Sample records for maintain precise control

  1. System precisely controls oscillation of vibrating mass

    NASA Technical Reports Server (NTRS)

    Hancock, D. J.

    1967-01-01

    System precisely controls the sinusoidal amplitude of a vibrating mechanical mass. Using two sets of coils, the system regulates the drive signal amplitude at the precise level to maintain the mechanical mass when it reaches the desired vibration amplitude.

  2. Ground control requirements for precision processing of ERTS images

    USGS Publications Warehouse

    Burger, Thomas C.

    1973-01-01

    With the successful flight of the ERTS-1 satellite, orbital height images are available for precision processing into products such as 1:1,000,000-scale photomaps and enlargements up to 1:250,000 scale. In order to maintain positional error below 100 meters, control points for the precision processing must be carefully selected, clearly definitive on photos in both X and Y. Coordinates of selected control points measured on existing ½ and 15-minute standard maps provide sufficient accuracy for any space imaging system thus far defined. This procedure references the points to accepted horizontal and vertical datums. Maps as small as 1:250,000 scale can be used as source material for coordinates, but to maintain the desired accuracy, maps of 1:100,000 and larger scale should be used when available.

  3. Precision Pointing Control to and Accurate Target Estimation of a Non-Cooperative Vehicle

    NASA Technical Reports Server (NTRS)

    VanEepoel, John; Thienel, Julie; Sanner, Robert M.

    2006-01-01

    In 2004, NASA began investigating a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates in order to achieve capture by the proposed Hubble Robotic Vehicle (HRV), but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST. To generalize the situation, HST is the target vehicle and HRV is the chaser. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a control scheme. Non-cooperative in this context relates to the target vehicle no longer having the ability to maintain attitude control or transmit attitude knowledge.

  4. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture.

    PubMed

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José

    2016-07-22

    The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched.

  5. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture

    PubMed Central

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José

    2016-01-01

    The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched. PMID:27455265

  6. Fine pointing control for free-space optical communication

    NASA Technical Reports Server (NTRS)

    Portillo, A. A.; Ortiz, G. G.; Racho, C.

    2000-01-01

    Free-Space Optical Communications requires precise, stable laser pointing to maintain operating conditions. This paper also describes the software and hardware implementation of Fine Pointing Control based on the Optical Communications Demonstrator architecture.

  7. Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.

  8. A Nonlinear, Six-Degree of Freedom Precision Formation Control Algorithm, Based on Restricted Three Body Dynamics

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Luquette, Richard J.; Sanner, Robert M.

    2003-01-01

    Precision Formation Flying is an enabling technology for a variety of proposed space-based observatories, including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), the associated MAXIM pathfinder mission, and the Stellar Imager. An essential element of the technology is the control algorithm. This paper discusses the development of a nonlinear, six-degree of freedom (6DOF) control algorithm for maintaining the relative position and attitude of a spacecraft within a formation. The translation dynamics are based on the equations of motion for the restricted three body problem. The control law guarantees the tracking error convergences to zero, based on a Lyapunov analysis. The simulation, modelled after the MAXIM Pathfinder mission, maintains the relative position and attitude of a Follower spacecraft with respect to a Leader spacecraft, stationed near the L2 libration point in the Sun-Earth system.

  9. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    NASA Technical Reports Server (NTRS)

    Zhou, Zhiqiang

    2012-01-01

    A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.

  10. ONE SHAKE GATE FORMER

    DOEpatents

    Kalibjian, R.; Perez-Mendez, V.

    1957-08-20

    An improved circuit for forming square pulses having substantially short and precise durations is described. The gate forming circuit incorporates a secondary emission R. F. pentode adapted to receive input trigger pulses amd having a positive feedback loop comnected from the dynode to the control grid to maintain conduction in response to trigger pulses. A short circuited pulse delay line is employed to precisely control the conducting time of the tube and a circuit for squelching spurious oscillations is provided in the feedback loop.

  11. Multi-objective optimization in quantum parameter estimation

    NASA Astrophysics Data System (ADS)

    Gong, BeiLi; Cui, Wei

    2018-04-01

    We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.

  12. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  13. Apparatus and method for variable angle slant hole collimator

    DOEpatents

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  14. Design of Measure and Control System for Precision Pesticide Deploying Dynamic Simulating Device

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Liu, Pingzeng; Wang, Lu; Liu, Jiping; Wang, Lang; Han, Lei; Yang, Xinxin

    A measure and control system for precision deploying pesticide simulating equipment is designed in order to study pesticide deployment technology. The system can simulate every state of practical pesticide deployment, and carry through precise, simultaneous measure to every factor affecting pesticide deployment effects. The hardware and software incorporates a structural design of modularization. The system is divided into many different function modules of hardware and software, and exploder corresponding modules. The modules’ interfaces are uniformly defined, which is convenient for module connection, enhancement of system’s universality, explodes efficiency and systemic reliability, and make the program’s characteristics easily extended and easy maintained. Some relevant hardware and software modules can be adapted to other measures and control systems easily. The paper introduces the design of special numeric control system, the main module of information acquisition system and the speed acquisition module in order to explain the design process of the module.

  15. MagPy: A Python toolbox for controlling Magstim transcranial magnetic stimulators.

    PubMed

    McNair, Nicolas A

    2017-01-30

    To date, transcranial magnetic stimulation (TMS) studies manipulating stimulation parameters have largely used blocked paradigms. However, altering these parameters on a trial-by-trial basis in Magstim stimulators is complicated by the need to send regular (1Hz) commands to the stimulator. Additionally, effecting such control interferes with the ability to send TMS pulses or simultaneously present stimuli with high-temporal precision. This manuscript presents the MagPy toolbox, a Python software package that provides full control over Magstim stimulators via the serial port. It is able to maintain this control with no impact on concurrent processing, such as stimulus delivery. In addition, a specially-designed "QuickFire" serial cable is specified that allows MagPy to trigger TMS pulses with very low-latency. In a series of experimental simulations, MagPy was able to maintain uninterrupted remote control over the connected Magstim stimulator across all testing sessions. In addition, having MagPy enabled had no effect on stimulus timing - all stimuli were presented for precisely the duration specified. Finally, using the QuickFire cable, MagPy was able to elicit TMS pulses with sub-millisecond latencies. The MagPy toolbox allows for experiments that require manipulating stimulation parameters from trial to trial. Furthermore, it can achieve this in contexts that require tight control over timing, such as those seeking to combine TMS with fMRI or EEG. Together, the MagPy toolbox and QuickFire serial cable provide an effective means for controlling Magstim stimulators during experiments while ensuring high-precision timing. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Open Source Tools for Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic Manipulations.

    PubMed

    Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs

    2018-01-01

    Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.

  17. Real time computer controlled weld skate

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  18. Design and evaluation of an optical fine-pointing control system for telescopes utilizing a digital star sensor

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.; Romanczyk, K. C.

    1973-01-01

    One of the most significant problems associated with the development of large orbiting astronomical telescopes is that of maintaining the very precise pointing accuracy required. A proposed solution to this problem utilizes dual-level pointing control. The primary control system maintains the telescope structure attitude stabilized within the field of view to the desired accuracy. In order to demonstrate the feasibility of optically stabilizing the star images to the desired accuracy a regulating system has been designed and evaluated. The control system utilizes a digital star sensor and an optical star image motion compensator, both of which have been developed for this application. These components have been analyzed mathematically, analytical models have been developed, and hardware has been built and tested.

  19. Method for maintaining precise suction strip porosities

    NASA Technical Reports Server (NTRS)

    Gallimore, Frank H. (Inventor)

    1989-01-01

    This invention relates to a masking method generally and, more particularly to a method of masking perforated titanium sheets having laminar control suction strips. As illustrated in the drawings, a nonaerodynamic surface of a perforated sheet has alternating suction strip areas and bonding land areas. Suction strip tapes overlie the bonding land areas during application of a masking material to an upper surface of the suction strip tapes. Prior to bonding the perforated sheet to a composite structure, the bonding land tapes are removed. The entire opposite aerodynamic surface is masked with tape before bonding. This invention provides a precise control of suction strip porosities by ensuring that no chemicals penetrate the suction strip areas during bonding.

  20. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  1. High-precision micro/nano-scale machining system

    DOEpatents

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  2. Open Source Tools for Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic Manipulations

    PubMed Central

    Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs

    2018-01-01

    Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments. PMID:29867383

  3. Precise frequency calibration using television video carriers

    NASA Technical Reports Server (NTRS)

    Burkhardt, Edward E.

    1990-01-01

    The availability of inexpensive and quick precise frequency calibration methods is limited. VLF and GPS do offer precise calibration. However, antenna placement, cost of equipment, and calibration time place many restrictions on the user. The USNO maintained line-10 television Time of Coincidence (TOC) of station WTTG, channel 5, Washington, DC requires a frequency stable video carrier. This video carrier, 77.24 MHz is controlled by the same cesium beam standard controlling the TOC of line-10. Excellent frequency comparisons against this video carrier have been accomplished at 95 miles (153 km). With stable propagation and a three foot wire antenna, a part in 10(exp 9) can be determined in a few minutes. Inexpensive field equipment with a synthesized 1 kHz offset from the video carrier offers parts in 10(exp 11) calibrations in a few minutes using an oscilloscope as a phase comparator.

  4. Precise frequency calibration using television video carriers

    NASA Astrophysics Data System (ADS)

    Burkhardt, Edward E.

    1990-05-01

    The availability of inexpensive and quick precise frequency calibration methods is limited. VLF and GPS do offer precise calibration. However, antenna placement, cost of equipment, and calibration time place many restrictions on the user. The USNO maintained line-10 television Time of Coincidence (TOC) of station WTTG, channel 5, Washington, DC requires a frequency stable video carrier. This video carrier, 77.24 MHz is controlled by the same cesium beam standard controlling the TOC of line-10. Excellent frequency comparisons against this video carrier have been accomplished at 95 miles (153 km). With stable propagation and a three foot wire antenna, a part in 10(exp 9) can be determined in a few minutes. Inexpensive field equipment with a synthesized 1 kHz offset from the video carrier offers parts in 10(exp 11) calibrations in a few minutes using an oscilloscope as a phase comparator.

  5. High precision single qubit tuning via thermo-magnetic field control

    NASA Astrophysics Data System (ADS)

    Broadway, David A.; Lillie, Scott E.; Dontschuk, Nikolai; Stacey, Alastair; Hall, Liam T.; Tetienne, Jean-Philippe; Hollenberg, Lloyd C. L.

    2018-03-01

    Precise control of the resonant frequency of a spin qubit is of fundamental importance to quantum sensing protocols. We demonstrate a control technique on a single nitrogen-vacancy (NV) centre in diamond where the applied magnetic field is modified by fine-tuning a permanent magnet's magnetisation via temperature control. Through this control mechanism, nanoscale cross-relaxation spectroscopy of both electron and nuclear spins in the vicinity of the NV centre is performed. We then show that through maintaining the magnet at a constant temperature, an order of magnitude improvement in the stability of the NV qubit frequency can be achieved. This improved stability is tested in the polarisation of a small ensemble of nearby 13C spins via resonant cross-relaxation, and the lifetime of this polarisation explored. The effectiveness and relative simplicity of this technique may find use in the realisation of portable spectroscopy and/or hyperpolarisation systems.

  6. Investigation of Space Interferometer Control Using Imaging Sensor Output Feedback

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse A.; Cheng, Victor H. L.

    2003-01-01

    Numerous space interferometry missions are planned for the next decade to verify different enabling technologies towards very-long-baseline interferometry to achieve high-resolution imaging and high-precision measurements. These objectives will require coordinated formations of spacecraft separately carrying optical elements comprising the interferometer. High-precision sensing and control of the spacecraft and the interferometer-component payloads are necessary to deliver sub-wavelength accuracy to achieve the scientific objectives. For these missions, the primary scientific product of interferometer measurements may be the only source of data available at the precision required to maintain the spacecraft and interferometer-component formation. A concept is studied for detecting the interferometer's optical configuration errors based on information extracted from the interferometer sensor output. It enables precision control of the optical components, and, in cases of space interferometers requiring formation flight of spacecraft that comprise the elements of a distributed instrument, it enables the control of the formation-flying vehicles because independent navigation or ranging sensors cannot deliver the high-precision metrology over the entire required geometry. Since the concept can act on the quality of the interferometer output directly, it can detect errors outside the capability of traditional metrology instruments, and provide the means needed to augment the traditional instrumentation to enable enhanced performance. Specific analyses performed in this study include the application of signal-processing and image-processing techniques to solve the problems of interferometer aperture baseline control, interferometer pointing, and orientation of multiple interferometer aperture pairs.

  7. Workshop on Closed System Ecology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Self maintaining laboratory scale ecological systems completely isolated from exchanges of matter with external systems were demonstrated. These research tools are discussed in terms of their anticipated value in understanding (1) global ecological material and energy balances, (2) the dynamics of stability and instability in ecosystems, (3) the effects of man-made substances and structures on ecosystems, and (4) the precise requirements for dynamic control of controlled ecology life support systems (CELSS).

  8. Naive Beliefs in Baseball: Systematic Distortion in Perceived Time of Apex for Fly Balls

    ERIC Educational Resources Information Center

    Shaffer, Dennis M.; McBeath, Michael K.

    2005-01-01

    When fielders catch fly balls they use geometric properties to optically maintain control over the ball. The strategy provides ongoing guidance without indicating precise positional information concerning where the ball is located in space. Here, the authors show that observers have striking misconceptions about what the motion of projectiles…

  9. Lotus-on-chip: computer-aided design and 3D direct laser writing of bioinspired surfaces for controlling the wettability of materials and devices.

    PubMed

    Lantada, Andrés Díaz; Hengsbach, Stefan; Bade, Klaus

    2017-10-16

    In this study we present the combination of a math-based design strategy with direct laser writing as high-precision technology for promoting solid free-form fabrication of multi-scale biomimetic surfaces. Results show a remarkable control of surface topography and wettability properties. Different examples of surfaces inspired on the lotus leaf, which to our knowledge are obtained for the first time following a computer-aided design with this degree of precision, are presented. Design and manufacturing strategies towards microfluidic systems whose fluid driving capabilities are obtained just by promoting a design-controlled wettability of their surfaces, are also discussed and illustrated by means of conceptual proofs. According to our experience, the synergies between the presented computer-aided design strategy and the capabilities of direct laser writing, supported by innovative writing strategies to promote final size while maintaining high precision, constitute a relevant step forward towards materials and devices with design-controlled multi-scale and micro-structured surfaces for advanced functionalities. To our knowledge, the surface geometry of the lotus leaf, which has relevant industrial applications thanks to its hydrophobic and self-cleaning behavior, has not yet been adequately modeled and manufactured in an additive way with the degree of precision that we present here.

  10. ASDTIC: A feedback control innovation

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (Analog Signal to Discrete Time Interval Converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  11. ASDTIC - A feedback control innovation.

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (analog signal to discrete time interval converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  12. Fabrication of tissue engineered tympanic membrane patches using computer-aided design and injection molding.

    PubMed

    Hott, Morgan E; Megerian, Cliff A; Beane, Rich; Bonassar, Lawrence J

    2004-07-01

    The goal of the current study was to use computer-aided design and injection molding technologies to tissue engineer precisely shaped cartilage in the shape of butterfly tympanic membrane patches out of chondrocyte-seeded calcium alginate gels. Molds were designed on SolidWorks 2000 and built out of acrylonitrile butadiene styrene (ABS) using fused deposition modeling (FDM). Tympanic membrane patches were fabricated using bovine articular chondrocytes seeded at 50 x 10 cells/mL in 2% calcium alginate gels. Molded patches were cultured in vitro for up to 10 weeks and assessed biochemically, morphologically, and histologically. Unmolded patches demonstrated outstanding dimensional fidelity, with a volumetric precision of at least 3 microL, and maintained their shape well for up to 10 weeks of in vitro culture. Glycosaminoglycan and collagen content increased steadily over 10 weeks in culture, demonstrating continual deposition of new extracellular matrix consistent with new tissue development. The use of computer-aided design and injection molding technologies allows for the fabrication of very small, precisely shaped chondrocyte-seeded calcium alginate structures that faithfully maintain their shape during in vitro culture. In vitro fabrication of tympanic membrane patches with a precisely controlled geometry may have the potential to provide a minimally invasive alternative to traditional methods for the repair of chronic tympanic membrane perforations.

  13. Functional Laser Trimming Of Thin Film Resistors On Silicon ICs

    NASA Astrophysics Data System (ADS)

    Mueller, Michael J.; Mickanin, Wes

    1986-07-01

    Modern Laser Wafer Trimming (LWT) technology achieves exceptional analog circuit performance and precision while maintain-ing the advantages of high production throughput and yield. Microprocessor-driven instrumentation has both emphasized the role of data conversion circuits and demanded sophisticated signal conditioning functions. Advanced analog semiconductor circuits with bandwidths over 1 GHz, and high precision, trimmable, thin-film resistors meet many of todays emerging circuit requirements. Critical to meeting these requirements are optimum choices of laser characteristics, proper materials, trimming process control, accurate modeling of trimmed resistor performance, and appropriate circuit design. Once limited exclusively to hand-crafted, custom integrated circuits, designs are now available in semi-custom circuit configurations. These are similar to those provided for digital designs and supported by computer-aided design (CAD) tools. Integrated with fully automated measurement and trimming systems, these quality circuits can now be produced in quantity to meet the requirements of communications, instrumentation, and signal processing markets.

  14. Standard Reference Specimens in Quality Control of Engineering Surfaces

    PubMed Central

    Song, J. F.; Vorburger, T. V.

    1991-01-01

    In the quality control of engineering surfaces, we aim to understand and maintain a good relationship between the manufacturing process and surface function. This is achieved by controlling the surface texture. The control process involves: 1) learning the functional parameters and their control values through controlled experiments or through a long history of production and use; 2) maintaining high accuracy and reproducibility with measurements not only of roughness calibration specimens but also of real engineering parts. In this paper, the characteristics, utilizations, and limitations of different classes of precision roughness calibration specimens are described. A measuring procedure of engineering surfaces, based on the calibration procedure of roughness specimens at NIST, is proposed. This procedure involves utilization of check specimens with waveform, wavelength, and other roughness parameters similar to functioning engineering surfaces. These check specimens would be certified under standardized reference measuring conditions, or by a reference instrument, and could be used for overall checking of the measuring procedure and for maintaining accuracy and agreement in engineering surface measurement. The concept of “surface texture design” is also suggested, which involves designing the engineering surface texture, the manufacturing process, and the quality control procedure to meet the optimal functional needs. PMID:28184115

  15. Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO

    PubMed Central

    Zhang, Chaozhu; Han, Jinan; Li, Ke

    2014-01-01

    The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750

  16. Optimization of industrial microorganisms: recent advances in synthetic dynamic regulators.

    PubMed

    Min, Byung Eun; Hwang, Hyun Gyu; Lim, Hyun Gyu; Jung, Gyoo Yeol

    2017-01-01

    Production of biochemicals by industrial fermentation using microorganisms requires maintaining cellular production capacity, because maximal productivity is economically important. High-productivity microbial strains can be developed using static engineering, but these may not maintain maximal productivity throughout the culture period as culture conditions and cell states change dynamically. Additionally, economic reasons limit heterologous protein expression using inducible promoters to prevent metabolic burden for commodity chemical and biofuel production. Recently, synthetic and systems biology has been used to design genetic circuits, precisely controlling gene expression or influencing genetic behavior toward a desired phenotype. Development of dynamic regulators can maintain cellular phenotype in a maximum production state in response to factors including cell concentration, oxygen, temperature, pH, and metabolites. Herein, we introduce dynamic regulators of industrial microorganism optimization and discuss metabolic flux fine control by dynamic regulators in response to metabolites or extracellular stimuli, robust production systems, and auto-induction systems using quorum sensing.

  17. Some aspects of precise laser machining - Part 1: Theory

    NASA Astrophysics Data System (ADS)

    Wyszynski, Dominik; Grabowski, Marcin; Lipiec, Piotr

    2018-05-01

    The paper describes the role of laser beam polarization and deflection on quality of laser beam machined parts made of difficult to cut materials (used for cutting tools). Application of efficient and precise cutting tool (laser beam) has significant impact on preparation and finishing operations of cutting tools for aviation part manufacturing. Understanding the phenomena occurring in the polarized light laser cutting gave possibility to design, build and test opto-mechanical instrumentation to control and maintain process parameters and conditions. The research was carried within INNOLOT program funded by Polish National Centre for Research and Development.

  18. Divergent Effects of Cognitive Load on Quiet Stance and Task-Linked Postural Coordination

    ERIC Educational Resources Information Center

    Mitra, Suvobrata; Knight, Alec; Munn, Alexandra

    2013-01-01

    Performing a cognitive task while maintaining upright stance can lead to increased or reduced body sway depending on tasks and experimental conditions. Because greater sway is commonly taken to indicate loosened postural control, and vice versa, the precise impact of cognitive load on postural stability has remained unclear. In much of the large…

  19. The String Stability of a Trajectory-Based Interval Management Algorithm in the Midterm Airspace

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.

    2015-01-01

    NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides terminal controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain a precise spacing interval behind a target aircraft. As the percentage of IM equipped aircraft increases, controllers may provide IM clearances to sequences, or strings, of IM-equipped aircraft. It is important for these strings to maintain stable performance. This paper describes an analytic analysis of the string stability of the latest version of NASA's IM algorithm and a fast-time simulation designed to characterize the string performance of the IM algorithm. The analytic analysis showed that the spacing algorithm has stable poles, indicating that a spacing error perturbation will be reduced as a function of string position. The fast-time simulation investigated IM operations at two airports using constraints associated with the midterm airspace, including limited information of the target aircraft's intended speed profile and limited information of the wind forecast on the target aircraft's route. The results of the fast-time simulation demonstrated that the performance of the spacing algorithm is acceptable for strings of moderate length; however, there is some degradation in IM performance as a function of string position.

  20. Controlled environment vitrification system for preparation of liquids

    DOEpatents

    Bellare, Jayesh R.; Davis, Howard T.; Scriven, II, L. Edward; Talmon, Yeshayahu

    1988-01-01

    A system for preparing specimens in a controlled environment to insure that a liquid or partially liquid specimen is maintained in its original state while it is being prepared, and once prepared the specimen is vitrified or solidified with minimal alteration of its microstructure. The controlled environment is provided within a chamber where humidity and temperature can be controlled precisely while the specimen is prepared. The specimen is mounted on a plunger and a shutter controlled opening is opened substantially simultaneously with release of the plunger so the specimen is propelled through the shutter into an adjacent cryogenic bath.

  1. Controlled environment vitrification system for preparation of liquids

    DOEpatents

    Bellare, J.R.; Davis, H.T.; Scriven, L.E. II; Talmon, Y.

    1988-06-28

    A system is described for preparing specimens in a controlled environment to insure that a liquid or partially liquid specimen is maintained in its original state while it is being prepared, and once prepared the specimen is vitrified or solidified with minimal alteration of its microstructure. The controlled environment is provided within a chamber where humidity and temperature can be controlled precisely while the specimen is prepared. The specimen is mounted on a plunger and a shutter controlled opening is opened substantially simultaneously with release of the plunger so the specimen is propelled through the shutter into an adjacent cryogenic bath. 7 figs.

  2. Using Thin-Film Thermometers as Heaters in Thermal Control Applications

    NASA Technical Reports Server (NTRS)

    Cho, Hyung J.; Penanen, Konstantin; Sukhatme, Kalyani G.; Holmes, Warren A.; Courts, Scott

    2010-01-01

    A cryogenic sensor maintains calibration at approximately equal to 4.2 K to better than 2 mK (< 0.5 percent resistance repeatability) after being heated to approximately equal 40 K with approximately equal 0.5 W power. The sensor withstands 4 W power dissipation when immersed in liquid nitrogen with verified resistance reproducibility of, at worst, 1 percent. The sensor maintains calibration to 0.1 percent after being heated with 1-W power at approximately equal 77 K for a period of 48 hours. When operated with a readout scheme that is capable of mitigating the self-heating calibration errors, this and similar sensors can be used for precision (mK stability) temperature control without the need of separate heaters and associated wiring/cabling.

  3. Safe teleoperation based on flexible intraoperative planning for robot-assisted laser microsurgery.

    PubMed

    Mattos, Leonardo S; Caldwell, Darwin G

    2012-01-01

    This paper describes a new intraoperative planning system created to improve precision and safety in teleoperated laser microsurgeries. It addresses major safety issues related to real-time control of a surgical laser during teleoperated procedures, which are related to the reliability and robustness of the telecommunication channels. Here, a safe solution is presented, consisting in a new planning system architecture that maintains the flexibility and benefits of real-time teleoperation and keeps the surgeon in control of all surgical actions. The developed system is based on our virtual scalpel system for robot-assisted laser microsurgery, and allows the intuitive use of stylus to create surgical plans directly over live video of the surgical field. In this case, surgical plans are defined as graphic objects overlaid on the live video, which can be easily modified or replaced as needed, and which are transmitted to the main surgical system controller for subsequent safe execution. In the process of improving safety, this new planning system also resulted in improved laser aiming precision and improved capability for higher quality laser procedures, both due to the new surgical plan execution module, which allows very fast and precise laser aiming control. Experimental results presented herein show that, in addition to the safety improvements, the new planning system resulted in a 48% improvement in laser aiming precision when compared to the previous virtual scalpel system.

  4. High-precision register error control using active-motion-based roller in roll-to-roll gravure printing

    NASA Astrophysics Data System (ADS)

    Jung, Hoeryong; Nguyen, Ho Anh Duc; Choi, Jaeho; Yim, Hongsik; Shin, Kee-Hyun

    2018-05-01

    The roll-to-roll (R2R) gravure printing method is increasingly being utilized to fabricate electronic devices such as organic thin-film transistor (OTFT), radio-frequency identification (RFID) tags, and flexible PCB owing to its characteristics of high throughput and large area. High precision registration is crucial to satisfy the demand for device miniaturization, the improvement of resolution and accuracy. This paper presents a novel register control method that uses an active motion-based roller (AMBR) to reduce register error in R2R gravure printing. Instead of shifting the phase of the downstream printing roller, which leads to undesired tension disturbance, the 1 degree-of-freedom (1-DOF) mechanical device AMBR is used to compensate for web elongation by controlling its motion according to the register error. The performance of the proposed control method is verified through simulations and experiments, and the results show that the proposed register control method using the AMBR could maintain a register error under ±15 µm.

  5. Adiabatic gate teleportation.

    PubMed

    Bacon, Dave; Flammia, Steven T

    2009-09-18

    The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.

  6. Multichannel infrared fiber optic radiometer for controlled microwave heating

    NASA Astrophysics Data System (ADS)

    Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1990-07-01

    An infrared fiberoptic multichannel radiometer was used for monitoring and controlling the temperature of samples in a microwave heating system. The temperature of water samples was maintained at about 40 °C, with a standard deviation of +/- 0.2°C and a maximum deviation of +/- 0.5°C. The temperature was monitored on the same time at several points on the surface and inside the sample. This novel controlled system is reliable and precise. Such system would be very useful for medical applications such as hypothermia and hyperthermi a.

  7. Formation Flying of Components of a Large Space Telescope

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Quadrelli, Marco; Breckenridge, William

    2009-01-01

    A conceptual space telescope having an aperture tens of meters wide and a focal length of hundreds of meters would be implemented as a group of six separate optical modules flying in formation: a primary-membrane-mirror module, a relay-mirror module, a focal-plane-assembly module containing a fast steering mirror and secondary and tertiary optics, a primary-mirror-figure-sensing module, a scanning-electron-beam module for controlling the shape of the primary mirror, and a sunshade module. Formation flying would make it unnecessary to maintain the required precise alignments among the modules by means of an impractically massive rigid structure. Instead, a control system operating in conjunction with a metrology system comprising optical and radio subsystems would control the firing of small thrusters on the separate modules to maintain the formation, thereby acting as a virtual rigid structure. The control system would utilize a combination of centralized- and decentralized-control methods according to a leader-follower approach. The feasibility of the concept was demonstrated in computational simulations that showed that relative positions could be maintained to within a fraction of a millimeter and orientations to within several microradians.

  8. iMAST FY2002 Annual Report

    DTIC Science & Technology

    2002-01-01

    of large precision drive train components such as transmission housings. The approach being pursued, under this program structure, is to eliminate the...an optimum coating and/or coating process will be developed and implemented, and will eliminate /minimize fretting and low-cycle fatigue and the blade...maintaining adequate pollution control efficiency. Benefits: ★ Utilizes MCLB infrastructure ★ Avoids costs associated with existing APCS ★ Biofiltration

  9. A Low-cost Environmental Control System for Precise Radial Velocity Spectrometers

    NASA Astrophysics Data System (ADS)

    Sliski, David H.; Blake, Cullen H.; Halverson, Samuel

    2017-12-01

    We present an environmental control system (ECS) designed to achieve milliKelvin (mK) level temperature stability for small-scale astronomical instruments. This ECS is inexpensive and is primarily built from commercially available components. The primary application for our ECS is the high-precision Doppler spectrometer MINERVA-Red, where the thermal variations of the optical components within the instrument represent a major source of systematic error. We demonstrate ±2 mK temperature stability within a 0.5 m3 thermal enclosure using resistive heaters in conjunction with a commercially available PID controller and off-the-shelf thermal sensors. The enclosure is maintained above ambient temperature, enabling rapid cooling through heat dissipation into the surrounding environment. We demonstrate peak-to-valley (PV) temperature stability of better than 5 mK within the MINERVA-Red vacuum chamber, which is located inside the thermal enclosure, despite large temperature swings in the ambient laboratory environment. During periods of stable laboratory conditions, the PV variations within the vacuum chamber are less than 3 mK. This temperature stability is comparable to the best stability demonstrated for Doppler spectrometers currently achieving m s-1 radial velocity precision. We discuss the challenges of using commercially available thermoelectrically cooled CCD cameras in a temperature-stabilized environment, and demonstrate that the effects of variable heat output from the CCD camera body can be mitigated using PID-controlled chilled water systems. The ECS presented here could potentially provide the stable operating environment required for future compact “astrophotonic” precise radial velocity (PRV) spectrometers to achieve high Doppler measurement precision with a modest budget.

  10. Cockpit displayed traffic information and distributed management in air traffic control

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.

    1980-01-01

    A graphical display of information (such as surrounding aircraft and navigation routes) in the cockpit on a cathode ray tube has been proposed for improving the safety, orderliness, and expeditiousness of the air traffic control system. An investigation of this method at NASA-Ames indicated a large reduction in controller verbal work load without increasing pilot verbal load; the visual work may be increased. The cockpit displayed traffic and navigation information system reduced response delays permitting pilots to maintain their spacing more closely and precisely than when depending entirely on controller-issued radar vectors and speed command.

  11. A control system for orbiting tethered-body operations

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1975-01-01

    This paper shows that through proper control logic the transfer of men and cargo between spacecrafts, or the 'positioning of packages' adjacent to orbiters, can be accomodated safely and predictably using tethers. Also, these systems may be adapted to rescue and retrieval operations where 'controlled motions' must be maintained. Shown here is a method which illustrates how tethered-body motions are controlled for 'reel-in' and 'reel-out' operations, and for precise 'positioning' purposes. Three control modes are examined; from these are derived sets of universal control parameters capable of predescribing systems of similar types. In addition, these parameters form a basis for designing tethered-body systems and operations.

  12. Control of muscle relaxation during anesthesia: a novel approach for clinical routine.

    PubMed

    Stadler, Konrad S; Schumacher, Peter M; Hirter, Sibylle; Leibundgut, Daniel; Bouillon, Thomas W; Glattfelder, Adolf H; Zbinden, Alex M

    2006-03-01

    During general anesthesia drugs are administered to provide hypnosis, ensure analgesia, and skeletal muscle relaxation. In this paper, the main components of a newly developed controller for skeletal muscle relaxation are described. Muscle relaxation is controlled by administration of neuromuscular blocking agents. The degree of relaxation is assessed by supramaximal train-of-four stimulation of the ulnar nerve and measuring the electromyogram response of the adductor pollicis muscle. For closed-loop control purposes, a physiologically based pharmacokinetic and pharmacodynamic model of the neuromuscular blocking agent mivacurium is derived. The model is used to design an observer-based state feedback controller. Contrary to similar automatic systems described in the literature this controller makes use of two different measures obtained in the train-of-four measurement to maintain the desired level of relaxation. The controller is validated in a clinical study comparing the performance of the controller to the performance of the anesthesiologist. As presented, the controller was able to maintain a preselected degree of muscle relaxation with excellent precision while minimizing drug administration. The controller performed at least equally well as the anesthesiologist.

  13. Development of an economical, autonomous pHstat system for culturing phytoplankton under steady state or dynamic conditions.

    PubMed

    Golda, Rachel L; Golda, Mark D; Hayes, Jacqueline A; Peterson, Tawnya D; Needoba, Joseph A

    2017-05-01

    Laboratory investigations of physiological processes in phytoplankton require precise control of experimental conditions. Chemostats customized to control and maintain stable pH levels (pHstats) are ideally suited for investigations of the effects of pH on phytoplankton physiology, for example in context of ocean acidification. Here we designed and constructed a simple, flexible pHstat system and demonstrated its operational capabilities under laboratory culture conditions. In particular, the system is useful for simulating natural cyclic pH variability within aquatic ecosystems, such as diel fluctuations that result from metabolic activity or tidal mixing in estuaries. The pHstat system operates in two modes: (1) static/set point pH, which maintains pH at a constant level, or (2) dynamic pH, which generates regular, sinusoidal pH fluctuations by systematically varying pH according to user-defined parameters. The pHstat is self-regulating through the use of interchangeable electronically controlled reagent or gas-mediated pH-modification manifolds, both of which feature flow regulation by solenoid valves. Although effective pH control was achieved using both liquid reagent additions and gas-mediated methods, the liquid manifold exhibited tighter control (±0.03pH units) of the desired pH than the gas manifold (±0.10pH units). The precise control provided by this pHstat system, as well as its operational flexibility will facilitate studies that examine responses by marine microbiota to fluctuations in pH in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Accurate State Estimation and Tracking of a Non-Cooperative Target Vehicle

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2006-01-01

    Autonomous space rendezvous scenarios require knowledge of the target vehicle state in order to safely dock with the chaser vehicle. Ideally, the target vehicle state information is derived from telemetered data, or with the use of known tracking points on the target vehicle. However, if the target vehicle is non-cooperative and does not have the ability to maintain attitude control, or transmit attitude knowledge, the docking becomes more challenging. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a tracking control scheme. The approach is tested with the robotic servicing mission concept for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates, but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST.

  15. Compensatory changes accompanying chronic forced use of the nondominant hand by unilateral amputees.

    PubMed

    Philip, Benjamin A; Frey, Scott H

    2014-03-05

    Amputation of the dominant hand forces patients to use the nondominant hand exclusively, including for tasks (e.g., writing and drawing) that were formerly the sole domain of the dominant hand. The behavioral and neurological effects of this chronic forced use of the nondominant hand remain largely unknown. Yet, these effects may shed light on the potential to compensate for degradation or loss of dominant hand function, as well as the mechanisms that support motor learning under conditions of very long-term training. We used a novel precision drawing task and fMRI to investigate 8 adult human amputees with chronic (mean 33 years) unilateral dominant (right) hand absence, and right-handed matched controls (8 for fMRI, 19 for behavior). Amputees' precision drawing performances with their left hands reached levels of smoothness (associated with left hemisphere control), acceleration time (associated with right hemisphere control), and speed equivalent to controls' right hands, whereas accuracy maintained a level comparable with controls' left hands. This compensation is supported by an experience-dependent shift from heavy reliance on the dorsodorsal parietofrontal pathway (feedback control) to the ventrodorsal pathway and prefrontal regions involved in the cognitive control of goal-directed actions. Relative to controls, amputees also showed increased activity within the former cortical sensorimotor hand territory in the left (ipsilateral) hemisphere. These data demonstrate that, with chronic and exclusive forced use, the speed and quality of nondominant hand precision endpoint control in drawing can achieve levels nearly comparable with the dominant hand.

  16. Interplay between population firing stability and single neuron dynamics in hippocampal networks

    PubMed Central

    Slomowitz, Edden; Styr, Boaz; Vertkin, Irena; Milshtein-Parush, Hila; Nelken, Israel; Slutsky, Michael; Slutsky, Inna

    2015-01-01

    Neuronal circuits' ability to maintain the delicate balance between stability and flexibility in changing environments is critical for normal neuronal functioning. However, to what extent individual neurons and neuronal populations maintain internal firing properties remains largely unknown. In this study, we show that distributions of spontaneous population firing rates and synchrony are subject to accurate homeostatic control following increase of synaptic inhibition in cultured hippocampal networks. Reduction in firing rate triggered synaptic and intrinsic adaptive responses operating as global homeostatic mechanisms to maintain firing macro-stability, without achieving local homeostasis at the single-neuron level. Adaptive mechanisms, while stabilizing population firing properties, reduced short-term facilitation essential for synaptic discrimination of input patterns. Thus, invariant ongoing population dynamics emerge from intrinsically unstable activity patterns of individual neurons and synapses. The observed differences in the precision of homeostatic control at different spatial scales challenge cell-autonomous theory of network homeostasis and suggest the existence of network-wide regulation rules. DOI: http://dx.doi.org/10.7554/eLife.04378.001 PMID:25556699

  17. System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.

    2016-01-01

    The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.

  18. Reducing Bolt Preload Variation with Angle-of-Twist Bolt Loading

    NASA Technical Reports Server (NTRS)

    Thompson, Bryce; Nayate, Pramod; Smith, Doug; McCool, Alex (Technical Monitor)

    2001-01-01

    Critical high-pressure sealing joints on the Space Shuttle reusable solid rocket motor require precise control of bolt preload to ensure proper joint function. As the reusable solid rocket motor experiences rapid internal pressurization, correct bolt preloads maintain the sealing capability and structural integrity of the hardware. The angle-of-twist process provides the right combination of preload accuracy, reliability, process control, and assembly-friendly design. It improves significantly over previous methods. The sophisticated angle-of-twist process controls have yielded answers to all discrepancies encountered while the simplicity of the root process has assured joint preload reliability.

  19. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    NASA Technical Reports Server (NTRS)

    Zhou, Zhiqiang

    2010-01-01

    The accuracy of spacecraft attitude control using magnetic actuators only is low and on the order of 0.4-5 degrees. The key reason is that the magnetic torque is two-dimensional and it is only in the plane perpendicular to the magnetic field vector. In this paper novel attitude control algorithms using the combination of magnetic actuators with Reaction Wheel Assembles (RWAs) or other types of actuators, such as thrusters, are presented. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for Nadir pointing, pitch and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude control accuracy is comparable with RWAs based attitude control. The algorithms are also useful for the RWAs based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode and the control accuracy can be maintained.

  20. Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration.

    PubMed

    Tarafder, Solaiman; Koch, Alia; Jun, Yena; Chou, Conrad; Awadallah, Mary R; Lee, Chang H

    2016-04-25

    Three dimensional (3D) printing has emerged as an efficient tool for tissue engineering and regenerative medicine, given its advantages for constructing custom-designed scaffolds with tunable microstructure/physical properties. Here we developed a micro-precise spatiotemporal delivery system embedded in 3D printed scaffolds. PLGA microspheres (μS) were encapsulated with growth factors (GFs) and then embedded inside PCL microfibers that constitute custom-designed 3D scaffolds. Given the substantial difference in the melting points between PLGA and PCL and their low heat conductivity, μS were able to maintain its original structure while protecting GF's bioactivities. Micro-precise spatial control of multiple GFs was achieved by interchanging dispensing cartridges during a single printing process. Spatially controlled delivery of GFs, with a prolonged release, guided formation of multi-tissue interfaces from bone marrow derived mesenchymal stem/progenitor cells (MSCs). To investigate efficacy of the micro-precise delivery system embedded in 3D printed scaffold, temporomandibular joint (TMJ) disc scaffolds were fabricated with micro-precise spatiotemporal delivery of CTGF and TGFβ3, mimicking native-like multiphase fibrocartilage. In vitro, TMJ disc scaffolds spatially embedded with CTGF/TGFβ3-μS resulted in formation of multiphase fibrocartilaginous tissues from MSCs. In vivo, TMJ disc perforation was performed in rabbits, followed by implantation of CTGF/TGFβ3-μS-embedded scaffolds. After 4 wks, CTGF/TGFβ3-μS embedded scaffolds significantly improved healing of the perforated TMJ disc as compared to the degenerated TMJ disc in the control group with scaffold embedded with empty μS. In addition, CTGF/TGFβ3-μS embedded scaffolds significantly prevented arthritic changes on TMJ condyles. In conclusion, our micro-precise spatiotemporal delivery system embedded in 3D printing may serve as an efficient tool to regenerate complex and inhomogeneous tissues.

  1. Development and Operation of an Automatic Rotor Trim Control System for the UH-60 Individual Blade Control Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.; Tischler, Mark B.

    2010-01-01

    An automatic rotor trim control system was developed and successfully used during a wind tunnel test of a full-scale UH-60 rotor system with Individual Blade Control (IBC) actuators. The trim control system allowed rotor trim to be set more quickly, precisely and repeatably than in previous wind tunnel tests. This control system also allowed the rotor trim state to be maintained during transients and drift in wind tunnel flow, and through changes in IBC actuation. The ability to maintain a consistent rotor trim state was key to quickly and accurately evaluating the effect of IBC on rotor performance, vibration, noise and loads. This paper presents details of the design and implementation of the trim control system including the rotor system hardware, trim control requirements, and trim control hardware and software implementation. Results are presented showing the effect of IBC on rotor trim and dynamic response, a validation of the rotor dynamic simulation used to calculate the initial control gains and tuning of the control system, and the overall performance of the trim control system during the wind tunnel test.

  2. Estimating maneuvers for precise relative orbit determination using GPS

    NASA Astrophysics Data System (ADS)

    Allende-Alba, Gerardo; Montenbruck, Oliver; Ardaens, Jean-Sébastien; Wermuth, Martin; Hugentobler, Urs

    2017-01-01

    Precise relative orbit determination is an essential element for the generation of science products from distributed instrumentation of formation flying satellites in low Earth orbit. According to the mission profile, the required formation is typically maintained and/or controlled by executing maneuvers. In order to generate consistent and precise orbit products, a strategy for maneuver handling is mandatory in order to avoid discontinuities or precision degradation before, after and during maneuver execution. Precise orbit determination offers the possibility of maneuver estimation in an adjustment of single-satellite trajectories using GPS measurements. However, a consistent formulation of a precise relative orbit determination scheme requires the implementation of a maneuver estimation strategy which can be used, in addition, to improve the precision of maneuver estimates by drawing upon the use of differential GPS measurements. The present study introduces a method for precise relative orbit determination based on a reduced-dynamic batch processing of differential GPS pseudorange and carrier phase measurements, which includes maneuver estimation as part of the relative orbit adjustment. The proposed method has been validated using flight data from space missions with different rates of maneuvering activity, including the GRACE, TanDEM-X and PRISMA missions. The results show the feasibility of obtaining precise relative orbits without degradation in the vicinity of maneuvers as well as improved maneuver estimates that can be used for better maneuver planning in flight dynamics operations.

  3. Time-optimized laser micro machining by using a new high dynamic and high precision galvo scanner

    NASA Astrophysics Data System (ADS)

    Jaeggi, Beat; Neuenschwander, Beat; Zimmermann, Markus; Zecherle, Markus; Boeckler, Ernst W.

    2016-03-01

    High accuracy, quality and throughput are key factors in laser micro machining. To obtain these goals the ablation process, the machining strategy and the scanning device have to be optimized. The precision is influenced by the accuracy of the galvo scanner and can further be enhanced by synchronizing the movement of the mirrors with the laser pulse train. To maintain a high machining quality i.e. minimum surface roughness, the pulse-to-pulse distance has also to be optimized. Highest ablation efficiency is obtained by choosing the proper laser peak fluence together with highest specific removal rate. The throughput can now be enhanced by simultaneously increasing the average power, the repetition rate as well as the scanning speed to preserve the fluence and the pulse-to-pulse distance. Therefore a high scanning speed is of essential importance. To guarantee the required excellent accuracy even at high scanning speeds a new interferometry based encoder technology was used, that provides a high quality signal for closed-loop control of the galvo scanner position. Low inertia encoder design enables a very dynamic scanner system, which can be driven to very high line speeds by a specially adapted control solution. We will present results with marking speeds up to 25 m/s using a f = 100 mm objective obtained with a new scanning system and scanner tuning maintaining a precision of about 5 μm. Further it will be shown that, especially for short line lengths, the machining time can be minimized by choosing the proper speed which has not to be the maximum one.

  4. Overcoming gaps and bottlenecks to advance precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Maintaining a clear understanding of the technology gaps, knowledge needs, and training bottlenecks is required for improving adoption of precision agriculture. As an industry, precision agriculture embraces tools, methods, and practices that are constantly changing, requiring industry, education, a...

  5. Influences of arm proprioception and degrees of freedom on postural control with light touch feedback.

    PubMed

    Rabin, Ely; DiZio, Paul; Ventura, Joel; Lackner, James R

    2008-02-01

    Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.

  6. Advanced Photonic Sensors Enabled by Semiconductor Bonding

    DTIC Science & Technology

    2010-05-31

    a dry scroll backing pump to maintain the high differential pressure between the UV gun and the sample/analysis chamber. We also replaced the...semiconductor materials in an ultra-high vacuum (UHV) environment where the properties of the interface can be controlled with atomic-level precision. Such...year research program, we designed and constructed a unique system capable of fusion bonding two wafers in an ultra-high vacuum environment. This system

  7. Seismic Motion Stability, Measurement and Precision Control.

    DTIC Science & Technology

    1979-12-01

    tiltmeter . Tilt was corrected by changing air pressure in one bank of isolators to maintain the reference tiltmeter at null well within the 0.1 arcsecond...frequency rotations (0-0.1 Hz), a high quality, two-axis tiltmeter is used. The azimuth orientation angle could be measured with a four-position gyro...compassing system with considerably less accuracy than the tiltmeters . However, it would provide a continuous automatic azimuth determination update every

  8. Source And Sink Of Iodine For Drinking Water

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Flanagan, David T.; Gibbons, Randall E.

    1991-01-01

    Proposed system for controlling concentration of iodine in potable water exploits temperature dependence of equilibrium partition of iodine between solution in water and residence in ion-exchange resin. Used to maintain concentration of iodine sufficient to kill harmful microbes, but not so great to make water unpalatable. Requires little attention, yet controls concentration of iodine more precisely than iodination and deiodination by manual techniques. Conceived for use aboard spacecraft, system has terrestrial applications in regions where water must be kept potable, resupply difficult, and system must operate largely unattended.

  9. Working memory recall precision is a more sensitive index than span.

    PubMed

    Zokaei, Nahid; Burnett Heyes, Stephanie; Gorgoraptis, Nikos; Budhdeo, Sanjay; Husain, Masud

    2015-09-01

    Delayed adjustment tasks have recently been developed to examine working memory (WM) precision, that is, the resolution with which items maintained in memory are recalled. However, despite their emerging use in experimental studies of healthy people, evaluation of patient populations is sparse. We first investigated the validity of adjustment tasks, comparing precision with classical span measures of memory across the lifespan in 114 people. Second, we asked whether precision measures can potentially provide a more sensitive measure of WM than traditional span measures. Specifically, we tested this hypothesis examining WM in a group with early, untreated Parkinson's disease (PD) and its modulation by subsequent treatment on dopaminergic medication. Span measures correlated with precision across the lifespan: in children, young, and elderly participants. However, they failed to detect changes in WM in PD patients, either pre- or post-treatment initiation. By contrast, recall precision was sensitive enough to pick up such changes. PD patients pre-medication were significantly impaired compared to controls, but improved significantly after 3 months of being established on dopaminergic medication. These findings suggest that precision methods might provide a sensitive means to investigate WM and its modulation by interventions in clinical populations. © 2014 The Authors Journal of Neuropsychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  10. Superior Intraparietal Sulcus Controls the Variability of Visual Working Memory Precision.

    PubMed

    Galeano Weber, Elena M; Peters, Benjamin; Hahn, Tim; Bledowski, Christoph; Fiebach, Christian J

    2016-05-18

    Limitations of working memory (WM) capacity depend strongly on the cognitive resources that are available for maintaining WM contents in an activated state. Increasing the number of items to be maintained in WM was shown to reduce the precision of WM and to increase the variability of WM precision over time. Although WM precision was recently associated with neural codes particularly in early sensory cortex, we have so far no understanding of the neural bases underlying the variability of WM precision, and how WM precision is preserved under high load. To fill this gap, we combined human fMRI with computational modeling of behavioral performance in a delayed color-estimation WM task. Behavioral results replicate a reduction of WM precision and an increase of precision variability under high loads (5 > 3 > 1 colors). Load-dependent BOLD signals in primary visual cortex (V1) and superior intraparietal sulcus (IPS), measured during the WM task at 2-4 s after sample onset, were modulated by individual differences in load-related changes in the variability of WM precision. Although stronger load-related BOLD increase in superior IPS was related to lower increases in precision variability, thus stabilizing WM performance, the reverse was observed for V1. Finally, the detrimental effect of load on behavioral precision and precision variability was accompanied by a load-related decline in the accuracy of decoding the memory stimuli (colors) from left superior IPS. We suggest that the superior IPS may contribute to stabilizing visual WM performance by reducing the variability of memory precision in the face of higher load. This study investigates the neural bases of capacity limitations in visual working memory by combining fMRI with cognitive modeling of behavioral performance, in human participants. It provides evidence that the superior intraparietal sulcus (IPS) is a critical brain region that influences the variability of visual working memory precision between and within individuals (Fougnie et al., 2012; van den Berg et al., 2012) under increased memory load, possibly in cooperation with perceptual systems of the occipital cortex. These findings substantially extend our understanding of the nature of capacity limitations in visual working memory and their neural bases. Our work underlines the importance of integrating cognitive modeling with univariate and multivariate methods in fMRI research, thus improving our knowledge of brain-behavior relationships. Copyright © 2016 the authors 0270-6474/16/365623-13$15.00/0.

  11. Precision phase control for the radio frequency system of K500 superconducting cyclotron at Variable Energy Cyclotron Centre, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, Sumit; Ghosh, Surajit; Seth, Sudeshna

    2013-11-15

    Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loopmore » consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.« less

  12. High-precision buffer circuit for suppression of regenerative oscillation

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Hare, David A.; Tcheng, Ping

    1995-01-01

    Precision analog signal conditioning electronics have been developed for wind tunnel model attitude inertial sensors. This application requires low-noise, stable, microvolt-level DC performance and a high-precision buffered output. Capacitive loading of the operational amplifier output stages due to the wind tunnel analog signal distribution facilities caused regenerative oscillation and consequent rectification bias errors. Oscillation suppression techniques commonly used in audio applications were inadequate to maintain the performance requirements for the measurement of attitude for wind tunnel models. Feedback control theory is applied to develop a suppression technique based on a known compensation (snubber) circuit, which provides superior oscillation suppression with high output isolation and preserves the low-noise low-offset performance of the signal conditioning electronics. A practical design technique is developed to select the parameters for the compensation circuit to suppress regenerative oscillation occurring when typical shielded cable loads are driven.

