Sample records for maintain spatial orientation

  1. Individual differences in using geometric and featural cues to maintain spatial orientation: cue quantity and cue ambiguity are more important than cue type.

    PubMed

    Kelly, Jonathan W; McNamara, Timothy P; Bodenheimer, Bobby; Carr, Thomas H; Rieser, John J

    2009-02-01

    Two experiments explored the role of environmental cues in maintaining spatial orientation (sense of self-location and direction) during locomotion. Of particular interest was the importance of geometric cues (provided by environmental surfaces) and featural cues (nongeometric properties provided by striped walls) in maintaining spatial orientation. Participants performed a spatial updating task within virtual environments containing geometric or featural cues that were ambiguous or unambiguous indicators of self-location and direction. Cue type (geometric or featural) did not affect performance, but the number and ambiguity of environmental cues did. Gender differences, interpreted as a proxy for individual differences in spatial ability and/or experience, highlight the interaction between cue quantity and ambiguity. When environmental cues were ambiguous, men stayed oriented with either one or two cues, whereas women stayed oriented only with two. When environmental cues were unambiguous, women stayed oriented with one cue.

  2. Dorso-medial and ventro-lateral functional specialization of the human retrosplenial complex in spatial updating and orienting.

    PubMed

    Burles, Ford; Slone, Edward; Iaria, Giuseppe

    2017-04-01

    The retrosplenial complex is a region within the posterior cingulate cortex implicated in spatial navigation. Here, we investigated the functional specialization of this large and anatomically heterogeneous region using fMRI and resting-state functional connectivity combined with a spatial task with distinct phases of spatial 'updating' (i.e., integrating and maintaining object locations in memory during spatial displacement) and 'orienting' (i.e., recalling unseen locations from current position in space). Both spatial 'updating' and 'orienting' produced bilateral activity in the retrosplenial complex, among other areas. However, spatial 'updating' produced slightly greater activity in ventro-lateral portions, of the retrosplenial complex, whereas spatial 'orienting' produced greater activity in a more dorsal and medial portion of it (both regions localized along the parieto-occipital fissure). At rest, both ventro-lateral and dorso-medial subregions of the retrosplenial complex were functionally connected to the hippocampus and parahippocampus, regions both involved in spatial orientation and navigation. However, the ventro-lateral subregion of the retrosplenial complex displayed more positive functional connectivity with ventral occipital and temporal object recognition regions, whereas the dorso-medial subregion activity was more correlated to dorsal activity and frontal activity, as well as negatively correlated with more ventral parietal structures. These findings provide evidence for a dorso-medial to ventro-lateral functional specialization within the human retrosplenial complex that may shed more light on the complex neural mechanisms underlying spatial orientation and navigation in humans.

  3. The Role of Extra-Vestibular Inputs in Maintaining Spatial Orientation in Military Vehicles

    DTIC Science & Technology

    2003-02-01

    flow contribute to spatial orientation. Disordered regulation of any of these factors can be identified in land based tests and allows us to study pre...adaptation disorders . 1,2 The sensory conflict theory of motion sickness states that motion sickness arises when one or several inputs from the body’s sensory...several episodes of severe motion sickness during an operational military assignment (usually aboard ship), but demonstrate no balance disorder or ear

  4. Novel flight instrument display to minimize the risk of spatial disorientation

    NASA Astrophysics Data System (ADS)

    Braithwaite, Malcolm G.; Durnford, Simon J.

    1997-06-01

    This novel flight instrument display presents information to the pilot in a simple and easily comprehensible format by integrating the five orientational flight parameters. It allows the pilot to select specific orientation parameters and then follow a simple tracking task which ensures that these parameters are maintained or, if necessary, recovered. The pilot can at any time check any parameter he wishes, but is free from the requirement to continually sample and combine information from the traditional instruments to maintain stable flight. Cognitive workload to maintain orientation is thus reduced. Our assessment of the display in a UH-60 helicopter simulator showed that the novel display makes recovery from unusual aircraft attitudes and instrument flying easier than when using the standard instrument panel.

  5. Visual spatial cue use for guiding orientation in two-to-three-year-old children

    PubMed Central

    van den Brink, Danielle; Janzen, Gabriele

    2013-01-01

    In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2–3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences. PMID:24368903

  6. Visual spatial cue use for guiding orientation in two-to-three-year-old children.

    PubMed

    van den Brink, Danielle; Janzen, Gabriele

    2013-01-01

    In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2-3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences.

  7. Amplified Head Rotation in Virtual Reality and the Effects on 3D Search, Training Transfer, and Spatial Orientation.

    PubMed

    Ragan, Eric D; Scerbo, Siroberto; Bacim, Felipe; Bowman, Doug A

    2017-08-01

    Many types of virtual reality (VR) systems allow users to use natural, physical head movements to view a 3D environment. In some situations, such as when using systems that lack a fully surrounding display or when opting for convenient low-effort interaction, view control can be enabled through a combination of physical and virtual turns to view the environment, but the reduced realism could potentially interfere with the ability to maintain spatial orientation. One solution to this problem is to amplify head rotations such that smaller physical turns are mapped to larger virtual turns, allowing trainees to view the entire surrounding environment with small head movements. This solution is attractive because it allows semi-natural physical view control rather than requiring complete physical rotations or a fully-surrounding display. However, the effects of amplified head rotations on spatial orientation and many practical tasks are not well understood. In this paper, we present an experiment that evaluates the influence of amplified head rotation on 3D search, spatial orientation, and cybersickness. In the study, we varied the amount of amplification and also varied the type of display used (head-mounted display or surround-screen CAVE) for the VR search task. By evaluating participants first with amplification and then without, we were also able to study training transfer effects. The findings demonstrate the feasibility of using amplified head rotation to view 360 degrees of virtual space, but noticeable problems were identified when using high amplification with a head-mounted display. In addition, participants were able to more easily maintain a sense of spatial orientation when using the CAVE version of the application, which suggests that visibility of the user's body and awareness of the CAVE's physical environment may have contributed to the ability to use the amplification technique while keeping track of orientation.

  8. Destabilizing effects of visual environment motions simulating eye movements or head movements

    NASA Technical Reports Server (NTRS)

    White, Keith D.; Shuman, D.; Krantz, J. H.; Woods, C. B.; Kuntz, L. A.

    1991-01-01

    In the present paper, we explore effects on the human of exposure to a visual virtual environment which has been enslaved to simulate the human user's head movements or eye movements. Specifically, we have studied the capacity of our experimental subjects to maintain stable spatial orientation in the context of moving their entire visible surroundings by using the parameters of the subjects' natural movements. Our index of the subjects' spatial orientation was the extent of involuntary sways of the body while attempting to stand still, as measured by translations and rotations of the head. We also observed, informally, their symptoms of motion sickness.

  9. Tactile Cueing as a Gravitational Substitute for Spatial Navigation During Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Montgomery, K. L.; Beaton, K. H.; Barba, J. M.; Cackler, J. M.; Son, J. H.; Horsfield, S. P.; Wood, S. J.

    2010-01-01

    INTRODUCTION: Spatial navigation requires an accurate awareness of orientation in your environment. The purpose of this experiment was to examine how spatial awareness was impaired with changing gravitational cues during parabolic flight, and the extent to which vibrotactile feedback of orientation could be used to help improve performance. METHODS: Six subjects were restrained in a chair tilted relative to the plane floor, and placed at random positions during the start of the microgravity phase. Subjects reported their orientation using verbal reports, and used a hand-held controller to point to a desired target location presented using a virtual reality video mask. This task was repeated with and without constant tactile cueing of "down" direction using a belt of 8 tactors placed around the mid-torso. Control measures were obtained during ground testing using both upright and tilted conditions. RESULTS: Perceptual estimates of orientation and pointing accuracy were impaired during microgravity or during rotation about an upright axis in 1g. The amount of error was proportional to the amount of chair displacement. Perceptual errors were reduced during movement about a tilted axis on earth. CONCLUSIONS: Reduced perceptual errors during tilts in 1g indicate the importance of otolith and somatosensory cues for maintaining spatial awareness. Tactile cueing may improve navigation in operational environments or clinical populations, providing a non-visual non-auditory feedback of orientation or desired direction heading.

  10. Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex

    PubMed Central

    Kheradmand, Amir; Winnick, Ariel

    2017-01-01

    We inherently maintain a stable perception of the world despite frequent changes in the head, eye, and body positions. Such “orientation constancy” is a prerequisite for coherent spatial perception and sensorimotor planning. As a multimodal sensory reference, perception of upright represents neural processes that subserve orientation constancy through integration of sensory information encoding the eye, head, and body positions. Although perception of upright is distinct from perception of body orientation, they share similar neural substrates within the cerebral cortical networks involved in perception of spatial orientation. These cortical networks, mainly within the temporo-parietal junction, are crucial for multisensory processing and integration that generate sensory reference frames for coherent perception of self-position and extrapersonal space transformations. In this review, we focus on these neural mechanisms and discuss (i) neurobehavioral aspects of orientation constancy, (ii) sensory models that address the neurophysiology underlying perception of upright, and (iii) the current evidence for the role of cerebral cortex in perception of upright and orientation constancy, including findings from the neurological disorders that affect cortical function. PMID:29118736

  11. The effect of space flight on spatial orientation

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.; Satake, Hirotaka

    1992-01-01

    Both during and following early space missions, little neurosensory change in the astronauts was noted as a result of their exposure to microgravity. It is believed that this lack of in-flight adaptation in the spatial orientation and perceptual-motor system resulted from short exposure times and limited interaction with the new environment. Parker and Parker (1990) have suggested that while spatial orientation and motion information can be detected by a passive observer, adaptation to stimulus rearrangement is greatly enhanced when the observer moves through or acts on the environment. Experience with the actual consequences of action can be compared with those consequences expected on the basis of prior experience. Space flight today is of longer duration, and space craft volume has increased. These changes have forced the astronauts to interact with the new environment of microgravity, and as a result substantial changes occur in the perceptual and sensory-motor repsonses reflecting adaptation to the stimulus rearrangement of space flight. We are currently evaluating spatial orientation and the perceptual-motor systems' adaptation to microgravity by examining responses of postural control, head and gaze stability during locomotion, goal oriented vestibulo-ocular reflex (VOR), and structured quantitative perceptual reports. Evidence suggests that humans can successfully replace the gravitational reference available on Earth with cues available within the spacecraft or within themselves, but that adaptation to microgravity is not appropriate for a return to Earth. Countermeasures for optimal performance on-orbit and a successful return to earth will require development of preflight and in-flight training to help the astronauts acquire and maintain a dual adaptive state. An understanding of spatial orientation and motion perception, postural control, locomotion, and the VOR will aid in this process.

  12. Selective loss of orientation column maps in visual cortex during brief elevation of intraocular pressure.

    PubMed

    Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande

    2003-01-01

    To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.

  13. Virtual-reality-Based 3D navigation training for emergency egress from spacecraft.

    PubMed

    Aoki, Hirofumi; Oman, Charles M; Natapoff, Alan

    2007-08-01

    Astronauts have reported spatial disorientation and navigation problems inside spacecraft whose interior visual vertical direction varies from module to module. If they had relevant preflight practice they might orient better. This experiment examined the influence of relative body orientation and individual spatial skills during VR training on a simulated emergency egress task. During training, 36 subjects were each led on 12 tours through a space station by a virtual tour guide. Subjects wore a head-mounted display and controlled their motion with a game-pad. Each tour traversed multiple modules and involved up to three changes in visual vertical direction. Each subject was assigned to one of three groups that maintained different postures: visually upright relative to the "local" module; constant orientation relative to the "station" irrespective of local visual vertical; and "mixed" (local, followed by station orientation). Groups were balanced on the basis of mental rotation and perspective-taking test scores. Subjects then performed 24 emergency egress testing trials without the tour guide. Smoke reduced visibility during the last 12 trials. Egress time, sense of direction (by pointing to origin and destination) and configuration knowledge were measured. Both individual 3D spatial abilities and orientation during training influence emergency egress performance, pointing, and configuration knowledge. Local training facilitates landmark and route learning, but station training enhances sense of direction relative to station, and, therefore, performance in low visibility. We recommend a sequence of local, followed by station, and then randomized orientation training, preferably customized to a trainee's 3D spatial ability.

  14. Serial dependence promotes object stability during occlusion

    PubMed Central

    Liberman, Alina; Zhang, Kathy; Whitney, David

    2016-01-01

    Object identities somehow appear stable and continuous over time despite eye movements, disruptions in visibility, and constantly changing visual input. Recent results have demonstrated that the perception of orientation, numerosity, and facial identity is systematically biased (i.e., pulled) toward visual input from the recent past. The spatial region over which current orientations or face identities are pulled by previous orientations or identities, respectively, is known as the continuity field, which is temporally tuned over the past several seconds (Fischer & Whitney, 2014). This perceptual pull could contribute to the visual stability of objects over short time periods, but does it also address how perceptual stability occurs during visual discontinuities? Here, we tested whether the continuity field helps maintain perceived object identity during occlusion. Specifically, we found that the perception of an oriented Gabor that emerged from behind an occluder was significantly pulled toward the random (and unrelated) orientation of the Gabor that was seen entering the occluder. Importantly, this serial dependence was stronger for predictable, continuously moving trajectories, compared to unpredictable ones or static displacements. This result suggests that our visual system takes advantage of expectations about a stable world, helping to maintain perceived object continuity despite interrupted visibility. PMID:28006066

  15. Fractionating dead reckoning: role of the compass, odometer, logbook, and home base establishment in spatial orientation

    NASA Astrophysics Data System (ADS)

    Wallace, Douglas G.; Martin, Megan M.; Winter, Shawn S.

    2008-06-01

    Rats use multiple sources of information to maintain spatial orientation. Although previous work has focused on rats’ use of environmental cues, a growing number of studies have demonstrated that rats also use self-movement cues to organize navigation. This review examines the extent that kinematic analysis of naturally occurring behavior has provided insight into processes that mediate dead-reckoning-based navigation. This work supports a role for separate systems in processing self-movement cues that converge on the hippocampus. The compass system is involved in deriving directional information from self-movement cues; whereas, the odometer system is involved in deriving distance information from self-movement cues. The hippocampus functions similar to a logbook in that outward path unique information from the compass and odometer is used to derive the direction and distance of a path to the point at which movement was initiated. Finally, home base establishment may function to reset this system after each excursion and anchor environmental cues to self-movement cues. The combination of natural behaviors and kinematic analysis has proven to be a robust paradigm to investigate the neural basis of spatial orientation.

  16. Fractionating dead reckoning: role of the compass, odometer, logbook, and home base establishment in spatial orientation

    PubMed Central

    Martin, Megan M.; Winter, Shawn S.

    2008-01-01

    Rats use multiple sources of information to maintain spatial orientation. Although previous work has focused on rats' use of environmental cues, a growing number of studies have demonstrated that rats also use self-movement cues to organize navigation. This review examines the extent that kinematic analysis of naturally occurring behavior has provided insight into processes that mediate dead-reckoning-based navigation. This work supports a role for separate systems in processing self-movement cues that converge on the hippocampus. The compass system is involved in deriving directional information from self-movement cues; whereas, the odometer system is involved in deriving distance information from self-movement cues. The hippocampus functions similar to a logbook in that outward path unique information from the compass and odometer is used to derive the direction and distance of a path to the point at which movement was initiated. Finally, home base establishment may function to reset this system after each excursion and anchor environmental cues to self-movement cues. The combination of natural behaviors and kinematic analysis has proven to be a robust paradigm to investigate the neural basis of spatial orientation. PMID:18553065

  17. Epitaxial Growth of Hetero-Ln-MOF Hierarchical Single Crystals for Domain- and Orientation-Controlled Multicolor Luminescence 3D Coding Capability.

    PubMed

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp

    DOEpatents

    Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Urbana, IL; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Champaign, IL; Meitl, Matthew [Champaign, IL; Zhu, Zhengtao [Urbana, IL

    2011-05-17

    The present invention provides methods, systems and system components for transferring, assembling and integrating features and arrays of features having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods of the present invention utilize principles of `soft adhesion` to guide the transfer, assembly and/or integration of features, such as printable semiconductor elements or other components of electronic devices. Methods of the present invention are useful for transferring features from a donor substrate to the transfer surface of an elastomeric transfer device and, optionally, from the transfer surface of an elastomeric transfer device to the receiving surface of a receiving substrate. The present methods and systems provide highly efficient, registered transfer of features and arrays of features, such as printable semiconductor element, in a concerted manner that maintains the relative spatial orientations of transferred features.

  19. Feature integration across space, time, and orientation

    PubMed Central

    Otto, Thomas U.; Öğmen, Haluk; Herzog, Michael H.

    2012-01-01

    The perception of a visual target can be strongly influenced by flanking stimuli. In static displays, performance on the target improves when the distance to the flanking elements increases- proposedly because feature pooling and integration vanishes with distance. Here, we studied feature integration with dynamic stimuli. We show that features of single elements presented within a continuous motion stream are integrated largely independent of spatial distance (and orientation). Hence, space based models of feature integration cannot be extended to dynamic stimuli. We suggest that feature integration is guided by perceptual grouping operations that maintain the identity of perceptual objects over space and time. PMID:19968428

  20. Improving visual spatial working memory in younger and older adults: effects of cross-modal cues.

    PubMed

    Curtis, Ashley F; Turner, Gary R; Park, Norman W; Murtha, Susan J E

    2017-11-06

    Spatially informative auditory and vibrotactile (cross-modal) cues can facilitate attention but little is known about how similar cues influence visual spatial working memory (WM) across the adult lifespan. We investigated the effects of cues (spatially informative or alerting pre-cues vs. no cues), cue modality (auditory vs. vibrotactile vs. visual), memory array size (four vs. six items), and maintenance delay (900 vs. 1800 ms) on visual spatial location WM recognition accuracy in younger adults (YA) and older adults (OA). We observed a significant interaction between spatially informative pre-cue type, array size, and delay. OA and YA benefitted equally from spatially informative pre-cues, suggesting that attentional orienting prior to WM encoding, regardless of cue modality, is preserved with age.  Contrary to predictions, alerting pre-cues generally impaired performance in both age groups, suggesting that maintaining a vigilant state of arousal by facilitating the alerting attention system does not help visual spatial location WM.

  1. Selection within working memory based on a color retro-cue modulates alpha oscillations.

    PubMed

    Poch, Claudia; Capilla, Almudena; Hinojosa, José Antonio; Campo, Pablo

    2017-11-01

    Working Memory (WM) maintains flexible representations. Retrospective cueing studies indicate that selective attention can be directed to memory representations in WM improving performance. While most of the work has explored the neural substrates of orienting attention based on a spatial retro-cue, behavioral studies show that a feature other than location can also improve WM performance. In the present work we explored the oscillatory underpinnings of orienting attention to a relevant representation held in WM guided by a feature value. We recorded EEG data in a group of 36 healthy human subjects (20 females) performing a WM task in which they had to memorize the orientation of four rectangles of different colors. After a maintenance period, a cue was presented indicating the color of the relevant item. We showed that directing attention to a memory item based on its color resulted in a modulation of posterior alpha activity, which appears as more desynchronization in the contralateral than in the ipsilateral hemisphere. Alpha lateralization is considered a neurophysiological marker of external and internal spatial attention. We propose that current findings support the idea that selection of a memory item based on a non-location feature could be accomplished by a spatial attentional mechanism. Moreover, using a centrally presented color retro-cue allowed us to surpass the confounds inherent to the use of spatial retro-cues, supporting that the observed lateralized alpha results from an endogenous attentional mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The head-centered meridian effect: auditory attention orienting in conditions of impaired visuo-spatial information.

    PubMed

    Olivetti Belardinelli, Marta; Santangelo, Valerio

    2005-07-08

    This paper examines the characteristics of spatial attention orienting in situations of visual impairment. Two groups of subjects, respectively schizophrenic and blind, with different degrees of visual spatial information impairment, were tested. In Experiment 1, the schizophrenic subjects were instructed to detect an auditory target, which was preceded by a visual cue. The cue could appear in the same location as the target, separated from it respectively by the vertical visual meridian (VM), the vertical head-centered meridian (HCM) or another meridian. Similarly to normal subjects tested with the same paradigm (Ferlazzo, Couyoumdjian, Padovani, and Olivetti Belardinelli, 2002), schizophrenic subjects showed slower reactions times (RTs) when cued, and when the target locations were on the opposite sides of the HCM. This HCM effect strengthens the assumption that different auditory and visual spatial maps underlie the representation of attention orienting mechanisms. In Experiment 2, blind subjects were asked to detect an auditory target, which had been preceded by an auditory cue, while staring at an imaginary point. The point was located either to the left or to the right, in order to control for ocular movements and maintain the dissociation between the HCM and the VM. Differences between crossing and no-crossing conditions of HCM were not found. Therefore it is possible to consider the HCM effect as a consequence of the interaction between visual and auditory modalities. Related theoretical issues are also discussed.

  3. Integration of remote sensing and GIS: Data and data access

    USGS Publications Warehouse

    Ehlers, M.; Greenlee, D.D.; Smith, T.; Star, J.

    1991-01-01

    CT: Theintegration of remote sensing tools and technology with the spatial analysis orientation of geographic information systems is a complex task. In this paper, we focus on the issues of making data available and useful to the user. In part, this involves a set of problems which reflect on the physical and logical structures used to encode the data. At the same time, however, the mechanisms and protocols which provide information about the data, and which maintain the data through time, have become increasingly important. We discuss these latter issues from the viewpoint of the functions which must be provided by archives of spatial data.

  4. Updating of the spatial reference frame of head direction cells in response to locomotion in the vertical plane

    PubMed Central

    Wang, Sarah S.; Kim, Stanley Y.; Frohardt, Russell J.

    2013-01-01

    Many species navigate in three dimensions and are required to maintain accurate orientation while moving in an Earth vertical plane. Here we explored how head direction (HD) cells in the rat anterodorsal thalamus responded when rats locomoted along a 360° spiral track that was positioned vertically within the room at the N, S, E, or W location. Animals were introduced into the vertical plane either through passive placement (experiment 1) or by allowing them to run up a 45° ramp from the floor to the vertically positioned platform (experiment 2). In both experiments HD cells maintained direction-specific firing in the vertical plane with firing properties that were indistinguishable from those recorded in the horizontal plane. Interestingly, however, the cells' preferred directions were linked to different aspects of the animal's environment and depended on how the animal transitioned into the vertical plane. When animals were passively placed onto the vertical surface, the cells switched from using the room (global cues) as a reference frame to using the vertically positioned platform (local cues) as a reference frame, independent of where the platform was located. In contrast, when animals self-locomoted into the vertical plane, the cells' preferred directions remained anchored to the three-dimensional room coordinates and their activity could be accounted for by a simple 90° rotation of the floor's horizontal coordinate system to the vertical plane. These findings highlight the important role that active movement signals play for maintaining and updating spatial orientation when moving in three dimensions. PMID:23114216

  5. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).

    PubMed

    Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan

    2017-01-01

    A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.

  6. Simulation of Regionally Ecological Land Based on a Cellular Automation Model: A Case Study of Beijing, China

    PubMed Central

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-01-01

    Ecological land is like the “liver” of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem. PMID:23066410

  7. Role of cerebellar nodulus and uvula on the vestibular quick phase spatial constancy.

    PubMed

    Pettorossi, V E; Grassi, S; Errico, P; Barmack, N H

    2001-01-01

    We investigated the orientation of quick phases (QPs) of vestibularly-induced eye movements in rabbits in response to "off-vertical" sinusoidal vestibular stimulation. We also examined the possible role of the cerebellar nodulus and ventral uvula in controlling QP spatial orientation and modification. During "off-vertical" vestibular stimulation QPs remained aligned with the earth's horizontal plane, while the slow phases (SPs) were aligned with the plane of vestibular stimulation. This suggests that QPs are coded in gravito-inertial coordinates and SPs in head coordinates. When rabbits were oscillated in the light (20 degrees peak-to-peak; 0.2 Hz) about an "off-vertical" axis for 2 h, the QPs changed their trajectory, abandoning the earth's horizontal plane to approach the plane of the stimulus. By contrast, in the absence of conjunctive optokinetic stimulation, QPs remained fixed in the earth's horizontal plane even after 2 h of "off-vertical" stimulation. The conjunctive combination of optokinetic and vestibular stimulation caused QPs to change their plane of rotation. After lesion of the nodulus-uvula the ability of rabbits to reorient QPs during conjoint vestibular-optokinetic stimulation was maintained. We conclude that the space orientation and adaptation of QPs do not require cerebellar control.

  8. Simulation of regionally ecological land based on a cellular automation model: a case study of Beijing, China.

    PubMed

    Xie, Hualin; Kung, Chih-Chun; Zhang, Yanting; Li, Xiubin

    2012-08-01

    Ecological land is like the "liver" of a city and is very useful to public health. Ecological land change is a spatially dynamic non-linear process under the interaction between natural and anthropogenic factors at different scales. In this study, by setting up natural development scenario, object orientation scenario and ecosystem priority scenario, a Cellular Automation (CA) model has been established to simulate the evolution pattern of ecological land in Beijing in the year 2020. Under the natural development scenario, most of ecological land will be replaced by construction land and crop land. But under the scenarios of object orientation and ecosystem priority, the ecological land area will increase, especially under the scenario of ecosystem priority. When considering the factors such as total area of ecological land, loss of key ecological land and spatial patterns of land use, the scenarios from priority to inferiority are ecosystem priority, object orientation and natural development, so future land management policies in Beijing should be focused on conversion of cropland to forest, wetland protection and prohibition of exploitation of natural protection zones, water source areas and forest parks to maintain the safety of the regional ecosystem.

