter, Manuel; Biuković, Goran; Ragunathan, Priya; Kundu, Subhashri; Dick, Thomas; Grüber, Gerhard
2016-05-01
The F1 FO -ATP synthase is one of the enzymes that is essential to meet the energy requirement of both the proliferating aerobic and hypoxic dormant stages of the life cycle of mycobacteria. Most F-ATP synthases consume ATP in the α3 :β3 headpiece to drive the γ subunit, which couples ATP cleavage with proton pumping in the c ring of FO via the bottom of the γ subunit. ATPase-driven H(+) pumping is latent in mycobacteria. The presence of a unique 14 amino acid residue loop of the mycobacterial γ subunit has been described and aligned in close vicinity to the c-ring loop Priya R et al. (2013) J Bioenerg Biomembr 45, 121-129 Here, we used inverted membrane vesicles (IMVs) of fast-growing Mycobacterium smegmatis and a variety of covalent and non-covalent inhibitors to characterize the ATP hydrolysis activity of the F-ATP synthase inside IMVs. These vesicles formed a platform to investigate the function of the unique mycobaterial γ loop by deleting the respective loop-encoding sequence (γ166-179 ) in the genome of M. smegmatis. ATP hydrolysis-driven H(+) pumping was observed in IMVs containing the Δγ166-179 mutant protein but not for IMVs containing the wild-type F-ATP synthase. In addition, when compared to the wild-type enzyme, IMVs containing the Δγ166-179 mutant protein showed increased ATP cleavage and lower levels of ATP synthesis, demonstrating that the loop affects ATPase activity, ATPase-driven H(+) pumping and ATP synthesis. These results further indicate that the loop may affect coupling of ATP hydrolysis and synthesis in a different mode. © 2016 Federation of European Biochemical Societies.
NASA Technical Reports Server (NTRS)
Faguy, David; Lawson, Darion; Hochstein, Lawrence I.; Chang, Sherwood (Technical Monitor)
1996-01-01
Vesicles prepared in a buffer containing ADP, Mg(2+) and Pi synthesized ATP at an initial rate of 2 nmols/min/mg protein after acidification of the bulk medium (pH 8 (right arrow) 4). The intravesicular ATP concentration reached a steady state after about 30 seconds and slowly declined thereafter. ATP synthesis was inhibited by low concentrations of dicyclohexylcarbodiimide and m-chlorophenylhydrazone indicating that synthesis took place in response to the proton gradient. NEM and PCMS, which inhibit vacuolar ATPases and the vacuolar-like ATPases of extreme halophiles, did not affect ATP synthesis, and, in fact, produced higher steady state levels of ATP. This suggested that two ATPase activities were present, one which catalyzed ATP synthesis and one that caused its hydrolysis. Azide, a specific inhibitor of F0F1 ATP Synthases, inhibited halobacterial ATP synthesis. The distribution of acridine orange as imposed by a delta pH demonstrated that azide inhibition was not due to the collapse of the proton gradient due to azide acting as a protonophore. Such an effect was observed, but only at azide concentrations higher than those that inhibited ATP synthesis. These results confirm the earler observations with cells of H. saccharovorum and other extreme halophiles that ATP synthesis is inconsistent with the operation of a vacuolar-like ATPase. Therefore, the observation that a vacuolar-like enzyme is responsible for ATP synthesis (and which serves as the basis for imputing ATP synthesis to the vacuolar-like ATPases of the extreme halophiles, and the Archaea in general) should be taken with some degree of caution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Han; Rahman, Sadia; Li, Wen
2015-03-27
A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homologmore » MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis. - Highlights: • A novel domain ‘GATE’ is identified in the ABC protein DrrA. • GATE shows high sequence and structural conservation among diverse ABC proteins. • GATE is located outside of the previously studied ATP binding and hydrolysis motifs. • Conserved GATE residues are critical for stability of DrrAB and for ATP catalysis.« less
Deregulation of ocular nucleotide homeostasis in patients with diabetic retinopathy.
Loukovaara, Sirpa; Sandholm, Jouko; Aalto, Kristiina; Liukkonen, Janne; Jalkanen, Sirpa; Yegutkin, Gennady G
2017-02-01
Clear signaling roles for ATP and adenosine have been established in all tissues, including the eye. The magnitude of signaling responses is governed by networks of enzymes; however, little is known about the regulatory mechanisms of purinergic signaling in the eye. By employing thin-layer chromatographic assays with 3 H-labeled substrates, this study aimed to evaluate the role of nucleotide homeostasis in the pathogenesis of vitreoretinal diseases in humans. We have identified soluble enzymes ecto-5'-nucleotidase/CD73, adenylate kinase-1, and nucleoside diphosphate kinase in the vitreous fluid that control active cycling between pro-inflammatory ATP and anti-inflammatory adenosine. Strikingly, patients with proliferative form of diabetic retinopathy (DR) had higher adenylate kinase activity and ATP concentration, when compared to non-proliferative DR eyes and non-diabetic controls operated for rhegmatogenous retinal detachment, macular hole, and pucker. The non-parametric correlation analysis revealed positive correlations between intravitreal adenylate kinase and concentrations of ATP, ADP, and other angiogenic (angiopoietins-1 and -2), profibrotic (transforming growth factor-β1), and proteolytic (matrix metalloproteinase-9) factors but not erythropoietin and VEGF. Immunohistochemical staining of postmortem human retina additionally revealed selective expression of ecto-5'-nucleotidase/CD73 on the rod-and-cone-containing photoreceptor cells. Collectively, these findings provide novel insights into the regulatory mechanisms that influence purinergic signaling in diseased eye and open up new possibilities in the development of enzyme-targeted therapeutic approaches for prevention and treatment of DR. Ecto-5'-nucleotidase/CD73 and adenylate kinase-1 circulate in human vitreous fluid. Adenylate kinase activity is high in diabetic eyes with proliferative retinopathy. Diabetic eyes display higher intravitreal ATP/ADP ratio than non-diabetic controls. Soluble adenylate kinase maintains resynthesis of inflammatory ATP in diabetic eyes.
NASA Technical Reports Server (NTRS)
Sims, J. R.; Karp, S.; Ingber, D. E.
1992-01-01
Studies were carried out with capillary endothelial cells cultured on fibronectin (FN)-coated dishes in order to analyze the mechanism of cell and nuclear shape control by extracellular matrix (ECM). To examine the role of the cytoskeleton in shape determination independent of changes in transmembrane osmotic pressure, membranes of adherent cells were permeabilized with saponin (25 micrograms/ml) using a buffer that maintains the functional integrity of contractile microfilaments. Real-time videomicroscopic studies revealed that addition of 250 microM ATP resulted in time-dependent retraction and rounding of permeabilized cells and nuclei in a manner similar to that observed in intact living cells following detachment using trypsin-EDTA. Computerized image analysis confirmed that permeabilized cells remained essentially rigid in the absence of ATP and that retraction was stimulated in a dose-dependent manner as the concentration of ATP was raised from 10 to 250 microM. Maximal rounding occurred by 30 min with projected cell and nuclear areas being reduced by 69 and 41%, respectively. ATP-induced rounding was also accompanied by a redistribution of microfilaments resulting in formation of a dense net of F-actin surrounding retracted nuclei. Importantly, ATP-stimulated changes in cell, cytoskeletal, and nuclear form were prevented in permeabilized cells using a synthetic myosin peptide (IRICRKG) that has been previously shown to inhibit actomyosin filament sliding in muscle. In contrast, both the rate and extent of cell and nuclear rounding were increased in permeabilized cells exposed to ATP when the soluble FN peptide, GRGDSP, was used to dislodge immobilized FN from cell surface integrin receptors.(ABSTRACT TRUNCATED AT 250 WORDS).
DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells
Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng
2014-01-01
Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or “reperfusion” of renal proximal tubular cells (RPTCs) after ATP-depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP-depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death. PMID:24726884
Digoxin and Adenosine Triphosphate Enhance the Functional Properties of Tissue-Engineered Cartilage
Makris, Eleftherios A.; Huang, Brian J.; Hu, Jerry C.; Chen-Izu, Ye
2015-01-01
Toward developing engineered cartilage for the treatment of cartilage defects, achieving relevant functional properties before implantation remains a significant challenge. Various chemical and mechanical stimuli have been used to enhance the functional properties of engineered musculoskeletal tissues. Recently, Ca2+-modulating agents have been used to enhance matrix synthesis and biomechanical properties of engineered cartilage. The objective of this study was to determine whether other known Ca2+ modulators, digoxin and adenosine triphosphate (ATP), can be employed as novel stimuli to increase collagen synthesis and functional properties of engineered cartilage. Neocartilage constructs were formed by scaffold-free self-assembling of primary bovine articular chondrocytes. Digoxin, ATP, or both agents were added to the culture medium for 1 h/day on days 10–14. After 4 weeks of culture, neocartilage properties were assessed for gross morphology, biochemical composition, and biomechanical properties. Digoxin and ATP were found to increase neocartilage collagen content by 52–110% over untreated controls, while maintaining proteoglycan content near native tissue values. Furthermore, digoxin and ATP increased the tensile modulus by 280% and 180%, respectively, while the application of both agents increased the modulus by 380%. The trends in tensile properties were found to correlate with the amount of collagen cross-linking. Live Ca2+ imaging experiments revealed that both digoxin and ATP were able to increase Ca2+ oscillations in monolayer-cultured chondrocytes. This study provides a novel approach toward directing neocartilage maturation and enhancing its functional properties using novel Ca2+ modulators. PMID:25473799
Effects of Ca2+ on oxidative phosphorylation in mitochondria from the thermogenic organ of marlin.
O'Brien, J; Block, B A
1996-12-01
Mitochondria from the muscle-derived thermogenic (heater) organ and oxidative red muscle of the blue marlin (Makaira nigricans) were studied in order to evaluate aspects of the mechanism of thermogenesis in heater tissue. We investigated whether short-term Ca(2+)-induced uncoupling of mitochondria contributes to the thermogenic cycle of the heater organ by enhancing the respiration rate. Specific electrodes were used to obtain simultaneous measurements of oxygen consumption and Ca2+ fluxes on isolated mitochondria, and the effects of various concentrations of Ca2+ on respiration rates and the ADP phosphorylated/atomic oxygen consumed (P/O) ratio were examined. Addition of Ca2+ in excess of 10 mumol l-1 to respiring heater organ or red muscle mitochondria partially inhibited state 3 respiration and reduced the P/O ratio, indicating that the mitochondria were partially uncoupled. These effects were blocked by 2 mumol l-1 Ruthenium Red. In heater organ mitochondria, state 3 respiration rate and the P/O ratio were not significantly reduced by 1 mumol l-1 free Ca2+, a concentration likely to be near the maximum achieved in a stimulated cell. This indicates that transient increases in cytosolic Ca2+ concentration may not significantly reduce the P/O ratio of heater organ mitochondria. The activity of 2-oxoglutarate dehydrogenase in heater organ mitochondria was stimulated by approximately 15% by Ca2+ concentrations between 0.2 and 1 mumol l-1. These results suggest that heater organ mitochondria are able to maintain a normal P/O ratio and should maintain ATP output during transient increases in Ca2+ concentration, supporting a model in which an ATP-consuming process drives thermogenesis. Activation of mitochondrial dehydrogenases by low levels of Ca2+ may also enhance respiration and contribute to thermogenesis.
ERIC Educational Resources Information Center
Bowman, Thomas G.; Pitney, William A.; Mazerolle, Stephanie M.; Dodge, Thomas M.
2015-01-01
Context: Student retention is a key issue in higher education. With the increasing number of professional master's (PM) athletic training programs (ATPs), understanding student retention is necessary to maintain viable programs. Objective: Explore program directors' perceptions of the reasons athletic training students persist and depart from PM…
[The 2,3-diphosphoglycerate shunt and stabilization of the ATP level in mammalian erythrocytes].
Ataullakhanov, A I; Ataullakhanov, F I; Vitvitskiĭ, V M; Zhabotinskiĭ, A M; Pichugin, A V
1985-06-01
The mechanisms of regulation of energy metabolism in erythrocytes of various mammalian species were investigated. In native erythrocytes of man, sheep, cow, dog and mouse the dependencies of the rates of glucose uptake on ATP concentration (i.e., regulatory parameters of glycolysis) were measured. These parameters plotted in normalized coordinates are not species-specific (invariant). The dependence of the rate of ATP-consuming processes on ATP concentration has been studied for the first time in intact mammalian erythrocytes. This dependence was found to be linear only in the species, in whose erythrocytes the activity of 2,3-diphosphoglycerate shunt is practically zero. In all species under study, the stabilization of ATP level is provided for mainly by the hexokinase-phosphofructokinase system. A comparison of regulatory mechanisms of energy metabolism in mammalian (sheep, cow) erythrocytes, in which the 2,3-diphosphoglycerate shunt is absent, with human and animal erythrocytes, in which this pathway is active, points to the important role of the 2,3-diphosphoglycerate shunt in regulation of energy conversion in erythrocytes. This shunt operates as an additional stabilizer protecting the cell from extremal influences.
Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Houlden, Henry
2017-01-01
Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP. Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. PMID:28360103
Tien, Chih-Feng; Cheng, Shih-Ching; Ho, Yen-Peng; Chen, Yi-Shiuan; Hsu, Jung-Hsin; Chang, Ruey-Yi
2014-01-10
Viral replication depends on host proteins to supply energy and replication accessories for the sufficient production of viral progeny. In this study, we identified fructose-bisphosphate aldolase A as a binding partner of Japanese encephalitis virus (JEV) untranslated regions (UTRs) on the antigenome via RNA affinity capture and mass spectrometry. Direct interaction of aldolase A with JEV RNAs was confirmed by gel mobility shift assay and colocalization with active replication of double-stranded RNA in JEV-infected cells. Infection of JEV caused an increase in aldolase A expression of up to 33%. Knocking down aldolase A reduced viral translation, genome replication, and viral production significantly. Furthermore, JEV infection consumed 50% of cellular ATP, and the ATP level decreased by 70% in the aldolase A-knockdown cells. Overexpression of aldolase A in aldolase A-knockdown cells increased ATP levels significantly. Taken together, these results indicate that JEV replication requires aldolase A and consumes ATP. This is the first report of direct involvement of a host metabolic enzyme, aldolase A protein, in JEV replication. Copyright © 2013 Elsevier Inc. All rights reserved.
L-Carnitine suppresses oleic acid-induced membrane permeability transition of mitochondria.
Oyanagi, Eri; Yano, Hiromi; Kato, Yasuko; Fujita, Hirofumi; Utsumi, Kozo; Sasaki, Junzo
2008-10-01
Membrane permeability transition (MPT) of mitochondria has an important role in apoptosis of various cells. The classic type of MPT is characterized by increased Ca(2+) transport, membrane depolarization, swelling, and sensitivity to cyclosporin A. In this study, we investigated whether L-carnitine suppresses oleic acid-induced MPT using isolated mitochondria from rat liver. Oleic acid-induced MPT in isolated mitochondria, inhibited endogenous respiration, caused membrane depolarization, and increased large amplitude swelling, and cytochrome c (Cyt. c) release from mitochondria. L-Carnitine was indispensable to beta-oxidation of oleic acid in the mitochondria, and this reaction required ATP and coenzyme A (CoA). In the presence of ATP and CoA, L-carnitine stimulated oleic acid oxidation and suppressed the oleic acid-induced depolarization, swelling, and Cyt. c release. L-Carnitine also contributed to maintaining mitochondrial function, which was decreased by the generation of free fatty acids with the passage of time after isolation. These results suggest that L-carnitine acts to maintain mitochondrial function and suppresses oleic acid-mediated MPT through acceleration of beta-oxidation. Copyright (c) 2008 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anwar-Mohamed, Anwar; El-Kadi, Ayman O.S.
2009-05-01
Recent data suggest that vanadium (V{sup 5+}) compounds exert protective effects against chemical-induced carcinogenesis, mainly through modifying various xenobiotic metabolizing enzymes. In fact, we have shown that V{sup 5+} down-regulates the expression of Cyp1a1 at the transcriptional level through an ATP-dependent mechanism. However, incongruously, there is increasing evidence that V{sup 5+} is found in higher amounts in cancer cells and tissues than in normal cells or tissues. Therefore, the current study aims to address the possible effect of this metal on the regulation of expression of an enzyme that helps maintain endogenous antioxidants used to protect tissues/cells from mutagens, carcinogens,more » and oxidative stress damage, NAD(P)H:quinone oxidoreductase 1 (Nqo1). In an attempt to examine these effects, Hepa 1c1c7 cells and its AhR-deficient version, c12, were treated with increasing concentrations of V{sup 5+} in the presence of two distinct Nqo1 inducers, the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and isothiocyanate sulforaphane (SUL). Our results showed that V{sup 5+} inhibits the TCDD- and SUL-mediated induction of Nqo1 at mRNA, protein, and catalytic activity levels. At transcriptional level, V{sup 5+} was able to decrease the TCDD- and SUL-induced nuclear accumulation of Nrf2 and the subsequent binding to antioxidant responsive element (ARE) without affecting Nrf2 protein levels. Looking at post-transcriptional level; we found that V{sup 5+} did not affect Nqo1 mRNA transcripts turn-over rates. However, at the post-translational level V{sup 5+} increased Nqo1 protein half-life. In conclusion, the present study demonstrates that V{sup 5+} down-regulates Nqo1 at the transcriptional level, possibly through inhibiting the ATP-dependent activation of Nrf2.« less
Patterns of control of maximum metabolic rate in humans.
Hochachka, Peter W; Beatty, Cheryl L
2003-09-01
In this analysis, four performance phenotypes were used to compare mechanisms of control of aerobic maximum metabolic rate (MMR): (i) untrained sedentary (US) subjects, as a reference group against which to compare (ii) power trained (PT), (iii) endurance trained (ET) and (iv) high altitude adapted native (HA) subject groups. Sprinters represented the PT group; long distance runners illustrated the ET group; and Quechuas represented the HA group. Numerous recent studies have identified contributors to control on both the adenosine triphosphate (ATP) supply side and the ATP demand side of ATP turnover. Control coefficients or c(i) values were defined as fractional change in MMR/fractional change in the capacity of any given step in ATP turnover. From the best available evidence it appears that at MMR all five of the major steps in energy delivery (namely, ventilation, pulmonary diffusion, cardiac output, tissue capillary - mitochondrial O(2) transfer, and aerobic cell metabolism per se) approach an upper functional ceiling, with control strength being distributed amongst the various O(2) flux steps. On the energy demand side, the situation is somewhat simplified since at MMR approximately 90% of O(2)-based ATP synthesis is used for actomyosin (AM) and Ca(2+) ATPases; at MMR these two ATP demand rates also appear to be near an upper functional ceiling. In consequence, at MMR the control contributions or c(i) values are rather evenly divided amongst all seven major steps in ATP supply and ATP demand pathways right to the point of fatigue. Relative to US (the reference group), in PT subjects at MMR control strength shifts towards O(2) delivery steps (ventilation, pulmonary diffusion and cardiac output). In contrast in ET and HA subjects at MMR control shifts towards the energy demand steps (AM and Ca(2+) ATPases), and more control strength is focussed on tissue level ATP supply and ATP demand. One obvious advantage of the ET and HA control pattern is improved metabolite homeostasis. Another possibility is that, with some reserve capacity in the O(2) delivery steps and control focussed on ATP turnover at the tissue level, nature has designed the ideal 'endurance machine'.
NASA Astrophysics Data System (ADS)
Wei, J.; Dong, C.; Chen, B.
2017-04-01
We employ a mechanical model of sarcomere to quantitatively investigate how adenosine triphosphate (ATP) concentration affects motor force regulation during skeletal muscle contraction. Our simulation indicates that there can be negative cross-bridges resisting contraction within the sarcomere and higher ATP concentration would decrease the resistance force from negative cross-bridges by promoting their timely detachment. It is revealed that the motor force is well regulated only when ATP concentration is above a certain level. These predictions may provide insights into the role of ATP in regulating coordination among multiple motors.
Hu, Jie-Bi; Chen, Ting-Ru; Chen, Yu-Chie; Urban, Pawel L
2015-01-30
In order to ascertain optimum conditions for biocatalytic processes carried out in vitro, we have designed a bio-opto-electronic system which ensures real-time compensation for depletion of adenosine triphosphate (ATP) in reactions involving transfer of phosphate groups. The system covers ATP concentration range of 2-48 μM. The report demonstrates feasibility of the device operation using apyrase as the ATP-depleting enzyme.