  13. High-Performance AC Power Source by Applying Robust Stability Control Technology for Precision Material Machining

    NASA Astrophysics Data System (ADS)

    Chang, En-Chih

    2018-02-01

    This paper presents a high-performance AC power source by applying robust stability control technology for precision material machining (PMM). The proposed technology associates the benefits of finite-time convergent sliding function (FTCSF) and firefly optimization algorithm (FOA). The FTCSF maintains the robustness of conventional sliding mode, and simultaneously speeds up the convergence speed of the system state. Unfortunately, when a highly nonlinear loading is applied, the chatter will occur. The chatter results in high total harmonic distortion (THD) output voltage of AC power source, and even deteriorates the stability of PMM. The FOA is therefore used to remove the chatter, and the FTCSF still preserves finite system-state convergence time. By combining FTCSF with FOA, the AC power source of PMM can yield good steady-state and transient performance. Experimental results are performed in support of the proposed technology.

  14. Design of smart composite platforms for adaptive trust vector control and adaptive laser telescope for satellite applications

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.

    2013-04-01

    This paper presents design of smart composite platforms for adaptive trust vector control (TVC) and adaptive laser telescope for satellite applications. To eliminate disturbances, the proposed adaptive TVC and telescope systems will be mounted on two analogous smart composite platform with simultaneous precision positioning (pointing) and vibration suppression (stabilizing), SPPVS, with micro-radian pointing resolution, and then mounted on a satellite in two different locations. The adaptive TVC system provides SPPVS with large tip-tilt to potentially eliminate the gimbals systems. The smart composite telescope will be mounted on a smart composite platform with SPPVS and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an intersatellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been designed to have tip-tilt pointing and simultaneous multi-degree-of-freedom vibration isolation capability for pointing stabilization. Analytical approaches have been employed for determining the loads in the components as well as optimizing the design of the system. The different critical components such as telescope tube struts, flexure joints, and the secondary mirror mount have been designed and analyzed using finite element technique. The Simultaneous Precision Positioning and Vibration Suppression (SPPVS) smart composites platforms for the adaptive TVC and adaptive composite telescope are analogous (e.g., see work by Ghasemi-Nejhad and co-workers [1, 2]), where innovative concepts and control strategies are introduced, and experimental verifications of simultaneous thrust vector control and vibration isolation of satellites were performed. The smart composite platforms function as an active structural interface between the main thruster of a satellite and the satellite structure for the adaptive TVC application and as an active structural interface between the main smart composite telescope and the satellite structure for the adaptive laser communication application. The cascaded multiple feedback loops compensate the hysteresis (for piezoelectric stacks inside the three linear actuators that individually have simultaneous precision positioning and vibration suppression), dead-zone, back-lash, and friction nonlinearities very well, and provide precision and quick smart platform control and satisfactory thrust vector control capability. In addition, for example for the adaptive TVC, the experimental results show that the smart composite platform satisfactorily provided precision and fast smart platform control as well as the satisfactory thrust vector control capability. The vibration controller isolated 97% of the vibration energy due to the thruster firing.

  15. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †

    PubMed Central

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  16. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    PubMed

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  17. Bridgman-type apparatus for the study of growth-property relationships - Arsenic vapor pressure-GaAs property relationship

    NASA Technical Reports Server (NTRS)

    Parsey, J. M.; Nanishi, Y.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    A precision Bridgman-type apparatus is described which was designed and constructed for the investigation of relationships between crystal growth parameters and the properties of GaAs crystals. Several key features of the system are highlighted, such as the use of a heat pipe for precise arsenic vapor pressure control and seeding without the presence of a viewing window. Pertinent growth parameters, such as arsenic source temperature, thermal gradients in the growing crystal and in the melt, and the macroscopic growth velocity can be independently controlled. During operation, thermal stability better than + or - 0.02 C is realized; thermal gradients can be varied up to 30 C/cm in the crystal region, and up to 20 C/cm in the melt region; the macroscopic growth velocity can be varied from 50 microns/hr to 6.0 cm/hr. It was found that the density of dislocations depends critically on As partial pressure; and essentially dislocation-free, undoped, crystals were grown under As pressure precisely controlled by an As source maintained at 617 C. The free carrier concentration varied with As pressure variations. This variation in free carrier concentration was found to be associated with variations in the compensation ratio rather than with standard segregation phenomena.

  18. Formation Control for the Maxim Mission.

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.

    2004-01-01

    Over the next twenty years, a wave of change is occurring in the spacebased scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today's technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. The Stellar Imager mission requirements are on the same order of those for MAXIM. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; (2) the formation control architecture devised for such missions; (3) the design of the formation control laws to maintain very high precision relative positions; and (4) the levels of fuel usage required in the duration of these missions. Specific preliminary results are presented for two spacecraft within the MAXIM mission.

  19. Flux-Feedback Magnetic-Suspension Actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1990-01-01

    Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.

  20. Control over high peak-power laser light and laser-driven X-rays

    NASA Astrophysics Data System (ADS)

    Zhao, Baozhen; Banerjee, Sudeep; Yan, Wenchao; Zhang, Ping; Zhang, Jun; Golovin, Grigory; Liu, Cheng; Fruhling, Colton; Haden, Daniel; Chen, Shouyuan; Umstadter, Donald

    2018-04-01

    An optical system was demonstrated that enables continuous control over the peak power level of ultrashort duration laser light. The optical characteristics of amplified and compressed femtosecond-duration light from a chirped-pulse amplification laser are shown to remain invariant and maintain high-fidelity using this system. When the peak power was varied by an order-of-magnitude, up to its maximum attainable value, the phase, spectral bandwidth, polarization state, and focusability of the light remained constant. This capability led to precise control of the focused laser intensity and enabled a correspondingly high level of control over the power of an all-laser-driven Thomson X-ray light source.

  1. Development and Operation of an Automatic Rotor Trim Control System for use During the UH-60 Individual Blade Control Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.

    2010-01-01

    A full-scale wind tunnel test to evaluate the effects of Individual Blade Control (IBC) on the performance, vibration, noise and loads of a UH-60A rotor was recently completed in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel [1]. A key component of this wind tunnel test was an automatic rotor trim control system that allowed the rotor trim state to be set more precisely, quickly and repeatably than was possible with the rotor operator setting the trim condition manually. The trim control system was also able to maintain the desired trim condition through changes in IBC actuation both in open- and closed-loop IBC modes, and through long-period transients in wind tunnel flow. This ability of the trim control system to automatically set and maintain a steady rotor trim enabled the effects of different IBC inputs to be compared at common trim conditions and to perform these tests quickly without requiring the rotor operator to re-trim the rotor. The trim control system described in this paper was developed specifically for use during the IBC wind tunnel test

  2. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  3. Bosch CO2 Reduction System Development

    NASA Technical Reports Server (NTRS)

    Holmes, R. F.; King, C. D.; Keller, E. E.

    1975-01-01

    Refinements in the design of a Bosch CO2 reduction unit for spacecraft O2 production are described. Sealing of the vacuum insulation jacket was simplified so that high vacuum and high insulation performance are easily maintained. The device includes a relatively simple concentric shell recuperative heat exchanger which operates at approximately 95% temperature effectiveness and helps lower power consumption. The influence of reactor temperature, pressure, and recycle gas composition on power consumption was investigated. In general, precise control is not required since power consumption is not very sensitive to moderate variations of these parameters near their optimum values. There are two process rate control modes which match flow rate to process demand. Catalyst conditioning, support, and packing pattern developments assure consistent starts, reduced energy consumption, and extended cartridge life. Operation levels for four or five men were maintained with overall power input values of 50 to 60 watts per man.

  4. Instrumentation enabling study of plant physiological response to elevated night temperature

    PubMed Central

    Mohammed, Abdul R; Tarpley, Lee

    2009-01-01

    Background Global climate warming can affect functioning of crops and plants in the natural environment. In order to study the effects of global warming, a method for applying a controlled heating treatment to plant canopies in the open field or in the greenhouse is needed that can accept either square wave application of elevated temperature or a complex prescribed diurnal or seasonal temperature regime. The current options are limited in their accuracy, precision, reliability, mobility or cost and scalability. Results The described system uses overhead infrared heaters that are relatively inexpensive and are accurate and precise in rapidly controlling the temperature. Remote computer-based data acquisition and control via the internet provides the ability to use complex temperature regimes and real-time monitoring. Due to its easy mobility, the heating system can randomly be allotted in the open field or in the greenhouse within the experimental setup. The apparatus has been successfully applied to study the response of rice to high night temperatures. Air temperatures were maintained within the set points ± 0.5°C. The incorporation of the combination of air-situated thermocouples, autotuned proportional integrative derivative temperature controllers and phase angled fired silicon controlled rectifier power controllers provides very fast proportional heating action (i.e. 9 ms time base), which avoids prolonged or intense heating of the plant material. Conclusion The described infrared heating system meets the utilitarian requirements of a heating system for plant physiology studies in that the elevated temperature can be accurately, precisely, and reliably controlled with minimal perturbation of other environmental factors. PMID:19519906

  5. Precision Pointing for the Wide-Field Infrared Survey Telescope(WFIRST)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.; Hsu, Oscar C.; Welter, Gary

    2017-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to address the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the Guidance, Navigation, and Control (GNC) subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented.

  6. Evaluation of Chemical Coating Processes for AXAF

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell E.

    1997-01-01

    The need existed at MSFC for the development and fabrication of radioisotope calibration sources of cadmium 109 and iron 55 isotopes. This was in urgent response to the AXAF program. Several issues persisted in creating manufacturing difficulties for the supplier. In order to meet the MSFC requirements very stringent control needed to be maintained for the coating quality, specific activity and thickness. Due to the difficulties in providing the precisely controlled devices for testing, the delivery of the sources was seriously delayed. It became imperative that these fabrication issues be resolved to avoid further delays in this AXAF observatory key component.

  7. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  8. Autonomous Space Object Catalogue Construction and Upkeep Using Sensor Control Theory

    NASA Astrophysics Data System (ADS)

    Moretti, N.; Rutten, M.; Bessell, T.; Morreale, B.

    The capability to track objects in space is critical to safeguard domestic and international space assets. Infrequent measurement opportunities, complex dynamics and partial observability of orbital state makes the tracking of resident space objects nontrivial. It is not uncommon for human operators to intervene with space tracking systems, particularly in scheduling sensors. This paper details the development of a system that maintains a catalogue of geostationary objects through dynamically tasking sensors in real time by managing the uncertainty of object states. As the number of objects in space grows the potential for collision grows exponentially. Being able to provide accurate assessment to operators regarding costly collision avoidance manoeuvres is paramount; the accuracy of which is highly dependent on how object states are estimated. The system represents object state and uncertainty using particles and utilises a particle filter for state estimation. Particle filters capture the model and measurement uncertainty accurately, allowing for a more comprehensive representation of the state’s probability density function. Additionally, the number of objects in space is growing disproportionally to the number of sensors used to track them. Maintaining precise positions for all objects places large loads on sensors, limiting the time available to search for new objects or track high priority objects. Rather than precisely track all objects our system manages the uncertainty in orbital state for each object independently. The uncertainty is allowed to grow and sensor data is only requested when the uncertainty must be reduced. For example when object uncertainties overlap leading to data association issues or if the uncertainty grows to beyond a field of view. These control laws are formulated into a cost function, which is optimised in real time to task sensors. By controlling an optical telescope the system has been able to construct and maintain a catalogue of approximately 100 geostationary objects.

  9. Datum maintenance of the main Egyptian geodetic control networks by utilizing Precise Point Positioning "PPP" technique

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elmewafey, Mahmoud; Farahan, Magda H.

    2016-06-01

    A geodetic control network is the wire-frame or the skeleton on which continuous and consistent mapping, Geographic Information Systems (GIS), and surveys are based. Traditionally, geodetic control points are established as permanent physical monuments placed in the ground and precisely marked, located, and documented. With the development of satellite surveying methods and their availability and high degree of accuracy, a geodetic control network could be established by using GNSS and referred to an international terrestrial reference frame used as a three-dimensional geocentric reference system for a country. Based on this concept, in 1992, the Egypt Survey Authority (ESA) established two networks, namely High Accuracy Reference Network (HARN) and the National Agricultural Cadastral Network (NACN). To transfer the International Terrestrial Reference Frame to the HARN, the HARN was connected with four IGS stations. The processing results were 1:10,000,000 (Order A) for HARN and 1:1,000,000 (Order B) for NACN relative network accuracy standard between stations defined in ITRF1994 Epoch1996. Since 1996, ESA did not perform any updating or maintaining works for these networks. To see how non-performing maintenance degrading the values of the HARN and NACN, the available HARN and NACN stations in the Nile Delta were observed. The Processing of the tested part was done by CSRS-PPP Service based on utilizing Precise Point Positioning "PPP" and Trimble Business Center "TBC". The study shows the feasibility of Precise Point Positioning in updating the absolute positioning of the HARN network and its role in updating the reference frame (ITRF). The study also confirmed the necessity of the absent role of datum maintenance of Egypt networks.

  10. Precision Adjustable Liquid Regulator (ALR)

    NASA Astrophysics Data System (ADS)

    Meinhold, R.; Parker, M.

    2004-10-01

    A passive mechanical regulator has been developed for the control of fuel or oxidizer flow to a 450N class bipropellant engine for use on commercial and interplanetary spacecraft. There are several potential benefits to the propulsion system, depending on mission requirements and spacecraft design. This system design enables more precise control of main engine mixture ratio and inlet pressure, and simplifies the pressurization system by transferring the function of main engine flow rate control from the pressurization/propellant tank assemblies, to a single component, the ALR. This design can also reduce the thermal control requirements on the propellant tanks, avoid costly Qualification testing of biprop engines for missions with more stringent requirements, and reduce the overall propulsion system mass and power usage. In order to realize these benefits, the ALR must meet stringent design requirements. The main advantage of this regulator over other units available in the market is that it can regulate about its nominal set point to within +/-0.85%, and change its regulation set point in flight +/-4% about that nominal point. The set point change is handled actively via a stepper motor driven actuator, which converts rotary into linear motion to affect the spring preload acting on the regulator. Once adjusted to a particular set point, the actuator remains in its final position unpowered, and the regulator passively maintains outlet pressure. The very precise outlet regulation pressure is possible due to new technology developed by Moog, Inc. which reduces typical regulator mechanical hysteresis to near zero. The ALR requirements specified an outlet pressure set point range from 225 to 255 psi, and equivalent water flow rates required were in the 0.17 lb/sec range. The regulation output pressure is maintained at +/-2 psi about the set point from a P (delta or differential pressure) of 20 to over 100 psid. Maximum upstream system pressure was specified at 320 psi. The regulator is fault tolerant in that it was purposely designed with no shutoff capability, such that the minimum flow position of the poppet still allows the subsystem to provide adequate flow to the main engine for basic operation.

  11. 20-Hydroxyecdysone (20E) Primary Response Gene E75 Isoforms Mediate Steroidogenesis Autoregulation and Regulate Developmental Timing in Bombyx*

    PubMed Central

    Li, Kang; Tian, Ling; Guo, Zhongjian; Guo, Sanyou; Zhang, Jianzhen; Gu, Shi-Hong; Palli, Subba R.; Cao, Yang; Li, Sheng

    2016-01-01

    The temporal control mechanisms that precisely control animal development remain largely elusive. The timing of major developmental transitions in insects, including molting and metamorphosis, is coordinated by the steroid hormone 20-hydroxyecdysone (20E). 20E involves feedback loops to maintain pulses of ecdysteroid biosynthesis leading to its upsurge, whereas the underpinning molecular mechanisms are not well understood. Using the silkworm Bombyx mori as a model, we demonstrated that E75, the 20E primary response gene, mediates a regulatory loop between ecdysteroid biosynthesis and 20E signaling. E75 isoforms A and C directly bind to retinoic acid receptor-related response elements in Halloween gene promoter regions to induce gene expression thus promoting ecdysteroid biosynthesis and developmental transition, whereas isoform B antagonizes the transcriptional activity of isoform A/C through physical interaction. As the expression of E75 isoforms is differentially induced by 20E, the E75-mediated regulatory loop represents a fine autoregulation of steroidogenesis, which contributes to the precise control of developmental timing. PMID:27365399

  12. Improved functionality of graphene and carbon nanotube hybrid foam architecture by UV-ozone treatment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ruiz, Isaac; Lee, Ilkeun; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2015-04-01

    Optimization of the electrode/electrolyte double-layer interface is a key factor for improving electrode performance of aqueous electrolyte based supercapacitors (SCs). Here, we report the improved functionality of carbon materials via a non-invasive, high-throughput, and inexpensive UV generated ozone (UV-ozone) treatment. This process allows precise tuning of the graphene and carbon nanotube hybrid foam (GM) transitionally from ultrahydrophobic to hydrophilic within 60 s. The continuous tuning of surface energy can be controlled by simply varying the UV-ozone exposure time, while the ozone-oxidized carbon nanostructure maintains its integrity. Symmetric SCs based on the UV-ozone treated GM foam demonstrated enhanced rate performance. This technique can be readily applied to other CVD-grown carbonaceous materials by taking advantage of its ease of processing, low cost, scalability, and controllability.Optimization of the electrode/electrolyte double-layer interface is a key factor for improving electrode performance of aqueous electrolyte based supercapacitors (SCs). Here, we report the improved functionality of carbon materials via a non-invasive, high-throughput, and inexpensive UV generated ozone (UV-ozone) treatment. This process allows precise tuning of the graphene and carbon nanotube hybrid foam (GM) transitionally from ultrahydrophobic to hydrophilic within 60 s. The continuous tuning of surface energy can be controlled by simply varying the UV-ozone exposure time, while the ozone-oxidized carbon nanostructure maintains its integrity. Symmetric SCs based on the UV-ozone treated GM foam demonstrated enhanced rate performance. This technique can be readily applied to other CVD-grown carbonaceous materials by taking advantage of its ease of processing, low cost, scalability, and controllability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06795a

  13. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps)

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Johnson, William C.; Swenson, Harry; Robinson, John E.; Prevot, Thomas; Callantine, Todd; Scardina, John; Greene, Michael

    2012-01-01

    The operational goal of the ATD-1 ConOps is to enable aircraft, using their onboard FMS capabilities, to fly Optimized Profile Descents (OPDs) from cruise to the runway threshold at a high-density airport, at a high throughput rate, using primarily speed control to maintain in-trail separation and the arrival schedule. The three technologies in the ATD-1 ConOps achieve this by calculating a precise arrival schedule, using controller decision support tools to provide terminal controllers with speeds for aircraft to fly to meet times at a particular meter points, and onboard software providing flight crews with speeds for the aircraft to fly to achieve a particular spacing behind preceding aircraft.

  14. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    1999-01-01

    A method and apparatus for dynamically controlling the crystallization of proteins including a crystallization chamber or chambers for holding a protein in a salt solution, one or more salt solution chambers, two communication passages respectively coupling the crystallization chamber with each of the salt solution chambers, and transfer mechanisms configured to respectively transfer salt solution between each of the salt solution chambers and the crystallization chamber. The transfer mechanisms are interlocked to maintain the volume of salt solution in the crystallization chamber substantially constant. Salt solution of different concentrations is transferred into and out of the crystallization chamber to adjust the salt concentration in the crystallization chamber to achieve precise control of the crystallization process.

  15. The Control Point Library Building System. [for Landsat MSS and RBV geometric image correction

    NASA Technical Reports Server (NTRS)

    Niblack, W.

    1981-01-01

    The Earth Resources Observation System (EROS) Data Center in Sioux Falls, South Dakota distributes precision corrected Landsat MSS and RBV data. These data are derived from master data tapes produced by the Master Data Processor (MDP), NASA's system for computing and applying corrections to the data. Included in the MDP is the Control Point Library Building System (CPLBS), an interactive, menu-driven system which permits a user to build and maintain libraries of control points. The control points are required to achieve the high geometric accuracy desired in the output MSS and RBV data. This paper describes the processing performed by CPLBS, the accuracy of the system, and the host computer and special image viewing equipment employed.

  16. Apparatus for precise regulation and chilling of water temperatures in laboratory studies

    USGS Publications Warehouse

    Burger, C.; ,

    1991-01-01

    Laboratory simulation of water temperature regimes that occur in subarctic rivers through winter necessitates the ability to maintain near-freezing conditions. A heat-exchangeing apparatus is described that provided a convenient means of simulating the range of temperatures (0.5-12 degrees C) that incubating eggs of salmon (Oncorhynchus spp.) typically experience in south-central Alaska watersheds. The system was reliable, easily maintained precise temperatures at our coldest test levels, and was used over several years with few mechanical complications.

  17. Evaluation of Flying Qualities and Guidance Displays for an Advanced Tilt-Wing STOL Transport Aircraft in Final Approach and Landing

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Franklin, James A.; Hardy, Gordon H.

    2002-01-01

    A piloted simulation was performed on the Vertical Motion Simulator at NASA Ames Research Center to evaluate flying qualities of a tilt-wing Short Take-Off and Landing (STOL) transport aircraft during final approach and landing. The experiment was conducted to assess the design s handling qualities, and to evaluate the use of flightpath-centered guidance for the precision approach and landing tasks required to perform STOL operations in instrument meteorological conditions, turbulence, and wind. Pilots rated the handling qualities to be satisfactory for all operations evaluated except those encountering extreme crosswinds and severe windshear; even in these difficult meteorological conditions, adequate handling qualities were maintained. The advanced flight control laws and guidance displays provided consistent performance and precision landings.

  18. Design and Evaluation of the Terminal Area Precision Scheduling and Spacing System

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Thipphavong, Jane; Sadovsky, Alex; Chen, Liang; Sullivan, Chris; Martin, Lynne

    2011-01-01

    This paper describes the design, development and results from a high fidelity human-in-the-loop simulation of an integrated set of trajectory-based automation tools providing precision scheduling, sequencing and controller merging and spacing functions. These integrated functions are combined into a system called the Terminal Area Precision Scheduling and Spacing (TAPSS) system. It is a strategic and tactical planning tool that provides Traffic Management Coordinators, En Route and Terminal Radar Approach Control air traffic controllers the ability to efficiently optimize the arrival capacity of a demand-impacted airport while simultaneously enabling fuel-efficient descent procedures. The TAPSS system consists of four-dimensional trajectory prediction, arrival runway balancing, aircraft separation constraint-based scheduling, traffic flow visualization and trajectory-based advisories to assist controllers in efficient metering, sequencing and spacing. The TAPSS system was evaluated and compared to today's ATC operation through extensive series of human-in-the-loop simulations for arrival flows into the Los Angeles International Airport. The test conditions included the variation of aircraft demand from a baseline of today's capacity constrained periods through 5%, 10% and 20% increases. Performance data were collected for engineering and human factor analysis and compared with similar operations both with and without the TAPSS system. The engineering data indicate operations with the TAPSS show up to a 10% increase in airport throughput during capacity constrained periods while maintaining fuel-efficient aircraft descent profiles from cruise to landing.

  19. Development of a precision, wide-dynamic-range actuator for use in active optical systems

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Perez, E. O.

    1989-01-01

    The design, operation, and performance of a wide-dynamic-range optical-quality actuator are discussed. The actuator uses a closed-loop control system to maintain accurate positioning and has an rms noise performance of 20 nm. A unique force offloading mechanism allows the actuator coil to dissipate less than 3 mW under quiescent conditions. The operation of an experimental segmented optical system that uses 18 of the actuators is examined to show how they are integrated into an actual system.

  20. An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking.

    PubMed

    Guna, Jože; Jakus, Grega; Pogačnik, Matevž; Tomažič, Sašo; Sodnik, Jaka

    2014-02-21

    We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller's sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller's surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system.

  1. An Analysis of the Precision and Reliability of the Leap Motion Sensor and Its Suitability for Static and Dynamic Tracking

    PubMed Central

    Guna, Jože; Jakus, Grega; Pogačnik, Matevž; Tomažič, Sašo; Sodnik, Jaka

    2014-01-01

    We present the results of an evaluation of the performance of the Leap Motion Controller with the aid of a professional, high-precision, fast motion tracking system. A set of static and dynamic measurements was performed with different numbers of tracking objects and configurations. For the static measurements, a plastic arm model simulating a human arm was used. A set of 37 reference locations was selected to cover the controller's sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two tracking objects maintaining a constant distance between them, was created to simulate two human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The linear correlation revealed a significant increase in the standard deviation when moving away from the controller. The results of the dynamic scenario revealed the inconsistent performance of the controller, with a significant drop in accuracy for samples taken more than 250 mm above the controller's surface. The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based human-computer interaction; however, due to its rather limited sensory space and inconsistent sampling frequency, in its current configuration it cannot currently be used as a professional tracking system. PMID:24566635

  2. Precise Time - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info Precise Time The U. S. Naval Observatory is charged with maintaining the

  3. Testing of active heat sink for advanced high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Feeler, Ryan; Junghans, Jeremy

    2011-03-01

    We report on the development of a novel active heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink employs convective heat transfer by a liquid metal flowing at high speed inside a miniature sealed flow loop. Liquid metal flow in the loop is maintained electromagnetically without any moving parts. Thermal conductance of the heat sink is electronically adjustable, allowing for precise control of diode temperature and the laser light wavelength. This paper presents the principles and challenges of liquid metal cooling, and data from testing at high heat flux and high heat loads.

  4. High-Contrast Coronagraph Performance in the Presence of DM Actuator Defects

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric

    2015-01-01

    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfillment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  5. High-contrast coronagraph performance in the presence of DM actuator defects

    NASA Astrophysics Data System (ADS)

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric

    2015-09-01

    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfilment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  6. Controlling the Surface Chemistry of Graphite by Engineered Self-Assembled Peptides

    PubMed Central

    Khatayevich, Dmitriy; So, Christopher R.; Hayamizu, Yuhei; Gresswell, Carolyn; Sarikaya, Mehmet

    2012-01-01

    The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer thick long-range ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing the control over surface chemistry via their amino acid sequence. Furthermore, through a single step co-assembly of two different designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44 to 83 degrees. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including non-invasive modification of the substrate, bio-compatible processing in an aqueous environment, and simple fusion with other functional biological molecules. PMID:22428620

  7. Expertise for upright faces improves the precision but not the capacity of visual working memory.

    PubMed

    Lorenc, Elizabeth S; Pratte, Michael S; Angeloni, Christopher F; Tong, Frank

    2014-10-01

    Considerable research has focused on how basic visual features are maintained in working memory, but little is currently known about the precision or capacity of visual working memory for complex objects. How precisely can an object be remembered, and to what extent might familiarity or perceptual expertise contribute to working memory performance? To address these questions, we developed a set of computer-generated face stimuli that varied continuously along the dimensions of age and gender, and we probed participants' memories using a method-of-adjustment reporting procedure. This paradigm allowed us to separately estimate the precision and capacity of working memory for individual faces, on the basis of the assumptions of a discrete capacity model, and to assess the impact of face inversion on memory performance. We found that observers could maintain up to four to five items on average, with equally good memory capacity for upright and upside-down faces. In contrast, memory precision was significantly impaired by face inversion at every set size tested. Our results demonstrate that the precision of visual working memory for a complex stimulus is not strictly fixed but, instead, can be modified by learning and experience. We find that perceptual expertise for upright faces leads to significant improvements in visual precision, without modifying the capacity of working memory.

  8. Precision irrigation for improving crop water management

    USDA-ARS?s Scientific Manuscript database

    Precision irrigation is gaining attention by the agricultural industry as a means to optimize water inputs, reduce environmental degradation from runoff or deep percolation and maintain crop yields. This presenation will discuss the mechanical and software framework of the irrigation scheduling sup...

  9. Distortion control in 20MnCr5 bevel gears after liquid nitriding process to maintain precision dimensions

    NASA Astrophysics Data System (ADS)

    Mahendiran, M.; Kavitha, M.

    2018-02-01

    Robotic and automotive gears are generally very high precision components with limitations in tolerances. Bevel gears are more widely used and dimensionally very close tolerance components that need stability without any backlash or distortion for smooth and trouble free functions. Nitriding is carried out to enhance wear resistance of the surface. The aim of this paper is to reduce the distortion in liquid nitriding process, though plasma nitriding is preferred for high precision components. Various trials were conducted to optimize the process parameters, considering pre dimensional setting for nominal nitriding layer growth. Surface cleaning, suitable fixtures and stress relieving operations were also done to optimize the process. Micro structural analysis and Vickers hardness testing were carried out for analyzing the phase changes, variation in surface hardness and case depth. CNC gear testing machine was used for determining the distortion level. The presence of white layer was found for about 10-15μm in the case depth of 250± 3.5μm showing an average surface hardness of 670 HV. Hence the economical liquid nitriding process was successfully used for producing high hardness and wear resistant coating over 20MnCr5 material with less distortion and reduced secondary grinding process for dimensional control.

  10. Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning.

    PubMed

    Lin, Alexander Y T; Pearson, Bret J

    2014-03-01

    During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/β-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues.

  11. A microprocessor-based position control system for a telescope secondary mirror

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Barrows, W. F.; Clappier, R. R.; Lee, G. K.

    1983-01-01

    The pointing requirements for the Shuttle IR Telescope Facility (SIRTF), which consists of an 0.85-m cryogenically cooled IR telescope, call for an image stability of 0.25 arcsec. Attention is presently given to a microprocessor-based position control system developed for the control of the SIRTF secondary mirror, employing a special control law (to minimize energy dissipation), a precision capacitive position sensor, and a specially designed power amplifier/actuator combination. The microprocessor generates the command angular position and rate waveforms in order to maintain a 90 percent dwell time/10 percent transition time ratio independently of chop frequency or amplitude. Performance and test results of a prototype system designed for use with a demonstration model of the SIRTF focal plane fine guidance sensor are presented.

  12. A brain-machine interface for control of medically-induced coma.

    PubMed

    Shanechi, Maryam M; Chemali, Jessica J; Liberman, Max; Solt, Ken; Brown, Emery N

    2013-10-01

    Medically-induced coma is a drug-induced state of profound brain inactivation and unconsciousness used to treat refractory intracranial hypertension and to manage treatment-resistant epilepsy. The state of coma is achieved by continually monitoring the patient's brain activity with an electroencephalogram (EEG) and manually titrating the anesthetic infusion rate to maintain a specified level of burst suppression, an EEG marker of profound brain inactivation in which bursts of electrical activity alternate with periods of quiescence or suppression. The medical coma is often required for several days. A more rational approach would be to implement a brain-machine interface (BMI) that monitors the EEG and adjusts the anesthetic infusion rate in real time to maintain the specified target level of burst suppression. We used a stochastic control framework to develop a BMI to control medically-induced coma in a rodent model. The BMI controlled an EEG-guided closed-loop infusion of the anesthetic propofol to maintain precisely specified dynamic target levels of burst suppression. We used as the control signal the burst suppression probability (BSP), the brain's instantaneous probability of being in the suppressed state. We characterized the EEG response to propofol using a two-dimensional linear compartment model and estimated the model parameters specific to each animal prior to initiating control. We derived a recursive Bayesian binary filter algorithm to compute the BSP from the EEG and controllers using a linear-quadratic-regulator and a model-predictive control strategy. Both controllers used the estimated BSP as feedback. The BMI accurately controlled burst suppression in individual rodents across dynamic target trajectories, and enabled prompt transitions between target levels while avoiding both undershoot and overshoot. The median performance error for the BMI was 3.6%, the median bias was -1.4% and the overall posterior probability of reliable control was 1 (95% Bayesian credibility interval of [0.87, 1.0]). A BMI can maintain reliable and accurate real-time control of medically-induced coma in a rodent model suggesting this strategy could be applied in patient care.

  13. An accuracy improvement method for the topology measurement of an atomic force microscope using a 2D wavelet transform.

    PubMed

    Yoon, Yeomin; Noh, Suwoo; Jeong, Jiseong; Park, Kyihwan

    2018-05-01

    The topology image is constructed from the 2D matrix (XY directions) of heights Z captured from the force-feedback loop controller. For small height variations, nonlinear effects such as hysteresis or creep of the PZT-driven Z nano scanner can be neglected and its calibration is quite straightforward. For large height variations, the linear approximation of the PZT-driven Z nano scanner fail and nonlinear behaviors must be considered because this would cause inaccuracies in the measurement image. In order to avoid such inaccuracies, an additional strain gauge sensor is used to directly measure displacement of the PZT-driven Z nano scanner. However, this approach also has a disadvantage in its relatively low precision. In order to obtain high precision data with good linearity, we propose a method of overcoming the low precision problem of the strain gauge while its feature of good linearity is maintained. We expect that the topology image obtained from the strain gauge sensor showing significant noise at high frequencies. On the other hand, the topology image obtained from the controller output showing low noise at high frequencies. If the low and high frequency signals are separable from both topology images, the image can be constructed so that it is represented with high accuracy and low noise. In order to separate the low frequencies from high frequencies, a 2D Haar wavelet transform is used. Our proposed method use the 2D wavelet transform for obtaining good linearity from strain gauge sensor and good precision from controller output. The advantages of the proposed method are experimentally validated by using topology images. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  15. Space Technology 7 : Micropropulsion and Mass Distribution

    NASA Technical Reports Server (NTRS)

    Carnaub, A.; Dunn, C.; Ziemer, J,; Hruby, V.; Spence, D.; Demmons, N.; Roy, T.; McCormick, R.; Gasaska, C.; Young, J.; hide

    2007-01-01

    The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 disturbance reduction system (DRS) will contain new micropropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass. The - acceleration is characterized by calculating the gravitational effect of over ten million modeled points of a nearly 500-kg spacecraft. This paper provides an overview of the mission technology and the process of precision mass modeling of the DRS equipment.

  16. Precision Pointing for the Wide-Field Infrared Survey Telescope (WFIRST)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Hsu, Oscar; Welter, Gary

    2017-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to ad-dress the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the GNC subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented.

  17. Stable Sequential Activity Underlying the Maintenance of a Precisely Executed Skilled Behavior.

    PubMed

    Katlowitz, Kalman A; Picardo, Michel A; Long, Michael A

    2018-05-21

    A vast array of motor skills can be maintained throughout life. Do these behaviors require stability of individual neuron tuning or can the output of a given circuit remain constant despite fluctuations in single cells? This question is difficult to address due to the variability inherent in most motor actions studied in the laboratory. A notable exception, however, is the courtship song of the adult zebra finch, which is a learned, highly precise motor act mediated by orderly dynamics within premotor neurons of the forebrain. By longitudinally tracking the activity of excitatory projection neurons during singing using two-photon calcium imaging, we find that both the number and the precise timing of song-related spiking events remain nearly identical over the span of several weeks to months. These findings demonstrate that learned, complex behaviors can be stabilized by maintaining precise and invariant tuning at the level of single neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Quality-control materials in the USDA National Food and Nutrient Analysis Program (NFNAP).

    PubMed

    Phillips, Katherine M; Patterson, Kristine Y; Rasor, Amy S; Exler, Jacob; Haytowitz, David B; Holden, Joanne M; Pehrsson, Pamela R

    2006-03-01

    The US Department of Agriculture (USDA) Nutrient Data Laboratory (NDL) develops and maintains the USDA National Nutrient Databank System (NDBS). Data are released from the NDBS for scientific and public use through the USDA National Nutrient Database for Standard Reference (SR) ( http://www.ars.usda.gov/ba/bhnrc/ndl ). In 1997 the NDL initiated the National Food and Nutrient Analysis Program (NFNAP) to update and expand its food-composition data. The program included: 1) nationwide probability-based sampling of foods; 2) central processing and archiving of food samples; 3) analysis of food components at commercial, government, and university laboratories; 4) incorporation of new analytical data into the NDBS; and 5) dissemination of these data to the scientific community. A key feature and strength of the NFNAP was a rigorous quality-control program that enabled independent verification of the accuracy and precision of analytical results. Custom-made food-control composites and/or commercially available certified reference materials were sent to the laboratories, blinded, with the samples. Data for these materials were essential to ongoing monitoring of analytical work, to identify and resolve suspected analytical problems, to ensure the accuracy and precision of results for the NFNAP food samples.

  19. The in-plant evaluation of a uranium NDA system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprinkle, J.K. Jr.; Baxman, H.R.; Langner, D.G.

    1979-12-31

    The Los Alamos Scientific Laboratory has an unirradiated enriched uranium reprocessing facility. Various types of solutions are generated in this facility, including distillates and raffinates containing ppm of uranium and concentrated solutions with up to 400 grams U/t. In addition to uranyl nitrate and HNO{sub 3}, the solutions may also contain zirconium, niobium, fluoride, and small amounts of many metals. A uranium solution assay system (USAS) has been installed to allow accurate and more timely process control, accountability, and criticality data to be obtained. The USAS assays are made by a variety of techniques that depend upon state-of-the-art high-resolution Ge(Li)more » gamma-ray spectroscopy integrated with an interactive, user-oriented computer software package. Tight control of the system`s performance is maintained by constantly monitoring the USAS status. Daily measurement control sequences are required, and the user is forced by the software to perform these sequences. Routine assays require 400 or 1000 seconds for a precision of 0.5% over the concentration range of 5--400 g/t. A comparison of the USAS precision and accuracy with that obtained by traditional destructive analytical chemistry techniques (colorimetric and volumetric) is presented.« less

  20. The in-plant evaluation of a uranium NDA system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprinkle, J.K. Jr.; Baxman, H.R.; Langner, D.G.

    1979-01-01

    The Los Alamos Scientific Laboratory has an unirradiated enriched uranium reprocessing facility. Various types of solutions are generated in this facility, including distillates and raffinates containing ppm of uranium and concentrated solutions with up to 400 grams U/t. In addition to uranyl nitrate and HNO{sub 3}, the solutions may also contain zirconium, niobium, fluoride, and small amounts of many metals. A uranium solution assay system (USAS) has been installed to allow accurate and more timely process control, accountability, and criticality data to be obtained. The USAS assays are made by a variety of techniques that depend upon state-of-the-art high-resolution Ge(Li)more » gamma-ray spectroscopy integrated with an interactive, user-oriented computer software package. Tight control of the system's performance is maintained by constantly monitoring the USAS status. Daily measurement control sequences are required, and the user is forced by the software to perform these sequences. Routine assays require 400 or 1000 seconds for a precision of 0.5% over the concentration range of 5--400 g/t. A comparison of the USAS precision and accuracy with that obtained by traditional destructive analytical chemistry techniques (colorimetric and volumetric) is presented.« less

  1. A Brief History of Airborne Self-Spacing Concepts

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2009-01-01

    This paper presents a history of seven of the more significant airborne and airborne-assisted aircraft spacing concepts that have been developed and evaluated during the past 40 years. The primary focus of the earlier concepts was on enhancing airport terminal area productivity and reducing air traffic controller workload. The more recent efforts were designed to increase runway throughput through improved aircraft spacing precision at landing. The latest concepts are aimed at supporting more fuel efficient and lower community noise operations while maintaining or increasing runway throughput efficiency.

  2. Compact Submillimeter-Wave Receivers Made with Semiconductor Nano-Fabrication Technologies

    NASA Technical Reports Server (NTRS)

    Jung, C.; Thomas, B.; Lee, C.; Peralta, A.; Chattopadhyay, G.; Gill, J.; Cooper, K.; Mehdi, I.

    2011-01-01

    Advanced semiconductor nanofabrication techniques are utilized to design, fabricate and demonstrate a super-compact, low-mass (<10 grams) submillimeter-wave heterodyne front-end. RF elements such as waveguides and channels are fabricated in a silicon wafer substrate using deep-reactive ion etching (DRIE). Etched patterns with sidewalls angles controlled with 1 deg precision are reported, while maintaining a surface roughness of better than 20 nm rms for the etched structures. This approach is being developed to build compact 2-D imaging arrays in the THz frequency range.

  3. Characterization of the Nimbus-7 SBUV radiometer for the long-term monitoring of stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Cebula, Richard P.; Park, H.; Heath, D. F.

    1988-01-01

    Precise knowledge of in-orbit sensitivity change is critical for the successful monitoring of stratospheric ozone by satellite-based remote sensors. This paper evaluates those aspects of the in-flight operation that influence the long-term stability of the upper stratospheric ozone measurements made by the Nimbus-7 SBUV spectroradiometer and chronicles methods used to maintain the long-term albedo calibration of this UV sensor. It is shown that the instrument's calibration for the ozone measurement, the albedo calibration, has been maintained over the first 6 yr of operation to an accuracy of approximately + or - 2 percent. The instrument's wavelength calibration is shown to drift linearly with time. The knowledge of the SBUV wavelength assignment is maintained to a 0.02-nm precision.

  4. Control of flexible structures

    NASA Technical Reports Server (NTRS)

    Russell, R. A.

    1985-01-01

    The requirements for future space missions indicate that many of these spacecraft will be large, flexible, and in some applications, require precision geometries. A technology program that addresses the issues associated with the structure/control interactions for these classes of spacecraft is discussed. The goal of the NASA control of flexible structures technology program is to generate a technology data base that will provide the designer with options and approaches to achieve spacecraft performance such as maintaining geometry and/or suppressing undesired spacecraft dynamics. This technology program will define the appropriate combination of analysis, ground testing, and flight testing required to validate the structural/controls analysis and design tools. This work was motivated by a recognition that large minimum weight space structures will be required for many future missions. The tools necessary to support such design included: (1) improved structural analysis; (2) modern control theory; (3) advanced modeling techniques; (4) system identification; and (5) the integration of structures and controls.

  5. Obesity-specific neural cost of maintaining gait performance under complex conditions in community-dwelling older adults.

    PubMed

    Osofundiya, Olufunmilola; Benden, Mark E; Dowdy, Diane; Mehta, Ranjana K

    2016-06-01

    Recent evidence of obesity-related changes in the prefrontal cortex during cognitive and seated motor activities has surfaced; however, the impact of obesity on neural activity during ambulation remains unclear. The purpose of this study was to determine obesity-specific neural cost of simple and complex ambulation in older adults. Twenty non-obese and obese individuals, 65years and older, performed three tasks varying in the types of complexity of ambulation (simple walking, walking+cognitive dual-task, and precision walking). Maximum oxygenated hemoglobin, a measure of neural activity, was measured bilaterally using a portable functional near infrared spectroscopy system, and gait speed and performance on the complex tasks were also obtained. Complex ambulatory tasks were associated with ~2-3.5 times greater cerebral oxygenation levels and ~30-40% slower gait speeds when compared to the simple walking task. Additionally, obesity was associated with three times greater oxygenation levels, particularly during the precision gait task, despite obese adults demonstrating similar gait speeds and performances on the complex gait tasks as non-obese adults. Compared to existing studies that focus solely on biomechanical outcomes, the present study is one of the first to examine obesity-related differences in neural activity during ambulation in older adults. In order to maintain gait performance, obesity was associated with higher neural costs, and this was augmented during ambulatory tasks requiring greater precision control. These preliminary findings have clinical implications in identifying individuals who are at greater risk of mobility limitations, particularly when performing complex ambulatory tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Precision Clean Hardware: Maintenance of Fluid Systems Cleanliness

    NASA Technical Reports Server (NTRS)

    Sharp, Sheila; Pedley, Mike; Bond, Tim; Quaglino, Joseph; Lorenz, Mary Jo; Bentz, Michael; Banta, Richard; Tolliver, Nancy; Golden, John; Levesque, Ray

    2003-01-01

    The ISS fluid systems are so complex that fluid system cleanliness cannot be verified at the assembly level. A "build clean / maintain clean" approach was used by all major fluid systems: Verify cleanliness at the detail and subassembly level. Maintain cleanliness during assembly.

  7. Avoidance of a moving threat in the common chameleon (Chamaeleo chamaeleon): rapid tracking by body motion and eye use.

    PubMed

    Lev-Ari, Tidhar; Lustig, Avichai; Ketter-Katz, Hadas; Baydach, Yossi; Katzir, Gadi

    2016-08-01

    A chameleon (Chamaeleo chamaeleon) on a perch responds to a nearby threat by moving to the side of the perch opposite the threat, while bilaterally compressing its abdomen, thus minimizing its exposure to the threat. If the threat moves, the chameleon pivots around the perch to maintain its hidden position. How precise is the body rotation and what are the patterns of eye movement during avoidance? Just-hatched chameleons, placed on a vertical perch, on the side roughly opposite to a visual threat, adjusted their position to precisely opposite the threat. If the threat were moved on a horizontal arc at angular velocities of up to 85°/s, the chameleons co-rotated smoothly so that (1) the angle of the sagittal plane of the head relative to the threat and (2) the direction of monocular gaze, were positively and significantly correlated with threat angular position. Eye movements were role-dependent: the eye toward which the threat moved maintained a stable gaze on it, while the contralateral eye scanned the surroundings. This is the first description, to our knowledge, of such a response in a non-flying terrestrial vertebrate, and it is discussed in terms of possible underlying control systems.

  8. Off and back-on again: a tumor suppressor's tale.

    PubMed

    Acosta, Jonuelle; Wang, Walter; Feldser, David M

    2018-06-01

    Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle "off" tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function "back-on again" in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor's tale.

  9. Antiwindup analysis and design approaches for MIMO systems

    NASA Technical Reports Server (NTRS)

    Marcopoli, Vincent R.; Phillips, Stephen M.

    1994-01-01

    Performance degradation of multiple-input multiple-output (MIMO) control systems having limited actuators is often handled by augmenting the controller with an antiwindup mechanism, which attempts to maintain system performance when limits are encountered. The goals of this paper are: (1) To develop a method to analyze antiwindup systems to determine precisely what stability and performance degradation is incurred under limited conditions. It is shown that by reformulating limited actuator commands as resulting from multiplicative perturbations to the corresponding controller requests, mu-analysis tools can be utilized to obtain quantitative measures of stability and performance degradation. (2) To propose a linear, time invariant (LTI) criterion on which to base the antiwindup design. These analysis and design methods are illustrated through the evaluation of two competing antiwindup schemes augmenting the controller of a Short Take-Off and Vertical Landing (STOVL) aircraft in transition flight.

  10. Antiwindup analysis and design approaches for MIMO systems

    NASA Technical Reports Server (NTRS)

    Marcopoli, Vincent R.; Phillips, Stephen M.

    1993-01-01

    Performance degradation of multiple-input multiple-output (MIMO) control systems having limited actuators is often handled by augmenting the controller with an antiwindup mechanism, which attempts to maintain system performance when limits are encountered. The goals of this paper are: 1) to develop a method to analyze antiwindup systems to determine precisely what stability and performance degradation is incurred under limited conditions. It is shown that by reformulating limited actuator commands as resulting from multiplicative perturbations to the corresponding controller requests, mu-analysis tools can be utilized to obtain quantitative measures of stability and performance degradation. 2) To propose a linear, time invariant (LTI) criterion on which to base the antiwindup design. These analysis and design methods are illustrated through the evaluation of two competing antiwindup schemes augmenting the controller of a Short Take-Off and Vertical Landing (STOVL) aircraft in transition flight.

  11. Precise Electrochemical Drilling of Repeated Deep Holes

    NASA Technical Reports Server (NTRS)

    Kincheloe, J. P.

    1985-01-01

    Tooling enables maintenance of close tolerances. Tooling includes guide that holds electrochemical drilling electrodes in proper relative alinement and guide-positioning fixture clamps directly on reference surfaces of strut. High precision achieved by positioning tooling anew on each strut before drilling: Tolerances of (0.008 mm) maintained in some details.

  12. Economic and phosphorus-related effects of precision feeding and forage management at a farm scale

    USDA-ARS?s Scientific Manuscript database

    A system-level redesign of farm management is needed to maintain economic viability of the farm while addressing phosphorous imbalance problems caused by many current practices. One innovative strategy, precision feed management (PFM), reduces soil-phosphorus build-up by limiting feed and fertilizer...

  13. Enhanced retention of a maxillofacial prosthetic obturator using precision attachments: Two case reports

    PubMed Central

    Murat, Sema; Gurbuz, Ayhan; Isayev, Abulfaz; Dokmez, Bahadir; Cetin, Unsun

    2012-01-01

    The majority of maxillary defects can be rehabilitated with conventional simple obturator prosthesis. However, inadequate retention, stability and support may be associated with the use of an obturator. Precision attachments have been used to retain obturators for some time. The use of precision attachments in a dentate maxillectomy patient can yield significant functional improvement while maintaining the obturator’s aesthetic advantages. This clinical report describes the prosthetic rehabilitation of two maxillary defects with an obturator retained using extracoronal resilient precision attachments. PMID:22509126

  14. Research note: the performance of spring- and summer-reared broilers as affected by precision beak trimming at seven days of age.

    PubMed

    Christmas, R B

    1993-12-01

    In each of two duplicate trials approximately 2,500 day-old Peterson x Arbor Acres straight-run broiler chicks were equally divided between two treatments of three pens each. Treatment 1 was maintained as controls (C), and Treatment 2 birds were precision beak-trimmed (PBT) at 7 days of age. Feed and water were supplied for ad libitum consumption to both groups. Trials 1 and 2 were initiated in March and June, respectively. Performance of spring-reared broilers were comparable regardless of beak trimming procedure, except that PBT broilers experienced slightly higher mortality after PBT. Final body weights of the summer-reared broilers were 15% lower than those reared in the spring. Additionally, PBT resulted in significantly reduced final body weights and feed intake. There were no significant differences in mortality or feed conversion due to PBT.

  15. Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse

    PubMed Central

    Moser, Tobias; Neef, Andreas; Khimich, Darina

    2006-01-01

    Our auditory system is capable of perceiving the azimuthal location of a low frequency sound source with a precision of a few degrees. This requires the auditory system to detect time differences in sound arrival between the two ears down to tens of microseconds. The detection of these interaural time differences relies on network computation by auditory brainstem neurons sharpening the temporal precision of the afferent signals. Nevertheless, the system requires the hair cell synapse to encode sound with the highest possible temporal acuity. In mammals, each auditory nerve fibre receives input from only one inner hair cell (IHC) synapse. Hence, this single synapse determines the temporal precision of the fibre. As if this was not enough of a challenge, the auditory system is also capable of maintaining such high temporal fidelity with acoustic signals that vary greatly in their intensity. Recent research has started to uncover the cellular basis of sound coding. Functional and structural descriptions of synaptic vesicle pools and estimates for the number of Ca2+ channels at the ribbon synapse have been obtained, as have insights into how the receptor potential couples to the release of synaptic vesicles. Here, we review current concepts about the mechanisms that control the timing of transmitter release in inner hair cells of the cochlea. PMID:16901948

  16. Quality of Liver and Kidney Function Tests among Public Medical Laboratories in Western Region of Amhara National Regional State of Ethiopia.