  9. Strategic Resource Allocation in the Human Brain Supports Cognitive Coordination of Object and Spatial Working Memory

    PubMed Central

    Jackson, Margaret C; Morgan, Helen M; Shapiro, Kimron L; Mohr, Harald; Linden, David EJ

    2011-01-01

    The ability to integrate different types of information (e.g., object identity and spatial orientation) and maintain or manipulate them concurrently in working memory (WM) facilitates the flow of ongoing tasks and is essential for normal human cognition. Research shows that object and spatial information is maintained and manipulated in WM via separate pathways in the brain (object/ventral versus spatial/dorsal). How does the human brain coordinate the activity of different specialized systems to conjoin different types of information? Here we used functional magnetic resonance imaging to investigate conjunction- versus single-task manipulation of object (compute average color blend) and spatial (compute intermediate angle) information in WM. Object WM was associated with ventral (inferior frontal gyrus, occipital cortex), and spatial WM with dorsal (parietal cortex, superior frontal, and temporal sulci) regions. Conjoined object/spatial WM resulted in intermediate activity in these specialized areas, but greater activity in different prefrontal and parietal areas. Unique to our study, we found lower temporo-occipital activity and greater deactivation in temporal and medial prefrontal cortices for conjunction- versus single-tasks. Using structural equation modeling, we derived a conjunction-task connectivity model that comprises a frontoparietal network with a bidirectional DLPFC-VLPFC connection, and a direct parietal-extrastriate pathway. We suggest that these activation/deactivation patterns reflect efficient resource allocation throughout the brain and propose a new extended version of the biased competition model of WM. Hum Brain Mapp, 2011. © 2010 Wiley-Liss, Inc. PMID:20715083

  10. The medial frontal cortex contributes to but does not organize rat exploratory behavior.

    PubMed

    Blankenship, Philip A; Stuebing, Sarah L; Winter, Shawn S; Cheatwood, Joseph L; Benson, James D; Whishaw, Ian Q; Wallace, Douglas G

    2016-11-12

    Animals use multiple strategies to maintain spatial orientation. Dead reckoning is a form of spatial navigation that depends on self-movement cue processing. During dead reckoning, the generation of self-movement cues from a starting position to an animal's current position allow for the estimation of direction and distance to the position movement originated. A network of brain structures has been implicated in dead reckoning. Recent work has provided evidence that the medial frontal cortex may contribute to dead reckoning in this network of brain structures. The current study investigated the organization of rat exploratory behavior subsequent to medial frontal cortex aspiration lesions under light and dark conditions. Disruptions in exploratory behavior associated with medial frontal lesions were consistent with impaired motor coordination, response inhibition, or egocentric reference frame. These processes are necessary for spatial orientation; however, they are not sufficient for self-movement cue processing. Therefore it is possible that the medial frontal cortex provides processing resources that support dead reckoning in other brain structures but does not of itself compute the kinematic details of dead reckoning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Audio-Visual Temporal Recalibration Can be Constrained by Content Cues Regardless of Spatial Overlap.

    PubMed

    Roseboom, Warrick; Kawabe, Takahiro; Nishida, Shin'ya

    2013-01-01

    It has now been well established that the point of subjective synchrony for audio and visual events can be shifted following exposure to asynchronous audio-visual presentations, an effect often referred to as temporal recalibration. Recently it was further demonstrated that it is possible to concurrently maintain two such recalibrated estimates of audio-visual temporal synchrony. However, it remains unclear precisely what defines a given audio-visual pair such that it is possible to maintain a temporal relationship distinct from other pairs. It has been suggested that spatial separation of the different audio-visual pairs is necessary to achieve multiple distinct audio-visual synchrony estimates. Here we investigated if this is necessarily true. Specifically, we examined whether it is possible to obtain two distinct temporal recalibrations for stimuli that differed only in featural content. Using both complex (audio visual speech; see Experiment 1) and simple stimuli (high and low pitch audio matched with either vertically or horizontally oriented Gabors; see Experiment 2) we found concurrent, and opposite, recalibrations despite there being no spatial difference in presentation location at any point throughout the experiment. This result supports the notion that the content of an audio-visual pair alone can be used to constrain distinct audio-visual synchrony estimates regardless of spatial overlap.

  12. Audio-Visual Temporal Recalibration Can be Constrained by Content Cues Regardless of Spatial Overlap

    PubMed Central

    Roseboom, Warrick; Kawabe, Takahiro; Nishida, Shin’Ya

    2013-01-01

    It has now been well established that the point of subjective synchrony for audio and visual events can be shifted following exposure to asynchronous audio-visual presentations, an effect often referred to as temporal recalibration. Recently it was further demonstrated that it is possible to concurrently maintain two such recalibrated estimates of audio-visual temporal synchrony. However, it remains unclear precisely what defines a given audio-visual pair such that it is possible to maintain a temporal relationship distinct from other pairs. It has been suggested that spatial separation of the different audio-visual pairs is necessary to achieve multiple distinct audio-visual synchrony estimates. Here we investigated if this is necessarily true. Specifically, we examined whether it is possible to obtain two distinct temporal recalibrations for stimuli that differed only in featural content. Using both complex (audio visual speech; see Experiment 1) and simple stimuli (high and low pitch audio matched with either vertically or horizontally oriented Gabors; see Experiment 2) we found concurrent, and opposite, recalibrations despite there being no spatial difference in presentation location at any point throughout the experiment. This result supports the notion that the content of an audio-visual pair alone can be used to constrain distinct audio-visual synchrony estimates regardless of spatial overlap. PMID:23658549

  13. Neural representation of orientation relative to gravity in the macaque cerebellum

    PubMed Central

    Laurens, Jean; Meng, Hui; Angelaki, Dora E.

    2013-01-01

    Summary A fundamental challenge for maintaining spatial orientation and interacting with the world is knowledge of our orientation relative to gravity, i.e. tilt. Sensing gravity is complicated because of Einstein’s equivalence principle, where gravitational and translational accelerations are physically indistinguishable. Theory has proposed that this ambiguity is solved by tracking head tilt through multisensory integration. Here we identify a group of Purkinje cells in the caudal cerebellar vermis with responses that reflect an estimate of head tilt. These tilt-selective cells are complementary to translation-selective Purkinje cells, such that their population activities sum to the net gravito-inertial acceleration encoded by the otolith organs, as predicted by theory. These findings reflect the remarkable ability of the cerebellum for neural computation and provide novel quantitative evidence for a neural representation of gravity, whose calculation relies on long-postulated theoretical concepts such as internal models and Bayesian priors. PMID:24360549

  14. Spatial attention can modulate unconscious orientation processing.

    PubMed

    Bahrami, Bahador; Carmel, David; Walsh, Vincent; Rees, Geraint; Lavie, Nilli

    2008-01-01

    It has recently been suggested that visual spatial attention can only affect consciously perceived events. We measured the effects of sustained spatial attention on orientation-selective adaptation to gratings, rendered invisible by prolonged interocular suppression. Spatial attention augmented the orientation-selective adaptation to invisible adaptor orientation. The effect of attention was clearest for test stimuli at peri-threshold, intermediate contrast levels, suggesting that previous negative results were due to assessing orientation discrimination at maximum contrast. On the basis of these findings we propose a constrained hypothesis for the difference between neuronal mechanisms of spatial attention in the presence versus absence of awareness.

  15. Dissociable Decoding of Spatial Attention and Working Memory from EEG Oscillations and Sustained Potentials.

    PubMed

    Bae, Gi-Yeul; Luck, Steven J

    2018-01-10

    In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the orientation of an object being held in memory, consistent with a memory storage signal. Copyright © 2018 the authors 0270-6474/18/380409-14$15.00/0.

  16. Sensory substitution in bilateral vestibular a-reflexic patients

    PubMed Central

    Alberts, Bart B G T; Selen, Luc P J; Verhagen, Wim I M; Medendorp, W Pieter

    2015-01-01

    Patients with bilateral vestibular loss have balance problems in darkness, but maintain spatial orientation rather effectively in the light. It has been suggested that these patients compensate for vestibular cues by relying on extravestibular signals, including visual and somatosensory cues, and integrating them with internal beliefs. How this integration comes about is unknown, but recent literature suggests the healthy brain remaps the various signals into a task-dependent reference frame, thereby weighting them according to their reliability. In this paper, we examined this account in six patients with bilateral vestibular a-reflexia, and compared them to six age-matched healthy controls. Subjects had to report the orientation of their body relative to a reference orientation or the orientation of a flashed luminous line relative to the gravitational vertical, by means of a two-alternative-forced-choice response. We tested both groups psychometrically in upright position (0°) and 90° sideways roll tilt. Perception of body tilt was unbiased in both patients and controls. Response variability, which was larger for 90° tilt, did not differ between groups, indicating that body somatosensory cues have tilt-dependent uncertainty. Perception of the visual vertical was unbiased when upright, but showed systematic undercompensation at 90° tilt. Variability, which was larger for 90° tilt than upright, did not differ between patients and controls. Our results suggest that extravestibular signals substitute for vestibular input in patients’ perception of spatial orientation. This is in line with the current status of rehabilitation programs in acute vestibular patients, targeting at recognizing body somatosensory signals as a reliable replacement for vestibular loss. PMID:25975644

  17. Flying Drosophila orient to sky polarization.

    PubMed

    Weir, Peter T; Dickinson, Michael H

    2012-01-10

    Insects maintain a constant bearing across a wide range of spatial scales. Monarch butterflies and locusts traverse continents [1, 2], and foraging bees and ants travel hundreds of meters to return to their nests [1, 3, 4], whereas many other insects fly straight for only a few centimeters before changing direction. Despite this variation in spatial scale, the brain region thought to underlie long-distance navigation is remarkably conserved [5, 6], suggesting that the use of a celestial compass is a general and perhaps ancient capability of insects. Laboratory studies of Drosophila have identified a local search mode in which short, straight segments are interspersed with rapid turns [7, 8]. However, this flight mode is inconsistent with measured gene flow between geographically separated populations [9-11], and individual Drosophila can travel 10 km across desert terrain in a single night [9, 12, 13]-a feat that would be impossible without prolonged periods of straight flight. To directly examine orientation behavior under outdoor conditions, we built a portable flight arena in which a fly viewed the natural sky through a liquid crystal device that could experimentally rotate the polarization angle. Our findings indicate that Drosophila actively orient using the sky's natural polarization pattern. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Electrostatic interactions and binding orientation of HIV-1 matrix studied by neutron reflectivity.

    PubMed

    Nanda, Hirsh; Datta, Siddhartha A K; Heinrich, Frank; Lösche, Mathias; Rein, Alan; Krueger, Susan; Curtis, Joseph E

    2010-10-20

    The N-terminal matrix (MA) domain of the HIV-1 Gag protein is responsible for binding to the plasma membrane of host cells during viral assembly. The putative membrane-binding interface of MA was previously mapped by means of mutagenesis and analysis of its trimeric crystal structure. However, the orientation of MA on membranes has not been directly determined by experimental measurements. We present neutron reflectivity measurements that resolve the one-dimensional scattering length density profile of MA bound to a biomimetic of the native viral membrane. A molecular refinement procedure was developed using atomic structures of MA to determine the orientation of the protein on the membrane. The orientation defines a lipid-binding interface consistent with previous mutagenesis results. The MA protein maintains this orientation without the presence of a myristate group, driven only by electrostatic interactions. Furthermore, MA is found to penetrate the membrane headgroup region peripherally such that only the side chains of specific Lys and Arg residues interact with the surface. The results suggest that electrostatic interactions are sufficient to favorably orient MA on viral membrane mimics. The spatial determination of the membrane-bound protein demonstrates the ability of neutron reflectivity to discern orientation and penetration under physiologically relevant conditions. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Object orientation affects spatial language comprehension.

    PubMed

    Burigo, Michele; Sacchi, Simona

    2013-01-01

    Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process. However, the effects of the LO's orientation on spatial language have not received great attention. This study explores whether the pure geometric information of the LO (e.g., its orientation) affects spatial language comprehension using placing and production tasks. Our results suggest that the orientation of the LO influences spatial language comprehension even in the absence of functional relationships. Copyright © 2013 Cognitive Science Society, Inc.

  20. The role of spatial integration in the perception of surface orientation with active touch.

    PubMed

    Giachritsis, Christos D; Wing, Alan M; Lovell, Paul G

    2009-10-01

    Vision research has shown that perception of line orientation, in the fovea area, improves with line length (Westheimer & Ley, 1997). This suggests that the visual system may use spatial integration to improve perception of orientation. In the present experiments, we investigated the role of spatial integration in the perception of surface orientation using kinesthetic and proprioceptive information from shoulder and elbow. With their left index fingers, participants actively explored virtual slanted surfaces of different lengths and orientations, and were asked to reproduce an orientation or discriminate between two orientations. Results showed that reproduction errors and discrimination thresholds improve with surface length. This suggests that the proprioceptive shoulder-elbow system may integrate redundant spatial information resulting from extended arm movements to improve orientation judgments.

  1. Dual-task results and the lateralization of spatial orientation: artifact of test selection?

    PubMed

    Bowers, C A; Milham, L M; Price, C

    1998-01-01

    An investigation was conducted to identify the degree to which results regarding the lateralization of spatial orientation among men and women are artifacts of test selection. A dual-task design was used to study possible lateralization differences, providing baseline and dual-task measures of spatial-orientation performance, right- and left-hand tapping, and vocalization of "cat, dog, horse." The Guilford-Zimmerman Test (Guilford & Zimmerman, 1953), the Eliot-Price Test (Eliot & Price, 1976), and the Stumpf-Fay Cube Perspectives Test (Stumpf & Fay, 1983) were the three spatial-orientation tests used to investigate possible artifacts of test selection. Twenty-eight right-handed male and 39 right-handed female undergraduates completed random baseline and dual-task sessions. Analyses indicated no significant sex-related differences in spatial-orientation ability for all three tests. Furthermore, there was no evidence of differential lateralization of spatial orientation between the sexes.

  2. Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults.

    PubMed

    Heideman, Simone G; Rohenkohl, Gustavo; Chauvin, Joshua J; Palmer, Clare E; van Ede, Freek; Nobre, Anna C

    2018-05-04

    Spatial and temporal expectations act synergistically to facilitate visual perception. In the current study, we sought to investigate the anticipatory oscillatory markers of combined spatial-temporal orienting and to test whether these decline with ageing. We examined anticipatory neural dynamics associated with joint spatial-temporal orienting of attention using magnetoencephalography (MEG) in both younger and older adults. Participants performed a cued covert spatial-temporal orienting task requiring the discrimination of a visual target. Cues indicated both where and when targets would appear. In both age groups, valid spatial-temporal cues significantly enhanced perceptual sensitivity and reduced reaction times. In the MEG data, the main effect of spatial orienting was the lateralised anticipatory modulation of posterior alpha and beta oscillations. In contrast to previous reports, this modulation was not attenuated in older adults; instead it was even more pronounced. The main effect of temporal orienting was a bilateral suppression of posterior alpha and beta oscillations. This effect was restricted to younger adults. Our results also revealed a striking interaction between anticipatory spatial and temporal orienting in the gamma-band (60-75 Hz). When considering both age groups separately, this effect was only clearly evident and only survived statistical evaluation in the older adults. Together, these observations provide several new insights into the neural dynamics supporting separate as well as combined effects of spatial and temporal orienting of attention, and suggest that different neural dynamics associated with attentional orienting appear differentially sensitive to ageing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Coordination of hand shape.

    PubMed

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  4. Ground-based training for the stimulus rearrangement encountered during spaceflight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Parker, D. E.; Harm, D. L.; Michaud, L.

    1988-01-01

    Approximately 65-70% of the crew members now experience motion sickness of some degree during the first 72 h of orbital flight on the Space Shuttle. Lack of congruence among signals from spatial orientation systems leads to sensory conflict, which appears to be the basic cause of space motion sickness. A project to develop training devices and procedures to preadapt astronauts to the stimulus rearrangements of microgravity is currently being pursued. The preflight adaptation trainers (PATs) are intended to: demonstrate sensory phenomena likely to be experienced in flight, allow astronauts to train preflight in an altered sensory environment, alter sensory-motor reflexes, and alleviate or shorten the duration of space motion sickness. Four part-task PATs are anticipated. The trainers are designed to evoke two adaptation processes, sensory compensation and sensory reinterpretation, which are necessary to maintain spatial orientation in a weightless environment. Recent investigations using one of the trainers indicate that self-motion perception of linear translation is enhanced when body tilt is combined with visual surround translation, and that a 270 degrees phase angle relationship between tilt and surround motion produces maximum translation perception.

  5. Niches and Interspecific Competitive Relationships of the Parasitoids, Microplitis prodeniae and Campoletis chlorldeae, of the Oriental Leafworm Moth, Spodoptera litura, in Tobacco

    PubMed Central

    Zhou, Zhong-Shi; Chen, Ze-Peng; Xu, Zai-Fu

    2010-01-01

    Both Microplitis prodeniae Rao and Chandry (Hymenoptera: Bracondidae) and Campoletis chlorideae Uchida (Hymenoptera: Ichnumonidae) are major parasitoids of Spodoptera litura (Fabricious) (Lepidoptera: Noctuidae) in tobacco, Nicotiana tabacum L. (Solanales: Solanaceae) at Nanxiong, Guangdong Province, South China. The niches and interspecific competition relationships of the two species were studied. The results show that the competition between the two species for spatial and food resources was very intense, and C. chlorideae was always dominant when the two species compete for spatial and food resources in different periods. Thus C. chlorideae may drive M. prodeniae away when they occupy the same spatial or food resource. The adaptability of C. chlorideae to the environment in the tobacco fields may be greater than that of M. prodeniae, so C. chlorideae can maintain a higher population compared to that of M. prodeniae. PMID:20575741

  6. Removal of the Magnetic Dead Layer by Geometric Design

    DOE PAGES

    Guo, Er-jia; Roldan, Manuel; Charlton, Timothy R.; ...

    2018-05-28

    The proximity effect is used to engineer interface effects such as magnetoelectric coupling, exchange bias, and emergent interfacial magnetism. However, the presence of a magnetic “dead layer” adversely affects the functionality of a heterostructure. Here in this paper, it is shown that by utilizing (111) polar planes, the magnetization of a manganite ultrathin layer can be maintained throughout its thickness. Combining structural characterization, magnetometry measurements, and magnetization depth profiling with polarized neutron reflectometry, it is found that the magnetic dead layer is absent in the (111)-oriented manganite layers, however, it occurs in the films with other orientations. Quantitative analysis ofmore » local structural and elemental spatial evolutions using scanning transmission electron microscopy and electron energy loss spectroscopy reveals that atomically sharp interfaces with minimal chemical intermixing in the (111)-oriented superlattices. The polar discontinuity across the (111) interfaces inducing charge redistribution within the SrTiO 3 layers is suggested, which promotes ferromagnetism throughout the (111)-oriented ultrathin manganite layers. The approach of eliminating problematic magnetic dead layers by changing the crystallographic orientation suggests a conceptually useful recipe to engineer the intriguing physical properties of oxide interfaces, especially in low dimensionality.« less

  7. Removal of the Magnetic Dead Layer by Geometric Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Er-jia; Roldan, Manuel; Charlton, Timothy R.

    The proximity effect is used to engineer interface effects such as magnetoelectric coupling, exchange bias, and emergent interfacial magnetism. However, the presence of a magnetic “dead layer” adversely affects the functionality of a heterostructure. Here in this paper, it is shown that by utilizing (111) polar planes, the magnetization of a manganite ultrathin layer can be maintained throughout its thickness. Combining structural characterization, magnetometry measurements, and magnetization depth profiling with polarized neutron reflectometry, it is found that the magnetic dead layer is absent in the (111)-oriented manganite layers, however, it occurs in the films with other orientations. Quantitative analysis ofmore » local structural and elemental spatial evolutions using scanning transmission electron microscopy and electron energy loss spectroscopy reveals that atomically sharp interfaces with minimal chemical intermixing in the (111)-oriented superlattices. The polar discontinuity across the (111) interfaces inducing charge redistribution within the SrTiO 3 layers is suggested, which promotes ferromagnetism throughout the (111)-oriented ultrathin manganite layers. The approach of eliminating problematic magnetic dead layers by changing the crystallographic orientation suggests a conceptually useful recipe to engineer the intriguing physical properties of oxide interfaces, especially in low dimensionality.« less

  8. Aviation spatial orientation in relationship to head position and attitude interpretation.

    PubMed

    Patterson, F R; Cacioppo, A J; Gallimore, J J; Hinman, G E; Nalepka, J P

    1997-06-01

    Conventional wisdom describing aviation spatial awareness assumes that pilots view a moving horizon through the windscreen. This assumption presupposes head alignment with the cockpit "Z" axis during both visual (VMC) and instrument (IMC) maneuvers. Even though this visual paradigm is widely accepted, its accuracy has not been verified. The purpose of this research was to determine if a visually induced neck reflex causes pilots to align their heads toward the horizon, rather than the cockpit vertical axis. Based on literature describing reflexive head orientation in terrestrial environments it was hypothesized that during simulated VMC aircraft maneuvers, pilots would align their heads toward the horizon. Some 14 military pilots completed two simulated flights in a stationary dome simulator. The flight profile consisted of five separate tasks, four of which evaluated head tilt during exposure to unique visual conditions and one examined occurrences of disorientation during unusual attitude recovery. During simulated visual flight maneuvers, pilots tilted their heads toward the horizon (p < 0.0001). Under IMC, pilots maintained head alignment with the vertical axis of the aircraft. During VMC maneuvers pilots reflexively tilt their heads toward the horizon, away from the Gz axis of the cockpit. Presumably, this behavior stabilizes the retinal image of the horizon (1 degree visual-spatial cue), against which peripheral images of the cockpit (2 degrees visual-spatial cue) appear to move. Spatial disorientation, airsickness, and control reversal error may be related to shifts in visual-vestibular sensory alignment during visual transitions between VMC (head tilt) and IMC (Gz head stabilized) conditions.

  9. Photography activities for developing students’ spatial orientation and spatial visualization

    NASA Astrophysics Data System (ADS)

    Hendroanto, Aan; van Galen, Frans; van Eerde, D.; Prahmana, R. C. I.; Setyawan, F.; Istiandaru, A.

    2017-12-01

    Spatial orientation and spatial visualization are the foundation of students’ spatial ability. They assist students’ performance in learning mathematics, especially geometry. Considering its importance, the present study aims to design activities to help young learners developing their spatial orientation and spatial visualization ability. Photography activity was chosen as the context of the activity to guide and support the students. This is a design research study consisting of three phases: 1) preparation and designing 2) teaching experiment, and 3) retrospective analysis. The data is collected by tests and interview and qualitatively analyzed. We developed two photography activities to be tested. In the teaching experiments, 30 students of SD Laboratorium UNESA, Surabaya were involved. The results showed that the activities supported the development of students’ spatial orientation and spatial visualization indicated by students’ learning progresses, answers, and strategies when they solved the problems in the activities.

  10. Toy-playing behavior, sex-role orientation, spatial ability, and science achievement

    NASA Astrophysics Data System (ADS)

    Tracy, Dyanne M.

    The purpose of this correlational study was to examine the possible relationships among children's extracurricular toy-playing habits, sex-role orientations, spatial abilities, and science achievement. Data were gathered from 282 midwestern, suburban, fifth-grade students. It was found that boys had significantly higher spatial skills than girls. No significant differences in spatial ability were found among students with different sex-role orientations. No significant differences in science achievement were found between girls and boys, or among students with the four different sex-role orientations. Students who had high spatial ability also had significantly higher science achievement scores than students with low spatial ability. Femininely oriented boys who reported low playing in the two-dimensional, gross-body-movement, and proportional-arrangement toy categories scored significantly higher on the test of science achievement than girls with the same sex-role and toy-playing behavior.

  11. The computational worm: spatial orientation and its neuronal basis in C. elegans.

    PubMed

    Lockery, Shawn R

    2011-10-01

    Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn.

    PubMed Central

    Bressloff, Paul C; Cowan, Jack D

    2003-01-01

    A theory is presented of the way in which the hypercolumns in primary visual cortex (V1) are organized to detect important features of visual images, namely local orientation and spatial-frequency. Given the existence in V1 of dual maps for these features, both organized around orientation pinwheels, we constructed a model of a hypercolumn in which orientation and spatial-frequency preferences are represented by the two angular coordinates of a sphere. The two poles of this sphere are taken to correspond, respectively, to high and low spatial-frequency preferences. In Part I of the paper, we use mean-field methods to derive exact solutions for localized activity states on the sphere. We show how cortical amplification through recurrent interactions generates a sharply tuned, contrast-invariant population response to both local orientation and local spatial frequency, even in the case of a weakly biased input from the lateral geniculate nucleus (LGN). A major prediction of our model is that this response is non-separable with respect to the local orientation and spatial frequency of a stimulus. That is, orientation tuning is weaker around the pinwheels, and there is a shift in spatial-frequency tuning towards that of the closest pinwheel at non-optimal orientations. In Part II of the paper, we demonstrate that a simple feed-forward model of spatial-frequency preference, unlike that for orientation preference, does not generate a faithful representation when amplified by recurrent interactions in V1. We then introduce the idea that cortico-geniculate feedback modulates LGN activity to generate a faithful representation, thus providing a new functional interpretation of the role of this feedback pathway. Using linear filter theory, we show that if the feedback from a cortical cell is taken to be approximately equal to the reciprocal of the corresponding feed-forward receptive field (in the two-dimensional Fourier domain), then the mismatch between the feed-forward and cortical frequency representations is eliminated. We therefore predict that cortico-geniculate feedback connections innervate the LGN in a pattern determined by the orientation and spatial-frequency biases of feed-forward receptive fields. Finally, we show how recurrent cortical interactions can generate cross-orientation suppression. PMID:14561324

  13. Spatial Orienting of Attention in Dyslexic Adults Using Directional and Alphabetic Cues

    ERIC Educational Resources Information Center

    Judge, Jeannie; Knox, Paul C.; Caravolas, Marketa

    2013-01-01

    Spatial attention performance was investigated in adults with dyslexia. Groups with and without dyslexia completed literacy/phonological tasks as well as two spatial cueing tasks, in which attention was oriented in response to a centrally presented pictorial (arrow) or alphabetic (letter) cue. Cued response times and orienting effects were largely…

  14. Accessibility versus Accuracy in Retrieving Spatial Memory: Evidence for Suboptimal Assumed Headings

    ERIC Educational Resources Information Center

    Yerramsetti, Ashok; Marchette, Steven A.; Shelton, Amy L.

    2013-01-01

    Orientation dependence in spatial memory has often been interpreted in terms of accessibility: Object locations are encoded relative to a reference orientation that affords the most accurate access to spatial memory. An open question, however, is whether people naturally use this "preferred" orientation whenever recalling the space. We…

  15. a Method for the Positioning and Orientation of Rail-Bound Vehicles in Gnss-Free Environments

    NASA Astrophysics Data System (ADS)

    Hung, R.; King, B. A.; Chen, W.