Effect of hypothyroidism on the purinergic responses of corpus cavernosal smooth muscle in rabbits.
Yildirim, M K; Bagcivan, I; Sarac, B; Kilicarslan, H; Yildirim, S; Kaya, T
2008-01-01
Several studies have reported evidence of hormonal abnormalities in 25-35% of impotent men. Hypothyroidism has been reported to occur in 6% of impotent men. In the present study, we examined purinergic relaxation responses in hypothyroidism in an experimental rabbit model and compared them with controls to evaluate the possible involvement of the purinergic pathway. The study comprised 20 male New Zealand white rabbits. The rabbits were divided into two equal groups. We tested the effects of ATP, alpha beta ATP, and adenosine precontracted with phenylephrine on the isolated corpus cavernosum preparations from control and hypothyroid rabbits. We also evaluated the effects of ATP, alpha beta ATP, and adenosine on the cGMP levels in the isolated corpus cavernosum preparations from control and hypothyroid rabbits. T3, T4, and testosterone levels were significantly lower in hypothyroid rabbits. ATP, alpha beta ATP, carbachol, and electrical field stimulation (EFS)-induced frequency-dependent relaxation responses in the isolated rabbit corpus cavernosum strips precontracted with phenylephrine reduced significantly (P<0.05). Adenosine-induced relaxation responses did not change significantly in hypothyroid rabbits. Reduction of relaxation response in hypothyroid rabbits corpus cavernosum can depend on a decreased release of nitric oxide (NO) from nitrergic nerves and endothelium.
Fluoride decreased the sperm ATP of mice through inhabiting mitochondrial respiration.
Sun, Zilong; Zhang, Wen; Xue, Xingchen; Zhang, Yuliang; Niu, Ruiyan; Li, Xuying; Li, Baojun; Wang, Xiaowen; Wang, Jundong
2016-02-01
Fluoride-induced low sperm motility was observed in accumulated investigations. However, the effect of fluoride exposure on ATP generation which is essential to sperm motility remains to be elucidated. In this study, 120 healthy male mice were orally administrated with 0, 25, 50, and 100 mg L(-1) NaF for 90 d. Results showed that compared with controls, fluoride ingestion significantly reduced sperm count, survival, as well as mobility and total ATP level in sperm untreated with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or pyruvate, which was used to establish glycolysis or mitochondrial respiration model, respectively. Data further revealed that sperm mobility and ATP level under mitochondrial respiration condition were significantly suppressed, while no statistical difference occurred in the model of glycolysis, indicating ATP derived from mitochondria was affected. Moreover, mRNA expressions of mitochondrial cytochrome b (mt-Cytb) and cytochrome c oxidase subunit 2 (mt-COX2), two important molecules in mitochondrial electron transport chain (ETC), were down-regulated in all fluoride treatment groups. Mitochondria in sperm of mice exposed to 100 mg L(-1) NaF appeared to be irregular and vacuolated. These findings suggested that decreased sperm motility induced by fluoride may result from low ATP generation due to the disturbed ETC in sperm mitochondrial. Copyright © 2015 Elsevier Ltd. All rights reserved.
García, Killen; Escobar, Gisselle; Mendoza, Pablo; Beltran, Caroll; Perez, Claudio; Vernal, Rolando; Acuña-Castillo, Claudio
2016-01-01
Neisseria gonorrhoeae (Ngo) has developed multiple immune evasion mechanisms involving the innate and adaptive immune responses. Recent findings have reported that Ngo reduces the IL-1β secretion of infected human monocyte-derived macrophages (MDM). Here, we investigate the role of adenosine triphosphate (ATP) in production and release of IL-1β in Ngo-infected MDM. We found that the exposure of Ngo-infected MDM to ATP increases IL-1β levels about ten times compared with unexposed Ngo-infected MDM (P < 0.01). However, we did not observe any changes in inflammasome transcriptional activation of speck-like protein containing a caspase recruitment domain (CARD) (ASC, P > 0.05) and caspase-1 (CASP1, P > 0.05). In addition, ATP was not able to modify caspase-1 activity in Ngo-infected MDM but was able to increase pyroptosis (P > 0.01). Notably ATP treatment defined an increase of positive staining for IL-1β with a distinctive intracellular pattern of distribution. Collectively, these data demonstrate that ATP induces IL-1β secretion by a mechanism not related to the NLRP3/ASC/caspase-1 axis and likely is acting at the level of vesicle trafficking or pore formation. PMID:27803513
Huang, Wei; Hu, Hong; Zhang, Shi-Bao
2016-01-01
Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap), stomatal and mesophyll conductances (gs and gm), CO2 assimilation rate (An), and total electron flow through PSII (JPSII) at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap), the diurnal values of gs, gm, An, and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures. PMID:27812359
Rubinstein, D; Warrendorf, E
1975-06-01
The levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate in freshly drawn human erythrocytes can be tripled by a 2 h incubation at 37 degrees C in a medium containing 21 mM glucose, 1.8 mM adenine, 5 mM pyruvate, 10 mM inosine, and 96 mM phosphate. Similar incubation conditions will restore the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood levels preserved for 12 and 15 weeks, respectively, to those of fresh cells. Omission of pyruvate from the incubation medium further increases the level of ATP slightly, but there is little elevation of 2,3-diphosphoglycerate. Under these conditions labelled pyruvate and lactate production from [14-C]glucose or [14-C]inosine is not diminished, but labelled fructose 1,6-diphosphate, rather than 2,3-diphosphoglycerate, accumulates. In addition, omission of pyruvate from the incubation medium, with a concomitant decrease in accumulation of 2,3-diphosphoglycerate, diminishes the concentration of inorganic phosphate required for optimal ATP elevation. A 5 h incubation in the glucose-adenine-pyruvate-inosine-phosphate medium elevates the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood preserved in the cold for 15 weeks to twice that of fresh cells, indicating that the cells retain their metabolic potential even after prolonged storage at 2 degrees C. The medium may provide a method of rejuvenating 10-12 week cold-preserved erythrocytes for transfusion purposes, by a 1 h incubation at 37 degrees C.
Ren, Min; Liu, Yujie; Zhao, Huiya; Dong, Shixia; Jiang, Zhonghui; Li, Keting; Tian, Jiawei
2016-10-01
Effects of ischemic postconditioning (IPostC) and adenosine triphosphate (ATP)-mediated pharmacologic postconditioning (ATP-PPostC) on cardiac function were evaluated by speckle tracking imaging (STI)-based echocardiography. A myocardial I/R model was induced in rabbits by reversible ligation of the left ventricular branch of coronary artery. Rabbits were randomized into three groups: ischemia and reperfusion (IR) (no further intervention), IPostC, and ATP-PPostC groups. Cardiac function was evaluated by conventional and STI-based echocardiography. Myocardial necrosis, apoptosis, and myocardial mRNAs of apoptosis-related proteins (Bcl-2 and Bax) were evaluated. Speckle tracking imaging (STI)-based echocardiography revealed that IPostC and ATP-PPostC were associated with better preserved global and regional cardiac function, as indicated by significantly increased GLSrsys, GLSrd, GLSsys, SrLsys, SrLd, and SLsys in both groups (all P<.5). Subsequent pathologic studies indicate that the percentage of necrotic myocardium and permillage of apoptotic cells were significantly lower in the IPostC and ATP-PPostC groups than in the IR group (all P<.05). Moreover, both IPostC and ATP-PPostC were associated with increased Bcl-2 mRNA levels and reduced Bax mRNA levels. IPostC and ATP-PPostC may exert cardioprotective functions by better preservation of cardiac function during the I/R process and at least partly via attenuation of myocardial apoptosis. © 2016 John Wiley & Sons Ltd.
Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R
2015-01-01
We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953
Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A.; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F.; Gibson, Gary E.; Beal, M. Flint; Adam-Vizi, Vera; Chinopoulos, Christos
2013-01-01
A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20–48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ∼30% higher ADP-ATP exchange rates compared to those obtained from DLST+/− or DLD+/− littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on “in-house” mitochondrial ATP reserves.—Kiss, G., Konrad, C., Doczi, J., Starkov, A. A., Kawamata, H., Manfredi, G., Zhang, S. F., Gibson, G. E., Beal, M. F., Adam-Vizi, V., Chinopoulos, C. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. PMID:23475850
The Effects of Oxygen Level and Glucose Concentration on the Metabolism of Porcine TMJ Disc Cells
Cisewski, Sarah E.; Zhang, Lixia; Kuo, Jonathan; Wright, Gregory J.; Wu, Yongren; Kern, Michael J.; Yao, Hai
2015-01-01
Objective To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. Design TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 hours with 0, 1.5, 5, or 25mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-3H]proline and [35S]sulfate into the cells, respectively. Results TMJ disc cell viability significantly decreased (P<0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P<0.0001), while a decrease in glucose concentration significantly decreased viability (P<0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P<0.0001) and matrix synthesis (P<0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P<0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P<0.0001), ATP production (P=0.00015), and collagen (P=0.0002) and proteoglycan synthesis (P<0.0001). Conclusions Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. PMID:26033165
The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells.
Cisewski, S E; Zhang, L; Kuo, J; Wright, G J; Wu, Y; Kern, M J; Yao, H
2015-10-01
To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. TMJ disc cell viability significantly decreased (P < 0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P < 0.0001), while a decrease in glucose concentration significantly decreased viability (P < 0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P < 0.0001) and matrix synthesis (P < 0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P < 0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P < 0.0001), ATP production (P = 0.00015), and collagen (P = 0.0002) and proteoglycan synthesis (P < 0.0001). Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Glutamine 89 is a key residue in the allosteric modulation of human serine racemase activity by ATP.
Canosa, Andrea V; Faggiano, Serena; Marchetti, Marialaura; Armao, Stefano; Bettati, Stefano; Bruno, Stefano; Percudani, Riccardo; Campanini, Barbara; Mozzarelli, Andrea
2018-06-13
Serine racemase (SR) catalyses two reactions: the reversible racemisation of L-serine and the irreversible dehydration of L- and D-serine to pyruvate and ammonia. SRs are evolutionarily related to serine dehydratases (SDH) and degradative threonine deaminases (TdcB). Most SRs and TdcBs - but not SDHs - are regulated by nucleotides. SR binds ATP cooperatively and the nucleotide allosterically stimulates the serine dehydratase activity of the enzyme. A H-bond network comprising five residues (T52, N86, Q89, E283 and N316) and water molecules connects the active site with the ATP-binding site. Conservation analysis points to Q89 as a key residue for the allosteric communication, since its mutation to either Met or Ala is linked to the loss of control of activity by nucleotides. We verified this hypothesis by introducing the Q89M and Q89A point mutations in the human SR sequence. The allosteric communication between the active site and the allosteric site in both mutants is almost completely abolished. Indeed, the stimulation of the dehydratase activity by ATP is severely diminished and the binding of the nucleotide is no more cooperative. Ancestral state reconstruction suggests that the allosteric control by nucleotides established early in SR evolution and has been maintained in most eukaryotic lineages.
Flitney, F W; Singh, J
1980-07-01
1. A study has been made of a well documented but poorly understood response of the isolated frog ventricle to treatment with exogenous adenosine 5' triphosphate (ATP). Measurements of membrane potential, isometric twitch tension and levels of endogenous 3',5'-cyclic nucleotides have been made at various times during the ATP-induced response. 2. ATP elicits a characteristic triphasic response, which comprises an initial, abrupt increase in contractility, rising to a maximum within a few beats (first phase); followed by a period when the twitch amplitude falls, sometimes to below the control level (second phase); and superceded by a more slowly developing and longer-lasting increase in contractile force (third phase). The response is unaffected by atropine, propranolol or phentolamine. However, the prostaglandin synthetase inhibitor indomethacin depresses the first phase and entirely suppresses the third phase. 3. The inotropic effects of ATP are accompanied by changes in the shape of the action potential. These effects are dose-related. The duration of the action potential (D-30mV) and its positive overshoot (O) are increased during all phases of the response, for [ATP]o's up to 10(-5) M. However, at higher [ATP]o's, D-30mV and O ar both reduced during the second phase (but not the first or third phase), when isometric twitch tension is also depressed. The relationship between action potential duration and twitch tension (P) for different [ATP]o's is linear for all three phases of the response, but the slopes of the curves (delta P/delta D) are markedly different, indicating that the sensitivity of the contractile system to membrane depolarization is not constant, but varies continuously throughout the response. 4. ATP has a potent stimulatory effect on the metabolism of endogenous 3',5'-cyclic nucleotides. The time courses of the changes in adenosine 3','5-cyclic monophosphate (3',5'-cyclic AMP) and guanosine 3',5'-cyclic monophosphate (3',5'-cyclic GMP) are complex, but the accompanying change in isometric twitch tension is paralleled closely by corresponding changes in the ratio 3',5'cyclic AMP:3',5'-cyclic GMP. 5. It is concluded that ATP exerts a dual effect on the ventricle and that the contractile response is regulated by changes in the metabolism of 3',5'-cyclic nucleotides. The effects of indomethacin indicate a possible involvement of prostaglandins in mediating the ATP response. It is suggested that the initial effect of ATP on the ventricle is to increase the permeability of the fibres to Ca2+. 6. The relationship between 3',5' cyclic nucleotide levels and ventricular contractility is discussed. It is postulated that the antagonistic effects of 3',5'-cyclic AMP and 3',5'-cyclic GMP are expressed at the level of certain phosphoproteins which regulate both the availability of Ca2+ and the sensitivity of the contractile proteins to Ca2+.
The regulation of ATP release from the urothelium by adenosine and transepithelial potential.
Dunning-Davies, Bryony M; Fry, Christopher H; Mansour, Dina; Ferguson, Douglas R
2013-03-01
WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Stretch of the urothelium, as occurs during bladder filling, is associated with a release of ATP that is postulated to act as a sensory neurotransmitter. The regulation of ATP release is poorly understood and in particular if there is a feedback mechanism provided by ATP itself. Adenosine, a breakdown product of ATP, is a potent inhibitor of stretch-induced ATP release, acting through and A1 receptor; endogenous levels are about 0.6μM. Data are consistent with ATP release relying on the rise of intracellular Ca2+. Transepithelial potential also controls ATP release, also acting via an A1 receptor-dependent pathway. To test the hypothesis that distension-induced ATP release from the bladder urothelium is regulated by adenosine as well as changes to transurothelial potential (TEP). To examine the role of changes to intracellular [Ca(2+) ] in ATP release. Rabbit urothelium/suburothelium membranes were used in an Ussing chamber system. Distension was induced by fluid removal from the chamber bathing the serosal (basolateral) membrane face. The TEP and short-circuit current were measured. ATP was measured in samples aspirated from the serosal chamber by a luciferin-luciferase assay. Intracellular [Ca(2+) ] was measured in isolated urothelial cells using the fluorochrome Fura-2. All experiments were performed at 37°C. Distension-induced ATP release was decreased by adenosine (1-10 μm) and enhanced by adenosine deaminase and A1- (but not A2-) receptor antagonists. Distension-induced ATP release was reduced by 2-APB, nifedipine and capsazepine; capsaicin induced ATP release in the absence of distension. ATP and capsaicin, but not adenosine, generated intracellular Ca(2+) transients; adenosine did not affect the ATP-generated Ca(2+) transient. ATP release was dependent on a finite transepithelial potential. Changes to TEP, in the absence of distension, generated ATP release that was in turn reduced by adenosine. Adenosine exerts a powerful negative feedback control of ATP release from the urothelium via A1 receptor activation. Distension-induced ATP release may be mediated by a rise of the intracellular [Ca(2+) ]. Modulation of distension-induced ATP release by adenosine and TEP may have a common pathway. © 2012 BJU International.
Connolly, Niamh M C; D'Orsi, Beatrice; Monsefi, Naser; Huber, Heinrich J; Prehn, Jochen H M
2016-01-01
Loss of ionic homeostasis during excitotoxic stress depletes ATP levels and activates the AMP-activated protein kinase (AMPK), re-establishing energy production by increased expression of glucose transporters on the plasma membrane. Here, we develop a computational model to test whether this AMPK-mediated glucose import can rapidly restore ATP levels following a transient excitotoxic insult. We demonstrate that a highly compact model, comprising a minimal set of critical reactions, can closely resemble the rapid dynamics and cell-to-cell heterogeneity of ATP levels and AMPK activity, as confirmed by single-cell fluorescence microscopy in rat primary cerebellar neurons exposed to glutamate excitotoxicity. The model further correctly predicted an excitotoxicity-induced elevation of intracellular glucose, and well resembled the delayed recovery and cell-to-cell heterogeneity of experimentally measured glucose dynamics. The model also predicted necrotic bioenergetic collapse and altered calcium dynamics following more severe excitotoxic insults. In conclusion, our data suggest that a minimal set of critical reactions may determine the acute bioenergetic response to transient excitotoxicity and that an AMPK-mediated increase in intracellular glucose may be sufficient to rapidly recover ATP levels following an excitotoxic insult.
Connolly, Niamh M. C.; D’Orsi, Beatrice; Monsefi, Naser; Huber, Heinrich J.; Prehn, Jochen H. M.
2016-01-01
Loss of ionic homeostasis during excitotoxic stress depletes ATP levels and activates the AMP-activated protein kinase (AMPK), re-establishing energy production by increased expression of glucose transporters on the plasma membrane. Here, we develop a computational model to test whether this AMPK-mediated glucose import can rapidly restore ATP levels following a transient excitotoxic insult. We demonstrate that a highly compact model, comprising a minimal set of critical reactions, can closely resemble the rapid dynamics and cell-to-cell heterogeneity of ATP levels and AMPK activity, as confirmed by single-cell fluorescence microscopy in rat primary cerebellar neurons exposed to glutamate excitotoxicity. The model further correctly predicted an excitotoxicity-induced elevation of intracellular glucose, and well resembled the delayed recovery and cell-to-cell heterogeneity of experimentally measured glucose dynamics. The model also predicted necrotic bioenergetic collapse and altered calcium dynamics following more severe excitotoxic insults. In conclusion, our data suggest that a minimal set of critical reactions may determine the acute bioenergetic response to transient excitotoxicity and that an AMPK-mediated increase in intracellular glucose may be sufficient to rapidly recover ATP levels following an excitotoxic insult. PMID:26840769
NASA Astrophysics Data System (ADS)
Dong, Xiaoyu; Liu, Tingting; Xiong, Yuqin
2017-02-01
Air cold plasma has been used as a novel method for enhancing microbial fermentation. The aim of this work was to explore the effect of plasma on membrane permeability and the formation of ATP and NADH in Saccharomyces cerevisiae, so as to provide valuable information for large-scale application of plasma in the fermentation industry. Suspensions of S. cerevisiae cells were exposed to air cold plasma for 0, 1, 2, 3, 4 and 5 min, and then subjected to various analyses prior to fermentation (0 h) and at the 9 and 21 h stages of fermentation. Compared with non-exposed cells, cells exposed to plasma for 1 min exhibited a marked increase in cytoplasmic free Ca2+ concentration as a result of the significant increase in membrane potential prior to fermentation. At the same time, the ATP level in the cell suspension decreased by about 40%, resulting in a reduction of about 60% in NADH prior to culturing. However, the levels of ATP and NADH in the culture at the 9 and 21 h fermentation stages were different from the level at 0 h. Taken together, the results indicated that exposure of S. cerevisiae to air cold plasma could increase its cytoplasmic free Ca2+ concentration by improving the cell membrane potential, consequently leading to changes in ATP and NADH levels. Supported by National Natural Science Foundation of China (Nos. 21246012, 21306015 and 21476032).