    PubMed

    Teka, Abaynesh; Kibatu, Girma

    2012-03-01

    Medical laboratories play essential roles in measurements of substances in body fluids for the purpose of diagnosis, treatment, prevention, and for greater understanding of the disease process. Thus, data generated from have to be reliable for which strict quality control, management and assurance are maintained. The aim of this study is to assess the accuracy and precision of clinical chemistry laboratories in western region of Amhara national regional state of Ethiopia in testing liver and kidney functions. Eight laboratories in hospitals and a Regional Health Research Laboratory Center participated in this study from February to March, 2011. Each participant was requested to measure six specimens for six chemistry tests from two control samples. Three hundred twenty four test results to be reported from all participant laboratories, if all measurements can be made, were designed to be collected and statistically evaluated. None of the study subject laboratories could deliver all the six tests for estimation of both liver and renal functions simultaneously during the study period. Only 213 values from the expected 324 values were reported and about 65 % of the 213 values reported fell outside of the allowable limits of errors for the chemistry tests of the control specimen used. This study finding showed that there were lack of accuracy and precision in chemistry measurements. A regular survey on medical laboratories should be conducted questioning the accuracy and precision of their analyses in order to sustain improvements in the quality of services provided by participating laboratories for the benefit of patients. Laboratory Quality Management Systems appreciate the need for regular quality control and quality assessment schemes in medical laboratories.

  17. How Visuo-Spatial Mental Imagery Develops: Image Generation and Maintenance

    PubMed Central

    Wimmer, Marina C.; Maras, Katie L.; Robinson, Elizabeth J; Doherty, Martin J; Pugeault, Nicolas

    2015-01-01

    Two experiments examined the nature of visuo-spatial mental imagery generation and maintenance in 4-, 6-, 8-, 10-year old children and adults (N = 211). The key questions were how image generation and maintenance develop (Experiment 1) and how accurately children and adults coordinate mental and visually perceived images (Experiment 2). Experiment 1 indicated that basic image generation and maintenance abilities are present at 4 years of age but the precision with which images are generated and maintained improves particularly between 4 and 8 years. In addition to increased precision, Experiment 2 demonstrated that generated and maintained mental images become increasingly similar to visually perceived objects. Altogether, findings suggest that for simple tasks demanding image generation and maintenance, children attain adult-like precision younger than previously reported. This research also sheds new light on the ability to coordinate mental images with visual images in children and adults. PMID:26562296

  18. The Design & Development of the Ocean Color Instrument Precision Superduplex Hybrid Bearing Cartridge

    NASA Technical Reports Server (NTRS)

    Schepis, Joseph; Woodard, Timothy; Hakun, Claef; Bergandy, Konrad; Church, Joseph; Ward, Peter; Lee, Michael; Conti, Alfred; Guzek, Jeffrey

    2018-01-01

    A high precision, high-resolution Ocean Color Imaging (OCI) instrument is under development for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission which requires a pair of medium speed mechanisms to scan the ocean surface continuously. The design of the rotating telescope (RT) mechanism operating at 360 RPM and the half-angle mirror (HAM) mechanism synchronized at 180 RPM was concern for maintaining pointing precision over the required life and continuous operations. An effort was undertaken with the manufacturer to design and analyze a special bearing configuration to minimize axial and radial runout, minimize torque, and maintain nominal contact stresses and stiffness over the operating temperature range and to maximize life. The bearing design, development effort, analysis and testing will be discussed as will the technical challenges that this specific design imposed upon the mechanism engineers. Bearing performance, runout as achieved and verified during encoder installation and operating torque will be described.

  19. Piloted simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Brown, P. W.; Yenni, K. R.

    1986-01-01

    A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.

  20. 3D Printed Programmable Release Capsules.

    PubMed

    Gupta, Maneesh K; Meng, Fanben; Johnson, Blake N; Kong, Yong Lin; Tian, Limei; Yeh, Yao-Wen; Masters, Nina; Singamaneni, Srikanth; McAlpine, Michael C

    2015-08-12

    The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients.

  1. Characterizing a sustainability transition: Goals, targets, trends, and driving forces

    PubMed Central

    Parris, Thomas M.; Kates, Robert W.

    2003-01-01

    Sustainable development exhibits broad political appeal but has proven difficult to define in precise terms. Recent scholarship has focused on the nature of a sustainability transition, described by the National Research Council as meeting the needs of a stabilizing future world population while reducing hunger and poverty and maintaining the planet's life-support systems. We identify a small set of goals, quantitative targets, and associated indicators that further characterize a sustainability transition by drawing on the consensus embodied in internationally negotiated agreements and plans of action. To illustrate opportunities for accelerating progress, we then examine current scholarship on the processes that influence attainment of four such goals: reducing hunger, promoting literacy, stabilizing greenhouse-gas concentrations, and maintaining fresh-water availability. We find that such analysis can often reveal “levers of change,” forces that both control the rate of positive change and are subject to policy intervention. PMID:12819346

  2. Reactor for simulation and acceleration of solar ultraviolet damage

    NASA Technical Reports Server (NTRS)

    Laue, E.; Gupta, A.

    1979-01-01

    An environmental test chamber providing acceleration of UV radiation and precise temperature control (+ or -)1 C was designed, constructed and tested. This chamber allows acceleration of solar ultraviolet up to 30 suns while maintaining temperature of the absorbing surface at 30 C - 60 C. This test chamber utilizes a filtered medium pressure mercury arc as the source of radiation, and a combination of selenium radiometer and silicon radiometer to monitor solar ultraviolet (295-340 nm) and total radiant power output, respectively. Details of design and construction and operational procedures are presented along with typical test data.

  3. How cells handle cholesterol.

    PubMed

    Simons, K; Ikonen, E

    2000-12-01

    Cholesterol plays an indispensable role in regulating the properties of cell membranes in mammalian cells. Recent advances suggest that cholesterol exerts many of its actions mainly by maintaining sphingolipid rafts in a functional state. How rafts contribute to cholesterol metabolism and transport in the cell is still an open issue. It has long been known that cellular cholesterol levels are precisely controlled by biosynthesis, efflux from cells, and influx of lipoprotein cholesterol into cells. The regulation of cholesterol homeostasis is now receiving a new focus, and this changed perspective may throw light on diseases caused by cholesterol excess, the prime example being atherosclerosis.

  4. A GNC Perspective of the Launch and Commissioning of NASA's SMAP (Soil Moisture Active Passive) Spacecraft

    NASA Technical Reports Server (NTRS)

    Brown, Todd S.

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) spacecraft was designed to use radar and radiometer measurements to produce global soil moisture measurements every 2-3 days. The SMAP spacecraft is a complicated dual-spinning design with a large 6 meter deployable mesh reflector mounted on a platform that spins at 14.6 rpm while the Guidance Navigation and Control algorithms maintain precise nadir pointing for the de-spun portion of the spacecraft. After launching in early 2015, the Guidance Navigation and Control software and hardware aboard the SMAP spacecraft underwent an intensive spacecraft checkout and commissioning period. This paper describes the activities performed by the Guidance Navigation and Control team to confirm the health and phasing of subsystem hardware and the functionality of the guidance and control modes and algorithms. The operations tasks performed, as well as anomalies that were encountered during the commissioning, are explained and results are summarized.

  5. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  6. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  7. The effects of control-display gain on performance of race car drivers in an isometric braking task.

    PubMed

    de Winter, J C F; de Groot, S

    2012-12-01

    To minimise lap times during car racing, it is important to build up brake forces rapidly and maintain precise control. We examined the effect of the amplification factor (gain) between brake pedal force and a visually represented output value on a driver's ability to track a target value. The test setup was a formula racing car cockpit fitted with an isometric brake pedal. Thirteen racing drivers performed tracking tasks with four control-display gains and two target functions: a step function (35 trials per gain) and a multisine function (15 trials per gain). The control-display gain had only minor effects on root mean-squared error between output value and target value, but it had large effects on build-up speed, overshoot, within-participants variability, and self-reported physical load. The results confirm the hypothesis that choosing an optimum gain involves balancing stability against physical effort.

  8. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays.

    PubMed

    Endres, Manuel; Bernien, Hannes; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D

    2016-11-25

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a platform for the deterministic preparation of regular one-dimensional arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of more than 50 atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach may enable controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements. Copyright © 2016, American Association for the Advancement of Science.

  9. A compact, fast UV photometer for measurement of ozone from research aircraft

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Ballard, J.; Watts, L. A.; Thornberry, T. D.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.

    2012-09-01

    In situ measurements of atmospheric ozone (O3) are performed routinely from many research aircraft platforms. The most common technique depends on the strong absorption of ultraviolet (UV) light by ozone. As atmospheric science advances to the widespread use of unmanned aircraft systems (UASs), there is an increasing requirement for minimizing instrument space, weight, and power while maintaining instrument accuracy, precision and time response. The design and use of a new, dual-beam, UV photometer instrument for in situ O3 measurements is described. A polarization optical-isolator configuration is utilized to fold the UV beam inside the absorption cells, yielding a 60-cm absorption length with a 30-cm cell. The instrument has a fast sampling rate (2 Hz at <200 hPa, 1 Hz at 200-500 hPa, and 0.5 Hz at ≥ 500 hPa), high accuracy (3% excluding operation in the 300-450 hPa range, where the accuracy may be degraded to about 5%), and excellent precision (1.1 × 1010 O3 molecules cm-3 at 2 Hz, which corresponds to 3.0 ppb at 200 K and 100 hPa, or 0.41 ppb at 273 K and 1013 hPa). The size (36 l), weight (18 kg), and power (50-200 W) make the instrument suitable for many UASs and other airborne platforms. Inlet and exhaust configurations are also described for ambient sampling in the troposphere and lower stratosphere (1000-50 hPa) that control the sample flow rate to maximize time response while minimizing loss of precision due to induced turbulence in the sample cell. In-flight and laboratory intercomparisons with existing O3 instruments show that measurement accuracy is maintained in flight.

  10. Aligning precisely polarization maintaining photonic crystal fiber and conventional single-mode fiber by online spectrum monitoring

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Zeng, Jie; Liang, Dakai; Ni, Xiaoyu; Luo, Wenyong

    2013-06-01

    The fibers aligning is very important in fusion splicing process. The core of polarization maintaining photonic crystal fiber(PM-PCF) can not be seen in the splicer due to microhole structure of its cross-section. So it is difficult to align precisely PM-PCF and conventional single-mode fiber(SMF).We demonstrate a novel method for aligning precisely PM-PCF and conventional SMF by online spectrum monitoring. Firstly, the light source of halogen lamp is connected to one end face of conventional SMF.Then align roughly one end face of PM-PCF and the other end face of conventional SMF by observing visible light in the other end face of PM-PCF. If there exists visible light, they are believed to align roughly. The other end face of PM-PCF and one end face of the other conventional SMF are aligned precisely in the other splicer by online spectrum monitoring. Now the light source of halogen lamp is changed into a broadband light source with 52nm wavelength range.The other end face of the other conventional SMF is connected to an optical spectrum analyzer.They are translationally and rotationally adjusted in the splicer by monitoring spectrum. When the transmission spectrum power is maximum, the aligning is precise.

  11. Intelligent surgical laser system configuration and software implementation

    NASA Astrophysics Data System (ADS)

    Hsueh, Chi-Fu T.; Bille, Josef F.

    1992-06-01

    An intelligent surgical laser system, which can help the ophthalmologist to achieve higher precision and control during their procedures, has been developed by ISL as model CLS 4001. In addition to the laser and laser delivery system, the system is also equipped with a vision system (IPU), robotics motion control (MCU), and a tracking closed loop system (ETS) that tracks the eye in three dimensions (X, Y and Z). The initial patient setup is computer controlled with guidance from the vision system. The tracking system is automatically engaged when the target is in position. A multi-level tracking system is developed by integrating our vision and tracking systems which have been able to maintain our laser beam precisely on target. The capabilities of the automatic eye setup and the tracking in three dimensions provides for improved accuracy and measurement repeatability. The system is operated through the Surgical Control Unit (SCU). The SCU communicates with the IPU and the MCU through both ethernet and RS232. Various scanning pattern (i.e., line, curve, circle, spiral, etc.) can be selected with given parameters. When a warning is activated, a voice message is played that will normally require a panel touch acknowledgement. The reliability of the system is ensured in three levels: (1) hardware, (2) software real time monitoring, and (3) user. The system is currently under clinical validation.

  12. [The role of clevidipine in hypertension management: clinical results].

    PubMed

    Zuleta-Alarcón, A; Castellón-Larios, K; Bergese, S

    2014-12-01

    The prevalence of hypertension in general population is from 30% to 45%(.) Anesthesiologists frequently deal with the challenge of maintaining adequate control of perioperative blood pressure. On sudden elevations, a precise control is required to prevent end-organ damage. Recently, clevidipine, an ultra-short acting calcium antagonist has been approved by the FDA (www.accessdata.fda.gov), as a strategy for the intravenous treatment of hypertension; and by the Spanish Agency of Medicines and Medical Devices (www.aemps.gob.es) for the rapid reduction of arterial blood pressure in the perioperative setting. This medication has shown to have a rapid onset, easy titratability, and to exert a precise control of blood pressure. In addition, clevidipine has shown to be highly effective as monotherapy, and to have an excellent transition to oral antihypertensive therapy. For this article, an online search of the Medline literature was conducted up to February 2014 and "clevidipine" and "hypertension" used as keywords in order to analyze pharmacokinetics and pharmacodynamics of clevidipine. There are also clinical studies that provide evidence of the rapid and effective control that clevidipine has on blood pressure, especially in acute perioperative and emergency settings. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Specificity of Postural Sway to the Demands of a Precision Task at Sea

    ERIC Educational Resources Information Center

    Chen, Fu-Chen; Stoffregen, Thomas A.

    2012-01-01

    Mariners actively adjust their body orientation in response to ship motion. On a ship at sea, we evaluated relations between standing postural activity and the performance of a precision aiming task. Standing participants (experienced mariners) maintained the beam from a handheld laser on a target. Targets were large or small, thereby varying the…

  14. IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments.

    PubMed

    Shumate, Justin; Baillargeon, Pierre; Spicer, Timothy P; Scampavia, Louis

    2018-04-01

    Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.

  15. Efficiency Benefits Using the Terminal Area Precision Scheduling and Spacing System

    NASA Technical Reports Server (NTRS)

    Thipphavong, Jane; Swenson, Harry N.; Lin, Paul; Seo, Anthony Y.; Bagasol, Leonard N.

    2011-01-01

    NASA has developed a capability for terminal area precision scheduling and spacing (TAPSS) to increase the use of fuel-efficient arrival procedures during periods of traffic congestion at a high-density airport. Sustained use of fuel-efficient procedures throughout the entire arrival phase of flight reduces overall fuel burn, greenhouse gas emissions and noise pollution. The TAPSS system is a 4D trajectory-based strategic planning and control tool that computes schedules and sequences for arrivals to facilitate optimal profile descents. This paper focuses on quantifying the efficiency benefits associated with using the TAPSS system, measured by reduction of level segments during aircraft descent and flight distance and time savings. The TAPSS system was tested in a series of human-in-the-loop simulations and compared to current procedures. Compared to the current use of the TMA system, simulation results indicate a reduction of total level segment distance by 50% and flight distance and time savings by 7% in the arrival portion of flight (200 nm from the airport). The TAPSS system resulted in aircraft maintaining continuous descent operations longer and with more precision, both achieved under heavy traffic demand levels.

  16. Design of a short nonuniform acquisition protocol for quantitative analysis in dynamic cardiac SPECT imaging - a retrospective 123 I-MIBG animal study.

    PubMed

    Zan, Yunlong; Long, Yong; Chen, Kewei; Li, Biao; Huang, Qiu; Gullberg, Grant T

    2017-07-01

    Our previous works have found that quantitative analysis of 123 I-MIBG kinetics in the rat heart with dynamic single-photon emission computed tomography (SPECT) offers the potential to quantify the innervation integrity at an early stage of left ventricular hypertrophy. However, conventional protocols involving a long acquisition time for dynamic imaging reduce the animal survival rate and thus make longitudinal analysis difficult. The goal of this work was to develop a procedure to reduce the total acquisition time by selecting nonuniform acquisition times for projection views while maintaining the accuracy and precision of estimated physiologic parameters. Taking dynamic cardiac imaging with 123 I-MIBG in rats as an example, we generated time activity curves (TACs) of regions of interest (ROIs) as ground truths based on a direct four-dimensional reconstruction of experimental data acquired from a rotating SPECT camera, where TACs represented as the coefficients of B-spline basis functions were used to estimate compartmental model parameters. By iteratively adjusting the knots (i.e., control points) of B-spline basis functions, new TACs were created according to two rules: accuracy and precision. The accuracy criterion allocates the knots to achieve low relative entropy between the estimated left ventricular blood pool TAC and its ground truth so that the estimated input function approximates its real value and thus the procedure yields an accurate estimate of model parameters. The precision criterion, via the D-optimal method, forces the estimated parameters to be as precise as possible, with minimum variances. Based on the final knots obtained, a new protocol of 30 min was built with a shorter acquisition time that maintained a 5% error in estimating rate constants of the compartment model. This was evaluated through digital simulations. The simulation results showed that our method was able to reduce the acquisition time from 100 to 30 min for the cardiac study of rats with 123 I-MIBG. Compared to a uniform interval dynamic SPECT protocol (1 s acquisition interval, 30 min acquisition time), the newly proposed protocol with nonuniform interval achieved comparable (K1 and k2, P = 0.5745 for K1 and P = 0.0604 for k2) or better (Distribution Volume, DV, P = 0.0004) performance for parameter estimates with less storage and shorter computational time. In this study, a procedure was devised to shorten the acquisition time while maintaining the accuracy and precision of estimated physiologic parameters in dynamic SPECT imaging. The procedure was designed for 123 I-MIBG cardiac imaging in rat studies; however, it has the potential to be extended to other applications, including patient studies involving the acquisition of dynamic SPECT data. © 2017 American Association of Physicists in Medicine.

  17. Adaptive Controller Effects on Pilot Behavior

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  18. Algorithm of dynamic regulation of a system of duct, for a high accuracy climatic system

    NASA Astrophysics Data System (ADS)

    Arbatskiy, A. A.; Afonina, G. N.; Glazov, V. S.

    2017-11-01

    Currently, major part of climatic system, are stationary in projected mode only. At the same time, many modern industrial sites, require constant or periodical changes in technological process. That is 80% of the time, the industrial site is not require ventilation system in projected mode and high precision of climatic parameters must maintain. While that not constantly is in use for climatic systems, which use in parallel for different rooms, we will be have a problem for balance of duct system. For this problem, was created the algorithm for quantity regulation, with minimal changes. Dynamic duct system: Developed of parallel control system of air balance, with high precision of climatic parameters. The Algorithm provide a permanent pressure in main duct, in different a flow of air. Therefore, the ending devises air flow have only one parameter for regulation - flaps open area. Precision of regulation increase and the climatic system provide high precision for temperature and humidity (0,5C for temperature, 5% for relative humidity). Result: The research has been made in CFD-system - PHOENICS. Results for velocity of air in duct, for pressure of air in duct for different operation mode, has been obtained. Equation for air valves positions, with different parameters for climate in room’s, has been obtained. Energy saving potential for dynamic duct system, for different types of a rooms, has been calculated.

  19. Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks

    PubMed Central

    Li, Gang; He, Bin; Huang, Hongwei; Tang, Limin

    2016-01-01

    The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS) and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP) congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data. PMID:27690035

  20. Endocannabinoids in Body Weight Control.

    PubMed

    Horn, Henrike; Böhme, Beatrice; Dietrich, Laura; Koch, Marco

    2018-05-30

    Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.

  1. Research on application of photoelectric rotary encoder in space optical remote sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Qi, Shao-fan; Wang, Yuan-yuan; Zhang, Zhan-dong

    2016-11-01

    For space optical remote sensor, especially wide swath detecting sensor, the focusing control system for the focal plane should be well designed to obtain the best image quality. The crucial part of this system is the measuring instrument. For previous implements, the potentiometer, which is essentially a voltage divider, is usually introduced to conduct the position in feedback closed-loop control process system. However, the performances of both electro-mechanical and digital potentiometers is limited in accuracy, temperature coefficients, and scale range. To have a better performance of focal plane moving detection, this article presents a new measuring implement with photoelectric rotary encoder, which consists of the photoelectric conversion system and the signal process system. In this novel focusing control system, the photoelectric conversion system is fixed on main axis, which can transform the angle information into a certain analog signal. Through the signal process system, after analog-to-digital converting and data format processing of the certain analog signal, the focusing control system can receive the digital precision angle position which can be used to deduct the current moving position of the focal plane. For utilization of space optical remote sensor in aerospace areas, the reliability design of photoelectric rotary encoder system should be considered with highest priority. As mentioned above, this photoelectric digital precision angle measurement device is well designed for this real-time control and dynamic measurement system, because its characters of high resolution, high accuracy, long endurance, and easy to maintain.

  2. Monte Carlo simulations of precise timekeeping in the Milstar communication satellite system

    NASA Technical Reports Server (NTRS)

    Camparo, James C.; Frueholz, R. P.

    1995-01-01

    The Milstar communications satellite system will provide secure antijam communication capabilities for DOD operations into the next century. In order to accomplish this task, the Milstar system will employ precise timekeeping on its satellites and at its ground control stations. The constellation will consist of four satellites in geosynchronous orbit, each carrying a set of four rubidium (Rb) atomic clocks. Several times a day, during normal operation, the Mission Control Element (MCE) will collect timing information from the constellation, and after several days use this information to update the time and frequency of the satellite clocks. The MCE will maintain precise time with a cesium (Cs) atomic clock, synchronized to UTC(USNO) via a GPS receiver. We have developed a Monte Carlo simulation of Milstar's space segment timekeeping. The simulation includes the effects of: uplink/downlink time transfer noise; satellite crosslink time transfer noise; satellite diurnal temperature variations; satellite and ground station atomic clock noise; and also quantization limits regarding satellite time and frequency corrections. The Monte Carlo simulation capability has proven to be an invaluable tool in assessing the performance characteristics of various timekeeping algorithms proposed for Milstar, and also in highlighting the timekeeping capabilities of the system. Here, we provide a brief overview of the basic Milstar timekeeping architecture as it is presently envisioned. We then describe the Monte Carlo simulation of space segment timekeeping, and provide examples of the simulation's efficacy in resolving timekeeping issues.

  3. A Precise, Simple, and Low-Cost Experiment to Determine the Isobaric Expansion Coefficient for Physical Chemistry Students

    ERIC Educational Resources Information Center

    Pe´rez, Eduardo

    2015-01-01

    The procedure of a physical chemistry experiment for university students must be designed in a way that the accuracy and precision of the measurements is properly maintained. However, in many cases, that requires costly and sophisticated equipment not readily available in developing countries. A simple, low-cost experiment to determine isobaric…

  4. [Implementation of precision control to achieve the goal of schistosomiasis elimination in China].

    PubMed

    Zhou, Xiao-nong

    2016-02-01

    The integrated strategy for schistosomiasis control with focus on infectious source control, which has been implemented since 2004, accelerated the progress towards schistosomiasis control in China, and achieved transmission control of the disease across the country by the end of 2015, which achieved the overall objective of the Mid- and Long-term National Plan for Prevention and Control of Schistosomiasis (2004-2015) on schedule. Then, the goal of schistosomiasis elimination by 2025 was proposed in China in 2014. To achieve this new goal on schedule, we have to address the key issues, and implement precision control measures with more precise identification of control targets, so that we are able to completely eradicate the potential factors leading to resurgence of schistosomiasis transmission and enable the achievement of schistosomiasis elimination on schedule. Precision schistosomiasis control, a theoretical innovation of precision medicine in schistosomiasis control, will provide new insights into schistosomiasis control based on the conception of precision medicine. This paper describes the definition, interventions and the role of precision schistosomiasis control in the elimination of schistosomiasis in China, and demonstrates that sustainable improvement of professionals and integrated control capability at grass-root level is a prerequisite to the implementation of schistosomiasis control, precision schistosomiasis control is a key to the further implementation of the integrated strategy for schistosomiasis control with focus on infectious source control, and precision schistosomiasis control is a guarantee of curing schistosomiasis patients and implementing schistosomiasis control program and interventions.

  5. Software for real-time control of a tidal liquid ventilator.

    PubMed

    Heckman, J L; Hoffman, J; Shaffer, T H; Wolfson, M R

    1999-01-01

    The purpose of this project was to develop and test computer software and control algorithms designed to operate a tidal liquid ventilator. The tests were executed on a 90-MHz Pentium PC with 16 MB RAM and a prototype liquid ventilator. The software was designed using Microsoft Visual C++ (Ver. 5.0) and the Microsoft Foundation Classes. It uses a graphic user interface, is multithreaded, runs in real time, and has a built-in simulator that facilitates user education in liquid-ventilation principles. The operator can use the software to specify ventilation parameters such as the frequency of ventilation, the tidal volume, and the inspiratory-expiratory time ratio. Commands are implemented via control of the pump speed and by setting the position of two two-way solenoid-controlled valves. Data for use in monitoring and control are gathered by analog-to-digital conversion. Control strategies are implemented to maintain lung volumes and airway pressures within desired ranges, according to limits set by the operator. Also, the software allows the operator to define the shape of the flow pulse during inspiration and expiration, and to optimize perfluorochemical liquid transfer while minimizing airway pressures and maintaining the desired tidal volume. The operator can stop flow during inspiration and expiration to measure alveolar pressures. At the end of expiration, the software stores all user commands and 30 ventilation parameters into an Excel spreadsheet for later review and analysis. Use of these software and control algorithms affords user-friendly operation of a tidal liquid ventilator while providing precise control of ventilation parameters.

  6. Method and system for controlling the position of a beam of light

    DOEpatents

    Steinkraus, Jr., Robert F.; Johnson, Gary W [Livermore, CA; Ruggiero, Anthony J [Livermore, CA

    2011-08-09

    An method and system for laser beam tracking and pointing is based on a conventional position sensing detector (PSD) or quadrant cell but with the use of amplitude-modulated light. A combination of logarithmic automatic gain control, filtering, and synchronous detection offers high angular precision with exceptional dynamic range and sensitivity, while maintaining wide bandwidth. Use of modulated light enables the tracking of multiple beams simultaneously through the use of different modulation frequencies. It also makes the system resistant to interfering light sources such as ambient light. Beam pointing is accomplished by feeding back errors in the measured beam position to a beam steering element, such as a steering mirror. Closed-loop tracking performance is superior to existing methods, especially under conditions of atmospheric scintillation.

  7. Multiple Nucleosome Positioning Sites Regulate the CTCF-Mediated Insulator Function of the H19 Imprinting Control Region†

    PubMed Central

    Kanduri, Meena; Kanduri, Chandrasekhar; Mariano, Piero; Vostrov, Alexander A.; Quitschke, Wolfgang; Lobanenkov, Victor; Ohlsson, Rolf

    2002-01-01

    The 5′ region of the H19 gene harbors a methylation-sensitive chromatin insulator within an imprinting control region (ICR). Insertional mutagenesis in combination with episomal assays identified nucleosome positioning sequences (NPSs) that set the stage for the remarkably precise distribution of the four target sites for the chromatin insulator protein CTCF to nucleosome linker sequences in the H19 ICR. Changing positions of the NPSs resulted in loss of both CTCF target site occupancy and insulator function, suggesting that the NPSs optimize the fidelity of the insulator function. We propose that the NPSs ensure the fidelity of the repressed status of the maternal Igf2 allele during development by constitutively maintaining availability of the CTCF target sites. PMID:11971967

  8. Long-Term Stability of Motor Cortical Activity: Implications for Brain Machine Interfaces and Optimal Feedback Control.

    PubMed

    Flint, Robert D; Scheid, Michael R; Wright, Zachary A; Solla, Sara A; Slutzky, Marc W

    2016-03-23

    The human motor system is capable of remarkably precise control of movements--consider the skill of professional baseball pitchers or surgeons. This precise control relies upon stable representations of movements in the brain. Here, we investigated the stability of cortical activity at multiple spatial and temporal scales by recording local field potentials (LFPs) and action potentials (multiunit spikes, MSPs) while two monkeys controlled a cursor either with their hand or directly from the brain using a brain-machine interface. LFPs and some MSPs were remarkably stable over time periods ranging from 3 d to over 3 years; overall, LFPs were significantly more stable than spikes. We then assessed whether the stability of all neural activity, or just a subset of activity, was necessary to achieve stable behavior. We showed that projections of neural activity into the subspace relevant to the task (the "task-relevant space") were significantly more stable than were projections into the task-irrelevant (or "task-null") space. This provides cortical evidence in support of the minimum intervention principle, which proposes that optimal feedback control (OFC) allows the brain to tightly control only activity in the task-relevant space while allowing activity in the task-irrelevant space to vary substantially from trial to trial. We found that the brain appears capable of maintaining stable movement representations for extremely long periods of time, particularly so for neural activity in the task-relevant space, which agrees with OFC predictions. It is unknown whether cortical signals are stable for more than a few weeks. Here, we demonstrate that motor cortical signals can exhibit high stability over several years. This result is particularly important to brain-machine interfaces because it could enable stable performance with infrequent recalibration. Although we can maintain movement accuracy over time, movement components that are unrelated to the goals of a task (such as elbow position during reaching) often vary from trial to trial. This is consistent with the minimum intervention principle of optimal feedback control. We provide evidence that the motor cortex acts according to this principle: cortical activity is more stable in the task-relevant space and more variable in the task-irrelevant space. Copyright © 2016 the authors 0270-6474/16/363623-10$15.00/0.

  9. Ground track maintenance for BeiDou IGSO satellites subject to tesseral resonances and the luni-solar perturbations

    NASA Astrophysics Data System (ADS)

    Fan, Li; Jiang, Chao; Hu, Min

    2017-02-01

    Eight inclined geosynchronous satellite orbit (IGSO) satellites in the Chinese BeiDou Navigation Satellite System (BDS) have been put in orbit until now. IGSO is a special class of geosynchronous circular orbit, with the inclination not equal to zero. It can provide high elevation angle coverage to high-latitude areas. The geography longitude of the ground track cross node is the main factor to affect the ground coverage areas of the IGSO satellites. In order to ensure the navigation performance of the IGSO satellites, the maintenance control of the ground track cross node is required. Considering the tesseral resonances and the luni-solar perturbations, a control approach is proposed to maintain the ground track for the long-term evolution. The drifts of the ground track cross node of the IGSO satellites are analyzed, which is formulated as a function of the bias of the orbit elements and time. Based on the derived function, a method by offsetting the semi-major axis is put forward to maintain the longitude of the ground track cross node, and the offset calculation equation is presented as well. Moreover, the orbit inclination is adjusted to maintain the location angle intervals between each two IGSO satellites. Finally, the precision of the offset calculation equation is analyzed to achieve the operational deployment. Simulation results show that the semi-major axis offset method is effective, and its calculation equation is accurate. The proposed approach has been applied to the maintenance control of BeiDou IGSO satellites.

  10. An Evaluation of a Flight Deck Interval Management Algorithm Including Delayed Target Trajectories

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Underwood, Matthew C.; Barmore, Bryan; Leonard, Robert D.

    2014-01-01

    NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature air traffic management technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise timebased scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise in-trail spacing. During high demand operations, TMA-TM may produce a schedule and corresponding aircraft trajectories that include delay to ensure that a particular aircraft will be properly spaced from other aircraft at each schedule waypoint. These delayed trajectories are not communicated to the automation onboard the aircraft, forcing the IM aircraft to use the published speeds to estimate the target aircraft's estimated time of arrival. As a result, the aircraft performing IM operations may follow an aircraft whose TMA-TM generated trajectories have substantial speed deviations from the speeds expected by the spacing algorithm. Previous spacing algorithms were not designed to handle this magnitude of uncertainty. A simulation was conducted to examine a modified spacing algorithm with the ability to follow aircraft flying delayed trajectories. The simulation investigated the use of the new spacing algorithm with various delayed speed profiles and wind conditions, as well as several other variables designed to simulate real-life variability. The results and conclusions of this study indicate that the new spacing algorithm generally exhibits good performance; however, some types of target aircraft speed profiles can cause the spacing algorithm to command less than optimal speed control behavior.

  11. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2017-12-09

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal’s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  12. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  13. Toward malaysian sustainable agriculture in 21st century

    NASA Astrophysics Data System (ADS)

    Khorramnia, K.; Shariff, A. R. M.; Rahim, A. Abdul; Mansor, S.

    2014-02-01

    Sustainable agriculture should be able to meet various social goals and objectives so that it can be maintained for an indefinite period without significant negative impacts on environment and natural resources. A wide variety of agricultural activities are running in Malaysia. Maintaining high quality of agricultural products with lower environmental impacts through a sustainable economic viability and life satisfaction of farmers and community are important factors helping to meet sustainable agriculture. Human resources are playing key role in directing the community toward sustainable development. The trend of improving the human development index in Malaysia is highest in the East Asia and the Pacific, high human development countries and the world, since 2000. Precision agriculture is providing strong tools to achieve sustainable agriculture. Different types of sensors, positioning and navigation systems, GIS, software and variable rate technology are well known components of precision agriculture. Drones and robots are promising tools that enabling farmers and managers to collect information or perform particular actions in remote areas or tough conditions. According to a survey, forestry and timber, rubber production and oil palm estates are three main agricultural divisions that precision agriculture may improve the productivity in respect to area of cropland/worker. Main factors affecting the adoption of precision agriculture in Malaysia are: a) Political and legal supports, b) Decision support systems and user interfaces c) Experienced research team works d) National educational policy e) Success in commercialization of precision agriculture system.

  14. Low power femtosecond tip-based nanofabrication with advanced control

    NASA Astrophysics Data System (ADS)

    Liu, Jiangbo; Guo, Zhixiong; Zou, Qingze

    2018-02-01

    In this paper, we propose an approach to enable the use of low power femtosecond laser in tip-based nanofabrication (TBN) without thermal damage. One major challenge in laser-assisted TBN is in maintaining precision control of the tip-surface positioning throughout the fabrication process. An advanced iterative learning control technique is exploited to overcome this challenge in achieving high-quality patterning of arbitrary shape on a metal surface. The experimental results are analyzed to understand the ablation mechanism involved. Specifically, the near-field radiation enhancement is examined via the surface-enhanced Raman scattering effect, and it was revealed the near-field enhanced plasma-mediated ablation. Moreover, silicon nitride tip is utilized to alleviate the adverse thermal damage. Experiment results including line patterns fabricated under different writing speeds and an "R" pattern are presented. The fabrication quality with regard to the line width, depth, and uniformity is characterized to demonstrate the efficacy of the proposed approach.

  15. Recent Developments in Ground-Borne Noise and Vibration Control

    NASA Astrophysics Data System (ADS)

    Nelson, J. T.

    1996-05-01

    Vibration control provisions available to the transit designer include (among others) precision straightened rail, ballast mats, floating slabs and very soft direct fixation fasteners, in addition to rail grinding, wheel truing, and continuous welded rail. Recently, the Los Angeles Metro has developed specifications for a soft resilient direct fixation fastener to fit the same base dimensions as the standard direct fixation fastener. In San Francisco, low resonance frequency (8 Hz) floating slabs have been constructed to mitigate predicted ground vibration impacts at nearby residential structures. In Atlanta, low resonance frequency loading slabs have been constructed to maintain a low vibration environment in a medical building planned to be built over the subway structure. In Portland and Pasadena, ballast mats have been recommended to control light rail transit ground vibration impacts on housing located at typically 35 feet from the alignment. Each of these provisions are briefly described in view of recent applications at U.S. transit systems.

  16. The Mechanical Design of a Kinematic Mount for the Mid Infrared Instrument Focal Plane Module on the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Thelen, Michael P.; Moore, Donald M.

    2009-01-01

    The detector assembly for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is mechanically supported in the Focal Plane Module (FPM) Assembly with an efficient hexapod design. The kinematic mount design allows for precision adjustment of the detector boresight to assembly alignment fiducials and maintains optical alignment requirements during flight conditions of launch and cryogenic operations below 7 Kelvin. This kinematic mounting technique is able to be implemented in a variety of optical-mechanical designs and is capable of micron level adjustment control and stability over wide dynamic and temperature ranges.

  17. Consumer-directed health care: implications for health care organizations and managers.

    PubMed

    Guo, Kristina L

    2010-01-01

    This article uses a pyramid model to illustrate the key components of consumer-directed health care. Consumer-directed health care is considered the essential strategy needed to lower health care costs and is valuable for making significant strides in health care reform. Consumer-directed health care presents new challenges and opportunities for all health care stakeholders and their managers. The viability of the health system depends on the success of managers to respond rapidly and with precision to changes in the system; thus, new and modified roles of managers are necessary to successfully sustain consumerism efforts to control costs while maintaining access and quality.

  18. A Quantitative Study of Oxygen as a Metabolic Regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabera, Marco E.

    2000-01-01

    An acute reduction in oxygen delivery to a tissue is associated with metabolic changes aimed at maintaining ATP homeostasis. However, given the complexity of the human bio-energetic system, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). In particular, we are interested in determining mechanisms relating cellular oxygen concentration to observed metabolic responses at the cellular, tissue, organ, and whole body levels and in quantifying how changes in tissue oxygen availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study; we extend a previously developed mathematical model of human bioenergetics, to provide a physicochemical framework that permits quantitative understanding of oxygen as a metabolic regulator. Specifically, the enhancement - sensitivity analysis - permits studying the effects of variations in tissue oxygenation and parameters controlling cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The analysis can distinguish between parameters that must be determined accurately and those that require less precision, based on their effects on model predictions. This capability may prove to be important in optimizing experimental design, thus reducing use of animals.

  19. Upgrade of the HET segment control system, utilizing state-of-the-art, decentralized and embedded system controllers

    NASA Astrophysics Data System (ADS)

    Häuser, Marco; Richter, Josef; Kriel, Herman; Turbyfill, Amanda; Buetow, Brent; Ward, Michael

    2016-07-01

    Together with the ongoing major instrument upgrade of the Hobby-Eberly Telescope (HET) we present the planned upgrade of the HET Segment Control System (SCS) to SCS2. Because HET's primary mirror is segmented into 91 individual 1-meter hexagonal mirrors, the SCS is essential to maintain the mirror alignment throughout an entire night of observations. SCS2 will complete tip, tilt and piston corrections of each mirror segment at a significantly higher rate than the original SCS. The new motion control hardware will further increase the system's reliability. The initial optical measurements of this array are performed by the Mirror Alignment Recovery System (MARS) and the HET Extra Focal Instrument (HEFI). Once the segments are optically aligned, the inductive edge sensors give sub-micron precise feedback of each segment's positions relative to its adjacent segments. These sensors are part of the Segment Alignment Maintenance System (SAMS) and are responsible for providing information about positional changes due to external influences, such as steep temperature changes and mechanical stress, and for making compensatory calculations while tracking the telescope on sky. SCS2 will use the optical alignment systems and SAMS inputs to command corrections of every segment in a closed loop. The correction period will be roughly 30 seconds, mostly due to the measurement and averaging process of the SAMS algorithm. The segment actuators will be controlled by the custom developed HET Segment MOtion COntroller (SMOCO). It is a direct descendant of University Observatory Munich's embedded, CAN-based system and instrument control tool-kit. To preserve the existing HET hardware layout, each SMOCO will control two adjacent mirror segments. Unlike the original SCS motor controllers, SMOCO is able to drive all six axes of its two segments at the same time. SCS2 will continue to allow for sub-arcsecond precision in tip and tilt as well as sub-micro meter precision in piston. These estimations are based on the current performance of the segment support mechanics. SMOCO's smart motion control allows for on-the-y correction of the move targets. Since SMOCO uses state-of-the-art motion control electronics and embedded decentralized controllers, we expect reduction in thermal emission as well as less maintenance time.

  20. A sliding plate microgap rheometer for the simultaneous measurement of shear stress and first normal stress difference

    NASA Astrophysics Data System (ADS)

    Baik, Seung Jae; Moldenaers, Paula; Clasen, Christian

    2011-03-01

    A new generation of the "flexure-based microgap rheometer" (the N-FMR) has been developed which is also capable of measuring, in addition to the shear stress, the first normal stress difference of micrometer thin fluid films. This microgap rheometer with a translation system based on compound spring flexures measures the rheological properties of microliter samples of complex fluids confined in a plane couette configuration with gap distances of h = 1-400 μm up to shear rates of dot γ = 3000 s-1. Feed back loop controlled precise positioning of the shearing surfaces with response times <1 ms enables to control the parallelism within 1.5 μrad and to maintain the gap distance within 20 nm. This precise gap control minimizes squeeze flow effects and allows therefore to measure the first normal stress difference N1 of the thin film down to a micrometer gap distance, with a lower limit of {{N_1 }/{dot γ }} = 9.375 × 10^{ - 11} {η/{h^2 }} that depends on the shear viscosity η and the squared inverse gap. Structural development of complex fluids in the confinement can be visualized by using a beam splitter on the shearing surface and a long working distance microscope. In summary, this new instrument allows to investigate the confinement dependent rheological and morphological evolution of micrometer thin films.

  1. Micro-precision control/structure interaction technology for large optical space systems

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.; Laskin, Robert A.

    1993-01-01

    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.

  2. Automated force controller for amplitude modulation atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollablemore » drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.« less

  3. Hypoxia and flight performance of military instructor pilots in a flight simulator.

    PubMed

    Temme, Leonard A; Still, David L; Acromite, Michael T

    2010-07-01

    Military aircrew and other operational personnel frequently perform their duties at altitudes posing a significant hypoxia risk, often with limited access to supplemental oxygen. Despite the significant risk hypoxia poses, there are few studies relating it to primary flight performance, which is the purpose of the present study. Objective, quantitative measures of aircraft control were collected from 14 experienced, active duty instructor pilot volunteers as they breathed an air/nitrogen mix that provided an oxygen partial pressure equivalent to the atmosphere at 18,000 ft (5486.4 m) above mean sea level. The flight task required holding a constant airspeed, altitude, and heading at an airspeed significantly slower than the aircraft's minimum drag speed. The simulated aircraft's inherent instability at the target speed challenged the pilot to maintain constant control of the aircraft in order to minimize deviations from the assigned flight parameters. Each pilot's flight performance was evaluated by measuring all deviations from assigned target values. Hypoxia degraded the pilot's precision of altitude and airspeed control by 53%, a statistically significant decrease in flight performance. The effect on heading control effects was not statistically significant. There was no evidence of performance differences when breathing room air pre- and post-hypoxia. Moderate levels of hypoxia degraded the ability of military instructor pilots to perform a precision slow flight task. This is one of a small number of studies to quantify an effect of hypoxia on primary flight performance.

  4. Recent Local and State Action in Arizona to Maintain Sky Quality

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.; Shankland, P. D.; Green, R. F.; Jannuzi, B.

    2014-01-01

    The large number of observatories in Arizona has led to the development of a number of lighting control ordinances around the state, some quite strict. Several factors are now contributing to an increased need for active effort at the local, County, and State levels in maintaining the quality of these codes; these factors include an expansion of competing interests in the state, the increasing use of LED lighting, and the potential for major new investments through projects such as the Cherenkov Telescope Array (CTA) and enhancements to the Navy Precision Optical Interferometer. I will review recent strategies Arizona's observatories have used to effect maintenance of ordinances and preserve sky quality; cases include (1) a statewide effort in 2012 to curb a proliferation of electronic billboards and (2) engagement of a broad group of local, County, and State officials, as well as individuals from the private sector, in support of projects like CTA, including awareness of and support for dark-sky preservation.

  5. Na+/K+ ATPase regulates the expression and localization of acetylcholine receptors in a pump activity-independent manner

    PubMed Central

    Doi, Motomichi; Iwasaki, Kouichi

    2008-01-01

    Na+/K+ ATPase is a plasma membrane-localized sodium pump that maintains the ion gradients between the extracellular and intracellular environments, which in turn controls the cellular resting membrane potential. Recent evidence suggests that the pump is also localized at synapses and regulates synaptic efficacy. However, its precise function at the synapse is unknown. Here we show that two mutations in the α subunit of the eat-6 Na+/K+ ATPase in Caenorhabditis elegans dramatically increase the sensitivity to acetylcholine (Ach) agonists and alter the localization of nicotinic Ach receptors at the neuromuscular junction (NMJ). These defects can be rescued by mutated EAT-6 proteins which lack its pump activity, suggesting the presence of a novel function for Ach signaling. The Na+/K+ ATPase accumulates at postsynaptic sites and appears to surround Ach receptors to maintain rigid clusters at the NMJ. Our findings suggest a critical pump activity-independent, allele –specific role for Na+/K+ ATPase on postsynaptic organization and synaptic efficacy. PMID:18599311

  6. Automated control system for a mashing process

    NASA Astrophysics Data System (ADS)

    Teterin, E.; Rudnickiy, V.

    2015-10-01

    The goal of this paper is to describe a system for a mashing process, which is the first part of brewing beer. The mashing is a procedure where the fermentable (and some nonfermentable) sugars are extracted from malts. The program part based on LabVIEW, which is used to control NI CompactRIO. The main target of the project is to reach a predefined levels of the temperatures and maintain it during the pauses. When the necessary break time is ended the system is ready to go to the new value. The precise control of the temperatures during the breaks is one of the critical factors that define the texture and alcohol content of the beer. The system has two tanks with resistors PT'00 in both of them, heat exchanger (coil), heater and pump. The first tank has heating element in order to rise the temperature in the other one. This project has practical solution with all explanations and graphs which are proven working ability of this control system.

  7. The control and data acquisition structure for the GAMMA-400 space gamma-telescope

    NASA Astrophysics Data System (ADS)

    Arkhangelskiy, Andrey

    2016-07-01

    The GAMMA-400 space project is intended for precision investigation of the cosmic gamma-emission in the energy band from keV region up to several TeV, electrons and positrons fluxes from ˜~1~GeV up to ˜~10~TeV and high energy cosmic-ray nuclei fluxes. A description of the control and data acquisition structure for gamma-telescope involved in the GAMMA 400 space project is given. The technical capabilities of all specialized equipment providing the functioning of the scientific instrumentation and satellite support systems are unified in a single structure. Control of the scientific instruments is maintained using one-time pulse radio commands and program commands transmitted via onboard control system and scientific data acquisition system. Up to 100~GByte of data per day can be transferred to the ground segment of the project. The correctness of the proposed and implemented structure, engineering solutions and electronic elemental base selection has been verified experimentally with the scientific complex prototype in the laboratory conditions.

  8. The interrelationship of research in the laboratory and the field to assess hydration status and determine mechanisms involved in water regulation during physical activity.

    PubMed

    Stachenfeld, Nina S

    2014-05-01

    Changes in skin blood and sweating are the primary mechanisms for heat loss in humans. A hot, humid environment concomitant with dehydration limits the ability to increase skin blood flow for the purpose of transferring heat from the body core to skin surface and evaporate sweat to maintain core temperature within safe limits during exercise. Adequate hydration improves thermoregulation by maintaining blood volume to support skin blood flow and sweating. Humans rely on fluid intake to maintain total body water and blood volume, and have developed complex mechanisms to sense changes in the amount and composition of fluid in the body. This paper addresses the interrelationship of research in the laboratory and the field to assess hydration status involved in body water and temperature regulation during exercise. In the controlled setting of a research laboratory, investigators are able to investigate the contributions of volume and tonicity of fluid in the plasma to body water and temperature regulation during exercise and recovery. For example, laboratory studies have shown that tonicity in a rehydration beverage maintains the thirst mechanism (and stimulates drinking), and contributes to the ongoing stimulation of renal fluid retention hormones, ultimately leading to a more complete rehydration. Research in the field cannot control the environment precisely, but these studies provide a natural, 'real-life' setting to study fluid and temperature regulation during exercise. The conditions encountered in the field are closest to the environment during competition, and data collected in the field can have an immediate impact on performance and safety during exercise. There is an important synergy between these two methods of collecting data that support performance and protect athletes from harm during training and improve performance during competition.

  9. Stellar Interferometer Technology Experiment (SITE)

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael

    1995-01-01

    The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.

  10. Preset pivotal tool holder

    DOEpatents

    Asmanes, Charles

    1979-01-01

    A tool fixture is provided for precise pre-alignment of a radiused edge cutting tool in a tool holder relative to a fixed reference pivot point established on said holder about which the tool holder may be selectively pivoted relative to the fixture base member to change the contact point of the tool cutting edge with a workpiece while maintaining the precise same tool cutting radius relative to the reference pivot point.

  11. Technologies That Enable Accurate and Precise Nano- to Milliliter-Scale Liquid Dispensing of Aqueous Reagents Using Acoustic Droplet Ejection.

    PubMed

    Sackmann, Eric K; Majlof, Lars; Hahn-Windgassen, Annett; Eaton, Brent; Bandzava, Temo; Daulton, Jay; Vandenbroucke, Arne; Mock, Matthew; Stearns, Richard G; Hinkson, Stephen; Datwani, Sammy S

    2016-02-01

    Acoustic liquid handling uses high-frequency acoustic signals that are focused on the surface of a fluid to eject droplets with high accuracy and precision for various life science applications. Here we present a multiwell source plate, the Echo Qualified Reservoir (ER), which can acoustically transfer over 2.5 mL of fluid per well in 25-nL increments using an Echo 525 liquid handler. We demonstrate two Labcyte technologies-Dynamic Fluid Analysis (DFA) methods and a high-voltage (HV) grid-that are required to maintain accurate and precise fluid transfers from the ER at this volume scale. DFA methods were employed to dynamically assess the energy requirements of the fluid and adjust the acoustic ejection parameters to maintain a constant velocity droplet. Furthermore, we demonstrate that the HV grid enhances droplet velocity and coalescence at the destination plate. These technologies enabled 5-µL per destination well transfers to a 384-well plate, with accuracy and precision values better than 4%. Last, we used the ER and Echo 525 liquid handler to perform a quantitative polymerase chain reaction (qPCR) assay to demonstrate an application that benefits from the flexibility and larger volume capabilities of the ER. © 2015 Society for Laboratory Automation and Screening.

  12. Time maintenance system for the BMDO MSX spacecraft

    NASA Technical Reports Server (NTRS)

    Hermes, Martin J.

    1994-01-01

    The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.

  13. Development of a Mirror Pointing Mechanism for an Atmospheric Gas Measurement Instrument

    NASA Technical Reports Server (NTRS)

    Graham, Michael; Belous, Adel; Brown, Jeffrey; Podolske, James

    1998-01-01

    Development of the Open Path Tunable Infrared Monitor of the Atmosphere (OPTIMA) instrument involved designing a pair of motion systems that could maintain a precise alignment and spatial distance between two mirrors installed on the NASA DC-8 research laboratory aircraft. This is the first airborne optical instrument that allows direct measurement of the gases in the freestream airflow on the exterior of the aircraft. One mirror is mounted within a specially constructed open port cavity in the cabin of the aircraft and the second is mounted 6 meters away on top of the inboard port side (number 2) engine pylon. Three co-aligned laser beams are reflected between the two mirrors 64 times in a Herriott pattern. The resulting sample path length of 384 meters is used to perform a spectral absorption analysis of the airflow between the mirrors. To compensate for normal wing movement and engine oscillations both mirrors were designed as continuously driven mechanisms to maintain alignment within allowable limits. The motion systems of the two mirror assemblies provide five degrees of freedom and are designed to maintain a pointing accuracy within seven arc-sec with a response frequency in 6xcess of 10 Hz. The pylon motion system incorporates controlled pitch and yaw movement. The fuselage motion system compensates for pitch variation as well as linear translation for focal length and vertical aiming of the laser beam via a controlled beam guidance mechanism.

  14. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  15. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy.