    2016-06-01

    Mobile Mapping System (MMS) are increasingly applied for spatial data collection to support different fields because of their efficiencies and the levels of detail they can provide. The Position and Orientation System (POS), which is conventionally employed for locating and orienting MMS, allows direct georeferencing of spatial data in real-time. Since the performance of a POS depends on both the Inertial Navigation System (INS) and the Global Navigation Satellite System (GNSS), poor GNSS conditions, such as in long tunnels and underground, introduce the necessity for post-processing. In above-ground railways, mobile mapping technology is employed with high performance sensors for finite usage, which has considerable potential for enhancing railway safety and management in real-time. In contrast, underground railways present a challenge for a conventional POS thus alternative configurations are necessary to maintain data accuracy and alleviate the need for post-processing. This paper introduces a method of rail-bound navigation to replace the role of GNSS for railway applications. The proposed method integrates INS and track alignment data for environment-independent navigation and reduces the demand of post-processing. The principle of rail-bound navigation is presented and its performance is verified by an experiment using a consumer-grade Inertial Measurement Unit (IMU) and a small-scale railway model. The method produced a substantial improvement in position and orientation for a poorly initialised system in centimetre positional accuracy. The potential improvements indicated by, and limitations of rail-bound navigation are also considered for further development in existing railway systems.

  16. The Phragmoplast-Orienting Kinesin-12 Class Proteins Translate the Positional Information of the Preprophase Band to Establish the Cortical Division Zone in Arabidopsis thaliana[C][W

    PubMed Central

    Lipka, Elisabeth; Gadeyne, Astrid; Stöckle, Dorothee; Zimmermann, Steffi; De Jaeger, Geert; Ehrhardt, David W.; Kirik, Viktor; Van Damme, Daniel; Müller, Sabine

    2014-01-01

    The preprophase band (PPB) is a faithful but transient predictor of the division plane in somatic cell divisions. Throughout mitosis the PPBs positional information is preserved by factors that continuously mark the division plane at the cell cortex, the cortical division zone, by their distinct spatio-temporal localization patterns. However, the mechanism maintaining these identity factors at the plasma membrane after PPB disassembly remains obscure. The pair of kinesin-12 class proteins PHRAGMOPLAST ORIENTING KINESIN1 (POK1) and POK2 are key players in division plane maintenance. Here, we show that POK1 is continuously present at the cell cortex, providing a spatial reference for the site formerly occupied by the PPB. Fluorescence recovery after photobleaching analysis combined with microtubule destabilization revealed dynamic microtubule-dependent recruitment of POK1 to the PPB during prophase, while POK1 retention at the cortical division zone in the absence of cortical microtubules appeared static. POK function is strictly required to maintain the division plane identity factor TANGLED (TAN) after PPB disassembly, although POK1 and TAN recruitment to the PPB occur independently during prophase. Together, our data suggest that POKs represent fundamental early anchoring components of the cortical division zone, translating and preserving the positional information of the PPB by maintaining downstream identity markers. PMID:24972597

  17. Spatial Encounters: Exercises in Spatial Awareness.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque.

    This series of activities on spatial relationships was designed to help users acquire the skills of spatial visualization and orientation and to improve their effectiveness in applying those skills. The series contains an introduction to spatial orientation with several self-directed activities to help improve that skill. It also contains seven…

  18. Neural network configuration and efficiency underlies individual differences in spatial orientation ability.

    PubMed

    Arnold, Aiden E G F; Protzner, Andrea B; Bray, Signe; Levy, Richard M; Iaria, Giuseppe

    2014-02-01

    Spatial orientation is a complex cognitive process requiring the integration of information processed in a distributed system of brain regions. Current models on the neural basis of spatial orientation are based primarily on the functional role of single brain regions, with limited understanding of how interaction among these brain regions relates to behavior. In this study, we investigated two sources of variability in the neural networks that support spatial orientation--network configuration and efficiency--and assessed whether variability in these topological properties relates to individual differences in orientation accuracy. Participants with higher accuracy were shown to express greater activity in the right supramarginal gyrus, the right precentral cortex, and the left hippocampus, over and above a core network engaged by the whole group. Additionally, high-performing individuals had increased levels of global efficiency within a resting-state network composed of brain regions engaged during orientation and increased levels of node centrality in the right supramarginal gyrus, the right primary motor cortex, and the left hippocampus. These results indicate that individual differences in the configuration of task-related networks and their efficiency measured at rest relate to the ability to spatially orient. Our findings advance systems neuroscience models of orientation and navigation by providing insight into the role of functional integration in shaping orientation behavior.

  19. Global-local visual biases correspond with visual-spatial orientation.

    PubMed

    Basso, Michael R; Lowery, Natasha

    2004-02-01

    Within the past decade, numerous investigations have demonstrated reliable associations of global-local visual processing biases with right and left hemisphere function, respectively (cf. Van Kleeck, 1989). Yet the relevance of these biases to other cognitive functions is not well understood. Towards this end, the present research examined the relationship between global-local visual biases and perception of visual-spatial orientation. Twenty-six women and 23 men completed a global-local judgment task (Kimchi and Palmer, 1982) and the Judgment of Line Orientation Test (JLO; Benton, Sivan, Hamsher, Varney, and Spreen, 1994), a measure of visual-spatial orientation. As expected, men had better performance on JLO. Extending previous findings, global biases were related to better visual-spatial acuity on JLO. The findings suggest that global-local biases and visual-spatial orientation may share underlying cerebral mechanisms. Implications of these findings for other visually mediated cognitive outcomes are discussed.

  20. Developing Spatial Orientation and Spatial Memory with a Treasure Hunting Game

    ERIC Educational Resources Information Center

    Lin, Chien-Heng; Chen, Chien-Min; Lou, Yu-Chiung

    2014-01-01

    The abilities of both spatial orientation and spatial memory play very important roles in human navigation and spatial cognition. Since such abilities are difficult to strengthen through books or classroom instruction, there are no particular curricula or methods to assist in their development. Therefore, this study develops a spatial…

  1. Keys and seats: Spatial response coding underlying the joint spatial compatibility effect.

    PubMed

    Dittrich, Kerstin; Dolk, Thomas; Rothe-Wulf, Annelie; Klauer, Karl Christoph; Prinz, Wolfgang

    2013-11-01

    Spatial compatibility effects (SCEs) are typically observed when participants have to execute spatially defined responses to nonspatial stimulus features (e.g., the color red or green) that randomly appear to the left and the right. Whereas a spatial correspondence of stimulus and response features facilitates response execution, a noncorrespondence impairs task performance. Interestingly, the SCE is drastically reduced when a single participant responds to one stimulus feature (e.g., green) by operating only one response key (individual go/no-go task), whereas a full-blown SCE is observed when the task is distributed between two participants (joint go/no-go task). This joint SCE (a.k.a. the social Simon effect) has previously been explained by action/task co-representation, whereas alternative accounts ascribe joint SCEs to spatial components inherent in joint go/no-go tasks that allow participants to code their responses spatially. Although increasing evidence supports the idea that spatial rather than social aspects are responsible for joint SCEs emerging, it is still unclear to which component(s) the spatial coding refers to: the spatial orientation of response keys, the spatial orientation of responding agents, or both. By varying the spatial orientation of the responding agents (Exp. 1) and of the response keys (Exp. 2), independent of the spatial orientation of the stimuli, in the present study we found joint SCEs only when both the seating and the response key alignment matched the stimulus alignment. These results provide evidence that spatial response coding refers not only to the response key arrangement, but also to the-often neglected-spatial orientation of the responding agents.

  2. Covert Auditory Spatial Orienting: An Evaluation of the Spatial Relevance Hypothesis

    ERIC Educational Resources Information Center

    Roberts, Katherine L.; Summerfield, A. Quentin; Hall, Deborah A.

    2009-01-01

    The spatial relevance hypothesis (J. J. McDonald & L. M. Ward, 1999) proposes that covert auditory spatial orienting can only be beneficial to auditory processing when task stimuli are encoded spatially. We present a series of experiments that evaluate 2 key aspects of the hypothesis: (a) that "reflexive activation of location-sensitive neurons is…

  3. A familiar pattern? Semantic memory contributes to the enhancement of visuo-spatial memories.

    PubMed

    Riby, Leigh M; Orme, Elizabeth

    2013-03-01

    In this study we quantify for the first time electrophysiological components associated with incorporating long-term semantic knowledge with visuo-spatial information using two variants of a traditional matrix patterns task. Results indicated that the matrix task with greater semantic content was associated with enhanced accuracy and RTs in a change-detection paradigm; this was also associated with increased P300 and N400 components as well as a sustained negative slow wave (NSW). In contrast, processing of the low semantic stimuli was associated with an increased N200 and a reduction in the P300. These findings suggest that semantic content can aid in reducing early visual processing of information and subsequent memory load by unitizing complex patterns into familiar forms. The N400/NSW may be associated with the requirements for maintaining visuo-spatial information about semantic forms such as orientation and relative location. Evidence for individual differences in semantic elaboration strategies used by participants is also discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Spatial Orienting Following Dynamic Cues in Infancy: Grasping Hands versus Inanimate Objects

    ERIC Educational Resources Information Center

    Wronski, Caroline; Daum, Moritz M.

    2014-01-01

    Movement perception facilitates spatial orienting of attention in infants (Farroni, Johnson, Brockbank, & Simion, 2000). In a series of 4 experiments, we investigated how orienting of attention in infancy is modulated by dynamic stimuli. Experiment 1 (N = 36) demonstrated that 5-month-olds as well as 7-month-olds orient to the direction of a…

  5. [Development of spatial orientation during pilot training].

    PubMed

    Ivanov, V V; Vorob'ev, O A; Snipkov, Iu Iu

    1988-01-01

    The problem of spatial orientation of pilots flying high-altitude aircraft is in the focus of present-day aviation medicine because of a growing number of accidents in the air. One of the productive lines of research is to study spatial orientation in terms of active formation and maintenance of its imagery in a complex environment. However investigators usually emphasize the role of visual (instrumental) information in the image construction, almost ignoring the sensorimotor component of spatial orientation. The theoretical analysis of the process of spatial orientation has facilitated the development of the concept assuming that the pattern of space perception changes with growing professional experience. The concept is based on an active approach to the essence, emergence, formation and variation in the pattern of sensory perception of space in man's consciousness. This concept asserts that as pilot's professional expertise increases, the pattern of spatial orientation becomes geocentric because a new system of spatial perception evolves which is a result of the development of a new (instrumental) type of motor activity in space. This finds expression in the fact that perception of spatial position inflight occurs when man has to resolve a new motor task--movement along a complex trajectory in the three-dimensional space onboard a flying vehicle. The meaningful structure of this problem which is to be implemented through controlling movements of the pilot acts as a factor that forms this new system of perception. All this underlies the arrangement of meaningful collection of instrumental data and detection of noninstrumental signals in the comprehensive perception of changes in the spatial position of a flying vehicle.

  6. Quantitative analysis of biological tissues using Fourier transform-second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.

    2010-02-01

    We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

  7. Deployment of spatial attention towards locations in memory representations. An EEG study.

    PubMed

    Leszczyński, Marcin; Wykowska, Agnieszka; Perez-Osorio, Jairo; Müller, Hermann J

    2013-01-01

    Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target.

  8. Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula.

    PubMed

    Wearne, S; Raphan, T; Cohen, B

    1998-05-01

    Spatial orientation of the angular vestibuloocular reflex (aVOR) was studied in rhesus monkeys after complete and partial ablation of the nodulus and ventral uvula. Horizontal, vertical, and torsional components of slow phases of nystagmus were analyzed to determine the axes of eye rotation, the time constants (Tcs) of velocity storage, and its orientation vectors. The gravito-inertial acceleration vector (GIA) was tilted relative to the head during optokinetic afternystagmus (OKAN), centrifugation, and reorientation of the head during postrotatory nystagmus. When the GIA was tilted relative to the head in normal animals, horizontal Tcs decreased, vertical and/or roll time constants (Tc(vert/roll)) lengthened according to the orientation of the GIA, and vertical and/or roll eye velocity components appeared (cross-coupling). This shifted the axis of eye rotation toward alignment with the tilted GIA. Horizontal and vertical/roll Tcs varied inversely, with T(chor) being longest and T(cvert/roll) shortest when monkeys were upright, and the reverse when stimuli were around the vertical or roll axes. Vertical or roll Tcs were longest when the axes of eye rotation were aligned with the spatial vertical, respectively. After complete nodulo-uvulectomy, T(chor) became longer, and periodic alternating nystagmus (PAN) developed in darkness. T(chor) could not be shortened in any of paradigms tested. In addition, yaw-to-vertical/roll cross-coupling was lost, and the axes of eye rotation remained fixed during nystagmus, regardless of the tilt of the GIA with respect to the head. After central portions of the nodulus and uvula were ablated, leaving lateral portions of the nodulus intact, yaw-to-vertical/roll cross-coupling and control of Tc(vert/roll) was lost or greatly reduced. However, control of Tchor was maintained, and T(chor) continued to vary as a function of the tilted GIA. Despite this, the eye velocity vector remained aligned with the head during yaw axis stimulation after partial nodulo-uvulectomy, regardless of GIA orientation to the head. The data were related to a three-dimensional model of the aVOR, which simulated the experimental results. The model provides a basis for understanding how the nodulus and uvula control processing within the vestibular nuclei responsible for spatial orientation of the aVOR. We conclude that the three-dimensional dynamics of the velocity storage system are determined in the nodulus and ventral uvula. We propose that the horizontal and vertical/roll Tcs are separately controlled in the nodulus and uvula with the dynamic characteristics of vertical/roll components modulated in central portions and the horizontal components laterally, presumably in a semicircular canal-based coordinate frame.

  9. Ventral-Dorsal Functional Contribution of the Posterior Cingulate Cortex in Human Spatial Orientation: A Meta-Analysis.

    PubMed

    Burles, Ford; Umiltá, Alberto; McFarlane, Liam H; Potocki, Kendra; Iaria, Giuseppe

    2018-01-01

    The retrosplenial cortex has long been implicated in human spatial orientation and navigation. However, neural activity peaks labeled "retrosplenial cortex" in human neuroimaging studies investigating spatial orientation often lie significantly outside of the retrosplenial cortex proper. This has led to a large and anatomically heterogenous region being ascribed numerous roles in spatial orientation and navigation. Here, we performed a meta-analysis of functional Magnetic Resonance Imaging (fMRI) investigations of spatial orientation and navigation and have identified a ventral-dorsal functional specialization within the posterior cingulate for spatial encoding vs. spatial recall . Generally, ventral portions of the posterior cingulate cortex were more likely to be activated by spatial encoding , i.e., passive viewing of scenes or active navigation without a demand to respond, perform a spatial computation, or localize oneself in the environment. Conversely, dorsal portions of the posterior cingulate cortex were more likely to be activated by cognitive demands to recall spatial information or to produce judgments of distance or direction to non-visible locations or landmarks. The greatly varying resting-state functional connectivity profiles of the ventral (centroids at MNI -22, -60, 6 and 20, -56, 6) and dorsal (centroid at MNI 4, -60, 28) posterior cingulate regions identified in the meta-analysis supported the conclusion that these regions, which would commonly be labeled as "retrosplenial cortex," should be more appropriately referred to as distinct subregions of the posterior cingulate cortex. We suggest that future studies investigating the role of the retrosplenial and posterior cingulate cortex in spatial tasks carefully localize activity in the context of these identifiable subregions.

  10. Spatial-Orientation Priming Impedes Rather than Facilitates the Spontaneous Control of Hand-Retraction Speeds in Patients with Parkinson’s Disease

    PubMed Central

    Yanovich, Polina; Isenhower, Robert W.; Sage, Jacob; Torres, Elizabeth B.

    2013-01-01

    Background Often in Parkinson’s disease (PD) motor-related problems overshadow latent non-motor deficits as it is difficult to dissociate one from the other with commonly used observational inventories. Here we ask if the variability patterns of hand speed and acceleration would be revealing of deficits in spatial-orientation related decisions as patients performed a familiar reach-to-grasp task. To this end we use spatial-orientation priming which normally facilitates motor-program selection and asked whether in PD spatial-orientation priming helps or hinders performance. Methods To dissociate spatial-orientation- and motor-related deficits participants performed two versions of the task. The biomechanical version (DEFAULT) required the same postural- and hand-paths as the orientation-priming version (primed-UP). Any differences in the patients here could not be due to motor issues as the tasks were biomechanically identical. The other priming version (primed-DOWN) however required additional spatial and postural processing. We assessed in all three cases both the forward segment deliberately aimed towards the spatial-target and the retracting segment, spontaneously bringing the hand to rest without an instructed goal. Results and Conclusions We found that forward and retracting segments belonged in two different statistical classes according to the fluctuations of speed and acceleration maxima. Further inspection revealed conservation of the forward (voluntary) control of speed but in PD a discontinuity of this control emerged during the uninstructed retractions which was absent in NC. Two PD groups self-emerged: one group in which priming always affected the retractions and the other in which only the more challenging primed-DOWN condition was affected. These PD-groups self-formed according to the speed variability patterns, which systematically changed along a gradient that depended on the priming, thus dissociating motor from spatial-orientation issues. Priming did not facilitate the motor task in PD but it did reveal a breakdown in the spatial-orientation decision that was independent of the motor-postural path. PMID:23843963

  11. Lateralization of spatial rather than temporal attention underlies the left hemifield advantage in rapid serial visual presentation.

    PubMed

    Asanowicz, Dariusz; Kruse, Lena; Śmigasiewicz, Kamila; Verleger, Rolf

    2017-11-01

    In bilateral rapid serial visual presentation (RSVP), the second of two targets, T1 and T2, is better identified in the left visual field (LVF) than in the right visual field (RVF). This LVF advantage may reflect hemispheric asymmetry in temporal attention or/and in spatial orienting of attention. Participants performed two tasks: the "standard" bilateral RSVP task (Exp.1) and its unilateral variant (Exp.1 & 2). In the bilateral task, spatial location was uncertain, thus target identification involved stimulus-driven spatial orienting. In the unilateral task, the targets were presented block-wise in the LVF or RVF only, such that no spatial orienting was needed for target identification. Temporal attention was manipulated in both tasks by varying the T1-T2 lag. The results showed that the LVF advantage disappeared when involvement of stimulus-driven spatial orienting was eliminated, whereas the manipulation of temporal attention had no effect on the asymmetry. In conclusion, the results do not support the hypothesis of hemispheric asymmetry in temporal attention, and provide further evidence that the LVF advantage reflects right hemisphere predominance in stimulus-driven orienting of spatial attention. These conclusions fit evidence that temporal attention is implemented by bilateral parietal areas and spatial attention by the right-lateralized ventral frontoparietal network. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Computed reconstruction of spatial ammonoid-shell orientation captured from digitized grinding and landmark data

    NASA Astrophysics Data System (ADS)

    Lukeneder, Susanne; Lukeneder, Alexander; Weber, Gerhard W.

    2014-03-01

    The internal orientation of fossil mass occurrences can be exploited as useful source of information about their primary depositional conditions. A series of studies, using different kinds of fossils, especially those with elongated shape (e.g., elongated gastropods), deal with their orientation and the subsequent reconstruction of the depositional conditions (e.g., paleocurrents and transport mechanisms). However, disk-shaped fossils like planispiral cephalopods or gastropods were used, up to now, with caution for interpreting paleocurrents. Moreover, most studies just deal with the topmost surface of such mass occurrences, due to the easier accessibility. Within this study, a new method for three-dimensional reconstruction of the internal structure of a fossil mass occurrence and the subsequent calculation of its spatial shell orientation is established. A 234 million-years-old (Carnian, Triassic) monospecific mass occurrence of the ammonoid Kasimlarceltites krystyni from the Taurus Mountains in Turkey, embedded in limestone, is used for this pilot study. Therefore, a 150×45×140 mm3 block of the ammonoid bearing limestone bed has been grinded to 70 slices, with a distance of 2 mm between each slice. By using a semi-automatic region growing algorithm of the 3D-visualization software Amira, ammonoids of a part of this mass occurrence were segmented and a 3D-model reconstructed. Landmarks, trigonometric and vector-based calculations were used to compute the diameters and the spatial orientation of each ammonoid. The spatial shell orientation was characterized by dip and dip-direction and aperture direction of the longitudinal axis, as well as by dip and azimuth of an imaginary sagittal-plane through each ammonoid. The exact spatial shell orientation was determined for a sample of 675 ammonoids, and their statistical orientation analyzed (i.e., NW/SE). The study combines classical orientation analysis with modern 3D-visualization techniques, and establishes a novel spatial orientation analyzing method, which can be adapted to any kind of abundant solid matter.

  13. Landscape Interpretation with Augmented Reality and Maps to Improve Spatial Orientation Skill

    ERIC Educational Resources Information Center

    Carbonell Carrera, Carlos; Bermejo Asensio, Luis A.

    2017-01-01

    Landscape interpretation is needed for navigating and determining an orientation: with traditional cartography, interpreting 3D topographic information from 2D landform representations to get self-location requires spatial orientation skill. Augmented reality technology allows a new way to interact with 3D landscape representation and thereby…

  14. Orienting attention to locations in internal representations.

    PubMed

    Griffin, Ivan C; Nobre, Anna C

    2003-11-15

    Three experiments investigated whether it is possible to orient selective spatial attention to internal representations held in working memory in a similar fashion to orienting to perceptual stimuli. In the first experiment, subjects were either cued to orient to a spatial location before a stimulus array was presented (pre-cue), cued to orient to a spatial location in working memory after the array was presented (retro-cue), or given no cueing information (neutral cue). The stimulus array consisted of four differently colored crosses, one in each quadrant. At the end of a trial, a colored cross (probe) was presented centrally, and subjects responded according to whether it had occurred in the array. There were equivalent patterns of behavioral costs and benefits of cueing for both pre-cues and retro-cues. A follow-up experiment used a peripheral probe stimulus requiring a decision about whether its color matched that of the item presented at the same location in the array. Replication of the behavioral costs and benefits of pre-cues and retro-cues in this experiment ruled out changes in response criteria as the only explanation for the effects. The third experiment used event-related potentials (ERPs) to compare the neural processes involved in orienting attention to a spatial location in an external versus an internal spatial representation. In this task, subjects responded according to whether a central probe stimulus occurred at the cued location in the array. There were both similarities and differences between ERPs to spatial cues toward a perception versus an internal spatial representation. Lateralized early posterior and later frontal negativities were observed for both pre- and retro-cues. Retro-cues also showed additional neural processes to be involved in orienting to an internal representation, including early effects over frontal electrodes.

  15. A Rehabilitation Protocol for Empowering Spatial Orientation in MCI. A Pilot Study.

    PubMed

    Gadler, Erminia; Grassi, Alessandra; Riva, Giuseppe

    2009-01-01

    Spatial navigation is among the first cognitive functions to be impaired in Alzheimer's disease [1] and deficit in this domain is detectable earlier in patients with Mild Cognitive Impairment [2]. Since efficacy of cognitive training in persons with MCI was successfully assessed [3], we developed a multitasking training protocol using virtual environments for stimulating attention, perception and visuo-spatial cognition in order to empower spatial orientation in MCI. Two healthy elders were exposed to the training over a period of four weeks and both showed improved performances in attention and orientation after the end of the intervention.

  16. Local sensitivity to stimulus orientation and spatial frequency within the receptive fields of neurons in visual area 2 of macaque monkeys

    PubMed Central

    Tao, X.; Zhang, B.; Smith, E. L.; Nishimoto, S.; Ohzawa, I.

    2012-01-01

    We used dynamic dense noise stimuli and local spectral reverse correlation methods to reveal the local sensitivities of neurons in visual area 2 (V2) of macaque monkeys to orientation and spatial frequency within their receptive fields. This minimized the potentially confounding assumptions that are inherent in stimulus selections. The majority of neurons exhibited a relatively high degree of homogeneity for the preferred orientations and spatial frequencies in the spatial matrix of facilitatory subfields. However, about 20% of all neurons showed maximum orientation differences between neighboring subfields that were greater than 25 deg. The neurons preferring horizontal or vertical orientations showed less inhomogeneity in space than the neurons preferring oblique orientations. Over 50% of all units also exhibited suppressive profiles, and those were more heterogeneous than facilitatory profiles. The preferred orientation and spatial frequency of suppressive profiles differed substantially from those of facilitatory profiles, and the neurons with suppressive subfields had greater orientation selectivity than those without suppressive subfields. The peak suppression occurred with longer delays than the peak facilitation. These results suggest that the receptive field profiles of the majority of V2 neurons reflect the orderly convergence of V1 inputs over space, but that a subset of V2 neurons exhibit more complex response profiles having both suppressive and facilitatory subfields. These V2 neurons with heterogeneous subfield profiles could play an important role in the initial processing of complex stimulus features. PMID:22114163

  17. Gravity orientation tuning in macaque anterior thalamus.

    PubMed

    Laurens, Jean; Kim, Byounghoon; Dickman, J David; Angelaki, Dora E

    2016-12-01

    Gravity may provide a ubiquitous allocentric reference to the brain's spatial orientation circuits. Here we describe neurons in the macaque anterior thalamus tuned to pitch and roll orientation relative to gravity, independently of visual landmarks. We show that individual cells exhibit two-dimensional tuning curves, with peak firing rates at a preferred vertical orientation. These results identify a thalamic pathway for gravity cues to influence perception, action and spatial cognition.

  18. Straight as an arrow: humpback whales swim constant course tracks during long-distance migration

    PubMed Central

    Horton, Travis W.; Holdaway, Richard N.; Zerbini, Alexandre N.; Hauser, Nan; Garrigue, Claire; Andriolo, Artur; Clapham, Phillip J.

    2011-01-01

    Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored. PMID:21508023

  19. Straight as an arrow: humpback whales swim constant course tracks during long-distance migration.

    PubMed

    Horton, Travis W; Holdaway, Richard N; Zerbini, Alexandre N; Hauser, Nan; Garrigue, Claire; Andriolo, Artur; Clapham, Phillip J

    2011-10-23

    Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored.