Portman, M A; Standaert, T A; Ning, X H
1995-01-01
This study investigates the relation between myocardial oxygen consumption (MVO2), function, and high energy phosphates during severe hypoxia and reoxygenation in sheep in vivo. Graded hypoxia was performed in open-chested sheep to adjust PO2 to values where rapid depletion of energy stores occurred. Highly time-resolved 31P nuclear magnetic resonance spectroscopy enabled monitoring of myocardial phosphates throughout hypoxia and recovery with simultaneous MVO2 measurement. Sheep undergoing graded hypoxia (n = 5) with an arterial PO2 nadir of 13.4 +/- 0.5 mmHg, demonstrated maintained rates of oxygen consumption with large changes in coronary flow as phosphocreatine (PCr) decreased within 4 min to 40 +/- 7% of baseline. ATP utilization rate increased simultaneously 59 +/- 20%. Recovery was accompanied by marked increases in MVO2 from 2.0 +/- 0.5 to 7.2 +/- 1.9 mumol/g per min, while PCr recovery rate was 4.3 +/- 0.6 mumol/g per min. ATP decreased to 75 +/- 6% of baseline during severe hypoxia and did not recover. Sheep (n = 5) which underwent moderate hypoxia (PO2 maintained 25-35 mmHg for 10 min) did not demonstrate change in PCr or ATP. Functional and work assessment (n = 4) revealed that cardiac power increased during the graded hypoxia and was maintained through early reoxygenation. These studies show that (a) MVO2 does not decrease during oxygen deprivation in vivo despite marked and rapid decreases in high energy phosphates; (b) contractile function during hypoxia in vivo does not decrease during periods of PCr depletion and intracellular phosphate accumulation, and this may be related to marked increases in circulating catecholamines during global hypoxia. The measured creatine rephosphorylation rate is 34 +/- 11% of predicted (P < 0.01) calculated from reoxygenation parameters, which indicates that some mitochondrial respiratory uncoupling also occurs during the rephosphorylation period. Images PMID:7738181
Zhu, Hongmei; Zennadi, Rahima; Xu, Bruce X.; Eu, Jerry P.; Torok, Jordan A.; Telen, Marilyn J.; McMahon, Timothy J.
2011-01-01
Objective Transfusion of red blood cells (RBCs) has been linked to disappointing clinical outcomes in the critically ill, but specific mechanisms of organ dysfunction after transfusion remain poorly understood. We tested the hypothesis that RBC storage impairs the ability of RBCs to release ATP and that impaired ATP-release was injurious in vivo, in part through increased RBC adhesion. Design Prospective, controlled, mechanistic study. Setting University research laboratory. Subjects Human and mouse blood donors; nude mouse transfusion recipients. Interventions Manipulation of ATP release, supplemental ATP, and antibodies to RBC and endothelial adhesion receptors were used in vitro and in vivo to probe the roles of released ATP and adhesion in responses to (transfused) RBCs. Measurements and main results The ability of stored RBCs to release ATP declined markedly within 14 days after collection, despite relatively stable levels of ATP within the RBCs. Inhibiting ATP release promoted the adhesion of stored RBCs to endothelial cells in vitro and RBC sequestration in the lungs of transfused mice in vivo. Unlike transfusion of fresh human RBCs, stored-RBC transfusion in mice decreased blood oxygenation and increased extravasation of RBCs into the lung’s alveolar airspaces. Similar findings were seen with transfusion of fresh RBCs treated with the ATP-release inhibitors glibenclamide and carbenoxolone. These findings were prevented by either co-infusion of an ATP analog or pre-transfusion incubation of the RBCs with an antibody against the erythrocyte adhesion receptor LW (Landsteiner-Wiener; ICAM-4). Conclusions The normal flow of RBCs in pulmonary microvessels depends in part on the release of anti-adhesive ATP from RBCs, and storage-induced deficiency in ATP release from transfused RBCs may promote or exacerbate microvascular pathophysiology in the lung, in part through increased RBC adhesion. PMID:21765360
Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping
2014-08-07
A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.
Wang, Xing; Chen, Qiuhua; Tian, Wenjuan; Wang, Jianqing; Cheng, Lu; Lu, Jun; Chen, Mingqi; Pei, Yinhao; Li, Can; Chen, Gong; Gu, Ning
2017-01-01
Energy metabolism may alter pattern differences in acute lung injury (ALI) as one of the causes but the detailed features at single-cellular level remain unclear. Changes in intercellular temperature and adenosine triphosphate (ATP) concentration within the single cell may help to understand the role of energy metabolism in causing ALI. ALI in vitro models were established by treating mice lung epithelial (MLE-12) cells with lipopolysaccharide (LPS), hydrogen peroxide (H2O2), hydrochloric acid (HCl) and cobalt chloride (CoCl2, respectively. 100 nm micro thermocouple probe (TMP) was inserted into the cytosol by micromanipulation system and thermoelectric readings were recorded to calculate the intracellular temperature based on standard curve. The total ATP contents for the MLE-12 cells were evaluated at different time intervals after treatments. A significant increase of intracellular temperature was observed after 10 or 20 μg/L LPS and HCl treatments. The HCl increased the temperature in a dose-dependent manner. On the contrary, H2O2 induced a significant decline of intracellular temperature after treatment. No significant difference in intracellular temperature was observed after CoCl2 exposure. The intracellular ATP levels decreased in a time-dependent manner after treatment with H2O2 and HCl, while the LPS and CoCl2 had no significant effect on ATP levels. The intracellular temperature responses varied in different ALI models. The concentration of ATP in the MLE-12 cells played part in the intracellular temperature changes. No direct correlation was observed between the intracellular temperature and concentration of ATP in the MLE-12 cells.
Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun
2015-01-20
Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.
ATP Synthesis in the Extremely Halophilic Bacteria
NASA Technical Reports Server (NTRS)
Hochstein, Lawrence I.; Morrison, David (Technical Monitor)
1994-01-01
The proton-translocating ATPases are multimeric enzymes that carry out a multitude of essential functions. Their origin and evolution represent a seminal event in the early evolution of life. Amino acid sequences of the two largest subunits from archaeal ATPases (A-ATPases), vacuolar ATPases (V-ATPases), and FOF1-ATP syntheses (FATPases) suggest these ATPases evolved from an ancestral vacuolar-like ATP syntheses. A necessary consequence of this notion is that the A-ATPases are ATP syntheses. With the possible exception of the A-ATPase from Halobacterium salinarium. no A-ATPase has been demonstrated to synthesize ATP. The evidence for this case is dubious since ATP synthesis occurs only when conditions are distinctively unphysiological. We demonstrated that ATP synthesis in H.saccharovorum is inconsistent with the operation of an A-type ATPase. In order to determine if this phenomenon was unique to H. saccharovorum, ATP synthesis was examined in various extremely halophilic bacteria with the goal of ascertaining if it resembled what occurred in a. saccharovorum, or was consistent with the operation of an A-type ATPase. A-, V-, and F-type ATPases respond singularly to certain inhibitors. Therefore, the effect of these inhibitors on ATP synthesis in several extreme halophiles was determined. Inhibitors that either blocked or collapsed proton-gradients inhibited the steady state synthesis of ATP thus verifying that synthesis took place at the expense of a proton gradient. Azide, an inhibitor of F-ATPases inhibited ATP synthesis. Since the arginine-dependent synthesis of ATP, which occurs by way of substrate-level phosphorylation, was unaffected by azide, it was unlikely that azide acted as an "uncoupler." N -ethylmaleimide and nitrate, which inhibit V- and A-ATPases, either did not inhibit ATP synthesis or resulted in higher steady-state levels of ATP. These results suggest there are two types of proton-motive ATPases in the extreme halophiles (and presumably in other Archaea). One, the V-like enzyme which, provides protons that are subsequently used for solute translocation. The other ATPase is the familiar and ubiquitous F-ATPase that functions as a reversible proton pump and is the ATP Synthase in the extreme halophiles. Thus, while the suggested evolution of the proton -translocating ATPases accounts for the relationship among these ATPases, this scheme does not account for the presence of F-ATPases in the Archaea. Discounting lateral gene transfer, perhaps an F-type ATPase evolved before the eucaryal-archaeal and bacterial bifurcation. The presence of V-type ATPases in the Bacterial Domain is consistent with this suggestion. Finally, it is of interest to note that if an F-type ATPase appeared before the bifurcation, an endosymbiotic event need not be invoked to explain the presence of F-ATPases in the Eucarya.
Nilakantan, Vani; Liang, Huanling; Mortensen, Jordan; Taylor, Erin; Johnson, Christopher P
2010-02-01
The role of mitochondrial K(ATP) (mitoK(ATP)) channels in renal ischemia-reperfusion injury is controversial with studies showing both protective and deleterious effects. In this study, we compared the effects of the putative mitoK(ATP) opener, diazoxide, and the mitoK(ATP) blocker, 5-hydroxydecanoate (5-HD) on cytotoxicity and apoptosis in tubular epithelial cells derived from rat (NRK-52E) and pig (LLC-PK1) following in vitro ischemic injury. Following ATP depletion-recovery, there was a significant increase in cytotoxicity in both NRK cells and LLC-PK1 cells although NRK cells were more sensitive to the injury. Diazoxide treatment attenuated cytotoxicity in both cell types and 5-HD treatment-increased cytotoxicity in the sensitive NRK cells in a superoxide-dependant manner. The protective effect of diazoxide was also reversed in the presence of 5-HD in ATP-depleted NRK cells. The ATP depletion-mediated increase in superoxide was enhanced by both diazoxide and 5-HD with the effect being more pronounced in the cells undergoing 5-HD treatment. Further, ATP depletion-induced activation of caspase-3 was decreased by diazoxide in NRK cells. In order to determine the signaling pathways involved in apoptosis, we examined the activation of Erk and JNK in ATP-depleted NRK cells. Diazoxide-activated Erk in ATP-depleted cells, but did not have any effect on JNK activation. In contrast, 5-HD did not impact Erk levels but increased JNK activation even under controlled conditions. Further, the use of a JNK inhibitor with 5-HD reversed the deleterious effects of 5-HD. This study demonstrates that in cells that are sensitive to ATP depletion-recovery, mitoK(ATP) channels protect against ATP depletion-mediated cytotoxicity and apoptosis through Erk- and JNK-dependant mechanisms.
Laitz, Alessandra Vasconcellos Nunes; Acencio, Marcio Luis; Budzinski, Ilara G F; Labate, Mônica T V; Lemke, Ney; Ribolla, Paulo Eduardo Martins; Maia, Ivan G
2015-01-01
Mitochondrial inner membrane uncoupling proteins (UCP) dissipate the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCP overexpression in plants has been correlated with oxidative stress tolerance, improved photosynthetic efficiency and increased mitochondrial biogenesis. This study reports the main transcriptomic responses associated with the overexpression of an UCP (AtUCP1) in tobacco seedlings. Compared to wild-type (WT), AtUCP1 transgenic seedlings showed unaltered ATP levels and higher accumulation of serine. By using RNA-sequencing, a total of 816 differentially expressed genes between the investigated overexpressor lines and the untransformed WT control were identified. Among them, 239 were up-regulated and 577 were down-regulated. As a general response to AtUCP1 overexpression, noticeable changes in the expression of genes involved in energy metabolism and redox homeostasis were detected. A substantial set of differentially expressed genes code for products targeted to the chloroplast and mainly involved in photosynthesis. The overall results demonstrate that the alterations in mitochondrial function provoked by AtUCP1 overexpression require important transcriptomic adjustments to maintain cell homeostasis. Moreover, the occurrence of an important cross-talk between chloroplast and mitochondria, which culminates in the transcriptional regulation of several genes involved in different pathways, was evidenced.
Improving Mitochondrial Function Protects Bumblebees from Neonicotinoid Pesticides.
Powner, Michael B; Salt, Thomas E; Hogg, Chris; Jeffery, Glen
2016-01-01
Global pollination is threatened by declining insect pollinator populations that may be linked to neonicotinoid pesticide use. Neonicotinoids over stimulate neurons and depolarize their mitochondria, producing immobility and death. However, mitochondrial function can be improved by near infrared light absorbed by cytochrome c oxidase in mitochondrial respiration. In flies, daily exposure to 670nm light throughout life increases average lifespan and aged mobility, and reduces systemic inflammation. Here we treat bumble bees with Imidacloprid a common neonicotinoid. This undermined ATP and rapidly induced immobility and reduced visual function and survival. Bees exposed to insecticide and daily to 670nm light showed corrected ATP levels and significantly improved mobility allowing them to feed. Physiological recordings from eyes revealed that light exposure corrected deficits induced by the pesticide. Overall, death rates in bees exposed to insecticide but also given 670nm light were indistinguishable from controls. When Imidacloprid and light exposure were withdrawn, survival was maintained. Bees and insects generally cannot see deep red light so it does not disturb their behaviour. Hence, we show that deep red light exposure that improves mitochondrial function, reverses the sensory and motor deficits induced by Imidacloprid. These results may have important implications as light delivery is economic and can be placed in hives/colonies.
Cao, Wenlei; Aghajanian, Haig K.; Haig-Ladewig, Lisa A.; Gerton, George L.
2008-01-01
Energy sources that can be metabolized to yield ATP are essential for normal sperm functions such as motility. Two major monosaccharides, sorbitol and fructose, are present in semen. Furthermore, sorbitol dehydrogenase (SORD) can convert sorbitol to fructose, which can then be metabolized via the glycolytic pathway in sperm to make ATP. Here we characterize Sord mRNA and SORD expression during mouse spermatogenesis and examine the ability of sorbitol to support epididymal sperm motility and tyrosine phosphorylation. Sord mRNA levels increased during the course of spermatogenic differentiation. SORD protein, however, was first detected at the condensing spermatid stage. By indirect immunofluorescence, SORD was present along the length of the flagella of caudal epididymal sperm. Furthermore, immunoelectron microscopy showed that SORD was associated with mitochondria and the plasma membranes of sperm. Sperm incubated with sorbitol maintained motility, indicating that sorbitol was utilized as an energy source. Sorbitol, as well as glucose and fructose, were not essential to induce hyperactive motility. Protein tyrosine phosphorylation increased in a similar manner when sorbitol was substituted for glucose in the incubation medium used for sperm capacitation. These results indicate that sorbitol can serve as an alternative energy source for sperm motility and protein tyrosine phosphorylation. PMID:18799757
Armesto, Paula; Infante, Carlos; Cousin, Xavier; Ponce, Marian; Manchado, Manuel
2015-04-01
In the present work, seven genes encoding Na(+),K(+)-ATPase (NKA) β-subunits in the teleost Solea senegalensis are described for the first time. Sequence analysis of the predicted polypeptides revealed a high degree of conservation with those of other vertebrate species and maintenance of important motifs involved in structure and function. Phylogenetic analysis clustered the seven genes into four main clades: β1 (atp1b1a and atp1b1b), β2 (atp1b2a and atp1b2b), β3 (atp1b3a and atp1b3b) and β4 (atp1b4). In juveniles, all paralogous transcripts were detected in the nine tissues examined albeit with different expression patterns. The most ubiquitous expressed gene was atp1b1a whereas atp1b1b was mainly detected in osmoregulatory organs (gill, kidney and intestine), and atp1b2a, atp1b2b, atp1b3a, atp1b3b and atp1b4 in brain. An expression analysis in three brain regions and pituitary revealed that β1-type transcripts were more abundant in pituitary than the other β paralogs with slight differences between brain regions. Quantification of mRNA abundance in gills after a salinity challenge showed an activation of atp1b1a and atp1b1b at high salinity water (60 ppt) and atp1b3a and atp1b3b in response to low salinity (5 ppt). Transcriptional analysis during larval development showed specific expression patterns for each paralog. Moreover, no differences in the expression profiles between larvae cultivated at 10 and 35 ppt were observed except for atp1b4 with higher mRNA levels at 10 than 35 ppt at 18 days post hatch. Whole-mount in situ hybridization analysis revealed that atp1b1b was mainly localized in gut, pronephric tubule, gill, otic vesicle, and chordacentrum of newly hatched larvae. All these data suggest distinct roles of NKA β subunits in tissues, during development and osmoregulation with β1 subunits involved in the adaptation to hyperosmotic conditions and β3 subunits to hypoosmotic environments. Copyright © 2014 Elsevier Inc. All rights reserved.
Monte Carlo modeling of single-molecule cytoplasmic dynein.
Singh, Manoranjan P; Mallik, Roop; Gross, Steven P; Yu, Clare C
2005-08-23
Molecular motors are responsible for active transport and organization in the cell, underlying an enormous number of crucial biological processes. Dynein is more complicated in its structure and function than other motors. Recent experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single-molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single-molecule experiments that found a discrete distribution of dynein step sizes, depending on load and ATP concentration. The model reproduces the large steps found experimentally under high ATP and no load by assuming that the ATP binding affinities at the secondary sites decrease as the number of ATP bound to these sites increases. Additionally, to capture the essential features of the step-size distribution at very low ATP concentration and no load, the ATP hydrolysis of the primary site must be dramatically reduced when none of the secondary sites have ATP bound to them. We make testable predictions that should guide future experiments related to dynein function.
Ca2+ Entry is Required for Mechanical Stimulation-induced ATP Release from Astrocyte
Lee, Jaekwang; Chun, Ye-Eun; Han, Kyung-Seok; Lee, Jungmoo; Woo, Dong Ho
2015-01-01
Astrocytes and neurons are inseparable partners in the brain. Neurotransmitters released from neurons activate corresponding G protein-coupled receptors (GPCR) expressed in astrocytes, resulting in release of gliotransmitters such as glutamate, D-serine, and ATP. These gliotransmitters in turn influence neuronal excitability and synaptic activities. Among these gliotransmitters, ATP regulates the level of network excitability and is critically involved in sleep homeostasis and astrocytic Ca2+ oscillations. ATP is known to be released from astrocytes by Ca2+-dependent manner. However, the precise source of Ca2+, whether it is Ca2+ entry from outside of cell or from the intracellular store, is still not clear yet. Here, we performed sniffer patch to detect ATP release from astrocyte by using various stimulation. We found that ATP was not released from astrocyte when Ca2+ was released from intracellular stores by activation of Gαq-coupled GPCR including PAR1, P2YR, and B2R. More importantly, mechanical stimulation (MS)-induced ATP release from astrocyte was eliminated when external Ca2+ was omitted. Our results suggest that Ca2+ entry, but not release from intracellular Ca2+ store, is critical for MS-induced ATP release from astrocyte. PMID:25792866
Aqueous Two-Phase Systems at Large Scale: Challenges and Opportunities.
Torres-Acosta, Mario A; Mayolo-Deloisa, Karla; González-Valdez, José; Rito-Palomares, Marco
2018-06-07
Aqueous two-phase systems (ATPS) have proved to be an efficient and integrative operation to enhance recovery of industrially relevant bioproducts. After ATPS discovery, a variety of works have been published regarding their scaling from 10 to 1000 L. Although ATPS have achieved high recovery and purity yields, there is still a gap between their bench-scale use and potential industrial applications. In this context, this review paper critically analyzes ATPS scale-up strategies to enhance the potential industrial adoption. In particular, large-scale operation considerations, different phase separation procedures, the available optimization techniques (univariate, response surface methodology, and genetic algorithms) to maximize recovery and purity and economic modeling to predict large-scale costs, are discussed. ATPS intensification to increase the amount of sample to process at each system, developing recycling strategies and creating highly efficient predictive models, are still areas of great significance that can be further exploited with the use of high-throughput techniques. Moreover, the development of novel ATPS can maximize their specificity increasing the possibilities for the future industry adoption of ATPS. This review work attempts to present the areas of opportunity to increase ATPS attractiveness at industrial levels. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yaginuma, Hideyuki; Kawai, Shinnosuke; Tabata, Kazuhito V.; Tomiyama, Keisuke; Kakizuka, Akira; Komatsuzaki, Tamiki; Noji, Hiroyuki; Imamura, Hiromi
2014-01-01
Recent advances in quantitative single-cell analysis revealed large diversity in gene expression levels between individual cells, which could affect the physiology and/or fate of each cell. In contrast, for most metabolites, the concentrations were only measureable as ensemble averages of many cells. In living cells, adenosine triphosphate (ATP) is a critically important metabolite that powers many intracellular reactions. Quantitative measurement of the absolute ATP concentration in individual cells has not been achieved because of the lack of reliable methods. In this study, we developed a new genetically-encoded ratiometric fluorescent ATP indicator “QUEEN”, which is composed of a single circularly-permuted fluorescent protein and a bacterial ATP binding protein. Unlike previous FRET-based indicators, QUEEN was apparently insensitive to bacteria growth rate changes. Importantly, intracellular ATP concentrations of numbers of bacterial cells calculated from QUEEN fluorescence were almost equal to those from firefly luciferase assay. Thus, QUEEN is suitable for quantifying the absolute ATP concentration inside bacteria cells. Finally, we found that, even for a genetically-identical Escherichia coli cell population, absolute concentrations of intracellular ATP were significantly diverse between individual cells from the same culture, by imaging QUEEN signals from single cells. PMID:25283467
New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models
O’Brien, William G.; Ling, Han Shawn; Lee, Cheng Chi
2017-01-01
The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release. PMID:28746349
New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models.
O'Brien, William G; Ling, Han Shawn; Zhao, Zhaoyang; Lee, Cheng Chi
2017-01-01
The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release.