    PubMed

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P; Yang, Chen; Hosseini, Nahid; Fantner, Georg E

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  16. Development of Smart Precision Forest in Conifer Plantation in Japan Using Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Katoh, M.; Deng, S.; Takenaka, Y.; Cheung, K.; Oono, K.; Horisawa, M.; Hyyppä, J.; Yu, X.; Liang, X.; Wang, Y.

    2017-10-01

    Currently, the authors are planning to launch a consortium effort toward Japan's first smart precision forestry project using laser data and to develop this technology throughout the country. Smart precision forestry information gathered using the Nagano model (laser scanning from aircraft, drone, and backpack) is being developed to improve the sophistication of forest information, reduce labor-intensive work, maintain sustainable timber productivity, and facilitate supply chain management by laser sensing information in collaboration with industry, academia, and government. In this paper, we outline the research project and the technical development situation of unmanned aerial vehicle laser scanning.

  17. High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    This innovation has been developed to improve the resolutions of future spacebased active and passive microwave antennas for earth-science remote sensing missions by maintaining surface figure precisions of large membrane/thin-shell reflectors during orbiting. The intention is for these sensing instruments to be deployable at orbit altitudes one or two orders of magnitude higher than Low Earth Orbit (LEO), but still being able to acquire measurements at spatial resolution and sensitivity similar to those of LEO. Because active and passive microwave remote sensors are able to penetrate through clouds to acquire vertical profile measurements of geophysical parameters, it is desirable to elevate them to the higher orbits to obtain orbital geometries that offer large spatial coverage and more frequent observations. This capability is essential for monitoring and for detailed understanding of the life cycles of natural hazards, such as hurricanes, tropical storms, flash floods, and tsunamis. Major components of this high-precision antenna-surface-control system include a membrane/thin shell reflector, a metrology sensor, a controller, actuators, and corresponding power amplifier and signal conditioning electronics (see figure). Actuators are attached to the back of the reflector to produce contraction/ expansion forces to adjust the shape of the thin-material reflector. The wavefront-sensing metrology system continuously measures the surface figure of the reflector, converts the surface figure to digital data and feeds the data to the controller. The controller determines the control parameters and generates commands to the actuator system. The flexible, piezoelectric polymer actuators are thus activated, providing the control forces needed to correct any distortions that exist in the reflector surface. Piezoelectric polymer actuators are very thin and flexible. They can be implemented on the back of the membrane/thin-shell reflector without introducing significant amounts of mass or stiffness to the reflector. They can be rolled up or folded to accommodate the packaging needed for launch. An analytical model of the system, which includes the membrane reflector, actuator, and controller has been developed to investigate the functionality of this control system on a 35-meter-diameter membrane reflector. The performance of this system under external disturbances such as in space thermal loads and W-error due to inflation has been investigated. A subscale breadboard has been developed, and the functionality of this control concept has been demonstrated by this breadboard.

  18. Electronic Warfare and Radar Systems Engineering Handbook. 4th Edition

    DTIC Science & Technology

    2013-10-01

    and Maintainability R&M Reliability and Maintainability RAT Ram Air Turbine RBOC Rapid Blooming Offboard Chaff RCP or RHCP Right-hand Circular...Doppler shifted return (see Figure 10). Reflections off rotating jet engine compressor blades, aircraft propellers, ram air turbine (RAT...Doppler techniques, in order to precisely predict aircraft ground speed and direction of motion. Wind influences are taken into account, such that

  19. Propulsive maneuver design for the Mars Exploration Rover mission

    NASA Technical Reports Server (NTRS)

    Potts, Christopher L.; Kangas, Julie A.; Raofi, Behzad

    2006-01-01

    Starting from approximately 150 candidate Martian landing sites, two distinct sites have been selected for further investigation by sophisticated rovers. The two rovers, named 'Spirit' and 'Opportunity', begin the surface mission respectively to Gusec Crater and Meridiani Planum in January 2004. the rovers are essentially robotic geologists, sent on a mission to research for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. Before this scientific search can commence, precise trajectory targeting and control is necessary to achieve the entry requirements for the selected landing sites within the constraints of the flight system. The maneuver design challenge is to meet or exceed these requirements while maintaining the necessary design flexibility to accommodate additional project concerns. Opportunities to improve performance and reduce risk based on trajectory control characteristics are also evaluated.

  20. Magnetisation reversal in anisotropy graded Co/Pd multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, C. W., E-mail: craig.barton-2@postgrad.manchester.ac.uk; Thomson, T.

    2015-08-14

    We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd]{sub 8} multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol wouldmore » provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.« less

  1. The giant protein titin regulates the length of the striated muscle thick filament.

    PubMed

    Tonino, Paola; Kiss, Balazs; Strom, Josh; Methawasin, Mei; Smith, John E; Kolb, Justin; Labeit, Siegfried; Granzier, Henk

    2017-10-19

    The contractile machinery of heart and skeletal muscles has as an essential component the thick filament, comprised of the molecular motor myosin. The thick filament is of a precisely controlled length, defining thereby the force level that muscles generate and how this force varies with muscle length. It has been speculated that the mechanism by which thick filament length is controlled involves the giant protein titin, but no conclusive support for this hypothesis exists. Here we show that in a mouse model in which we deleted two of titin's C-zone super-repeats, thick filament length is reduced in cardiac and skeletal muscles. In addition, functional studies reveal reduced force generation and a dilated cardiomyopathy (DCM) phenotype. Thus, regulation of thick filament length depends on titin and is critical for maintaining muscle health.

  2. Validation of analytical methods in GMP: the disposable Fast Read 102® device, an alternative practical approach for cell counting.

    PubMed

    Gunetti, Monica; Castiglia, Sara; Rustichelli, Deborah; Mareschi, Katia; Sanavio, Fiorella; Muraro, Michela; Signorino, Elena; Castello, Laura; Ferrero, Ivana; Fagioli, Franca

    2012-05-31

    The quality and safety of advanced therapy products must be maintained throughout their production and quality control cycle to ensure their final use in patients. We validated the cell count method according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use and European Pharmacopoeia, considering the tests' accuracy, precision, repeatability, linearity and range. As the cell count is a potency test, we checked accuracy, precision, and linearity, according to ICH Q2. Briefly our experimental approach was first to evaluate the accuracy of Fast Read 102® compared to the Bürker chamber. Once the accuracy of the alternative method was demonstrated, we checked the precision and linearity test only using Fast Read 102®. The data were statistically analyzed by average, standard deviation and coefficient of variation percentages inter and intra operator. All the tests performed met the established acceptance criteria of a coefficient of variation of less than ten percent. For the cell count, the precision reached by each operator had a coefficient of variation of less than ten percent (total cells) and under five percent (viable cells). The best range of dilution, to obtain a slope line value very similar to 1, was between 1:8 and 1:128. Our data demonstrated that the Fast Read 102® count method is accurate, precise and ensures the linearity of the results obtained in a range of cell dilution. Under our standard method procedures, this assay may thus be considered a good quality control method for the cell count as a batch release quality control test. Moreover, the Fast Read 102® chamber is a plastic, disposable device that allows a number of samples to be counted in the same chamber. Last but not least, it overcomes the problem of chamber washing after use and so allows a cell count in a clean environment such as that in a Cell Factory. In a good manufacturing practice setting the disposable cell counting devices will allow a single use of the count chamber they can then be thrown away, thus avoiding the waste disposal of vital dye (e.g. Trypan Blue) or lysing solution (e.g. Tuerk solution).

  3. Validation of analytical methods in GMP: the disposable Fast Read 102® device, an alternative practical approach for cell counting

    PubMed Central

    2012-01-01

    Background The quality and safety of advanced therapy products must be maintained throughout their production and quality control cycle to ensure their final use in patients. We validated the cell count method according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use and European Pharmacopoeia, considering the tests’ accuracy, precision, repeatability, linearity and range. Methods As the cell count is a potency test, we checked accuracy, precision, and linearity, according to ICH Q2. Briefly our experimental approach was first to evaluate the accuracy of Fast Read 102® compared to the Bürker chamber. Once the accuracy of the alternative method was demonstrated, we checked the precision and linearity test only using Fast Read 102®. The data were statistically analyzed by average, standard deviation and coefficient of variation percentages inter and intra operator. Results All the tests performed met the established acceptance criteria of a coefficient of variation of less than ten percent. For the cell count, the precision reached by each operator had a coefficient of variation of less than ten percent (total cells) and under five percent (viable cells). The best range of dilution, to obtain a slope line value very similar to 1, was between 1:8 and 1:128. Conclusions Our data demonstrated that the Fast Read 102® count method is accurate, precise and ensures the linearity of the results obtained in a range of cell dilution. Under our standard method procedures, this assay may thus be considered a good quality control method for the cell count as a batch release quality control test. Moreover, the Fast Read 102® chamber is a plastic, disposable device that allows a number of samples to be counted in the same chamber. Last but not least, it overcomes the problem of chamber washing after use and so allows a cell count in a clean environment such as that in a Cell Factory. In a good manufacturing practice setting the disposable cell counting devices will allow a single use of the count chamber they can then be thrown away, thus avoiding the waste disposal of vital dye (e.g. Trypan Blue) or lysing solution (e.g. Tuerk solution). PMID:22650233

  4. Improvement of a Pneumatic Control Valve with Self-Holding Function

    NASA Astrophysics Data System (ADS)

    Dohta, Shujiro; Akagi, Tetsuya; Kobayashi, Wataru; Shimooka, So; Masago, Yusuke

    2017-10-01

    The purpose of this study is to develop a small-sized, lightweight and low-cost control valve with low energy consumption and to apply it to the assistive system. We have developed some control valves; a tiny on/off valve using a vibration motor, and an on/off valve with self-holding function. We have also proposed and tested the digital servo valve with self-holding function using permanent magnets and a small-sized servo motor. In this paper, in order to improve the valve, an analytical model of the digital servo valve is proposed. And the simulated results by using the analytical model and identified parameters were compared with the experimental results. Then, the improved digital servo valve was designed based on the calculated results and tested. As a result, we realized the digital servo valve that can control the flow rate more precisely while maintaining its volume and weight compared with the previous valve. As an application of the improved valve, a position control system of rubber artificial muscle was built and the position control was performed successfully.

  5. Attitude control system design using a flywheel suspended by two gimbals

    NASA Astrophysics Data System (ADS)

    Peres, R. W.; Ricci, M. C.

    2015-10-01

    This work presents the attitude control system design procedures for a three axis stabilized satellite in geostationary orbit, which contains a flywheel suspended by two gimbals. The use of a flywheel with two DOFs is an interesting option because with only one device it's possible to control the torques about vehicle's three axes; through the wheel speed control and gyrotorquing phenomenon with two DOFs. If the wheel size and speed are determined properly it's possible to cancel cyclic torques using gas jets only periodically to cancel secular disturbance torques. The system, based on a flywheel, takes only one pitch/roll (earth) sensor to maintain precise attitude, unlike mass expulsion based control systems, which uses propellants continuously, beyond roll, pitch and yaw sensors. It is considered the satellite is in nominal orbit and, therefore, that the attitude's acquisition phase has already elapsed. Control laws and system parameters are determined in order to cancel the solar pressure radiation disturbance torque and the torque due to misalignment of the thrusters. Stability is analyzed and step and cyclic responses are obtained.

  6. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean; Queen, Steve; Placanica, Sam

    2015-01-01

    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  7. Stripping and splicing polyimide-coated fibers

    NASA Astrophysics Data System (ADS)

    Duke, Douglas; Kanda, Yoshiharu; Tobita, Kenyo; Yamauchi, Ryozo

    2011-05-01

    Polyimide is often used as a coating material for optical fibers used in high temperature environments such as aerospace or oil and gas sensor applications. Unfortunately, polyimide coating is very difficult to strip by conventional mechanical stripping methods. The glass fiber is easily damaged if the stripping process is not extremely well controlled. Stripping the polyimide coating by heating with a flame or arc typically results in a significant reduction in fiber strength. Strength may be maintained by using hot acid stripping, however the use of the strong hot acid presents safety hazards and also requires controlled and safe waste disposal. Another issue with polyimide coating is variability of the coating diameter from various manufacturers or due to different polyimide coating processes. This not only complicates the polyimide stripping issue, but also presents problems with precise clamping and alignment during splicing, especially when it is necessary to splice with a short cleave length. In this paper, we present new polyimide coating stripping technology. The significant feature of this stripping technology is achievement of good strength while avoiding the use of hot acid or heating. We also developed a new specialty fiber fusion splicer that enables precise alignment and splicing regardless of the variability of polyimide coating diameter, even when clamping on the coating.

  8. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.

    2015-01-01

    NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  9. Positive-Buoyancy Rover for Under Ice Mobility

    NASA Technical Reports Server (NTRS)

    Leichty, John M.; Klesh, Andrew T.; Berisford, Daniel F.; Matthews, Jaret B.; Hand, Kevin P.

    2013-01-01

    A buoyant rover has been developed to traverse the underside of ice-covered lakes and seas. The rover operates at the ice/water interface and permits direct observation and measurement of processes affecting freeze- over and thaw events in lake and marine environments. Operating along the 2- D ice-water interface simplifies many aspects of underwater exploration, especially when compared to submersibles, which have difficulty in station-keeping and precision mobility. The buoyant rover consists of an all aluminum body with two aluminum sawtooth wheels. The two independent body segments are sandwiched between four actuators that permit isolation of wheel movement from movement of the central tether spool. For normal operations, the wheels move while the tether spool feeds out line and the cameras on each segment maintain a user-controlled fixed position. Typically one camera targets the ice/water interface and one camera looks down to the lake floor to identify seep sources. Each wheel can be operated independently for precision turning and adjustments. The rover is controlled by a touch- tablet interface and wireless goggles enable real-time viewing of video streamed from the rover cameras. The buoyant rover was successfully deployed and tested during an October 2012 field campaign to investigate methane trapped in ice in lakes along the North Slope of Alaska.

  10. Microfabrication of a High-Throughput Nanochannel Delivery/Filtration System

    NASA Technical Reports Server (NTRS)

    Ferrari, Mauro; Liu, Xuewu; Grattoni, Alessandro; Fine, Daniel; Hosali, Sharath; Goodall, Randi; Medema, Ryan; Hudson, Lee

    2011-01-01

    A microfabrication process is proposed to produce a nanopore membrane for continuous passive drug release to maintain constant drug concentrations in the patient s blood throughout the delivery period. Based on silicon microfabrication technology, the dimensions of the nanochannel area, as well as microchannel area, can be precisely controlled, thus providing a steady, constant drug release rate within an extended time period. The multilayered nanochannel structures extend the limit of release rate range of a single-layer nanochannel system, and allow a wide range of pre-defined porosity to achieve any arbitrary drug release rate using any preferred nanochannel size. This membrane system could also be applied to molecular filtration or isolation. In this case, the nanochannel length can be reduced to the nanofabrication limit, i.e., 10s of nm. The nanochannel delivery system membrane is composed of a sandwich of a thin top layer, the horizontal nanochannels, and a thicker bottom wafer. The thin top layer houses an array of microchannels that offers the inlet port for diffusing molecules. It also works as a lid for the nanochannels by providing the channels a top surface. The nanochannels are fabricated by a sacrificial layer technique that obtains smooth surfaces and precisely controlled dimensions. The structure of this nanopore membrane is optimized to yield high mechanical strength and high throughput.

  11. Development of acute tolerance to the EEG effect of propofol in rats.

    PubMed

    Ihmsen, H; Schywalsky, M; Tzabazis, A; Schwilden, H

    2005-09-01

    A previous study in rats with propofol suggested the development of acute tolerance to the EEG effect. The aim of this study was to evaluate acute tolerance by means of EEG-controlled closed-loop anaesthesia as this approach allows precise determination of drug requirement to maintain a defined drug effect. Ten male Sprague-Dawley rats [weight 402 (40) g, mean (SD)] were included in the study. The EEG was recorded with occipito-occipital needle electrodes and a modified median frequency (mMEF) of the EEG power spectrum was used as a pharmacodynamic control parameter. The propofol infusion rate was controlled by a model-based adaptive algorithm to maintain a set point of mMEF=3 (0.5) Hz for 90 min. The performance of the closed-loop system was characterized by the prediction error PE=(mMEF-set point)/set point. Plasma propofol concentrations were determined from arterial samples by HPLC. The chosen set point was successfully maintained in all rats. The median (SE) and absolute median values of PE were -5.0 (0.3) and 11.3 (0.2)% respectively. Propofol concentration increased significantly from 2.9 (2.2) microg ml(-1) at the beginning to 5.8 (3.8) microg ml(-1) at 90 min [mean (SD), P<0.05]. The cumulative dose increased linearly, with a mean infusion rate of 0.60 (0.16) mg kg(-1) min(-1). The minimum value of the mean arterial pressure during closed-loop administration of propofol was 130 (24) mm Hg, compared with a baseline value of 141 (12) mm Hg. The increase in propofol concentration at constant EEG effect indicates development of acute tolerance to the hypnotic effect of propofol.

  12. A Self Contained Method for Safe and Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Paschall, Stephen C., II; Brady, Tye; Cohanim, Babak; Sostaric, Ronald

    2008-01-01

    The return of humans to the Moon will require increased capability beyond that of the previous Apollo missions. Longer stay times and a greater flexibility with regards to landing locations are among the many improvements planned. A descent and landing system that can land the vehicle more accurately than Apollo with a greater ability to detect and avoid hazards is essential to the development of a Lunar Outpost, and also for increasing the number of potentially reachable Lunar Sortie locations. This descent and landing system should allow landings in more challenging terrain and provide more flexibility with regards to mission timing and lighting considerations, while maintaining safety as the top priority. The lunar landing system under development by the ALHAT (Autonomous precision Landing and Hazard detection Avoidance Technology) project is addressing this by providing terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard-detection system to select safe landing locations, and an Autonomous GNC (Guidance, Navigation, and Control) capability to process these measurements and safely direct the vehicle to this landing location. This ALHAT landing system will enable safe and precise lunar landings without requiring lunar infrastructure in the form of navigation aids or a priori identified hazard-free landing locations. The safe landing capability provided by ALHAT uses onboard active sensing to detect hazards that are large enough to be a danger to the vehicle but too small to be detected from orbit, given currently planned orbital terrain resolution limits. Algorithms to interpret raw active sensor terrain data and generate hazard maps as well as identify safe sites and recalculate new trajectories to those sites are included as part of the ALHAT System. These improvements to descent and landing will help contribute to repeated safe and precise landings for a wide variety of terrain on the Moon.

  13. Seismic Analysis Code (SAC): Development, porting, and maintenance within a legacy code base

    NASA Astrophysics Data System (ADS)

    Savage, B.; Snoke, J. A.

    2017-12-01

    The Seismic Analysis Code (SAC) is the result of toil of many developers over almost a 40-year history. Initially a Fortran-based code, it has undergone major transitions in underlying bit size from 16 to 32, in the 1980s, and 32 to 64 in 2009; as well as a change in language from Fortran to C in the late 1990s. Maintenance of SAC, the program and its associated libraries, have tracked changes in hardware and operating systems including the advent of Linux in the early 1990, the emergence and demise of Sun/Solaris, variants of OSX processors (PowerPC and x86), and Windows (Cygwin). Traces of these systems are still visible in source code and associated comments. A major concern while improving and maintaining a routinely used, legacy code is a fear of introducing bugs or inadvertently removing favorite features of long-time users. Prior to 2004, SAC was maintained and distributed by LLNL (Lawrence Livermore National Lab). In that year, the license was transferred from LLNL to IRIS (Incorporated Research Institutions for Seismology), but the license is not open source. However, there have been thousands of downloads a year of the package, either source code or binaries for specific system. Starting in 2004, the co-authors have maintained the SAC package for IRIS. In our updates, we fixed bugs, incorporated newly introduced seismic analysis procedures (such as EVALRESP), added new, accessible features (plotting and parsing), and improved the documentation (now in HTML and PDF formats). Moreover, we have added modern software engineering practices to the development of SAC including use of recent source control systems, high-level tests, and scripted, virtualized environments for rapid testing and building. Finally, a "sac-help" listserv (administered by IRIS) was setup for SAC-related issues and is the primary avenue for users seeking advice and reporting bugs. Attempts are always made to respond to issues and bugs in a timely fashion. For the past thirty-plus years, SAC files contained a fixed-length header. Time and distance-related values are stored in single precision, which has become a problem with the increase in desired precision for data compared to thirty years ago. A future goal is to address this precision problem, but in a backward compatible manner. We would also like to transition SAC to a more open source license.

  14. MOIL-opt: Energy-Conserving Molecular Dynamics on a GPU/CPU system

    PubMed Central

    Ruymgaart, A. Peter; Cardenas, Alfredo E.; Elber, Ron

    2011-01-01

    We report an optimized version of the molecular dynamics program MOIL that runs on a shared memory system with OpenMP and exploits the power of a Graphics Processing Unit (GPU). The model is of heterogeneous computing system on a single node with several cores sharing the same memory and a GPU. This is a typical laboratory tool, which provides excellent performance at minimal cost. Besides performance, emphasis is made on accuracy and stability of the algorithm probed by energy conservation for explicit-solvent atomically-detailed-models. Especially for long simulations energy conservation is critical due to the phenomenon known as “energy drift” in which energy errors accumulate linearly as a function of simulation time. To achieve long time dynamics with acceptable accuracy the drift must be particularly small. We identify several means of controlling long-time numerical accuracy while maintaining excellent speedup. To maintain a high level of energy conservation SHAKE and the Ewald reciprocal summation are run in double precision. Double precision summation of real-space non-bonded interactions improves energy conservation. In our best option, the energy drift using 1fs for a time step while constraining the distances of all bonds, is undetectable in 10ns simulation of solvated DHFR (Dihydrofolate reductase). Faster options, shaking only bonds with hydrogen atoms, are also very well behaved and have drifts of less than 1kcal/mol per nanosecond of the same system. CPU/GPU implementations require changes in programming models. We consider the use of a list of neighbors and quadratic versus linear interpolation in lookup tables of different sizes. Quadratic interpolation with a smaller number of grid points is faster than linear lookup tables (with finer representation) without loss of accuracy. Atomic neighbor lists were found most efficient. Typical speedups are about a factor of 10 compared to a single-core single-precision code. PMID:22328867

  15. Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot

    NASA Astrophysics Data System (ADS)

    Jacob, John S.; Gunderson, Robert W.; Fullmer, R. R.

    1998-08-01

    A systematic approach to ground vehicle automation is presented, combining low-level controls, trajectory generation and closed-loop path correction in an integrated system. Development of cooperative robotics for precision agriculture at Utah State University required the automation of a full-scale motorized vehicle. The Triton Predator 8- wheeled skid-steering all-terrain vehicle was selected for the project based on its ability to maneuver precisely and the simplicity of controlling the hydrostatic drivetrain. Low-level control was achieved by fitting an actuator on the engine throttle, actuators for the left and right drive controls, encoders on the left and right drive shafts to measure wheel speeds, and a signal pick-off on the alternator for measuring engine speed. Closed loop control maintains a desired engine speed and tracks left and right wheel speeds commands. A trajectory generator produces the wheel speed commands needed to steer the vehicle through a predetermined set of map coordinates. A planar trajectory through the points is computed by fitting a 2D cubic spline over each path segment while enforcing initial and final orientation constraints at segment endpoints. Acceleration and velocity profiles are computed for each trajectory segment, with the velocity over each segment dependent on turning radius. Left and right wheel speed setpoints are obtained by combining velocity and path curvature for each low-level timestep. The path correction algorithm uses GPS position and compass orientation information to adjust the wheel speed setpoints according to the 'crosstrack' and 'downtrack' errors and heading error. Nonlinear models of the engine and the skid-steering vehicle/ground interaction were developed for testing the integrated system in simulation. These test lead to several key design improvements which assisted final implementation on the vehicle.

  16. Clinical evaluation of a simultaneous closed-loop anaesthesia control system for depth of anaesthesia and neuromuscular blockade*.

    PubMed

    Janda, M; Simanski, O; Bajorat, J; Pohl, B; Noeldge-Schomburg, G F E; Hofmockel, R

    2011-12-01

    We developed a closed-loop system to control the depth of anaesthesia and neuromuscular blockade using the bispectral index and the electromyogram simultaneously and evaluated the clinical performance of this combined system for general anaesthesia. Twenty-two adult patients were included in this study. Anaesthesia was induced by a continuous infusion of remifentanil at 0.4 μg.kg(-1) .min(-1) (induction dose) and then 0.25 μg.kg(-1) .min(-1) (maintenance dose) and propofol at 2 mg.kg(-1) 3 min later. The combined automatic control was started 2 min after tracheal intubation. The depth of anaesthesia was recorded using bispectral index monitoring using a target value of 40. The target value of neuromuscular blockade, using mivacurium, was a T1/T1(0) twitch height of 10%. The precision of the system was calculated using internationally defined performance parameters. Twenty patients were included in the data analysis. The mean (SD) duration of simultaneous control was 129 (69) min. No human intervention was necessary during the computer-controlled administration of propofol and mivacurium. All patients assessed the quality of anaesthesia as 'good' to 'very good'; there were no episodes of awareness. The mean (SD) median performance error, median absolute performance error and wobble for the control of depth of anaesthesia and for neuromuscular blockade were -0.31 (1.78), 6.76 (3.45), 6.32 (2.93) and -0.38 (1.68), 3.75 (4.83), 3.63 (4.69), respectively. The simultaneous closed-loop system using propofol and mivacurium was able to maintain the target values with a high level of precision in a clinical setting. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  17. A Versatile Technique to Enable Sub-milli-Kelvin Instrument Stability for Precise Radial Velocity Measurements: Tests with the Habitable-zone Planet Finder

    NASA Astrophysics Data System (ADS)

    Stefansson, Gudmundur; Hearty, Frederick; Robertson, Paul; Mahadevan, Suvrath; Anderson, Tyler; Levi, Eric; Bender, Chad; Nelson, Matthew; Monson, Andrew; Blank, Basil; Halverson, Samuel; Henderson, Chuck; Ramsey, Lawrence; Roy, Arpita; Schwab, Christian; Terrien, Ryan

    2016-12-01

    Insufficient instrument thermomechanical stability is one of the many roadblocks for achieving 10 cm s-1 Doppler radial velocity precision, the precision needed to detect Earth-twins orbiting solar-type stars. Highly temperature and pressure stabilized spectrographs allow us to better calibrate out instrumental drifts, thereby helping in distinguishing instrumental noise from astrophysical stellar signals. We present the design and performance of the Environmental Control System (ECS) for the Habitable-zone Planet Finder (HPF), a high-resolution (R = 50,000) fiber-fed near-infrared (NIR) spectrograph for the 10 {{m}} Hobby-Eberly Telescope at McDonald Observatory. HPF will operate at 180 {{K}}, driven by the choice of an H2RG NIR detector array with a 1.7 μ {{m}} cutoff. This ECS has demonstrated 0.6 {mK} rms stability over 15 days at both 180 and 300 {{K}}, and maintained high-quality vacuum (\\lt {10}-7 {Torr}) over months, during long-term stability tests conducted without a planned passive thermal enclosure surrounding the vacuum chamber. This control scheme is versatile and can be applied as a blueprint to stabilize future NIR and optical high-precision Doppler instruments over a wide temperature range from ˜77 {{K}} to elevated room temperatures. A similar ECS is being implemented to stabilize NEID, the NASA/NSF NN-EXPLORE spectrograph for the 3.5 {{m}} WIYN telescope at Kitt Peak, operating at 300 {{K}}. A [full SolidWorks 3D-CAD model] and a comprehensive parts list of the HPF ECS are included with this manuscript to facilitate the adaptation of this versatile environmental control scheme in the broader astronomical community. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

  18. Manufacturing Technology Research Needs of the Gear Industry

    DTIC Science & Technology

    1987-12-31

    Precision Gear Industry, . .... 31 2.2.6.8 Availability’of Skilied Craftsmen. o.... 32 2.2.6.9 Management Shortcomings within the U.S. Precision Gear...becomes more sophisticated, workers are running numerically con- trolled computer equipment requiring an understanding of math. I 2.2.6.9 Management ...inefficiencies of the job shop environ- ment by managing the gear business as a backward integra- tion of the assembly line. o Develop and maintain employee

  19. High frame-rate resolution of cell division during Candida albicans filamentation

    PubMed Central

    Thomson, Darren D.; Berman, Judith; Brand, Alexandra C.

    2016-01-01

    The commensal yeast, Candida albicans, is an opportunistic pathogen in humans and forms filaments called hyphae and pseudohyphae, in which cell division requires precise temporal and spatial control to produce mononuclear cell compartments. High-frame-rate live-cell imaging (1 frame/min) revealed that nuclear division did not occur across the septal plane. We detected the presence of nucleolar fragments that may be extrachromosomal molecules carrying the ribosomal RNA genes. Cells occasionally maintained multiple nucleoli, suggesting either polyploidy, multiple nuclei and/or aneuploidy of ChrR., while the migration pattern of sister nuclei differed between unbranched and branched hyphae. The presented movie challenges and extends previous concepts of C. albicans cell division. PMID:26854071

  20. SAR operational aspects

    NASA Astrophysics Data System (ADS)

    Holmdahl, P. E.; Ellis, A. B. E.; Moeller-Olsen, P.; Ringgaard, J. P.

    1981-12-01

    The basic requirements of the SAR ground segment of ERS-1 are discussed. A system configuration for the real time data acquisition station and the processing and archive facility is depicted. The functions of a typical SAR processing unit (SPU) are specified, and inputs required for near real time and full precision, deferred time processing are described. Inputs and the processing required for provision of these inputs to the SPU are dealt with. Data flow through the systems, and normal and nonnormal operational sequence, are outlined. Prerequisites for maintaining overall performance are identified, emphasizing quality control. The most demanding tasks to be performed by the front end are defined in order to determine types of processors and peripherals which comply with throughput requirements.

  1. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  2. Object-Based Dense Matching Method for Maintaining Structure Characteristics of Linear Buildings

    PubMed Central

    Yan, Yiming; Qiu, Mingjie; Zhao, Chunhui; Wang, Liguo

    2018-01-01

    In this paper, we proposed a novel object-based dense matching method specially for the high-precision disparity map of building objects in urban areas, which can maintain accurate object structure characteristics. The proposed framework mainly includes three stages. Firstly, an improved edge line extraction method is proposed for the edge segments to fit closely to building outlines. Secondly, a fusion method is proposed for the outlines under the constraint of straight lines, which can maintain the building structural attribute with parallel or vertical edges, which is very useful for the dense matching method. Finally, we proposed an edge constraint and outline compensation (ECAOC) dense matching method to maintain building object structural characteristics in the disparity map. In the proposed method, the improved edge lines are used to optimize matching search scope and matching template window, and the high-precision building outlines are used to compensate the shape feature of building objects. Our method can greatly increase the matching accuracy of building objects in urban areas, especially at building edges. For the outline extraction experiments, our fusion method verifies the superiority and robustness on panchromatic images of different satellites and different resolutions. For the dense matching experiments, our ECOAC method shows great advantages for matching accuracy of building objects in urban areas compared with three other methods. PMID:29596393

  3. Waveguide Harmonic Generator for the SIM

    NASA Technical Reports Server (NTRS)

    Chang, Daniel; Poberezhskiy, Ilya; Mulder, Jerry

    2008-01-01

    A second-harmonic generator (SHG) serves as the source of the visible laser beam in an onboard calibration scheme for NASA's planned Space Interferometry Mission (SIM), which requires an infrared laser beam and a visible laser beam coherent with the infrared laser beam. The SHG includes quasi-phase-matched waveguides made of MgO-doped, periodically poled lithium niobate, pigtailed with polarization- maintaining optical fibers. Frequency doubling by use of such waveguides affords the required combination of coherence and sufficient conversion efficiency for the intended application. The spatial period of the poling is designed to obtain quasi-phase- matching at a nominal middle excitation wavelength of 1,319.28 nm. The SHG is designed to operate at a warm bias (ambient temperature between 20 and 25 C) that would be maintained in its cooler environment by use of electric heaters; the heater power would be adjusted to regulate the temperature precisely and thereby maintain the required precision of the spatial period. At the state of development at the time of this reporting, the SHG had been packaged and subjected to most of its planned space-qualification tests.

  4. Thermal protection for a self-sensing piezoelectric control system

    NASA Astrophysics Data System (ADS)

    Simmers, Garnett E., Jr.; Sodano, Henry A.; Park, Gyuhae; Inman, Daniel J.

    2007-12-01

    Piezoelectric materials exhibit high electromechanical coupling that allows them to both generate an electrical signal when strained and, conversely, to produce a strain under an applied electric field. This coupling has led to the use of these materials for a variety of sensing and actuation purposes. One unique application of these materials is their use as self-sensing actuators where both the sensing and actuation functions are performed by a single patch of material. Since the actuation and sensing voltages both exist simultaneously in the piezoelectric material, a specially designed electric circuit, referred to as a bridge circuit, is required to realize the concept. Configuration of the material in this manner is advantageous for control systems due to the enhanced stability associated when collocated control is applied. While certain advantages result from this type of system, precise equilibrium of the bridge circuit is required to achieve stability. This equilibrium is easy to achieve in theory, but difficult in practice due to the thermal dependence of the piezoelectric material's dielectric constant. This study will investigate a novel method of accounting for these changes through the use of thermal switches to passively adjust the bridge circuit and maintain a balanced state. The proposed concept will be theoretically modeled and simulated in a vibration control application to identify the thermal range for stability with and without the array of switches. It will be shown that, through the use of nine thermal switches, the stable operating range can be increased by 95 °C while maintaining vibration control performance.

  5. A Simple, Inexpensive Water-Leveling Device for Ultramicrotomy.

    ERIC Educational Resources Information Center

    Brooks, Austin E.

    1978-01-01

    Describes a device for maintaining the proper water level in knife boats during ultramicrotomy. Water levels in troughs are adjusted rapidly and precisely during the cutting process. Illustrations are included. (Author/MA)

  6. Straight as an arrow: humpback whales swim constant course tracks during long-distance migration

    PubMed Central

    Horton, Travis W.; Holdaway, Richard N.; Zerbini, Alexandre N.; Hauser, Nan; Garrigue, Claire; Andriolo, Artur; Clapham, Phillip J.

    2011-01-01

    Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored. PMID:21508023

  7. The development of composite materials for spacecraft precision reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.

    1990-01-01

    One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.

  8. Straight as an arrow: humpback whales swim constant course tracks during long-distance migration.

    PubMed

    Horton, Travis W; Holdaway, Richard N; Zerbini, Alexandre N; Hauser, Nan; Garrigue, Claire; Andriolo, Artur; Clapham, Phillip J

    2011-10-23

    Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored.

  9. Cryopreserved Human Precision-Cut Lung Slices as a Bioassay for Live Tissue Banking. A Viability Study of Bronchodilation with Bitter-Taste Receptor Agonists

    PubMed Central

    Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R.; Rosas, Ivan; Ai, Xingbin

    2016-01-01

    Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca2+-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca2+ oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease. PMID:26550921

  10. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    PubMed

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  11. Cryopreserved Human Precision-Cut Lung Slices as a Bioassay for Live Tissue Banking. A Viability Study of Bronchodilation with Bitter-Taste Receptor Agonists.

    PubMed

    Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R; Rosas, Ivan; Sanderson, Michael J; Ai, Xingbin

    2016-05-01

    Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca(2+)-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca(2+) oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease.

  12. Design and test of electromechanical actuators for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Weir, Rae Ann

    1993-01-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  13. Design and test of electromechanical actuators for thrust vector control

    NASA Astrophysics Data System (ADS)

    Cowan, J. R.; Weir, Rae Ann

    1993-05-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  14. Effects of running with backpack loads during simulated gravitational transitions: Improvements in postural control

    NASA Astrophysics Data System (ADS)

    Brewer, Jeffrey David

    The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.

  15. Ex vivo evaluation of super pulse diode laser system with smart temperature feedback for contact soft-tissue surgery

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Ilya; Boutoussov, Dmitri; Vybornov, Alexander; Perchuk, Igor; Meleshkevich, Val; Altshuler, Gregory

    2018-02-01

    Until recently, Laser Diodes (LD) have been limited in their ability to deliver high peak power levels, which, in turn, limited their clinical capabilities. New technological developments made possible advent of "super pulse" LD (SPLD). Moreover, advanced means of smart thermal feedback enable precise control of laser power, thus ensuring safe and optimally efficacious application. In this work, we have evaluated a prototype SPLD system ex vivo. The device provided up to 25 W average and up to 150 W pulse power at 940 nm wavelength. The laser was operated in the thermal feedback-controlled mode, where power of the laser was varied automatically as a function of real-time thermal feedback to maintain constant tip temperature. The system was also equipped with a fiber tip initiated with advanced TiO2 /tungsten technique. Evaluation methods were designed to assess: 1) Speed and depth of cutting; 2) Dimensions of coagulative margin. The SPLD system was compared with industry-leading conventional diode and CO2 devices. The results indicate that the SPLD system provides increase in speed of controlled cutting by a factor of >2 in comparison with the conventional diode laser and approaching that of CO2 device. The produced ratio of the depth of cut to the thermal damage margin was significantly higher than conventional diodes and close to that of the CO2 system, suggesting optimal hemostasis conditions. SPLD technology with real-time temperature control has a potential for creating a new standard of care in the field of precision soft tissue surgery.

  16. Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces.

    PubMed

    Gurari, Netta; Baud-Bovy, Gabriel

    2014-09-30

    The emergence of commercial haptic devices offers new research opportunities to enhance our understanding of the human sensory-motor system. Yet, commercial device capabilities have limitations which need to be addressed. This paper describes the customization of a commercial force feedback device for displaying forces with a precision that exceeds the human force perception threshold. The device was outfitted with a multi-axis force sensor and closed-loop controlled to improve its transparency. Additionally, two force sensing resistors were attached to the device to measure grip force. Force errors were modeled in the frequency- and time-domain to identify contributions from the mass, viscous friction, and Coulomb friction during open- and closed-loop control. The effect of user interaction on system stability was assessed in the context of a user study which aimed to measure force perceptual thresholds. Findings based on 15 participants demonstrate that the system maintains stability when rendering forces ranging from 0-0.20 N, with an average maximum absolute force error of 0.041 ± 0.013 N. Modeling the force errors revealed that Coulomb friction and inertia were the main contributors to force distortions during respectively slow and fast motions. Existing commercial force feedback devices cannot render forces with the required precision for certain testing scenarios. Building on existing robotics work, this paper shows how a device can be customized to make it reliable for studying the perception of weak forces. The customized and closed-loop controlled device is suitable for measuring force perceptual thresholds. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Dye bias correction in dual-labeled cDNA microarray gene expression measurements.

    PubMed Central

    Rosenzweig, Barry A; Pine, P Scott; Domon, Olen E; Morris, Suzanne M; Chen, James J; Sistare, Frank D

    2004-01-01

    A significant limitation to the analytical accuracy and precision of dual-labeled spotted cDNA microarrays is the signal error due to dye bias. Transcript-dependent dye bias may be due to gene-specific differences of incorporation of two distinctly different chemical dyes and the resultant differential hybridization efficiencies of these two chemically different targets for the same probe. Several approaches were used to assess and minimize the effects of dye bias on fluorescent hybridization signals and maximize the experimental design efficiency of a cell culture experiment. Dye bias was measured at the individual transcript level within each batch of simultaneously processed arrays by replicate dual-labeled split-control sample hybridizations and accounted for a significant component of fluorescent signal differences. This transcript-dependent dye bias alone could introduce unacceptably high numbers of both false-positive and false-negative signals. We found that within a given set of concurrently processed hybridizations, the bias is remarkably consistent and therefore measurable and correctable. The additional microarrays and reagents required for paired technical replicate dye-swap corrections commonly performed to control for dye bias could be costly to end users. Incorporating split-control microarrays within a set of concurrently processed hybridizations to specifically measure dye bias can eliminate the need for technical dye swap replicates and reduce microarray and reagent costs while maintaining experimental accuracy and technical precision. These data support a practical and more efficient experimental design to measure and mathematically correct for dye bias. PMID:15033598

  18. Mobile terawatt laser propagation facility (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shah, Lawrence; Roumayah, Patrick; Bodnar, Nathan; Bradford, Joshua D.; Maukonen, Douglas; Richardson, Martin C.

    2017-03-01

    This presentation will describe the design and construction status of a new mobile high-energy femtosecond laser systems producing 500 mJ, 100 fs pulses at 10 Hz. This facility is built into a shipping container and includes a cleanroom housing the laser system, a separate section for the beam director optics with a retractable roof, and the environmental control equipment necessary to maintain stable operation. The laser system includes several innovations to improve the utility of the system for "in field" experiments. For example, this system utilizes a fiber laser oscillator and a monolithic chirped Bragg grating stretcher to improve system robustness/size and employs software to enable remote monitoring and system control. Uniquely, this facility incorporates a precision motion-controlled gimbal altitude-azimuth mount with a coudé path to enable aiming of the beam over a wide field of view. In addition to providing the ability to precisely aim at multiple targets, it is also possible to coordinate the beam with separate tracking/diagnostic sensing equipment as well as other laser systems. This mobile platform will be deployed at the Townes Institute Science and Technology Experimental Facility (TISTEF) located at the Kennedy Space Center in Florida, to utilize the 1-km secured laser propagation range and the wide array of meteorological instrumentation for atmospheric and turbulence characterization. This will provide significant new data on the propagation of high peak power ultrashort laser pulses and detailed information on the atmospheric conditions in a coastal semi-tropical environment.

  19. Measuring and assessing maintainability at the end of high level design

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Morasca, Sandro; Basili, Victor R.

    1993-01-01

    Software architecture appears to be one of the main factors affecting software maintainability. Therefore, in order to be able to predict and assess maintainability early in the development process we need to be able to measure the high-level design characteristics that affect the change process. To this end, we propose a measurement approach, which is based on precise assumptions derived from the change process, which is based on Object-Oriented Design principles and is partially language independent. We define metrics for cohesion, coupling, and visibility in order to capture the difficulty of isolating, understanding, designing and validating changes.

  20. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    2003-01-01

    A method and apparatus for dynamically controlling the crystallization of molecules including a crystallization chamber (14) or chambers for holding molecules in a precipitant solution, one or more precipitant solution reservoirs (16, 18), communication passages (17, 19) respectively coupling the crystallization chamber(s) with each of the precipitant solution reservoirs, and transfer mechanisms (20, 21, 22, 24, 26, 28) configured to respectively transfer precipitant solution between each of the precipitant solution reservoirs and the crystallization chamber(s). The transfer mechanisms are interlocked to maintain a constant volume of precipitant solution in the crystallization chamber(s). Precipitant solutions of different concentrations are transferred into and out of the crystallization chamber(s) to adjust the concentration of precipitant in the crystallization chamber(s) to achieve precise control of the crystallization process. The method and apparatus can be used effectively to grow crystals under reduced gravity conditions such as microgravity conditions of space, and under conditions of reduced or enhanced effective gravity as induced by a powerful magnetic field.

  1. Inertial Energy Storage for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.

    1984-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.

  2. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation.

    PubMed

    Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart

    2018-04-25

    To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Mirror Metrology Using Nano-Probe Supports

    NASA Technical Reports Server (NTRS)

    Robinson, David; Hong, Maoling; Byron, Glenn; McClelland, Ryan; Chan, Kai-Wing

    2012-01-01

    Thin, lightweight mirrors are needed for future x-ray space telescopes in order to increase x-ray collecting area while maintaining a reduced mass and volume capable of being launched on existing rockets. However, it is very difficult to determine the undistorted shape of such thin mirrors because the mounting of the mirror during measurement causes distortion. Traditional kinematic mounts have insufficient supports to control the distortion to measurable levels and prevent the mirror from vibrating during measurement. Over-constrained mounts (non-kinematic) result in an unknown force state causing mirror distortion that cannot be determined or analytically removed. In order to measure flexible mirrors, it is necessary to over-constrain the mirror. Over-constraint causes unknown distortions to be applied to the mirror. Even if a kinematic constraint system can be used, necessary imperfections in the kinematic assumption can lead to an unknown force state capable of distorting the mirror. Previously, thicker, stiffer, and heavier mirrors were used to achieve low optical figure distortion. These mirrors could be measured to an acceptable level of precision using traditional kinematic mounts. As lighter weight precision optics have developed, systems such as the whiffle tree or hydraulic supports have been used to provide additional mounting supports while maintaining the kinematic assumption. The purpose of this invention is to over-constrain a mirror for optical measurement without causing unacceptable or unknown distortions. The invention uses force gauges capable of measuring 1/10,000 of a Newton attached to nano-actuators to support a thin x-ray optic with known and controlled forces to allow for figure measurement and knowledge of the undeformed mirror figure. The mirror is hung from strings such that it is minimally distorted and in a known force state. However, the hanging mirror cannot be measured because it is both swinging and vibrating. In order to stabilize the mirror for measurement, nano-probes support the mirror, causing the mirror to be over-constrained.

  4. OSIRIS-REx Contamination Control Strategy and Implementation

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Adelman, L. A.; Ajluni, T.; Andronikov, A. V.; Aponte, J. C.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.; hide

    2017-01-01

    OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This manuscript describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at Level 100 A/2 and less than 180 nanograms per square centimeter of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication between scientists, engineers, managers, and technicians.

  5. The effectiveness of lifestyle interventions to reduce cardiovascular risk in patients with severe mental disorders: meta-analysis of intervention studies.

    PubMed

    Fernández-San-Martín, Maria Isabel; Martín-López, Luis Miguel; Masa-Font, Roser; Olona-Tabueña, Noemí; Roman, Yuani; Martin-Royo, Jaume; Oller-Canet, Silvia; González-Tejón, Susana; San-Emeterio, Luisa; Barroso-Garcia, Albert; Viñas-Cabrera, Lidia; Flores-Mateo, Gemma

    2014-01-01

    Patients with severe mental illness have higher prevalences of cardiovascular risk factors (CRF). The objective is to determine whether interventions to modify lifestyles in these patients reduce anthropometric and analytical parameters related to CRF in comparison to routine clinical practice. Systematic review of controlled clinical trials with lifestyle intervention in Medline, Cochrane Library, Embase, PsycINFO and CINALH. Change in body mass index, waist circumference, cholesterol, triglycerides and blood sugar. Meta-analyses were performed using random effects models to estimate the weighted mean difference. Heterogeneity was determined using i(2) statistical and subgroups analyses. 26 studies were selected. Lifestyle interventions decrease anthropometric and analytical parameters at 3 months follow up. At 6 and 12 months, the differences between the intervention and control groups were maintained, although with less precision. More studies with larger samples and long-term follow-up are needed.

  6. Bioinspired optical sensors for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  7. Hobby-Eberly Telescope: commissioning experience and observing plans

    NASA Astrophysics Data System (ADS)

    Glaspey, John W.; Adams, M. T.; Booth, John A.; Cornell, Mark E.; Fowler, James R.; Krabbendam, Victor L.; Ramsey, Lawrence W.; Ray, Frank B.; Ricklefs, Randall L.; Spiesman, W. J.

    1998-07-01

    Experience in bringing into operation the 91-segment primary mirror alignment and control system, the focal plane tracker system, and other critical subsystems of the HET will be described. Particular attention is given to the tracker, which utilizes three linear and three rotational degrees of freedom to follow sidereal targets. Coarse time-dependent functions for each axis are downloaded to autonomous PMAC controllers that provide the precise motion drives to the two linear stages and the hexapod system. Experience gained in aligning the sperate mirrors and then maintaining image quality in a variable thermal environments will also be described. Because of the fixed elevation of the primary optical axis, only a limited amount of time is available for observing objects in the 12 degrees wide observing band. With a small core HET team working with McDonald Observatory staff, efficient, reliable, uncomplicated methodologies are required in all aspects of the observing operations.

  8. Development of an automated potable water bactericide monitoring unit

    NASA Technical Reports Server (NTRS)

    Walsh, J. M.; Brawner, C. C.; Sauer, R. L.

    1975-01-01

    A monitor unit has been developed that permits the direct determination of the level of elemental iodine, used for microbiological control, in a spacecraft potable water supply system. Salient features of unit include low weight, volume and maintenance requirements, complete automatic operation, no inflight calibration, no expendables (except electrical current) and high accuracy and precision. This unit is capable of providing a signal to a controller that, in turn, automatically adjusts the addition rate of iodine to the potable water system so that a predetermined level of iodine can be maintained. In addition, the monitor provides a reading whereby the crewman can verify that the proper amount of iodine (within a range) is present in the water. A development history of the monitor is presented along with its design and theory of operation. Also presented are the results generated through testing of the unit in a simulated Shuttle potable water system.

  9. SiC MOSFET Switching Power Amplifier Project Summary

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Henson, Alex

    2017-10-01

    Eagle Harbor Technologies has completed a Phase I/II program to develop SiC MOSFET based Switching Power Amplifiers (SPA) for precision magnet control in fusion science applications. During this program, EHT developed several units have been delivered to the Helicity Injected Torus (HIT) experiment at the University of Washington to drive both the voltage and flux circuits of the helicity injectors. These units are capable of switching 700 V at 100 kHz with an adjustable duty cycle from 10 - 90% and a combined total output current of 96 kA for 4 ms (at max current). The SPAs switching is controlled by the microcontroller at HIT, which adjusts the duty cycle to maintain a specific waveform in the injector. The SPAs include overcurrent and shoot-through protection circuity. EHT will present an overview of the program including final results for the SPA waveforms. With support of DOE SBIR.

  10. OSIRIS-REx Contamination Control Strategy and Implementation

    NASA Astrophysics Data System (ADS)

    Dworkin, J. P.; Adelman, L. A.; Ajluni, T.; Andronikov, A. V.; Aponte, J. C.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.; Burton, A. S.; Callahan, M. P.; Castro-Wallace, S. L.; Clark, B. C.; Clemett, S. J.; Connolly, H. C.; Cutlip, W. E.; Daly, S. M.; Elliott, V. E.; Elsila, J. E.; Enos, H. L.; Everett, D. F.; Franchi, I. A.; Glavin, D. P.; Graham, H. V.; Hendershot, J. E.; Harris, J. W.; Hill, S. L.; Hildebrand, A. R.; Jayne, G. O.; Jenkens, R. W.; Johnson, K. S.; Kirsch, J. S.; Lauretta, D. S.; Lewis, A. S.; Loiacono, J. J.; Lorentson, C. C.; Marshall, J. R.; Martin, M. G.; Matthias, L. L.; McLain, H. L.; Messenger, S. R.; Mink, R. G.; Moore, J. L.; Nakamura-Messenger, K.; Nuth, J. A.; Owens, C. V.; Parish, C. L.; Perkins, B. D.; Pryzby, M. S.; Reigle, C. A.; Righter, K.; Rizk, B.; Russell, J. F.; Sandford, S. A.; Schepis, J. P.; Songer, J.; Sovinski, M. F.; Stahl, S. E.; Thomas-Keprta, K.; Vellinga, J. M.; Walker, M. S.

    2018-02-01

    OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.