  20. Functional transcranial Doppler sonography and a spatial orientation paradigm identify the non-dominant hemisphere.

    PubMed

    Dorst, J; Haag, A; Knake, S; Oertel, W H; Hamer, H M; Rosenow, F

    2008-10-01

    Functional transcranial Doppler sonography (fTCD) during word generation is well established for language lateralization. In this study, we evaluated a fTCD paradigm to reliably identify the non-dominant hemisphere. Twenty-nine right-handed healthy subjects (27.1+/-7.6 years) performed the 'cube perspective test' [Stumpf, H., & Fay, E. (1983). Schlauchfiguren: Ein Test zur Beurteilung des räumlichen Vorstellungsvermögens. Verlag für Psychologie Dr. C. J. Hogrefe, Göttingen, Toronto, Zürich] a spatial orientation task, while the cerebral blood flow velocity (CBFV) was simultaneously measured in both middle cerebral arteries (MCAs). In addition, the established word generation paradigm for language lateralization was performed. Subjects with atypical language representation were excluded. Data were analysed offline with the software Average, which performed a heart-cycle integration and a baseline-correction and calculated a lateralization index (LI) with its standard error of the mean increase in CBFV separately for both MCAs. Twenty-one of 29 subjects (72.4%) lateralized to the right hemisphere (chi2=5.828, p=0.016). The mean LI of the spatial orientation paradigm pointed to the right hemisphere (x =-1.9+/-3.2) and was different from the LI of word generation (x =3.9+/-2.2;p<0.001). There was no correlation between the LI of spatial orientation and word generation (R=0.095, p=0.624). Age of the subjects did not correlate with the LI during spatial orientation (p>0.05) but negatively with the LI during word generation (R=-0.468, p=0.010). The maximum increase of CBFV was greater in the spatial orientation (14.0%+/-3.6%) than in the word generation paradigm (9.4%+/-4.0%; p<0.001). In more than two thirds of the subjects with left-sided language dominance, the spatial orientation paradigm was able to identify the non-dominant hemisphere. The results suggest both paradigms to be independent of each other. The spatial orientation paradigm, therefore, appears to be a non-verbal fTCD paradigm with possible clinical relevance.

  1. An fMRI Study of the Neural Systems Involved in Visually Cued Auditory Top-Down Spatial and Temporal Attention

    PubMed Central

    Li, Chunlin; Chen, Kewei; Han, Hongbin; Chui, Dehua; Wu, Jinglong

    2012-01-01

    Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen. PMID:23166800

  2. Orientation masking and cross-orientation suppression (XOS): implications for estimates of filter bandwidth.

    PubMed

    Meese, Tim S; Holmes, David J

    2010-10-01

    Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.

  3. Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.

    PubMed

    Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2016-09-07

    Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.

  4. Why is the sunny side always up? Explaining the spatial mapping of concepts by language use.

    PubMed

    Goodhew, Stephanie C; McGaw, Bethany; Kidd, Evan

    2014-10-01

    Humans appear to rely on spatial mappings to represent and describe concepts. The conceptual cuing effect describes the tendency for participants to orient attention to a spatial location following the presentation of an unrelated cue word (e.g., orienting attention upward after reading the word sky). To date, such effects have predominately been explained within the embodied cognition framework, according to which people's attention is oriented on the basis of prior experience (e.g., sky → up via perceptual simulation). However, this does not provide a compelling explanation for how abstract words have the same ability to orient attention. Why, for example, does dream also orient attention upward? We report on an experiment that investigated the role of language use (specifically, collocation between concept words and spatial words for up and down dimensions) and found that it predicted the cuing effect. The results suggest that language usage patterns may be instrumental in explaining conceptual cuing.

  5. Executive attention impairment in first-episode schizophrenia

    PubMed Central

    2012-01-01

    Background We compared the attention abilities of a group of first-episode schizophrenia (FES) patients and a group of healthy participants using the Attention Network Test (ANT), a standard procedure that estimates the functional state of three neural networks controlling the efficiency of three different attentional behaviors, i.e., alerting (achieving and maintaining a state of high sensitivity to incoming stimuli), orienting (ability to select information from sensory input), and executive attention (mechanisms for resolving conflict among thoughts, feelings, and actions). Methods We evaluated 22 FES patients from 17 to 29 years of age with a recent history of a single psychotic episode treated only with atypical neuroleptics, and 20 healthy persons matched with FES patients by sex, age, and educational level as the control group. Attention was estimated using the ANT in which participants indicate whether a central horizontal arrow is pointing to the left or the right. The central arrow may be preceded by spatial or temporal cues denoting where and when the arrow will appear, and may be flanked by other arrows (hereafter, flankers) pointing in the same or the opposite direction. Results The efficiency of the alerting, orienting, and executive networks was estimated by measuring how reaction time was influenced by congruency between temporal, spatial, and flanker cues. We found that the control group only demonstrated significantly greater attention efficiency than FES patients in the executive attention network. Conclusions FES patients are impaired in executive attention but not in alerting or orienting attention, suggesting that executive attention deficit may be a primary impairment during the progression of the disease. PMID:22998680

  6. Statistics of natural scenes and cortical color processing.

    PubMed

    Cecchi, Guillermo A; Rao, A Ravishankar; Xiao, Youping; Kaplan, Ehud

    2010-09-01

    We investigate the spatial correlations of orientation and color information in natural images. We find that the correlation of orientation information falls off rapidly with increasing distance, while color information is more highly correlated over longer distances. We show that orientation and color information are statistically independent in natural images and that the spatial correlation of jointly encoded orientation and color information decays faster than that of color alone. Our findings suggest that: (a) orientation and color information should be processed in separate channels and (b) the organization of cortical color and orientation selectivity at low spatial frequencies is a reflection of the cortical adaptation to the statistical structure of the visual world. These findings are in agreement with biological observations, as form and color are thought to be represented by different classes of neurons in the primary visual cortex, and the receptive fields of color-selective neurons are larger than those of orientation-selective neurons. The agreement between our findings and biological observations supports the ecological theory of perception.

  7. Object Orientation Affects Spatial Language Comprehension

    ERIC Educational Resources Information Center

    Burigo, Michele; Sacchi, Simona

    2013-01-01

    Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process.…

  8. Optimal estimator model for human spatial orientation

    NASA Technical Reports Server (NTRS)

    Borah, J.; Young, L. R.; Curry, R. E.

    1979-01-01

    A model is being developed to predict pilot dynamic spatial orientation in response to multisensory stimuli. Motion stimuli are first processed by dynamic models of the visual, vestibular, tactile, and proprioceptive sensors. Central nervous system function is then modeled as a steady-state Kalman filter which blends information from the various sensors to form an estimate of spatial orientation. Where necessary, this linear central estimator has been augmented with nonlinear elements to reflect more accurately some highly nonlinear human response characteristics. Computer implementation of the model has shown agreement with several important qualitative characteristics of human spatial orientation, and it is felt that with further modification and additional experimental data the model can be improved and extended. Possible means are described for extending the model to better represent the active pilot with varying skill and work load levels.

  9. Intrinsic coincident linear polarimetry using stacked organic photovoltaics.

    PubMed

    Roy, S Gupta; Awartani, O M; Sen, P; O'Connor, B T; Kudenov, M W

    2016-06-27

    Polarimetry has widespread applications within atmospheric sensing, telecommunications, biomedical imaging, and target detection. Several existing methods of imaging polarimetry trade off the sensor's spatial resolution for polarimetric resolution, and often have some form of spatial registration error. To mitigate these issues, we have developed a system using oriented polymer-based organic photovoltaics (OPVs) that can preferentially absorb linearly polarized light. Additionally, the OPV cells can be made semitransparent, enabling multiple detectors to be cascaded along the same optical axis. Since each device performs a partial polarization measurement of the same incident beam, high temporal resolution is maintained with the potential for inherent spatial registration. In this paper, a Mueller matrix model of the stacked OPV design is provided. Based on this model, a calibration technique is developed and presented. This calibration technique and model are validated with experimental data, taken with a cascaded three cell OPV Stokes polarimeter, capable of measuring incident linear polarization states. Our results indicate polarization measurement error of 1.2% RMS and an average absolute radiometric accuracy of 2.2% for the demonstrated polarimeter.

  10. The Relationship Between Postural and Movement Stability.

    PubMed

    Feldman, Anatol G

    2016-01-01

    Postural stabilization is provided by stretch reflexes, intermuscular reflexes, and intrinsic muscle properties. Taken together, these posture-stabilizing mechanisms resist deflections from the posture at which balance of muscle and external forces is maintained. Empirical findings suggest that for each muscle, these mechanisms become functional at a specific, spatial threshold-the muscle length or respective joint angle at which motor units begin to be recruited. Empirical data suggest that spinal and supraspinal centers can shift the spatial thresholds for a group of muscles that stabilized the initial posture. As a consequence, the same stabilizing mechanisms, instead of resisting motion from the initial posture, drive the body to another stable posture. In other words by shifting spatial thresholds, the nervous system converts movement resisting to movement-producing mechanisms. It is illustrated that, contrary to conventional view, this control strategy allows the system to transfer body balance to produce locomotion and other actions without loosing stability at any point of them. It also helps orient posture and movement with the direction of gravity. It is concluded that postural and movement stability is provided by a common mechanism.

  11. The lasting memory enhancements of retrospective attention

    PubMed Central

    Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey

    2016-01-01

    Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues (“retro-cues”) enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. PMID:27038756

  12. Masking reduces orientation selectivity in rat visual cortex

    PubMed Central

    Alwis, Dasuni S.; Richards, Katrina L.

    2016-01-01

    In visual masking the perception of a target stimulus is impaired by a preceding (forward) or succeeding (backward) mask stimulus. The illusion is of interest because it allows uncoupling of the physical stimulus, its neuronal representation, and its perception. To understand the neuronal correlates of masking, we examined how masks affected the neuronal responses to oriented target stimuli in the primary visual cortex (V1) of anesthetized rats (n = 37). Target stimuli were circular gratings with 12 orientations; mask stimuli were plaids created as a binarized sum of all possible target orientations. Spatially, masks were presented either overlapping or surrounding the target. Temporally, targets and masks were presented for 33 ms, but the stimulus onset asynchrony (SOA) of their relative appearance was varied. For the first time, we examine how spatially overlapping and center-surround masking affect orientation discriminability (rather than visibility) in V1. Regardless of the spatial or temporal arrangement of stimuli, the greatest reductions in firing rate and orientation selectivity occurred for the shortest SOAs. Interestingly, analyses conducted separately for transient and sustained target response components showed that changes in orientation selectivity do not always coincide with changes in firing rate. Given the near-instantaneous reductions observed in orientation selectivity even when target and mask do not spatially overlap, we suggest that monotonic visual masking is explained by a combination of neural integration and lateral inhibition. PMID:27535373

  13. Modification of response functions of cat visual cortical cells by spatially congruent perturbing stimuli.

    PubMed

    Kabara, J F; Bonds, A B

    2001-12-01

    Responses of cat striate cortical cells to a drifting sinusoidal grating were modified by the superimposition of a second, perturbing grating (PG) that did not excite the cell when presented alone. One consequence of the presence of a PG was a shift in the tuning curves. The orientation tuning of all 41 cells exposed to a PG and the spatial frequency tuning of 83% of the 23 cells exposed to a PG showed statistically significant dislocations of both the response function peak and center of mass from their single grating values. As found in earlier reports, the presence of PGs suppressed responsiveness. However, reductions measured at the single grating optimum orientation or spatial frequency were on average 1.3 times greater than the suppression found at the peak of the response function modified by the presence of the PG. Much of the loss in response seen at the single grating optimum is thus a result of a shift in the tuning function rather than outright suppression. On average orientation shifts were repulsive and proportional (approximately 0.10 deg/deg) to the angle between the perturbing stimulus and the optimum single grating orientation. Shifts in the spatial frequency response function were both attractive and repulsive, resulting in an overall average of zero. For both simple and complex cells, PGs generally broadened orientation response function bandwidths. Similarly, complex cell spatial frequency response function bandwidths broadened. Simple cell spatial frequency response functions usually did not change, and those that did broadened only 4% on average. These data support the hypothesis that additional sinusoidal components in compound stimuli retune cells' response functions for orientation and spatial frequency.

  14. Sexual Orientation and Spatial Position Effects on Selective Forms of Object Location Memory

    ERIC Educational Resources Information Center

    Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary

    2011-01-01

    Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object…

  15. Two-Point Orientation Discrimination Versus the Traditional Two-Point Test for Tactile Spatial Acuity Assessment

    PubMed Central

    Tong, Jonathan; Mao, Oliver; Goldreich, Daniel

    2013-01-01

    Two-point discrimination is widely used to measure tactile spatial acuity. The validity of the two-point threshold as a spatial acuity measure rests on the assumption that two points can be distinguished from one only when the two points are sufficiently separated to evoke spatially distinguishable foci of neural activity. However, some previous research has challenged this view, suggesting instead that two-point task performance benefits from an unintended non-spatial cue, allowing spuriously good performance at small tip separations. We compared the traditional two-point task to an equally convenient alternative task in which participants attempt to discern the orientation (vertical or horizontal) of two points of contact. We used precision digital readout calipers to administer two-interval forced-choice versions of both tasks to 24 neurologically healthy adults, on the fingertip, finger base, palm, and forearm. We used Bayesian adaptive testing to estimate the participants’ psychometric functions on the two tasks. Traditional two-point performance remained significantly above chance levels even at zero point separation. In contrast, two-point orientation discrimination approached chance as point separation approached zero, as expected for a valid measure of tactile spatial acuity. Traditional two-point performance was so inflated at small point separations that 75%-correct thresholds could be determined on all tested sites for fewer than half of participants. The 95%-correct thresholds on the two tasks were similar, and correlated with receptive field spacing. In keeping with previous critiques, we conclude that the traditional two-point task provides an unintended non-spatial cue, resulting in spuriously good performance at small spatial separations. Unlike two-point discrimination, two-point orientation discrimination rigorously measures tactile spatial acuity. We recommend the use of two-point orientation discrimination for neurological assessment. PMID:24062677

  16. Training the elderly on the ability factors of spatial orientation and inductive reasoning.

    PubMed

    Willis, S L; Schaie, K W

    1986-09-01

    We examined the effects of cognitive training with elderly participants from the Seattle Longitudinal Study. Subjects were classified as having remained stable or having declined over the previous 14-year interval on each of two primary abilities, spatial orientation and inductive reasoning. Subjects who had declined on one of these abilities received training on that ability; subjects who had declined on both abilities or who had remained stable on both were randomly assigned to the spatial orientation or inductive reasoning training programs. Training outcomes were examined within an ability-measurement framework with empirically determined factorial structure. Significant training effects, at the level of the latent ability constructs, occurred for both spatial orientation and inductive reasoning. These effects were general, in that no significant interactions with decline status or gender were found. Thus, training interventions were effective both in remediating cognitive decline on the target abilities and in improving the performance of stable subjects.

  17. Aviation spatial orientation in relationship to head position, altitude interpretation, and control.

    PubMed

    Smith, D R; Cacioppo, A J; Hinman, G E

    1997-06-01

    Recently, a visually driven neck reflex was identified as causing head tilt toward the horizon during VMC flight. If this is the case, then pilots orient about a fixed rather than moving horizon, implying current attitude instruments inaccurately present spatial information. The purpose of this study was to determine if the opto-kinetic cervical neck reflex has an effect dependent on passive (autopilot) or active control of the aircraft. Further, findings could help determine if the opto-kinetic cervical reflex is characteristic of other flight crewmembers. There were 16 military pilots who flew two 13-min VMC low-level routes in a large dome flight simulator. Head position in relation to aircraft bank angle was recorded by a head tracker device. During one low-level route, the pilot had a supervisory role as the autopilot flew the aircraft (passive). The other route was flow manually by the pilot (active). Pilots consistently tilted the head to maintain alignment with the horizon. Similar head tilt angles were found in both the active and passive flight phases. However, head tilt had a faster onset rate in the passive condition. Results indicate the opto-kinetic cervical reflex affects pilots while actively flying or in a supervisory role as the autopilot flies. The consistent head tilt angles in both conditions should be considered in attitude indicator, HUD, and HMD designs. Further, results seem to indicate that non-pilot flight crewmembers are affected by the opto-kinetic cervical reflex which should be considered in spatial disorientation and airsickness discussions.

  18. Coding of spatial attention priorities and object features in the macaque lateral intraparietal cortex.

    PubMed

    Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R

    2017-03-01

    Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. Retrieving Enduring Spatial Representations after Disorientation

    PubMed Central

    Li, Xiaoou; Mou, Weimin; McNamara, Timothy P.

    2012-01-01

    Four experiments tested whether there are enduring spatial representations of objects’ locations in memory. Previous studies have shown that under certain conditions the internal consistency of pointing to objects using memory is disrupted by disorientation. This disorientation effect has been attributed to an absence of or to imprecise enduring spatial representations of objects’ locations. Experiment 1 replicated the standard disorientation effect. Participants learned locations of objects in an irregular layout and then pointed to objects after physically turning to face an object and after disorientation. The expected disorientation was observed. In Experiment 2, after disorientation, participants were asked to imagine they were facing the original learning direction and then physically turned to adopt the test orientation. In Experiment 3, after disorientation, participants turned to adopt the test orientation and then were informed of the original viewing direction by the experimenter. A disorientation effect was not observed in Experiment 2 or 3. In Experiment 4, after disorientation, participants turned to face the test orientation but were not told the original learning orientation. As in Experiment 1, a disorientation effect was observed. These results suggest that there are enduring spatial representations of objects’ locations specified in terms of a spatial reference direction parallel to the learning view, and that the disorientation effect is caused by uncertainty in recovering the spatial reference direction relative to the testing orientation following disorientation. PMID:22682765

  20. Electrophysiological correlates of stimulus-driven reorienting deficits after interference with right parietal cortex during a spatial attention task: a TMS-EEG study

    PubMed Central

    Capotosto, Paolo; Corbetta, Maurizio; Romani, Gian Luca; Babiloni, Claudio

    2013-01-01

    Transcranial magnetic stimulation (TMS) interference over right intraparietal sulcus (IPS) causally disrupts behaviorally and electroencephalographic (EEG) rhythmic correlates of endogenous spatial orienting prior to visual target presentation (Capotosto et al. 2009; 2011). Here we combine data from our previous studies to examine whether right parietal TMS during spatial orienting also impairs stimulus-driven re-orienting or the ability to efficiently process unattended stimuli, i.e. stimuli outside the current focus of attention. Healthy subjects (N=24) performed a Posner spatial cueing task while their EEG activity was being monitored. Repetitive TMS (rTMS) was applied for 150 milliseconds (ms) simultaneously to the presentation of a central arrow directing spatial attention to the location of an upcoming visual target. Right IPS-rTMS impaired target detection, especially for stimuli presented at unattended locations; it also caused a modulation of the amplitude of parieto-occipital positive ERPs peaking at about 480 ms (P3) post-target. The P3 significantly decreased for unattended targets, and significantly increased for attended targets after right IPS-rTMS as compared to Sham stimulation. Similar effects were obtained for left IPS stimulation albeit in a smaller group of subjects. We conclude that disruption of anticipatory processes in right IPS has prolonged effects that persist during target processing. The P3 decrement may reflect interference with post-decision processes that are part of stimulus-driven re-orienting. Right IPS is a node of functional interaction between endogenous spatial orienting and stimulus-driven re-orienting processes in human vision. PMID:22905824

  1. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals

    NASA Astrophysics Data System (ADS)

    Chikashige, T.; Iwasaka, M.

    2018-05-01

    In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.

  2. High-level context effects on spatial displacement: the effects of body orientation and language on memory

    PubMed Central

    Vinson, David W.; Abney, Drew H.; Dale, Rick; Matlock, Teenie

    2014-01-01

    Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person’s body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory. PMID:25071628

  3. Do Sexually Oriented Massage Parlors Cluster in Specific Neighborhoods? A Spatial Analysis of Indoor Sex Work in Los Angeles and Orange Counties, California.

    PubMed

    Chin, John J; Kim, Anna J; Takahashi, Lois; Wiebe, Douglas J

    2015-01-01

    Social determinants of health may be substantially affected by spatial factors, which together may explain the persistence of health inequities. Clustering of possible sources of negative health and social outcomes points to a spatial focus for future interventions. We analyzed the spatial clustering of sex work businesses in Southern California to examine where and why they cluster. We explored economic and legal factors as possible explanations of clustering. We manually coded data from a website used by paying members to post reviews of female massage parlor workers. We identified clusters of sexually oriented massage parlor businesses using spatial autocorrelation tests. We conducted spatial regression using census tract data to identify predictors of clustering. A total of 889 venues were identified. Clusters of tracts having higher-than-expected numbers of sexually oriented massage parlors ("hot spots") were located outside downtowns. These hot spots were characterized by a higher proportion of adult males, a higher proportion of households below the federal poverty level, and a smaller average household size. Sexually oriented massage parlors in Los Angeles and Orange counties cluster in particular neighborhoods. More research is needed to ascertain the causal factors of such clusters and how interventions can be designed to leverage these spatial factors.

  4. High-level context effects on spatial displacement: the effects of body orientation and language on memory.

    PubMed

    Vinson, David W; Abney, Drew H; Dale, Rick; Matlock, Teenie

    2014-01-01

    Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person's body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory.

  5. Neural Models of Spatial Orientation in Novel Environments

    DTIC Science & Technology

    1994-01-01

    tool use, the problem of self-organizing body -centered spatial representations for movement planning and spatial orientation, and the problem of...meeting of the American Association for the Advancement of Science, Boston, February, 1993. 23. Grossberg, S., annual Linnaeus Lecture, Uppsala...Congress on Neural Networks entitled --A self-organizing neural network for learning a body -centered invariant representa- tion of 3-D target

  6. The semantic analysis about the spatial orientation expression of GIS in Chinese case study of Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Liu, Yu; Sun, Jiuhu; Zhang, Jie

    2006-10-01

    Spatial relationship is an important research area in GIS. The orientation information about the urban environment is directly available to human beings through perception and is crucial for establishing their spatial location and for way-finding. People perceive the layout of entities in space, categorize them as spatial relationships, and describe them as spatial expression in language. The orientation expression in different language is different. This paper will discuss the road network in Beijing and its characteristic. We analyze the post-position in Chinese, we know that people like to use 'outside' and 'inside' in the sentence "N is + ring road + postposition" by first experiment. We will illustrate the fuzzy range by 'outside or inside' in the ring-road by the second experiment. In the last part, we conclude the paper and our further research.

  7. Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat.

    PubMed

    Huang, Luoxiu; Chen, Xin; Shou, Tiande

    2004-02-20

    The feedback effect of activity of area 21a on orientation maps of areas 17 and 18 was investigated in cats using intrinsic signal optical imaging. A spatial frequency-dependent decrease in response amplitude of orientation maps to grating stimuli was observed in areas 17 and 18 when area 21a was inactivated by local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The decrease in response amplitude of orientation maps of areas 17 and 18 after the area 21a inactivation paralleled the normal response without the inactivation. Application in area 21a of bicuculline, a GABAa receptor antagonist caused an increase in response amplitude of orientation maps of area 17. The results indicate a positive feedback from high-order visual cortical area 21a to lower-order areas underlying a spatial frequency-dependent mechanism.

  8. Gravity modulates Listing's plane orientation during both pursuit and saccades

    NASA Technical Reports Server (NTRS)

    Hess, Bernhard J M.; Angelaki, Dora E.

    2003-01-01

    Previous studies have shown that the spatial organization of all eye orientations during visually guided saccadic eye movements (Listing's plane) varies systematically as a function of static and dynamic head orientation in space. Here we tested if a similar organization also applies to the spatial orientation of eye positions during smooth pursuit eye movements. Specifically, we characterized the three-dimensional distribution of eye positions during horizontal and vertical pursuit (0.1 Hz, +/-15 degrees and 0.5 Hz, +/-8 degrees) at different eccentricities and elevations while rhesus monkeys were sitting upright or being statically tilted in different roll and pitch positions. We found that the spatial organization of eye positions during smooth pursuit depends on static orientation in space, similarly as during visually guided saccades and fixations. In support of recent modeling studies, these results are consistent with a role of gravity on defining the parameters of Listing's law.

  9. Some influences of touch and pressure cues on human spatial orientation

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1978-01-01

    In order to evaluate the influences of touch and pressure cues on human spatial orientation, blindfolded subjects were exposed to 30 rmp rotation about the Z-axis of their bodies while the axis was horizontal or near horizontal. It was found that the manipulation of pressure patterns to which the subjects are exposed significantly influences apparent orientation. When provided with visual information about actual orientation the subjects will eliminate the postural illusions created by pressure-cue patterns. The localization of sounds is dependent of the apparent orientation and the actual pattern of auditory stimulation. The study provides a basis for investigating: (1) the postural illusions experienced by astronauts in orbital flight and subjects in the free-fall phase of parabolic flight, and (2) the spatial-constancy mechanisms distinguishing changes in sensory afflux conditioned by a subject's movements in relation to the environment, and those conditioned by movements of the environment.

  10. Orientation tuning of binocular summation: a comparison of colour to achromatic contrast

    PubMed Central

    Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.

    2016-01-01

    A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119

  11. Adaptation to implied tilt: extensive spatial extrapolation of orientation gradients

    PubMed Central

    Roach, Neil W.; Webb, Ben S.

    2013-01-01

    To extract the global structure of an image, the visual system must integrate local orientation estimates across space. Progress is being made toward understanding this integration process, but very little is known about whether the presence of structure exerts a reciprocal influence on local orientation coding. We have previously shown that adaptation to patterns containing circular or radial structure induces tilt-aftereffects (TAEs), even in locations where the adapting pattern was occluded. These spatially “remote” TAEs have novel tuning properties and behave in a manner consistent with adaptation to the local orientation implied by the circular structure (but not physically present) at a given test location. Here, by manipulating the spatial distribution of local elements in noisy circular textures, we demonstrate that remote TAEs are driven by the extrapolation of orientation structure over remarkably large regions of visual space (more than 20°). We further show that these effects are not specific to adapting stimuli with polar orientation structure, but require a gradient of orientation change across space. Our results suggest that mechanisms of visual adaptation exploit orientation gradients to predict the local pattern content of unfilled regions of space. PMID:23882243

  12. Exploring the influence of Diels-Alder linker length on photothermal molecule release from gold nanorods.

    PubMed

    Vetterlein, Claudia; Vásquez, Rodrigo; Bolaños, Karen; Acosta, Gerardo A; Guzman, Fanny; Albericio, Fernando; Celis, Freddy; Campos, Marcelo; Kogan, Marcelo J; Araya, Eyleen

    2018-06-01

    We studied the photothermal release of carboxyfluorescein (CF) linked to the gold surface of gold nanorods (GNRs) by two Diels-Alder adducts of different lengths (n = 4 and n = 9). The functionalized GNRs were irradiated with infrared light to produce photothermal release of CF by a retro-Diels-Alder reaction. The adducts were chemisorbed on the GNRs and the functionalized nanoparticles were characterized by UV-vis, DLS, zeta potential and Raman and surface-enhanced Raman spectroscopy (SERS). On the basis of the degree of nanoparticle functionalization and the SERS results, we inferred the orientation of CF on the surface of the gold nanoparticle. Moreover, we determined the photothermal release profiles of CF from the gold surface by laser irradiation. The release was faster for the longer linker (n = 9). SERS revealed that, for the shorter linker (n = 4), molecules are oriented perpendicularly with respect to the gold surface, thereby maintaining the CF far from the surface. In contrast, the longer linker was observed to be tilted, thus maintaining CF close to the gold surface and therefore potentially favoring the photothermal transfer of energy. These results are relevant for the future development of the spatial and temporal controlled release of drugs by means of gold nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Sexual Orientation-Related Differences in Virtual Spatial Navigation and Spatial Search Strategies.