Chesta, María E; Carbajal, Agustín; Arce, Carlos A; Bisig, Carlos G
2014-11-01
Cultured catecholamine-differentiated cells [which lack the microtubule-associated proteins (MAPs): MAP1B, MAP2, Tau, STOP, and Doublecortin] proliferate in the presence of fetal bovine serum, and, in its absence, cease dividing and generate processes similar to the neurites of normal neurons. The reintroduction of serum induces neurite retraction, and proliferation resumes. The neurite retraction process in catecholamine-differentiated cells was partially characterized in this study. Microtubules in the cells were found to be in a highly dynamic state, and tubulin in the microtubules consisted primarily of the tyrosinated and deacetylated isotypes. Increased levels of acetylated or Δ2-tubulin (which are normally absent) did not prevent serum-induced neurite retraction. Treatment of differentiated cells with lysophosphatidic acid or adenosine deaminase induced neurite retraction. Inhibition of Rho-associated protein kinase, ATP depletion and microfilament disruption each (individually) blocked serum-induced neurite retraction, suggesting that an ATP-dependent actomyosin system underlies the mechanism of neurite retraction. Nocodazole treatment induced neurite retraction, but this effect was blocked by pretreatment with the microtubule-stabilizing drug paclitaxel (Taxol). Paclitaxel did not prevent serum-induced or lysophosphatidic acid-induced retraction, suggesting that integrity of microtubules (despite their dynamic state) is necessary to maintain neurite elongation, and that paclitaxel-induced stabilization alone is not sufficient to resist the retraction force induced by serum. Transfection with green fluorescent protein-Tau conferred resistance to retraction caused by serum. We hypothesize that, in normal neurons (cultured or in vivo), MAPs are necessary not only to stabilize microtubules, but also to establish interactions with other cytoskeletal or membrane components to form a stable structure capable of resisting the retraction force. © 2014 FEBS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent
Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD{sub 100} dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereasmore » all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-{alpha} and plasma adiponectin increased cardiac fatty acid oxidation (666.9 {+-}14.0 nmol/min/g heart in ad libitum versus 1035.6 {+-} 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMP{alpha}2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 {+-} 2.1 {mu}mol/g heart in ad libitum versus 26.7 {+-} 1.9 {mu}mol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway.« less
Writzl, Karin; Maver, Ales; Kovačič, Lidija; Martinez-Valero, Paula; Contreras, Laura; Satrustegui, Jorgina; Castori, Marco; Faivre, Laurence; Lapunzina, Pablo; van Kuilenburg, André B P; Radović, Slobodanka; Thauvin-Robinet, Christel; Peterlin, Borut; Del Arco, Araceli; Hennekam, Raoul C
2017-11-02
A series of simplex cases have been reported under various diagnoses sharing early aging, especially evident in congenitally decreased subcutaneous fat tissue and sparse hair, bone dysplasia of the skull and fingers, a distinctive facial gestalt, and prenatal and postnatal growth retardation. For historical reasons, we suggest naming the entity Fontaine syndrome. Exome sequencing of four unrelated affected individuals showed that all carried the de novo missense variant c.649C>T (p.Arg217Cys) or c.650G>A (p.Arg217His) in SLC25A24, a solute carrier 25 family member coding for calcium-binding mitochondrial carrier protein (SCaMC-1, also known as SLC25A24). SLC25A24 allows an electro-neutral and reversible exchange of ATP-Mg and phosphate between the cytosol and mitochondria, which is required for maintaining optimal adenine nucleotide levels in the mitochondrial matrix. Molecular dynamic simulation studies predict that p.Arg217Cys and p.Arg217His narrow the substrate cavity of the protein and disrupt transporter dynamics. SLC25A24-mutant fibroblasts and cells expressing p.Arg217Cys or p.Arg217His variants showed altered mitochondrial morphology, a decreased proliferation rate, increased mitochondrial membrane potential, and decreased ATP-linked mitochondrial oxygen consumption. The results suggest that the SLC25A24 mutations lead to impaired mitochondrial ATP synthesis and cause hyperpolarization and increased proton leak in association with an impaired energy metabolism. Our findings identify SLC25A24 mutations affecting codon 217 as the underlying genetic cause of human progeroid Fontaine syndrome. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
He, Yi; Fu, Junliang; Yu, Chenliang; Wang, Xiaoman; Jiang, Qinsu; Hong, Jian; Lu, Kaixing; Xue, Gangping; Yan, Chengqi; James, Andrew; Xu, Ligen; Chen, Jianping; Jiang, Dean
2015-11-01
In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Pannexin1 channels act downstream of P2X7 receptors in ATP-induced murine T-cell death
Shoji, Kenji F; Sáez, Pablo J; Harcha, Paloma A; Aguila, Hector L; Sáez, Juan C
2014-01-01
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP. PMID:24590064
Zhao, Chunhua; Lin, Zhao; Dong, Hongjun; Zhang, Yanping; Li, Yin
2017-06-01
Pyruvate kinase is one of the three rate-limiting glycolytic enzymes that catalyze the last step of glycolysis, conversion of phosphoenolpyruvate (PEP) into pyruvate, which is associated with ATP generation. Two isozymes of pyruvate kinase, PykF and PykA, are identified in Escherichia coli PykF is considered important, whereas PykA has a less-defined role. Prior studies inactivated the pykA gene to increase the level of its substrate, PEP, and thereby increased the yield of end products derived from PEP. We were surprised when we found a pykA ::Tn 5 mutant in a screen for increased yield of an end product derived from pyruvate ( n -butanol), suggesting that the role of PykA needs to be reexamined. We show that the pykA mutant exhibited elevated intracellular ATP levels, biomass concentrations, glucose consumption, and n -butanol production. We also discovered that the pykA mutant expresses higher levels of a presumed pyruvate transporter, YhjX, permitting the mutant to recapture and metabolize excreted pyruvate. Furthermore, we demonstrated that the nucleotide diphosphate kinase activity of PykA leads to negative regulation of the intracellular ATP levels. Taking the data together, we propose that inactivation of pykA can be considered a general strategy to enhance the production of pyruvate-derived metabolites under anaerobic conditions. IMPORTANCE This study showed that knocking out pykA significantly increased the intracellular ATP level and thus significantly increased the levels of glucose consumption, biomass formation, and pyruvate-derived product formation under anaerobic conditions. pykA was considered to be encoding a dispensable pyruvate kinase; here we show that pykA negatively regulates the anaerobic glycolysis rate through regulating the energy distribution. Thus, knocking out pykA can be used as a general strategy to increase the level of pyruvate-derived fermentative products. Copyright © 2017 American Society for Microbiology.
Sokolova, Elena; Skorinkin, Andrei; Fabbretti, Elsa; Masten, Lara; Nistri, Andrea; Giniatullin, Rashid
2004-01-01
Fast-desensitizing P2X3 receptors of nociceptive dorsol root ganglion (DRG) neurons are thought to mediate pain sensation. Since P2X3 receptor efficiency is powerfully modulated by desensitization, its underlying properties were studied with patch-clamp recording. On rat cultured DRG neurons, 2 s application of ATP (EC50=1.52 μM), ADP (EC50=1.1 μM) or α,β-meATP (EC50=1.78 μM) produced similar inward currents that fully desensitized, at the same rate, back to baseline. Recovery from desensitization was much slower after ATP and ADP than after α,β-meATP and, in all cases, it had sigmoidal time course. By alternating the application of ATP and α,β-meATP, we observed complete cross-desensitization indicating that these agonists activated the same receptors. This notion was confirmed by the similar antagonism induced by 2′, 3′-O-(2,4,6,trinitrophenyl)-adenosine triphosphate (TNP-ATP). Recovery from desensitization elicited by ATP was unexpectedly shaped by transient application of α,β-methylene-adenosine triphosphate (α,β-meATP), and vice versa. Thus, short-lasting, full desensitization produced by α,β-meATP protected receptors from long-lasting desensitization induced by subsequent ATP applications. ATP and ADP had similar properties of recovery from desensitization. Low nM concentrations of α,β-meATP (unable to evoke membrane currents) could speed up recovery from ATP-induced desensitization, while low nM concentrations of ATP enhanced it. Ambient ATP levels were found to be in the pM range (52±3 pM). The phenomenon of cross-desensitization and protection was reproduced by rP2X3 receptors expressed by rat osteoblastic cell 17/2.8 or human embryonic kidney cell 293 cells, indicating P2X3 receptor specificity. It is suggested that transient application of an agonist that generates rapid recovery from desensitization, is a novel, powerful tool to modulate P2X3 receptor responsiveness to the natural agonist ATP. PMID:14980981
An erythroid-specific ATP2B4 enhancer mediates red blood cell hydration and malaria susceptibility
Lessard, Samuel; Gatof, Emily Stern; Schupp, Patrick G.; Sher, Falak; Ali, Adnan; Prehar, Sukhpal; Kurita, Ryo; Nakamura, Yukio; Baena, Esther; Oceandy, Delvac; Bauer, Daniel E.
2017-01-01
The lack of mechanistic explanations for many genotype-phenotype associations identified by GWAS precludes thorough assessment of their impact on human health. Here, we conducted an expression quantitative trait locus (eQTL) mapping analysis in erythroblasts and found erythroid-specific eQTLs for ATP2B4, the main calcium ATPase of red blood cells (rbc). The same SNPs were previously associated with mean corpuscular hemoglobin concentration (MCHC) and susceptibility to severe malaria infection. We showed that Atp2b4–/– mice demonstrate increased MCHC, confirming ATP2B4 as the causal gene at this GWAS locus. Using CRISPR-Cas9, we fine mapped the genetic signal to an erythroid-specific enhancer of ATP2B4. Erythroid cells with a deletion of the ATP2B4 enhancer had abnormally high intracellular calcium levels. These results illustrate the power of combined transcriptomic, epigenomic, and genome-editing approaches in characterizing noncoding regulatory elements in phenotype-relevant cells. Our study supports ATP2B4 as a potential target for modulating rbc hydration in erythroid disorders and malaria infection. PMID:28714864
Effects and mechanism of acid rain on plant chloroplast ATP synthase.
Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua
2016-09-01
Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.
An erythroid-specific ATP2B4 enhancer mediates red blood cell hydration and malaria susceptibility.
Lessard, Samuel; Gatof, Emily Stern; Beaudoin, Mélissa; Schupp, Patrick G; Sher, Falak; Ali, Adnan; Prehar, Sukhpal; Kurita, Ryo; Nakamura, Yukio; Baena, Esther; Ledoux, Jonathan; Oceandy, Delvac; Bauer, Daniel E; Lettre, Guillaume
2017-08-01
The lack of mechanistic explanations for many genotype-phenotype associations identified by GWAS precludes thorough assessment of their impact on human health. Here, we conducted an expression quantitative trait locus (eQTL) mapping analysis in erythroblasts and found erythroid-specific eQTLs for ATP2B4, the main calcium ATPase of red blood cells (rbc). The same SNPs were previously associated with mean corpuscular hemoglobin concentration (MCHC) and susceptibility to severe malaria infection. We showed that Atp2b4-/- mice demonstrate increased MCHC, confirming ATP2B4 as the causal gene at this GWAS locus. Using CRISPR-Cas9, we fine mapped the genetic signal to an erythroid-specific enhancer of ATP2B4. Erythroid cells with a deletion of the ATP2B4 enhancer had abnormally high intracellular calcium levels. These results illustrate the power of combined transcriptomic, epigenomic, and genome-editing approaches in characterizing noncoding regulatory elements in phenotype-relevant cells. Our study supports ATP2B4 as a potential target for modulating rbc hydration in erythroid disorders and malaria infection.
Daher, Aqil Mohammad; Noor Khan Nor-Ashikin, Mohamed; Mat-Nasir, Nafiza; Keat Ng, Kien; Ambigga, Krishnapillai S.; Ariffin, Farnaza; Yasin Mazapuspavina, Md; Abdul-Razak, Suraya; Abdul-Hamid, Hasidah; Abd-Majid, Fadhlina; Abu-Bakar, Najmin; Nawawi, Hapizah; Yusoff, Khalid
2013-01-01
Metabolic syndrome (MetS) is a steering force for the cardiovascular diseases epidemic in Asia. This study aimed to compare the prevalence of MetS in Malaysian adults using NCEP-ATP III, IDF, and JIS definitions, identify the demographic factors associated with MetS, and determine the level of agreement between these definitions. The analytic sample consisted of 8,836 adults aged ≥30 years recruited at baseline in 2007–2011 from the Cardiovascular Risk Prevention Study (CRisPS), an ongoing, prospective cohort study involving 18 urban and 22 rural communities in Malaysia. JIS definition gave the highest overall prevalence (43.4%) compared to NCEP-ATP III (26.5%) and IDF (37.4%), P < 0.001. Indians had significantly higher age-adjusted prevalence compared to other ethnic groups across all MetS definitions (30.1% by NCEP-ATP III, 50.8% by IDF, and 56.5% by JIS). The likelihood of having MetS amongst the rural and urban populations was similar across all definitions. A high level of agreement between the IDF and JIS was observed (Kappa index = 0.867), while there was a lower level of agreement between the IDF and NCEP-ATP III (Kappa index = 0.580). JIS definition identified more Malaysian adults with MetS and therefore should be recommended as the preferred diagnostic criterion. PMID:24175300
ATP and microfilaments in cellular oxidant injury.
Hinshaw, D. B.; Armstrong, B. C.; Burger, J. M.; Beals, T. F.; Hyslop, P. A.
1988-01-01
Oxidant injury produces dramatic changes in cytoskeletal organization and cell shape. ATP synthetic pathways are major targets of oxidant injury resulting in rapid depletion of cellular ATP following oxidant exposure. The relation of ATP depletion to the changes in microfilament organization seen following H2O2 exposure were examined in the P388D1 cell line. Three hours of glucose depletion alone resulted in a decline in cellular ATP levels to less than 10% of controls, which was comparable to ATP levels in cells 30 to 60 minutes after exposure to 5 mM H2O2 in the presence of glucose. Adherent cells stained with rhodamine phalloidin, a probe specific for polymerized (F) actin, revealed a progressive shortening of microfilaments into globular aggregates within cells depleted of glucose over 3 hours, a pattern similar to earlier observations of H2O2-injured cells after 1 hour. The changes in cellular ATP associated with glucose depletion or H2O2 exposure were then correlated with G actin content measured by the DNAse 1 inhibition assay. No real differences in G actin content as a percentage of total actin were seen in P388D1 cells following 3 hours of glucose depletion or 30 to 60 minutes after exposure to 5 mM H2O2. But 2 to 3 hours after exposure to H2O2 there was a progressive decrease in G actin as a percentage of total actin within the cells. Transmission electron microscopy of cells depleted of glucose for 3 h or 1 hour after exposure to H2O2 revealed the presence of side-to-side aggregates or bundles of microfilaments within the cells. These observations suggest that declining levels of ATP either from metabolic inhibition or H2O2 injury are correlated with the fragmentation and shortening of microfilaments into aggregates. No net change in monomeric or polymeric actin was necessary for this to occur. However, at later time points after H2O2 exposure some actin assembly did occur. Images p[484]-a p481-a p482-a Figure 2 Figure 3 PMID:3414780
USDA-ARS?s Scientific Manuscript database
The 5’-AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine protein kinase and a key part of a kinase signaling cascade that senses cellular energy status (AMP/ATP ratio) and acts to maintain energy homeostasis by coordinately regulating energy-consuming and energy-generating m...
Pedzikiewicz, J; Sobiech, K A
1995-01-01
Nine men were examined during a three-week training requiring much physical effort. They were given nutrient, "LIVEX", enriched with iron. Hematological parameters as well as concentration of erythrocyte ATP and 2,3-DPG were determined before and after the experiment. Hematological parameters were determined using standard methods while Boehringer's test (Germany) was used for determining ATP and 2,3-DPG. The level of reticular cells was statistically higher after the experiment, and the increase in ATP and 2,3-DPG concentration was insignificant. A positive adaptation of energy metabolism after exogenous iron administration during physical effort was discussed.
Degirmenci, Sinan; Olgar, Yusuf; Durak, Aysegul; Tuncay, Erkan; Turan, Belma
2018-07-01
Intracellular labile (free) Zn 2+ -level ([Zn 2+ ] i ) is low and increases markedly under pathophysiological conditions in cardiomyocytes. High [Zn 2+ ] i is associated with alterations in excitability and ionic-conductances while exact mechanisms are not clarified yet. Therefore, we examined the elevated-[Zn 2+ ] i on some sarcolemmal ionic-mechanisms, which can mediate cardiomyocyte dysfunction. High-[Zn 2+ ] i induced significant changes in action potential (AP) parameters, including depolarization in resting membrane-potential and prolongations in AP-repolarizing phases. We detected also the time-dependent effects such as induction of spontaneous APs at the time of ≥ 3 min following [Zn 2+ ] i increases, a manner of cellular ATP dependent and reversible with disulfide-reducing agent dithiothreitol, DTT. High-[Zn 2+ ] i induced inhibitions in voltage-dependent K + -channel currents, such as transient outward K + -currents, I to , steady-state currents, I ss and inward-rectifier K + -currents, I K1 , reversible with DTT seemed to be responsible from the prolongations in APs. We, for the first time, demonstrated that lowering cellular ATP level induced significant decreaeses in both I ss and I K1 , while no effect on I to . However, the increased-[Zn 2+ ] i could induce marked activation in ATP-sensitive K + -channel currents, I KATP , depending on low cellular ATP and thiol-oxidation levels of these channels. The mRNA levels of Kv4.3, Kv1.4 and Kv2.1 were depressed markedly with increased-[Zn 2+ ] i with no change in mRNA level of Kv4.2, while the mRNA level of I KATP subunit, SUR2A was increased significantly with increased-[Zn 2+ ] i , being reversible with DTT. Overall we demonstrated that high-[Zn 2+ ] i, even if nanomolar levels, alters cardiac function via prolonged APs of cardiomyocytes, at most, due to inhibitions in voltage-dependent K + -currents, although activation of I KATP is playing cardioprotective role, through some biochemical changes in cellular ATP- and thiol-oxidation levels. It seems, a well-controlled [Zn 2+ ] i can be novel therapeutic target for cardiac complications under pathological conditions including oxidative stress. Copyright © 2018 Elsevier GmbH. All rights reserved.