  11. Homeostatic control of neural activity: from phenomenology to molecular design.

    PubMed

    Davis, Graeme W

    2006-01-01

    Homeostasis is a specialized form of regulation that precisely maintains the function of a system at a set point level of activity. Recently, homeostatic signaling has been suggested to control neural activity through the modulation of synaptic efficacy and membrane excitability ( Davis & Goodman 1998a, Turrigiano & Nelson 2000, Marder & Prinz 2002, Perez-Otano & Ehlers 2005 ). In this way, homeostatic signaling is thought to constrain neural plasticity and contribute to the stability of neural function over time. Using a restrictive definition of homeostasis, this review first evaluates the phenomenological and molecular evidence for homeostatic signaling in the nervous system. Then, basic principles underlying the design and molecular implementation of homeostatic signaling are reviewed on the basis of work in other, simplified biological systems such as bacterial chemotaxis and the heat shock response. Data from these systems are then discussed in the context of homeostatic signaling in the nervous system.

  12. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-01-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  13. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    NASA Astrophysics Data System (ADS)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-09-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  14. OSIRIS-REx Contamination Control Strategy and Implementation

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Adelman, L. A.; Ajluni, T. M.; Andronikov, A. V.; Aponte, J. S.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.; hide

    2017-01-01

    OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and less than 180 ng/cm(exp 2) of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.

  15. Low Power, Low Mass, Modular, Multi-band Software-defined Radios

    NASA Technical Reports Server (NTRS)

    Haskins, Christopher B. (Inventor); Millard, Wesley P. (Inventor)

    2013-01-01

    Methods and systems to implement and operate software-defined radios (SDRs). An SDR may be configured to perform a combination of fractional and integer frequency synthesis and direct digital synthesis under control of a digital signal processor, which may provide a set of relatively agile, flexible, low-noise, and low spurious, timing and frequency conversion signals, and which may be used to maintain a transmit path coherent with a receive path. Frequency synthesis may include dithering to provide additional precision. The SDR may include task-specific software-configurable systems to perform tasks in accordance with software-defined parameters or personalities. The SDR may include a hardware interface system to control hardware components, and a host interface system to provide an interface to the SDR with respect to a host system. The SDR may be configured for one or more of communications, navigation, radio science, and sensors.

  16. Tissue-specific mechanical and geometrical control of cell viability and actin cytoskeleton alignment

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zheng, Wenfu; Xie, Yunyan; Gong, Peiyuan; Zhao, Fang; Yuan, Bo; Ma, Wanshun; Cui, Yan; Liu, Wenwen; Sun, Yi; Piel, Matthieu; Zhang, Wei; Jiang, Xingyu

    2014-08-01

    Different tissues have specific mechanical properties and cells of different geometries, such as elongated muscle cells and polygonal endothelial cells, which are precisely regulated during embryo development. However, the mechanisms that underlie these processes are not clear. Here, we built an in vitro model to mimic the cellular microenvironment of muscle by combining both mechanical stretch and geometrical control. We found that mechanical stretch was a key factor that determined the optimal geometry of myoblast C2C12 cells under stretch, whereas vascular endothelial cells and fibroblasts had no such dependency. We presented the first experimental evidence that can explain why myoblasts are destined to take the elongated geometry so as to survive and maintain parallel actin filaments along the stretching direction. The study is not only meaningful for the research on myogenesis but also has potential application in regenerative medicine.

  17. Alternative Assessment Techniques.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara

    1988-01-01

    Maintaining the precision necessary for administering norm referenced tests can be a problem for the special education teacher who is trained to assist the student. Criterion-referenced tests, observations, and interviews are presented as effective alternative assessment techniques. (JDD)

  18. On the Impact of Localization and Density Control Algorithms in Target Tracking Applications for Wireless Sensor Networks

    PubMed Central

    Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.

    2012-01-01

    Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329

  19. The Precision Field Lysimeter Concept

    NASA Astrophysics Data System (ADS)

    Fank, J.

    2009-04-01

    The understanding and interpretation of leaching processes have improved significantly during the past decades. Unlike laboratory experiments, which are mostly performed under very controlled conditions (e.g. homogeneous, uniform packing of pre-treated test material, saturated steady-state flow conditions, and controlled uniform hydraulic conditions), lysimeter experiments generally simulate actual field conditions. Lysimeters may be classified according to different criteria such as type of soil block used (monolithic or reconstructed), drainage (drainage by gravity or vacuum or a water table may be maintained), or weighing or non-weighing lysimeters. In 2004 experimental investigations have been set up to assess the impact of different farming systems on groundwater quality of the shallow floodplain aquifer of the river Mur in Wagna (Styria, Austria). The sediment is characterized by a thin layer (30 - 100 cm) of sandy Dystric Cambisol and underlying gravel and sand. Three precisely weighing equilibrium tension block lysimeters have been installed in agricultural test fields to compare water flow and solute transport under (i) organic farming, (ii) conventional low input farming and (iii) extensification by mulching grass. Specific monitoring equipment is used to reduce the well known shortcomings of lysimeter investigations: The lysimeter core is excavated as an undisturbed monolithic block (circular, 1 m2 surface area, 2 m depth) to prevent destruction of the natural soil structure, and pore system. Tracing experiments have been achieved to investigate the occurrence of artificial preferential flow and transport along the walls of the lysimeters. The results show that such effects can be neglected. Precisely weighing load cells are used to constantly determine the weight loss of the lysimeter due to evaporation and transpiration and to measure different forms of precipitation. The accuracy of the weighing apparatus is 0.05 kg, or 0.05 mm water equivalent respectively. The different soil horizons in the lysimeters are equipped with sensors to measure soil temperature, water content and soil tension. Suction cups are used to get soil water samples. The lower boundary of the lysimeter is designed to maintain equilibrium between the suction applied to the leachate collection system and soil matrix potential thus the suction applied may vary depending on natural conditions - measured using tensiometers - in the field. The lysimeters are built in directly in a test area of 1000 m2 with the same vegetation to prevent island effects on evotranspiration. The topmost part of the lysimeter is realized as a removable ring that mechanical cultivation is possible in the same manner as at the test field. In this presentation the concept and the implementation of the Precision Field Lysimeter is shown. First results on water and solute balances of a 4 years investigation period are discussed.

  20. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.

    PubMed

    De Nunzio, Alessandro Marco; Dosen, Strahinja; Lemling, Sabrina; Markovic, Marko; Schweisfurth, Meike Annika; Ge, Nan; Graimann, Bernhard; Falla, Deborah; Farina, Dario

    2017-08-01

    Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not be modulated as it depends on the intrinsic myoelectric variability. They were also able to maintain the feedforward command even after the feedback was removed, demonstrating thereby a stable learning, but the retention depended on the level of the target force. This is an important insight into the role of feedback as an instrument for learning of anticipatory prosthesis force control.

  1. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  2. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOEpatents

    Krauss, Alan R [Naperville, IL; Gruen, Dieter M [Downers Grove, IL; Pellin, Michael J [Naperville, IL; Auciello, Orlando [Bolingbrook, IL

    2002-07-23

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  3. A compact, fast ozone UV photometer and sampling inlet for research aircraft

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Ballard, J.; Watts, L. A.; Thornberry, T. D.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.

    2012-05-01

    In situ measurements of atmospheric ozone (O3) are performed routinely from many research aircraft platforms. The most common technique depends on the strong absorption of ultraviolet (UV) light by ozone. As atmospheric science advances to the widespread use of unmanned aircraft systems (UASs), there is an increasing requirement for minimizing instrument space, weight, and power while maintaining instrument accuracy, precision and time response. The design and use of a new, dual-beam, polarized, UV photometer instrument for in situ O3 measurements is described. The instrument has a fast sampling rate (2 Hz), high accuracy (3%), and precision (1.1 × 1010 O3 molecules cm-3). The size (36 l), weight (18 kg), and power (50-200 W) make the instrument suitable for many UAS and other airborne platforms. Inlet and exhaust configurations are also described for ambient sampling in the troposphere and lower stratosphere (1000-50 mb) that optimize the sample flow rate to increase time response while minimizing loss of precision due to induced turbulence in the sample cell. In-flight and laboratory intercomparisons with existing O3 instruments show that measurement accuracy is maintained in flight.

  4. Grinding Parts For Automatic Welding

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  5. Latch fittings for the scientific instruments on the space telescope

    NASA Technical Reports Server (NTRS)

    Dozier, J. D.; Kaelber, E.

    1983-01-01

    Latch fittings which kinematically mount the replaceable scientific instruments onto the Space Telescope must maintain precise alignment and thermal stability for on-orbit observations. Design features which are needed to meet stringent criteria include the use of ceramic isolators for thermal and electrical insulation, materials with different coefficients of thermal expansion for athermalization, precision manufacturing procedures, and extremely tight tolerances. A specific latch fitting to be discussed is a ball-and-socket design. In addition, testing, crew aids, and problems will be covered.

  6. Study of nanometer-level precise phase-shift system used in electronic speckle shearography and phase-shift pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo

    2011-11-01

    The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.

  7. Principles for the dynamic maintenance of cortical polarity

    PubMed Central

    Marco, Eugenio; Wedlich-Soldner, Roland; Li, Rong; Altschuler, Steven J.; Wu, Lani F.

    2007-01-01

    Summary Diverse cell types require the ability to dynamically maintain polarized membrane protein distributions through balancing transport and diffusion. However, design principles underlying dynamically maintained cortical polarity are not well understood. Here we constructed a mathematical model for characterizing the morphology of dynamically polarized protein distributions. We developed analytical approaches for measuring all model parameters from single-cell experiments. We applied our methods to a well-characterized system for studying polarized membrane proteins: budding yeast cells expressing activated Cdc42. We found that balanced diffusion and colocalized transport to and from the plasma membrane were sufficient for accurately describing polarization morphologies. Surprisingly, the model predicts that polarized regions are defined with a precision that is nearly optimal for measured transport rates, and that polarity can be dynamically stabilized through positive feedback with directed transport. Our approach provides a step towards understanding how biological systems shape spatially precise, unambiguous cortical polarity domains using dynamic processes. PMID:17448998

  8. Precision control of multiple quantum cascade lasers for calibration systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S., E-mail: Matthew.Taubman@pnnl.gov; Myers, Tanya L.; Pratt, Richard M.

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby,more » and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less

  9. Composite adaptive control of belt polishing force for aero-engine blade

    NASA Astrophysics Data System (ADS)

    Zhsao, Pengbing; Shi, Yaoyao

    2013-09-01

    The existing methods for blade polishing mainly focus on robot polishing and manual grinding. Due to the difficulty in high-precision control of the polishing force, the blade surface precision is very low in robot polishing, in particular, quality of the inlet and exhaust edges can not satisfy the processing requirements. Manual grinding has low efficiency, high labor intensity and unstable processing quality, moreover, the polished surface is vulnerable to burn, and the surface precision and integrity are difficult to ensure. In order to further improve the profile accuracy and surface quality, a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed, which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together. By the mode decision-making mechanism, Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value, and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision. Based on the mathematical model of the force-exerting mechanism, simulation analysis is implemented on DSCAC. Simulation results show that the output polishing force can better track the given signal. Finally, the blade polishing experiments are carried out on the designed polishing equipment. Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility, valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise and other interference on the control precision of polishing force, which has high control precision, strong robustness, strong anti-interference ability and other advantages compared with MRACFNN. The proposed research achieves high-precision control of the polishing force, effectively improves the blade machining precision and surface consistency, and significantly reduces the surface roughness.

  10. Size Control of Sessile Microbubbles for Reproducibly Driven Acoustic Streaming

    NASA Astrophysics Data System (ADS)

    Volk, Andreas; Kähler, Christian J.

    2018-05-01

    Acoustically actuated bubbles are receiving growing interest in microfluidic applications, as they induce a streaming field that can be used for particle sorting and fluid mixing. An essential but often unspoken challenge in such applications is to maintain a constant bubble size to achieve reproducible conditions. We present an automatized system for the size control of a cylindrical bubble that is formed at a blind side pit of a polydimethylsiloxane microchannel. Using a pressure control system, we adapt the protrusion depth of the bubble into the microchannel to a precision of approximately 0.5 μ m on a timescale of seconds. By comparing the streaming field generated by bubbles of width 80 μ m with a protrusion depth between -12 and 60 μ m , we find that the mean velocity of the induced streaming fields varies by more than a factor of 4. We also find a qualitative change of the topology of the streaming field. Both observations confirm the importance of the bubble size control system in order to achieve reproducible and reliable bubble-driven streaming experiments.

  11. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    PubMed

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  12. Control integration concept for hypersonic cruise-turn maneuvers

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Lallman, Frederick J.

    1992-01-01

    Piloting difficulties associated with conducting aircraft maneuvers in hypersonic flight are caused in part by the nonintuitive nature of the aircraft response and the stringent constraints anticipated on allowable angle of attack and dynamic pressure variations. An approach is documented that provides precise, coordinated maneuver control during excursions from a hypersonic cruise flight path and the necessary flight condition constraints. The approach is to achieve specified guidance commands by resolving altitude and cross range errors into a load factor and bank angle command by using a coordinate transformation that acts as an interface between outer and inner loop flight controls. This interface, referred to as a 'resolver', applies constraints on angle of attack and dynamic pressure perturbations while prioritizing altitude regulation over cross range. An unpiloted test simulation, in which the resolver was used to drive inner loop flight controls, produced time histories of responses to guidance commands and atmospheric disturbances at Mach numbers of 6, 10, 15, and 20. Angle of attack and throttle perturbation constraints, combined with high speed flight effects and the desire to maintain constant dynamic pressure, significantly impact the maneuver envelope for a hypersonic vehicle.

  13. Cell-flow technique.

    PubMed

    Hess, George P; Lewis, Ryan W; Chen, Yongli

    2014-10-01

    Various devices have been used to flow neurotransmitter solutions over cells containing receptors (e.g., ligand-gated ion channels) for whole-cell current recordings. With many of the devices, the orientation between the porthole of the flow device and the cell is not maintained absolutely constant. Orientation is critical for reproducibility in kinetic experiments. To be able to change the composition of the flowing solution during an experiment and still maintain a constant orientation, we use the cell-flow device described here. A peristaltic pump, a stainless steel U-tube, two different sizes of peristaltic tubing, and a solenoid valve are required to create a simple solution exchange system that can rapidly apply and remove solutions over the surface of a cell in tens of milliseconds. This system allows one to test multiple conditions on a cell containing the receptor of interest while constantly "washing" the cell with extracellular buffer solution between experimental applications. The use of the solenoid valve allows for the application of solutions to be precisely timed and controlled by a computer during electrophysiological current recording. © 2014 Cold Spring Harbor Laboratory Press.

  14. An environmental chamber for investigating the evaporation of volatile chemicals.

    PubMed

    Dillon, H K; Rumph, P F

    1998-03-01

    An inexpensive test chamber has been constructed that provides an environment appropriate for testing the effects of temperature and chemical interactions on gaseous emissions from test solutions. Temperature, relative humidity, and ventilation rate can be controlled and a well-mixed atmosphere can be maintained. The system is relatively simple and relies on heated tap water or ice to adjust the temperature. Temperatures ranging from 9 to 21 degrees C have been maintained. At an average temperature of 15.1 degrees C, temperatures at any location within the chamber vary by no more than 0.5 degree C, and the temperature of the test solution within the chamber varies by no more than 0.1 degree C. The temperatures within the chamber are stable enough to generate precise steady-state concentrations. The wind velocities within the chamber are reproducible from run to run. Consequently, the effect of velocity on the rate of evaporation of a test chemical is expected to be uniform from run to run. Steady-state concentrations can be attained in less than 1 hour at an air exchange rate of about 5 per hour.

  15. National Athletic Trainers' Association Position Statement: Acute Management of the Cervical Spine–Injured Athlete

    PubMed Central

    Swartz, Erik E; Boden, Barry P; Courson, Ronald W; Decoster, Laura C; Horodyski, MaryBeth; Norkus, Susan A; Rehberg, Robb S; Waninger, Kevin N

    2009-01-01

    Objective: To provide certified athletic trainers, team physicians, emergency responders, and other health care professionals with recommendations on how to best manage a catastrophic cervical spine injury in the athlete. Background: The relative incidence of catastrophic cervical spine injury in sports is low compared with other injuries. However, cervical spine injuries necessitate delicate and precise management, often involving the combined efforts of a variety of health care providers. The outcome of a catastrophic cervical spine injury depends on the efficiency of this management process and the timeliness of transfer to a controlled environment for diagnosis and treatment. Recommendations: Recommendations are based on current evidence pertaining to prevention strategies to reduce the incidence of cervical spine injuries in sport; emergency planning and preparation to increase management efficiency; maintaining or creating neutral alignment in the cervical spine; accessing and maintaining the airway; stabilizing and transferring the athlete with a suspected cervical spine injury; managing the athlete participating in an equipment-laden sport, such as football, hockey, or lacrosse; and considerations in the emergency department. PMID:19478836

  16. Nucleosomes in the neighborhood

    PubMed Central

    Dorn, Elizabeth Suzanne

    2011-01-01

    The importance of local chromatin structure in regulating replication initiation has become increasingly apparent. Most recently, histone methylation and nucleosome positioning have been added to the list of modifications demonstrated to regulate origins. In particular, the methylation states of H3K4, H3K36 and H4K20 have been associated with establishing active, repressed or poised origins depending on the timing and extent of methylation. The stability and precise positioning of nucleosomes has also been demonstrated to affect replication efficiency. Although it is not yet clear how these modifications alter the behavior of specific replication factors, ample evidence establishes their role in maintaining coordinated replication. This review will summarize recent advances in understanding these aspects of chromatin structure in DNA replication origin control. PMID:21364325

  17. Potential role of retinoids in ovarian physiology and pathogenesis of polycystic ovary syndrome.

    PubMed

    Jiang, Yanwen; Li, Chunjin; Chen, Lu; Wang, Fengge; Zhou, Xu

    2017-06-01

    Retinoids (retinol and its derivatives) are required for maintaining vision, immunity, barrier function, reproduction, embryogenesis, cell proliferation and differentiation. Furthermore, retinoid signaling plays a key role in initiating meiosis of germ cells of the mammalian fetal ovary. Recently, studies indicated that precise retinoid level regulation in the ovary provides a molecular control of ovarian development, steroidogenesis and oocyte maturation. Besides, abnormal retinoid signaling may be involved in the pathogenesis of polycystic ovary syndrome (PCOS), one of the most common ovarian endocrinopathies in reproductive-aged women worldwide. This review primarily summarizes recent advancements made in investigating the action of retinoid signaling in ovarian physiology as well as the abnormal retinoid signaling in PCOS. Copyright © 2017. Published by Elsevier B.V.

  18. A linearly frequency-swept high-speed-rate multi-wavelength laser for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Qiyu; Wang, Zhaoying; Yuan, Quan; Ma, Rui; Du, Tao; Yang, Tianxin

    2017-02-01

    We proposed and demonstrated a linearly frequency-swept multi-wavelength laser source for optical coherence tomography (OCT) eliminating the need of wavenumber space resampling in the postprocessing progress. The source consists of a multi-wavelength fiber laser source (MFS) and an optical sweeping loop. In this novel laser source, an equally spaced multi-wavelength laser is swept simultaneously by a certain step each time in the frequency domain in the optical sweeping loop. The sweeping step is determined by radio frequency (RF) signal which can be precisely controlled. Thus the sweeping behavior strictly maintains a linear relationship between time and frequency. We experimentally achieved linear time-frequency sweeping at a sweeping rate of 400 kHz with our laser source.

  19. A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods

    PubMed Central

    Chung, Bong Geun; Park, Jeong Won; Hu, Jia Sheng; Huang, Carlos; Monuki, Edwin S; Jeon, Noo Li

    2007-01-01

    Background Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories. Results We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient. Conclusion This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols. PMID:17883868

  20. Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels.

    PubMed

    Chen, Jack L-Y; Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Prins, Leonard J

    2017-08-25

    The next generation of adaptive, intelligent chemical systems will rely on a continuous supply of energy to maintain the functional state. Such systems will require chemical methodology that provides precise control over the energy dissipation process, and thus, the lifetime of the transiently activated function. This manuscript reports on the use of structurally diverse chemical fuels to control the lifetime of two different systems under dissipative conditions: transient signal generation and the transient formation of self-assembled aggregates. The energy stored in the fuels is dissipated at different rates by an enzyme, which installs a dependence of the lifetime of the active system on the chemical structure of the fuel. In the case of transient signal generation, it is shown that different chemical fuels can be used to generate a vast range of signal profiles, allowing temporal control over two orders of magnitude. Regarding self-assembly under dissipative conditions, the ability to control the lifetime using different fuels turns out to be particularly important as stable aggregates are formed only at well-defined surfactant/fuel ratios, meaning that temporal control cannot be achieved by simply changing the fuel concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Temperature control during therapeutic moderate whole-body hypothermia for neonatal encephalopathy.

    PubMed

    Strohm, B; Azzopardi, D

    2010-09-01

    The precision of temperature control achieved in clinical practice during therapeutic hypothermia in neonates has not been described. The hourly rectal temperature recordings from 17 infants treated with servo controlled and an equal number treated with manually adjusted cooling equipment were examined. The target rectal temperature for all infants is 33.5 degrees C for 72 h. During 6 to 72 h after start of cooling, the mean (95% CI, variance) of the averaged rectal temperatures was 33.6 degrees C (95% CI 33.4 degrees C to 33.8 degrees C, 0.1 degrees C) in the manually adjusted group and 33.4 degrees C (95% CI 33.3 degrees C to 33.5 degrees C, 0.04 degrees C) in the servo controlled group (means, p=0.08; equality of variance, p=0.03). The variance was also significantly different between infant groups during 1 to 5 h after start of cooling, p=0.01, but not during rewarming. The rectal temperature can be maintained close to the target temperature with either manually adjusted or servo controlled equipment, but there is less temperature variability with the servo controlled system in use in the UK.

  2. Intelligent process control of fiber chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jones, John Gregory

    Chemical Vapor Deposition (CVD) is a widely used process for the application of thin films. In this case, CVD is being used to apply a thin film interface coating to single crystal monofilament sapphire (Alsb2Osb3) fibers for use in Ceramic Matrix Composites (CMC's). The hot-wall reactor operates at near atmospheric pressure which is maintained using a venturi pump system. Inert gas seals obviate the need for a sealed system. A liquid precursor delivery system has been implemented to provide precise stoichiometry control. Neural networks have been implemented to create real-time process description models trained using data generated based on a Navier-Stokes finite difference model of the process. Automation of the process to include full computer control and data logging capability is also presented. In situ sensors including a quadrupole mass spectrometer, thermocouples, laser scanner, and Raman spectrometer have been implemented to determine the gas phase reactants and coating quality. A fuzzy logic controller has been developed to regulate either the gas phase or the in situ temperature of the reactor using oxygen flow rate as an actuator. Scanning electron microscope (SEM) images of various samples are shown. A hierarchical control structure upon which the control structure is based is also presented.

  3. Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation.

    PubMed

    Hermsdörfer, J; Elias, Z; Cole, J D; Quaney, B M; Nowak, D A

    2008-01-01

    Although feed-forward mechanisms of grip force control are a prerequisite for skilled object manipulation, somatosensory feedback is essential to acquire, maintain, and adapt these mechanisms. Individuals with complete peripheral deafferentation provide the unique opportunity to study the function of the motor system deprived of somatosensory feedback. Two individuals (GL and IW) with complete chronic deafferentation of the trunk and limbs were tested during cyclic vertical movements of a hand-held object. Such movements induce oscillating loads that are typically anticipated by parallel modulations of the grip force. Load magnitude was altered by varying either the movement frequency or object weight. GL and IW employed excessive grip forces probably reflecting a compensatory mechanism. Despite this overall force increase, both deafferented participants adjusted their grip force level according to the load magnitude, indicating preserved scaling of the background grip force to physical demands. The dynamic modulation of the grip force with the load force was largely absent in GL, whereas in IW only slower movements were clearly affected. The authors hypothesize that the deafferented patients may have utilized visual and vestibular cues and/or an efferent copy of the motor command of the arm movement to scale the grip force level. Severely impaired grip force-load coupling in GL suggests that sensory information is important for maintaining a precise internal model of dynamic grip force control. However, comparably better performance in IW argues for the possibility that alternative cues can be used to trigger a residual internal model.

  4. Genome-Wide Patterns of Polymorphism in an Inbred Line of the African Malaria Mosquito Anopheles gambiae

    PubMed Central

    Turissini, David A.; Gamez, Stephanie; White, Bradley J.

    2014-01-01

    Anopheles gambiae is a major mosquito vector of malaria in Africa. Although increased use of insecticide-based vector control tools has decreased malaria transmission, elimination is likely to require novel genetic control strategies. It can be argued that the absence of an A. gambiae inbred line has slowed progress toward genetic vector control. In order to empower genetic studies and enable precise and reproducible experimentation, we set out to create an inbred line of this species. We found that amenability to inbreeding varied between populations of A. gambiae. After full-sib inbreeding for ten generations, we genotyped 112 individuals—56 saved prior to inbreeding and 56 collected after inbreeding—at a genome-wide panel of single nucleotide polymorphisms (SNPs). Although inbreeding dramatically reduced diversity across much of the genome, we discovered numerous, discrete genomic blocks that maintained high heterozygosity. For one large genomic region, we were able to definitively show that high diversity is due to the persistent polymorphism of a chromosomal inversion. Inbred lines in other eukaryotes often exhibit a qualitatively similar retention of polymorphism when typed at a small number of markers. Our whole-genome SNP data provide the first strong, empirical evidence supporting associative overdominance as the mechanism maintaining higher than expected diversity in inbred lines. Although creation of A. gambiae lines devoid of nearly all polymorphism may not be feasible, our results provide critical insights into how more fully isogenic lines can be created. PMID:25377942

  5. Textbook Factor Demand Curves.

    ERIC Educational Resources Information Center

    Davis, Joe C.

    1994-01-01

    Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)

  6. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera.

    PubMed

    Li, Zhiyong; Huang, Zachary Y; Sharma, Dhruv B; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers. We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.

  7. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera

    PubMed Central

    Li, Zhiyong; Huang, Zachary Y.; Sharma, Dhruv B.; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Background Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. Methodology/Principal Findings We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers. Conclusions/Significance We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices. PMID:26882104

  8. Drag-Free Control and Drag Force Recovery of Small Satellites

    NASA Technical Reports Server (NTRS)

    Nguyen, Anh N.; Conklin, John W.

    2017-01-01

    Drag-free satellites provide autonomous precision orbit determination, accurately map the static and time varying components of Earth's mass distribution, aid in our understanding of the fundamental force of gravity, and will ultimately open up a new window to our universe through the detection and observation of gravitational waves. At the heart of this technology is a gravitational reference sensor, which (a) contains and shields a free-floating proof mass from all non-gravitational forces, and (b) precisely measures the position of the test mass inside the sensor. Thus, both test mass and spacecraft follow a pure geodesic in spacetime. By tracking the position of a low Earth orbiting drag-free satellite we can directly determine the detailed shape of geodesics and through analysis, the higher order harmonics of the Earths geopotential. This paper explores two different drag-free control systems on small satellites. The first drag-free control system is a continuously compensated single thruster 3-unit CubeSat with a suspension-free spherical proof-mass. A feedback control system commands the thruster and Attitude and Determination Control System to fly the tender spacecraft with respect to the test mass. The spheres position is sensed with a LED-based differential optical shadow sensor, its electric charge controlled by photoemission using UV LEDs, and the spacecraft position is maintained with respect to the sphere using an ion electrospray propulsion system. This configuration is the most fuel-efficient drag-free system possible today. The second drag-free control system is an electro-statically suspended cubical proof-mass that is operated with a low duty cycle, limiting suspension force noise over brief, known time intervals on a small GRACE-II -like satellite. The readout is performed using a laser interferometer, which is immune to the dynamic range limitations of voltage references. This system eliminates the need for a thruster, enabling drag-free control systems for passive satellites. In both cases, the test mass position, GPS tracking data, and commanded actuation, either thrust or suspension system, can be analyzed to estimate the 3-axis drag forces acting on the satellite. The data produces the most precise maps of upper atmospheric drag forces and with additional information, detailed models that describe the dynamics of the upper atmosphere and its impact on all satellites that orbit the Earth. This paper highlights the history, applications, design, laboratory technology development and highly detailed simulation results of each control system.

  9. High precision locating control system based on VCM for Talbot lithography

    NASA Astrophysics Data System (ADS)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  10. A cadaver study of mastoidectomy using an image-guided human-robot collaborative control system.

    PubMed

    Yoo, Myung Hoon; Lee, Hwan Seo; Yang, Chan Joo; Lee, Seung Hwan; Lim, Hoon; Lee, Seongpung; Yi, Byung-Ju; Chung, Jong Woo

    2017-10-01

    Surgical precision would be better achieved with the development of an anatomical monitoring and controlling robot system than by traditional surgery techniques alone. We evaluated the feasibility of robot-assisted mastoidectomy in terms of duration, precision, and safety. Human cadaveric study. We developed a multi-degree-of-freedom robot system for a surgical drill with a balancing arm. The drill system is manipulated by the surgeon, the motion of the drill burr is monitored by the image-guided system, and the brake is controlled by the robotic system. The system also includes an alarm as well as the brake to help avoid unexpected damage to vital structures. Experimental mastoidectomy was performed in 11 temporal bones of six cadavers. Parameters including duration and safety were assessed, as well as intraoperative damage, which was judged via pre- and post-operative computed tomography. The duration of mastoidectomy in our study was comparable with that required for chronic otitis media patients. Although minor damage, such as dura exposure without tearing, was noted, no critical damage to the facial nerve or other important structures was observed. When the brake system was set to 1 mm from the facial nerve, the postoperative average bone thicknesses of the facial nerve was 1.39, 1.41, 1.22, 1.41, and 1.55 mm in the lateral, posterior pyramidal and anterior, lateral, and posterior mastoid portions, respectively. Mastoidectomy can be successfully performed using our robot-assisted system while maintaining a pre-set limit of 1 mm in most cases. This system may thus be useful for more inexperienced surgeons. NA.

  11. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Shi, Guosheng; Shen, Jie; Peng, Bingquan; Zhang, Bowu; Wang, Yuzhu; Bian, Fenggang; Wang, Jiajun; Li, Deyuan; Qian, Zhe; Xu, Gang; Liu, Gongping; Zeng, Jianrong; Zhang, Lijuan; Yang, Yizhou; Zhou, Guoquan; Wu, Minghong; Jin, Wanqin; Li, Jingye; Fang, Haiping

    2017-10-01

    Graphene oxide membranes—partially oxidized, stacked sheets of graphene—can provide ultrathin, high-flux and energy-efficient membranes for precise ionic and molecular sieving in aqueous solution. These materials have shown potential in a variety of applications, including water desalination and purification, gas and ion separation, biosensors, proton conductors, lithium-based batteries and super-capacitors. Unlike the pores of carbon nanotube membranes, which have fixed sizes, the pores of graphene oxide membranes—that is, the interlayer spacing between graphene oxide sheets (a sheet is a single flake inside the membrane)—are of variable size. Furthermore, it is difficult to reduce the interlayer spacing sufficiently to exclude small ions and to maintain this spacing against the tendency of graphene oxide membranes to swell when immersed in aqueous solution. These challenges hinder the potential ion filtration applications of graphene oxide membranes. Here we demonstrate cationic control of the interlayer spacing of graphene oxide membranes with ångström precision using K+, Na+, Ca2+, Li+ or Mg2+ ions. Moreover, membrane spacings controlled by one type of cation can efficiently and selectively exclude other cations that have larger hydrated volumes. First-principles calculations and ultraviolet absorption spectroscopy reveal that the location of the most stable cation adsorption is where oxide groups and aromatic rings coexist. Previous density functional theory computations show that other cations (Fe2+, Co2+, Cu2+, Cd2+, Cr2+ and Pb2+) should have a much stronger cation-π interaction with the graphene sheet than Na+ has, suggesting that other ions could be used to produce a wider range of interlayer spacings.

  12. Process Performance of Optima XEx Single Wafer High Energy Implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J. H.; Yoon, Jongyoon; Kondratenko, S.

    2011-01-07

    To meet the process requirements for well formation in future CMOS memory production, high energy implanters require more robust angle, dose, and energy control while maintaining high productivity. The Optima XEx high energy implanter meets these requirements by integrating a traditional LINAC beamline with a robust single wafer handling system. To achieve beam angle control, Optima XEx can control both the horizontal and vertical beam angles to within 0.1 degrees using advanced beam angle measurement and correction. Accurate energy calibration and energy trim functions accelerate process matching by eliminating energy calibration errors. The large volume process chamber and UDC (upstreammore » dose control) using faraday cups outside of the process chamber precisely control implant dose regardless of any chamber pressure increase due to PR (photoresist) outgassing. An optimized RF LINAC accelerator improves reliability and enables singly charged phosphorus and boron energies up to 1200 keV and 1500 keV respectively with higher beam currents. A new single wafer endstation combined with increased beam performance leads to overall increased productivity. We report on the advanced performance of Optima XEx observed during tool installation and volume production at an advanced memory fab.« less

  13. Translational Control in Plasmodium and Toxoplasma Parasites

    PubMed Central

    Joyce, Bradley R.; Sullivan, William J.; Nussenzweig, Victor

    2013-01-01

    The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis. PMID:23243065

  14. Translational control in Plasmodium and toxoplasma parasites.

    PubMed

    Zhang, Min; Joyce, Bradley R; Sullivan, William J; Nussenzweig, Victor

    2013-02-01

    The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.

  15. High quality optically polished aluminum mirror and process for producing

    NASA Technical Reports Server (NTRS)

    Lyons, III, James J. (Inventor); Zaniewski, John J. (Inventor)

    2005-01-01

    A new technical advancement in the field of precision aluminum optics permits high quality optical polishing of aluminum monolith, which, in the field of optics, offers numerous benefits because of its machinability, lightweight, and low cost. This invention combines diamond turning and conventional polishing along with india ink, a newly adopted material, for the polishing to accomplish a significant improvement in surface precision of aluminum monolith for optical purposes. This invention guarantees the precise optical polishing of typical bare aluminum monolith to surface roughness of less than about 30 angstroms rms and preferably about 5 angstroms rms while maintaining a surface figure accuracy in terms of surface figure error of not more than one-fifteenth of wave peak-to-valley.

  16. High quality optically polished aluminum mirror and process for producing

    NASA Technical Reports Server (NTRS)

    Lyons, III, James J. (Inventor); Zaniewski, John J. (Inventor)

    2002-01-01

    A new technical advancement in the field of precision aluminum optics permits high quality optical polishing of aluminum monolith, which, in the field of optics, offers numerous benefits because of its machinability, lightweight, and low cost. This invention combines diamond turning and conventional polishing along with india ink, a newly adopted material, for the polishing to accomplish a significant improvement in surface precision of aluminum monolith for optical purposes. This invention guarantees the precise optical polishing of typical bare aluminum monolith to surface roughness of less than about 30 angstroms rms and preferably about 5 angstroms rms while maintaining a surface figure accuracy in terms of surface figure error of not more than one-fifteenth of wave peak-to-valley.

  17. Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis

    NASA Technical Reports Server (NTRS)

    Carpenter, P.

    2006-01-01

    Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to continue improvements of EPMA.

  18. Development of low cost instrumentation for non-invasive detection of Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    Kannath, A.; Rutt, H. N.

    2007-02-01

    A new clinical diagnostic instrument for urea breath test (UBT) based non-invasive detection of Helicobacter Pylori is presented here. Its compact and low cost design makes it an economical and commercial alternative for the more expensive Isotope Ratio Mass Spectrometer (IRMS). The instrument is essentially a two channel non-dispersive IR spectrometer that performs high precision ratio measurements of the two carbon isotopomers ( 12CO II and 13CO II) present in exhaled breath. A balanced absorption system configuration was designed where the two channel path lengths would roughly be in the ratio of their concentrations. Equilibrium between the transmitted channel intensities was maintained by using a novel feedback servo mechanism to adjust the length of the 13C channel cell. Extensive computational simulations were performed to study the effect of various possible interferents and their results were considered in the design of the instrument so as to achieve the desired measurement precision of 1%. Specially designed gas cells and a custom made gas filling rig were also developed. A complete virtual interface for both instrument control and data acquisition was implemented in LABVIEW. Initial tests were used to validate the theory and a basic working device was demonstrated.

  19. Eye size and visual acuity influence vestibular anatomy in mammals.

    PubMed

    Kemp, Addison D; Christopher Kirk, E

    2014-04-01

    The semicircular canals of the inner ear detect head rotations and trigger compensatory movements that stabilize gaze and help maintain visual fixation. Mammals with large eyes and high visual acuity require precise gaze stabilization mechanisms because they experience diminished visual functionality at low thresholds of uncompensated motion. Because semicircular canal radius of curvature is a primary determinant of canal sensitivity, species with large canal radii are expected to be capable of more precise gaze stabilization than species with small canal radii. Here, we examine the relationship between mean semicircular canal radius of curvature, eye size, and visual acuity in a large sample of mammals. Our results demonstrate that eye size and visual acuity both explain a significant proportion of the variance in mean canal radius of curvature after statistically controlling for the effects of body mass and phylogeny. These findings suggest that variation in mean semicircular canal radius of curvature among mammals is partly the result of selection for improved gaze stabilization in species with large eyes and acute vision. Our results also provide a possible functional explanation for the small semicircular canal radii of fossorial mammals and plesiadapiforms. Copyright © 2014 Wiley Periodicals, Inc.

  20. The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells.

    PubMed

    Raof, Nurazhani Abdul; Schiele, Nathan R; Xie, Yubing; Chrisey, Douglas B; Corr, David T

    2011-03-01

    The ability to precisely pattern embryonic stem (ES) cells in vitro into predefined arrays/geometries may allow for the recreation of a stem cell niche for better understanding of how cellular microenvironmental factors govern stem cell maintenance and differentiation. In this study, a new gelatin-based laser direct-write (LDW) technique was utilized to deposit mouse ES cells into defined arrays of spots, while maintaining stem cell pluripotency. Results obtained from these studies showed that ES cells were successfully printed into specific patterns and remained viable. Furthermore, ES cells retained the expression of Oct4 in nuclei after LDW, indicating that the laser energy did not affect their maintenance of an undifferentiated state. The differentiation potential of mouse ES cells after LDW was confirmed by their ability to form embryoid bodies (EBs) and to spontaneously become cell lineages representing all three germ layers, revealed by the expression of marker proteins of nestin (ectoderm), Myf-5 (mesoderm) and PDX-1 (endoderm), after 7 days of cultivation. Gelatin-based LDW provides a new avenue for stem cell patterning, with precision and control of the cellular microenvironment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors.

    PubMed

    Currie, Kevin P M

    2010-11-01

    Catecholamines and other transmitters released from adrenal chromaffin cells play central roles in the "fight-or-flight" response and exert profound effects on cardiovascular, endocrine, immune, and nervous system function. As such, precise regulation of chromaffin cell exocytosis is key to maintaining normal physiological function and appropriate responsiveness to acute stress. Chromaffin cells express a number of different G protein coupled receptors (GPCRs) that sense the local environment and orchestrate this precise control of transmitter release. The primary trigger for catecholamine release is Ca2+ entry through voltage-gated Ca2+ channels, so it makes sense that these channels are subject to complex regulation by GPCRs. In particular G protein βγ heterodimers (Gbc) bind to and inhibit Ca2+ channels. Here I review the mechanisms by which GPCRs inhibit Ca2+ channels in chromaffin cells and how this might be altered by cellular context. This is related to the potent autocrine inhibition of Ca2+ entry and transmitter release seen in chromaffin cells. Recent data that implicate an additional inhibitory target of Gβγ on the exocytotic machinery and how this might fine tune neuroendocrine secretion are also discussed.

  2. Compliant head probe for positioning electroencephalography electrodes and near-infrared spectroscopy optodes

    NASA Astrophysics Data System (ADS)

    Giacometti, Paolo; Diamond, Solomon G.

    2013-02-01

    A noninvasive head probe that combines near-infrared spectroscopy (NIRS) and electroencephalography (EEG) for simultaneous measurement of neural dynamics and hemodynamics in the brain is presented. It is composed of a compliant expandable mechanism that accommodates a wide range of head size variation and an elastomeric web that maintains uniform sensor contact pressure on the scalp as the mechanism expands and contracts. The design is intended to help maximize optical and electrical coupling and to maintain stability during head movement. Positioning electrodes at the inion, nasion, central, and preauricular fiducial locations mechanically shapes the probe to place 64 NIRS optodes and 65 EEG electrodes following the 10-5 scalp coordinates. The placement accuracy, precision, and scalp pressure uniformity of the sensors are evaluated. A root-mean-squared (RMS) positional precision of 0.89±0.23 mm, percent arc subdivision RMS accuracy of 0.19±0.15%, and mean normal force on the scalp of 2.28±0.88 N at 5 mm displacement were found. Geometric measurements indicate that the probe will accommodate the full range of adult head sizes. The placement accuracy, precision, and uniformity of sensor contact pressure of the proposed head probe are important determinants of data quality in noninvasive brain monitoring with simultaneous NIRS-EEG.

  3. QUALITY ASSURANCE HANDBOOK FOR AIR POLLUTION MEASUREMENT SYSTEMS: VOLUME IV - METEOROLOGICAL MEASUREMENTS (REVISED - AUGUST 1994)

    EPA Science Inventory

    Procedures on installing, acceptance testing, operating, maintaining and quality assuring three types of ground-based, upper air meteorological measurement systems are described. he limitations and uncertainties in precision and accuracy measurements associated with these systems...

  4. Rudimentary Cleaning Compared to Level 300A

    NASA Technical Reports Server (NTRS)

    Arpin, Christina Y. Pina; Stoltzfus, Joel

    2012-01-01

    A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.

  5. Manufacturing Precise, Lightweight Paraboloidal Mirrors

    NASA Technical Reports Server (NTRS)

    Hermann, Frederick Thomas

    2006-01-01

    A process for fabricating a precise, diffraction- limited, ultra-lightweight, composite- material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production. Other processes that have been investigated for fabrication of precise composite-material lightweight mirrors have resulted in print-through of fiber patterns onto reflecting surfaces, and have not provided adequate structural support for maintenance of stable, diffraction-limited surface figures. In contrast, this process does not result in print-through of the fiber pattern onto the reflecting surface and does provide a lightweight, rigid structure capable of maintaining a diffraction-limited surface figure in the face of changing temperature, humidity, and air pressure. The process consists mainly of the following steps: 1. A precise glass mandrel is fabricated by conventional optical grinding and polishing. 2. The mandrel is coated with a release agent and covered with layers of a carbon- fiber composite material. 3. The outer surface of the outer layer of the carbon-fiber composite material is coated with a surfactant chosen to provide for the proper flow of an epoxy resin to be applied subsequently. 4. The mandrel as thus covered is mounted on a temperature-controlled spin table. 5. The table is heated to a suitable temperature and spun at a suitable speed as the epoxy resin is poured onto the coated carbon-fiber composite material. 6. The surface figure of the optic is monitored and adjusted by use of traditional Ronchi, Focault, and interferometric optical measurement techniques while the speed of rotation and the temperature are adjusted to obtain the desired figure. The proper selection of surfactant, speed or rotation, viscosity of the epoxy, and temperature make it possible to obtain the desired diffraction-limited, smooth (1/50th wave) parabolic outer surface, suitable for reflective coating. 7. A reflective coat is applied by use of conventional coating techniques. 8. Once the final figure is set, a lightweight structural foam is applied to the rear of the optic to ensure stability of the figure.

  6. Mars Exploration Rovers Launch Performance and TCM-1 Maneuver Design

    NASA Technical Reports Server (NTRS)

    Kangas, Julie A.; Potts, Christopher L.; Raofi, Behzad

    2004-01-01

    The Mars Exploration Rover (MER) project successfully landed two identical rovers on Mars in order to remotely conduct geologic investigations, including characterization of rocks and soils that may hold clues to past water activity. Two landing sites, Gusev crater and Meridiani Planum, were selected out of nearly 200 candidate sites after balancing science returns and flight system engineering and safety. Precise trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites within the flight system constraints. This paper discusses the expected and achieved launch vehicle performance and the impacts of that performance on the first Trajectory Correction Maneuver (TCM-1) while maintaining targeting flexibility in accommodating additional project concerns about landing site safety and possible in-flight retargeting to alternate landing sites.

  7. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    PubMed

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  8. Fabricating microfluidic valve master molds in SU-8 photoresist

    NASA Astrophysics Data System (ADS)

    Dy, Aaron J.; Cosmanescu, Alin; Sluka, James; Glazier, James A.; Stupack, Dwayne; Amarie, Dragos

    2014-05-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution.

  9. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface

    NASA Astrophysics Data System (ADS)

    Sachs, Nicholas A.; Ruiz-Torres, Ricardo; Perreault, Eric J.; Miller, Lee E.

    2016-02-01

    Objective. It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. Approach. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. Main results. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor’s proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. Significance. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the individual movement and posture decoders.

  10. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface.

    PubMed

    Sachs, Nicholas A; Ruiz-Torres, Ricardo; Perreault, Eric J; Miller, Lee E

    2016-02-01

    It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor's proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the individual movement and posture decoders.

  11. Hematopoietic stem cell fate through metabolic control.

    PubMed

    Ito, Kyoko; Ito, Keisuke

    2018-05-25

    Hematopoietic stem cells (HSCs) maintain a quiescent state in the bone marrow to preserve their self-renewal capacity, but also undergo cell divisions as required. Organelles such as the mitochondria sustain cumulative damage during these cell divisions, and this damage may eventually compromise the cells' self-renewal capacity. HSC divisions result in either self-renewal or differentiation, with the balance between the two directly impacting hematopoietic homeostasis; but the heterogeneity of available HSC-enriched fractions, together with the technical challenges of observing HSC behavior, has long hindered the analysis of individual HSCs, and prevented the elucidation of this process. However, recent advances in genetic models, metabolomics analyses and single-cell approaches have revealed the contributions made to HSC self-renewal by metabolic cues, mitochondrial biogenesis, and autophagy/mitophagy, which have highlighted mitochondrial quality as a key control factor in the equilibrium of HSCs. A deeper understanding of precisely how specific modes of metabolism control HSC fate at the single cell level is therefore not only of great biological interest, but will have clear clinical implications for the development of therapies for hematological disease. Copyright © 2018. Published by Elsevier Inc.

  12. Dynamic Control of Excitatory Synapse Development by a Rac1 GEF/GAP Regulatory Complex

    PubMed Central

    Um, Kyongmi; Niu, Sanyong; Duman, Joseph G.; Cheng, Jinxuan; Tu, Yen-Kuei; Schwechter, Brandon; Liu, Feng; Hiles, Laura; Narayanan, Anjana; Ash, Ryan T.; Mulherkar, Shalaka; Alpadi, Kannan; Smirnakis, Stelios M.; Tolias, Kimberley F.

    2014-01-01

    SUMMARY The small GTPase Rac1 orchestrates actin-dependent remodeling essential for numerous cellular processes including synapse development. While precise spatiotemporal regulation of Rac1 is necessary for its function, little is known about the mechanisms that enable Rac1 activators (GEFs) and inhibitors (GAPs) to act in concert to regulate Rac1 signaling. Here we identify a regulatory complex composed of a Rac-GEF (Tiam1) and a Rac-GAP (Bcr) that cooperate to control excitatory synapse development. Disruption of Bcr function within this complex increases Rac1 activity and dendritic spine remodeling, resulting in excessive synaptic growth that is rescued by Tiam1 inhibition. Notably, EphB receptors utilize the Tiam1-Bcr complex to control synaptogenesis. Following EphB activation, Tiam1 induces Rac1-dependent spine formation, whereas Bcr prevents Rac1-mediated receptor internalization, promoting spine growth over retraction. The finding that a Rac-specific GEF/GAP complex is required to maintain optimal levels of Rac1 signaling provides an important insight into the regulation of small GTPases. PMID:24960694

  13. Venusian atmospheric and Magellan properties from attitude control data. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Croom, Christopher A.; Tolson, Robert H.

    1994-01-01

    Results are presented of the study of the Venusian atmosphere, Magellan aerodynamic moment coefficients, moments of inertia, and solar moment coefficients. This investigation is based upon the use of attitude control data in the form of reaction wheel speeds from the Magellan spacecraft. As the spacecraft enters the upper atmosphere of Venus, measurable torques are experienced due to aerodynamic effects. Solar and gravity gradient effects also cause additional torques throughout the orbit. In order to maintain an inertially fixed attitude, the control system counteracts these torques by changing the angular rates of three reaction wheels. Model reaction wheel speeds are compared to observed Magellan reaction wheel speeds through a differential correction procedure. This method determines aerodynamic, atmospheric, solar pressure, and mass moment of inertia parameters. Atmospheric measurements include both base densities and scale heights. Atmospheric base density results confirm natural variability as measured by the standard orbital decay method. Potential inconsistencies in free molecular aerodynamic moment coefficients are identified. Moments of inertia are determined with a precision better than 1 percent of the largest principal moment of inertia.

  14. Design, development, and validation of a segment support actuator for the prototype segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Deshmukh, Prasanna Gajanan; Mandal, Amaresh; Parihar, Padmakar S.; Nayak, Dayananda; Mishra, Deepta Sundar

    2018-01-01

    Segmented mirror telescopes (SMT) are built using several small hexagonal mirrors positioned and aligned by the three actuators and six edge sensors per segment to maintain the shape of the primary mirror. The actuators are responsible for maintaining and tracking the mirror segments to the desired position, in the presence of external disturbances introduced by wind, vibration, gravity, and temperature. The present paper describes our effort to develop a soft actuator and the actuator controller for prototype SMT at Indian Institute of Astrophysics, Bangalore. The actuator designed, developed, and validated is a soft actuator based on the voice coil motor and flexural elements. It is designed for the range of travel of ±1.5 mm and the force range of 25 N along with an offloading mechanism to reduce the power consumption. A precision controller using a programmable system on chip (PSoC 5Lp) and a customized drive board has also been developed for this actuator. The close loop proportional-integral-derivative (PID) controller implemented in the PSoC gets position feedback from a high-resolution linear optical encoder. The optimum PID gains are derived using relay tuning method. In the laboratory, we have conducted several experiments to test the performance of the prototype soft actuator as well as the controller. We could achieve 5.73- and 10.15-nm RMS position errors in the steady state as well as tracking with a constant speed of 350 nm/s, respectively. We also present the outcome of various performance tests carried out when off-loader is in action as well as the actuator is subjected to dynamic wind loading.

  15. Modeling and Positioning of a PZT Precision Drive System.

    PubMed

    Liu, Che; Guo, Yanling

    2017-11-08

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  16. Modeling and Positioning of a PZT Precision Drive System

    PubMed Central

    Liu, Che; Guo, Yanling

    2017-01-01

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied. PMID:29117140

  17. A Simplified Apparatus for Ebullioscopic Measurements of Air/Moisture Sensitive Compounds.

    ERIC Educational Resources Information Center

    Bulkin, Bernard J.; Tergis, Paul

    1979-01-01

    An ebullioscopic apparatus is described in which only the difference between the boiling point of the solution and that of the pure solvent is measured. This substantially reduces the cost of the apparatus and simplifies the operation, while maintaining precision. (BB)

  18. THERMOSTAT FOR LOWER TEMPERATURES

    PubMed Central

    Stier, T. J. B.; Crozier, W. J.