    PubMed

    Rahman, Qazi; Sharp, Jonathan; McVeigh, Meadhbh; Ho, Man-Ling

    2017-07-01

    Spatial abilities are generally hypothesized to differ between men and women, and people with different sexual orientations. According to the cross-sex shift hypothesis, gay men are hypothesized to perform in the direction of heterosexual women and lesbian women in the direction of heterosexual men on cognitive tests. This study investigated sexual orientation differences in spatial navigation and strategy during a virtual Morris water maze task (VMWM). Forty-four heterosexual men, 43 heterosexual women, 39 gay men, and 34 lesbian/bisexual women (aged 18-54 years) navigated a desktop VMWM and completed measures of intelligence, handedness, and childhood gender nonconformity (CGN). We quantified spatial learning (hidden platform trials), probe trial performance, and cued navigation (visible platform trials). Spatial strategies during hidden and probe trials were classified into visual scanning, landmark use, thigmotaxis/circling, and enfilading. In general, heterosexual men scored better than women and gay men on some spatial learning and probe trial measures and used more visual scan strategies. However, some differences disappeared after controlling for age and estimated IQ (e.g., in visual scanning heterosexual men differed from women but not gay men). Heterosexual women did not differ from lesbian/bisexual women. For both sexes, visual scanning predicted probe trial performance. More feminine CGN scores were associated with lower performance among men and greater performance among women on specific spatial learning or probe trial measures. These results provide mixed evidence for the cross-sex shift hypothesis of sexual orientation-related differences in spatial cognition.

  14. Spatially Resolved Mid-IR Spectra from Meteorites; Linking Composition, Crystallographic Orientation and Spectra on the Micro-Scale

    NASA Astrophysics Data System (ADS)

    Stephen, N. R.

    2016-08-01

    IR spectroscopy is used to infer composition of extraterrestrial bodies, comparing bulk spectra to databases of separate mineral phases. We extract spatially resolved meteorite-specific spectra from achondrites with respect to zonation and orientation.

  15. The Two Modes of Visual Processing: Implications for Spatial Orientation

    NASA Technical Reports Server (NTRS)

    Leibowitz, H. W.; Shupert, C. L.; Post, R. B.

    1984-01-01

    The roles of the focal and ambient visual systems in spatial orientation are discussed. The two modes are defined and compared. The contribution of each system is illustrated through examples such as spatial disorientation/motion sickness, vehicle guidance/night driving, visual narrowing under stress/cortical brain damage, and aircraft instrumentation. Emphasis is placed on the need for testing procedures for the ambient system.

  16. Spatial orientation in weightlessness and readaptation to earth's gravity

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Oman, C. M.; Lichtenberg, B. K.; Watt, D. G. D.; Money, K. E.

    1984-01-01

    Unusual vestibular responses to head movements in weightlessness may produce spatial orientation illusions and symptoms of space motion sickness. An integrated set of experiments was performed during Spacelab 1, as well as before and after the flight, to evaluate responses mediated by the otolith organs and semicircular canals. A variety of measurements were used, including eye movements, postural control, perception of orientation, and susceptibility to space sickness.

  17. Spatial cognition

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Kister; Remington, Roger

    1988-01-01

    Spatial cognition is the ability to reason about geometric relationships in the real (or a metaphorical) world based on one or more internal representations of those relationships. The study of spatial cognition is concerned with the representation of spatial knowledge, and our ability to manipulate these representations to solve spatial problems. Spatial cognition is utilized most critically when direct perceptual cues are absent or impoverished. Examples are provided of how human spatial cognitive abilities impact on three areas of space station operator performance: orientation, path planning, and data base management. A videotape provides demonstrations of relevant phenomena (e.g., the importance of orientation for recognition of complex, configural forms). The presentation is represented by abstract and overhead visuals only.

  18. Usefulness of the group-comparison method to demonstrate sex differences in spatial orientation and spatial visualization in older men and women.

    PubMed

    Cohen, D

    1976-10-01

    This paper reports an analysis of sex differences in cognitive test scores covering the dimensions of spatial orientation and spatial visualization in groups of 6 older men and 6 women matched for speed of performance on a maze test and level of performance on a spatial relations task. Older men were more proficient solving spatial problems using the body as a referent, whereas there was no significant difference between the sexes in imagining spatial displacement. Matched comparisons appear a useful adjunct to population research to understand the type(s) of cognitive processes where differential performance by the sexes is observed.

  19. Disruption of spatial organization and interjoint coordination in Parkinson's disease, progressive supranuclear palsy, and multiple system atrophy.

    PubMed

    Leiguarda, R; Merello, M; Balej, J; Starkstein, S; Nogues, M; Marsden, C D

    2000-07-01

    Patients with basal ganglia diseases may exhibit ideomotor apraxia. To define the nature of the impairment of the action production system, we studied a repetitive gesture of slicing bread by three-dimensional computergraphic analysis in eight nondemented patients with Parkinson's disease in the "on" state, five with progressive supranuclear palsy and four with multiple system atrophy. Two patients with Parkinson's disease and two with progressive supranuclear palsy showed ideomotor apraxia for transitive movements on standard testing. A Selspott II system was used for kinematic analysis of wrist trajectories and angular motions of the shoulder and elbow joints. Patients with Parkinson's disease, progressive supranuclear palsy, and even some with multiple system atrophy exhibited kinematic deficits in the spatial precision of movement and velocity-curvature relationships; in addition, they failed to maintain proper angle/angle relationships and to apportion their relative joint amplitudes normally. Spatial disruption of wrist trajectories was more severe in patients with ideomotor apraxia. We posit that the basal ganglia are part of the parallel parieto-frontal circuits devoted to sensorimotor integration for object-oriented behavior. The severity and characteristics of spatial abnormalities of a transitive movement would therefore depend on the location and distribution of the pathologic process within these circuits.

  20. Spatial displacement of numbers on a vertical number line in spatial neglect.

    PubMed

    Mihulowicz, Urszula; Klein, Elise; Nuerk, Hans-Christoph; Willmes, Klaus; Karnath, Hans-Otto

    2015-01-01

    Previous studies that investigated the association of numbers and space in humans came to contradictory conclusions about the spatial character of the mental number magnitude representation and about how it may be influenced by unilateral spatial neglect. The present study aimed to disentangle the debated influence of perceptual vs. representational aspects via explicit mapping of numbers onto space by applying the number line estimation paradigm with vertical orientation of stimulus lines. Thirty-five acute right-brain damaged stroke patients (6 with neglect) were asked to place two-digit numbers on vertically oriented lines with 0 marked at the bottom and 100 at the top. In contrast to the expected, nearly linear mapping in the control patient group, patients with spatial neglect overestimated the position of numbers in the lower middle range. The results corroborate spatial characteristics of the number magnitude representation. In neglect patients, this representation seems to be biased towards the ipsilesional side, independent of the physical orientation of the task stimuli.

  1. Uniformity analysis for a direct-drive laser fusion reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, L.D.; Skupsky, S.; Goldman, L.M.

    1983-01-01

    We show the results of an analysis of the uniformity for a direct-drive reactor using 20, 32, 60, or 96 beams. Several of these options achieve less than the 1% nonuniformity that is required. These options are considered for the cases where the solid angle fraction of the beam ports is 2% and 8%. The analysis is facilitated by separating the contributions due to the geometrical effects related to the number and orientation of the beams from those due to the spatial profile of the individual beams. Emphasis is placed on the wavelength of the nonuniformities, as the shorter wavelengthmore » nonuniformities are more easily smoothed by thermal conduction within the target. The analysis demonstrates that the longer wavelengths can be minimized by suitable choices of geometry and by maintaining beam balance, whereas the shorter wavelength nonuniformities can be reduced by optimizing parameters such as the focal position and the spatial intensity profile of each beam. The tolerances required for beam-to-beam energy balance will be discussed.« less

  2. Do Sexually Oriented Massage Parlors Cluster in Specific Neighborhoods? A Spatial Analysis of Indoor Sex Work in Los Angeles and Orange Counties, California

    PubMed Central

    Kim, Anna J.; Takahashi, Lois; Wiebe, Douglas J.

    2015-01-01

    Objective Social determinants of health may be substantially affected by spatial factors, which together may explain the persistence of health inequities. Clustering of possible sources of negative health and social outcomes points to a spatial focus for future interventions. We analyzed the spatial clustering of sex work businesses in Southern California to examine where and why they cluster. We explored economic and legal factors as possible explanations of clustering. Methods We manually coded data from a website used by paying members to post reviews of female massage parlor workers. We identified clusters of sexually oriented massage parlor businesses using spatial autocorrelation tests. We conducted spatial regression using census tract data to identify predictors of clustering. Results A total of 889 venues were identified. Clusters of tracts having higher-than-expected numbers of sexually oriented massage parlors (“hot spots”) were located outside downtowns. These hot spots were characterized by a higher proportion of adult males, a higher proportion of households below the federal poverty level, and a smaller average household size. Conclusion Sexually oriented massage parlors in Los Angeles and Orange counties cluster in particular neighborhoods. More research is needed to ascertain the causal factors of such clusters and how interventions can be designed to leverage these spatial factors. PMID:26327731

  3. Spatial dynamics of two oriental fruit fly (Diptera: Tephritidae) parasitoids, Fopius arisanus and Diachasmimorpha longicaudata (Hymenoptera: Braconidae), in a Guava orchard in Hawaii.

    PubMed

    Vargas, Roger I; Stark, John D; Banks, John; Leblanc, Luc; Manoukis, Nicholas C; Peck, Steven

    2013-10-01

    We examined spatial patterns of both sexes of oriental fruit fly, Bactrocera dorsalis (Hendel), and its two most abundant parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) in a commercial guava (Psidium guajava L.) orchard. Oriental fruit fly spatial patterns were initially random, but became highly aggregated with host fruit ripening and the subsequent colonization of, first, F. arisanus (egg-pupal parasitoid) and, second, D. longicaudata (larval-pupal parasitoid). There was a significant positive relationship between populations of oriental fruit fly and F. arisanus during each of the F. arisanus increases, a pattern not exhibited between oriental fruit fly and D. longicaudata. Generally, highest total numbers of males and females (oriental fruit fly, F. arisanus, and D. longicaudata) occurred on or about the same date. There was a significant positive correlation between male and female populations of all three species; we measured a lag of 2-4 wk between increases of female F. arisanus and conspecific males. There was a similar trend in one of the two years for the second most abundant species, D. longicaudata, but no sign of a time lag between the sexes for oriental fruit fly. Spatially, we found a significant positive relationship between numbers of F. arisanus in blocks and the average number in adjoining blocks. We did not find the same effect for oriental fruit fly and D. longicaudata, possibly a result of lower overall numbers of the latter two species or less movement of F. arisanus within the field.

  4. Perceived orientation, spatial layout and the geometry of pictures

    NASA Technical Reports Server (NTRS)

    Goldstein, E. Bruce

    1989-01-01

    The purpose is to discuss the role of geometry in determining the perception of spatial layout and perceived orientation in pictures viewed at an angle. This discussion derives from Cutting's (1988) suggestion, based on his analysis of some of the author's data (Goldstein, 1987), that the changes in perceived orientation that occur when pictures are viewed at an angle can be explained in terms of geometrically produced changes in the picture's virtual space.

  5. THE LIMITED EFFECT OF COINCIDENT ORIENTATION ON THE CHOICE OF INTRINSIC AXIS (.).

    PubMed

    Li, Jing; Su, Wei

    2015-06-01

    The allocentric system computes and represents general object-to-object spatial relationships to provide a spatial frame of reference other than the egocentric system. The intrinsic frame-of-reference system theory, which suggests people learn the locations of objects based upon an intrinsic axis, is important in research about the allocentric system. The purpose of the current study was to determine whether the effect of coincident orientation on the choice of intrinsic axis was limited. Two groups of participants (24 men, 24 women; M age = 24 yr., SD = 2) encoded different spatial layouts in which the objects shared the coincident orientation of 315° and 225° separately at learning perspective (0°). The response pattern of partial-scene-recognition task following learning reflected different strategies for choosing the intrinsic axis under different conditions. Under the 315° object-orientation condition, the objects' coincident orientation was as important as the symmetric axis in the choice of the intrinsic axis. However, participants were more likely to choose the symmetric axis as the intrinsic axis under the 225° object-orientation condition. The results suggest the effect of coincident orientation on the choice of intrinsic axis is limited.

  6. Visual-Spatial Orienting in Autism.

    ERIC Educational Resources Information Center

    Wainwright, J. Ann; Bryson, Susan E.

    1996-01-01

    Visual-spatial orienting in 10 high-functioning adults with autism was examined. Compared to controls, subjects responded faster to central than to lateral stimuli, and showed a left visual field advantage for stimulus detection only when laterally presented. Abnormalities in attention shifting and coordination of attentional and motor systems are…

  7. Clozapine and olanzapine but not risperidone impair the pre-frontal striatal system in relation to egocentric spatial orientation in a Y-maze.

    PubMed

    Castro, Cibele Canal; Dos Reis-Lunardelli, Eleonora Araujo; Schmidt, Werner J; Coitinho, Adriana Simon; Izquierdo, Iván

    2007-11-01

    Many studies indicate a dissociation between two forms of orientation: allocentric orientation, in which an organism orients on the basis of cues external to the organism, and egocentric spatial orientation (ESO) by which an organism orients on the basis of proprioceptive information. While allocentric orientation is mediated primarily by the hippocampus and its afferent and efferent connections, ESO is mediated by the prefronto-striatal system. Striatal lesions as well as classical neuroleptics, which block dopamine receptors, act through the prefronto-striatal system and impair ESO. The purpose of the present study was to determine the effects of the atypical antipsychotics clozapine, olanzapine and risperidone which are believed to exert its antipsychotic effects mainly by dopaminergic, cholinergic and serotonergic mechanisms. A delayed-two-alternative-choice-task, under conditions that required ESO and at the same time excluded allocentric spatial orientation was used. Clozapine and olanzapine treated rats made more errors than risperidone treated rats in the delayed alternation in comparison with the controls. Motor abilities were not impaired by any of the drugs. Thus, with regard to the delayed alternation requiring ESO, clozapine and olanzapine but not risperidone affects the prefronto-striatal system in a similar way as classical neuroleptics does.

  8. Can Retinal Ganglion Cell Dipoles Seed Iso-Orientation Domains in the Visual Cortex?

    PubMed Central

    Schottdorf, Manuel; Eglen, Stephen J.; Wolf, Fred; Keil, Wolfgang

    2014-01-01

    It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex. PMID:24475081

  9. Profiles of Motor Laterality in Young Athletes' Performance of Complex Movements: Merging the MOTORLAT and PATHoops Tools

    PubMed Central

    Castañer, Marta; Andueza, Juan; Hileno, Raúl; Puigarnau, Silvia; Prat, Queralt; Camerino, Oleguer

    2018-01-01

    Laterality is a key aspect of the analysis of basic and specific motor skills. It is relevant to sports because it involves motor laterality profiles beyond left-right preference and spatial orientation of the body. The aim of this study was to obtain the laterality profiles of young athletes, taking into account the synergies between the support and precision functions of limbs and body parts in the performance of complex motor skills. We applied two instruments: (a) MOTORLAT, a motor laterality inventory comprising 30 items of basic, specific, and combined motor skills, and (b) the Precision and Agility Tapping over Hoops (PATHoops) task, in which participants had to perform a path by stepping in each of 14 hoops arranged on the floor, allowing the observation of their feet, left-right preference and spatial orientation. A total of 96 young athletes performed the PATHoops task and the 30 MOTORLAT items, allowing us to obtain data about limb dominance and spatial orientation of the body in the performance of complex motor skills. Laterality profiles were obtained by means of a cluster analysis and a correlational analysis and a contingency analysis were applied between the motor skills and spatial orientation actions performed. The results obtained using MOTORLAT show that the combined motor skills criterion (for example, turning while jumping) differentiates athletes' uses of laterality, showing a clear tendency toward mixed laterality profiles in the performance of complex movements. In the PATHoops task, the best spatial orientation strategy was “same way” (same foot and spatial wing) followed by “opposite way” (opposite foot and spatial wing), in keeping with the research assumption that actions unfolding in a horizontal direction in front of an observer's eyes are common in a variety of sports. PMID:29930527

  10. Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?

    PubMed

    Schottdorf, Manuel; Eglen, Stephen J; Wolf, Fred; Keil, Wolfgang

    2014-01-01

    It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.

  11. Auditory spatial attention to speech and complex non-speech sounds in children with autism spectrum disorder.

    PubMed

    Soskey, Laura N; Allen, Paul D; Bennetto, Loisa

    2017-08-01

    One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  12. Temporal dissociation between the focal and orientation components of spatial attention in central and peripheral vision.

    PubMed

    Albonico, Andrea; Malaspina, Manuela; Bricolo, Emanuela; Martelli, Marialuisa; Daini, Roberta

    2016-11-01

    Selective attention, i.e. the ability to concentrate one's limited processing resources on one aspect of the environment, is a multifaceted concept that includes different processes like spatial attention and its subcomponents of orienting and focusing. Several studies, indeed, have shown that visual tasks performance is positively influenced not only by attracting attention to the target location (orientation component), but also by the adjustment of the size of the attentional window according to task demands (focal component). Nevertheless, the relative weight of the two components in central and peripheral vision has never been studied. We conducted two experiments to explore whether different components of spatial attention have different effects in central and peripheral vision. In order to do so, participants underwent either a detection (Experiment 1) or a discrimination (Experiment 2) task where different types of cues elicited different components of spatial attention: a red dot, a small square and a big square (an optimal stimulus for the orientation component, an optimal and a sub-optimal stimulus for the focal component respectively). Response times and cue-size effects indicated a stronger effect of the small square or of the dot in different conditions, suggesting the existence of a dissociation in terms of mechanisms between the focal and the orientation components of spatial attention. Specifically, we found that the orientation component was stronger in periphery, while the focal component was noticeable only in central vision and characterized by an exogenous nature. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The lasting memory enhancements of retrospective attention.

    PubMed

    Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey

    2016-07-01

    Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues ("retro-cues") enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.

    PubMed

    Gharat, Amol; Baker, Curtis L

    2017-01-25

    Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode recording, we found a large fraction of neurons in early visual cortex with receptive fields not selective for orientation that have spatial nonlinearities like those of subcortical Y cells. These are strong candidates for building cue-invariant orientation-selective neurons; we present a neural circuit model that pools such neurons in an imbalanced "push-pull" manner, to generate orientation-selective cue-invariant receptive fields. Copyright © 2017 the authors 0270-6474/17/370998-16$15.00/0.

  15. Spatial Instability of the Linearly Polarized Plane Wave in a Cubic Crystal

    NASA Astrophysics Data System (ADS)

    Kuz'mina, M. S.; Khazanov, E. A.

    2016-12-01

    We study theoretically the development of a small-scale spatial instability of a plane wave in a cubic crystal with [111], [001] and [101] orientations. It is shown that in the [111] oriented crystals the instability develops at lower intensities than in the [001] and [101] oriented crystals. In the latter two crystals, the instability can significantly be suppressed by choosing the optimal radiation polarization. It is found that in the case of a small B integral, the method of temporal contrast enhancement of laser pulses by generating an orthogonal polarization achieves the largest efficiency with the [101] orientation, while the [001] orientation is more preferable for B > 3.

  16. Laminar Neural Field Model of Laterally Propagating Waves of Orientation Selectivity

    PubMed Central

    2015-01-01

    We construct a laminar neural-field model of primary visual cortex (V1) consisting of a superficial layer of neurons that encode the spatial location and orientation of a local visual stimulus coupled to a deep layer of neurons that only encode spatial location. The spatially-structured connections in the deep layer support the propagation of a traveling front, which then drives propagating orientation-dependent activity in the superficial layer. Using a combination of mathematical analysis and numerical simulations, we establish that the existence of a coherent orientation-selective wave relies on the presence of weak, long-range connections in the superficial layer that couple cells of similar orientation preference. Moreover, the wave persists in the presence of feedback from the superficial layer to the deep layer. Our results are consistent with recent experimental studies that indicate that deep and superficial layers work in tandem to determine the patterns of cortical activity observed in vivo. PMID:26491877

  17. Spatially oriented plasmonic ‘nanograter’ structures

    PubMed Central

    Liu, Zhe; Cui, Ajuan; Gong, Zhijie; Li, Hongqiang; Xia, Xiaoxiang; Shen, Tiehan H.; Li, Junjie; Yang, Haifang; Li, Wuxia; Gu, Changzhi

    2016-01-01

    One of the key motivations in producing 3D structures has always been the realization of metamaterials with effective constituent properties that can be tuned in all propagation directions at various frequencies. Here, we report the investigation of spatially oriented “Nanograter” structures with orientation-dependent responses over a wide spectrum by focused-ion-beam based patterning and folding of thin film nanostructures. Au nano units of different shapes, standing along specifically designated orientations, were fabricated. Experimental measurements and simulation results show that such structures offer an additional degree of freedom for adjusting optical properties with the angle of inclination, in additional to the size of the structures. The response frequency can be varied in a wide range (8 μm–14 μm) by the spatial orientation (0°–180°) of the structures, transforming the response from magnetic into electric coupling. This may open up prospects for the fabrication of 3D nanostructures as optical interconnects, focusing elements and logic elements, moving toward the realization of 3D optical circuits. PMID:27357610

  18. Synthesis and Photochromic Properties of Configurationally Varied Azobenzene Glycosides

    PubMed Central

    Chandrasekaran, Vijayanand; Johannes, Eugen; Kobarg, Hauke; Sönnichsen, Frank D; Lindhorst, Thisbe K

    2014-01-01

    Spatial orientation of carbohydrates is a meaningful parameter in carbohydrate recognition processes. To vary orientation of sugars with temporal and spatial resolution, photosensitive glycoconjugates with favorable photochromic properties appear to be opportune. Here, a series of azobenzene glycosides were synthesized, employing glycoside synthesis and Mills reaction, to allow “switching” of carbohydrate orientation by reversible E/Z isomerization of the azobenzene N=N double bond. Their photochromic properties were tested and effects of azobenzene substitution as well as the effect of anomeric configuration and the orientation of the sugars 2-hydroxy group were evaluated. PMID:25050228

  19. Virtual reality in neurologic rehabilitation of spatial disorientation

    PubMed Central

    2013-01-01

    Background Topographical disorientation (TD) is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR) provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active). Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. Methods Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. Results Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. Conclusions Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD. PMID:23394289

  20. Relating Dopaminergic and Cholinergic Polymorphisms to Spatial Attention in Infancy

    ERIC Educational Resources Information Center

    Markant, Julie; Cicchetti, Dante; Hetzel, Susan; Thomas, Kathleen M.

    2014-01-01

    Early selective attention skills are a crucial building block for cognitive development, as attention orienting serves as a primary means by which infants interact with and learn from the environment. Although several studies have examined infants' attention orienting using the spatial cueing task, relatively few studies have examined…

  1. Understanding the pusher behavior of some stroke patients with spatial deficits: a pilot study.

    PubMed

    Pérennou, Dominic Alain; Amblard, Bernard; Laassel, El Mostafa; Benaim, Charles; Hérisson, Christian; Pélissier, Jacques

    2002-04-01

    To investigate whether pusher behavior (ie, a tendency among stroke patients with spatial deficits to actively push away from the nonparalyzed side and to resist any attempt to hold a more upright posture) affects only the trunk, for which gravitational feedback is given by somesthetic information, or the head as well, whose gravitational information is mainly given by the vestibular system (without vision). Description and measurement of clinical features. Rehabilitation center research laboratory. Eight healthy subjects age matched to 14 patients with left hemiplegia resulting from right-hemisphere stroke (3 pushers showing a severe spatial neglect, 11 without pusher behavior). All participants were asked to actively maintain an erect posture while sitting for 8 seconds on a rocking, laterally unstable platform. The task was performed with (in light) and without (in darkness) vision. The number of trials needed to succeed in the task was monitored. In successful trials, head, shoulders, thoracolumbar spine, and pelvis orientation in roll were measured by means of an automated, optical television image processor. Compared with other patients and healthy subjects, the 3 pushers missed many more trials and displayed a contralesional tilt of the pelvis but kept a correct head orientation. This tilt was especially pronounced without vision. Spatial neglect was a key factor, explaining 56% of patients' misorientation behavior with vision and 61% without vision. This pilot kinematic analysis shows that pusher behavior does not result from disrupted processing of vestibular information (eg, caused by a lesion involving the vestibular cortex); rather, it results from a high-order disruption in the processing of somesthetic information originating in the left hemibody, which could be graviceptive neglect (extinction). This disruption leads pushers to actively adjust their body posture to a subjective vertical biased to the side opposite the cerebral lesion. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  2. Balanced Cortical Microcircuitry for Spatial Working Memory Based on Corrective Feedback Control

    PubMed Central

    2014-01-01

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory–inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. PMID:24828633

  3. SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy

    PubMed Central

    Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.

    2016-01-01

    Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012

  4. Orienting Auditory Spatial Attention Engages Frontal Eye Fields and Medial Occipital Cortex in Congenitally Blind Humans

    PubMed Central

    Garg, Arun; Schwartz, Daniel; Stevens, Alexander A.

    2007-01-01

    What happens in vision related cortical areas when congenitally blind (CB) individuals orient attention to spatial locations? Previous neuroimaging of sighted individuals has found overlapping activation in a network of frontoparietal areas including frontal eye-fields (FEF), during both overt (with eye movement) and covert (without eye movement) shifts of spatial attention. Since voluntary eye movement planning seems irrelevant in CB, their FEF neurons should be recruited for alternative functions if their attentional role in sighted individuals is only due to eye movement planning. Recent neuroimaging of the blind has also reported activation in medial occipital areas, normally associated with visual processing, during a diverse set of non-visual tasks, but their response to attentional shifts remains poorly understood. Here, we used event-related fMRI to explore FEF and medial occipital areas in CB individuals and sighted controls with eyes closed (SC) performing a covert attention orienting task, using endogenous verbal cues and spatialized auditory targets. We found robust stimulus-locked FEF activation of all CB subjects, similar but stronger than in SC, suggesting that FEF plays a role in endogenous orienting of covert spatial attention even in individuals in whom voluntary eye movements are irrelevant. We also found robust activation in bilateral medial occipital cortex in CB but not in SC subjects. The response decreased below baseline following endogenous verbal cues but increased following auditory targets, suggesting that the medial occipital area in CB does not directly engage during cued orienting of attention but may be recruited for processing of spatialized auditory targets. PMID:17397882

  5. Neurons in cat V1 show significant clustering by degree of tuning

    PubMed Central

    Ziskind, Avi J.; Emondi, Al A.; Kurgansky, Andrei V.; Rebrik, Sergei P.