Analyzing Cold Tolerance Mechanism in Transgenic Zebrafish (Danio rerio)
Wang, Qian; Tan, Xungang; Jiao, Shuang; You, Feng; Zhang, Pei-Jun
2014-01-01
Low temperatures may cause severe growth inhibition and mortality in fish. In order to understand the mechanism of cold tolerance, a transgenic zebrafish Tg (smyd1:m3ck) model was established to study the effect of energy homeostasis during cold stress. The muscle-specific promoter Smyd1 was used to express the carp muscle form III of creatine kinase (M3-CK), which maintained enzymatic activity at a relatively low temperature, in zebrafish skeletal muscle. In situ hybridization showed that M3-CK was expressed strongly in the skeletal muscle. When exposed to 13°C, Tg (smyd1:m3ck) fish maintained their swimming behavior, while the wild-type could not. Energy measurements showed that the concentration of ATP increased in Tg (smyd1:m3ck) versus wild-type fish at 28°C. After 2 h at 13°C, ATP concentrations were 2.16-fold higher in Tg (smyd1:m3ck) than in wild-type (P<0.05). At 13°C, the ATP concentration in Tg (smyd1:m3ck) fish and wild-type fish was 63.3% and 20.0%, respectively, of that in wild-type fish at 28°C. Microarray analysis revealed differential expression of 1249 transcripts in Tg (smyd1:m3ck) versus wild-type fish under cold stress. Biological processes that were significantly overrepresented in this group included circadian rhythm, energy metabolism, lipid transport, and metabolism. These results are clues to understanding the mechanisms underlying temperature acclimation in fish. PMID:25058652
Acosta, Frank; Tauber, Mark; Fox, Michael; Martin, Hudelmaier; Forstner, Rosmarie; Augat, Peter; Penzkofer, Rainer; Pirich, Christian; Kässmann, H.; Resch, Herbert; Hitzl, Wolfgang
2008-01-01
Reconstruction after multilevel decompression of the cervical spine, especially in the weakened osteoporotic, neoplastic or infectious spine often requires circumferential stabilization and fusion. To avoid the additional posterior surgery in these cases while increasing rigidity of anterior-only screw-plate constructs, the authors introduce the concept of anterior transpedicular screw (ATPS) fixation. We demonstrated its morphological feasibility as well as its indications in a previous study in Part I of our project. Consequently, the objectives of the current study were to assess the ex vivo accuracy of placing ATPS into the cervical vertebra as well as the biomechanical performance of ATPS in comparison to traditional vertebral body screws (VBS) in terms of pull-out strength (POS). Twenty-three ATPS were inserted alternately to two screws into the pedicles and vertebral bodies, respectively, of six cadaveric specimens from C3–T1. For insertion of ATPS, a manual fluoroscopically assisted technique was used. Pre- and post insertional CT-scans were used to assess accuracy of ATPS insertion in the axial and sagittal planes. A newly designed grading system and accuracy score were used to delineate accuracy of ATPS insertion. Following insertion of screws, 23 ATPS and 22 VBS were subjected to pull-out testing (POT). The bone mineral density (BMD) of each specimen was assessed prior to POT. Statistical analysis showed that the incidence of correctly placed screws and non-critical pedicles breaches in axial plane was 78.3%, and 95.7% in sagittal plane. Hence, according to our definition of “critical” pedicle breach that exposes neurovascular structures at risk, 21.7% (n = 5) of all ATPS inserted showed a critical pedicle breach in axial plane. Notably, no critical pedicle perforation occurred at the C6 to T1 levels. Pull-out testing of ATPS and VBS revealed that pull-out resistance of ATPS was 2.5-fold that of VBS. Mean POS of 23 ATPS with a mean BMD of 0.566 g/cm2 and a mean osseus screw purchase of 27.2 mm was 467.8 N. In comparison, POS of 22 VBS screws with a mean BMD of 0.533 g/cm2 and a mean osseus screw purchase of 16.0 mm was 181.6 N. The difference in ultimate pull-out strength between the ATPS and VBS group was significant (p < 0.000001). Also, accuracy of ATPS placement in axial plane was shown to be significantly correlated with POS. In contrast, there was no correlation between screw-length, BMD, or level of insertion and the POS of ATPS or VBS. The study demonstrated that the use of ATPS might be a new technique worthy of further investigation. The use of ATPS shows the potential to increase construct rigidity in terms of screw-plate pull-out resistance. It might diminish construct failures during anterior-only reconstructions of the highly unstable decompressed cervical spine. Electronic supplementary material The online version of this article (doi:10.1007/s00586-007-0573-x) contains supplementary material, which is available to authorized users. PMID:18224357
Method of detecting and counting bacteria
NASA Technical Reports Server (NTRS)
Picciolo, G. L.; Chappelle, E. W. (Inventor)
1976-01-01
An improved method is provided for determining bacterial levels, especially in samples of aqueous physiological fluids. The method depends on the quantitative determination of bacterial adenosine triphosphate (ATP) in the presence of nonbacterial ATP. The bacterial ATP is released by cell rupture and is measured by an enzymatic bioluminescent assay. A concentration technique is included to make the method more sensitive. It is particularly useful where the fluid to be measured contains an unknown or low bacteria count.
Müller, M J; Seitz, H J
1984-01-02
The effect of thyroid hormones on mitochondrial respiration are summarized: T3 directly stimulates mitochondrial respiration and the synthesis of adenosine 5'-triphosphate (ATP). Cytosolic ATP availability is increased by a thyroid hormone-induced increase in adenine nucleotide translocation across the mitochondrial membrane; the steady state ATP concentration and the cytosolic ATP/adenosine 5'-diphosphate (ADP) ratio is even decreased in hyperthyroid tissues because of the simultaneous stimulation of the synthesis and consumption of ATP. With regard to the thyroid hormone-induced energy wasting processes, heart work, intra- and interorgan futile cycling and Na+/K+-ATPase are involved to varying degrees. As a consequence of the thyroid hormone-induced hydrolysis of ATP, thermogenesis is increased in hyper- and decreased in hypothyroidism. Despite an increased rate of glucose utilization, clinical and experimental hyperthyroidism is often characterized by an abnormal oral glucose tolerance test. This finding is due to the thyroid hormone-induced increase in intestinal glucose absorption as well as the still enhanced endogenous glucose production in the liver. Hypothyroid patients show a reduced glucose tolerance test because of a decrease in intestinal glucose absorption and a sometimes reduced glucose turnover. The thyroid hormone-induced alterations in glucose metabolism are most probably not due to alterations in serum insulin levels and/or to a peripheral insulin resistance at the receptor level.
ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina
Kawamura, Hajime; Sugiyama, Tetsuya; Wu, David M; Kobayashi, Masato; Yamanishi, Shigeki; Katsumura, Kozo; Puro, Donald G
2003-01-01
In this study we tested the hypothesis that extracellular ATP regulates the function of the pericyte-containing retinal microvessels. Pericytes, which are more numerous in the retina than in any other tissue, are abluminally located cells that may adjust capillary perfusion by contracting and relaxing. At present, knowledge of the vasoactive molecules that regulate pericyte function is limited. Here, we focused on the actions of extracellular ATP because this nucleotide is a putative glial-to-vascular signal, as well as being a substance released by activated platelets and injured cells. In microvessels freshly isolated from the adult rat retina, we monitored ionic currents via perforated-patch pipettes, measured intracellular calcium levels with the use of fura-2, and visualized microvascular contractions with the aid of time-lapse photography. We found that ATP induced depolarizing changes in the ionic currents, increased calcium levels and caused pericytes to contract. P2X7 receptors and UTP-activated receptors mediated these effects. Consistent with ATP serving as a vasoconstrictor for the pericyte-containing microvasculature of the retina, the microvascular lumen narrowed when an adjacent pericyte contracted. In addition, the sustained activation of P2X7 receptors inhibited cell-to-cell electrotonic transmission within the microvascular networks. Thus, ATP not only affects the contractility of individual pericytes, but also appears to regulate the spatial and temporal dynamics of the vasomotor response. PMID:12876212
Oliveira, Marco A S; Gerhardt, Edileusa C M; Huergo, Luciano F; Souza, Emanuel M; Pedrosa, Fábio O; Chubatsu, Leda S
2015-12-01
Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state. © 2015 FEBS.
Landree, Leslie E; Hanlon, Andrea L; Strong, David W; Rumbaugh, Gavin; Miller, Ian M; Thupari, Jagan N; Connolly, Erin C; Huganir, Richard L; Richardson, Christine; Witters, Lee A; Kuhajda, Francis P; Ronnett, Gabriele V
2004-01-30
C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.
Ludtmann, Marthe H R; Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Preza, Elisavet; Carro, Eva; Houlden, Henry; Gandhi, Sonia; Wray, Selina; Abramov, Andrey Y
2017-05-26
Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Novel VCP modulators mitigate major pathologies of rd10, a mouse model of retinitis pigmentosa
Ikeda, Hanako Ohashi; Sasaoka, Norio; Koike, Masaaki; Nakano, Noriko; Muraoka, Yuki; Toda, Yoshinobu; Fuchigami, Tomohiro; Shudo, Toshiyuki; Iwata, Ayana; Hori, Seiji; Yoshimura, Nagahisa; Kakizuka, Akira
2014-01-01
Neuroprotection may prevent or forestall the progression of incurable eye diseases, such as retinitis pigmentosa, one of the major causes of adult blindness. Decreased cellular ATP levels may contribute to the pathology of this eye disease and other neurodegenerative diseases. Here we describe small compounds (Kyoto University Substances, KUSs) that were developed to inhibit the ATPase activity of VCP (valosin-containing protein), the most abundant soluble ATPase in the cell. Surprisingly, KUSs did not significantly impair reported cellular functions of VCP but nonetheless suppressed the VCP-dependent decrease of cellular ATP levels. Moreover, KUSs, as well as exogenous ATP or ATP-producing compounds, e.g. methylpyruvate, suppressed endoplasmic reticulum stress, and demonstrably protected various types of cultured cells from death, including several types of retinal neuronal cells. We then examined their in vivo efficacies in rd10, a mouse model of retinitis pigmentosa. KUSs prevented photoreceptor cell death and preserved visual function. These results reveal an unexpected, crucial role of ATP consumption by VCP in determining cell fate in this pathological context, and point to a promising new neuroprotective strategy for currently incurable retinitis pigmentosa. PMID:25096051
Implication of the Purinergic System in Alcohol Use Disorders
Asatryan, Liana; Nam, Hyung Wook; Lee, Moonnoh R.; Thakkar, Mahesh M.; Dar, M. Saeed; Davies, Daryl L.; Choi, Doo-Sup
2010-01-01
In the central nervous system, adenosine and ATP play an important role in regulating neuronal activity as well as controlling other neurotransmitter systems such as GABA, glutamate, and dopamine. Ethanol increases extracellular adenosine levels that regulate the ataxic and hypnotic/sedative effects of ethanol. Interestingly, ethanol is known to increase adenosine levels by inhibiting an ethanol-sensitive adenosine transporter, ENT1 (equilibrative nucleoside transporter type 1). Ethanol is also known to inhibit ATP-specific P2X receptors, which might result in such similar effects as those caused by an increase in adenosine. Adenosine and ATP exert their functions through P1 (metabotropic) and P2 (P2X-ionotropic and P2Y-metabotropic) receptors, respectively. Purinergic signaling in cortex-striatum-VTA has been implicated in regulating cortical glutamate signaling as well as VTA dopaminergic signaling, which regulates the motivational effect of ethanol. Moreover, several nucleoside transporters and receptors have been identified in astrocytes, which regulate not only adenosine-ATP neurotransmission, but also homeostasis of major inhibitory-excitatory neurotransmission (i.e. GABA or glutamate) through neuron-glial interactions. This review will present novel findings on the implications of adenosine and ATP neurotransmission in alcohol use disorders. PMID:21223299
Does anterior trunk pain predict a different course of recovery in chronic low back pain?
Panagopoulos, John; Hancock, Mark J; Kongsted, Alice; Hush, Julia; Kent, Peter
2014-05-01
Patient characteristics associated with the course and severity of low back pain (LBP) and disability have been the focus of extensive research, however, known characteristics do not explain much of the variance in outcomes. The relationship between anterior trunk pain (ATP) and LBP has not been explored, though mechanisms for visceral referred pain have been described. Study objectives were: (1) determine prevalence of ATP in chronic LBP patients, (2) determine whether ATP is associated with increased pain and disability in these patients, and (3) evaluate whether ATP predicts the course of pain and disability in these patients. In this study, spinal outpatient department patients mapped the distribution of their pain and patients describing pain in their chest, abdomen or groin were classified with ATP. Generalized estimating equations were performed to investigate the relationship between ATP and LBP outcomes. A total of 2974 patients were included and 19.6% of patients reported ATP. At all time points, there were significant differences in absolute pain intensity and disability in those with ATP compared with those without. The presence of ATP did not affect the clinical course of LBP outcomes. The results of this study suggest that patients who present with LBP and ATP have higher pain and disability levels than patients with localised LBP. Visceral referred pain mechanisms may help to explain some of this difference. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
New Developments in Red Blood Cell Preservation Using Liquid and Freezing Procedures.
1982-04-02
restore or improve the red cell 2,3 DPG and ATP levels . Biochemically modified red blood cells may be cryopreserved for indefinite storage, or they may...salvage outdated red blood cells. However,,-ndated red blood cells are also being biochemically modified to increase’the 2,3 DPG levels to 2 to 3...restore or improve the edcell 2,3 DPG and ATP levels . Biochemically modified red blood cells iay-be cryopreserved for indefinite storage. or-thy my be
Investigation of a new in-line leukocyte reduction filter for packed red blood cells.
Mönninghoff, J; Moog, R
2012-06-01
Occasionally there are adverse transfusion reactions in the therapeutic use of packed red blood cells. Some of those reactions are caused by the presence of white blood cells (WBCs). Both immunogenic and infectious transfusion reactions are significantly influenced by the level of white blood cell contamination. The flexible in-line red cell filtration system Leucoflex LCR Diamond (Macopharma) was investigated. According to manufacturer information the system has a smaller filter surface (46 cm(2)) than the previous filter LCR-5 (53 cm(2)). Main difference with the previous model is the rhomboid design. The filter tube connections are not at the level of the centre edge, but at two opposite corners. Eighteen red cell concentrates were produced under Good Manufacturing Practice conditions in routine operation. To ensure the quality of the filter system every 7 days metabolic parametres such as WBC count, haemoglobin content, haemolysis rate, potassium load, pH and ATP content were analysed over a storage period of 49 days. The mean product volume was 260.7 mL after filtration. Average haemoglobin content was 51.8 g per unit and WBC contamination was 0.02 × 10(6)per unit. Haemolysis rate was 0.05% directly after filtration and 0.20% at the end of storage. Immediately after filtration the potassium concentration was 1.3 mmol/L and the pH was 7.37. During whole storage time the ATP level was maintained above 2.0 μmol per g haemoglobin. The tested filtration system is suitable for quality-assured production of red blood cell concentrates meeting national and international guidelines. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pluskal, Tomáš; Hayashi, Takeshi; Saitoh, Shigeaki; Fujisawa, Asuka; Yanagida, Mitsuhiro
2011-01-01
Glucose as a source of energy is centrally important to our understanding of life. We investigated the cell division–quiescence behavior of the fission yeast Schizosaccharomyces pombe under a wide range of glucose concentrations (0–111 mm). The mode of S. pombe cell division under a microfluidic perfusion system was surprisingly normal under highly diluted glucose concentrations (5.6 mm, 1/20 of the standard medium, within human blood sugar levels). Division became stochastic, accompanied by a curious division-timing inheritance, in 2.2–4.4 mm glucose. A critical transition from division to quiescence occurred within a narrow range of concentrations (2.2–1.7 mm). Under starvation (1.1 mm) conditions, cells were mostly quiescent and only a small population of cells divided. Under fasting (0 mm) conditions, division was immediately arrested with a short chronological lifespan (16 h). When cells were first glucose starved prior to fasting, they possessed a substantially extended lifespan (∼14 days). We employed a quantitative metabolomic approach for S. pombe cell extracts, and identified specific metabolites (e.g. biotin, trehalose, ergothioneine, S-adenosyl methionine and CDP-choline), which increased or decreased at different glucose concentrations, whereas nucleotide triphosphates, such as ATP, maintained high concentrations even under starvation. Under starvation, the level of S-adenosyl methionine increased sharply, accompanied by an increase in methylated amino acids and nucleotides. Under fasting, cells rapidly lost antioxidant and energy compounds, such as glutathione and ATP, but, in fasting cells after starvation, these and other metabolites ensuring longevity remained abundant. Glucose-starved cells became resistant to 40 mm H2O2 as a result of the accumulation of antioxidant compounds. PMID:21306563
Regional differences in brain glucose metabolism determined by imaging mass spectrometry.
Kleinridders, André; Ferris, Heather A; Reyzer, Michelle L; Rath, Michaela; Soto, Marion; Manier, M Lisa; Spraggins, Jeffrey; Yang, Zhihong; Stanton, Robert C; Caprioli, Richard M; Kahn, C Ronald
2018-06-01
Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS). To examine the relative abundance of glucose and other metabolites in the brain, mouse brain sections were subjected to imaging mass spectrometry at a resolution of 100 μm. This was correlated with immunohistochemistry, qPCR, western blotting and enzyme assays of dissected brain regions to determine the relative contributions of the glycolytic and pentose phosphate pathways to regional glucose metabolism. In brain, there are significant regional differences in glucose metabolism, with low levels of hexose bisphosphate (a glycolytic intermediate) and high levels of the pentose phosphate pathway (PPP) enzyme glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolite hexose phosphate in thalamus compared to cortex. The ratio of ATP to ADP is significantly higher in white matter tracts, such as corpus callosum, compared to less myelinated areas. While the brain is able to maintain normal ratios of hexose phosphate, hexose bisphosphate, ATP, and ADP during fasting, fasting causes a large increase in cortical and hippocampal lactate. These data demonstrate the importance of direct measurement of metabolic intermediates to determine regional differences in brain glucose metabolism and illustrate the strength of imaging mass spectrometry for investigating the impact of changing metabolic states on brain function at a regional level with high resolution. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Faller, Kiterie M E; Atzler, Dorothee; McAndrew, Debra J; Zervou, Sevasti; Whittington, Hannah J; Simon, Jillian N; Aksentijevic, Dunja; ten Hove, Michiel; Choe, Chi-un; Isbrandt, Dirk; Casadei, Barbara; Schneider, Jurgen E; Neubauer, Stefan; Lygate, Craig A
2018-01-01
Abstract Aims Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases. PMID:29236952
Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persson, Jenna; Ekwall, Karl, E-mail: karl.ekwall@ki.se; School of Life Sciences, University College Sodertorn, NOVUM, Huddinge
Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that canmore » arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.« less
Nishitsuji, Hironori; Sugiyama, Ryuichi; Abe, Makoto; Takaku, Hiroshi
2016-01-01
Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation. PMID:26694617
The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release.
Forsyth, Alison M; Braunmüller, Susanne; Wan, Jiandi; Franke, Thomas; Stone, Howard A
2012-05-01
It is known that deformation of red blood cells (RBCs) is linked to ATP release from the cells. Further, membrane cholesterol has been shown to alter properties of the cell membrane such as fluidity and bending stiffness. Membrane cholesterol content is increased in some cardiovascular diseases, for example, in individuals with acute coronary syndromes and chronic stable angina, and therefore, because of the potential clinical relevance, we investigated the influence of altered RBC membrane cholesterol levels on ATP release. Because of the correlation between statins and reduced membrane cholesterol in vivo, we also investigated the effects of simvastatin on RBC deformation and ATP release. We found that reducing membrane cholesterol increases cell deformability and ATP release. We also found that simvastatin increases deformability by acting directly on the membrane in the absence of the liver, and that ATP release was increased for cells with enriched cholesterol after treatment with simvastatin. Copyright © 2012 Elsevier Inc. All rights reserved.
Mitochondrial gene polymorphisms that protect mice from colitis.
Bär, Florian; Bochmann, Wiebke; Widok, Andrea; von Medem, Kilian; Pagel, Rene; Hirose, Misa; Yu, Xinhua; Kalies, Kathrin; König, Peter; Böhm, Ruwen; Herdegen, Thomas; Reinicke, Anna T; Büning, Jürgen; Lehnert, Hendrik; Fellermann, Klaus; Ibrahim, Saleh; Sina, Christian
2013-11-01
Dysregulated energy homeostasis in the intestinal mucosa frequently is observed in patients with ulcerative colitis (UC). Intestinal tissues from these patients have reduced activity of the mitochondrial oxidative phosphorylation (OXPHOS) complex, so mitochondrial dysfunction could contribute to the pathogenesis of UC. However, little is known about the mechanisms by which OXPHOS activity could be altered. We used conplastic mice, which have identical nuclear but different mitochondrial genomes, to investigate activities of the OXPHOS complex. Colitis was induced in C57BL/6J wild-type (B6.B6) and 3 strains of conplastic mice (B6.NZB, B6.NOD, and B6.AKR) by administration of dextran sodium sulfate or rectal application of trinitrobenzene sulfonate. Colon tissues were collected and analyzed by histopathology, immunohistochemical analysis, and immunoblot analysis; we also measured mucosal levels of adenosine triphosphate (ATP) and reactive oxygen species, OXPHOS complex activity, and epithelial cell proliferation and apoptosis. We identified mice with increased mucosal OXPHOS complex activities and levels of ATP. These mice developed less-severe colitis after administration of dextran sodium sulfate or trinitrobenzene sulfonate than mice with lower mucosal levels of ATP. Colon tissues from these mice also had increased enterocyte proliferation and transcription factor nuclear factor-κB activity, which have been shown to protect the mucosal barrier-defects in these processes have been associated with inflammatory bowel disease. Variants in mitochondrial DNA that increase mucosal levels of ATP protect mice from colitis. Increasing mitochondrial ATP synthesis in intestinal epithelial cells could be a therapeutic approach for UC. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Pivorun, E B; Nordone, A
1996-06-01
Studies undertaken to compare the effects of Ap4A and ATP on altering intrasynaptosomal Ca2+ levels from deermouse brain reveal that both ligands induce a rapid influx of extracellular Ca2+. The Ca2+ profile elicited by 167 microM Ap4A is "spike-like" (half-time for decline to baseline, 19.1 +/- 1.2 sec), in contrast to the gradual decline observed with ATP (104.0 +/- 7.4 sec). DIDS (4-4'-diisothiocyano-2,2'-disulfonic acid stilbene) and suramin preincubation alter only the ATP-induced Ca2+ profile. Cross-desensitization studies indicate that prior application of ATP does not significantly affect the Ca2+ influx elicited by Ap4A, and that prior application of Ap4A does not affect the Ca2+ influx elicited by ATP. These results demonstrate that extracellular Ap4A and ATP elicit distinct intrasynaptosomal Ca2+ influx profiles, and suggest that these two nucleotides may be interacting with distinct purinoceptor subclasses or purinoceptor-effector complexes. Subjecting the synaptosomes simultaneously to depolarization and Ap4A, or to depolarization and ATP, induces an additive effect on Ca2+ influx. Preincubation with verapamil negates the effects of depolarization without modifying the ligand-elicited Ca2+ fluxes. These results indicate the presence of Ap4A and ATP ligand-gated channels that may function as modulators of neuronal activity.