    1933-01-01

    Details are given concerning the construction and operation of relatively simple thermostats which permit maintaining precise temperatures down to 0°C. (with water), or temperatures above that of the ordinary room, and in which the temperature may be quickly altered at short intervals to new levels. PMID:19872736

  19. Portable Horizontal-Drilling And Positioning Device

    NASA Technical Reports Server (NTRS)

    Smigocki, Edmund; Johnson, Clarence

    1988-01-01

    Portable horizontal-drilling and positioning device, constructed mainly of off-the-shelf components, accurately drills horizontal small holes in irregularly shaped objects. Holes precisely placed and drilled in objects that cannot be moved to shop area. New device provides three axes of movement while maintaining horizontal drilling.

  20. Advancing Clinical Proteomics via Analysis Based on Biological Complexes: A Tale of Five Paradigms.

    PubMed

    Goh, Wilson Wen Bin; Wong, Limsoon

    2016-09-02

    Despite advances in proteomic technologies, idiosyncratic data issues, for example, incomplete coverage and inconsistency, resulting in large data holes, persist. Moreover, because of naïve reliance on statistical testing and its accompanying p values, differential protein signatures identified from such proteomics data have little diagnostic power. Thus, deploying conventional analytics on proteomics data is insufficient for identifying novel drug targets or precise yet sensitive biomarkers. Complex-based analysis is a new analytical approach that has potential to resolve these issues but requires formalization. We categorize complex-based analysis into five method classes or paradigms and propose an even-handed yet comprehensive evaluation rubric based on both simulated and real data. The first four paradigms are well represented in the literature. The fifth and newest paradigm, the network-paired (NP) paradigm, represented by a method called Extremely Small SubNET (ESSNET), dominates in precision-recall and reproducibility, maintains strong performance in small sample sizes, and sensitively detects low-abundance complexes. In contrast, the commonly used over-representation analysis (ORA) and direct-group (DG) test paradigms maintain good overall precision but have severe reproducibility issues. The other two paradigms considered here are the hit-rate and rank-based network analysis paradigms; both of these have good precision-recall and reproducibility, but they do not consider low-abundance complexes. Therefore, given its strong performance, NP/ESSNET may prove to be a useful approach for improving the analytical resolution of proteomics data. Additionally, given its stability, it may also be a powerful new approach toward functional enrichment tests, much like its ORA and DG counterparts.

  1. Calibration of the head direction network: a role for symmetric angular head velocity cells.

    PubMed

    Stratton, Peter; Wyeth, Gordon; Wiles, Janet

    2010-06-01

    Continuous attractor networks require calibration. Computational models of the head direction (HD) system of the rat usually assume that the connections that maintain HD neuron activity are pre-wired and static. Ongoing activity in these models relies on precise continuous attractor dynamics. It is currently unknown how such connections could be so precisely wired, and how accurate calibration is maintained in the face of ongoing noise and perturbation. Our adaptive attractor model of the HD system that uses symmetric angular head velocity (AHV) cells as a training signal shows that the HD system can learn to support stable firing patterns from poorly-performing, unstable starting conditions. The proposed calibration mechanism suggests a requirement for symmetric AHV cells, the existence of which has previously been unexplained, and predicts that symmetric and asymmetric AHV cells should be distinctly different (in morphology, synaptic targets and/or methods of action on postsynaptic HD cells) due to their distinctly different functions.

  2. Low-drag electrical-contact arrangement for maintaining continuity between horizontally movable members

    DOEpatents

    Brown, R.J.; Gerth, H.L.; Robinson, S.C.

    1981-01-23

    This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.

  3. Low-drag electrical contact arrangement for maintaining continuity between horizontally movable members

    DOEpatents

    Brown, R. Jack; Gerth, Howard L.; Robinson, Samuel C.

    1982-01-01

    This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.

  4. The electronic structure of Au25 clusters: between discrete and continuous

    NASA Astrophysics Data System (ADS)

    Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Sai Krishna, Katla; Li, Ruipeng; Mei, Wai-Ning; Skrabalak, Sara E.; Kumar, Challa S. S. R.; Losovyj, Yaroslav

    2016-08-01

    Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies.Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies. Electronic supplementary information (ESI) available: Experimental details including chemicals, sample preparation, and characterization methods. Computation techniques, SV-AUC, GIWAXS, XPS, UPS, MALDI-TOF, ESI data of Au25 clusters. See DOI: 10.1039/c6nr02374f

  5. Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy.

    PubMed

    Churnside, Allison B; Sullan, Ruby May A; Nguyen, Duc M; Case, Sara O; Bull, Matthew S; King, Gavin M; Perkins, Thomas T

    2012-07-11

    Force drift is a significant, yet unresolved, problem in atomic force microscopy (AFM). We show that the primary source of force drift for a popular class of cantilevers is their gold coating, even though they are coated on both sides to minimize drift. Drift of the zero-force position of the cantilever was reduced from 900 nm for gold-coated cantilevers to 70 nm (N = 10; rms) for uncoated cantilevers over the first 2 h after wetting the tip; a majority of these uncoated cantilevers (60%) showed significantly less drift (12 nm, rms). Removing the gold also led to ∼10-fold reduction in reflected light, yet short-term (0.1-10 s) force precision improved. Moreover, improved force precision did not require extended settling; most of the cantilevers tested (9 out of 15) achieved sub-pN force precision (0.54 ± 0.02 pN) over a broad bandwidth (0.01-10 Hz) just 30 min after loading. Finally, this precision was maintained while stretching DNA. Hence, removing gold enables both routine and timely access to sub-pN force precision in liquid over extended periods (100 s). We expect that many current and future applications of AFM can immediately benefit from these improvements in force stability and precision.

  6. Evaluation of an Airborne Spacing Concept to Support Continuous Descent Arrival Operations

    NASA Technical Reports Server (NTRS)

    Murdoch, Jennifer L.; Barmore, Bryan E.; Baxley, Brian T.; Capron, William R.; Abbott, Terence S.

    2009-01-01

    This paper describes a human-in-the-loop experiment of an airborne spacing concept designed to support Continuous Descent Arrival (CDA) operations. The use of CDAs with traditional air traffic control (ATC) techniques may actually reduce an airport's arrival throughput since ATC must provide more airspace around aircraft on CDAs due to the variances in the aircraft trajectories. The intent of airborne self-spacing, where ATC delegates the speed control to the aircraft, is to maintain or even enhance an airport s landing rate during CDA operations by precisely achieving the desired time interval between aircraft at the runway threshold. This paper describes the operational concept along with the supporting airborne spacing tool and the results of a piloted evaluation of this concept, with the focus of the evaluation on pilot acceptability of the concept during off-nominal events. The results of this evaluation show a pilot acceptance of this airborne spacing concept with little negative performance impact over conventional CDAs.

  7. Liga developer apparatus system

    DOEpatents

    Boehme, Dale R.; Bankert, Michelle A.; Christenson, Todd R.

    2003-01-01

    A system to fabricate precise, high aspect ratio polymeric molds by photolithograpic process is described. The molds for producing micro-scale parts from engineering materials by the LIGA process. The invention is a developer system for developing a PMMA photoresist having exposed patterns comprising features having both very small sizes, and very high aspect ratios. The developer system of the present invention comprises a developer tank, an intermediate rinse tank and a final rinse tank, each tank having a source of high frequency sonic agitation, temperature control, and continuous filtration. It has been found that by moving a patterned wafer, through a specific sequence of developer/rinse solutions, where an intermediate rinse solution completes development of those portions of the exposed resist left undeveloped after the development solution, by agitating the solutions with a source of high frequency sonic vibration, and by adjusting and closely controlling the temperatures and continuously filtering and recirculating these solutions, it is possible to maintain the kinetic dissolution of the exposed PMMA polymer as the rate limiting step.

  8. Evaluation of Chemical Coating Processes for AXAF

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell; Ramsey, Brian; Mendrek, Mitchell

    1998-01-01

    The need existed at MSFC for the development and fabrication of radioisotope calibration sources of cadmium 109 and iron 55 isotopes. This was in urgent response to the AXA-F program. Several issues persisted in creating manufacturing difficulties for the supplier. In order to meet the MSFC requirements very stringent control needed to be maintained for the coating quality, specific activity and thickness. Due to the difficulties in providing the precisely controlled devices for testing, the delivery of the sources was seriously delayed. It became imperative that these fabrication issues be resolved to avoid further delays in this AXA-F observatory key component. The objectives are: 1) Research and provide expert advice on coating materials and procedures. 2) Research and recommend solutions to problems that have been experienced with the coating process. 3) Provide recommendations on the selection and preparation of substrates. 4) Provide consultation on the actual coating process including the results of the qualification and acceptance test programs. 5) Perform independent tests at UAH or MSFC as necessary.

  9. Photo-switchable bistable twisted nematic liquid crystal optical switch.

    PubMed

    Wang, Chun-Ta; Wu, Yueh-Chi; Lin, Tsung-Hsien

    2013-02-25

    This work demonstrates a photo-switchable bistable optical switch that is based on an azo-chiral doped liquid crystal (ACDLC). The photo-induced isomerization of the azo-chiral dopant can change the chirality of twisted nematic liquid crystal and the gap/pitch ratio of an ACDLC device, enabling switching between 0° and 180° twist states in a homogeneous aligned cell. The bistable 180° and 0° twist states of the azo-chiral doped liquid crystal between crossed polarizers correspond to the ON and OFF states of a light shutter, respectively, and they can be maintained stably for tens of hours. Rapid switching between 180° and 0° twist states can be carried out using 408 and 532 nm addressing light. Such a photo-controllable optical switch requires no specific asymmetric alignment layer or precise control of the cell gap/pitch ratio, so it is easily fabricated and has the potential for use in optical systems.

  10. Hippo circuitry and the redox modulation of hippo components in cancer cell fate decisions.

    PubMed

    Ashraf, Asma; Pervaiz, Shazib

    2015-12-01

    Meticulous and precise control of organ size is undoubtedly one of the most pivotal processes in mammalian development and regeneration along with cell differentiation, morphogenesis and programmed cell death. These processes are strictly regulated by complex and highly coordinated mechanisms to maintain a steady growth state. There are a number of extrinsic and intrinsic factors that dictate the total number and/or size of cells by influencing growth, proliferation, differentiation and cell death. Multiple pathways, such as those involved in promoting organ size and others that restrict disproportionate tissue growth act simultaneously to maintain cellular and tissue homeostasis. Aberrations at any level in these organ size-regulating processes can lead to various pathological states with cancers being the most formidable one (Yin and Zhang, 2011). Extensive research in the realm of growth control has led to the identification of the Hippo-signaling pathway as a critical network in modulating tissue growth via its effect on multiple signaling pathways and through intricate crosstalk with proteins that regulate cell polarity, adhesion and cell-cell interactions (Zhao et al., 2011b). The Hippo pathway controls cell number and organ size by transducing signals from the plasma membrane to the nucleus to regulate the expression of genes involved in cell fate determination (Shi et al., 2015). In this review, we summarize the recent discoveries concerning Hippo pathway, its diversiform regulation in mammals as well as its implications in cancers, and highlight the possible role of oxidative stress in Hippo pathway regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evaluation of control laws and actuator locations for control systems applicable to deformable astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.

    1973-01-01

    Some of the major difficulties associated with large orbiting astronomical telescopes are the cost of manufacturing the primary mirror to precise tolerances and the maintaining of diffraction-limited tolerances while in orbit. One successfully demonstrated approach for minimizing these problem areas is the technique of actively deforming the primary mirror by applying discrete forces to the rear of the mirror. A modal control technique, as applied to active optics, has previously been developed and analyzed. The modal control technique represents the plant to be controlled in terms of its eigenvalues and eigenfunctions which are estimated via numerical approximation techniques. The report includes an extension of previous work using the modal control technique and also describes an optimal feedback controller. The equations for both control laws are developed in state-space differential form and include such considerations as stability, controllability, and observability. These equations are general and allow the incorporation of various mode-analyzer designs; two design approaches are presented. The report also includes a technique for placing actuator and sensor locations at points on the mirror based upon the flexibility matrix of the uncontrolled or unobserved modes of the structure. The locations selected by this technique are used in the computer runs which are described. The results are based upon three different initial error distributions, two mode-analyzer designs, and both the modal and optimal control laws.

  12. Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.

    We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasersmore » during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less

  13. Spinoff For Deepsea Drillships

    NASA Technical Reports Server (NTRS)

    1979-01-01

    For deepwater operations the self-propelled oil drillship is employed. This type of vessel resembles a cargo ship except for its large derrick, which supports the drilling equipment. Extending from the drillship to the well thousands of feet steel tube usually one to two feet in diameter. The drilling equipment, or drill string, is lowered to the well through this riser. The riser is not rigid nor strictly vertical; it is described by one expert as "a very long piece of spaghetti," held in tension at the well and at the ship end by strong cables. Obviously, the ship must remain often for months-in a position directly over the well. If it were to drift excessively forward, aft or to either side, its movement could snap the riser and disrupt operations at a cost of millions. That's where space technology is playing a part. The same technology employed to locate a spacecraft in orbit and maintain a precise position is applicable to drillship operation. In space, automatic navigation equipment sights on reference points-the Earth, the sun or other stars--to determine spacecraft location. If the space mission requires the spacecraft to hold a certain position, it is accomplished by the firing of computer- directed control thrusters. Two major aerospace companies- Honeywell Inc. and TRW Inc.-have applied their extensive experience in spacecraft positioning and control to the offshore drilling technique known as dynamic positioning, meaning holding the drillship in precise position over the work site.

  14. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which aremore » anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.« less

  15. Generalized predictive control for a coupled four tank MIMO system using a continuous-discrete time observer.

    PubMed

    Gouta, Houssemeddine; Hadj Saïd, Salim; Barhoumi, Nabil; M'Sahli, Faouzi

    2017-03-01

    This paper deals with the problem of the observer based control design for a coupled four-tank liquid level system. For this MIMO system's dynamics, motivated by a desire to provide precise and sensorless liquid level control, a nonlinear predictive controller based on a continuous-discrete observer is presented. First, an analytical solution from the model predictive control (MPC) technique is developed for a particular class of nonlinear MIMO systems and its corresponding exponential stability is proven. Then, a high gain observer that runs in continuous-time with an output error correction time that is updated in a mixed continuous-discrete fashion is designed in order to estimate the liquid levels in the two upper tanks. The effectiveness of the designed control schemes are validated by two tests; The first one is maintaining a constant level in the first bottom tank while making the level in the second bottom tank to follow a sinusoidal reference signal. The second test is more difficult and it is made using two trapezoidal reference signals in order to see the decoupling performance of the system's outputs. Simulation and experimental results validate the objective of the paper. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. A subset of neurons controls the permeability of the peritrophic matrix and midgut structure in Drosophila adults.

    PubMed

    Kenmoku, Hiroyuki; Ishikawa, Hiroki; Ote, Manabu; Kuraishi, Takayuki; Kurata, Shoichiro

    2016-08-01

    The metazoan gut performs multiple physiological functions, including digestion and absorption of nutrients, and also serves as a physical and chemical barrier against ingested pathogens and abrasive particles. Maintenance of these functions and structures is partly controlled by the nervous system, yet the precise roles and mechanisms of the neural control of gut integrity remain to be clarified in Drosophila Here, we screened for GAL4 enhancer-trap strains and labeled a specific subsets of neurons, using Kir2.1 to inhibit their activity. We identified an NP3253 line that is susceptible to oral infection by Gram-negative bacteria. The subset of neurons driven by the NP3253 line includes some of the enteric neurons innervating the anterior midgut, and these flies have a disorganized proventricular structure with high permeability of the peritrophic matrix and epithelial barrier. The findings of the present study indicate that neural control is crucial for maintaining the barrier function of the gut, and provide a route for genetic dissection of the complex brain-gut axis in adults of the model organism Drosophila. © 2016. Published by The Company of Biologists Ltd.

  17. Microfluidic proportional flow controller

    PubMed Central

    Prentice-Mott, Harrison; Toner, Mehmet; Irimia, Daniel

    2011-01-01

    Precise flow control in microfluidic chips is important for many biochemical assays and experiments at microscale. While several technologies for controlling fluid flow have been implemented either on- or off-chip, these can provide either high-speed or high-precision control, but seldom could accomplish both at the same time. Here we describe a new on-chip, pneumatically activated flow controller that allows for fast and precise control of the flow rate through a microfluidic channel. Experimental results show that the new proportional flow controllers exhibited a response time of approximately 250 ms, while our numerical simulations suggest that faster actuation down to approximately 50 ms could be achieved with alternative actuation schemes. PMID:21874096

  18. Neural control and precision of flight muscle activation in Drosophila.

    PubMed

    Lehmann, Fritz-Olaf; Bartussek, Jan

    2017-01-01

    Precision of motor commands is highly relevant in a large context of various locomotor behaviors, including stabilization of body posture, heading control and directed escape responses. While posture stability and heading control in walking and swimming animals benefit from high friction via ground reaction forces and elevated viscosity of water, respectively, flying animals have to cope with comparatively little aerodynamic friction on body and wings. Although low frictional damping in flight is the key to the extraordinary aerial performance and agility of flying birds, bats and insects, it challenges these animals with extraordinary demands on sensory integration and motor precision. Our review focuses on the dynamic precision with which Drosophila activates its flight muscular system during maneuvering flight, considering relevant studies on neural and muscular mechanisms of thoracic propulsion. In particular, we tackle the precision with which flies adjust power output of asynchronous power muscles and synchronous flight control muscles by monitoring muscle calcium and spike timing within the stroke cycle. A substantial proportion of the review is engaged in the significance of visual and proprioceptive feedback loops for wing motion control including sensory integration at the cellular level. We highlight that sensory feedback is the basis for precise heading control and body stability in flies.

  19. 16 CFR 1203.41 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... stability test; (14) The results of the dynamic strength of retention system test; (15) The name and... helmet tests. Complete test records shall be maintained. These records shall contain the following...; (3) The results of the tests, including the precise nature of any failures; (4) A description of the...

  20. 16 CFR 1203.41 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... stability test; (14) The results of the dynamic strength of retention system test; (15) The name and... helmet tests. Complete test records shall be maintained. These records shall contain the following...; (3) The results of the tests, including the precise nature of any failures; (4) A description of the...

  1. 16 CFR 1203.41 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... stability test; (14) The results of the dynamic strength of retention system test; (15) The name and... helmet tests. Complete test records shall be maintained. These records shall contain the following...; (3) The results of the tests, including the precise nature of any failures; (4) A description of the...

  2. Assembly and alignment method for optimized spatial resolution of off-axis three-mirror fore optics of hyperspectral imager.

    PubMed

    Kim, Youngsoo; Hong, Jinsuk; Choi, Byungin; Lee, Jong-Ung; Kim, Yeonsoo; Kim, Hyunsook

    2017-08-21

    A fore optics for the hyperspectral spectrometer is designed, manufactured, assembled, and aligned. The optics has a telecentric off-axis three-mirror configuration with a field of view wider than 14 degrees and an f-number as small as 2.3. The primary mirror (M1) and the secondary mirror (M2) are axially symmetric aspheric surfaces to minimize the sensitivity. The tertiary mirror (M3) is a decentered aspheric surface to minimize the coma and astigmatism aberration. The M2 also has a hole for the slit to maintain the optical performance while maximizing the telecentricity. To ensure the spatial resolution performance of the optical system, an alignment procedure is established to assemble and align the entrance slit of the spectrometer to the rear end of the fore optics. It has a great advantage to confirm and maintain the alignment integrity of the fore optics module throughout the alignment procedure. To perform the alignment procedure successfully, the precision movement control requirements are calculated and applied. As a result, the alignment goal of the RMS wave front error (WFE) to be smaller than 90 nm at all fields is achieved.

  3. The 4-meter lunar engineering telescope

    NASA Technical Reports Server (NTRS)

    Peacock, Keith; Giannini, Judith A.; Kilgus, Charles C.; Bely, Pierre Y.; May, B. Scott; Cooper, Shannon A.; Schlimm, Gerard H.; Sounder, Charles; Ormond, Karen; Cheek, Eric

    1991-01-01

    The 16-meter diffraction limited lunar telescope incorporates a primary mirror with 312 one-meter segments; 3 nanometer active optics surface control with laser metrology and hexapod positioners; a space frame structure with one-millimeter stability; and a hexapod mount for pointing. The design data needed to limit risk in this development can be obtained by building a smaller engineering telescope on the moon with all of the features of the 16-meter design. This paper presents a 4.33-meter engineering telescope concept developed by the Summer 1990 Student Program of the NASA/JHU Space Grant Consortium Lunar Telescope Project. The primary mirror, made up of 18 one-meter hexagonal segments, is sized to provide interesting science as well as engineering data. The optics are configured as a Ritchey-Chretien with a coude relay to the focal plane beneath the surface. The optical path is continuously monitored with 3-nanometer precision interferometrically. An active optics processor and piezoelectric actuators operate to maintain the end-to-end optical configuration established by wave front sensing using a guide star. The mirror segments, consisting of a one-centimeter thick faceplate on 30-cm deep ribs, maintain the surface figure to a few nanometers under lunar gravity and thermal environment.

  4. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage.

    PubMed

    Singh, Vijayata; Singh, Ajit Pal; Bhadoria, Jyoti; Giri, Jitender; Singh, Jogendra; T V, Vineeth; Sharma, P C

    2018-05-08

    The understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt-tolerant rice (Oryza sativa L.) varieties. To explore these facts, rice genotypes CSR10 and MI48 with contrasting salt tolerance were characterized under salt stress (control, 75 and 150 mM NaCl) conditions. CSR10 expressed higher rate of physio-biochemical parameters, maintained lower Na/K ratio in shoots, and restricted Na translocation from roots to shoots than MI48. The higher expression of genes related to the osmotic module (DREB2A and LEA3) and ionic module (HKT2;1 and SOS1) in roots of CSR10 suppresses the stress, enhances electrolyte leakage, promotes the higher compatible solute accumulation, and maintains cellular ionic homeostasis leading to better salt stress tolerance than MI48. This study further adds on the importance of these genes in salt tolerance by comparing their behaviour in contrasting rice genotypes and utilizing specific marker to identify salinity-tolerant accessions/donors among germplasm; overexpression of these genes which accelerate the selection procedure precisely has been shown.

  5. New method for path-length equalization of long single-mode fibers for interferometry

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Monnier, J. D.; Ozdowy, K.; Woillez, J.; Perrin, G.

    2014-07-01

    The ability to use single mode (SM) fibers for beam transport in optical interferometry offers practical advantages over conventional long vacuum pipes. One challenge facing fiber transport is maintaining constant differential path length in an environment where environmental thermal variations can lead to cm-level variations from day to night. We have fabricated three composite cables of length 470 m, each containing 4 copper wires and 3 SM fibers that operate at the astronomical H band (1500-1800 nm). Multiple fibers allow us to test performance of a circular core fiber (SMF28), a panda-style polarization-maintaining (PM) fiber, and a lastly a specialty dispersion-compensated PM fiber. We will present experimental results using precision electrical resistance measurements of the of a composite cable beam transport system. We find that the application of 1200 W over a 470 m cable causes the optical path difference in air to change by 75 mm (+/- 2 mm) and the resistance to change from 5.36 to 5.50Ω. Additionally, we show control of the dispersion of 470 m of fiber in a single polarization using white light interference fringes (λc=1575 nm, Δλ=75 nm) using our method.

  6. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors

    NASA Astrophysics Data System (ADS)

    Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong

    2015-05-01

    Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00841g

  7. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  8. A device for automatic photoelectric control of the analytical gap for emission spectrographs

    USGS Publications Warehouse

    Dietrich, John A.; Cooley, Elmo F.; Curry, Kenneth J.

    1977-01-01

    A photoelectric device has been built that automatically controls the analytical gap between electrodes during excitation period. The control device allows for precise control of the analytical gap during the arcing process of samples, resulting in better precision of analysis.

  9. Personnel Data Analysis and Retrieval of Phase 1 Move To LC-39 Area

    NASA Technical Reports Server (NTRS)

    Davis, Derrick D.

    2013-01-01

    As a technology major from Jackson State University (JSU) I was called in as a summer intern at Kennedy Space Center (KSC) to work in the NASA Engineering, Control and Data Systems (NE-C) Division supporting the Spaceport Command and Control System (SCCS) at the Space Station Processing Facility (SSPF). I was given a two-part project; the first consisted of lending support relocating SCCS Computer Equipment and Project Personnel to the Launch Control Center (LCC). This task involved me using a Microsoft Office data processing tool to assist with the analysis and information management of logistics worth millions of dollars. With the assistance of two other interns, I was responsible for collecting data on equipment used, on a daily basis, by over 200 KSC employees. The many network servers, enterprise switches, desktop computers, and fiber optics had to be handled in an equally prompt and precise manner in order to ensure a minimal amount of equipment down time; which is critical in ensuring a properly secured networking environment. The second part of my project was to assist KSC in developing a more cost effective way of maintaining and taking full advantage of the functionality of some new kiosk units. Since KSC currently has no expert on the servicing and maintenance of the units, I, as a computer technology major, was given the opportunity to assess the hardware and software of the machines. The goal was to learn to establish a secure and remote environment for the kiosks; a goal highly valuing convenience by preserving valuable man-hours saved by not having to travel to each individual kiosk location. In addition, I was to leave a clear and precise plan for future users and administrators of the devices to follow.

  10. Application of phase matching autofocus in airborne long-range oblique photography camera

    NASA Astrophysics Data System (ADS)

    Petrushevsky, Vladimir; Guberman, Asaf

    2014-06-01

    The Condor2 long-range oblique photography (LOROP) camera is mounted in an aerodynamically shaped pod carried by a fast jet aircraft. Large aperture, dual-band (EO/MWIR) camera is equipped with TDI focal plane arrays and provides high-resolution imagery of extended areas at long stand-off ranges, at day and night. Front Ritchey-Chretien optics is made of highly stable materials. However, the camera temperature varies considerably in flight conditions. Moreover, a composite-material structure of the reflective objective undergoes gradual dehumidification in dry nitrogen atmosphere inside the pod, causing some small decrease of the structure length. The temperature and humidity effects change a distance between the mirrors by just a few microns. The distance change is small but nevertheless it alters the camera's infinity focus setpoint significantly, especially in the EO band. To realize the optics' resolution potential, the optimal focus shall be constantly maintained. In-flight best focus calibration and temperature-based open-loop focus control give mostly satisfactory performance. To get even better focusing precision, a closed-loop phase-matching autofocus method was developed for the camera. The method makes use of an existing beamsharer prism FPA arrangement where aperture partition exists inherently in an area of overlap between the adjacent detectors. The defocus is proportional to an image phase shift in the area of overlap. Low-pass filtering of raw defocus estimate reduces random errors related to variable scene content. Closed-loop control converges robustly to precise focus position. The algorithm uses the temperature- and range-based focus prediction as an initial guess for the closed-loop phase-matching control. The autofocus algorithm achieves excellent results and works robustly in various conditions of scene illumination and contrast.

  11. LATERAL CONTROL IN A DRIVING SIMULATOR: CORRELATIONS WITH NEUROPSYCHOLOGICAL TESTS AND ON-ROAD SAFETY ERRORS

    PubMed Central

    Johnson, Amy; Dawson, Jeffrey; Rizzo, Matthew

    2012-01-01

    Summary Driving simulators provide precise information on vehicular position at high capture rates. To analyze such data, we have previously proposed a time series model that reduces lateral position data into several parameters for measuring lateral control, and have shown that these parameters can detect differences between neurologically impaired and healthy drivers (Dawson et al, 2010a). In this paper, we focus on the “re-centering” parameter of this model, and test whether the parameter estimates are associated with off-road neuropsychological tests and/or with on-road safety errors. We assessed such correlations in 127 neurologically healthy drivers, ages 40 to 89. We found that our re-centering parameter had significant correlations with five neuropsychological tests: Judgment of Line Orientation (r = 0.38), Block Design (r = 0.27), Contrast Sensitivity (r = 0.31), Near Visual Acuity (r = -0.26), and Grooved Pegboard (r = -0.25). We also found that our re-centering parameter was associated with on-road safety errors at stop signs (r = -0.34) and on-road safety errors during turns (r = -0.22). These results suggest that our re-centering parameter may be a useful tool for measuring and monitoring ability to maintain vehicular lateral control. As GPS-based technology continues to improve in precision and reliability to measure vehicular positioning, our time-series model may potentially be applied as an automated index of driver performance in real world settings that is sensitive to cognitive decline. This work was supported by NIH/NIA awards AG17177, AG15071, and NS044930, and by a scholarship from Nissan Motor Company. PMID:24273756

  12. Design and performance of an ultra-wideband stepped-frequency radar with precise frequency control for landmine and IED detection

    NASA Astrophysics Data System (ADS)

    Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) has developed an impulse-based vehicle-mounted forward-looking ultra- wideband (UWB) radar for imaging buried landmines and improvised explosive devices (IEDs). However, there is no control of the radiated spectrum in this system. As part of ARL's Partnerships in Research Transition (PIRT) program, the above deficiency is addressed by the design of a Stepped-Frequency Radar (SFR) which allows for precise control over the radiated spectrum, while still maintaining an effective ultra-wide bandwidth. The SFR utilizes a frequency synthesizer which can be configured to excise prohibited and interfering frequency bands and also implement frequency-hopping capabilities. The SFR is designed to be a forward-looking ground- penetrating (FLGPR) Radar utilizing a uniform linear array of sixteen (16) Vivaldi notch receive antennas and two (2) Quad-ridge horn transmit antennas. While a preliminary SFR consisting of four (4) receive channels has been designed, this paper describes major improvements to the system, and an analysis of expected system performance. The 4-channel system will be used to validate the SFR design which will eventually be augmented in to the full 16-channel system. The SFR has an operating frequency band which ranges from 300 - 2000 MHz, and a minimum frequency step-size of 1 MHz. The radar system is capable of illuminating range swaths that have maximum extents of 30 to 150 meters (programmable). The transmitter has the ability to produce approximately -2 dBm/MHz average power over the entire operating frequency range. The SFR will be used to determine the practicality of detecting and classifying buried and concealed landmines and IEDs from safe stand-off distances.

  13. A cadaver study of mastoidectomy using an image‐guided human–robot collaborative control system

    PubMed Central

    Yoo, Myung Hoon; Lee, Hwan Seo; Yang, Chan Joo; Lee, Seung Hwan; Lim, Hoon; Lee, Seongpung

    2017-01-01

    Objective Surgical precision would be better achieved with the development of an anatomical monitoring and controlling robot system than by traditional surgery techniques alone. We evaluated the feasibility of robot‐assisted mastoidectomy in terms of duration, precision, and safety. Study Design Human cadaveric study. Materials and Methods We developed a multi‐degree‐of‐freedom robot system for a surgical drill with a balancing arm. The drill system is manipulated by the surgeon, the motion of the drill burr is monitored by the image‐guided system, and the brake is controlled by the robotic system. The system also includes an alarm as well as the brake to help avoid unexpected damage to vital structures. Experimental mastoidectomy was performed in 11 temporal bones of six cadavers. Parameters including duration and safety were assessed, as well as intraoperative damage, which was judged via pre‐ and post‐operative computed tomography. Results The duration of mastoidectomy in our study was comparable with that required for chronic otitis media patients. Although minor damage, such as dura exposure without tearing, was noted, no critical damage to the facial nerve or other important structures was observed. When the brake system was set to 1 mm from the facial nerve, the postoperative average bone thicknesses of the facial nerve was 1.39, 1.41, 1.22, 1.41, and 1.55 mm in the lateral, posterior pyramidal and anterior, lateral, and posterior mastoid portions, respectively. Conclusion Mastoidectomy can be successfully performed using our robot‐assisted system while maintaining a pre‐set limit of 1 mm in most cases. This system may thus be useful for more inexperienced surgeons. Level of Evidence NA. PMID:29094065

  14. Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma*

    PubMed Central

    Abbatiello, Susan E.; Schilling, Birgit; Mani, D. R.; Zimmerman, Lisa J.; Hall, Steven C.; MacLean, Brendan; Albertolle, Matthew; Allen, Simon; Burgess, Michael; Cusack, Michael P.; Gosh, Mousumi; Hedrick, Victoria; Held, Jason M.; Inerowicz, H. Dorota; Jackson, Angela; Keshishian, Hasmik; Kinsinger, Christopher R.; Lyssand, John; Makowski, Lee; Mesri, Mehdi; Rodriguez, Henry; Rudnick, Paul; Sadowski, Pawel; Sedransk, Nell; Shaddox, Kent; Skates, Stephen J.; Kuhn, Eric; Smith, Derek; Whiteaker, Jeffery R.; Whitwell, Corbin; Zhang, Shucha; Borchers, Christoph H.; Fisher, Susan J.; Gibson, Bradford W.; Liebler, Daniel C.; MacCoss, Michael J.; Neubert, Thomas A.; Paulovich, Amanda G.; Regnier, Fred E.; Tempst, Paul; Carr, Steven A.

    2015-01-01

    There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma. PMID:25693799

  15. 2005 AG20/20 Annual Review

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; McKellip, Rodney D.

    2005-01-01

    Topics covered include: Implementation and Validation of Sensor-Based Site-Specific Crop Management; Enhanced Management of Agricultural Perennial Systems (EMAPS) Using GIS and Remote Sensing; Validation and Application of Geospatial Information for Early Identification of Stress in Wheat; Adapting and Validating Precision Technologies for Cotton Production in the Mid-Southern United States - 2004 Progress Report; Development of a System to Automatically Geo-Rectify Images; Economics of Precision Agriculture Technologies in Cotton Production-AG 2020 Prescription Farming Automation Algorithms; Field Testing a Sensor-Based Applicator for Nitrogen and Phosphorus Application; Early Detection of Citrus Diseases Using Machine Vision and DGPS; Remote Sensing of Citrus Tree Stress Levels and Factors; Spectral-based Nitrogen Sensing for Citrus; Characterization of Tree Canopies; In-field Sensing of Shallow Water Tables and Hydromorphic Soils with an Electromagnetic Induction Profiler; Maintaining the Competitiveness of Tree Fruit Production Through Precision Agriculture; Modeling and Visualizing Terrain and Remote Sensing Data for Research and Education in Precision Agriculture; Thematic Soil Mapping and Crop-Based Strategies for Site-Specific Management; and Crop-Based Strategies for Site-Specific Management.

  16. Design of high precision temperature control system for TO packaged LD

    NASA Astrophysics Data System (ADS)

    Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan

    2017-10-01

    Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.

  17. IRT Item Parameter Recovery with Marginal Maximum Likelihood Estimation Using Loglinear Smoothing Models

    ERIC Educational Resources Information Center

    Casabianca, Jodi M.; Lewis, Charles

    2015-01-01

    Loglinear smoothing (LLS) estimates the latent trait distribution while making fewer assumptions about its form and maintaining parsimony, thus leading to more precise item response theory (IRT) item parameter estimates than standard marginal maximum likelihood (MML). This article provides the expectation-maximization algorithm for MML estimation…

  18. 16 CFR § 1203.41 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... stability test; (14) The results of the dynamic strength of retention system test; (15) The name and... helmet tests. Complete test records shall be maintained. These records shall contain the following...; (3) The results of the tests, including the precise nature of any failures; (4) A description of the...

  19. False-Positive Tangible Outcomes of Functional Analyses

    ERIC Educational Resources Information Center

    Rooker, Griffin W.; Iwata, Brian A.; Harper, Jill M.; Fahmie, Tara A.; Camp, Erin M.

    2011-01-01

    Functional analysis (FA) methodology is the most precise method for identifying variables that maintain problem behavior. Occasionally, however, results of an FA may be influenced by idiosyncratic sensitivity to aspects of the assessment conditions. For example, data from several studies suggest that inclusion of a tangible condition during an FA…

  20. Micro-Scalable Thermal Control Device

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E. (Inventor)

    2002-01-01

    A microscalable thermal control module consists of a Stirling cycle cooler that can be manipulated to operate at a selected temperature within the heating and cooling range of the module. The microscalable thermal control module is particularly suited for controlling the temperature of devices that must be maintained at precise temperatures. It is particularly suited for controlling the temperature of devices that need to be alternately heated or cooled. The module contains upper and lower opposing diaphragms, with a regenerator region containing a plurality of regenerators interposed between the diaphragms. Gaps exist on each side of each diaphragm to permit it to oscillate freely. The gap on the interior side one diaphragm is in fluid connection with the gap on the interior side of the other diaphragm through regenerators. As the diaphragms oscillate working gas is forced through the regenerators. The surface area of each regenerator is sufficiently large to effectively transfer thermal energy to and from the working gas as it is passed through them. The phase and amplitude of the oscillations can be manipulated electronically to control the steady state temperature of the active thermal control surface, and to switch the operation of the module from cooling to heating, or vice versa. The ability of the microscalable thermal control module to heat and cool may be enhanced by operating a plurality of modules in series, in parallel, or in connection through a shared bottom layer.

  1. Design and control of a high precision drive mechanism

    NASA Astrophysics Data System (ADS)

    Pan, Bo; He, Yongqiang; Wang, Haowei; Zhang, Shuyang; Zhang, Donghua; Wei, Xiaorong; Jiang, Zhihong

    2017-01-01

    This paper summarizes the development of a high precision drive mechanism (HPDM) for space application, such as the directional antenna, the laser communication device, the mobile camera and other pointing mechanisms. In view of the great practical significance of high precision drive system, control technology for permanent magnet synchronous motor (PMSM) servo system is also studied and a PMSM servo controller is designed in this paper. And the software alignment was applied to the controller to eliminate the steady error of the optical encoder, which helps to realize the 1 arcsec (1σ) control precision. To assess its capabilities, the qualification environment testing including the thermal vacuum cycling testing, and the sinusoidal and random vibration were carried out. The testing results show that the performance of the HPDM is almost the same between the former and the end of each testing.

  2. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 2.0

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Johnson, William C.; Swenson, Harry N.; Robinson, John E.; Prevot, Tom; Callantine, Todd J.; Scardina, John; Greene, Michael

    2013-01-01

    This document is an update to the operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) integrates three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to the Final Approach Fix. These arrival streams are Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and their implantation into an operational environment. The ATD-1 goals include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  3. NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.

    2012-01-01

    This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  4. A new pressure chamber to study the biosynthetic response of articular cartilage to mechanical loading.

    PubMed

    Steinmeyer, J; Torzilli, P A; Burton-Wurster, N; Lust, G

    1993-01-01

    A prototype chamber was used to apply a precise cyclic or static load on articular cartilage explants under sterile conditions. A variable pressure, pneumatic controller was constructed to power the chamber's air cylinder, capable of applying, with a porous load platen, loads of up to 10 MPa at cycles ranging from 0 to 10 Hz. Pig articular cartilage explants were maintained successfully in this chamber for 2 days under cyclic mechanical loading of 0.5 Hz, 0.5 MPa. Explants remained sterile, viable and metabolically active. Cartilage responded to this load with a decreased synthesis of fibronectin and a small but statistically significant elevation in proteoglycan content. Similar but less extensive effects on fibronectin synthesis were observed with the small static load (0.016 MPa) inherent in the design of the chamber.

  5. Mechanobiology of Platelets: Techniques to Study the Role of Fluid Flow and Platelet Retraction Forces at the Micro- and Nano-Scale

    PubMed Central

    Feghhi, Shirin; Sniadecki, Nathan J.

    2011-01-01

    Coagulation involves a complex set of events that are important in maintaining hemostasis. Biochemical interactions are classically known to regulate the hemostatic process, but recent evidence has revealed that mechanical interactions between platelets and their surroundings can also play a substantial role. Investigations into platelet mechanobiology have been challenging however, due to the small dimensions of platelets and their glycoprotein receptors. Platelet researchers have recently turned to microfabricated devices to control these physical, nanometer-scale interactions with a higher degree of precision. These approaches have enabled exciting, new insights into the molecular and biomechanical factors that affect platelets in clot formation. In this review, we highlight the new tools used to understand platelet mechanobiology and the roles of adhesion, shear flow, and retraction forces in clot formation. PMID:22272117

  6. Nuclear pulse. III - Playing a wild card

    NASA Astrophysics Data System (ADS)

    Broad, W. J.

    1981-06-01

    Implications of the phenomenon of electromagnetic pulse (EMP), a high-voltage by-product of nuclear explosions in space which could render useless unprotected communications equipment and power grids over a wide area, for the feasibility of conducting a limited nuclear war by the United States are discussed. Arguments on the one hand that the effects of EMP demand direct investigation and should be protected against by the hardening of U.S. military communications are summarized and contrasted with those on the other hand which assert that the presence of EMP, as well as other exotic nuclear effects, would, despite any attempts at hardening, make it impossible to maintain the precision of command and control necessary for a limited nuclear action against Soviet military targets. Uncertainties about Soviet intentions in regard to the use of EMP as a weapon are also pointed out.

  7. Repeatable reference for positioning sensors and transducers in drill pipe

    DOEpatents

    Hall, David R.; Fox, Joe; Pixton, David S.; Hall, Jr., H. Tracy

    2005-05-03

    A drill pipe having a box end having a tapered thread, and an internal shoulder and an external face for engagement with a drill pipe pin end having a tapered mating thread, and an external shoulder and an external face adapted for data acquisition or transmission. The relative dimensions of the box and pin ends are precisely controlled so that when the tool joint is made up, a repeatable reference plane is established for transmitting power and tuning downhole sensors, transducers, and means for sending and receiving data along the drill string. When the power or data acquisition and transmission means are located in the tool joint, the dimensions of the tool joint are further proportioned to compensate for the loss of cross-sectional area in order maintain the joints ability to sustain nominal makeup torque.

  8. Optical superheterodyne receiver.

    PubMed

    Lucy, R F; Lang, K; Peters, C J; Duval, K

    1967-08-01

    Optical communications experiments at 6328 A, comparing the fading characteristics of coherent and noncoherent optical detection, have been performed over a 1-km real atmospheric path in different weather conditions. The results show that fading is less severe for noncoherent detection and that the fading characteristic for both types vary significantly with weather conditions. In addition, the similarity of optical FM to rf FM is demonstrated. The measurements were performed using a remote laser transmitter and an optical superheterodyne receiver operating simultaneously in both a coherent and noncoherent detection mode. The receiver, tunable over a frequency range of 1 GHz at the IF difference frequency of 30 MHz, has automatic frequency control and also uses a precision angle tracking servo to maintain receiver spatial alignment with a remote transmitter. The angle and frequency tracking capability permit operation between moving transmitter and receiver terminals.

  9. Optimal actuator placement in adaptive precision trusses

    NASA Technical Reports Server (NTRS)

    Baycan, C. M.; Utku, S.; Das, S. K.; Wada, B. K.

    1992-01-01

    Actuator placement in adaptive truss structures is to cater to two needs: displacement control of precision points and preloading the elements to overcome joint slackness. Due to technological and financial considerations, the number of actuators available is much less than the degrees of freedom of precision points to be controlled and the degree of redundancy of the structure. An approach for optimal actuator location is outlined. Test cases to demonstrate the effectiveness of the scheme are applied to the Precision Segmented Reflector Truss.

  10. Simulation of automatic precision departures and missed approaches using the microwave landing system

    NASA Technical Reports Server (NTRS)

    Feather, J. B.

    1987-01-01

    Results of simulated precision departures and missed approaches using MLS guidance concepts are presented. The study was conducted under the Terminal Configured Vehicle (TCV) Program, and is an extension of previous work by DAC under the Advanced Transport Operating System (ATOPS) Technology Studies Program. The study model included simulation of an MD-80 aircraft, an autopilot, and a MLS guidance computer that provided lateral and vertical steering commands. Precision departures were evaluated using a noise abatement procedure. Several curved path departures were simulated with MLS noise and under various environmental conditions. Missed approaches were considered for the same runway, where lateral MLS guidance maintained the aircraft along the extended runway centerline. In both the departures and the missed approach cases, pitch autopilot takeoff and go-around modes of operation were used in conjunction with MLS lateral guidance.

  11. Evolution of Quality Assurance for Clinical Immunohistochemistry in the Era of Precision Medicine: Part 4: Tissue Tools for Quality Assurance in Immunohistochemistry.

    PubMed

    Cheung, Carol C; D'Arrigo, Corrado; Dietel, Manfred; Francis, Glenn D; Fulton, Regan; Gilks, C Blake; Hall, Jacqueline A; Hornick, Jason L; Ibrahim, Merdol; Marchetti, Antonio; Miller, Keith; van Krieken, J Han; Nielsen, Soren; Swanson, Paul E; Taylor, Clive R; Vyberg, Mogens; Zhou, Xiaoge; Torlakovic, Emina E

    2017-04-01

    The numbers of diagnostic, prognostic, and predictive immunohistochemistry (IHC) tests are increasing; the implementation and validation of new IHC tests, revalidation of existing tests, as well as the on-going need for daily quality assurance monitoring present significant challenges to clinical laboratories. There is a need for proper quality tools, specifically tissue tools that will enable laboratories to successfully carry out these processes. This paper clarifies, through the lens of laboratory tissue tools, how validation, verification, and revalidation of IHC tests can be performed in order to develop and maintain high quality "fit-for-purpose" IHC testing in the era of precision medicine. This is the final part of the 4-part series "Evolution of Quality Assurance for Clinical Immunohistochemistry in the Era of Precision Medicine."

  12. SW-MW infrared spectrometer for lunar mission

    NASA Astrophysics Data System (ADS)

    Banerjee, Arup; Biswas, Amiya; Joshi, Shaunak; Kumar, Ankush; Rehman, Sami; Sharma, Satish; Somani, Sandip; Bhati, Sunil; Karelia, Jitendra; Saxena, Anish; Chowdhury, Arup R.

    2016-04-01

    SW-MW Imaging Infrared Spectrometer, the Hyperspectral optical imaging instrument is envisaged to map geomorphology and mineralogy of lunar surface. The instrument is designed to image the electro-magnetic energy emanating from moon's surface with high spectral and spatial resolution for the mission duration from an altitude of 100 km. It is designed to cover 0.8 to 5 μm in 250 spectral bands with GSD 80m and swath 20km. Primarily, there are three basic optical segments in the spectrometer. They are fore optics, dispersing element and focusing elements. The payload is designed around a custom developed multi-blaze convex grating optimized for system throughput. The considerations for optimization are lunar radiation, instrument background, optical throughput, and detector sensitivity. HgCdTe (cooled using a rotary stirling cooler) based detector array (500x256 elements, 30μm) is being custom developed for the spectrometer. Stray light background flux is minimized using a multi-band filter cooled to cryogenic temperature. Mechanical system realization is being performed considering requirements such as structural, opto-mechanical, thermal, and alignment. The entire EOM is planned to be maintained at 240K to reduce and control instrument background. Al based mirror, grating, and EOM housing is being developed to maintain structural requirements along with opto- mechanical and thermal. Multi-tier radiative isolation and multi-stage radiative cooling approach is selected for maintaining the EOM temperature. EOM along with precision electronics packages are planned to be placed on the outer and inner side of Anti-sun side (ASS) deck. Power and Cooler drive electronics packages are planned to be placed on bottom side of ASS panel. Cooler drive electronics is being custom developed to maintain the detector temperature within 100mK during the imaging phase. Low noise detector electronics development is critical for maintaining the NETD requirements at different target temperatures. Subsequent segments of the paper bring out system design aspects and trade-off analyses.

  13. Particle Fabrication Using Inkjet Printing onto Hydrophobic Surfaces for Optimization and Calibration of Trace Contraband Detection Sensors

    PubMed Central

    Gillen, Greg; Najarro, Marcela; Wight, Scott; Walker, Marlon; Verkouteren, Jennifer; Windsor, Eric; Barr, Tim; Staymates, Matthew; Urbas, Aaron

    2015-01-01

    A method has been developed to fabricate patterned arrays of micrometer-sized monodisperse solid particles of ammonium nitrate on hydrophobic silicon surfaces using inkjet printing. The method relies on dispensing one or more microdrops of a concentrated aqueous ammonium nitrate solution from a drop-on-demand (DOD) inkjet printer at specific locations on a silicon substrate rendered hydrophobic by a perfluorodecytrichlorosilane monolayer coating. The deposited liquid droplets form into the shape of a spherical shaped cap; during the evaporation process, a deposited liquid droplet maintains this geometry until it forms a solid micrometer sized particle. Arrays of solid particles are obtained by sequential translation of the printer stage. The use of DOD inkjet printing for fabrication of discrete particle arrays allows for precise control of particle characteristics (mass, diameter and height), as well as the particle number and spatial distribution on the substrate. The final mass of an individual particle is precisely determined by using gravimetric measurement of the average mass of solution ejected per microdrop. The primary application of this method is fabrication of test materials for the evaluation of spatially-resolved optical and mass spectrometry based sensors used for detecting particle residues of contraband materials, such as explosives or narcotics. PMID:26610515

  14. Particle Fabrication Using Inkjet Printing onto Hydrophobic Surfaces for Optimization and Calibration of Trace Contraband Detection Sensors.

    PubMed

    Gillen, Greg; Najarro, Marcela; Wight, Scott; Walker, Marlon; Verkouteren, Jennifer; Windsor, Eric; Barr, Tim; Staymates, Matthew; Urbas, Aaron

    2015-11-24

    A method has been developed to fabricate patterned arrays of micrometer-sized monodisperse solid particles of ammonium nitrate on hydrophobic silicon surfaces using inkjet printing. The method relies on dispensing one or more microdrops of a concentrated aqueous ammonium nitrate solution from a drop-on-demand (DOD) inkjet printer at specific locations on a silicon substrate rendered hydrophobic by a perfluorodecytrichlorosilane monolayer coating. The deposited liquid droplets form into the shape of a spherical shaped cap; during the evaporation process, a deposited liquid droplet maintains this geometry until it forms a solid micrometer sized particle. Arrays of solid particles are obtained by sequential translation of the printer stage. The use of DOD inkjet printing for fabrication of discrete particle arrays allows for precise control of particle characteristics (mass, diameter and height), as well as the particle number and spatial distribution on the substrate. The final mass of an individual particle is precisely determined by using gravimetric measurement of the average mass of solution ejected per microdrop. The primary application of this method is fabrication of test materials for the evaluation of spatially-resolved optical and mass spectrometry based sensors used for detecting particle residues of contraband materials, such as explosives or narcotics.

  15. Laser-based direct-write techniques for cell printing

    PubMed Central

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2016-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088

  16. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions.

    PubMed

    Czuba, Ewelina; Steliga, Aleksandra; Lietzau, Grażyna; Kowiański, Przemysław

    2017-08-01

    The brain, demanding constant level of cholesterol, precisely controls its synthesis and homeostasis. The brain cholesterol pool is almost completely separated from the rest of the body by the functional blood-brain barrier (BBB). Only a part of cholesterol pool can be exchanged with the blood circulation in the form of the oxysterol metabolites such, as 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC). Not only neurons but also blood vessels and neuroglia, constituting neurovascular unit (NVU), are crucial for the brain cholesterol metabolism and undergo precise regulation by numerous modulators, metabolites and signal molecules. In physiological conditions maintaining the optimal cholesterol concentration is important for the energetic metabolism, composition of cell membranes and myelination. However, a growing body of evidence indicates the consequences of the cholesterol homeostasis dysregulation in several pathophysiological processes. There is a causal relationship between hypercholesterolemia and 1) development of type 2 diabetes due to long-term high-fat diet consumption, 2) significance of the oxidative stress consequences for cerebral amyloid angiopathy and neurodegenerative diseases, 3) insulin resistance on progression of the neurodegenerative brain diseases. In this review, we summarize the current state of knowledge concerning the cholesterol influence upon functioning of the NVU under physiological and pathological conditions.