    2015-01-01

    Neighboring neurons in cat primary visual cortex (V1) have similar preferred orientation, direction, and spatial frequency. How diverse is their degree of tuning for these properties? To address this, we used single-tetrode recordings to simultaneously isolate multiple cells at single recording sites and record their responses to flashed and drifting gratings of multiple orientations, spatial frequencies, and, for drifting gratings, directions. Orientation tuning width, spatial frequency tuning width, and direction selectivity index (DSI) all showed significant clustering: pairs of neurons recorded at a single site were significantly more similar in each of these properties than pairs of neurons from different recording sites. The strength of the clustering was generally modest. The percent decrease in the median difference between pairs from the same site, relative to pairs from different sites, was as follows: for different measures of orientation tuning width, 29–35% (drifting gratings) or 15–25% (flashed gratings); for DSI, 24%; and for spatial frequency tuning width measured in octaves, 8% (drifting gratings). The clusterings of all of these measures were much weaker than for preferred orientation (68% decrease) but comparable to that seen for preferred spatial frequency in response to drifting gratings (26%). For the above properties, little difference in clustering was seen between simple and complex cells. In studies of spatial frequency tuning to flashed gratings, strong clustering was seen among simple-cell pairs for tuning width (70% decrease) and preferred frequency (71% decrease), whereas no clustering was seen for simple-complex or complex-complex cell pairs. PMID:25652921

  6. A spatial reference frame model of Beijing based on spatial cognitive experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhang, Jing; Liu, Yu

    2006-10-01

    Orientation relation in the spatial relation is very important in GIS. People can obtain orientation information by making use of map reading and the cognition of the surrounding environment, and then create the spatial reference frame. City is a kind of special spatial environment, a person with life experiences has some spatial knowledge about the city where he or she lives in. Based on the spatial knowledge of the city environment, people can position, navigate and understand the meaning embodied in the environment correctly. Beijing as a real geographic space, its layout is very special and can form a kind of new spatial reference frame. Based on the characteristics of the layout of Beijing city, this paper will introduce a new spatial reference frame of Beijing and use two psychological experiments to validate its cognitive plausibility.

  7. Stimulus factors in motion perception and spatial orientation

    NASA Technical Reports Server (NTRS)

    Post, R. B.; Johnson, C. A.

    1984-01-01

    The Malcolm horizon utilizes a large projected light stimulus Peripheral Vision Horizon Device (PVHD) as an attitude indicator in order to achieve a more compelling sense of roll than is obtained with smaller devices. The basic principle is that the larger stimulus is more similar to visibility of a real horizon during roll, and does not require fixation and attention to the degree that smaller displays do. Successful implementation of such a device requires adjustment of the parameters of the visual stimulus so that its effects on motion perception and spatial orientation are optimized. With this purpose in mind, the effects of relevant image variables on the perception of object motion, self motion and spatial orientation are reviewed.

  8. Midline Body Actions and Leftward Spatial “Aiming” in Patients with Spatial Neglect

    PubMed Central

    Chaudhari, Amit; Pigott, Kara; Barrett, A. M.

    2015-01-01

    Spatial motor–intentional “Aiming” bias is a dysfunction in initiation/execution of motor–intentional behavior, resulting in hypokinetic and hypometric leftward movements. Aiming bias may contribute to posture, balance, and movement problems and uniquely account for disability in post-stroke spatial neglect. Body movement may modify and even worsen Aiming errors, but therapy techniques, such as visual scanning training, do not take this into account. Here, we evaluated (1) whether instructing neglect patients to move midline body parts improves their ability to explore left space and (2) whether this has a different impact on different patients. A 68-year-old woman with spatial neglect after a right basal ganglia infarct had difficulty orienting to and identifying left-sided objects. She was prompted with four instructions: “look to the left,” “point with your nose to the left,” “point with your [right] hand to the left,” and “stick out your tongue and point it to the left.” She oriented leftward dramatically better when pointing with the tongue/nose, than she did when pointing with the hand. We then tested nine more consecutive patients with spatial neglect using the same instructions. Only four of them made any orienting errors. Only one patient made >50% errors when pointing with the hand, and she did not benefit from pointing with the tongue/nose. We observed that pointing with the tongue could facilitate left-sided orientation in a stroke survivor with spatial neglect. If midline structures are represented more bilaterally, they may be less affected by Aiming bias. Alternatively, moving the body midline may be more permissive for leftward orienting than moving right body parts. We were not able to replicate this effect in another patient; we suspect that the magnitude of this effect may depend upon the degree to which patients have directional akinesia, spatial Where deficits, or cerebellar/frontal cortical lesions. Future research could examine these hypotheses. PMID:26217211

  9. The Development and Temporal Dynamics of Spatial Orienting in Infants.

    ERIC Educational Resources Information Center

    Johnson, Mark H.; Tucker, Leslie A.

    1996-01-01

    Discusses changes occurring in two-, four-, and six-month-old infants' visual attention span, through a series of experiments examining their ability to orient to peripheral visual stimuli. The results obtained were consistent with the hypothesis that infants get faster with age in shifting attention to a spatial location. (AA)

  10. Strategy Generalization across Orientation Tasks: Testing a Computational Cognitive Model

    ERIC Educational Resources Information Center

    Gunzelmann, Glenn

    2008-01-01

    Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human…

  11. Independent effects of reward expectation and spatial orientation on the processing of emotional facial expressions.

    PubMed

    Kang, Guanlan; Zhou, Xiaolin; Wei, Ping

    2015-09-01

    The present study investigated the effect of reward expectation and spatial orientation on the processing of emotional facial expressions, using a spatial cue-target paradigm. A colored cue was presented at the left or right side of the central fixation point, with its color indicating the monetary reward stakes of a given trial (incentive vs. non-incentive), followed by the presentation of an emotional facial target (angry vs. neutral) at a cued or un-cued location. Participants were asked to discriminate the emotional expression of the target, with the cue-target stimulus onset asynchrony being 200-300 ms in Experiment 1 and 950-1250 ms in Experiment 2a (without a fixation cue) and Experiment 2b (with a fixation cue), producing a spatial facilitation effect and an inhibition of return effect, respectively. The results of all the experiments revealed faster reaction times in the monetary incentive condition than in the non-incentive condition, demonstrating the effect of reward to facilitate task performance. An interaction between reward expectation and the emotion of the target was evident in all the three experiments, with larger reward effects for angry faces than for neutral faces. This interaction was not affected by spatial orientation. These findings demonstrate that incentive motivation improves task performance and increases sensitivity to angry faces, irrespective of spatial orienting and reorienting processes.

  12. Sexual orientation and spatial memory.

    PubMed

    Cánovas, Ma Rosa; Cimadevilla, José Manuel

    2011-11-01

    The present study aimed at determining the influence of sexual orientation in human spatial learning and memory. Participants performed the Boxes Room, a virtual reality version of the Holeboard. In Experiment I, a reference memory task, the position of the hidden rewards remained constant during the whole experiment. In Experiment II, a working memory task, the position of rewards changed between blocks. Each block consisted of two trials: One trial for acquisition and another for retrieval. The results of Experiment I showed that heterosexual men performed better than homosexual men and heterosexual women. They found the rewarded boxes faster. Moreover, homosexual participants committed more errors than heterosexuals. Experiment II showed that working memory abilities are the same in groups of different sexual orientation. These results suggest that sexual orientation is related to spatial navigation abilities, but mostly in men, and limited to reference memory, which depends more on the function of the hippocampal system.

  13. Modulation of auditory stimulus processing by visual spatial or temporal cue: an event-related potentials study.

    PubMed

    Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong

    2013-10-11

    Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. A task-irrelevant stimulus attribute affects perception and short-term memory

    PubMed Central

    Huang, Jie; Kahana, Michael J.; Sekuler, Robert

    2010-01-01

    Selective attention protects cognition against intrusions of task-irrelevant stimulus attributes. This protective function was tested in coordinated psychophysical and memory experiments. Stimuli were superimposed, horizontally and vertically oriented gratings of varying spatial frequency; only one orientation was task relevant. Experiment 1 demonstrated that a task-irrelevant spatial frequency interfered with visual discrimination of the task-relevant spatial frequency. Experiment 2 adopted a two-item Sternberg task, using stimuli that had been scaled to neutralize interference at the level of vision. Despite being visually neutralized, the task-irrelevant attribute strongly influenced recognition accuracy and associated reaction times (RTs). This effect was sharply tuned, with the task-irrelevant spatial frequency having an impact only when the task-relevant spatial frequencies of the probe and study items were highly similar to one another. Model-based analyses of judgment accuracy and RT distributional properties converged on the point that the irrelevant orientation operates at an early stage in memory processing, not at a later one that supports decision making. PMID:19933454

  15. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-raymore » views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.« less

  16. Individual differences in the ability to identify, select and use appropriate frames of reference for perceptuo-motor control.

    PubMed

    Isableu, B; Ohlmann, T; Cremieux, J; Vuillerme, N; Amblard, B; Gresty, M A

    2010-09-01

    The causes of the interindividual differences (IDs) in how we perceive and control spatial orientation are poorly understood. Here, we propose that IDs partly reflect preferred modes of spatial referencing and that these preferences or "styles" are maintained from the level of spatial perception to that of motor control. Two groups of experimental subjects, one with high visual field dependency (FD) and one with marked visual field independency (FI) were identified by the Rod and Frame Test, which identifies relative dependency on a visual frame of reference (VFoR). FD and FI subjects were tasked with standing still in conditions of increasing postural difficulty while visual cues of self-orientation (a visual frame tilted in roll) and self-motion (in stroboscopic illumination) were varied and in darkness to assess visual dependency. Postural stability, overall body orientation and modes of segmental stabilization relative to either external (space) or egocentric (adjacent segments) frames of reference in the roll plane were analysed. We hypothesized that a moderate challenge to balance should enhance subjects' reliance on VFoR, particularly in FD subjects, whereas a substantial challenge should constrain subjects to use a somatic-vestibular based FoR to prevent falling in which case IDs would vanish. The results showed that with increasing difficulty, FD subjects became more unstable and more disoriented shown by larger effects of the tilted visual frame on posture. Furthermore, their preference to coalign body/VFoR coordinate systems lead to greater fixation of the head-trunk articulation and stabilization of the hip in space, whereas the head and trunk remained more stabilized in space with the hip fixed on the leg in FI subjects. These results show that FD subjects have difficulties at identifying and/or adopting a more appropriate FoR based on proprioceptive and vestibular cues to regulate the coalignment of posturo/exocentric FoRs. The FI subjects' resistance in the face of altered VFoR and balance challenge resides in their greater ability to coordinate movement by coaligning body axes with more appropriate FoRs (provided by proprioceptive and vestibular co-variance). Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Spatial disorientation in right-hemisphere infarction: a study of the speed of recovery.

    PubMed Central

    Meerwaldt, J D

    1983-01-01

    Sixteen patients with an infarct in the posterior region of the right hemisphere were tested at fixed intervals after a stroke (2 weeks, 6 weeks, 3 months, 6 months, 1 year) with the rod orientation test and the line orientation test. All patients initially showed spatial disorientation on the rod orientation test, while only three had a defective performance on the line orientation test. The recovery on the rod orientation test was parallel with the neurological improvement. Recovery mainly took place in the first six months after the stroke. Most patients then performed at a normal level. A relation between the size of the lesion (assessed from CT scans) and the speed of recovery was found. PMID:6101178

  18. Human Infants' Preference for Left-to-Right Oriented Increasing Numerical Sequences

    PubMed Central

    de Hevia, Maria Dolores; Girelli, Luisa; Addabbo, Margaret; Macchi Cassia, Viola

    2014-01-01

    While associations between number and space, in the form of a spatially oriented numerical representation, have been extensively reported in human adults, the origins of this phenomenon are still poorly understood. The commonly accepted view is that this number-space association is a product of human invention, with accounts proposing that culture, symbolic knowledge, and mathematics education are at the roots of this phenomenon. Here we show that preverbal infants aged 7 months, who lack symbolic knowledge and mathematics education, show a preference for increasing magnitude displayed in a left-to-right spatial orientation. Infants habituated to left-to-right oriented increasing or decreasing numerical sequences showed an overall higher looking time to new left-to-right oriented increasing numerical sequences at test (Experiment 1). This pattern did not hold when infants were presented with the same ordinal numerical information displayed from right to left (Experiment 2). The different pattern of results was congruent with the presence of a malleable, context-dependent baseline preference for increasing, left-to-right oriented, numerosities (Experiment 3). These findings are suggestive of an early predisposition in humans to link numerical order with a left-to-right spatial orientation, which precedes the acquisition of symbolic abilities, mathematics education, and the acquisition of reading and writing skills. PMID:24802083

  19. The effect of spatial orientation on detecting motion trajectories in noise.

    PubMed

    Pavan, Andrea; Casco, Clara; Mather, George; Bellacosa, Rosilari M; Cuturi, Luigi F; Campana, Gianluca

    2011-09-15

    A series of experiments investigated the extent to which the spatial orientation of a signal line affects discrimination of its trajectory from the random trajectories of background noise lines. The orientation of the signal line was either parallel (iso-) or orthogonal (ortho-) to its motion direction and it was identical in all respects to the noise (orientation, length and speed) except for its motion direction, rendering the signal line indistinguishable from the noise on a frame-to-frame basis. We found that discrimination of ortho-trajectories was generally better than iso-trajectories. Discrimination of ortho-trajectories was largely immune to the effects of spatial jitter in the trajectory, and to variations in step size and line-length. Discrimination of iso-trajectories was reliable provided that step-size was not too short and did not exceed line length, and that the trajectory was straight. The new result that trajectory discrimination in moving line elements is modulated by line orientation suggests that ortho- and iso-trajectory discrimination rely upon two distinct mechanisms: iso-motion discrimination involves a 'motion-streak' process that combines motion information with information about orientation parallel to the motion trajectory, while ortho-motion discrimination involves extended trajectory facilitation in a network of receptive fields with orthogonal orientation tuning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Measuring attention using the Posner cuing paradigm: the role of across and within trial target probabilities

    PubMed Central

    Hayward, Dana A.; Ristic, Jelena

    2013-01-01

    Numerous studies conducted within the recent decades have utilized the Posner cuing paradigm for eliciting, measuring, and theoretically characterizing attentional orienting. However, the data from recent studies suggest that the Posner cuing task might not provide an unambiguous measure of attention, as reflexive spatial orienting has been found to interact with extraneous processes engaged by the task's typical structure, i.e., the probability of target presence across trials, which affects tonic alertness, and the probability of target presence within trials, which affects voluntary temporal preparation. To understand the contribution of each of these two processes to the measurement of attentional orienting we assessed their individual and combined effects on reflexive attention elicited by a spatially nonpredictive peripheral cue. Our results revealed that the magnitude of spatial orienting was modulated by joint changes in the global probability of target presence across trials and the local probability of target presence within trials, while the time course of spatial orienting was susceptible to changes in the probability of target presence across trials. These data thus raise important questions about the choice of task parameters within the Posner cuing paradigm and their role in both the measurement and theoretical attributions of the observed attentional effects. PMID:23730280

  1. High-field fMRI unveils orientation columns in humans.

    PubMed

    Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil

    2008-07-29

    Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.

  2. Training, transfer, and retention of three-dimensional spatial memory in virtual environments

    NASA Technical Reports Server (NTRS)

    Richards, Jason T.; Oman, Charles M.; Shebilske, Wayne L.; Beall, Andrew C.; Liu, Andrew; Natapoff, Alan

    2002-01-01

    Human orientation requires one to remember and visualize spatial arrangements of landmarks from different perspectives. Astronauts have reported difficulties remembering relationships between environmental landmarks when imagined in arbitrary 3D orientations. The present study investigated the effects of strategy training on humans' 1) ability to infer their orientation from landmarks presented ahead and below, 2) performance when subsequently learning a different array, and 3) retention of configurational knowledge over time. On the first experiment day, 24 subjects were tested in a virtual cubic chamber in which a picture of an animal was drawn on each wall. Through trial-by-trial exposures, they had to memorize the spatial relationships among the six pictures around them and learn to predict the direction to a specific picture when facing any view direction, and in any roll orientation. Half of the subjects ("strategy group") were taught methods for remembering picture groupings, while the remainder received no such training ("control group"). After learning one picture array, the procedure was repeated in a second. Accuracy (% correct) and response time learning curves were measured. Performance for the second array and configurational memory of both arrays were also retested 1, 7, and 30 days later. Results showed that subjects "learned how to learn" this generic 3D spatial memory task regardless of their relative orientation to the environment, that ability and configurational knowledge was retained for at least a month, that figure rotation ability and field independence correlate with performance, and that teaching subjects specific strategies in advance significantly improves performance. Training astronauts to perform a similar generic 3D spatial memory task, and suggesting strategies in advance, may help them orient in three dimensions.

  3. Balanced cortical microcircuitry for spatial working memory based on corrective feedback control.

    PubMed

    Lim, Sukbin; Goldman, Mark S

    2014-05-14

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory-inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. Copyright © 2014 the authors 0270-6474/14/346790-17$15.00/0.

  4. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: a Monte Carlo study.

    PubMed

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    2011-03-01

    The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza

    Purpose: The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Methods: Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously publishedmore » design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 deg. to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. Results: The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. Conclusions: The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.« less

  6. Intervention strategies for spatial orientation disorders in dementia: a selective review.

    PubMed

    Caffò, Alessandro O; Hoogeveen, Frans; Groenendaal, Mari; Perilli, Anna Viviana; Picucci, Luciana; Lancioni, Giulio E; Bosco, Andrea

    2014-06-01

    This article provides a brief overview of the intervention strategies aimed at reducing spatial orientation disorders in elderly people with dementia. Eight experimental studies using spatial cues, assistive technology programs, reality orientation training, errorless learning technique, and backward chaining programs are described. They can be classified into two main approaches: restorative and compensatory, depending on whether they rely or not on residual learning ability, respectively. A review of the efficacy of these intervention strategies is proposed. Results suggest that both compensatory and restorative approaches may be valuable in enhancing correct way-finding behavior, with various degrees of effectiveness. Some issues concerning (a) variability in participants' characteristics and experimental designs and (b) practicality of intervention strategies do not permit to draw a definite conclusion. Future research should be aimed at a direct comparison between these two strategies, and should incorporate an extensive neuropsychological assessment of spatial domain.

  7. Evidence for impairments in using static line drawings of eye gaze cues to orient visual-spatial attention in children with high functioning autism.

    PubMed

    Goldberg, Melissa C; Mostow, Allison J; Vecera, Shaun P; Larson, Jennifer C Gidley; Mostofsky, Stewart H; Mahone, E Mark; Denckla, Martha B

    2008-09-01

    We examined the ability to use static line drawings of eye gaze cues to orient visual-spatial attention in children with high functioning autism (HFA) compared to typically developing children (TD). The task was organized such that on valid trials, gaze cues were directed toward the same spatial location as the appearance of an upcoming target, while on invalid trials gaze cues were directed to an opposite location. Unlike TD children, children with HFA showed no advantage in reaction time (RT) on valid trials compared to invalid trials (i.e., no significant validity effect). The two stimulus onset asynchronies (200 ms, 700 ms) did not differentially affect these findings. The results suggest that children with HFA show impairments in utilizing static line drawings of gaze cues to orient visual-spatial attention.

  8. The Migration Matrix: Marine Vertebrate Movements in Magnetic Coordinate Space

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Holdaway, R. N.; Clapham, P. J.; Zerbini, A. N.; Andriolo, A.; Hays, G. C.; Egevang, C.; Domeier, M. L.; Lucas, N.

    2011-12-01

    Determining how vertebrates navigate during their long-distance migrations remains one of the most enduring and fundamental challenges of behavioral ecology. It is widely accepted that spatial orientation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and a variety of viable positional and directional orientation cues, including the sun, stars, and magnetic field, have been documented experimentally. However, a fundamental question remains unanswered: Are empirically observed migratory movements compatible with modern theoretical frameworks of spatial orientation? To address this question, we analysed leatherback turtle (Dermochelys coriacea), arctic tern (Sterna paradisaea), humpback whale (Megaptera novaeangliae), and great white shark (Carcharodon carcharias) track maps, frequency distribution diagrams and time-series plots of animal locations in spherical magnetic coordinate space. Our analyses indicates that, although individual migration tracks are spatially and temporally distinct, vertebrate movements are non-randomly distributed in all three spherical magnetic coordinates (i.e. intensity, inclination, and declination). Stop-over locations, migratory destinations, and re-orientation points occur at similar magnetic coordinate locations, relative to tagging areas, in all four species, suggesting that a common system of magnetic orientation likely informs the navigational behaviors of these phylogenetically diverse taxa. Although our analyses demonstrate that the experiment-derived 'magnetic map' goal orientation theoretical framework of animal navigation is compatible with remotely-sensed migration track data, they also indicate that magnetic information is complemented by spatially and temporally contingent celestial stimuli during navigation.

  9. Dopaminergic and cholinergic modulations of visual-spatial attention and working memory: insights from molecular genetic research and implications for adult cognitive development.

    PubMed

    Störmer, Viola S; Passow, Susanne; Biesenack, Julia; Li, Shu-Chen

    2012-05-01

    Attention and working memory are fundamental for selecting and maintaining behaviorally relevant information. Not only do both processes closely intertwine at the cognitive level, but they implicate similar functional brain circuitries, namely the frontoparietal and the frontostriatal networks, which are innervated by cholinergic and dopaminergic pathways. Here we review the literature on cholinergic and dopaminergic modulations of visual-spatial attention and visual working memory processes to gain insights on aging-related changes in these processes. Some extant findings have suggested that the cholinergic system plays a role in the orienting of attention to enable the detection and discrimination of visual information, whereas the dopaminergic system has mainly been associated with working memory processes such as updating and stabilizing representations. However, since visual-spatial attention and working memory processes are not fully dissociable, there is also evidence of interacting cholinergic and dopaminergic modulations of both processes. We further review gene-cognition association studies that have shown that individual differences in visual-spatial attention and visual working memory are associated with acetylcholine- and dopamine-relevant genes. The efficiency of these 2 transmitter systems declines substantially during healthy aging. These declines, in part, contribute to age-related deficits in attention and working memory functions. We report novel data showing an effect of dopamine COMT gene on spatial updating processes in older but not in younger adults, indicating potential magnification of genetic effects in old age.

  10. A Spatial Data Infrastructure for Environmental Noise Data in Europe.

    PubMed

    Abramic, Andrej; Kotsev, Alexander; Cetl, Vlado; Kephalopoulos, Stylianos; Paviotti, Marco

    2017-07-06

    Access to high quality data is essential in order to better understand the environmental and health impact of noise in an increasingly urbanised world. This paper analyses how recent developments of spatial data infrastructures in Europe can significantly improve the utilization of data and streamline reporting on a pan-European scale. The Infrastructure for Spatial Information in the European Community (INSPIRE), and Environmental Noise Directive (END) described in this manuscript provide principles for data management that, once applied, would lead to a better understanding of the state of environmental noise. Furthermore, shared, harmonised and easily discoverable environmental spatial data, required by the INSPIRE, would also support the data collection needed for the assessment and development of strategic noise maps. Action plans designed by the EU Member States to reduce noise and mitigate related effects can be shared to the public through already established nodes of the European spatial data infrastructure. Finally, data flows regarding reporting on the state of environment and END implementation to the European level can benefit by applying a decentralised e-reporting service oriented infrastructure. This would allow reported data to be maintained, frequently updated and enable pooling of information from/to other relevant and interrelated domains such as air quality, transportation, human health, population, marine environment or biodiversity. We describe those processes and provide a use case in which noise data from two neighbouring European countries are mapped to common data specifications, defined by INSPIRE, thus ensuring interoperability and harmonisation.

  11. Design Considerations and Research Needs for Expanding the Current Perceptual Model of Spatial Orientation into an In-Cockpit Spatial Disorientation Warning System

    DTIC Science & Technology

    2016-11-30

    USAARL Report No. 2017-07 Design Considerations and Research Needs for Expanding the Current Perceptual Model of Spatial Orientation into an In...Brill5, Angus H. Rupert1 1U.S. Army Aeromedical Research Laboratory 2Laulima Government Solutions, LLC 3National AeroSpace Training and Research ...Center 4Embry-Riddle Aeronautical University 5U.S. Air Force Research Laboratory United States Army Aeromedical Research Laboratory Auditory

  12. The Analysis of Elementary Mathematics Preservice Teachers' Spatial Orientation Skills with SOLO Model

    ERIC Educational Resources Information Center

    Özdemir, Ahmet Sükrü; Göktepe Yildiz, Sevda

    2015-01-01

    Problem Statement: The SOLO model places responses provided by students on a certain level instead of placing students there themselves. SOLO taxonomy, including five sub-levels, is used for determining observed structures of learning outcomes in various disciplines and grade levels. On the other hand, the spatial orientation skill is the ability…

  13. Effect of Exogenous Cues on Covert Spatial Orienting in Deaf and Normal Hearing Individuals

    PubMed Central

    Prasad, Seema Gorur; Patil, Gouri Shanker; Mishra, Ramesh Kumar

    2015-01-01

    Deaf individuals have been known to process visual stimuli better at the periphery compared to the normal hearing population. However, very few studies have examined attention orienting in the oculomotor domain in the deaf, particularly when targets appear at variable eccentricity. In this study, we examined if the visual perceptual processing advantage reported in the deaf people also modulates spatial attentional orienting with eye movement responses. We used a spatial cueing task with cued and uncued targets that appeared at two different eccentricities and explored attentional facilitation and inhibition. We elicited both a saccadic and a manual response. The deaf showed a higher cueing effect for the ocular responses than the normal hearing participants. However, there was no group difference for the manual responses. There was also higher facilitation at the periphery for both saccadic and manual responses, irrespective of groups. These results suggest that, owing to their superior visual processing ability, the deaf may orient attention faster to targets. We discuss the results in terms of previous studies on cueing and attentional orienting in deaf. PMID:26517363

  14. Effect of Exogenous Cues on Covert Spatial Orienting in Deaf and Normal Hearing Individuals.

    PubMed

    Prasad, Seema Gorur; Patil, Gouri Shanker; Mishra, Ramesh Kumar

    2015-01-01

    Deaf individuals have been known to process visual stimuli better at the periphery compared to the normal hearing population. However, very few studies have examined attention orienting in the oculomotor domain in the deaf, particularly when targets appear at variable eccentricity. In this study, we examined if the visual perceptual processing advantage reported in the deaf people also modulates spatial attentional orienting with eye movement responses. We used a spatial cueing task with cued and uncued targets that appeared at two different eccentricities and explored attentional facilitation and inhibition. We elicited both a saccadic and a manual response. The deaf showed a higher cueing effect for the ocular responses than the normal hearing participants. However, there was no group difference for the manual responses. There was also higher facilitation at the periphery for both saccadic and manual responses, irrespective of groups. These results suggest that, owing to their superior visual processing ability, the deaf may orient attention faster to targets. We discuss the results in terms of previous studies on cueing and attentional orienting in deaf.