Brochiero, E; Coady, M J; Klein, H; Laprade, R; Lapointe, J Y
2001-02-09
In rabbit proximal convoluted tubules, an ATP-sensitive K(+) (K(ATP)) channel has been shown to be involved in membrane cross-talk, i.e. the coupling (most likely mediated through intracellular ATP) between transepithelial Na(+) transport and basolateral K(+) conductance. This K(+) conductance is inhibited by taurine. We sought to isolate this K(+) channel by expression cloning in Xenopus oocytes. Injection of renal cortex mRNA into oocytes induced a K(+) conductance, largely inhibited by extracellular Ba(2+) and intracellular taurine. Using this functional test, we isolated from our proximal tubule cDNA library a unique clone, which induced a large K(+) current which was Ba(2+)-, taurine- and glibenclamide-sensitive. Surprisingly, this clone is not a K(+) channel but an adenylate kinase protein (AK3), known to convert NTP+AMP into NDP+ADP (N could be G, I or A). AK3 expression resulted in a large ATP decrease and activation of the whole-cell currents including a previously unknown, endogenous K(+) current. To verify whether ATP decrease was responsible for the current activation, we demonstrated that inhibition of glycolysis greatly reduces oocyte ATP levels and increases an inwardly rectifying K(+) current. The possible involvement of AK in the K(ATP) channel's regulation provides a means of explaining their observed activity in cytosolic environments characterized by high ATP concentrations.
Lee, Jae-Seon; Nam, Boas; Seong, Tae Wha; Son, Jaekyoung; Jang, Hyonchol; Hong, Kyeong Man; Lee, Cheolju; Kim, Soo-Youl
2016-01-01
Among ALDH isoforms, ALDH1L1 in the folate pathway showed highly increased expression in non-small-cell lung cancer cells (NSCLC). Based on the basic mechanism of ALDH converting aldehyde to carboxylic acid with by-product NADH, we suggested that ALDH1L1 may contribute to ATP production using NADH through oxidative phosphorylation. ALDH1L1 knockdown reduced ATP production by up to 60% concomitantly with decrease of NADH in NSCLC. ALDH inhibitor, gossypol, also reduced ATP production in a dose dependent manner together with decrease of NADH level in NSCLC. A combination treatment of gossypol with phenformin, mitochondrial complex I inhibitor, synergized ATP depletion, which efficiently induced cell death. Pre-clinical xenograft model using human NSCLC demonstrated a remarkable therapeutic response to the combined treatment of gossypol and phenformin. PMID:27384481
Kang, Joon Hee; Lee, Seon-Hyeong; Lee, Jae-Seon; Nam, Boas; Seong, Tae Wha; Son, Jaekyoung; Jang, Hyonchol; Hong, Kyeong Man; Lee, Cheolju; Kim, Soo-Youl
2016-08-02
Among ALDH isoforms, ALDH1L1 in the folate pathway showed highly increased expression in non-small-cell lung cancer cells (NSCLC). Based on the basic mechanism of ALDH converting aldehyde to carboxylic acid with by-product NADH, we suggested that ALDH1L1 may contribute to ATP production using NADH through oxidative phosphorylation. ALDH1L1 knockdown reduced ATP production by up to 60% concomitantly with decrease of NADH in NSCLC. ALDH inhibitor, gossypol, also reduced ATP production in a dose dependent manner together with decrease of NADH level in NSCLC. A combination treatment of gossypol with phenformin, mitochondrial complex I inhibitor, synergized ATP depletion, which efficiently induced cell death. Pre-clinical xenograft model using human NSCLC demonstrated a remarkable therapeutic response to the combined treatment of gossypol and phenformin.
ALTERATIONS IN BRAIN CREATINE CONCENTRATIONS UNDER LONG-TERM SOCIAL ISOLATION (EXPERIMENTAL STUDY).
Koshoridze, N; Kuchukashvili, Z; Menabde, K; Lekiashvili, Sh; Koshoridze, M
2016-02-01
Stress represents one of the main problems of modern humanity. This study was done for understanding more clearly alterations in creatine content of the brain under psycho-emotional stress induced by long-term social isolation. It was shown that under 30 days social isolation creatine amount in the brain was arisen, while decreasing concentrations of synthesizing enzymes (AGAT, GAMT) and creatine transporter protein (CrT). Another important point was that such changes were accompanied by down-regulation of creatine kinase (CK), therefore the enzyme's concentration was lowered. In addition, it was observed that content of phosphocreatine (PCr) and ATP were also reduced, thus indicating down-regulation of energy metabolism of brain that is really a crucial point for its normal functioning. To sum up the results it can be underlined that long-term social isolation has negative influence on energy metabolism of brain; and as a result reduce ATP content, while increase of free creatine concentration, supposedly maintaining maximal balance for ATP amount, but here must be also noted that up-regulated oxidative pathways might have impact on blood brain barrier, resulting on its permeability.
Structure and substrate-binding mechanism of human Ap4A hydrolase.
Swarbrick, James D; Buyya, Smrithi; Gunawardana, Dilantha; Gayler, Kenwyn R; McLennan, Alexander G; Gooley, Paul R
2005-03-04
Asymmetric diadenosine 5',5'''-P(1),P(4)-tetraphosphate (Ap(4)A) hydrolases play a major role in maintaining homeostasis by cleaving the metabolite diadenosine tetraphosphate (Ap(4)A) back into ATP and AMP. The NMR solution structures of the 17-kDa human asymmetric Ap(4)A hydrolase have been solved in both the presence and absence of the product ATP. The adenine moiety of the nucleotide predominantly binds in a ring stacking arrangement equivalent to that observed in the x-ray structure of the homologue from Caenorhabditis elegans. The binding site is, however, markedly divergent to that observed in the plant/pathogenic bacteria class of enzymes, opening avenues for the exploration of specific therapeutics. Binding of ATP induces substantial conformational and dynamic changes that were not observed in the C. elegans structure. In contrast to the C. elegans homologue, important side chains that play a major role in substrate binding do not have to reorient to accommodate the ligand. This may have important implications in the mechanism of substrate recognition in this class of enzymes.
Sethi, Saurabh; Huang, Robert J; Barakat, Monique T; Banaei, Niaz; Friedland, Shai; Banerjee, Subhas
2017-06-01
Recent outbreaks of duodenoscope-transmitted infections underscore the importance of adequate endoscope reprocessing. Adenosine triphosphate (ATP) bioluminescence testing allows rapid evaluation of endoscopes for bacteriologic/biologic residue. In this prospective study we evaluate the utility of ATP in bacteriologic surveillance and the effects of endoscopy staff education and dual cycles of cleaning and high-level disinfection (HLD) on endoscope reprocessing. ATP bioluminescence was measured after precleaning, manual cleaning, and HLD on rinsates from suction-biopsy channels of all endoscopes and elevator channels of duodenoscopes/linear echoendoscopes after use. ATP bioluminescence was remeasured in duodenoscopes (1) after re-education and competency testing of endoscopy staff and subsequently (2) after 2 cycles of precleaning and manual cleaning and single cycle of HLD or (3) after 2 cycles of precleaning, manual cleaning, and HLD. The ideal ATP bioluminescence benchmark of <200 relative light units (RLUs) after manual cleaning was achieved from suction-biopsy channel rinsates of all endoscopes, but 9 of 10 duodenoscope elevator channel rinsates failed to meet this benchmark. Re-education reduced RLUs in duodenoscope elevator channel rinsates after precleaning (23,218.0 vs 1340.5 RLUs, P < .01) and HLD (177.0 vs 12.0 RLUs, P < .01). After 2 cycles of manual cleaning/HLD, duodenoscope elevator channel RLUs achieved levels similar to sterile water, with corresponding negative cultures. ATP testing offers a rapid, inexpensive alternative for detection of endoscope microbial residue. Re-education of endoscopy staff and 2 cycles of cleaning and HLD decreased elevator channel RLUs to levels similar to sterile water and may therefore minimize the risk of transmission of infections by duodenoscopes. Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Sethi, Saurabh; Huang, Robert J.; Barakat, Monique T.; Banaei, Niaz; Friedland, Shai; Banerjee, Subhas
2017-01-01
Background/Aims Recent outbreaks of duodenoscope-transmitted infections underscore the importance of adequate endoscope reprocessing. Adenosine triphosphate (ATP) bioluminescence testing allows rapid evaluation of endoscopes for bacteriological/biological residue. In this prospective study we evaluate the utility of ATP in bacteriological surveillance, and the effects of endoscopy staff education and dual cycles of cleaning and high-level disinfection (HLD) on endoscope reprocessing. Methods ATP bioluminescence was measured after pre-cleaning, manual cleaning and HLD on rinsates from suction-biopsy channels of all endoscopes and elevator channels of duodenoscopes/linear echoendoscopes after use. ATP bioluminescence was re-measured in duodenoscopes (1) after re-education and competency testing of endoscopy staff, and subsequently (2) after 2 cycles of pre-cleaning and manual cleaning and single cycle of HLD, or (3) after 2 cycles of pre-cleaning, manual cleaning and HLD. Results The ideal ATP bioluminescence benchmark of <200 relative light units (RLUs) after manual cleaning was achieved from suction-biopsy channel rinsates of all endoscopes, but 9 of 10 duodenoscope elevator channel rinsates failed to meet this benchmark. Re-education reduced RLUs in duodenoscope elevator channel rinsates after pre-cleaning (23218.0 vs 1340.5 RLUs, p<0.01) and HLD (177.0 vs 12.0 RLUs, p<0.01). After 2 cycles of manual cleaning/HLD, duodenoscope elevator channel RLUs achieved levels similar to sterile water, with corresponding negative cultures. Conclusions ATP testing offers a rapid, inexpensive alternative for detection of endoscope microbial residue. Re-education of endoscopy staff and 2 cycles of cleaning and HLD decrease elevator channel RLUs to levels similar to sterile water and may therefore minimize the risk of transmission of infections by duodenoscopes. PMID:27818222
Purinergic Modulation of Spinal Neuroglial Maladaptive Plasticity Following Peripheral Nerve Injury.
Cirillo, Giovanni; Colangelo, Anna Maria; Berbenni, Miluscia; Ippolito, Vita Maria; De Luca, Ciro; Verdesca, Francesco; Savarese, Leonilde; Alberghina, Lilia; Maggio, Nicola; Papa, Michele
2015-12-01
Modulation of spinal reactive gliosis following peripheral nerve injury (PNI) is a promising strategy to restore synaptic homeostasis. Oxidized ATP (OxATP), a nonselective antagonist of purinergic P2X receptors, was found to recover a neuropathic behavior following PNI. We investigated the role of intraperitoneal (i.p.) OxATP treatment in restoring the expression of neuronal and glial markers in the mouse spinal cord after sciatic spared nerve injury (SNI). Using in vivo two-photon microscopy, we imaged Ca(2+) transients in neurons and astrocytes of the dorsal horn of spinal cord at rest and upon right hind paw electrical stimulation in sham, SNI, and OxATP-treated mice. Neuropathic behavior was investigated by von Frey and thermal plantar test. Glial [glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1)] and GABAergic [vesicular GABA transporter (vGAT) and glutamic acid decarboxylase 65/76 (GAD65/67)] markers and glial [glutamate transporter (GLT1) and GLAST] and neuronal amino acid [EAAC1, vesicular glutamate transporter 1 (vGLUT1)] transporters have been evaluated. In SNI mice, we found (i) increased glial response, (ii) decreased glial amino acid transporters, and (iii) increased levels of neuronal amino acid transporters, and (iv) in vivo analysis of spinal neurons and astrocytes showed a persistent increase of Ca(2+) levels. OxATP administration reduced glial activation, modulated the expression of glial and neuronal glutamate/GABA transporters, restored neuronal and astrocytic Ca(2+) levels, and prevented neuropathic behavior. In vitro studies validated that OxATP (i) reduced levels of reactive oxygen species (ROS), (ii) reduced astrocytic proliferation, (iii) increase vGLUT expression. All together, these data support the correlation between reactive gliosis and perturbation of the spinal synaptic homeostasis and the role played by the purinergic system in modulating spinal plasticity following PNI.
Ketone Body Metabolic Enzyme OXCT1 Regulates Prostate Cancer Chemoresistance
2015-12-01
increased ADP/ATP, NAD +/NADH and oxygen consumption in docetaxel treated cells compared to control knock down cells, therefore induced metabolic...substrate for mitochondrial oxidative phosphorylation and ATP biosynthesis. Next, we examined NAD +/NADH levels in OXC1 knock down prostate cancer cells...The results showed that after docetaxel treatment, NAD + level was significantly increased in OXCT1 knock down cells compared to control knock down
Oreščanin-Dušić, Zorana; Tatalović, Nikola; Vidonja-Uzelac, Teodora; Nestorov, Jelena; Nikolić-Kokić, Aleksandra; Mijušković, Ana; Spasić, Mihajlo; Paškulin, Roman; Bresjanac, Mara; Blagojević, Duško
2018-01-01
Ibogaine is an indole alkaloid originally extracted from the root bark of the African rainforest shrub Tabernanthe iboga . It has been explored as a treatment for substance abuse because it interrupts drug addiction and relieves withdrawal symptoms. However, it has been shown that ibogaine treatment leads to a sharp and transient fall in cellular ATP level followed by an increase of cellular respiration and ROS production. Since contractile tissues are sensitive to changes in the levels of ATP and ROS, here we investigated an ibogaine-mediated link between altered redox homeostasis and uterine contractile activity. We found that low concentrations of ibogaine stimulated contractile activity in spontaneously active uteri, but incremental increase of doses inhibited it. Inhibitory concentrations of ibogaine led to decreased SOD1 and elevated GSH-Px activity, but doses that completely inhibited contractions increased CAT activity. Western blot analyses showed that changes in enzyme activities were not due to elevated enzyme protein concentrations but posttranslational modifications. Changes in antioxidant enzyme activities point to a vast concentration-dependent increase in H 2 O 2 level. Knowing that extracellular ATP stimulates isolated uterus contractility, while H 2 O 2 has an inhibitory effect, this concentration-dependent stimulation/inhibition could be linked to ibogaine-related alterations in ATP level and redox homeostasis.
Paškulin, Roman
2018-01-01
Ibogaine is an indole alkaloid originally extracted from the root bark of the African rainforest shrub Tabernanthe iboga. It has been explored as a treatment for substance abuse because it interrupts drug addiction and relieves withdrawal symptoms. However, it has been shown that ibogaine treatment leads to a sharp and transient fall in cellular ATP level followed by an increase of cellular respiration and ROS production. Since contractile tissues are sensitive to changes in the levels of ATP and ROS, here we investigated an ibogaine-mediated link between altered redox homeostasis and uterine contractile activity. We found that low concentrations of ibogaine stimulated contractile activity in spontaneously active uteri, but incremental increase of doses inhibited it. Inhibitory concentrations of ibogaine led to decreased SOD1 and elevated GSH-Px activity, but doses that completely inhibited contractions increased CAT activity. Western blot analyses showed that changes in enzyme activities were not due to elevated enzyme protein concentrations but posttranslational modifications. Changes in antioxidant enzyme activities point to a vast concentration-dependent increase in H2O2 level. Knowing that extracellular ATP stimulates isolated uterus contractility, while H2O2 has an inhibitory effect, this concentration-dependent stimulation/inhibition could be linked to ibogaine-related alterations in ATP level and redox homeostasis. PMID:29599898
Zheng, Jin; Ding, Xiaoming; Tian, Xiaohui; Jin, Zhankui; Pan, Xiaoming; Yan, Hang; Feng, Xinshun; Hou, Jun; Xiang, Heli; Ren, Li; Tian, Puxun; Xue, Wujun
2012-09-01
Acute rejection (AR) is a strong risk factor for chronic rejection in renal transplant recipients. Accurate and timely diagnosis of AR episodes is very important for disease control and prognosis. Therefore, objectively evaluated the immune status of patients is essential in the field of post-transplantation treatment. This longitudinal study investigated the usefulness of five biomarkers, human leukocyte antigen (HLA)-G5 and sCD30 level in sera, intracellular adenosine triphosphate (iATP) release level of CD4(+) T cells, and granzyme B/perforin expression in peripheral blood mononuclear cells (PBMCs) and biopsies, to detect AR and the resolution of biomarkers in a total of 84 cases of renal transplantation. The data demonstrated that recipients with clinical or biopsy proven rejection significantly increased iATP release level of CD4(+) T cells, and elevated sCD30 but lowered HLA-G5 level in sera compared with individuals with stable graft function. Expression levels of granzyme B and perforin were also elevated in PBMCs and graft biopsies of AR patients. Taken together, we identified that upregulation of sCD30, iATP, granzyme B, perforin, and downregulation of HLA-G5 could provide valuable diagnostic standards to identify those recipients in the risk of AR. And iATP may be a better biomarker than others for predicting the graft rejection episode.
NASA Technical Reports Server (NTRS)
Hanks, J. H.; Dhople, A. M.
1975-01-01
Stability and optimal concentrations of reagents were studied in bioluminescence assay of ATP levels. Luciferase enzyme was prepared and purified using Sephadex G-100. Interdependencies between enzyme and luciferin concentrations in presence of optimal Mg are illustrated. Optimal ionic strength was confirmed to be 0.05 M for the four buffers tested. Adapted features of the R- and H-systems are summarized, as well as the percentages of ATP pools released from representative microbes by heat and chloroform.
Shanmugasundaram, Karthigayan; Nayak, Bijaya K; Friedrichs, William E; Kaushik, Dharam; Rodriguez, Ronald; Block, Karen
2017-10-19
The molecular mechanisms that couple glycolysis to cancer drug resistance remain unclear. Here we identify an ATP-binding motif within the NADPH oxidase isoform, NOX4, and show that ATP directly binds and negatively regulates NOX4 activity. We find that NOX4 localizes to the inner mitochondria membrane and that subcellular redistribution of ATP levels from the mitochondria act as an allosteric switch to activate NOX4. We provide evidence that NOX4-derived reactive oxygen species (ROS) inhibits P300/CBP-associated factor (PCAF)-dependent acetylation and lysosomal degradation of the pyruvate kinase-M2 isoform (PKM2). Finally, we show that NOX4 silencing, through PKM2, sensitizes cultured and ex vivo freshly isolated human-renal carcinoma cells to drug-induced cell death in xenograft models and ex vivo cultures. These findings highlight yet unidentified insights into the molecular events driving cancer evasive resistance and suggest modulation of ATP levels together with cytotoxic drugs could overcome drug-resistance in glycolytic cancers.
Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; van de Sluis, Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan
2016-01-01
ABSTRACT The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in ATP7A and ATP7B contributes to the biological understanding of protein function, with relevance for future development of therapy. PMID:26747866
Truan, Daphné; Bjelić, Saša; Li, Xiao-Dan; Winkler, Fritz K
2014-07-29
The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Use of ATP to characterize biomass viability in freely suspended and immobilized cell bioreactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gikas, P.; Livingston, A.G.