  17. Design and Construction of an Inexpensive Homemade Plant Growth Chamber

    PubMed Central

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K.; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140–250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber will tremendously increase research opportunities in experimental plant biology. PMID:25965420

  18. Design and construction of an inexpensive homemade plant growth chamber.

    PubMed

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber will tremendously increase research opportunities in experimental plant biology.

  19. Sovereignty and Collaboration: Affordable Strategies in Times of Austerity

    DTIC Science & Technology

    2016-10-01

    provide precision-guided bombs and a land-support SOVEREIGNTY—ANALYSIS 26 vehicle were delivered for more than 20 percent below the expenditure ini...weapon Precision-guided bomb Support vehicle Panther command & control vehicle Successor Identification Friend or Foe (IFF) Joint combat aircraft...GLMRS) Multi-role armoured vehicle (MRAV) Next-generation light anti-armoured weapon Precision-guided bomb Support vehicle Panther command & control

  20. Analysis of achievable disturbance attenuation in a precision magnetically-suspended motion control system

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander V.; Holmes, Michael L.; Behrouzjou, Roxana; Trumper, David L.

    1994-01-01

    The results of the analysis of the achievable disturbance attenuation to get an Angstrom motion control resolution and macroscopic travel in a precision magnetically-suspended motion control system are presented in this paper. Noise sources in the transducers, electronics, and mechanical vibrations are used to develop the control design.

  1. Dynamic tracking down-conversion signal processing method based on reference signal for grating heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Yan, Shuhua; Zhou, Weihong; Gu, Chenhui

    2012-08-01

    Traditional displacement measurement systems by grating, which purely make use of fringe intensity to implement fringe count and subdivision, have rigid demands for signal quality and measurement condition, so they are not easy to realize measurement with nanometer precision. Displacement measurement with the dual-wavelength and single-grating design takes advantage of the single grating diffraction theory and the heterodyne interference theory, solving quite well the contradiction between large range and high precision in grating displacement measurement. To obtain nanometer resolution and nanometer precision, high-power subdivision of interference fringes must be realized accurately. A dynamic tracking down-conversion signal processing method based on the reference signal is proposed. Accordingly, a digital phase measurement module to realize high-power subdivision on field programmable gate array (FPGA) was designed, as well as a dynamic tracking down-conversion module using phase-locked loop (PLL). Experiments validated that a carrier signal after down-conversion can constantly maintain close to 100 kHz, and the phase-measurement resolution and phase precision are more than 0.05 and 0.2 deg, respectively. The displacement resolution and the displacement precision, corresponding to the phase results, are 0.139 and 0.556 nm, respectively.

  2. Sliding mode control of magnetic suspensions for precision pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Misovec, Kathleen M.; Flynn, Frederick J.; Johnson, Bruce G.; Hedrick, J. Karl

    1991-01-01

    A recently developed nonlinear control method, sliding mode control, is examined as a means of advancing the achievable performance of space-based precision pointing and tracking systems that use nonlinear magnetic actuators. Analytic results indicate that sliding mode control improves performance compared to linear control approaches. In order to realize these performance improvements, precise knowledge of the plant is required. Additionally, the interaction of an estimating scheme and the sliding mode controller has not been fully examined in the literature. Estimation schemes were designed for use with this sliding mode controller that do not seriously degrade system performance. The authors designed and built a laboratory testbed to determine the feasibility of utilizing sliding mode control in these types of applications. Using this testbed, experimental verification of the authors' analyses is ongoing.

  3. Traveling wire electrode increases productivity of Electrical Discharge Machining /EDM/ equipment

    NASA Technical Reports Server (NTRS)

    Kotora, J., Jr.; Smith, S. V.

    1967-01-01

    Traveling wire electrode on electrical discharge machining /EDM/ equipment reduces the time requirements for precision cutting. This device enables cutting with a minimum of lost material and without inducing stress beyond that inherent in the material. The use of wire increases accuracy and enables tighter tolerances to be maintained.

  4. Utilities for master source code distribution: MAX and Friends

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1988-01-01

    MAX is a program for the manipulation of FORTRAN master source code (MSC). This is a technique by which one maintains one and only one master copy of a FORTRAN program under a program developing system, which for MAX is assumed to be VAX/VMS. The master copy is not intended to be directly compiled. Instead it must be pre-processed by MAX to produce compilable instances. These instances may correspond to different code versions (for example, double precision versus single precision), different machines (for example, IBM, CDC, Cray) or different operating systems (i.e., VAX/VMS versus VAX/UNIX). The advantage os using a master source is more pronounced in complex application programs that are developed and maintained over many years and are to be transported and executed on several computer environments. The version lag problem that plagues many such programs is avoided by this approach. MAX is complemented by several auxiliary programs that perform nonessential functions. The ensemble is collectively known as MAX and Friends. All of these programs, including MAX, are executed as foreign VAX/VMS commands and can easily be hidden in customized VMS command procedures.

  5. 75 FR 74045 - Guidance on Planning, Implementing, Maintaining, and Enforcing Institutional Controls at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ..., Implementing, Maintaining, and Enforcing Institutional Controls at Contaminated Sites AGENCY: Environmental... stakeholder input regarding the issues addressed in the EPA interim final guidance, titled Institutional Controls: A Guide to Planning, Implementing, Maintaining, and Enforcing Institutional Controls at...

  6. Design and control of the precise tracking bed based on complex electromechanical design theory

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken

    2010-05-01

    The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.

  7. Precision controllability of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Matheny, N. W.

    1979-01-01

    A flying qualities evaluation conducted on a preproduction F-15 airplane permitted an assessment to be made of its precision controllability in the high subsonic and low transonic flight regime over the allowable angle of attack range. Precision controllability, or gunsight tracking, studies were conducted in windup turn maneuvers with the gunsight in the caged pipper mode and depressed 70 mils. This evaluation showed the F-15 airplane to experience severe buffet and mild-to-moderate wing rock at the higher angles of attack. It showed the F-15 airplane radial tracking precision to vary from approximately 6 to 20 mils over the load factor range tested. Tracking in the presence of wing rock essentially doubled the radial tracking error generated at the lower angles of attack. The stability augmentation system affected the tracking precision of the F-15 airplane more than it did that of previous aircraft studied.

  8. Delay times of a LiDAR-guided precision sprayer control system

    USDA-ARS?s Scientific Manuscript database

    Accurate flow control systems in triggering sprays against detected targets are needed for precision variable-rate sprayer development. System delay times due to the laser-sensor data buffer, software operation, and hydraulic-mechanical component response were determined for a control system used fo...

  9. Performance of Airborne Precision Spacing Under Realistic Wind Conditions and Limited Surveillance Range

    NASA Technical Reports Server (NTRS)

    Wieland, Frederick; Santos, Michel; Krueger, William; Houston, Vincent E.

    2011-01-01

    With the expected worldwide increase of air traffic during the coming decade, both the Federal Aviation Administration's (FAA's) Next Generation Air Transportation System (NextGen), as well as Eurocontrol's Single European Sky ATM Research (SESAR) program have, as part of their plans, air traffic management (ATM) solutions that can increase performance without requiring time-consuming and expensive infrastructure changes. One such solution involves the ability of both controllers and flight crews to deliver aircraft to the runway with greater accuracy than they can today. Previous research has shown that time-based spacing techniques, wherein the controller assigns a time spacing to each pair of arriving aircraft, can achieve this goal by providing greater runway delivery accuracy and producing a concomitant increase in system-wide performance. The research described herein focuses on one specific application of time-based spacing, called Airborne Precision Spacing (APS), which has evolved over the past ten years. This research furthers APS understanding by studying its performance with realistic wind conditions obtained from atmospheric sounding data and with realistic wind forecasts obtained from the Rapid Update Cycle (RUC) short-range weather forecast. In addition, this study investigates APS performance with limited surveillance range, as provided by the Automatic Dependent Surveillance-Broadcast (ADS-B) system, and with an algorithm designed to improve APS performance when ADS-B surveillance data is unavailable. The results presented herein quantify the runway threshold delivery accuracy of APS under these conditions, and also quantify resulting workload metrics such as the number of speed changes required to maintain spacing.

  10. Performance of Airborne Precision Spacing Under Realistic Wind Conditions

    NASA Technical Reports Server (NTRS)

    Wieland, Frederick; Santos, Michel; Krueger, William; Houston, Vincent E.

    2011-01-01

    With the expected worldwide increase of air traffic during the coming decade, both the Federal Aviation Administration s (FAA s) Next Generation Air Transportation System (NextGen), as well as Eurocontrol s Single European Sky ATM Research (SESAR) program have, as part of their plans, air traffic management solutions that can increase performance without requiring time-consuming and expensive infrastructure changes. One such solution involves the ability of both controllers and flight crews to deliver aircraft to the runway with greater accuracy than is possible today. Previous research has shown that time-based spacing techniques, wherein the controller assigns a time spacing to each pair of arriving aircraft, is one way to achieve this goal by providing greater runway delivery accuracy that produces a concomitant increase in system-wide performance. The research described herein focuses on a specific application of time-based spacing, called Airborne Precision Spacing (APS), which has evolved over the past ten years. This research furthers APS understanding by studying its performance with realistic wind conditions obtained from atmospheric sounding data and with realistic wind forecasts obtained from the Rapid Update Cycle (RUC) short-range weather forecast. In addition, this study investigates APS performance with limited surveillance range, as provided by the Automatic Dependent Surveillance-Broadcast (ADS-B) system, and with an algorithm designed to improve APS performance when an ADS-B signal is unavailable. The results presented herein quantify the runway threshold delivery accuracy of APS un-der these conditions, and also quantify resulting workload metrics such as the number of speed changes required to maintain spacing.

  11. Hydroxyapatite nanobelt/polylactic acid Janus membrane with osteoinduction/barrier dual functions for precise bone defect repair.

    PubMed

    Ma, Baojin; Han, Jing; Zhang, Shan; Liu, Feng; Wang, Shicai; Duan, Jiazhi; Sang, Yuanhua; Jiang, Huaidong; Li, Dong; Ge, Shaohua; Yu, Jinghua; Liu, Hong

    2018-04-15

    Controllable osteoinduction maintained in the original defect area is the key to precise bone repair. To meet the requirement of precise bone regeneration, a hydroxyapatite (HAp) nanobelt/polylactic acid (PLA) (HAp/PLA) Janus membrane has been successfully prepared in this study by coating PLA on a paper-like HAp nanobelt film by a casting-pervaporation method. The Janus membrane possesses dual functions: excellent osteoinduction from the hydrophilic HAp nanobelt side and barrier function originating from the hydrophobic PLA film. The cell viability and osteogenic differentiation ability of human adipose-derived stem cells (hADSCs) on the Janus membrane were assessed. The in vitro experimental results prove that the HAp nanobelt side presents high cell viability and efficient osteoinduction without any growth factor and that the PLA side can prohibit cell attachment. The in vivo repair experiments on a rat mandible defect model prove that the PLA side can prevent postoperative adhesion between bone and adjacent soft tissues. Most importantly, the HAp side has a strong ability to promote defect repair and bone regeneration. Therefore, the HAp/PLA Janus membrane will have wide applications as a kind of tissue engineering material in precise bone repair because of its unique dual osteoinduction/barrier functions, biocompatibility, low cost, and its ability to be mass-produced. Precise bone defect repair to keeping tissue integrity and original outline shape is a very important issue for tissue engineering. Here, we have designed and prepared a novel HAp/PLA Janus membrane using a casting-pervaporation method to form a layer of PLA film on paper-like HAp nanobelt film. HAp nanobelt side of the Janus membrane can successfully promote osteogenic differentiation. PLA side of the Janus membrane exhibits good properties as a barrier for preventing the adhesion of cells in vitro. Mandible repair experiments in vivo have shown that the HAp/PLA Janus membrane can promote rat mandible repair on the HAp side and can successfully prevent postoperative adhesion on the PLA side at the same time. Therefore, the HAp/PLA Janus membrane with its osteoinduction/barrier dual functions can be applied to repair bone defect precisely. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Evaluation of the Terminal Area Precision Scheduling and Spacing System for Performance-Based Navigation Arrivals

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Swenson, Harry; Thipphavong, Jane; Martin, Lynne Hazel; Chen, Liang; Nguyen, Jimmy

    2013-01-01

    The growth of global demand for air transportation has put increasing strain on the nation's air traffic management system. To relieve this strain, the International Civil Aviation Organization has urged all nations to adopt Performance-Based Navigation (PBN), which can help to reduce air traffic congestion, decrease aviation fuel consumption, and protect the environment. NASA has developed a Terminal Area Precision Scheduling and Spacing (TAPSS) system that can support increased use of PBN during periods of high traffic, while supporting fuel-efficient, continuous descent approaches. In the original development of this system, arrival aircraft are assigned fuel-efficient Area Navigation (RNAV) Standard Terminal Arrival Routes before their initial descent from cruise, with routing defined to a specific runway. The system also determines precise schedules for these aircraft that facilitate continuous descent through the assigned routes. To meet these schedules, controllers are given a set of advisory tools to precisely control aircraft. The TAPSS system has been evaluated in a series of human-in-the-loop (HITL) air traffic simulations during 2010 and 2011. Results indicated increased airport arrival throughput up to 10 over current operations, and maintained fuel-efficient aircraft decent profiles from the initial descent to landing with reduced controller workload. This paper focuses on results from a joint NASA and FAA HITL simulation conducted in 2012. Due to the FAA rollout of the advance terminal area PBN procedures at mid-sized airports first, the TAPSS system was modified to manage arrival aircraft as they entered Terminal Radar Approach Control (TRACON). Dallas-Love Field airport (DAL) was selected by the FAA as a representative mid-sized airport within a constrained TRACON airspace due to the close proximity of a major airport, in this case Dallas-Ft Worth International Airport, one of the busiest in the world. To address this constraint, RNAV routes and Required Navigation Performance with the particular capability known as Radius-to-Fix (RNP-RF) approaches to a short final were used. The purpose of this simulation was to get feedback on how current operations could benefit with the TAPSS system and also to evaluate the efficacy of the advisory tools to support the broader use of PBN in the US National Airspace System. For this NASA-FAA joint experiment, an Air Traffic Control laboratory at NASA Ames was arranged to simulate arrivals into DAL in Instrument Meteorological Conditions utilizing parallel dependent approaches, with two feeder positions that handed off traffic to one final position. Four FAA controllers participated, alternately covering these three positions. All participants were Full-Performance Level terminal controllers and members of the National Air Traffic Controllers Association. During the simulation, PBN arrival operations were compared and contrasted in three conditions. They were the Baseline, where none of the TAPSS systems TRACON controller decision support advisories were provided, the Limited Advisories, reflecting the existing but dormant capabilities of the current terminal automation equipment with providing a subset of the TAPSS systems advisories; numerical delay, landing sequence, and runway assignment information, and the Full Advisories, with providing the following in addition to the ones in the Limited condition; trajectory slot markers, timelines of estimated times of arrivals and sched

  13. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects

    PubMed Central

    Paillard, Thierry; Noé, Frédéric

    2015-01-01

    The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them. PMID:26640800

  14. Parallel kinematic mechanisms for distributed actuation of future structures

    NASA Astrophysics Data System (ADS)

    Lai, G.; Plummer, A. R.; Cleaver, D. J.; Zhou, H.

    2016-09-01

    Future machines will require distributed actuation integrated with load-bearing structures, so that they are lighter, move faster, use less energy, and are more adaptable. Good examples are shape-changing aircraft wings which can adapt precisely to the ideal aerodynamic form for current flying conditions, and light but powerful robotic manipulators which can interact safely with human co-workers. A 'tensegrity structure' is a good candidate for this application due to its potentially excellent stiffness and strength-to-weight ratio and a multi-element structure into which actuators could be embedded. This paper presents results of an analysis of an example practical actuated tensegrity structure consisting of 3 ‘unit cells’. A numerical method is used to determine the stability of the structure with varying actuator length, showing how four actuators can be used to control movement in three degrees of freedom as well as simultaneously maintaining the structural pre-load. An experimental prototype has been built, in which 4 pneumatic artificial muscles (PAMs) are embedded in one unit cell. The PAMs are controlled antagonistically, by high speed switching of on-off valves, to achieve control of position and structure pre-load. Experimental and simulation results are presented, and future prospects for the approach are discussed.

  15. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects.

    PubMed

    Paillard, Thierry; Noé, Frédéric

    2015-01-01

    The different techniques and methods employed as well as the different quantitative and qualitative variables measured in order to objectify postural control are often chosen without taking into account the population studied, the objective of the postural test, and the environmental conditions. For these reasons, the aim of this review was to present and justify the different testing techniques and methods with their different quantitative and qualitative variables to make it possible to precisely evaluate each sensory, central, and motor component of the postural function according to the experiment protocol under consideration. The main practical and technological methods and techniques used in evaluating postural control were explained and justified according to the experimental protocol defined. The main postural conditions (postural stance, visual condition, balance condition, and test duration) were also analyzed. Moreover, the mechanistic exploration of the postural function often requires implementing disturbing postural conditions by using motor disturbance (mechanical disturbance), sensory stimulation (sensory manipulation), and/or cognitive disturbance (cognitive task associated with maintaining postural balance) protocols. Each type of disturbance was tackled in order to facilitate understanding of subtle postural control mechanisms and the means to explore them.

  16. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors.

    PubMed

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-08-21

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g(-1) at the current density of 3.0 A g(-1) and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g(-1) after 5000 charge-discharge cycles.

  17. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-07-01

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g-1 at the current density of 3.0 A g-1 and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g-1 after 5000 charge-discharge cycles.

  18. Active Focal Zone Sharpening for High-Precision Treatment Using Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy L.; Fowlkes, J. Brian; Roberts, William W.; Cain, Charles A.

    2011-01-01

    The goal of this study is to develop a focal zone sharpening strategy that produces more precise lesions for pulsed cavitational ultrasound therapy, or histotripsy. Precise and well-confined lesions were produced by locally suppressing cavitation in the periphery of the treatment focus without affecting cavitation in the center. The local suppression of cavitation was achieved using cavitation nuclei preconditioning pulses to actively control cavitation in the periphery of the focus. A 1-MHz 513-element therapeutic array was used to generate both the therapy and the nuclei preconditioning pulses. For therapy, 10-cycle bursts at 100-Hz pulse repetition frequency with P−/P+ pressure of 21/76 MPa were delivered to the geometric focus of the therapeutic array. For nuclei preconditioning, a different pulse was delivered to an annular region immediately surrounding the focus before each therapy pulse. A parametric study on the effective pressure, pulse duration, and delivery time of the preconditioning pulse was conducted in red blood cell-gel phantoms, where cavitational damage was indicated by the color change resulting from local cell lysis. Results showed that a short-duration (20 µs) preconditioning pulse at a medium pressure (P−/P+ pressure of 7.2/13.6 MPa) delivered shortly before (30 µs) the therapy pulse substantially suppressed the peripheral damage by 77 ± 13% while complete fractionation in the focal center was maintained. High-speed imaging of the bubble cloud showed a substantial decrease in the maximum width of the bubble cloud by 48 ± 24% using focal zone sharpening. Experiments in ex vivo livers confirmed that highly confined lesions were produced in real tissues as well as in the phantoms. This study demonstrated the feasibility of active focal zone sharpening using cavitation nuclei preconditioning, allowing for increased treatment precision compared with the natural focal width of the therapy transducer. PMID:21342816

  19. Active focal zone sharpening for high-precision treatment using histotripsy.

    PubMed

    Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy; Fowlkes, J; Roberts, William; Cain, Charles

    2011-02-01

    The goal of this study is to develop a focal zone sharpening strategy that produces more precise lesions for pulsed cavitational ultrasound therapy, or histotripsy. Precise and well-confined lesions were produced by locally suppressing cavitation in the periphery of the treatment focus without affecting cavitation in the center. The local suppression of cavitation was achieved using cavitation nuclei preconditioning pulses to actively control cavitation in the periphery of the focus. A 1-MHz 513-element therapeutic array was used to generate both the therapy and the nuclei preconditioning pulses. For therapy, 10-cycle bursts at 100-Hz pulse repetition frequency with P-/P+ pressure of 21/76 MPa were delivered to the geometric focus of the therapeutic array. For nuclei preconditioning, a different pulse was delivered to an annular region immediately surrounding the focus before each therapy pulse. A parametric study on the effective pressure, pulse duration, and delivery time of the preconditioning pulse was conducted in red blood cell-gel phantoms, where cavitational damage was indicated by the color change resulting from local cell lysis. Results showed that a short-duration (20 μs) preconditioning pulse at a medium pressure (P-/P+ pressure of 7.2/13.6 MPa) delivered shortly before (30 μs) the therapy pulse substantially suppressed the peripheral damage by 77 ± 13% while complete fractionation in the focal center was maintained. High-speed imaging of the bubble cloud showed a substantial decrease in the maximum width of the bubble cloud by 48 ± 24% using focal zone sharpening. Experiments in ex vivo livers confirmed that highly confined lesions were produced in real tissues as well as in the phantoms. This study demonstrated the feasibility of active focal zone sharpening using cavitation nuclei preconditioning, allowing for increased treatment precision compared with the natural focal width of the therapy transducer.

  20. Quality control of estrogen receptor assays.

    PubMed

    Godolphin, W; Jacobson, B

    1980-01-01

    Four types of material have been used for the quality control of routine assays of estrogen receptors in human breast tumors. Pieces of hormone-dependent Nb rat mammary tumors gave a precision about 40%. Rat uteri and rat tumors pulverized at liquid nitrogen temperature and stored as powder yielded precision about 30%. Powdered and lyophilised human tumors appear the best with precision as good as 17%.

  1. Fast and precise thermoregulation system in physiological brain slice experiment

    NASA Astrophysics Data System (ADS)

    Sheu, Y. H.; Young, M. S.

    1995-12-01

    We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.

  2. Precision controllability of the YF-17 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Mataeny, N. W.

    1980-01-01

    A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.

  3. Poor neuro-motor tuning of the human larynx: a comparison of sung and whistled pitch imitation

    PubMed Central

    Johnson, Joseph F.; Kotz, Sonja A.

    2018-01-01

    Vocal imitation is a hallmark of human communication that underlies the capacity to learn to speak and sing. Even so, poor vocal imitation abilities are surprisingly common in the general population and even expert vocalists cannot match the precision of a musical instrument. Although humans have evolved a greater degree of control over the laryngeal muscles that govern voice production, this ability may be underdeveloped compared with control over the articulatory muscles, such as the tongue and lips, volitional control of which emerged earlier in primate evolution. Human participants imitated simple melodies by either singing (i.e. producing pitch with the larynx) or whistling (i.e. producing pitch with the lips and tongue). Sung notes were systematically biased towards each individual's habitual pitch, which we hypothesize may act to conserve muscular effort. Furthermore, while participants who sung more precisely also whistled more precisely, sung imitations were less precise than whistled imitations. The laryngeal muscles that control voice production are under less precise control than the oral muscles that are involved in whistling. This imprecision may be due to the relatively recent evolution of volitional laryngeal-motor control in humans, which may be tuned just well enough for the coarse modulation of vocal-pitch in speech. PMID:29765635

  4. Accuracy assessment of the Precise Point Positioning method applied for surveys and tracking moving objects in GIS environment

    NASA Astrophysics Data System (ADS)

    Ilieva, Tamara; Gekov, Svetoslav

    2017-04-01

    The Precise Point Positioning (PPP) method gives the users the opportunity to determine point locations using a single GNSS receiver. The accuracy of the determined by PPP point locations is better in comparison to the standard point positioning, due to the precise satellite orbit and clock corrections that are developed and maintained by the International GNSS Service (IGS). The aim of our current research is the accuracy assessment of the PPP method applied for surveys and tracking moving objects in GIS environment. The PPP data is collected by using preliminary developed by us software application that allows different sets of attribute data for the measurements and their accuracy to be used. The results from the PPP measurements are directly compared within the geospatial database to different other sets of terrestrial data - measurements obtained by total stations, real time kinematic and static GNSS.

  5. Analysis and experimental demonstration of conformal adaptive phase-locked fiber array for laser communications and beam projection applications

    NASA Astrophysics Data System (ADS)

    Liu, Ling

    The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.

  6. Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory

    PubMed Central

    Pratte, Michael S.; Park, Young Eun; Rademaker, Rosanne L.; Tong, Frank

    2016-01-01

    If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced “oblique effect”, with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. PMID:28004957

  7. Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory.

    PubMed

    Pratte, Michael S; Park, Young Eun; Rademaker, Rosanne L; Tong, Frank

    2017-01-01

    If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced "oblique effect," with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Towards an HIV cure based on targeted killing of infected cells: different approaches against acute versus chronic infection.

    PubMed

    Dey, Barna; Berger, Edward A

    2015-05-01

    Current regimens of combination antiretroviral therapy (cART) offer effective control of HIV infection, with maintenance of immune health and near-normal life expectancy. What will it take to progress beyond the status quo, whereby infectious virus can be eradicated (a 'sterilizing cure') or fully controlled without the need for ongoing cART (a 'functional cure')? On the basis of therapeutic advances in the cancer field, we propose that targeted cytotoxic therapy to kill HIV-infected cells represents a logical complement to cART for achieving an HIV cure. This concept is based on the fact that cART effectively blocks replication of the virus, but does not eliminate cells that are already infected; targeted cytotoxic therapy would contribute precisely this missing component. We suggest that different modalities are suited for curing primary acute versus established chronic infection. For acute infection, relatively short-acting potent agents such as recombinant immunotoxins might prove sufficient for HIV eradication, whereas for chronic infection, a long-lasting (lifelong?) modality is required to maintain full virus control, as might be achieved with genetically modified autologous T cells. We present perspectives for complementing cART with targeted cytotoxic therapy, whereby HIV infection is either eradicated or fully controlled, thereby eliminating the need for lifelong cART.

  9. A Method for Determining the Nominal Occular Hazard Zone for Gaussian Beam Laser Rangers with a Firmware Controlled Variable Focal Length

    NASA Technical Reports Server (NTRS)

    Picco, C. E.; Shavers, M. R.; Victor, J. M.; Duron, J. L.; Bowers, W. h.; Gillis, D. B.; VanBaalen, M.

    2009-01-01

    LIDAR systems that maintain a constant beam spot size on a retroreflector in order to increase the accuracy of bearing and ranging data must use a software controlled variable position lens. These systems periodically update the estimated range and set the position of the focusing lens accordingly. In order to precisely calculate the r NOHD for such a system, the software method for setting the variable position lens and gaussian laser propagation can be used to calculate the irradiance at any point given the range estimation. NASA s Space Shuttle LIDAR, called the Trajectory Control Sensor (TCS), uses this configuration. Analytical tools were developed using Excel and VBA to determine the radiant energy to the International Space Station (ISS) crewmembers eyes while viewing the shuttle on approach and departure. Various viewing scenarios are considered including the use of through-the-lens imaging optics and the window transmissivity at the TCS wavelength. The methodology incorporates the TCS system control logic, gaussian laser propagation, potential failure mode end states, and guidance from American National Standard for the Safe Use of Lasers (ANSI Z136.1-2007). This approach can be adapted for laser safety analyses of similar LIDAR systems.

  10. Programmable gradational micropatterning of functional materials using maskless lithography controlling absorption.

    PubMed

    Jung, Yushin; Lee, Howon; Park, Tae-Joon; Kim, Sungsik; Kwon, Sunghoon

    2015-10-22

    The demand for patterning functional materials precisely on surfaces of stimuli-responsive devices has increased in many research fields. In situ polymerization technology is one of the most convenient ways to place the functional materials on a desired location with micron-scale accuracy. To fabricate stimuli-responsive surfaces, controlling concentration of the functional material is much as important as micropatterning them. However, patterning and controlling concentration of the functional materials simultaneously requires an additional process, such as preparing multiple co-flow microfluidic structures and numbers of solutions with various concentrations. Despite applying these processes, fabricating heterogeneous patterns in large scale (millimeter scale) is still impossible. In this study, we propose an advanced in situ polymerization technique to pattern the surface in micron scale in a concentration-controlled manner. Because the concentration of the functional materials is manipulated by self-assembly on the surface, a complex pattern could be easily fabricated without any additional procedure. The complex pattern is pre-designed with absorption amount of the functional material, which is pre-determined by the duration of UV exposure. We show that the resolution reaches up to 2.5 μm and demonstrate mm-scale objects, maintaining the same resolution. We also fabricated Multi-bit barcoded micro particles verify the flexibility of our system.

  11. Research highlights: Microtechnologies for engineering the cellular environment.

    PubMed

    Tseng, Peter; Kunze, Anja; Kittur, Harsha; Di Carlo, Dino

    2014-04-07

    In this issue we highlight recent microtechnology-enabled approaches to control the physical and biomolecular environment around cells: (1) developing micropatterned surfaces to quantify cell affinity choices between two adhesive patterns, (2) controlling topographical cues to align cells and improve reprogramming to a pluripotent state, and (3) controlling gradients of biomolecules to maintain pluripotency in embryonic stem cells. Quantitative readouts of cell-surface affinity in environments with several cues should open up avenues in tissue engineering where self-assembly of complex multi-cellular structures is possible by precisely engineering relative adhesive cues in three dimensional constructs. Methods of simple and local epigenetic modification of chromatin structure with microtopography and biomolecular gradients should also be of use in regenerative medicine, as well as in high-throughput quantitative analysis of external signals that impact and can be used to control cells. Overall, approaches to engineer the cellular environment will continue to be an area of further growth in the microfluidic and lab on a chip community, as the scale of the technologies seamlessly matches that of biological systems. However, because of regulations and other complexities with tissue engineered therapies, these micro-engineering approaches will likely first impact organ-on-a-chip technologies that are poised to improve drug discovery pipelines.

  12. Composition-control of magnetron-sputter-deposited (BaxSr1-x)Ti1+yO3+z thin films for voltage tunable devices

    NASA Astrophysics Data System (ADS)

    Im, Jaemo; Auciello, O.; Baumann, P. K.; Streiffer, S. K.; Kaufman, D. Y.; Krauss, A. R.

    2000-01-01

    Precise control of composition and microstructure is critical for the production of (BaxSr1-x)Ti1+yO3+z (BST) dielectric thin films with the large dependence of permittivity on electric field, low losses, and high electrical breakdown fields that are required for successful integration of BST into tunable high-frequency devices. Here, we present results on composition-microstructure-electrical property relationships for polycrystalline BST films produced by magnetron-sputter deposition, that are appropriate for microwave and millimeter-wave applications such as varactors and frequency triplers. Films with controlled compositions were grown from a stoichiometric Ba0.5Sr0.5TiO3 target by control of the background processing gas pressure. It was determined that the (Ba+Sr)/Ti ratios of these BST films could be adjusted from 0.73 to 0.98 by changing the total (Ar+O2) process pressure, while the O2/Ar ratio did not strongly affect the metal ion composition. Film crystalline structure and dielectric properties as a function of the (Ba+Sr)/Ti ratio are discussed. Optimized BST films yielded capacitors with low dielectric losses (0.0047), among the best reported for sputtered BST, while still maintaining tunabilities suitable for device applications.

  13. Transsynaptic Coordination of Synaptic Growth, Function, and Stability by the L1-Type CAM Neuroglian

    PubMed Central

    Moreno, Eliza; Stephan, Raiko; Boerner, Jana; Godenschwege, Tanja A.; Pielage, Jan

    2013-01-01

    The precise control of synaptic connectivity is essential for the development and function of neuronal circuits. While there have been significant advances in our understanding how cell adhesion molecules mediate axon guidance and synapse formation, the mechanisms controlling synapse maintenance or plasticity in vivo remain largely uncharacterized. In an unbiased RNAi screen we identified the Drosophila L1-type CAM Neuroglian (Nrg) as a central coordinator of synapse growth, function, and stability. We demonstrate that the extracellular Ig-domains and the intracellular Ankyrin-interaction motif are essential for synapse development and stability. Nrg binds to Ankyrin2 in vivo and mutations reducing the binding affinities to Ankyrin2 cause an increase in Nrg mobility in motoneurons. We then demonstrate that the Nrg–Ank2 interaction controls the balance of synapse growth and stability at the neuromuscular junction. In contrast, at a central synapse, transsynaptic interactions of pre- and postsynaptic Nrg require a dynamic, temporal and spatial, regulation of the intracellular Ankyrin-binding motif to coordinate pre- and postsynaptic development. Our study at two complementary model synapses identifies the regulation of the interaction between the L1-type CAM and Ankyrin as an important novel module enabling local control of synaptic connectivity and function while maintaining general neuronal circuit architecture. PMID:23610557

  14. Transsynaptic coordination of synaptic growth, function, and stability by the L1-type CAM Neuroglian.

    PubMed

    Enneking, Eva-Maria; Kudumala, Sirisha R; Moreno, Eliza; Stephan, Raiko; Boerner, Jana; Godenschwege, Tanja A; Pielage, Jan

    2013-01-01

    The precise control of synaptic connectivity is essential for the development and function of neuronal circuits. While there have been significant advances in our understanding how cell adhesion molecules mediate axon guidance and synapse formation, the mechanisms controlling synapse maintenance or plasticity in vivo remain largely uncharacterized. In an unbiased RNAi screen we identified the Drosophila L1-type CAM Neuroglian (Nrg) as a central coordinator of synapse growth, function, and stability. We demonstrate that the extracellular Ig-domains and the intracellular Ankyrin-interaction motif are essential for synapse development and stability. Nrg binds to Ankyrin2 in vivo and mutations reducing the binding affinities to Ankyrin2 cause an increase in Nrg mobility in motoneurons. We then demonstrate that the Nrg-Ank2 interaction controls the balance of synapse growth and stability at the neuromuscular junction. In contrast, at a central synapse, transsynaptic interactions of pre- and postsynaptic Nrg require a dynamic, temporal and spatial, regulation of the intracellular Ankyrin-binding motif to coordinate pre- and postsynaptic development. Our study at two complementary model synapses identifies the regulation of the interaction between the L1-type CAM and Ankyrin as an important novel module enabling local control of synaptic connectivity and function while maintaining general neuronal circuit architecture.

  15. Construction and Design of a full size sTGC prototype for the ATLAS New Small Wheel upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    For the forthcoming Phase-I upgrade to the LHC (2018/19), the first station of the ATLAS muon end-cap system, Small Wheel, will need to be replaced. The New Small Wheel (NSW) will have to operate in a high background radiation region while reconstructing muon tracks with high precision as well as furnishing information for the Level-1 trigger. In particular, the precision reconstruction of tracks requires a spatial resolution of about 100 μm, and the Level-1 trigger track segments have to be reconstructed with an angular resolution of approximately 1 mrad. The NSW will have two chamber technologies, one primarily devoted tomore » the Level-1 trigger function the small-strip Thin Gap Chambers (sTGC) and one dedicated to precision tracking, Micromegas detectors, (MM). The single sTGC planes of a quadruplet consists of an anode layer of 50 μm gold plated tungsten wire sandwiched between two resistive cathode layers. Behind one of the resistive cathode layers, a PCB with precise machined strips (thus the name sTGC's) spaced every 3.2 mm allows to achieve the position resolution that ranges from 70 to 150 μm, depending on the incident particle angle. Behind the second cathode, a PCB that contains an arrangement of pads, allows for a fast coincidence between successive sTGC layers to tag the passage of a track and reads only the corresponding strips for triggering. To be able to profit from the high accuracy of each of the sTGC planes for trigger purposes, their relative geometrical position between planes has to be controlled to within a precision of about 40 μm in their parallelism, as well (due to the various incident angles), to within a precision of 80 μm in the relative distance between the planes to achieve the overall angular resolution of 1 mrad. The needed accuracy in the position and parallelism of the strips is achieved by machining brass inserts together when machining the strip patterns into the cathode boards in a single step. The inserts can then be used as external references on a granite table. Precision methods are used to maintain high accuracy when combining four single detector gaps first into two doublets and then into a quadruplet. We will present results on the ongoing construction of full size (∼1 x 1 m) sTGC quadruplet prototypes before full construction starts in 2015. (authors)« less

  16. The Effect of Balance Training on Postural Control in Patients with Parkinson's Disease Using a Virtual Rehabilitation System.

    PubMed

    Albiol-Pérez, Sergio; Gil-Gómez, José-Antonio; Muñoz-Tomás, María-Teresa; Gil-Gómez, Hermenegildo; Vial-Escolano, Raquel; Lozano-Quilis, José-Antonio

    2017-03-23

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor clinical alterations among others. Postural problems have serious consequences for patients, not only limiting their daily life but also increasing some risks, like the risk of fall. Inadequate postural control and postural instability is a major problem in PD patients. A Virtual Motor Rehabilitation System (VMR) has been tested in patients with PD in the intervention period. Our purpose was to analyze the evolution of the spatial postural control during the intervention period, to see if there are any changes caused precisely by this intervention. Ten people with PD carried out 15 virtual rehabilitation sessions. We tested a groundbreaking system based on Virtual Motor Rehabilitation in two periods of time (baseline evaluation and final evaluation). In the training sessions, the participants performed a customizable treatment using a low-cost system, the Active Balance Rehabilitation system (ABAR). We stored the pressure performed by the participants every five hundredths of a second, and we analyzed the patients' pressure when they maintained their body on the left, on the right, and in the center in sitting position. Our system was able to measure postural control in every patient in each of the virtual rehabilitation sessions. There are no significant differences in the performance of postural control in any of the positions evaluated throughout the sessions. Moreover, the results show a trend to an improvement in all positions. This improvement is especially remarkable in the left/right positions, which are the most important positions in order to avoid problems such as the risk of fall. With regard to the suitability of the ABAR system, we have found outstanding results in enjoyment, success, clarity, and helpfulness. Although PD is a progressive neurodegenerative disorder, the results demonstrate that patients with PD maintain or even improve their postural control in all positions. We think that the main factor influencing these results is that patients use more of their available cognitive processing to improve their postural control. The ABAR system allows us to make this assumption because the system requires the continuous attention of patients, promoting cognitive processing.

  17. Inverse probability weighting for covariate adjustment in randomized studies

    PubMed Central

    Li, Xiaochun; Li, Lingling

    2013-01-01

    SUMMARY Covariate adjustment in randomized clinical trials has the potential benefit of precision gain. It also has the potential pitfall of reduced objectivity as it opens the possibility of selecting “favorable” model that yields strong treatment benefit estimate. Although there is a large volume of statistical literature targeting on the first aspect, realistic solutions to enforce objective inference and improve precision are rare. As a typical randomized trial needs to accommodate many implementation issues beyond statistical considerations, maintaining the objectivity is at least as important as precision gain if not more, particularly from the perspective of the regulatory agencies. In this article, we propose a two-stage estimation procedure based on inverse probability weighting to achieve better precision without compromising objectivity. The procedure is designed in a way such that the covariate adjustment is performed before seeing the outcome, effectively reducing the possibility of selecting a “favorable” model that yields a strong intervention effect. Both theoretical and numerical properties of the estimation procedure are presented. Application of the proposed method to a real data example is presented. PMID:24038458

  18. Inverse probability weighting for covariate adjustment in randomized studies.

    PubMed

    Shen, Changyu; Li, Xiaochun; Li, Lingling

    2014-02-20

    Covariate adjustment in randomized clinical trials has the potential benefit of precision gain. It also has the potential pitfall of reduced objectivity as it opens the possibility of selecting a 'favorable' model that yields strong treatment benefit estimate. Although there is a large volume of statistical literature targeting on the first aspect, realistic solutions to enforce objective inference and improve precision are rare. As a typical randomized trial needs to accommodate many implementation issues beyond statistical considerations, maintaining the objectivity is at least as important as precision gain if not more, particularly from the perspective of the regulatory agencies. In this article, we propose a two-stage estimation procedure based on inverse probability weighting to achieve better precision without compromising objectivity. The procedure is designed in a way such that the covariate adjustment is performed before seeing the outcome, effectively reducing the possibility of selecting a 'favorable' model that yields a strong intervention effect. Both theoretical and numerical properties of the estimation procedure are presented. Application of the proposed method to a real data example is presented. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures

    NASA Astrophysics Data System (ADS)

    Russell, Francis P.; Düben, Peter D.; Niu, Xinyu; Luk, Wayne; Palmer, T. N.

    2017-12-01

    Reconfigurable architectures are becoming mainstream: Amazon, Microsoft and IBM are supporting such architectures in their data centres. The computationally intensive nature of atmospheric modelling is an attractive target for hardware acceleration using reconfigurable computing. Performance of hardware designs can be improved through the use of reduced-precision arithmetic, but maintaining appropriate accuracy is essential. We explore reduced-precision optimisation for simulating chaotic systems, targeting atmospheric modelling, in which even minor changes in arithmetic behaviour will cause simulations to diverge quickly. The possibility of equally valid simulations having differing outcomes means that standard techniques for comparing numerical accuracy are inappropriate. We use the Hellinger distance to compare statistical behaviour between reduced-precision CPU implementations to guide reconfigurable designs of a chaotic system, then analyse accuracy, performance and power efficiency of the resulting implementations. Our results show that with only a limited loss in accuracy corresponding to less than 10% uncertainty in input parameters, the throughput and energy efficiency of a single-precision chaotic system implemented on a Xilinx Virtex-6 SX475T Field Programmable Gate Array (FPGA) can be more than doubled.

  20. Epidemiology in wonderland: Big Data and precision medicine.

    PubMed

    Saracci, Rodolfo

    2018-03-01

    Big Data and precision medicine, two major contemporary challenges for epidemiology, are critically examined from two different angles. In Part 1 Big Data collected for research purposes (Big research Data) and Big Data used for research although collected for other primary purposes (Big secondary Data) are discussed in the light of the fundamental common requirement of data validity, prevailing over "bigness". Precision medicine is treated developing the key point that high relative risks are as a rule required to make a variable or combination of variables suitable for prediction of disease occurrence, outcome or response to treatment; the commercial proliferation of allegedly predictive tests of unknown or poor validity is commented. Part 2 proposes a "wise epidemiology" approach to: (a) choosing in a context imprinted by Big Data and precision medicine-epidemiological research projects actually relevant to population health, (b) training epidemiologists, (c) investigating the impact on clinical practices and doctor-patient relation of the influx of Big Data and computerized medicine and (d) clarifying whether today "health" may be redefined-as some maintain in purely technological terms.

  1. Variable-pulse switching circuit accurately controls solenoid-valve actuations

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1967-01-01

    Solid state circuit generating adjustable square wave pulses of sufficient power operates a 28 volt dc solenoid valve at precise time intervals. This circuit is used for precise time control of fluid flow in combustion experiments.

  2. A reactionless precision pointing actuator

    NASA Technical Reports Server (NTRS)

    Wiktor, Peter

    1987-01-01

    The applications, design, control and testing of an actuator that provides the precise motion control of a gimbal platform without torquing against the basebody to which it is attached are described. The reactionless actuator described was given the name reactuator.

  3. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal

    PubMed Central

    Ito, Kyoko; Ito, Keisuke

    2016-01-01

    Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical. PMID:27482603

  4. Online estimation of internal stack temperatures in solid oxide fuel cell power generating units

    NASA Astrophysics Data System (ADS)

    Dolenc, B.; Vrečko, D.; Juričić, Ɖ.; Pohjoranta, A.; Pianese, C.

    2016-12-01

    Thermal stress is one of the main factors affecting the degradation rate of solid oxide fuel cell (SOFC) stacks. In order to mitigate the possibility of fatal thermal stress, stack temperatures and the corresponding thermal gradients need to be continuously controlled during operation. Due to the fact that in future commercial applications the use of temperature sensors embedded within the stack is impractical, the use of estimators appears to be a viable option. In this paper we present an efficient and consistent approach to data-driven design of the estimator for maximum and minimum stack temperatures intended (i) to be of high precision, (ii) to be simple to implement on conventional platforms like programmable logic controllers, and (iii) to maintain reliability in spite of degradation processes. By careful application of subspace identification, supported by physical arguments, we derive a simple estimator structure capable of producing estimates with 3% error irrespective of the evolving stack degradation. The degradation drift is handled without any explicit modelling. The approach is experimentally validated on a 10 kW SOFC system.

  5. Angular dependant micro-ESR characterization of a locally doped Gd3+:Al2O3 hybrid system for quantum applications

    NASA Astrophysics Data System (ADS)

    Wisby, I. S.; de Graaf, S. E.; Gwilliam, R.; Adamyan, A.; Kubatkin, S. E.; Meeson, P. J.; Tzalenchuk, A. Ya.; Lindstrom, T.

    Rare-earth doped crystals interfaced with superconducting quantum circuitry are an attractive platform for quantum memory and transducer applications. Here we present a detailed characterization of a locally implanted Gd3+ in Al2O3 system coupled to a superconducting micro-resonator, by performing angular dependent micro-electron-spin-resonance (micro-ESR) measurements at mK temperatures. The device is fabricated using a hard Si3N4 mask to facilitate a local ion-implantation technique for precision control of the dopant location. The technique is found not to degrade the internal quality factor of the resonators which remains above 105 (1). We find the measured angular dependence of the micro-ESR spectra to be in excellent agreement with the modelled Hamiltonian, supporting the conclusion that the dopant ions are successfully integrated into their relevant lattice sites whilst maintaining crystalline symmetries. Furthermore, we observe clear contributions from individual microwave field components of our micro-resonator, emphasising the need for controllable local implantation. 1 Wisby et al. Appl. Phys. Lett. 105, 102601 (2014)

  6. Avionics GPB Control System Analysis

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Gravity Probe B is a Satellite being developed by Lockheed Martin under NASA contract through MSFC and managed by Stanford University. The goal of the satellite experiment is to test the accuracy of drift predictions made using Einstein s General Theory of Relativity. The drift in the direction of the spin axes of 4 highly precise quartz spherical gyroscopes induced by motion in the earth s gravitational field will be measured over a year s duration with the known, non-relativistic effects removed. The expected angles of drift for a one year period are approximately 6.6 arcsec for drift in the orbit plane called geodetic drift and 0.033 arcsec of drift normal to the orbit plane called frame dragging. The aerodynamic drag force on the GPB Satellite is compensated by a translation control system. It is pointed at a guide star and maintained in spin at a rate to be selected in the range 0.1 - 1 rpm. The purpose of our task is to update the TREETOPS GPB spacecraft simulation and to assist MSFC in assessing the affect of Helium slosh dynamics on spacecraft pointing performance.

  7. Mars Exploration Rovers Propulsive Maneuver Design

    NASA Technical Reports Server (NTRS)

    Potts, Christopher L.; Raofi, Behzad; Kangas, Julie A.

    2004-01-01

    The Mars Exploration Rovers Spirit and Opportunity successfully landed respectively at Gusev Crater and Meridiani Planum in January 2004. The rovers are essentially robotic geologists, sent on a mission to search for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. In order to conduct NASA's 'follow the water' strategy on opposite sides of the planet Mars, an interplanetary journey of over 300 million miles culminated with historic navigation precision. Rigorous trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites. The propulsive maneuver design challenge was to meet or exceed these requirements while preserving the necessary design margin to accommodate additional project concerns. Landing site flexibility was maintained for both missions after launch, and even after the first trajectory correction maneuver for Spirit. The final targeting strategy was modified to improve delivery performance and reduce risk after revealing constraining trajectory control characteristics. Flight results are examined and summarized for the six trajectory correction maneuvers that were planned for each mission.

  8. A Kinematic, Flexure-based Mechanism for Precise, Parallel Motion for the Hertz Variable-delay Polarization Modulator (VPM)

    NASA Technical Reports Server (NTRS)

    Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.

    2008-01-01

    We describe the design of the linear motion stage for a Variable-delay Polarization Modulator (VPM) and of a grid flattener that has been built and integrated into the Hertz ground-based, submillimeter polarimeter. VPMs allow the modulation of a polarized source by controlling the phase difference between two linear, orthogonal polarizations. The size of the gap between a mirror and a very flat polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. A novel, kinematic, flexure-based mechanism is described that passively maintains the parallelism of the mirror and the grid to 1.5 pm over a 150 mm diameter, with a 400 pm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. A simple device that ensures the planarity of the polarizing grid is also described. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.

  9. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal.

    PubMed

    Ito, Kyoko; Ito, Keisuke

    2016-10-06

    Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical.

  10. Meal Plan in the Treatment of Anorexia Nervosa: A Way of Feeding the Disorder and Starving the Patient

    PubMed Central

    Padrão, Maria João; Barbosa, Maria Raquel; Coimbra, Joaquim Luís

    2013-01-01

    For the mainstream Psychology/Psychiatry, anorexia nervosa is considered an eating disorder characterized by the low body weight and by the restrictive eating pattern. The traditional psychiatric treatment consists in the establishment of a meal plan that must be scrupulously followed and, most frequently, in pharmacological treatment. We propose an alternative conceptualization of anorexia nervosa that envisages this disorder as pertaining to the control domain. In this sense, we formulate psychiatric intervention as a “pact with anorexia”, once it follows the very same logic, prohibitions and self-impositions of the disorder. Specifically, we envisage the meal plan as a way of maintaining anorexia, instead of suppressing it. As we could observe in our four year research project, in which we’ve followed several anorectic female patients, those who were more committed to their psychiatric treatment were precisely those who had more difficulty in recovering from anorexia – i.e., from renouncing the control from which the disorder lives. Finally, we suggest some fundamental underpinnings to an effective therapeutic approach, based in our conceptualization and understanding of the disorder. PMID:23283043

  11. A robotized six degree of freedom stage for optical microscopy

    NASA Astrophysics Data System (ADS)

    Avramov, M. Z.; Ivanov, I.; Pavlov, V.; Zaharieva, K.

    2013-04-01

    This work represents an investigation of the possibility to use a hexapod system for optical microscopy investigation and measurements. An appropriate hexapod stage has been developed. The stage has been calibrated and used for several different optical microscopy applications. The construction of the stage is based on the classic Stewart platform and thus represents a parallel robot with 6 degree of freedom. Appropriate software is controlling the transformation of the 3 position coordinates of the moving plate and the 3 Euler angles in position velocities and accelerations of the plate motion. An embedded microcontroller is implementing the motion plan and the PID controller regulating the kinematics. By difference to the available in the market hexapods the proposed solution is with lower precision but is significantly cheaper and simple to maintain. The repeatability obtained with current implementation is 0,05 mm and 0,001 rad. A specialized DSP based video processing engine is used for both feedback computation and application specific image processing in real-time. To verify the concept some applications has been developed for specific tasks and has been used for specific measurements.

  12. Prototype high speed optical delay line for stellar interferometry

    NASA Astrophysics Data System (ADS)

    Colavita, M. M.; Hines, B. E.; Shao, M.; Klose, G. J.; Gibson, B. V.