  15. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, Mark

    1994-01-01

    A self-referencing Mach-Zehnder interferometer for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.

  16. EEG Correlates of Preparatory Orienting, Contextual Updating, and Inhibition of Sensory Processing in Left Spatial Neglect.

    PubMed

    Lasaponara, Stefano; D'Onofrio, Marianna; Pinto, Mario; Dragone, Alessio; Menicagli, Dario; Bueti, Domenica; De Lucia, Marzia; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2018-04-11

    Studies with event-related potentials have highlighted deficits in the early phases of orienting to left visual targets in right-brain-damaged patients with left spatial neglect (N+). However, brain responses associated with preparatory orienting of attention, with target novelty and with the detection of a match/mismatch between expected and actual targets (contextual updating), have not been explored in N+. Here in a study in healthy humans and brain-damaged patients of both sexes we demonstrate that frontal activity that reflects supramodal mechanisms of attentional orienting (Anterior Directing Attention Negativity, ADAN) is entirely spared in N+. In contrast, posterior responses that mark the early phases of cued orienting (Early Directing Attention Negativity, EDAN) and the setting up of sensory facilitation over the visual cortex (Late Directing Attention Positivity, LDAP) are suppressed in N+. This uncoupling is associated with damage of parietal-frontal white matter. N+ also exhibit exaggerated novelty reaction to targets in the right side of space and reduced novelty reaction for those in the left side (P3a) together with impaired contextual updating (P3b) in the left space. Finally, we highlight a drop in the amplitude and latency of the P1 that over the left hemisphere signals the early blocking of sensory processing in the right space when targets occur in the left one: this identifies a new electrophysiological marker of the rightward attentional bias in N+. The heterogeneous effects and spatial biases produced by localized brain damage on the different phases of attentional processing indicate relevant functional independence among their underlying neural mechanisms and improve the understanding of the spatial neglect syndrome. SIGNIFICANCE STATEMENT Our investigation answers important questions: are the different components of preparatory orienting (EDAN, ADAN, LDAP) functionally independent in the healthy brain? Is preparatory orienting of attention spared in left spatial neglect? Does the sparing of preparatory orienting have an impact on deficits in reflexive orienting and in the assignment of behavioral relevance to the left space? We show that supramodal preparatory orienting in frontal areas is entirely spared in neglect patients though this does not counterbalance deficits in preparatory parietal-occipital activity, reflexive orienting, and contextual updating. This points at relevant functional dissociations among different components of attention and suggests that improving voluntary attention in N+ might be behaviorally ineffective unless associated with stimulations boosting the response of posterior parietal-occipital areas. Copyright © 2018 the authors 0270-6474/18/383792-17$15.00/0.

  17. Beyond time and space: The effect of a lateralized sustained attention task and brain stimulation on spatial and selective attention.

    PubMed

    Shalev, Nir; De Wandel, Linde; Dockree, Paul; Demeyere, Nele; Chechlacz, Magdalena

    2017-10-03

    The Theory of Visual Attention (TVA) provides a mathematical formalisation of the "biased competition" account of visual attention. Applying this model to individual performance in a free recall task allows the estimation of 5 independent attentional parameters: visual short-term memory (VSTM) capacity, speed of information processing, perceptual threshold of visual detection; attentional weights representing spatial distribution of attention (spatial bias), and the top-down selectivity index. While the TVA focuses on selection in space, complementary accounts of attention describe how attention is maintained over time, and how temporal processes interact with selection. A growing body of evidence indicates that different facets of attention interact and share common neural substrates. The aim of the current study was to modulate a spatial attentional bias via transfer effects, based on a mechanistic understanding of the interplay between spatial, selective and temporal aspects of attention. Specifically, we examined here: (i) whether a single administration of a lateralized sustained attention task could prime spatial orienting and lead to transferable changes in attentional weights (assigned to the left vs right hemi-field) and/or other attentional parameters assessed within the framework of TVA (Experiment 1); (ii) whether the effects of such spatial-priming on TVA parameters could be further enhanced by bi-parietal high frequency transcranial random noise stimulation (tRNS) (Experiment 2). Our results demonstrate that spatial attentional bias, as assessed within the TVA framework, was primed by sustaining attention towards the right hemi-field, but this spatial-priming effect did not occur when sustaining attention towards the left. Furthermore, we show that bi-parietal high-frequency tRNS combined with the rightward spatial-priming resulted in an increased attentional selectivity. To conclude, we present a novel, theory-driven method for attentional modulation providing important insights into how the spatial and temporal processes in attention interact with attentional selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The intelligence of observation: improving high school students' spatial ability by means of intervention unit

    NASA Astrophysics Data System (ADS)

    Patkin, Dorit; Dayan, Ester

    2013-03-01

    This case study of one class versus a control group focused on the impact of an intervention unit, which is not part of the regular curriculum, on the improvement of spatial ability of high school students (forty-six 12th-graders, aged 17-18, both boys and girls) in general as well as from a gender perspective. The study explored three sub-abilities: mental rotation (MR), spatial visualization (VS) and spatial orientation (SO). Findings indicated that the spatial orientation of the experimental group students had considerably improved. The findings also illustrated a significant gender-based advantage in favour of the boys in some of the spatial abilities even before the implementation of the intervention unit. The hypothesis relating to the reduction of the gender differences was not corroborated.

  19. The Riesz transform and simultaneous representations of phase, energy and orientation in spatial vision.

    PubMed

    Langley, Keith; Anderson, Stephen J

    2010-08-06

    To represent the local orientation and energy of a 1-D image signal, many models of early visual processing employ bandpass quadrature filters, formed by combining the original signal with its Hilbert transform. However, representations capable of estimating an image signal's 2-D phase have been largely ignored. Here, we consider 2-D phase representations using a method based upon the Riesz transform. For spatial images there exist two Riesz transformed signals and one original signal from which orientation, phase and energy may be represented as a vector in 3-D signal space. We show that these image properties may be represented by a Singular Value Decomposition (SVD) of the higher-order derivatives of the original and the Riesz transformed signals. We further show that the expected responses of even and odd symmetric filters from the Riesz transform may be represented by a single signal autocorrelation function, which is beneficial in simplifying Bayesian computations for spatial orientation. Importantly, the Riesz transform allows one to weight linearly across orientation using both symmetric and asymmetric filters to account for some perceptual phase distortions observed in image signals - notably one's perception of edge structure within plaid patterns whose component gratings are either equal or unequal in contrast. Finally, exploiting the benefits that arise from the Riesz definition of local energy as a scalar quantity, we demonstrate the utility of Riesz signal representations in estimating the spatial orientation of second-order image signals. We conclude that the Riesz transform may be employed as a general tool for 2-D visual pattern recognition by its virtue of representing phase, orientation and energy as orthogonal signal quantities.

  20. Heredity Factors in Spatial Visualization.

    ERIC Educational Resources Information Center

    Vandenberg, S. G.

    Spatial visualization is not yet clearly understood. Some researchers have concluded that two factors or abilities are involved, spatial orientation and spatial visualization. Different definitions and different tests have been proposed for these two abilities. Several studies indicate that women generally perform more poorly on spatial tests than…

  1. Role of right posterior parietal cortex in maintaining attention to spatial locations over time

    PubMed Central

    Coulthard, Elizabeth J.; Husain, Masud

    2009-01-01

    Recent models of human posterior parietal cortex (PPC) have variously emphasized its role in spatial perception, visuomotor control or directing attention. However, neuroimaging and lesion studies also suggest that the right PPC might play a special role in maintaining an alert state. Previously, assessments of right-hemisphere patients with hemispatial neglect have revealed significant overall deficits on vigilance tasks, but to date there has been no demonstration of a deterioration of performance over time—a vigilance decrement—considered by some to be a key index of a deficit in maintaining attention. Moreover, sustained attention deficits in neglect have not specifically been related to PPC lesions, and it remains unclear whether they interact with spatial impairments in this syndrome. Here we examined the ability of right-hemisphere patients with neglect to maintain attention, comparing them to stroke controls and healthy individuals. We found evidence of an overall deficit in sustaining attention associated with PPC lesions, even for a simple detection task with stimuli presented centrally. In a second experiment, we demonstrated a vigilance decrement in neglect patients specifically only when they were required to maintain attention to spatial locations, but not verbal material. Lesioned voxels in the right PPC spanning a region between the intraparietal sulcus and inferior parietal lobe were significantly associated with this deficit. Finally, we compared performance on a task that required attention to be maintained either to visual patterns or spatial locations, matched for task difficulty. Again, we found a vigilance decrement but only when attention had to be maintained on spatial information. We conclude that sustaining attention to spatial locations is a critical function of the human right PPC which needs to be incorporated into models of normal parietal function as well as those of the clinical syndrome of hemispatial neglect. PMID:19158107

  2. Increasing the space-time product of super-resolution structured illumination microscopy by means of two-pattern illumination

    NASA Astrophysics Data System (ADS)

    Inochkin, F. M.; Pozzi, P.; Bezzubik, V. V.; Belashenkov, N. R.

    2017-06-01

    Superresolution image reconstruction method based on the structured illumination microscopy (SIM) principle with reduced and simplified pattern set is presented. The method described needs only 2 sinusoidal patterns shifted by half a period for each spatial direction of reconstruction, instead of the minimum of 3 for the previously known methods. The method is based on estimating redundant frequency components in the acquired set of modulated images. Digital processing is based on linear operations. When applied to several spatial orientations, the image set can be further reduced to a single pattern for each spatial orientation, complemented by a single non-modulated image for all the orientations. By utilizing this method for the case of two spatial orientations, the total input image set is reduced up to 3 images, providing up to 2-fold improvement in data acquisition time compared to the conventional 3-pattern SIM method. Using the simplified pattern design, the field of view can be doubled with the same number of spatial light modulator raster elements, resulting in a total 4-fold increase in the space-time product. The method requires precise knowledge of the optical transfer function (OTF). The key limitation is the thickness of object layer that scatters or emits light, which requires to be sufficiently small relatively to the lens depth of field. Numerical simulations and experimental results are presented. Experimental results are obtained on the SIM setup with the spatial light modulator based on the 1920x1080 digital micromirror device.

  3. Orienting numbers in mental space: horizontal organization trumps vertical.

    PubMed

    Holmes, Kevin J; Lourenco, Stella F

    2012-01-01

    While research on the spatial representation of number has provided substantial evidence for a horizontally oriented mental number line, recent studies suggest vertical organization as well. Directly comparing the relative strength of horizontal and vertical organization, however, we found no evidence of spontaneous vertical orientation (upward or downward), and horizontal trumped vertical when pitted against each other (Experiment 1). Only when numbers were conceptualized as magnitudes (as opposed to nonmagnitude ordinal sequences) did reliable vertical organization emerge, with upward orientation preferred (Experiment 2). Altogether, these findings suggest that horizontal representations predominate, and that vertical representations, when elicited, may be relatively inflexible. Implications for spatial organization beyond number, and its ontogenetic basis, are discussed.

  4. Spatial Coding of Eye Movements Relative to Perceived Orientations During Roll Tilt with Different Gravitoinertial Loads

    NASA Technical Reports Server (NTRS)

    Wood, Scott; Clement, Gilles

    2013-01-01

    This purpose of this study was to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness from six subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. Both variability and curvature of gaze trajectories increased during roll tilt compared to the upright position. The saccades were less accurate during parabolic flight compared to measurements obtained in normal gravity. The trajectories of saccades along perceived horizontal orientations tended to deviate in the same direction as the head tilt, while the deviations in gaze trajectories along the perceived vertical orientations deviated in the opposite direction relative to the head tilt. Although subjects were instructed to look off in the distance while performing the eye movements, fixation distance varied with vertical gaze direction independent of whether the saccades were made along perceived aircraft or head orientations. This coupling of horizontal vergence with vertical gaze is in a consistent direction with the vertical slant of the horopter. The increased errors in gaze trajectories along both perceived orientations during microgravity can be attributed to the otolith's role in spatial coding of eye movements.

  5. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data

    PubMed Central

    Harrison, Charlotte; Jackson, Jade; Oh, Seung-Mock; Zeringyte, Vaida

    2016-01-01

    Multivariate pattern analysis of functional magnetic resonance imaging (fMRI) data is widely used, yet the spatial scales and origin of neurovascular signals underlying such analyses remain unclear. We compared decoding performance for stimulus orientation and eye of origin from fMRI measurements in human visual cortex with predictions based on the columnar organization of each feature and estimated the spatial scales of patterns driving decoding. Both orientation and eye of origin could be decoded significantly above chance in early visual areas (V1–V3). Contrary to predictions based on a columnar origin of response biases, decoding performance for eye of origin in V2 and V3 was not significantly lower than that in V1, nor did decoding performance for orientation and eye of origin differ significantly. Instead, response biases for both features showed large-scale organization, evident as a radial bias for orientation, and a nasotemporal bias for eye preference. To determine whether these patterns could drive classification, we quantified the effect on classification performance of binning voxels according to visual field position. Consistent with large-scale biases driving classification, binning by polar angle yielded significantly better decoding performance for orientation than random binning in V1–V3. Similarly, binning by hemifield significantly improved decoding performance for eye of origin. Patterns of orientation and eye preference bias in V2 and V3 showed a substantial degree of spatial correlation with the corresponding patterns in V1, suggesting that response biases in these areas originate in V1. Together, these findings indicate that multivariate classification results need not reflect the underlying columnar organization of neuronal response selectivities in early visual areas. NEW & NOTEWORTHY Large-scale response biases can account for decoding of orientation and eye of origin in human early visual areas V1–V3. For eye of origin this pattern is a nasotemporal bias; for orientation it is a radial bias. Differences in decoding performance across areas and stimulus features are not well predicted by differences in columnar-scale organization of each feature. Large-scale biases in extrastriate areas are spatially correlated with those in V1, suggesting biases originate in primary visual cortex. PMID:27903637

  6. A conditioned visual orientation requires the ellipsoid body in Drosophila

    PubMed Central

    Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng

    2015-01-01

    Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using Drosophila as a model system, we established a visual orientation conditioning paradigm based on a flight simulator in which a stationary flying fly could control the rotation of a visual object. By coupling aversive heat shocks to a fly's orientation toward one side of the visual object, we found that the fly could be conditioned to orientate toward the left or right side of the frontal visual object and retain this conditioned visual orientation. The lower and upper visual fields have different roles in conditioned visual orientation. Transfer experiments showed that conditioned visual orientation could generalize between visual targets of different sizes, compactness, or vertical positions, but not of contour orientation. Rut—Type I adenylyl cyclase and Dnc—phosphodiesterase were dispensable for visual orientation conditioning. Normal activity and scb signaling in R3/R4d neurons of the ellipsoid body were required for visual orientation conditioning. Our studies established a visual orientation conditioning paradigm and examined the behavioral properties and neural circuitry of visual orientation, an important component of the insect's spatial navigation. PMID:25512578

  7. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex

    PubMed Central

    Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David

    2016-01-01

    The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510

  8. Brownian systems with spatially inhomogeneous activity

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Brader, J. M.

    2017-09-01

    We generalize the Green-Kubo approach, previously applied to bulk systems of spherically symmetric active particles [J. Chem. Phys. 145, 161101 (2016), 10.1063/1.4966153], to include spatially inhomogeneous activity. The method is applied to predict the spatial dependence of the average orientation per particle and the density. The average orientation is given by an integral over the self part of the Van Hove function and a simple Gaussian approximation to this quantity yields an accurate analytical expression. Taking this analytical result as input to a dynamic density functional theory approximates the spatial dependence of the density in good agreement with simulation data. All theoretical predictions are validated using Brownian dynamics simulations.

  9. Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN.

    PubMed

    Enugutti, Balaji; Kirchhelle, Charlotte; Oelschner, Maxi; Torres Ruiz, Ramón Angel; Schliebner, Ivo; Leister, Dario; Schneitz, Kay

    2012-09-11

    The spatial coordination of growth is of central importance for the regulation of plant tissue architecture. Individual layers, such as the epidermis, are clonally propagated and structurally maintained by symmetric cell divisions that are oriented along the plane of the layer. The developmental control of this process is poorly understood. The simple cellular basis and sheet-like structure of Arabidopsis integuments make them an attractive model system to address planar growth. Here we report on the characterization of the Arabidopsis UNICORN (UCN) gene. Analysis of ucn integuments reveals localized distortion of planar growth, eventually resulting in an ectopic multicellular protrusion. In addition, ucn mutants exhibit ectopic growth in filaments and petals, as well as aberrant embryogenesis. We further show that UCN encodes an active AGC VIII kinase. Genetic, biochemical, and cell biological data suggest that UCN suppresses ectopic growth in integuments by directly repressing the KANADI transcription factor ABERRANT TESTA SHAPE. Our findings indicate that UCN represents a unique plant growth regulator that maintains planar growth of integuments by repressing a developmental regulator involved in the control of early integument growth and polarity.

  10. Dangerous animals capture and maintain attention in humans.

    PubMed

    Yorzinski, Jessica L; Penkunas, Michael J; Platt, Michael L; Coss, Richard G

    2014-05-28

    Predation is a major source of natural selection on primates and may have shaped attentional processes that allow primates to rapidly detect dangerous animals. Because ancestral humans were subjected to predation, a process that continues at very low frequencies, we examined the visual processes by which men and women detect dangerous animals (snakes and lions). We recorded the eye movements of participants as they detected images of a dangerous animal (target) among arrays of nondangerous animals (distractors) as well as detected images of a nondangerous animal (target) among arrays of dangerous animals (distractors). We found that participants were quicker to locate targets when the targets were dangerous animals compared with nondangerous animals, even when spatial frequency and luminance were controlled. The participants were slower to locate nondangerous targets because they spent more time looking at dangerous distractors, a process known as delayed disengagement, and looked at a larger number of dangerous distractors. These results indicate that dangerous animals capture and maintain attention in humans, suggesting that historical predation has shaped some facets of visual orienting and its underlying neural architecture in modern humans.

  11. Texture-dependent motion signals in primate middle temporal area

    PubMed Central

    Gharaei, Saba; Tailby, Chris; Solomon, Selina S; Solomon, Samuel G

    2013-01-01

    Neurons in the middle temporal (MT) area of primate cortex provide an important stage in the analysis of visual motion. For simple stimuli such as bars and plaids some neurons in area MT – pattern cells – seem to signal motion independent of contour orientation, but many neurons – component cells – do not. Why area MT supports both types of receptive field is unclear. To address this we made extracellular recordings from single units in area MT of anaesthetised marmoset monkeys and examined responses to two-dimensional images with a large range of orientations and spatial frequencies. Component and pattern cell response remained distinct during presentation of these complex spatial textures. Direction tuning curves were sharpest in component cells when a texture contained a narrow range of orientations, but were similar across all neurons for textures containing all orientations. Response magnitude of pattern cells, but not component cells, increased with the spatial bandwidth of the texture. In addition, response variability in all neurons was reduced when the stimulus was rich in spatial texture. Fisher information analysis showed that component cells provide more informative responses than pattern cells when a texture contains a narrow range of orientations, but pattern cells had more informative responses for broadband textures. Component cells and pattern cells may therefore coexist because they provide complementary and parallel motion signals. PMID:24000175

  12. The Role of Visual Cues in Microgravity Spatial Orientation

    NASA Technical Reports Server (NTRS)

    Oman, Charles M.; Howard, Ian P.; Smith, Theodore; Beall, Andrew C.; Natapoff, Alan; Zacher, James E.; Jenkin, Heather L.

    2003-01-01

    In weightlessness, astronauts must rely on vision to remain spatially oriented. Although gravitational down cues are missing, most astronauts maintain a subjective vertical -a subjective sense of which way is up. This is evidenced by anecdotal reports of crewmembers feeling upside down (inversion illusions) or feeling that a floor has become a ceiling and vice versa (visual reorientation illusions). Instability in the subjective vertical direction can trigger disorientation and space motion sickness. On Neurolab, a virtual environment display system was used to conduct five interrelated experiments, which quantified: (a) how the direction of each person's subjective vertical depends on the orientation of the surrounding visual environment, (b) whether rolling the virtual visual environment produces stronger illusions of circular self-motion (circular vection) and more visual reorientation illusions than on Earth, (c) whether a virtual scene moving past the subject produces a stronger linear self-motion illusion (linear vection), and (d) whether deliberate manipulation of the subjective vertical changes a crewmember's interpretation of shading or the ability to recognize objects. None of the crew's subjective vertical indications became more independent of environmental cues in weightlessness. Three who were either strongly dependent on or independent of stationary visual cues in preflight tests remained so inflight. One other became more visually dependent inflight, but recovered postflight. Susceptibility to illusions of circular self-motion increased in flight. The time to the onset of linear self-motion illusions decreased and the illusion magnitude significantly increased for most subjects while free floating in weightlessness. These decreased toward one-G levels when the subject 'stood up' in weightlessness by wearing constant force springs. For several subjects, changing the relative direction of the subjective vertical in weightlessness-either by body rotation or by simply cognitively initiating a visual reorientation-altered the illusion of convexity produced when viewing a flat, shaded disc. It changed at least one person's ability to recognize previously presented two-dimensional shapes. Overall, results show that most astronauts become more dependent on dynamic visual motion cues and some become responsive to stationary orientation cues. The direction of the subjective vertical is labile in the absence of gravity. This can interfere with the ability to properly interpret shading, or to recognize complex objects in different orientations.

  13. Temporal focusing-based widefield multiphoton microscopy with spatially modulated illumination for biotissue imaging.

    PubMed

    Chang, Chia-Yuan; Lin, Cheng-Han; Lin, Chun-Yu; Sie, Yong-Da; Hu, Yvonne Yuling; Tsai, Sheng-Feng; Chen, Shean-Jen

    2018-01-01

    A developed temporal focusing-based multiphoton excitation microscope (TFMPEM) has a digital micromirror device (DMD) which is adopted not only as a blazed grating for light spatial dispersion but also for patterned illumination simultaneously. Herein, the TFMPEM has been extended to implement spatially modulated illumination at structured frequency and orientation to increase the beam coverage at the back-focal aperture of the objective lens. The axial excitation confinement (AEC) of TFMPEM can be condensed from 3.0 μm to 1.5 μm for a 50 % improvement. By using the TFMPEM with HiLo technique as two structured illuminations at the same spatial frequency but different orientation, reconstructed biotissue images according to the condensed AEC structured illumination are shown obviously superior in contrast and better scattering suppression. Picture: TPEF images of the eosin-stained mouse cerebellar cortex by conventional TFMPEM (left), and the TFMPEM with HiLo technique as 1.09 μm -1 spatially modulated illumination at 90° (center) and 0° (right) orientations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Feature integration and spatial attention: common processes for endogenous and exogenous orienting.

    PubMed

    Henderickx, David; Maetens, Kathleen; Soetens, Eric

    2010-05-01

    Briand (J Exp Psychol Hum Percept Perform 24:1243-1256, 1998) and Briand and Klein (J Exp Psychol Hum Percept Perform 13:228-241, 1987) demonstrated that spatial cueing effects are larger for detecting conjunction of features than for detecting simple features when spatial attention is oriented exogenously, and not when attention is oriented endogenously. Their results were interpreted as if only exogenous attention affects the posterior spatial attention system that performs the feature binding function attributed to spatial attention by Treisman's feature integration theory (FIT; 1980). In a series of 6 experiments, we attempted to replicate Briand's findings. Manipulations of distractor string size and symmetry of stimulus presentation left and right from fixation were implemented in Posner's cueing paradigm. The data indicate that both exogenous and endogenous cueing address the same attentional mechanism needed for feature binding. The results also limit the generalisability of Briand's proposal concerning the role of exogenous attention in feature integration. Furthermore, the importance to control the effect of unintended attentional capture in a cueing task is demonstrated.

  15. Biotechnology

    NASA Image and Video Library

    2003-01-12

    The short-arm centrifuge subjects an astronaut to conflicting sensory input and study the astronaut's perception of motion. It is one of several instruments used in the Spatial Reorientation Following Space Flight investigation to be conducted after astronauts return to Earth. During space flight, the vestibular organs no longer respond in a familiar way. Instead, inputs from the irner ear do not match those coming from the eyes. While on Earth, you can open your eyes to see if you truly are spinning, but astronauts do not have this luxury. Astronauts can see the floor, but have no sense of down; when they bend their heads forward, the otoliths are not stimulated properly. This state, called sensory conflict, must be resolved by the brain to maintain orientation. When they first return to Earth, astronauts are again disoriented because of sensory conflict. They undergo a period of spatial reorientation, as their brains reconcile what their eyes see and what their vestibular system senses. Recovery can take anywhere from hours to days depending on the length of the mission. Principal Investigator: Dr. William Paloski, Johnson Space Center, Houston, TX.

  16. Microgravity

    NASA Image and Video Library

    2003-01-12

    The short-arm centrifuge subjects an astronaut to conflicting sensory input and study the astronaut's perception of motion. It is one of several instruments used in the Spatial Reorientation Following Space Flight investigation to be conducted on crewmembers. During space flight, the vestibular organs no longer respond in a familiar way. Instead, inputs from the irner ear do not match those coming from the eyes. While on Earth, you can open your eyes to see if you truly are spinning, but astronauts do not have this luxury. Astronauts can see the floor, but have no sense of down; when they bend their heads forward, the otoliths are not stimulated properly. This state, called sensory conflict, must be resolved by the brain to maintain orientation. When they first return to Earth, astronauts are again disoriented because of sensory conflict. They undergo a period of spatial reorientation, as their brains reconcile what their eyes see and what their vestibular system senses. Recovery can take anywhere from hours to days depending on the length of the mission. Principal Investigator: Dr. William Paloski, Johnson Space Center, Houston, TX.