1993-12-01
This work describes investigations into the viability of cells growing on 3,4-dichloroaniline (34DCA). Two bio-reactors are employed for microbial growth, a continuous stirred tank (CST) bioreactor with a 2-L working volume, and a three-phase air lift (TPAL) bioreactor with a 3-L working volume. Experiments have been performed at several dilution rates between 0.027 and 0.115 h[sup [minus]1] in the CST bioreactor and between 0.111 and 0.500h[sup [minus]1] in the TPAL bioreactor. The specific ATP concentration was calculated at each dilution rate in the suspended biomass in both bioreactors as well as in the immobilized biomass in the TPAL bioreactor. Themore » cultures were inspected under an electron microscope to monitor compositional changes. Results from the CST bioreactor showed that the biomass-specific ATP concentration increases from 0.44 to 1.86 mg ATP g[sup [minus]1] dry weight (dw) as dilution rate increases from 0.027 to 0.115 h[sup [minus]1]. At this upper dilution rate the cells were washed out. The specific ATP concentration reached a limiting average value of 1.73 mg ATP g[sup [minus]1] dw, which is assumed to be the quantity of ATP in 100% viable biomass, In the TPAL bioreactor, the ATP level increased with dilution rat in both the immobilized and suspended biomass. The specific ATP concentration in the immobilized biomass increased from approximately 0.051 mg ATP g[sup [minus]1] dw at dilution rates between 0.111 and 0.200 h[sup [minus]1] to approximately 0.119 mg ATP g[sup [minus]1] dw at dilution rates between 0.300 and 0.500 h[sup [minus]1].« less
2015-01-01
Ribonucleotide reductases (RNRs) are responsible for all de novo biosynthesis of DNA precursors in nature by catalyzing the conversion of ribonucleotides to deoxyribonucleotides. Because of its essential role in cell division, human RNR is a target for a number of anticancer drugs in clinical use. Like other class Ia RNRs, human RNR requires both a radical-generation subunit (β) and nucleotide-binding subunit (α) for activity. Because of their complex dependence on allosteric effectors, however, the active and inactive quaternary forms of many class Ia RNRs have remained in question. Here, we present an X-ray crystal structure of the human α subunit in the presence of inhibiting levels of dATP, depicting a ring-shaped hexamer (α6) where the active sites line the inner hole. Surprisingly, our small-angle X-ray scattering (SAXS) results indicate that human α forms a similar hexamer in the presence of ATP, an activating effector. In both cases, α6 is assembled from dimers (α2) without a previously proposed tetramer intermediate (α4). However, we show with SAXS and electron microscopy that at millimolar ATP, the ATP-induced α6 can further interconvert with higher-order filaments. Differences in the dATP- and ATP-induced α6 were further examined by SAXS in the presence of the β subunit and by activity assays as a function of ATP or dATP. Together, these results suggest that dATP-induced α6 is more stable than the ATP-induced α6 and that stabilization of this ring-shaped configuration provides a mechanism to prevent access of the β subunit to the active site of α. PMID:26727048
Schultheis, Patrick J.; Fleming, Sheila M.; Clippinger, Amy K.; Lewis, Jada; Tsunemi, Taiji; Giasson, Benoit; Dickson, Dennis W.; Mazzulli, Joseph R.; Bardgett, Mark E.; Haik, Kristi L.; Ekhator, Osunde; Chava, Anil Kumar; Howard, John; Gannon, Matt; Hoffman, Elizabeth; Chen, Yinhuai; Prasad, Vikram; Linn, Stephen C.; Tamargo, Rafael J.; Westbroek, Wendy; Sidransky, Ellen; Krainc, Dimitri; Shull, Gary E.
2013-01-01
Mutations in ATP13A2 (PARK9), encoding a lysosomal P-type ATPase, are associated with both Kufor–Rakeb syndrome (KRS) and neuronal ceroid lipofuscinosis (NCL). KRS has recently been classified as a rare genetic form of Parkinson's disease (PD), whereas NCL is a lysosomal storage disorder. Although the transport activity of ATP13A2 has not been defined, in vitro studies show that its loss compromises lysosomal function, which in turn is thought to cause neuronal degeneration. To understand the role of ATP13A2 dysfunction in disease, we disrupted its gene in mice. Atp13a2−/− and Atp13a2+/+ mice were tested behaviorally to assess sensorimotor and cognitive function at multiple ages. In the brain, lipofuscin accumulation, α-synuclein aggregation and dopaminergic pathology were measured. Behaviorally, Atp13a2−/− mice displayed late-onset sensorimotor deficits. Accelerated deposition of autofluorescent storage material (lipofuscin) was observed in the cerebellum and in neurons of the hippocampus and the cortex of Atp13a2−/− mice. Immunoblot analysis showed increased insoluble α-synuclein in the hippocampus, but not in the cortex or cerebellum. There was no change in the number of dopaminergic neurons in the substantia nigra or in striatal dopamine levels in aged Atp13a2−/− mice. These results show that the loss of Atp13a2 causes sensorimotor impairments, α-synuclein accumulation as occurs in PD and related synucleinopathies, and accumulation of lipofuscin deposits characteristic of NCL, thus providing the first direct demonstration that null mutations in Atp13a2 can cause pathological features of both diseases in the same organism. PMID:23393156
[P4-ATP-ase Atp8b1/FIC1: structural properties and (patho)physiological functions].
Korneenko, T V; Pestov, N B; Okkelman, I A; Modyanov, N N; Shakhparonov, M I
2015-01-01
P4-ATP-ases comprise an interesting family among P-type ATP-ases, since they are thought to play a major role in the transfer of phospholipids such as phosphatydylserine from the outer leaflet to the inner leaflet. Isoforms of P4-ATP-ases are partially interchangeable but peculiarities of tissue-specific expression of their genes, intracellular localization of proteins, as well as regulatory pathways lead to the fact that, on the organismal level, serious pathologies may develop in the presence of structural abnormalities in certain isoforms. Among P4-ATP-ases a special place is occupied by ATP8B1, for which several mutations are known that lead to serious hereditary diseases: two forms of congenital cholestasis (PFIC1 or Byler disease and benign recurrent intrahepatic cholestasis) with extraliver symptoms such as sensorineural hearing loss. The physiological function of the Atp8b1/FIC1 protein is known in general outline: it is responsible for transport of certain phospholipids (phosphatydylserine, cardiolipin) for the outer monolayer of the plasma membrane to the inner one. It is well known that perturbation of membrane asymmetry, caused by the lack of Atp8B1 activity, leads to death of hairy cells of the inner ear, dysfunction of bile acid transport in liver-cells that causes cirrhosis. It is also probable that insufficient activity of Atp8b1/FIC1 increases susceptibility to bacterial pneumonia.Regulatory pathways of Atp8b1/FIC1 activity in vivo remain to be insufficiently studied and this opens novel perspectives for research in this field that may allow better understanding of molecular processes behind the development of certain pathologies and to reveal novel therapeutical targets.
Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses
Johnson, Jerry E.; Perkins, Guy A.; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D.; Brown, Joshua M.; Waggoner, Jenna; Ellisman, Mark H.
2007-01-01
Purpose In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Methods Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Results Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. Conclusions These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations. PMID:17653034
Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
Johnson, Jerry E; Perkins, Guy A; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D; Brown, Joshua M; Waggoner, Jenna; Ellisman, Mark H; Fox, Donald A
2007-06-15
In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations.
Calorimetric studies of the growth of anaerobic microbes.
Miyake, Hideo; Maeda, Yukiko; Ishikawa, Takashi; Tanaka, Akiyoshi
2016-09-01
This article aims to validate the use of calorimetry to measure the growth of anaerobic microbes. It has been difficult to monitor the growth of strict anaerobes while maintaining optimal growth conditions. Traditionally, optical density and ATP concentration are usually used as measures of the growth of anaerobic microbes. However, to take these measurements it is necessary to extract an aliquot of the culture, which can be difficult while maintaining anaerobic conditions. In this study, calorimetry was used to continuously and nondestructively measure the heat generated by the growth of anaerobic microbes as a function of time. Clostridium acetobutylicum, Clostridium beijerinckii, and Clostridium cellulovorans were used as representative anaerobic microbes. Using a multiplex isothermal calorimeter, we observed that peak time (tp) of C. acetobutylicum heat evolution increased as the inoculation rate decreased. This strong correlation between the inoculation rate and tp showed that it was possible to measure the growth rate of anaerobic microbes by calorimetry. Overall, our results showed that there is a very good correlation between heat evolution and optical density/ATP concentration, validating the use of the method. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Whiteley, Greg S; Derry, Chris; Glasbey, Trevor; Fahey, Paul
2015-06-01
To investigate the reliability of commercial ATP bioluminometers and to document precision and variability measurements using known and quantitated standard materials. Four commercially branded ATP bioluminometers and their consumables were subjected to a series of controlled studies with quantitated materials in multiple repetitions of dilution series. The individual dilutions were applied directly to ATP swabs. To assess precision and reproducibility, each dilution step was tested in triplicate or quadruplicate and the RLU reading from each test point was recorded. Results across the multiple dilution series were normalized using the coefficient of variation. The results for pure ATP and bacterial ATP from suspensions of Staphylococcus epidermidis and Pseudomonas aeruginosa are presented graphically. The data indicate that precision and reproducibility are poor across all brands tested. Standard deviation was as high as 50% of the mean for all brands, and in the field users are not provided any indication of this level of imprecision. The variability of commercial ATP bioluminometers and their consumables is unacceptably high with the current technical configuration. The advantage of speed of response is undermined by instrument imprecision expressed in the numerical scale of relative light units (RLU).
VanDevanter, Nancy; Zhou, Sherry; Katigbak, Carina; Naegle, Madeline; Sherman, Scott; Weitzman, Michael
2016-03-01
The purpose of the study was to assess nursing students' knowledge, beliefs, behaviors, and social norms regarding use of alternative tobacco products (ATPs). This anonymous online survey was conducted with all students enrolled in a college of nursing. The survey utilized measures from several national tobacco studies to assess knowledge and beliefs about ATPs (hookahs, cigars or cigarillos, bidis, kreteks, smokeless tobacco, electronic cigarettes) compared to cigarettes, health effects of ATPs, personal use of ATPs, and social norms. Data were analyzed in SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Descriptive statistics and frequencies were performed for basic sociodemographic data. Paired samples t tests were performed to determine differences for scaled measures. Nursing students demonstrated very low levels of knowledge about ATPs and their health consequences, despite high rates of ATP personal use. About 76% of participants reported use of one or more ATPs once or more in their lifetimes. A greater proportion of students had used hookahs or waterpipes (39.6%) compared to cigarettes (32.7%). Nurses' lack of knowledge about the emerging use and health threats associated with ATPs may undermine their ability to provide appropriate tobacco cessation counseling. Research is needed to identify gaps in nurses' education regarding tobacco cessation counseling and to develop new counseling approaches specific to use of ATPs. Nurses play critical roles in counseling their patients for tobacco cessation. Further research and education about the risks presented by ATPs are critical to reducing excess tobacco-related mortality. © 2016 Sigma Theta Tau International.
Mechanism of the anticataract effect of liposomal magnesium taurate in galactose-fed rats
Iezhitsa, Igor; Saad, Sarah Diyana Bt; Zakaria, Fatin Kamilah Bt; Agarwal, Puneet; Krasilnikova, Anna; Rahman, Thuhairah Hasrah Abdul; Rozali, Khairul Nizam Bin; Spasov, Alexander; Ozerov, Alexander; Alyautdin, Renad; Ismail, Nafeeza Mohd
2016-01-01
Purpose Increased lenticular oxidative stress and altered calcium/magnesium (Ca/Mg) homeostasis underlie cataractogenesis. We developed a liposomal formulation of magnesium taurate (MgT) and studied its effects on Ca/Mg homeostasis and lenticular oxidative and nitrosative stress in galactose-fed rats. Methods The galactose-fed rats were topically treated with liposomal MgT (LMgT), liposomal taurine (LTau), or corresponding vehicles twice daily for 28 days with weekly anterior segment imaging. At the end of the experimental period, the lenses were removed and subjected to analysis for oxidative and nitrosative stress, Ca and Mg levels, ATP content, Ca2+-ATPase, Na+,K+-ATPase, and calpain II activities. Results The LTau and LMgT groups showed significantly lower opacity index values at all time points compared to the corresponding vehicle groups (p<0.001). However, the opacity index in the LMgT group was lower than that in the LTau group (p<0.05). Significantly reduced oxidative and nitrosative stress was observed in the LTau and LMgT groups. The lens Ca/Mg ratio in LMgT group was decreased by 1.15 times compared to that in the LVh group. Calpain II activity in the LMgT group was decreased by 13% compared to the LVh group. The ATP level and Na+,K+-ATPase and Ca2+-ATPase activities were significantly increased in the LMgT group compared to the LVh group (p<0.05). Conclusions Topical liposomal MgT delays cataractogenesis in galactose-fed rats by maintaining the lens mineral homeostasis and reducing lenticular oxidative and nitrosative stress. PMID:27440992
Navrátilová, Jarmila; Karasová, Martina; Kohutková Lánová, Martina; Jiráková, Ludmila; Budková, Zuzana; Pacherník, Jiří; Šmarda, Jan; Beneš, Petr
2017-09-01
Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis-activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti-cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down-regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Miao, Ming-San; Peng, Meng-Fan; Ma, Rui-Juan; Bai, Ming; Liu, Bao-Song
2018-03-01
Objective: To study the effects of the different components of the total flavonoids and total saponins from Mao Dongqing's active site on the rats of TIA model, determine the optimal reactive components ratio of Mao Dongqing on the rats of TIA. Methods: TIA rat model was induced by tail vein injection of tert butyl alcohol, the blank group was injected with the same amount of physiological saline, then behavioral score wasevaluated. Determination the level of glutamic acid in serum, the activity of Na+-K+-ATP enzyme, CA ++ -ATP enzyme and Mg ++ -ATP enzyme in Brain tissue, observe the changes of hippocampus in brain tissue, the comprehensive weight method was used to evaluate the efficacy of each component finally. Results: The contents of total flavonoids and total saponins in the active part of Mao Dongqing can significantly improve the pathological changes of brain tissue in rats, improve the activity of Na + -K + -ATP enzyme, Ca ++ -ATP enzyme and Mg ++ -ATP enzyme in the brain of rats, and reduce the level of glutamic acid in serum. The most significant of the contents was the ratio of 10:6. The different proportions of total flavonoids and total saponins in the active part of Mao Dongqing all has a better effect on the rats with TIA, and the ratio of 10:6 is the best active component for preventing and controlling TIA.
Surface coating-modulated toxic responses to silver nanoparticles in Wolffia globosa.
Zou, Xiaoyan; Li, Penghui; Lou, Jie; Zhang, Hongwu
2017-08-01
With the omnipresence of silver nanoparticles (AgNPs) in our daily consumer products, their release has raised serious concerns. However, the biochemical mechanisms by which plants counteract the toxicity of nanoparticles are largely unknown. This study investigated the exposure of aquatic Wolffia globosa to ATP-nAg (AgNPs coated with adenosine triphosphate), cit-nAg (AgNPs coated with citrate), and Ag + . Hill reaction activity was basically lost in W. globosa treated with 10mg/L ATP-nAg and Ag + , while the activity was still maintained at 38.7%-38.9% of the respective controls at 10mg/L cit-nAg. The reduction of amounts of chlorophyll and soluble protein were shown in response to the Ag stresses. This was accompanied by the accumulation of sugar in W. globosa treated with cit-nAg. By contrast, the depletion of sugar was recorded after 10mg/L ATP-nAg and Ag + treatments. The superoxide dismutase and peroxidase activities were significantly increased after exposure to 10mg/L ATP-nAg and Ag + , which did not occurred in W. globosa treated with cit-nAg. The ratio between NADPH/NADP + was higher after cit-nAg and Ag + stresses than the respective controls. The accumulation of Ag was found to increase in a concentration-dependent manner. Ag + and ATP-nAg inhibited the uptake of P and K, and promoted the uptake of Fe and Cu. In contrast, cit-nAg only promoted the uptake of Cu. Our results implied that surface coating induced different physiological responses of W. globosa to AgNPs. Based on above results, we speculated that after exposure to cit-nAg, citrate possibly could serve as the substrate for the tricarboxylic acid cycle and accumulated sugar may promote pentose phosphate pathways. For ATP-nAg treatments, ATP would act as an exogenous energy source of plant metabolisms. Our findings demonstrate that surface coating regulates the physiological responses of plants to AgNPs through distinct mechanisms. Copyright © 2017. Published by Elsevier B.V.
Zhang, Yuanyuan; Liu, Zhe; Zhang, Qianwen; Chao, Zhenhua; Zhang, Pei; Xia, Fei; Jiang, Chenchen; Liu, Hao; Jiang, Zhiwen
2013-09-01
To study the effect of glycolysis inhibitor 3-bromopyruvate (3-BrPA) in inducing apoptosis of human breast carcinoma cells SK-BR-3 and the possible mechanism. MTT assay was used to detect the growth inhibition induced by 3-BrPA in breast cancer cells SK-BR-3. The apoptotic cells were detected by flow cytometry with propidium iodide (PI). ATP levels in the cells were detected by ATP assay kit, and DHE fluorescent probe technique was used to determine superoxide anion levels; the mitochondrial membrane potential was assessed using JC-1 staining assay. MTT assay showed that the proliferation of SK-BR-3 cells was inhibited by 3-BrPA in a time- and concentration-dependent manner. Exposure to 80, 160, and 320 µmol·L(-1) 3-BrPA for 24 h resulted in cell apoptosis rates of 6.7%, 22.3%, and 79.6%, respectively, and the intracellular ATP levels of SK-BR-3 cells treated with 80, 160, 320 µmol·L(-1) 3-BrPA for 5 h were 87.7%, 60.6%, and 23.7% of the control levels. 3-BrPA at 160 µmol·L(-1) increased reactive oxygen levels and lowered mitochondrial membrane potential of SK-BR-3 cells. 3-BrPA can inhibit cell proliferation, reduce the mitochondrial membrane potential and induce apoptosis in SK-BR-3 cells, the mechanism of which may involve a reduced ATP level by inhibiting glycolysis and increasing the reactive oxygen level in the cells.
DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells.
Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng
2014-07-01
Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or "reperfusion" of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death. Copyright © 2014 Elsevier B.V. All rights reserved.
Cerebrospinal fluid ATP metabolites in multiple sclerosis.
Lazzarino, G; Amorini, A M; Eikelenboom, M J; Killestein, J; Belli, A; Di Pietro, V; Tavazzi, B; Barkhof, F; Polman, C H; Uitdehaag, B M J; Petzold, A
2010-05-01
Increased axonal energy demand and mitochondrial failure have been suggested as possible causes for axonal degeneration and disability in multiple sclerosis. Our objective was to test whether ATP depletion precedes clinical, imaging and biomarker evidence for axonal degeneration in multiple sclerosis. The method consisted of a longitudinal study which included 21 patients with multiple sclerosis. High performance liquid chromatography was used to quantify biomarkers of the ATP metabolism (oxypurines and purines) from the cerebrospinal fluid at baseline. The Expanded Disability Status Scale, MRI brain imaging measures for brain atrophy (ventricular and parenchymal fractions), and cerebrospinal fluid biomarkers for axonal damage (phosphorylated and hyperphosphorylated neurofilaments) were quantified at baseline and 3-year follow-up. Central ATP depletion (sum of ATP metabolites >19.7 micromol/litre) was followed by more severe progression of disability if compared to normal ATP metabolites (median 1.5 versus 0, p< 0.05). Baseline ATP metabolite levels correlated with change of Expanded Disability Status Scale in the pooled cohort (r= 0.66, p= 0.001) and subgroups (relapsing-remitting patients: r= 0.79, p< 0.05 and secondary progressive/primary progressive patients: r= 0.69, p< 0.01). There was no relationship between central ATP metabolites and either biomarker or MRI evidence for axonal degeneration. The data suggests that an increased energy demand in multiple sclerosis may cause a quantifiable degree of central ATP depletion. We speculate that the observed clinical disability may be related to depolarisation associated conduction block.
Description of Professional Master's Athletic Training Programs
ERIC Educational Resources Information Center
Bowman, Thomas G.; Pitney, William A.; Mazerolle, Stephanie M.; Dodge, Thomas M.
2015-01-01
Context: Professional master's (PM) athletic training programs (ATPs) are becoming more popular as the profession debates what the entry-level degree should be for athletic training. More information is needed related to the potential benefits of PM ATPs. Objective: Describe the Commission on Accreditation of Athletic Training Education (CAATE)…
Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation
ERIC Educational Resources Information Center
Jena, Ananta Kumar
2015-01-01
Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…
Dad, Azra; Jeong, Clara H; Wagner, Elizabeth D; Plewa, Michael J
2018-02-06
The disinfection of drinking water has been a major public health achievement. However, haloacetic acids (HAAs), generated as byproducts of water disinfection, are cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic. Previous studies of monoHAA-induced genotoxicity and cell stress demonstrated that the toxicity was due to inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to disruption of cellular metabolism and energy homeostasis. DiHAAs and triHAAs are also produced during water disinfection, and whether they share mechanisms of action with monoHAAs is unknown. In this study, we evaluated the effects of mono-, di-, and tri-HAAs on cellular GAPDH enzyme kinetics, cellular ATP levels, and pyruvate dehydrogenase complex (PDC) activity. Here, treatments conducted in Chinese hamster ovary (CHO) cells revealed differences among mono-, di-, and triHAAs in their molecular targets. The monoHAAs, iodoacetic acid and bromoacetic acid, were the strongest inhibitors of GAPDH and greatly reduced cellular ATP levels. Chloroacetic acid, diHAAs, and triHAAs were weaker inhibitors of GAPDH and some increased the levels of cellular ATP. HAAs also affected PDC activity, with most HAAs activating PDC. The primary finding of this work is that mono- versus multi-HAAs address different molecular targets, and the results are generally consistent with a model in which monoHAAs activate the PDC through GAPDH inhibition-mediated disruption in cellular metabolites, including altering ATP-to-ADP and NADH-to-NAD ratios. The monoHAA-mediated reduction in cellular metabolites results in accelerated PDC activity by way of metabolite-ratio-dependent PDC regulation. DiHAAs and triHAAs are weaker inhibitors of GAPDH, but many also increase cellular ATP levels, and we suggest that they increase PDC activity by inhibiting pyruvate dehydrogenase kinase.