    1991-12-01

    The long baselines of the next-generation ground-based optical stellar interferometers require optical delay lines which can maintain nm-level path-length accuracy while moving at high speeds. NASA-JPL is currently designing delay lines to meet these requirements. The design is an enhanced version of the Mark III delay line, with the following key features: hardened, large diameter wheels, rather than recirculating ball bearings, to reduce mechanical noise; a friction-drive cart which bears the cable-dragging forces, and drives the optics cart through a force connection only; a balanced PZT assembly to enable high-bandwidth path-length control; and a precision aligned flexural suspension for the optics assembly to minimize bearing noise feedthrough. The delay line is fully programmable in position and velocity, and the system is controlled with four cascaded software feedback loops. Preliminary performance is a jitter in any 5 ms window of less than 10 nm rms for delay rates of up to 28 mm/s; total jitter is less than 10 nm rms for delay rates up to 20 mm/s.

  13. Stem cell bioprinting for applications in regenerative medicine.

    PubMed

    Tricomi, Brad J; Dias, Andrew D; Corr, David T

    2016-11-01

    Many regenerative medicine applications seek to harness the biologic power of stem cells in architecturally complex scaffolds or microenvironments. Traditional tissue engineering methods cannot create such intricate structures, nor can they precisely control cellular position or spatial distribution. These limitations have spurred advances in the field of bioprinting, aimed to satisfy these structural and compositional demands. Bioprinting can be defined as the programmed deposition of cells or other biologics, often with accompanying biomaterials. In this concise review, we focus on recent advances in stem cell bioprinting, including performance, utility, and applications in regenerative medicine. More specifically, this review explores the capability of bioprinting to direct stem cell fate, engineer tissue(s), and create functional vascular networks. Furthermore, the unique challenges and concerns related to bioprinting living stem cells, such as viability and maintaining multi- or pluripotency, are discussed. The regenerative capacity of stem cells, when combined with the structural/compositional control afforded by bioprinting, provides a unique and powerful tool to address the complex demands of tissue engineering and regenerative medicine applications. © 2016 New York Academy of Sciences.

  14. Study on application of dynamic monitoring of land use based on mobile GIS technology

    NASA Astrophysics Data System (ADS)

    Tian, Jingyi; Chu, Jian; Guo, Jianxing; Wang, Lixin

    2006-10-01

    The land use dynamic monitoring is an important mean to maintain the real-time update of the land use data. Mobile GIS technology integrates GIS, GPS and Internet. It can update the historic al data in real time with site-collected data and realize the data update in large scale with high precision. The Monitoring methods on the land use change data with the mobile GIS technology were discussed. Mobile terminal of mobile GIS has self-developed for this study with GPS-25 OEM and notebook computer. The RTD (real-time difference) operation mode is selected. Mobile GIS system of dynamic monitoring of land use have developed with Visual C++ as operation platform, MapObjects control as graphic platform and MSCmm control as communication platform, which realizes organic integration of GPS, GPRS and GIS. This system has such following basic functions as data processing, graphic display, graphic editing, attribute query and navigation. Qinhuangdao city was selected as the experiential area. Shown by the study result, the mobile GIS integration system of dynamic monitoring of land use developed by this study has practical application value.

  15. The fuzzy algorithm in the die casting mould for the application of multi-channel temperature control

    NASA Astrophysics Data System (ADS)

    Sun, Jin-gen; Chen, Yi; Zhang, Jia-nan

    2017-01-01

    Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.

  16. Low cost photonic comb for sub-m/s wavelength calibration

    NASA Astrophysics Data System (ADS)

    Betters, Christopher H.; Hermouet, Maxime; Blanc, Thomas; Colless, James I.; Bland-Hawthorn, Joss; Kos, Janez; Leon-Saval, Sergio

    2016-07-01

    A fundamental limitation of precision radial velocity measurements is the accuracy and stability of the calibration source. Here we present a low-cost alternative to more complex laser metrology based systems that utilises a single-mode fibre Fabry-Perot etalon. There are three key elements on this photonic comb: i) an optical fibre etalon with thermo-electric coolers; ii) a Rubidium Saturation Absorption Spectroscopy (SAS) setup; and iii) an optical fibre switch system for simultaneous laser locking of the etalon. We simultaneously measure the Rubidium D2 transitions around 780.2 nm and the closest etalon line. A PID loop controls the etalon temperate to maintain the position of its peak with an RMS error of <10cm/s for 10 minute integration intervals in continous operation. The optical fibre switch system allows for a time multiplexed coupling of the etalon to a spectrograph and SAS system.

  17. Mechanical forces direct stem cell behaviour in development and regeneration

    PubMed Central

    Vining, Kyle H.; Mooney, David J.

    2018-01-01

    Stem cells and their local microenvironment, or niche, communicate through mechanical, cues to regulate cell fate and cell behaviour, and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their differentiation and self-renewal. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights on the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies. PMID:29115301

  18. Pathways of cellular proteostasis in aging and disease.

    PubMed

    Klaips, Courtney L; Jayaraj, Gopal Gunanathan; Hartl, F Ulrich

    2018-01-02

    Ensuring cellular protein homeostasis, or proteostasis, requires precise control of protein synthesis, folding, conformational maintenance, and degradation. A complex and adaptive proteostasis network coordinates these processes with molecular chaperones of different classes and their regulators functioning as major players. This network serves to ensure that cells have the proteins they need while minimizing misfolding or aggregation events that are hallmarks of age-associated proteinopathies, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It is now clear that the capacity of cells to maintain proteostasis undergoes a decline during aging, rendering the organism susceptible to these pathologies. Here we discuss the major proteostasis pathways in light of recent research suggesting that their age-dependent failure can both contribute to and result from disease. We consider different strategies to modulate proteostasis capacity, which may help develop urgently needed therapies for neurodegeneration and other age-dependent pathologies. © 2018 Klaips et al.

  19. High-efficency stable 213-nm generation for LASIK application

    NASA Astrophysics Data System (ADS)

    Wang, Zhenglin; Alameh, Kamal; Zheng, Rong

    2005-01-01

    213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.

  20. Mechanisms of Size Control and Polymorphism in Viral Capsid Assembly

    PubMed Central

    Elrad, Oren M.; Hagan, Michael F.

    2009-01-01

    We simulate the assembly dynamics of icosahedral capsids from subunits that interconvert between different conformations (or quasi-equivalent states). The simulations identify mechanisms by which subunits form empty capsids with only one morphology, but adaptively assemble into different icosahedral morphologies around nanoparticle cargoes with varying sizes, as seen in recent experiments with brome mosaic virus (BMV) capsid proteins. Adaptive cargo encapsidation requires moderate cargo-subunit interaction strengths; stronger interactions frustrate assembly by stabilizing intermediates with incommensurate curvature. We compare simulation results to experiments with cowpea chlorotic mottle virus empty capsids and BMV capsids assembled on functionalized nanoparticles, and suggest new cargo encapsidation experiments. Finally, we find that both empty and templated capsids maintain the precise spatial ordering of subunit conformations seen in the crystal structure even if interactions that preserve this arrangement are favored by as little as the thermal energy, consistent with experimental observations that different subunit conformations are highly similar. PMID:18950240

  1. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.

    PubMed

    Yu, Shuizi Rachel; Burkhardt, Markus; Nowak, Matthias; Ries, Jonas; Petrásek, Zdenek; Scholpp, Steffen; Schwille, Petra; Brand, Michael

    2009-09-24

    It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.

  2. Design of Energy Storage Management System Based on FPGA in Micro-Grid

    NASA Astrophysics Data System (ADS)

    Liang, Yafeng; Wang, Yanping; Han, Dexiao

    2018-01-01

    Energy storage system is the core to maintain the stable operation of smart micro-grid. Aiming at the existing problems of the energy storage management system in the micro-grid such as Low fault tolerance, easy to cause fluctuations in micro-grid, a new intelligent battery management system based on field programmable gate array is proposed : taking advantage of FPGA to combine the battery management system with the intelligent micro-grid control strategy. Finally, aiming at the problem that during estimation of battery charge State by neural network, initialization of weights and thresholds are not accurate leading to large errors in prediction results, the genetic algorithm is proposed to optimize the neural network method, and the experimental simulation is carried out. The experimental results show that the algorithm has high precision and provides guarantee for the stable operation of micro-grid.

  3. Insulin receptor regulates photoreceptor CNG channel activity

    PubMed Central

    Gupta, Vivek K.; Rajala, Ammaji

    2012-01-01

    Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr498 and Tyr503 residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR−/− mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo. PMID:23032687

  4. Insulin receptor regulates photoreceptor CNG channel activity.

    PubMed

    Gupta, Vivek K; Rajala, Ammaji; Rajala, Raju V S

    2012-12-01

    Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr(498) and Tyr(503) residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR(-/-) mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo.

  5. Scalable Super-Resolution Synthesis of Core-Vest Composites Assisted by Surface Plasmons.

    PubMed

    Montazeri, A O; Kim, Y; Fang, Y S; Soheilinia, N; Zaghi, G; Clark, J K; Maboudian, R; Kherani, N P; Carraro, C

    2018-02-15

    The behavior of composite nanostructures depends on both size and elemental composition. Accordingly, concurrent control of size, shape, and composition of nanoparticles is key to tuning their functionality. In typical core-shell nanoparticles, the high degree of symmetry during shell formation results in fully encapsulated cores with severed access to the surroundings. We commingle light parameters (wavelength, intensity, and pulse duration) with the physical properties of nanoparticles (size, shape, and composition) to form hitherto unrealized core-vest composite nanostructures (CVNs). Unlike typical core-shells, the plasmonic core of the resulting CVNs selectively maintains physical access to its surrounding. Tunable variations in local temperature profiles ≳50 °C are plasmonically induced over starburst-shaped nanoparticles as small as 50-100 nm. These temperature variations result in CVNs where the shell coverage mirrors the temperature variations. The precision thus offered individually tailors access pathways of the core and the shell.

  6. The Influence of Hydroxylation on Maintaining CpG Methylation Patterns: A Hidden Markov Model Approach.

    PubMed

    Giehr, Pascal; Kyriakopoulos, Charalampos; Ficz, Gabriella; Wolf, Verena; Walter, Jörn

    2016-05-01

    DNA methylation and demethylation are opposing processes that when in balance create stable patterns of epigenetic memory. The control of DNA methylation pattern formation by replication dependent and independent demethylation processes has been suggested to be influenced by Tet mediated oxidation of 5mC. Several alternative mechanisms have been proposed suggesting that 5hmC influences either replication dependent maintenance of DNA methylation or replication independent processes of active demethylation. Using high resolution hairpin oxidative bisulfite sequencing data, we precisely determine the amount of 5mC and 5hmC and model the contribution of 5hmC to processes of demethylation in mouse ESCs. We develop an extended hidden Markov model capable of accurately describing the regional contribution of 5hmC to demethylation dynamics. Our analysis shows that 5hmC has a strong impact on replication dependent demethylation, mainly by impairing methylation maintenance.

  7. KSC-2011-6818

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, United Launch Alliance (ULA) personnel in the Delta Operations Building prepare for the launch of NASA's Gravity Recovery and Interior Laboratory mission aboard a ULA Delta II Heavy rocket. Physical control of the rocket is maintained from the building, located about a mile from Space Launch Complex 17B. The room functions as a "soft blockhouse" and is the room from which the computer-generated command to launch the rocket is issued two seconds before liftoff. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  8. KSC-2011-6817

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, United Launch Alliance (ULA) personnel in the Delta Operations Building prepare for the launch of NASA's Gravity Recovery and Interior Laboratory mission aboard a ULA Delta II Heavy rocket. Physical control of the rocket is maintained from the building, located about a mile from Space Launch Complex 17B. The room functions as a "soft blockhouse" and is the room from which the computer-generated command to launch the rocket is issued two seconds before liftoff. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  9. KSC-2011-6816

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, United Launch Alliance (ULA) personnel in the Delta Operations Building prepare for the launch of NASA's Gravity Recovery and Interior Laboratory mission aboard a ULA Delta II Heavy rocket. Physical control of the rocket is maintained from the building, located about a mile from Space Launch Complex 17B. The room functions as a "soft blockhouse" and is the room from which the computer-generated command to launch the rocket is issued two seconds before liftoff. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  10. Improvements in ion reflux: An electrodialytic eluent generation and suppression device for ion chromatography.

    PubMed

    Elkin, Kyle; Riviello, John; Small, Hamish

    2015-07-17

    This work describes a membrane based electrodialytic ion reflux device (IRD), which uses water as the pumped phase and integrates isocratic and gradient eluent generation and suppression. The current design incorporates several ion exchange membranes to create discrete chambers for suppression and eluent generation, while isolating the electrodes from the analytical stream. A small volume of recycled water can be used as the pumped phase while continuously refluxing the eluent ions. This current design permits electronically controlled eluent generation of at least 16.4μeq KOHmin(-1), while maintaining low suppressed background conductivity (<0.5μS/cm). The device was operated in gradient or isocratic mode continuously for up to 6 weeks. During this period, over 500 gradient and isocratic injections were performed, showing peak retention time precision below 1.5% RSD. Published by Elsevier B.V.

  11. Preparation of positional renal slices for study of cell-specific toxicity.

    PubMed

    Ruegg, C E; Gandolfi, A J; Nagle, R B; Krumdieck, C L; Brendel, K

    1987-04-01

    To reduce structural complexity, rabbit kidneys were sliced perpendicular to their cortical-papillary axis to isolate four distinct cell groupings. This positional orientation allows identification of each renal cell type based on its location within the slice. A mechanical slicer was used to make several precision-cut slices rapidly from an oriented cylindrical core of renal tissue, with minimal tissue trauma. Slices were then submerged under a gently circulating oxygenated media in a fritted glass support system that maintains viability (intracellular K+/DNA ratio) and structural integrity (histology) for at least 30 h. A high dose of mercuric chloride (10(-3) M) was used to demonstrate the structural and biochemical changes of intoxicated slices. This method provides a controlled subchronic in vitro system for the study of the individual cell types involved in cell-specific renal toxicities and may also be a useful tool for addressing other pharmacological and physiological research questions.

  12. All chain Loran-C time synchronization

    NASA Technical Reports Server (NTRS)

    Sherman, H. T.

    1973-01-01

    A program is in progress to implement coordinated universal time (UTC) synchronization on all Loran-C transmissions. The present capability is limited to five Loran-C chains in which the tolerance is twenty-five microseconds with respect to UTC. Upon completion of the program, the transmissions of all Loran-C chains will be maintained within five microseconds of UTC. The improvement plan consists of equipping selected Loran-C transmitting stations for greater precision of frequency standard adjustment and improved monitoring capability. External time monitor stations will utilize television time transfer techniques with nearby SATCOM terminals where practicable, thus providing the requisite traceability to the Naval Observatory. The monitor equipment groups and the interrelationships with the ground station equipment are discussed. After a brief review of control doctrine, forth-coming improvements to transmitting stations and how the time monitor and navigation equipments will complement each other resulting in improved service to all users of the Loran-C system are described.

  13. Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip; Novo-Gradac, Anne-Marie; Shah, Neerav

    2017-01-01

    Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m-500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as microthruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.

  14. Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Novo-Gradac, Anne-Marie; Shah, Neerav

    2017-01-01

    Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m 500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as micro-thruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.

  15. Language Networks in Anophthalmia: Maintained Hierarchy of Processing in "Visual" Cortex

    ERIC Educational Resources Information Center

    Watkins, Kate E.; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M.; Smith, Stephen M.; Ragge, Nicola; Bridge, Holly

    2012-01-01

    Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an…

  16. Setting, Evaluating, and Maintaining Certification Standards with the Rasch Model.

    ERIC Educational Resources Information Center

    Grosse, Martin E.; Wright, Benjamin D.

    1986-01-01

    Based on the standard setting procedures or the American Board of Preventive Medicine for their Core Test, this article describes how Rasch measurement can facilitate using test content judgments in setting a standard. Rasch measurement can then be used to evaluate and improve the precision of the standard and to hold it constant across time.…

  17. Development of an active member using piezoelectric and electrostrictive actuation for control of precision structures

    NASA Technical Reports Server (NTRS)

    Anderson, E. H.; Moore, D. M.; Fanson, J. L.; Ealey, M. A.

    1990-01-01

    The design and development of a zero stiction active member containing piezoelectric and electrostrictive actuator motors is presented. The active member is intended for use in submicron control of structures. Experimental results are shown which illustrate actuator and device characteristics relevant to precision control applications.

  18. A close examination of under-actuated attitude control subsystem design for future satellite missions' life extension

    NASA Astrophysics Data System (ADS)

    Lam, Quang M.; Barkana, Itzhak

    2014-12-01

    Satellite mission life, maintained and prolonged beyond its typical norm of their expectancy, are primarily dictated by the state of health of its Reaction Wheel Assembly (RWA), especially for commercial GEO satellites since torquer bars are no longer applicable while thruster assistant is unacceptable due to pointing accuracy impact during jet firing. The RWA is the primary set of actuators (as compared to thrusters for orbit maintenance and maneuvering) mainly responsible for the satellite mission for accurately and precisely pointing its payloads to the right targets to conduct its mission operations. The RWA consisting of either a set of four in pyramid or three in orthogonal is the primary set of actuators to allow the satellite to achieve accurate and precise pointing of the satellite payloads towards the desired targets. Future space missions will be required to achieve much longer lives and are currently perceived by the GEO satellite community as an "expected norm" of 20 years or longer. Driven by customers' demands/goals and competitive market have challenged Attitude Control Subsystems (ACS) engineers to develop better ACS algorithms to address such an emerging need. There are two main directions to design satellite's under-actuated control subsystem: (1) Attitude Feedback with Zero Momentum Principle and (2) Attitude Control by Angular Velocity Tracking via Small Time Local Controllability concept. Successful applications of these control laws have been largely demonstrated via simulation for the rest to rest case. Limited accuracy and oscillatory behaviors are observed in three axes for non-zero wheel momentum while realistic loss of a wheel scenario (i.e., fully actuated to under-actuated) has not been closely examined! This study revisits the under-actuated control design with detailed set ups of multiple scenarios reflecting real life operating conditions which have put current under-actuated control laws mentioned earlier into a re-evaluation mode since rest to rest case is not adequate to truly represent an on orbit failure of a single wheel. The study is intended to facilitate the ACS community to further develop a more practical under-actuated control law and present a path to extend these current thinking to address a more realistic reconfigurable ACS subject to a dynamic transition from a 3 RWs mode to 2 RWs mode.

  19. Numerical Simulation Analysis of High-precision Dispensing Needles for Solid-liquid Two-phase Grinding

    NASA Astrophysics Data System (ADS)

    Li, Junye; Hu, Jinglei; Wang, Binyu; Sheng, Liang; Zhang, Xinming

    2018-03-01

    In order to investigate the effect of abrasive flow polishing surface variable diameter pipe parts, with high precision dispensing needles as the research object, the numerical simulation of the process of polishing high precision dispensing needle was carried out. Analysis of different volume fraction conditions, the distribution of the dynamic pressure and the turbulence viscosity of the abrasive flow field in the high precision dispensing needle, through comparative analysis, the effectiveness of the abrasive grain polishing high precision dispensing needle was studied, controlling the volume fraction of silicon carbide can change the viscosity characteristics of the abrasive flow during the polishing process, so that the polishing quality of the abrasive grains can be controlled.

  20. Continuous microbial cultures maintained by electronically-controlled device

    NASA Technical Reports Server (NTRS)

    Eisler, W. J., Jr.; Webb, R. B.

    1967-01-01

    Photocell-controlled instrument maintains microbial culture. It uses commercially available chemostat glassware, provides adequate aeration through bubbling of the culture, maintains the population size and density, continuously records growth rates over small increments of time, and contains a simple, sterilizable nutrient control mechanism.

  1. Working memory as internal attention: toward an integrative account of internal and external selection processes.

    PubMed

    Kiyonaga, Anastasia; Egner, Tobias

    2013-04-01

    Working memory (WM) and attention have been studied as separate cognitive constructs, although it has long been acknowledged that attention plays an important role in controlling the activation, maintenance, and manipulation of representations in WM. WM has, conversely, been thought of as a means of maintaining representations to voluntarily guide perceptual selective attention. It has more recently been observed, however, that the contents of WM can capture visual attention, even when such internally maintained representations are irrelevant, and often disruptive, to the immediate external task. Thus, the precise relationship between WM and attention remains unclear, but it appears that they may bidirectionally impact one another, whether or not internal representations are consistent with the external perceptual goals. This reciprocal relationship seems, further, to be constrained by limited cognitive resources to handle demands in either maintenance or selection. We propose here that the close relationship between WM and attention may be best described as a give-and-take interdependence between attention directed toward either actively maintained internal representations (traditionally considered WM) or external perceptual stimuli (traditionally considered selective attention), underpinned by their shared reliance on a common cognitive resource. Put simply, we argue that WM and attention should no longer be considered as separate systems or concepts, but as competing and influencing one another because they rely on the same limited resource. This framework can offer an explanation for the capture of visual attention by irrelevant WM contents, as well as a straightforward account of the underspecified relationship between WM and attention.

  2. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Juan; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized inmore » a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.« less

  3. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force.

    PubMed

    Ren, Juan; Zou, Qingze

    2014-07-01

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.

  4. Working Memory as Internal Attention: Toward an Integrative Account of Internal and External Selection Processes

    PubMed Central

    Kiyonaga, Anastasia; Egner, Tobias

    2012-01-01

    Working memory (WM) and attention have been studied as separate cognitive constructs, although it has long been acknowledged that attention plays an important role in controlling the activation, maintenance, and manipulation of representations in WM. WM has, conversely, been thought of as a means of maintaining representations to voluntarily guide perceptual selective attention. It has more recently been observed, however, that the contents of WM can capture visual attention, even when such internally maintained representations are irrelevant, and often disruptive, to the immediate external task. Thus the precise relationship between WM and attention remains unclear, but it appears that they may bi-directionally impact one another, whether or not internal representations are consistent with external perceptual goals. This reciprocal relationship seems, further, to be constrained by limited cognitive resources to handle demands in either maintenance or selection. We propose here that the close relationship between WM and attention may be best described as a give-and-take interdependence between attention directed toward actively maintained internal representations (traditionally considered WM) versus external perceptual stimuli (traditionally considered selective attention), underpinned by their shared reliance on a common cognitive resource. Put simply, we argue that WM and attention should no longer be considered as separate systems or concepts, but as competing and impacting one another because they rely on the same limited resource. This framework can offer an explanation for the capture of visual attention by irrelevant WM contents, as well as a straightforward account of the underspecified relationship between WM and attention. PMID:23233157

  5. Development and application of a validated HPLC method for the analysis of dissolution samples of levothyroxine sodium drug products.

    PubMed

    Collier, J W; Shah, R B; Bryant, A R; Habib, M J; Khan, M A; Faustino, P J

    2011-02-20

    A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (L-T(4)) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250 mm × 3.9 mm) using a 0.01 M phosphate buffer (pH 3.0)-methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 μL and the column temperature was maintained at 28°C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r(2)>0.99) over the analytical range of 0.08-0.8 μg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for L-T(4) over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. Published by Elsevier B.V.

  6. Development and application of a validated HPLC method for the analysis of dissolution samples of levothyroxine sodium drug products

    PubMed Central

    Collier, J.W.; Shah, R.B.; Bryant, A.R.; Habib, M.J.; Khan, M.A.; Faustino, P.J.

    2011-01-01

    A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (l-T4) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250mm × 3.9mm) using a 0.01 M phosphate buffer (pH 3.0)–methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 µL and the column temperature was maintained at 28 °C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r2 > 0.99) over the analytical range of 0.08–0.8 µg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for l-T4 over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. PMID:20947276

  7. Towards real-time thermometry using simultaneous multislice MRI

    NASA Astrophysics Data System (ADS)

    Borman, P. T. S.; Bos, C.; de Boorder, T.; Raaymakers, B. W.; Moonen, C. T. W.; Crijns, S. P. M.

    2016-09-01

    MR-guided thermal therapies, such as high-intensity focused ultrasound (MRgHIFU) and laser-induced thermal therapy (MRgLITT) are increasingly being applied in oncology and neurology. MRI is used for guidance since it can measure temperature noninvasively based on the proton resonance frequency shift (PRFS). For therapy guidance using PRFS thermometry, high temporal resolution and large spatial coverage are desirable. We propose to use the parallel imaging technique simultaneous multislice (SMS) in combination with controlled aliasing (CAIPIRINHA) to accelerate the acquisition. We compare this with the sensitivity encoding (SENSE) acceleration technique. Two experiments were performed to validate that SMS can be used to increase the spatial coverage or the temporal resolution. The first was performed in agar gel using LITT heating and a gradient-echo sequence with echo-planar imaging (EPI), and the second was performed in bovine muscle using HIFU heating and a gradient-echo sequence without EPI. In both experiments temperature curves from an unaccelerated scan and from SMS, SENSE, and SENSE/SMS accelerated scans were compared. The precision was quantified by a standard deviation analysis of scans without heating. Both experiments showed a good agreement between the temperature curves obtained from the unaccelerated, and SMS accelerated scans, confirming that accuracy was maintained during SMS acceleration. The standard deviations of the temperature measurements obtained with SMS were significantly smaller than when SENSE was used, implying that SMS allows for higher acceleration. In the LITT and HIFU experiments SMS factors up to 4 and 3 were reached, respectively, with a loss of precision of less than a factor of 3. Based on these results we conclude that SMS acceleration of PRFS thermometry is a valuable addition to SENSE, because it allows for a higher temporal resolution or bigger spatial coverage, with a higher precision.

  8. Syringe Injectable Electronics: Precise Targeted Delivery with Quantitative Input/Output Connectivity.

    PubMed

    Hong, Guosong; Fu, Tian-Ming; Zhou, Tao; Schuhmann, Thomas G; Huang, Jinlin; Lieber, Charles M

    2015-10-14

    Syringe-injectable mesh electronics with tissue-like mechanical properties and open macroporous structures is an emerging powerful paradigm for mapping and modulating brain activity. Indeed, the ultraflexible macroporous structure has exhibited unprecedented minimal/noninvasiveness and the promotion of attractive interactions with neurons in chronic studies. These same structural features also pose new challenges and opportunities for precise targeted delivery in specific brain regions and quantitative input/output (I/O) connectivity needed for reliable electrical measurements. Here, we describe new results that address in a flexible manner both of these points. First, we have developed a controlled injection approach that maintains the extended mesh structure during the "blind" injection process, while also achieving targeted delivery with ca. 20 μm spatial precision. Optical and microcomputed tomography results from injections into tissue-like hydrogel, ex vivo brain tissue, and in vivo brains validate our basic approach and demonstrate its generality. Second, we present a general strategy to achieve up to 100% multichannel I/O connectivity using an automated conductive ink printing methodology to connect the mesh electronics and a flexible flat cable, which serves as the standard "plug-in" interface to measurement electronics. Studies of resistance versus printed line width were used to identify optimal conditions, and moreover, frequency-dependent noise measurements show that the flexible printing process yields values comparable to commercial flip-chip bonding technology. Our results address two key challenges faced by syringe-injectable electronics and thereby pave the way for facile in vivo applications of injectable mesh electronics as a general and powerful tool for long-term mapping and modulation of brain activity in fundamental neuroscience through therapeutic biomedical studies.

  9. Infrared heater system for warming tropical forest understory plants and soils.

    PubMed

    Kimball, Bruce A; Alonso-Rodríguez, Aura M; Cavaleri, Molly A; Reed, Sasha C; González, Grizelle; Wood, Tana E

    2018-02-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses to Altered Climate Experiment (TRACE) in the Luquillo Experimental Forest in Puerto Rico. Three replicate heated 4-m-diameter plots were warmed to maintain a 4°C increase in understory vegetation compared to three unheated control plots, as sensed by IR thermometers. The equipment was larger than any used previously and was subjected to challenges different from those of many temperate ecosystem warming systems, including frequent power surges and outages, high humidity, heavy rains, hurricanes, saturated clayey soils, and steep slopes. The system was able to maintain the target 4.0°C increase in hourly average vegetation temperatures to within ± 0.1°C. The vegetation was heterogeneous and on a 21° slope, which decreased uniformity of the warming treatment on the plots; yet, the green leaves were fairly uniformly warmed, and there was little difference among 0-10 cm depth soil temperatures at the plot centers, edges, and midway between. Soil temperatures at the 40-50 cm depth increased about 3°C compared to the controls after a month of warming. As expected, the soil in the heated plots dried faster than that of the control plots, but the average soil moisture remained adequate for the plants. The TRACE heating system produced an adequately uniform warming precisely controlled down to at least 50-cm soil depth, thereby creating a treatment that allows for assessing mechanistic responses of tropical plants and soil to warming, with applicability to other ecosystems. No physical obstacles to scaling the approach to taller vegetation (i.e., trees) and larger plots were observed.

  10. IEDA Thesaurus: A Controlled Vocabulary for IEDA Systems to Advance Integration

    NASA Astrophysics Data System (ADS)

    Ji, P.; Lehnert, K. A.; Arko, R. A.; Song, L.; Hsu, L.; Carter, M. R.; Ferrini, V. L.; Ash, J.

    2014-12-01

    Integrated Earth Data Applications (IEDA) is a community-based facility that serves to support, sustain, and advance the geosciences by providing data services for observational geoscience data from the Ocean, Earth, and Polar Sciences. Many dedicated systems such as the Petrological Database (PetDB), Marine Geoscience Data System (MGDS), System for Earth Sample Registration (SESAR), Data Coordination Center for the U.S. Antarctic Program (USAP-DCC), etc., under the umbrella of the IEDA framework, were developed to support the preservation, discovery, retrieval, and analysis of a wide range of observational field and analytical data types from diverse communities. However, it is currently difficult to maintain consistency of indexing content within IEDA schema, and perform unified or precise searching of the data in these diverse systems as each system maintains separate vocabularies, hierarchies, authority files, or sub taxonomies. We present here the IEDA Thesaurus, a system, which combines existing separate controlled vocabularies from the different systems under the IEDA schema into a single master controlled vocabulary, also introducing some new top facets for future long-term use. The IEDA thesaurus contains structured terminology for petrology, geochemistry, sedimentology, oceanography, geochronology, and volcanology, and other general metadata fields. 18 top facets (also called 'top categories') are defined, including equipment, geographic gazetteer, geologic ages, geologic units, materials, etc. The terms of the thesaurus are cross validated with others popular geoscience vocabularies such as GeoRef Thesaurus, U.S. Geological Survey Library Classification System, Global Change Master Directory (GCMD), and Semantic Web for Earth and Environmental Terminology (SWEET) ontologies. The thesaurus is organized along with the ANSI/NISO Z39.19-2005 Guidelines for the Construction, Format, and Management of Monolingual Controlled Vocabularies, and is published using Simple Knowledge Organization System (SKOS) format. The IEDA thesaurus server provides classic web semantic features such as SPARQL, RESTful web services, and unique URI based on open source technologies.

  11. Nanophotonic Trapping for Precise Manipulation of Biomolecular Arrays

    PubMed Central

    Soltani, Mohammad; Lin, Jun; Forties, Robert A.; Inman, James T.; Saraf, Summer N.; Fulbright, Robert M.; Lipson, Michal; Wang, Michelle D.

    2014-01-01

    Optical trapping is a powerful manipulation and measurement technique widely employed in the biological and materials sciences1–8. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high throughput lab-on-chip applications9–16. However, a persistent challenge with existing optofluidic devices has been controlled and precise manipulation of trapped particles. Here we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (~ 30 kHz) with nanometer precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential for high-throughput precision measurements on chip. PMID:24776649

  12. Nanophotonic trapping for precise manipulation of biomolecular arrays.

    PubMed

    Soltani, Mohammad; Lin, Jun; Forties, Robert A; Inman, James T; Saraf, Summer N; Fulbright, Robert M; Lipson, Michal; Wang, Michelle D

    2014-06-01

    Optical trapping is a powerful manipulation and measurement technique widely used in the biological and materials sciences. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high-throughput lab-on-a-chip applications. However, a persistent challenge with existing optofluidic devices has been achieving controlled and precise manipulation of trapped particles. Here, we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (∼30 kHz) with nanometre precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential to achieve high-throughput precision measurements on chip.

  13. Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras.

    PubMed

    Payne, Andrew D; Dorrington, Adrian A; Cree, Michael J; Carnegie, Dale A

    2010-08-10

    Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system's response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).

  14. A simple integrated system for electrophysiologic recordings in animals

    PubMed Central

    Slater, Bernard J.; Miller, Neil R.; Bernstein, Steven L.; Flower, Robert W.

    2009-01-01

    This technical note describes a modification to a fundus camera that permits simultaneous recording of pattern electroretinograms (pERGs) and pattern visual evoked potentials (pVEPs). The modification consists of placing an organic light-emitting diode (OLED) in the split-viewer pathway of a fundus camera, in a plane conjugate to the subject’s pupil. In this way, a focused image of the OLED can be delivered to a precisely known location on the retina. The advantage of using an OLED is that it can achieve high luminance while maintaining high contrast, and with minimal degradation over time. This system is particularly useful for animal studies, especially when precise retinal positioning is required. PMID:19137347

  15. Atomically Precise Interfaces from Non-stoichiometric Deposition

    NASA Astrophysics Data System (ADS)

    Nie, Yuefeng; Zhu, Ye; Lee, Che-Hui; Kourkoutis, Lena; Mundy, Julia; Junquera, Javier; Ghosez, Philippe; Baek, David; Sung, Suk Hyun; Xi, Xiaoxing; Shen, Kyle; Muller, David; Schlom, Darrell

    2015-03-01

    Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assume that atomically precise interfaces result from stoichiometric growth. Here we show that the most precise control is, however, obtained by using deliberate and specific non-stoichiometric growth conditions. For the precise growth of Srn+1TinO3n+1 Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control--from just the n = 1 end members (perovskites) to the entire RP homologous series--enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.

  16. Reliability of metatarsophalangeal and ankle joint torque measurements by an innovative device.

    PubMed

    Man, Hok-Sum; Leung, Aaron Kam-Lun; Cheung, Jason Tak-Man; Sterzing, Thorsten

    2016-07-01

    The toe flexor muscles maintain body balance during standing and provide push-off force during walking, running, and jumping. Additionally, they are important contributing structures to maintain normal foot function. Thus, weakness of these muscles may cause poor balance, inefficient locomotion and foot deformities. The quantification of metatarsophalangeal joint (MPJ) stiffness is valuable as it is considered as a confounding factor in toe flexor muscles function. MPJ and ankle joint stiffness measurement is still largely depended on manual skills as current devices do not have good control on alignment, angular joint speed and displacement during measurement. Therefore, this study introduces an innovative dynamometer and protocol procedures for MPJ and ankle Joint torque measurement with precise and reliable foot alignment, angular joint speed and displacement control. Within-day and between-day test-retest experiments on MPJ and ankle joint torque measurement were conducted on ten and nine healthy male subjects respectively. The mean peak torques of MPJ and ankle joint of between-day and within-day measurement were 1.50±0.38Nm/deg and 1.19±0.34Nm/deg. The corresponding torques of the ankle joint were 8.24±2.20Nm/deg and 7.90±3.18Nm/deg respectively. Intraclass-correlation coefficients (ICC) of averaged peak torque of both joints of between-day and within-day test-retest experiments were ranging from 0.91 to 0.96, indicating the innovative device is systematic and reliable for the measurements and can be used for multiple scientific and clinical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mission Analysis and Orbit Control of Interferometric Wheel Formation Flying

    NASA Astrophysics Data System (ADS)

    Fourcade, J.

    Flying satellite in formation requires maintaining the specific relative geometry of the spacecraft with high precision. This requirement raises new problem of orbit control. This paper presents the results of the mission analysis of a low Earth observation system, the interferometric wheel, patented by CNES. This wheel is made up of three receiving spacecraft, which follow an emitting Earth observation radar satellite. The first part of this paper presents trades off which were performed to choose orbital elements of the formation flying which fulfils all constraints. The second part presents orbit positioning strategies including reconfiguration of the wheel to change its size. The last part describes the station keeping of the formation. Two kinds of constraints are imposed by the interferometric system : a constraint on the distance between the wheel and the radar satellite, and constraints on the distance between the wheel satellites. The first constraint is fulfilled with a classical chemical station keeping strategy. The second one is fulfilled using pure passive actuators. Due to the high stability of the relative eccentricity of the formation, only the relative semi major axis had to be controlled. Differential drag due to differential attitude motion was used to control relative altitude. An autonomous orbit controller was developed and tested. The final accuracy is a relative station keeping better than few meters for a wheel size of one kilometer.

  18. Precise attitude control of the Stanford relativity satellite.

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Debra, D. B.

    1973-01-01

    A satellite being designed by the Stanford University to measure (with extremely high precision) the effect of General Relativity is described. Specifically, the satellite will measure two relativistic precessions predicted by the theory: the geodetic effect (6.9 arcsec/yr), due solely to motion about the earth, and the motional effect (0.05 arcsec/yr), due to rotation of the earth. The gyro design requirements, including the requirement for precise attitude control and a dynamic model for attitude control synthesis, are discussed. Closed loop simulation of the satellite's natural dynamics on an analog computer is described.

  19. Advances in the Control System for a High Precision Dissolved Organic Carbon Analyzer

    NASA Astrophysics Data System (ADS)

    Liao, M.; Stubbins, A.; Haidekker, M.

    2017-12-01

    Dissolved organic carbon (DOC) is a master variable in aquatic ecosystems. DOC in the ocean is one of the largest carbon stores on earth. Studies of the dynamics of DOC in the ocean and other low DOC systems (e.g. groundwater) are hindered by the lack of high precision (sub-micromolar) analytical techniques. Results are presented from efforts to construct and optimize a flow-through, wet chemical DOC analyzer. This study focused on the design, integration and optimization of high precision components and control systems required for such a system (mass flow controller, syringe pumps, gas extraction, reactor chamber with controlled UV and temperature). Results of the approaches developed are presented.

  20. Subcortical Control of Precision Grip after Human Spinal Cord Injury

    PubMed Central

    Bunday, Karen L.; Tazoe, Toshiki; Rothwell, John C.

    2014-01-01

    The motor cortex and the corticospinal system contribute to the control of a precision grip between the thumb and index finger. The involvement of subcortical pathways during human precision grip remains unclear. Using noninvasive cortical and cervicomedullary stimulation, we examined motor evoked potentials (MEPs) and the activity in intracortical and subcortical pathways targeting an intrinsic hand muscle when grasping a small (6 mm) cylinder between the thumb and index finger and during index finger abduction in uninjured humans and in patients with subcortical damage due to incomplete cervical spinal cord injury (SCI). We demonstrate that cortical and cervicomedullary MEP size was reduced during precision grip compared with index finger abduction in uninjured humans, but was unchanged in SCI patients. Regardless of whether cortical and cervicomedullary stimulation was used, suppression of the MEP was only evident 1–3 ms after its onset. Long-term (∼5 years) use of the GABAb receptor agonist baclofen by SCI patients reduced MEP size during precision grip to similar levels as uninjured humans. Index finger sensory function correlated with MEP size during precision grip in SCI patients. Intracortical inhibition decreased during precision grip and spinal motoneuron excitability remained unchanged in all groups. Our results demonstrate that the control of precision grip in humans involves premotoneuronal subcortical mechanisms, likely disynaptic or polysynaptic spinal pathways that are lacking after SCI and restored by long-term use of baclofen. We propose that spinal GABAb-ergic interneuronal circuits, which are sensitive to baclofen, are part of the subcortical premotoneuronal network shaping corticospinal output during human precision grip. PMID:24849366

  1. 17 CFR 1.73 - Clearing futures commission merchant risk management.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... maintain systems of risk controls reasonably designed to ensure compliance with the limits; (iii) When a... for clearing, it shall establish and maintain systems of risk management controls reasonably designed... maintain systems of risk management controls reasonably designed to ensure compliance with the limits. (v...

  2. 17 CFR 1.73 - Clearing futures commission merchant risk management.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... maintain systems of risk controls reasonably designed to ensure compliance with the limits; (iii) When a... for clearing, it shall establish and maintain systems of risk management controls reasonably designed... maintain systems of risk management controls reasonably designed to ensure compliance with the limits. (v...

  3. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several meters. This technology is specifically referring to correcting thermal deformations of a large, flat structure to a specified tolerance. However, the underlying concept (an array of actuators on the back face of a panel for correcting the flatness of the front face) could be extended to many applications, including energy harvesting, changing the wavefront of an optical system, and correcting the flatness of an array of segmented deployable panels.

  4. Flight evaluations of several hover control and display combinations for precise blind vertical landings

    NASA Technical Reports Server (NTRS)

    Schroeder, J. A.; Merrick, V. K.

    1990-01-01

    Several control and display concepts were evaluated on a variable-stability helicopter prior to future evaluations on a modified Harrier. The control and display concepts had been developed to enable precise hover maneuvers, station keeping, and vertical landings in simulated zero-visibility conditions and had been evaluated extensively in previous piloted simulations. Flight evaluations early in the program revealed several inadequacies in the display drive laws that were later corrected using an alternative design approach that integrated the control and display characteristics with the desired guidance law. While hooded, three pilots performed landing-pad captures followed by vertical landings with attitude-rate, attitude, and translation-velocity-command control systems. The latter control system incorporated a modified version of state-rate-feedback implicit-model following. Precise landing within 2 ft of the desired touchdown point were achieved.

  5. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    NASA Astrophysics Data System (ADS)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  6. Optimization of block-floating-point realizations for digital controllers with finite-word-length considerations.

    PubMed

    Wu, Jun; Hu, Xie-he; Chen, Sheng; Chu, Jian

    2003-01-01

    The closed-loop stability issue of finite-precision realizations was investigated for digital controllers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resulting from using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.

  7. Closed-Loop Aeromaneuvering for a Mars Precision Landing

    NASA Technical Reports Server (NTRS)

    Smith, Roy; Boussalis, Dhemetrios; Hadaegh, Fred Y.

    1997-01-01

    Controlled aeromaneuvering is considered as a means of achieving a precisely targeted landing on Mars. This paper presents a preliminary study of the control issues. The candidate vehicle is the existing Mars Pathfinder augmented with roll thrusters and a center of mass offset actuator. These allow control of both bank angle and lift force, giving the ability to control the range and cross-track during the aeromaneuvering entry. A preliminary control system structure is proposed and a design simulation illustrates significant targeting improvement under closed-loop control.

  8. Measurement of whole tire profile

    NASA Astrophysics Data System (ADS)

    Yang, Yongyue; Jiao, Wenguang

    2010-08-01

    In this paper, a precision measuring device is developed for obtaining characteristic curve of tire profile and its geometric parameters. It consists of a laser displacement measurement unit, a closed-loop precision two-dimensional coordinate table, a step motor control system and a fast data acquisition and analysis system. Based on the laser trigonometry, a data map of tire profile and coordinate values of all points can be obtained through corresponding data transformation. This device has a compact structure, a convenient control, a simple hardware circuit design and a high measurement precision. Experimental results indicate that measurement precision can meet the customer accuracy requirement of +/-0.02 mm.

  9. Open-source, small-animal magnetic resonance-guided focused ultrasound system.

    PubMed

    Poorman, Megan E; Chaplin, Vandiver L; Wilkens, Ken; Dockery, Mary D; Giorgio, Todd D; Grissom, William A; Caskey, Charles F

    2016-01-01

    MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus visualization was achieved with acoustic radiation force imaging. We developed an MRgFUS platform for small-animal treatments that robustly delivers accurate, precise, and controllable sonications over extended time periods. This system is an open source and could increase the availability of low-cost small-animal systems to interdisciplinary researchers seeking to develop new MRgFUS applications and technology.

  10. Experimental evaluation of active-member control of precision structures

    NASA Technical Reports Server (NTRS)

    Fanson, James; Blackwood, Gary; Chu, Cheng-Chih

    1989-01-01

    The results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure are described. These experiments are directed toward the development of high-performance structural systems as part of the Control/Structure Interaction (CSI) program at JPL. The focus of CSI activity at JPL is to develop the technology necessary to accurately control both the shape and vibration levels in the precision structures from which proposed large space-based observatories will be built. Structural error budgets for these types of structures will likely be in the sub-micron regime; optical tolerances will be even tighter. In order to achieve system level stability and local positioning at this level, it is generally expected that some form of active control will be required.

  11. Practical controller design for ultra-precision positioning of stages with a pneumatic artificial muscle actuator

    NASA Astrophysics Data System (ADS)

    Tang, T. F.; Chong, S. H.

    2017-06-01

    This paper presents a practical controller design method for ultra-precision positioning of pneumatic artificial muscle actuator stages. Pneumatic artificial muscle (PAM) actuators are safe to use and have numerous advantages which have brought these actuators to wide applications. However, PAM exhibits strong non-linear characteristics, and these limitations lead to low controllability and limit its application. In practice, the non-linear characteristics of PAM mechanism are difficult to be precisely modeled, and time consuming to model them accurately. The purpose of the present study is to clarify a practical controller design method that emphasizes a simple design procedure that does not acquire plants parameters modeling, and yet is able to demonstrate ultra-precision positioning performance for a PAM driven stage. The practical control approach adopts continuous motion nominal characteristic trajectory following (CM NCTF) control as the feedback controller. The constructed PAM driven stage is in low damping characteristic and causes severe residual vibration that deteriorates motion accuracy of the system. Therefore, the idea to increase the damping characteristic by having an acceleration feedback compensation to the plant has been proposed. The effectiveness of the proposed controller was verified experimentally and compared with a classical PI controller in point-to-point motion. The experiment results proved that the CM NCTF controller demonstrates better positioning performance in smaller motion error than the PI controller. Overall, the CM NCTF controller has successfully to reduce motion error to 3µm, which is 88.7% smaller than the PI controller.

  12. The Determination of Navy Family Housing Requirements

    DTIC Science & Technology

    1992-04-01

    for greater precision and responsiveness, closer scrutiny of Navy family housing programs, and internal initiatives relating to quality management ...DETERMINATION SYSTEM Overview For almost 20 years, the Navy has used a semiautomated system to project family housing requirements. This process is managed ... Family Housing Management Institute (FHMI) materials, and management specifications maintained by NAVFAC and FACSO. FINDINGS Theory We believe that the

  13. What Is Trust? Ethics and Risk Governance in Precision Medicine and Predictive Analytics

    PubMed Central

    Adjekum, Afua; Ienca, Marcello

    2017-01-01

    Abstract Trust is a ubiquitous term used in emerging technology (e.g., Big Data, precision medicine), innovation policy, and governance literatures in particular. But what exactly is trust? Even though trust is considered a critical requirement for the successful deployment of precision medicine initiatives, nonetheless, there is a need for further conceptualization with regard to what qualifies as trust, and what factors might establish and sustain trust in precision medicine, predictive analytics, and large-scale biology. These new fields of 21st century medicine and health often deal with the “futures” and hence, trust gains a temporal and ever-present quality for both the present and the futures anticipated by new technologies and predictive analytics. We address these conceptual gaps that have important practical implications in the way we govern risk and unknowns associated with emerging technologies in biology, medicine, and health broadly. We provide an in-depth conceptual analysis and an operative definition of trust dynamics in precision medicine. In addition, we identify three main types of “trust facilitators”: (1) technical, (2) ethical, and (3) institutional. This three-dimensional framework on trust is necessary to building and maintaining trust in 21st century knowledge-based innovations that governments and publics invest for progressive societal change, development, and sustainable prosperity. Importantly, we analyze, identify, and deliberate on the dimensions of precision medicine and large-scale biology that have carved out trust as a pertinent tool to its success. Moving forward, we propose a “points to consider” on how best to enhance trust in precision medicine and predictive analytics. PMID:29257733

  14. What Is Trust? Ethics and Risk Governance in Precision Medicine and Predictive Analytics.

    PubMed

    Adjekum, Afua; Ienca, Marcello; Vayena, Effy

    2017-12-01

    Trust is a ubiquitous term used in emerging technology (e.g., Big Data, precision medicine), innovation policy, and governance literatures in particular. But what exactly is trust? Even though trust is considered a critical requirement for the successful deployment of precision medicine initiatives, nonetheless, there is a need for further conceptualization with regard to what qualifies as trust, and what factors might establish and sustain trust in precision medicine, predictive analytics, and large-scale biology. These new fields of 21st century medicine and health often deal with the "futures" and hence, trust gains a temporal and ever-present quality for both the present and the futures anticipated by new technologies and predictive analytics. We address these conceptual gaps that have important practical implications in the way we govern risk and unknowns associated with emerging technologies in biology, medicine, and health broadly. We provide an in-depth conceptual analysis and an operative definition of trust dynamics in precision medicine. In addition, we identify three main types of "trust facilitators": (1) technical, (2) ethical, and (3) institutional. This three-dimensional framework on trust is necessary to building and maintaining trust in 21st century knowledge-based innovations that governments and publics invest for progressive societal change, development, and sustainable prosperity. Importantly, we analyze, identify, and deliberate on the dimensions of precision medicine and large-scale biology that have carved out trust as a pertinent tool to its success. Moving forward, we propose a "points to consider" on how best to enhance trust in precision medicine and predictive analytics.

  15. Evaluation of the EGNOS service for topographic profiling in field geosciences

    NASA Astrophysics Data System (ADS)

    Kromuszczyńska, Olga; Mège, Daniel; Castaldo, Luigi; Gurgurewicz, Joanna; Makowska, Magdalena; Dębniak, Krzysztof; Jelínek, Róbert

    2016-09-01

    Consumer grade Global Positioning System (GPS) receivers are commonly used as a tool for data collection in many fields, including geosciences. One of the methods for improving the GPS signal is provided by the Wide Area Differential GPS (WADGPS), which uses geostationary satellites to correct errors affecting the signal in real time. This study presents results of three experiments aiming at determining whether the precision of field measurements made by such a receiver (Garmin GPSMAP 62s) operating in either the non-differential and the WADGPS differential mode is suitable for characterizing geomorphological objects or landforms. It assumes in a typical field work situation, when time cannot be devoted in the field to long periods of stationary GPS measurements and the precision of topographic profile is at least as important as, if not more than, positioning of individual points. The results show that with maintaining some rules, the expected precision may meet the nominal precision. The repeatability (coherence) of topographic profiles conducted at low speed (0.5 m s- 1) in mountain terrain is good, and vertical precision is improved in the WADGPS mode. Horizontal precision is equivalent in both modes. The GPS receiver should be operating at least 30 min prior to measuring and should not be turned off between measurements that the user like to compare. If the GPS receiver needs to be reset between profiles to be compared, the measurement precision is higher in the non-differential GPS mode. Following these rules may result in improvement of measurement quality by 20% to 80%.

  16. Small Aircraft Data Distribution System

    NASA Technical Reports Server (NTRS)

    Chazanoff, Seth L.; Dinardo, Steven J.

    2012-01-01

    The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.

  17. Positioning accuracy in a registration-free CT-based navigation system

    NASA Astrophysics Data System (ADS)

    Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.

    2007-12-01

    In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.

  18. Master-slave micromanipulator apparatus

    DOEpatents

    Morimoto, A.K.; Kozlowski, D.M.; Charles, S.T.; Spalding, J.A.

    1999-08-31

    An apparatus is disclosed based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it. 12 figs.

  19. Master-slave micromanipulator method

    DOEpatents

    Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.

    1999-01-01

    A method based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be remotized by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.

  20. Master-slave micromanipulator apparatus

    DOEpatents

    Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.

    1999-01-01

    An apparatus based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.

Top