Souza, Carine F; Baldissera, Matheus D; Bottari, Nathiele B; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Baldisserotto, Bernardo
2018-06-01
Appropriate control of the immune response is a critical determinant of fish health, and the purinergic cascade has an important role in the immune and inflammatory responses. This cascade regulates the levels of adenosine triphosphate (ATP), adenosine diphosphate, adenosine monophosphate and adenosine (Ado), molecules involved in physiological or pathological events as inflammatory and anti-inflammatory mediators. Thus, the aim of this study was to evaluate whether purinergic signaling, through the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase, and adenosine deaminase (ADA), is capable of modulating the cerebral immune and inflammatory responses in silver catfish that is experimentally infected with Streptococcus agalactiae. Cerebral NTPDase (with ATP as substrate) and 5'-nucleotidase activities increased, while ADA activity decreased in silver catfish that is experimentally infected with S. agalactiae, compared to the control group. Moreover, the cerebral levels of ATP and Ado increased in infected animals compared to the uninfected control group. Brain histopathology in infected animals revealed inflammatory demyelination (the presence of occasional bubbly collections), increased cellular density in the area near to pia-mater and intercellular edema. Based on this evidence, the modulation of the purinergic cascade by the enzymes NTPDase, 5'-nucleotidase, and ADA exerts an anti-inflammatory profile due to the regulation of ATP and Ado levels. This suggests involvement of purinergic enzymes on streptococcosis pathogenesis, through regulating cerebral ATP and Ado levels, molecules known to participate in physiological or pathological events as inflammatory and anti-inflammatory mediators, respectively. In summary, the modulation of the cerebral purinergic cascade exerts an anti-inflammatory profile in an attempt to reduce inflammatory damage.
Waddell, D; Ullman, B
1983-04-10
From human CCRF-CEM T-cells growing in continuous culture, we have selected, isolated, and characterized a clonal cell line, APHID-D2, with altered ribonucleotide reductase activity. In comparative growth rate experiments, the APHID-D2 cell line is less sensitive than the parental cell line to growth inhibition by deoxyadenosine in the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. The APHID-D2 cell line has elevated levels of all four dNTPs. The resistance of the APHID-D2 cell line to growth inhibition by deoxyadenosine and the abnormal dNTP levels can be explained by the fact that the APHID-D2 ribonucleotide reductase, unlike the parental ribonucleotide reductase, is not normally sensitive to inhibition by dATP. These results suggest that the allosteric site of ribonucleotide reductase which binds both dATP and ATP is altered in the APHID-D2 line. The isolation of a mutant clone of human T-cells which contains a ribonucleotide reductase that has lost its normal sensitivity to dATP and which is resistant to deoxyadenosine-mediated growth inhibition suggests that a primary pathogenic target of accumulated dATP in lymphocytes from patients with adenosine deaminase deficiency may be the cellular ribonucleotide reductase.
Grose, Julianne H; Langston, Kelsey; Wang, Xiaohui; Squires, Shayne; Mustafi, Soumyajit Banerjee; Hayes, Whitney; Neubert, Jonathan; Fischer, Susan K; Fasano, Matthew; Saunders, Gina Moore; Dai, Qiang; Christians, Elisabeth; Lewandowski, E Douglas; Ping, Peipei; Benjamin, Ivor J
2015-01-01
Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 "cardiac interactome" to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to speculate that small molecule activators of HspB2 might be deployed to mitigate mitochondrial related diseases such as cardiomyopathy and neurodegenerative disease.
An ATP2B4 polymorphism protects against malaria in pregnancy.
Bedu-Addo, George; Meese, Stefanie; Mockenhaupt, Frank P
2013-05-15
Polymorphisms of ATP2B4 encoding an ubiquitous Ca(2+) pump protect against severe childhood malaria. We assessed the influence of a main polymorphism (rs10900585) on malaria among 834 delivering Ghanaian women. In homozygous primiparae, the odds of placental Plasmodium falciparum infection were reduced by 64%. No influence of the polymorphism on parasite density, low birth weight, or preterm delivery was discernible. However, malarial anemia was greatly reduced in primiparous carriers of the variant allele, paralleling the reduced impact of malaria on hemoglobin levels in this group. A common ATP2B4 polymorphism protects against malaria in pregnancy and related maternal anemia, suggesting ATP2B4 variant associated protection not to be limited to severe childhood malaria.
Chun, Haarin; Sharma, Anuj Kumar; Lee, Jaekwon; Chan, Jefferson; Jia, Shang; Kim, Byung-Eun
2017-01-01
Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans. Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways. PMID:27881675
Dehury, Budheswar; Behera, Santosh Kumar; Mahapatra, Namita
2017-01-01
The protein kinases (PKs), belonging to serine/threonine kinase (STKs), are important drug targets for a wide spectrum of diseases in human. Among protein kinases, the Casein Kinases (CKs) are vastly expanded in various organisms, where, the malarial parasite Plasmodium falciparum possesses a single member i.e., PfCKI, which can phosphorylate various proteins in parasite extracts in vitro condition. But, the structure-function relationship of PfCKI and dynamics of ATP binding is yet to be understood. Henceforth, an attempt was made to study the dynamics, stability, and ATP binding mechanisms of PfCKI through computational modelling, docking, molecular dynamics (MD) simulations, and MM/PBSA binding free energy estimation. Bi-lobed catalytic domain of PfCKI shares a high degree of secondary structure topology with CKI domains of rice, human, and mouse indicating co-evolution of these kinases. Molecular docking study revealed that ATP binds to the active site where the glycine-rich ATP-binding motif (G16-X-G18-X-X-G21) along with few conserved residues plays a crucial role maintaining stability of the complex. Structural superposition of PfCKI with close structural homologs depicted that the location and length of important loops are different, indicating the dynamic properties of these loops among CKIs, which is consistent with principal component analysis (PCA). PCA displayed that the overall global motion of ATP-bound form is comparatively higher than that of apo form. The present study provides insights into the structural features of PfCKI, which could contribute towards further understanding of related protein structures, dynamics of catalysis and phosphorylation mechanism in these important STKs from malarial parasite in near future. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Xiudan; Wang, Mengqiang; Xu, Jiachao; Jia, Zhihao; Liu, Zhaoqun; Wang, Lingling; Song, Linsheng
2017-07-01
Ocean acidification (OA) has deleterious impacts on immune response and energy homeostasis status of Mollusca. In the present study, the apoptosis ratio of hemocytes and the adenosine triphosphate (ATP) allocation in gill tissues were determined after Pacific oysters Crassostrea gigas were exposed to elevated CO 2 environment (pH = 7.50) for 16 days.The apoptosis ratio in CO 2 exposure group (35.2%) was significantly higher (p < 0.05) than that in the control group, and the increased apoptosis ratio induced by elevated CO 2 could be significantly inhibited (p < 0.05) by KH7, a specific inhibitor of a bicarbonate sensor soluble adenylyl cyclase (sAC). After CO 2 exposure, sAC in oyster (CgsAC) was found to be clustered with mitochondria in the cytoplasm, and the pro-caspase-3 was cleaved into two small fragments. Moreover, the activities of caspase-3 and caspase-9 also increased post CO 2 exposure and these increases could be inhibited by KH7. However, the activities of caspase-8 did not change significantly compared with that in the control group. After CO 2 exposure, the ATP content in the gill increased significantly (p < 0.05) and such increase could also be inhibited by KH7. The ATP content in purified gill mitochondria decreased significantly (p < 0.05) after CO 2 exposure, which was also inhibited by KH7. These results implied that the elevated CO 2 could activate the mitochondria-CgsAC pathway of apoptosis and ATP metabolism in oyster, and this pathway played essential roles in maintaining the homeostasis and the balance of energy metabolism in response to OA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Haloperidol-induced changes in glutathione and energy metabolism: effect of nicergoline.
Vairetti, M; Feletti, F; Battaglia, A; Pamparana, F; Canonico, P L; Richelmi, P; Bertè, F
1999-02-12
The aim of this study was to evaluate the possible effects of nicergoline, a semisynthetic ergot derivative, on the biochemical changes observed during chronic treatment with haloperidol in male Sprague-Dawley rats. Chronic treatment with haloperidol induced a significant decrease in the cellular glutathione (GSH) content in selected areas of the brain (cerebellum, striatum and cortex) and in the liver. Prolonged nicergoline administration was able to antagonize the haloperidol-induced GSH decrease, maintaining the GSH concentration at levels comparable to those observed in the control group. Analysis of the energy charge revealed changes similar to those observed for GSH: haloperidol induced a significant decrease in ATP and energy charge that was completely reversed by repeated nicergoline administration. In conclusion, chronic treatment with the classical antipsychotic haloperidol induces profound biochemical changes in the brain and in the liver. Nicergoline treatment is able to counteract the haloperidol-induced decrease in GSH levels and energy charge, suggesting a potential role of the drug in the treatment of neuroleptic-induced side effects.
Jung, Sung Ho; Kim, Ka Young; Lee, Ji Ha; Moon, Cheol Joo; Han, Noh Soo; Park, Su-Jin; Kang, Dongmin; Song, Jae Kyu; Lee, Shim Sung; Choi, Myong Yong; Jaworski, Justyn; Jung, Jong Hwa
2017-01-11
To more accurately assess the pathways of biological systems, a probe is needed that may respond selectively to adenosine triphosphate (ATP) for both in vitro and in vivo detection modes. We have developed a luminescence probe that can provide real-time information on the extent of ATP, ADP, and AMP by virtue of the luminescence and luminescence lifetime observed from a supramolecular polymer based on a C 3 symmetrical terpyridine complex with Tb 3+ (S1-Tb). The probe shows remarkable selective luminescence enhancement in the presence of ATP compared to other phosphate-displaying nucleotides including adenosine diphosphate (ADP), adenosine monophosphate (AMP), guanosine triphosphate (GTP), thymidine triphosphate (TTP), H 2 PO 4 - (Pi), and pyrophosphate (PPi). In addition, the time-resolved luminescence lifetime and luminescence spectrum of S1-Tb could facilitate the quantitative measurement of the exact amount of ATP and similarly ADP and AMP within living cells. The time-resolved luminescence lifetime of S1-Tb could also be used to quantitatively monitor the amount of ATP, ADP, and AMP in vitro following the enzymatic hydrolysis of ATP. The long luminescence lifetime, which was observed into the millisecond range, makes this S1-Tb-based probe particularly attractive for monitoring biological ATP levels in vivo, because any short lifetime background fluorescence arising from the complex molecular environment may be easily eliminated.
NASA Technical Reports Server (NTRS)
Michailova, A.; McCulloch, A.
2001-01-01
We extended the model of the ventricular myocyte by Winslow et al. (Circ. Res 1999, 84:571-586) by incorporating equations for Ca(2+) and Mg(2+) buffering and transport by ATP and ADP and equations for MgATP regulation of ion transporters (Na(+)-K(+) pump, sarcolemmal and sarcoplasmic Ca(2+) pumps). The results indicate that, under normal conditions, Ca(2+) binding by low-affinity ATP and diffusion of CaATP may affect the amplitude and time course of intracellular Ca(2+) signals. The model also suggests that a fall in ATP/ADP ratio significantly reduces sarcoplasmic Ca(2+) content, increases diastolic Ca(2+), lowers systolic Ca(2+), increases Ca(2+) influx through L-type channels, and decreases the efficiency of the Na(+)/Ca(2+) exchanger in extruding Ca(2+) during periodic voltage-clamp stimulation. The analysis suggests that the most important reason for these changes during metabolic inhibition is the down-regulation of the sarcoplasmic Ca(2+)-ATPase pump by reduced diastolic MgATP levels. High Ca(2+) concentrations developed near the membrane might have a greater influence on Mg(2+), ATP, and ADP concentrations than that of the lower Ca(2+) concentrations in the bulk myoplasm. The model predictions are in general agreement with experimental observations measured under normal and pathological conditions.
Schrattenholz, A; Roth, U; Godovac-Zimmermann, J; Maelicke, A
1997-10-28
Using 2,8,5'-[3H]ATP as a direct photoaffinity label for membrane-bound nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata, we have identified a binding site for ATP in the extracellular region of the beta-subunit of the receptor. Photolabeling was completely inhibited in the presence of saturating concentrations of nonradioactive ATP, whereas neither the purinoreceptor antagonists suramin, theophyllin, and caffeine nor the nAChR antagonists alpha-bungarotoxin and d-tubocurarine affected the labeling reaction. Competitive and noncompetitive nicotinic agonists and Ca2+ increased the yield of the photoreaction by up to 50%, suggesting that the respective binding sites are allosterically linked with the ATP site. The dissociation constant KD of binding of ATP to the identified site on the nAChR was of the order of 10(-4) M. Sites of labeling were found in the sequence regions Leu11-Pro17 and Asp152-His163 of the nAChR beta-subunit. These regions may represent parts of a single binding site for ATP, which is discontinuously distributed within the primary structure of the N-terminal extracellular domain. The existence of an extracellular binding site for ATP confirms, on the molecular level, that this nucleotide can directly act on nicotinic receptors, as has been suggested from previous electrophysiological and biochemical studies.
Rott, Markus; Martins, Nádia F.; Thiele, Wolfram; Lein, Wolfgang; Bock, Ralph; Kramer, David M.; Schöttler, Mark A.
2011-01-01
Tobacco (Nicotiana tabacum) plants strictly adjust the contents of both ATP synthase and cytochrome b6f complex to the metabolic demand for ATP and NADPH. While the cytochrome b6f complex catalyzes the rate-limiting step of photosynthetic electron flux and thereby controls assimilation, the functional significance of the ATP synthase adjustment is unknown. Here, we reduced ATP synthase accumulation by an antisense approach directed against the essential nuclear-encoded γ-subunit (AtpC) and by the introduction of point mutations into the translation initiation codon of the plastid-encoded atpB gene (encoding the essential β-subunit) via chloroplast transformation. Both strategies yielded transformants with ATP synthase contents ranging from 100 to <10% of wild-type levels. While the accumulation of the components of the linear electron transport chain was largely unaltered, linear electron flux was strongly inhibited due to decreased rates of plastoquinol reoxidation at the cytochrome b6f complex (photosynthetic control). Also, nonphotochemical quenching was triggered at very low light intensities, strongly reducing the quantum efficiency of CO2 fixation. We show evidence that this is due to an increased steady state proton motive force, resulting in strong lumen overacidification, which in turn represses photosynthesis due to photosynthetic control and dissipation of excitation energy in the antenna bed. PMID:21278125
Long-wavelength Low-intensity Photon Therapy (LLPT) for Traumatic Brain Injuries
2010-09-08
analysis . These estimates are based on the variability in previously published experiments. Design: For each in vivo model of TBI, rats will be...ATP, GSH, apoptotic indicators, mitochondrial function, and changes in the levels of NSE and S100B proteins will be examined. Analysis of ATP, GSH...or to be run with the sample size intended. In particular, the weight drop assays were limited to the analysis of GSH levels. The cortical contusion
Liquid Storage at 4 deg C of Previously Frozen Red Cells
1987-12-01
adenosine tnphosphate (ATP). 2.3- acceptable red cell function. A post-thaw storage ca- diphosphoglycerate (2.3-DPG), glucose, supernatant hemo...and Received for publication September 22. 1986; revision received supernatant hemoglobin levels within the acceptable range, November 29, 1986, and...percent. All units were sterile at the end of the 21-day post- thaw storage period. 6.9 The mean red cell ATP and 2,3-DPG levels are shown in Figure 1
Altamirano, Francisco; Valladares, Denisse; Henríquez-Olguín, Carlos; Casas, Mariana; López, Jose R; Allen, Paul D; Jaimovich, Enrique
2013-01-01
Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM) decreased [Ca(2+)]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca(2+)]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB) fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca(2+)]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91(phox)/p47(phox) NOX2 subunits) and pro-apoptotic (Bax) genes in mdx diaphragm muscles and lowered serum creatine kinase (CK) levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca(2+)]r in mdx skeletal muscle cells. The results in this work open new perspectives towards possible targets for pharmacological approaches to treat DMD.
Henríquez-Olguín, Carlos; Casas, Mariana; López, Jose R.; Allen, Paul D.; Jaimovich, Enrique
2013-01-01
Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM) decreased [Ca2+]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB) fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca2+]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91phox/p47phox NOX2 subunits) and pro-apoptotic (Bax) genes in mdx diaphragm muscles and lowered serum creatine kinase (CK) levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca2+]r in mdx skeletal muscle cells. The results in this work open new perspectives towards possible targets for pharmacological approaches to treat DMD. PMID:24349043
Metabolic regulator Fnip1 is crucial for iNKT lymphocyte development
Park, Heon; Tsang, Mark; Iritani, Brian M.; Bevan, Michael J.
2014-01-01
Folliculin-interacting protein 1 (Fnip1) is an adaptor protein that physically interacts with AMPK, an energy-sensing kinase that stimulates mitochondrial biogenesis and autophagy in response to low ATP, while turning off energy consumption mediated by mammalian target of rapamycin. Previous studies with Fnip1-null mice revealed that Fnip1 is essential for pre–B-cell development. Here we report a critical role of Fnip1 in invariant natural killer T (iNKT) cell development. Thymic iNKT development in Fnip1−/− mice was arrested at stage 2 (NK1.1−CD44+) but development of CD4, CD8, γδ T-cell, and NK cell lineages proceeded normally. Enforced expression of a Vα14Jα18 iNKT TCR transgene or loss of the proapoptotic protein Bim did not rescue iNKT cell maturation in Fnip1−/− mice. Whereas most known essential transcription factors for iNKT cell development were represented normally, Fnip1−/− iNKT cells failed to down-regulate Promyelocytic leukemia zinc finger compared with their WT counterparts. Moreover, Fnip1−/− iNKT cells contained hyperactive mTOR and reduced mitochondrial number despite lower ATP levels, resulting in increased sensitivity to apoptosis. These results indicate that Fnip1 is vital for iNKT cell development by maintaining metabolic homeostasis in response to metabolic stress. PMID:24785297
Simeone, Kristina A; Matthews, Stephanie A; Samson, Kaeli K; Simeone, Timothy A
2014-01-01
Mitochondria actively participate in neurotransmission by providing energy (ATP) and maintaining normative concentrations of reactive oxygen species (ROS) in both presynaptic and postsynaptic elements. In human and animal epilepsies, ATP-producing respiratory rates driven by mitochondrial respiratory complex (MRC) I are reduced, antioxidant systems are attenuated and oxidative damage is increased. We report that MRCI-driven respiration and functional uncoupling (an inducible antioxidant mechanism) are reduced and levels of H2O2 are elevated in mitochondria isolated from KO mice. Experimental impairment of MRCI in WT hippocampal slices via rotenone reduces paired-pulse ratios (PPRs) at mossy fiber-CA3 synapses (resembling KO PPRs), and exacerbates seizure-like events in vitro. Daily treatment with AATP [a combination therapy composed of ascorbic acid (AA), alpha-tocopherol (T), sodium pyruvate (P) designed to synergistically target mitochondrial impairments] improved mitochondrial functions, mossy fiber PPRs, and reduced seizure burden index (SBI) scores and seizure incidence in KO mice. AATP pretreatment reduced severity of KA-induced seizures resulting in 100% protection from the severe tonic-clonic seizures in WT mice. These data suggest that restoration of bioenergetic homeostasis in the brain may represent a viable anti-seizure target for temporal lobe epilepsy. Copyright © 2013 Elsevier Inc. All rights reserved.