  17. Impaired hippocampal place cell dynamics in a mouse model of the 22q11.2 deletion

    PubMed Central

    Zaremba, Jeffrey D; Diamantopoulou, Anastasia; Danielson, Nathan B; Grosmark, Andres D; Kaifosh, Patrick W; Bowler, John C; Liao, Zhenrui; Sparks, Fraser T; Gogos, Joseph A; Losonczy, Attila

    2018-01-01

    Hippocampal place cells represent the cellular substrate of episodic memory. Place cell ensembles reorganize to support learning but must also maintain stable representations to facilitate memory recall. Despite extensive research, the learning-related role of place cell dynamics in health and disease remains elusive. Using chronic two-photon Ca2+ imaging in hippocampal area CA1 of wild-type and Df(16)A+/− mice, an animal model of 22q11.2 deletion syndrome, one of the most common genetic risk factors for cognitive dysfunction and schizophrenia, we found that goal-oriented learning in wild-type mice was supported by stable spatial maps and robust remapping of place fields toward the goal location. Df(16)A+/− mice showed a significant learning deficit accompanied by reduced spatial map stability and the absence of goal-directed place cell reorganization. These results expand our understanding of the hippocampal ensemble dynamics supporting cognitive flexibility and demonstrate their importance in a model of 22q11.2-associated cognitive dysfunction. PMID:28869582

  18. Planar waveguide integrated spatial filter array

    NASA Astrophysics Data System (ADS)

    Ai, Jun; Dimov, Fedor; Lyon, Richard; Rakuljic, Neven; Griffo, Chris; Xia, Xiaowei; Arik, Engin

    2013-09-01

    An innovative integrated spatial filter array (iSFA) was developed for the nulling interferometer for the detection of earth-like planets and life beyond our solar system. The coherent iSFA comprised a 2D planar lightwave circuit (PLC) array coupled with a pair of 2D lenslet arrays in a hexagonal grid to achieve the optimum fill factor and throughput. The silica-on-silicon waveguide mode field diameter and numerical aperture (NA) were designed to match with the Airy disc and NA of the microlens for optimum coupling. The lenslet array was coated with a chromium pinhole array at the focal plane to pass the single-mode waveguide but attenuate the higher modes. We assembled a 32 by 30 array by stacking 32 chips that were produced by photolithography from a 6-in. silicon wafer. Each chip has 30 planar waveguides. The PLC array is inherently polarization-maintaining (PM) and requires much less alignment in contrast to a fiber array, where each PM fiber must be placed individually and oriented correctly. The PLC array offers better scalability than the fiber bundle array for large arrays of over 1,000 waveguides.

  19. Link between orientation and retinotopic maps in primary visual cortex

    PubMed Central

    Paik, Se-Bum; Ringach, Dario L.

    2012-01-01

    Maps representing the preference of neurons for the location and orientation of a stimulus on the visual field are a hallmark of primary visual cortex. It is not yet known how these maps develop and what function they play in visual processing. One hypothesis postulates that orientation maps are initially seeded by the spatial interference of ON- and OFF-center retinal receptive field mosaics. Here we show that such a mechanism predicts a link between the layout of orientation preferences around singularities of different signs and the cardinal axes of the retinotopic map. Moreover, we confirm the predicted relationship holds in tree shrew primary visual cortex. These findings provide additional support for the notion that spatially structured input from the retina may provide a blueprint for the early development of cortical maps and receptive fields. More broadly, it raises the possibility that spatially structured input from the periphery may shape the organization of primary sensory cortex of other modalities as well. PMID:22509015

  20. A Conditioned Visual Orientation Requires the Ellipsoid Body in "Drosophila"

    ERIC Educational Resources Information Center

    Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng; Liu, Li

    2015-01-01

    Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using…

  1. Behavioral and neural correlates of disrupted orienting attention in posttraumatic stress disorder.

    PubMed

    Russman Block, Stefanie; King, Anthony P; Sripada, Rebecca K; Weissman, Daniel H; Welsh, Robert; Liberzon, Israel

    2017-04-01

    Prior work has revealed that posttraumatic stress disorder (PTSD) is associated with altered (a) attentional performance and (b) resting-state functional connectivity (rsFC) in brain networks linked to attention. Here, we sought to characterize and link these behavioral and brain-based alterations in the context of Posner and Peterson's tripartite model of attention. Male military veterans with PTSD (N = 49; all deployed to Iraq or Afghanistan) and healthy age-and-gender-matched community controls (N = 26) completed the Attention Network Task. A subset of these individuals (36 PTSD and 21 controls) also underwent functional magnetic resonance imaging (fMRI) to assess rsFC. The behavioral measures revealed that the PTSD group was impaired at disengaging spatial attention, relative to the control group. FMRI measures further revealed that, relative to the control group, the PTSD group exhibited greater rsFC between the salience network and (a) the default mode network, (b) the dorsal attention network, and (c) the ventral attention network. Moreover, problems with disengaging spatial attention increased the rsFC between the networks above in the control group, but not in the PTSD group. The present findings link PTSD to both altered orienting of spatial attention and altered relationships between spatial orienting and functional connectivity involving the salience network. Interventions that target orienting and disengaging spatial attention may be a new avenue for PTSD research.

  2. Spatial and physical frames of reference in positioning a limb.

    PubMed

    Garrett, S R; Pagano, C; Austin, G; Turvey, M T

    1998-10-01

    Splints attached to the right forearm were used to rotate the forearm's physical reference frame, as defined by the eigenvectors of its inertia tensor, relative to its spatial reference frame. In two experiments, when subjects were required to orient the forearm parallel to, or at 45 degrees to, the environmental horizontal, they produced limb orientations that were systematically deflected from the forearm's longitudinal spatial axis in the direction of the forearm's physical axes. The position sense seems to be based on inertial eigenvectors rather than on joint angles or gravitational torques.

  3. An automated cell analysis sensing system based on a microfabricated rheoscope for the study of red blood cells physiology.

    PubMed

    Bransky, Avishay; Korin, Natanel; Nemirovski, Yael; Dinnar, Uri

    2006-08-15

    An automated rheoscope has been developed, utilizing a microfabricated glass flow cell, high speed camera and advanced image-processing software. RBCs suspended in a high viscosity medium were filmed flowing through a microchannel. Under these conditions, RBCs exhibit different orientations and deformations according to their location in the velocity profile. The rheoscope system produces valuable data such as velocity profile of RBCs, spatial distribution within a microchannel and deformation index (DI) curves. The variation of DI across the channel height, due to change in shear stress, was measured carrying implications for diffractometry methods. These curves of DI were taken at a constant flow rate and cover most of the relevant shear stress spectrum. This is an improvement of the existing techniques for deformability measurements and may serve as a diagnostic tool for certain blood disorders. The DI curves were compared to measurements of the flowing RBCs velocity profile. In addition, we found that RBCs flowing in a microchannel are mostly gathered in the center of the flow and maintain a characteristic spatial distribution. The spatial distribution in this region changes slightly with increasing flow rate. Hence, the system described, provides means for examining the behavior of individual RBCs, and may serve as a microfabricated diagnostic device for deformability measurement.

  4. Ocular and perceptual responses to linear acceleration in microgravity: alterations in otolith function on the COSMOS and Neurolab flights.

    PubMed

    Moore, Steven T; Clément, Gilles; Dai, Mingjai; Raphan, Theodore; Solomon, David; Cohen, Bernard

    2003-01-01

    In this paper we review space flight experiments performed by our laboratory. Rhesus monkeys were tested before and after 12 days in orbit on COSMOS flights 2044 (1989) and 2229 (1992-1993). There was a long-lasting decrease in post-flight ocular counter-rolling (70%) and vergence (50%) during off-vertical axis rotation. In one animal, the orientation of optokinetic after-nystagmus shifted by 28 degrees from the spatial vertical towards the body vertical early post-flight. Otolith-ocular and perceptual responses were also studied in four astronauts on the 17-day Neurolab shuttle mission (STS-90) in 1998. Ocular counter-rolling was unchanged in response to 1-g and 0.5-g Gy centrifugation during and after flight and to post-flight static roll tilts relative to pre-flight values. Orientation of the optokinetic nystagmus eye velocity axis to gravito-inertial acceleration (GIA) during centrifugation was also unaltered by exposure to microgravity. Perceptual orientation to the GIA was maintained in-flight, and subjects did not report sensation of translation during constant velocity centrifugation. These studies suggest that percepts and ocular responses to tilt are determined by sensing the body vertical relative to the GIA. The findings also raise the possibility that 'artificial gravity' during the Neurolab flight counteracted adaptation of these otolith-ocular responses.

  5. Small on the left, large on the right: numbers orient visual attention onto space in preverbal infants.

    PubMed

    Bulf, Hermann; de Hevia, Maria Dolores; Macchi Cassia, Viola

    2016-05-01

    Numbers are represented as ordered magnitudes along a spatially oriented number line. While culture and formal education modulate the direction of this number-space mapping, it is a matter of debate whether its emergence is entirely driven by cultural experience. By registering 8-9-month-old infants' eye movements, this study shows that numerical cues are critical in orienting infants' visual attention towards a peripheral region of space that is congruent with the number's relative position on a left-to-right oriented representational continuum. This finding provides the first direct evidence that, in humans, the association between numbers and oriented spatial codes occurs before the acquisition of symbols or exposure to formal education, suggesting that the number line is not merely a product of human invention. © 2015 John Wiley & Sons Ltd.

  6. Orientation decoding depends on maps, not columns

    PubMed Central

    Freeman, Jeremy; Brouwer, Gijs Joost; Heeger, David J.; Merriam, Elisha P.

    2011-01-01

    The representation of orientation in primary visual cortex (V1) has been examined at a fine spatial scale corresponding to the columnar architecture. We present functional magnetic resonance imaging (fMRI) measurements providing evidence for a topographic map of orientation preference in human V1 at a much coarser scale, in register with the angular-position component of the retinotopic map of V1. This coarse-scale orientation map provides a parsimonious explanation for why multivariate pattern analysis methods succeed in decoding stimulus orientation from fMRI measurements, challenging the widely-held assumption that decoding results reflect sampling of spatial irregularities in the fine-scale columnar architecture. Decoding stimulus attributes and cognitive states from fMRI measurements has proven useful for a number of applications, but our results demonstrate that the interpretation cannot assume decoding reflects or exploits columnar organization. PMID:21451017

  7. Coarse-Scale Biases for Spirals and Orientation in Human Visual Cortex

    PubMed Central

    Heeger, David J.

    2013-01-01

    Multivariate decoding analyses are widely applied to functional magnetic resonance imaging (fMRI) data, but there is controversy over their interpretation. Orientation decoding in primary visual cortex (V1) reflects coarse-scale biases, including an over-representation of radial orientations. But fMRI responses to clockwise and counter-clockwise spirals can also be decoded. Because these stimuli are matched for radial orientation, while differing in local orientation, it has been argued that fine-scale columnar selectivity for orientation contributes to orientation decoding. We measured fMRI responses in human V1 to both oriented gratings and spirals. Responses to oriented gratings exhibited a complex topography, including a radial bias that was most pronounced in the peripheral representation, and a near-vertical bias that was most pronounced near the foveal representation. Responses to clockwise and counter-clockwise spirals also exhibited coarse-scale organization, at the scale of entire visual quadrants. The preference of each voxel for clockwise or counter-clockwise spirals was predicted from the preferences of that voxel for orientation and spatial position (i.e., within the retinotopic map). Our results demonstrate a bias for local stimulus orientation that has a coarse spatial scale, is robust across stimulus classes (spirals and gratings), and suffices to explain decoding from fMRI responses in V1. PMID:24336733

  8. Neuroscience Investigations: An Overview of Studies Conducted

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.

    1999-01-01

    The neural processes that mediate human spatial orientation and adaptive changes occurring in response to the sensory rearrangement encountered during orbital flight are primarily studied through second and third order responses. In the Extended Duration Orbiter Medical Project (EDOMP) neuroscience investigations, the following were measured: (1) eye movements during acquisition of either static or moving visual targets, (2) postural and locomotor responses provoked by unexpected movement of the support surface, changes in the interaction of visual, proprioceptive, and vestibular information, changes in the major postural muscles via descending pathways, or changes in locomotor pathways, and (3) verbal reports of perceived self-orientation and self-motion which enhance and complement conclusions drawn from the analysis of oculomotor, postural, and locomotor responses. In spaceflight operations, spatial orientation can be defined as situational awareness, where crew member perception of attitude, position, or motion of the spacecraft or other objects in three-dimensional space, including orientation of one's own body, is congruent with actual physical events. Perception of spatial orientation is determined by integrating information from several sensory modalities. This involves higher levels of processing within the central nervous system that control eye movements, locomotion, and stable posture. Spaceflight operational problems occur when responses to the incorrectly perceived spatial orientation are compensatory in nature. Neuroscience investigations were conducted in conjunction with U. S. Space Shuttle flights to evaluate possible changes in the ability of an astronaut to land the Shuttle or effectively perform an emergency post-landing egress following microgravity adaptation during space flights of variable length. While the results of various sensory motor and spatial orientation tests could have an impact on future space flights, our knowledge of sensorimotor adaptation to spaceflight is limited, and the future application of effective countermeasures depends, in large part, on the results from appropriate neuroscience investigations. Therefore, the objective of the neuroscience investigations could have a negative effect on mission success. The Neuroscience Laboratory, Johnson Space Center (JSC), implemented three integrated Detailed Supplementary Objectives (DSO) designed to investigate spatial orientation and the associated compensatory responses as a part of the EDOMP. The four primary goals were (1) to establish a normative database of vestibular and associated sensory changes in response to spaceflight, (2) to determine the underlying etiology of neurovestibular and sensory motor changes associated with exposure to microgravity and the subsequent return to Earth, (3) to provide immediate feedback to spaceflight crews regarding potential countermeasures that could improve performance and safety during and after flight, and (4) to take under consideration appropriate designs for preflight, in-flight, and postflight countermeasures that could be implemented for future flights.

  9. Visual orienting and attention deficits in 5- and 10-month-old preterm infants.

    PubMed

    Ross-Sheehy, Shannon; Perone, Sammy; Macek, Kelsi L; Eschman, Bret

    2017-02-01

    Cognitive outcomes for children born prematurely are well characterized, including increased risk for deficits in memory, attention, processing speed, and executive function. However, little is known about deficits that appear within the first 12 months, and how these early deficits contribute to later outcomes. To probe for functional deficits in visual attention, preterm and full-term infants were tested at 5 and 10 months with the Infant Orienting With Attention task (IOWA; Ross-Sheehy, Schneegans and Spencer, 2015). 5-month-old preterm infants showed significant deficits in orienting speed and task related error. However, 10-month-old preterm infants showed only selective deficits in spatial attention, particularly reflexive orienting responses, and responses that required some inhibition. These emergent deficits in spatial attention suggest preterm differences may be related to altered postnatal developmental trajectories. Moreover, we found no evidence of a dose-response relation between increased gestational risk and spatial attention. These results highlight the critical role of postnatal visual experience, and suggest that visual orienting may be a sensitive measure of attentional delay. Results reported here both inform current theoretical models of early perceptual/cognitive development, and future intervention efforts. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Center of mass trajectory and orientation to ankle and knee in sagittal plane is maintained with forward lean when backpack load changes during treadmill walking.

    PubMed

    Caron, Robert R; Wagenaar, Robert C; Lewis, Cara L; Saltzman, Elliot; Holt, Kenneth G

    2013-01-04

    Maintaining the normal shape and amplitude of the vertical trajectory of the center of mass (COM) during stance has been shown to maximize the efficiency of unloaded gait. Kinematic adaptations to load carriage, such as forward lean have yet to be understood in relation to COM movement. The purpose of this study is to better understand how load impacts the vertical COM(TSYS) trajectory and to clarify the impact of forward lean as it relates to the dynamics of sagittal plane COM(TSYS) movement during stance with changing load. 17 subjects walked on treadmill at a constant preferred walking velocity while nine different loads ranging from 12.5% to 40% bodyweight were systematically added and removed from a backpack. Kinematic data were collected using an Optotrak, three-dimensional motion analysis system and used to estimate position of the COM as well as segment and COM-to-joint vector orientation angles. The shape and amplitude of the COM vertical trajectory was maintained across all loaded conditions. The orientations of COM-to-ankle and -knee vectors were maintained in all loaded conditions except the heaviest load (40% BW). Results suggest that forward lean changed linearly with changes in load to maintain the COM-to-ankle and -knee vector orientations. COM vertical trajectory was maintained by a combination of invariants including lower-limb segment angles and a constant direction of toe-off impulse vector. The kinematic invariants found suggest a simplified control mechanism by which the system limits degrees of freedom and potentially minimizes torque about lower-extremity joints with added load. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Gender Differences in Spatial Ability: "Relationship to Spatial Experience among Chinese Gifted Students in Hong Kong"

    ERIC Educational Resources Information Center

    Chan, David W.

    2007-01-01

    Spatial ability based on measures of mental rotation, and spatial experience based on self-reported participation in visual-arts as well as spatial-orientation activities were assessed in a sample of 337 Chinese, gifted students. Consistent with past findings for the general population, there were gender differences in spatial ability favoring…

  12. Modality-specificity of Selective Attention Networks.

    PubMed

    Stewart, Hannah J; Amitay, Sygal

    2015-01-01

    To establish the modality specificity and generality of selective attention networks. Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled "general attention." The third component was labeled "auditory attention," as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as "spatial orienting" and "spatial conflict," respectively-they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task-all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific.

  13. Statistical Analysis of Sport Movement Observations: the Case of Orienteering

    NASA Astrophysics Data System (ADS)

    Amouzandeh, K.; Karimipour, F.

    2017-09-01

    Study of movement observations is becoming more popular in several applications. Particularly, analyzing sport movement time series has been considered as a demanding area. However, most of the attempts made on analyzing movement sport data have focused on spatial aspects of movement to extract some movement characteristics, such as spatial patterns and similarities. This paper proposes statistical analysis of sport movement observations, which refers to analyzing changes in the spatial movement attributes (e.g. distance, altitude and slope) and non-spatial movement attributes (e.g. speed and heart rate) of athletes. As the case study, an example dataset of movement observations acquired during the "orienteering" sport is presented and statistically analyzed.

  14. Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model

    PubMed Central

    Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki

    2013-01-01

    Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628

  15. Comparison of Spatial Skills of Students Entering Different Engineering Majors

    ERIC Educational Resources Information Center

    Veurink, N.; Sorby, S. A.

    2012-01-01

    Spatial skills have been shown to be important to success in an engineering curriculum, and some question if poor spatial skills prevent students from entering STEM fields or if students with weak spatial skills avoid engineering disciplines believed to highly spatially-oriented. Veurink and Hamlin (2011) found that freshmen students entering…

  16. Pre-saccadic perception: Separate time courses for enhancement and spatial pooling at the saccade target

    PubMed Central

    Buonocore, Antimo; Fracasso, Alessio; Melcher, David

    2017-01-01

    We interact with complex scenes using eye movements to select targets of interest. Studies have shown that the future target of a saccadic eye movement is processed differently by the visual system. A number of effects have been reported, including a benefit for perceptual performance at the target (“enhancement”), reduced influences of backward masking (“un-masking”), reduced crowding (“un-crowding”) and spatial compression towards the saccade target. We investigated the time course of these effects by measuring orientation discrimination for targets that were spatially crowded or temporally masked. In four experiments, we varied the target-flanker distance, the presence of forward/backward masks, the orientation of the flankers and whether participants made a saccade. Masking and randomizing flanker orientation reduced performance in both fixation and saccade trials. We found a small improvement in performance on saccade trials, compared to fixation trials, with a time course that was consistent with a general enhancement at the saccade target. In addition, a decrement in performance (reporting the average flanker orientation, rather than the target) was found in the time bins nearest saccade onset when random oriented flankers were used, consistent with spatial pooling around the saccade target. We did not find strong evidence for un-crowding. Overall, our pattern of results was consistent with both an early, general enhancement at the saccade target and a later, peri-saccadic compression/pooling towards the saccade target. PMID:28614367

  17. Gender differences associated with orienting attentional networks in healthy subjects.

    PubMed

    Liu, Gang; Hu, Pan-Pan; Fan, Jin; Wang, Kai

    2013-06-01

    Selective attention is considered one of the main components of cognitive functioning. A number of studies have demonstrated gender differences in cognition. This study aimed to investigate the gender differences in selective attention in healthy subjects. The present experiment examined the gender differences associated with the efficiency of three attentional networks: alerting, orienting, and executive control attention in 73 healthy subjects (38 males). All participants performed a modified version of the Attention Network Test (ANT). Females had higher orienting scores than males (t = 2.172, P < 0.05). Specifically, females were faster at covert orienting of attention to a spatially cued location. There were no gender differences between males and females in alerting (t = 0.813, P > 0.05) and executive control (t = 0.945, P > 0.05) attention networks. There was a significant gender difference between males and females associated with the orienting network. Enhanced orienting attention in females may function to motivate females to direct their attention to a spatially cued location.

  18. Comparing the effects of sustained and transient spatial attention on the orienting towards and the processing of electrical nociceptive stimuli.

    PubMed

    Van der Lubbe, Rob H J; Blom, Jorian H G; De Kleine, Elian; Bohlmeijer, Ernst T

    2017-02-01

    We examined whether sustained vs. transient spatial attention differentially affect the processing of electrical nociceptive stimuli. Cued nociceptive stimuli of a relevant intensity (low or high) on the left or right forearm required a foot pedal press. The cued side varied trial wise in the transient attention condition, while it remained constant during a series of trials in the sustained attention condition. The orienting phase preceding the nociceptive stimuli was examined by focusing on lateralized EEG activity. ERPs were computed to examine the influence of spatial attention on the processing of the nociceptive stimuli. Results for the orienting phase showed increased ipsilateral alpha and beta power above somatosensory areas in both the transient and the sustained attention conditions, which may reflect inhibition of ipsilateral and/or disinhibition of contralateral somatosensory areas. Cued nociceptive stimuli evoked a larger N130 than uncued stimuli, both in the transient and the sustained attention conditions. Support for increased efficiency of spatial attention in the sustained attention condition was obtained for the N180 and the P540 component. We concluded that spatial attention is more efficient in the case of sustained than in the case of transient spatial attention. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Feature-selective attention in healthy old age: a selective decline in selective attention?

    PubMed

    Quigley, Cliodhna; Müller, Matthias M

    2014-02-12

    Deficient selection against irrelevant information has been proposed to underlie age-related cognitive decline. We recently reported evidence for maintained early sensory selection when older and younger adults used spatial selective attention to perform a challenging task. Here we explored age-related differences when spatial selection is not possible and feature-selective attention must be deployed. We additionally compared the integrity of feedforward processing by exploiting the well established phenomenon of suppression of visual cortical responses attributable to interstimulus competition. Electroencephalogram was measured while older and younger human adults responded to brief occurrences of coherent motion in an attended stimulus composed of randomly moving, orientation-defined, flickering bars. Attention was directed to horizontal or vertical bars by a pretrial cue, after which two orthogonally oriented, overlapping stimuli or a single stimulus were presented. Horizontal and vertical bars flickered at different frequencies and thereby elicited separable steady-state visual-evoked potentials, which were used to examine the effect of feature-based selection and the competitive influence of a second stimulus on ongoing visual processing. Age differences were found in feature-selective attentional modulation of visual responses: older adults did not show consistent modulation of magnitude or phase. In contrast, the suppressive effect of a second stimulus was robust and comparable in magnitude across age groups, suggesting that bottom-up processing of the current stimuli is essentially unchanged in healthy old age. Thus, it seems that visual processing per se is unchanged, but top-down attentional control is compromised in older adults when space cannot be used to guide selection.

  20. Effects of spaceflight on ocular counterrolling and the spatial orientation of the vestibular system

    NASA Technical Reports Server (NTRS)

    Dai, M.; McGarvie, L.; Kozlovskaya, I.; Raphan, T.; Cohen, B.

    1994-01-01

    We recorded the horizontal (yaw), vertical (pitch), and torsional (roll) eye movements of two rhesus monkeys with scleral search coils before and after the COSMOS Biosatellite 2229 Flight. The aim was to determine effects of adaptation to microgravity on the vestibulo-ocular reflex (VOR). The animals flew for 11 days. The first postflight tests were 22 h and 55 h after landing, and testing extended for 11 days after reentry. There were four significant effects of spaceflight on functions related to spatial orientation: (1) Compensatory ocular counterrolling (OCR) was reduced by about 70% for static and dynamic head tilts with regard to gravity. The reduction in OCR persisted in the two animals throughout postflight testing. (2) The gain of the torsional component of the angular VOR (roll VOR) was decreased by 15% and 50% in the two animals over the same period. (3) An up-down asymmetry of nystagmus, present in the two monkeys before flight was reduced after exposure to microgravity. (4) The spatial orientation of velocity storage was shifted in the one monkey that could be tested soon after flight. Before flight, the yaw axis eigenvector of optokinetic afternystagmus was close to gravity when the animal was upright or tilted. After flight, the yaw orientation vector was shifted toward the body yaw axis. By 7 days after recovery, it had reverted to a gravitational orientation. We postulate that spaceflight causes changes in the vestibular system which reflect adaptation of spatial orientation from a gravitational to a body frame of reference. These changes are likely to play a role in the postural, locomotor, and gaze instability demonstrated on reentry after spaceflight.

  1. Differential white matter involvement associated with distinct visuospatial deficits after right hemisphere stroke.

    PubMed

    Carter, Alex R; McAvoy, Mark P; Siegel, Joshua S; Hong, Xin; Astafiev, Serguei V; Rengachary, Jennifer; Zinn, Kristi; Metcalf, Nicholas V; Shulman, Gordon L; Corbetta, Maurizio

    2017-03-01

    Visuospatial attention depends on the integration of multiple processes, and people with right hemisphere lesions after a stroke may exhibit severe or no visuospatial deficits. The anatomy of core components of visuospatial attention is an area of intense interest. Here we examine the relationship between the disruption of core components of attention and lesion distribution in a heterogeneous group (N = 70) of patients with right hemisphere strokes regardless of the presence of clinical neglect. Deficits of lateralized spatial orienting, measured as the difference in reaction times for responding to visual targets in the contralesional or ipsilesional visual field, and deficits in re-orienting attention, as measured by the difference in reaction times for invalidly versus validly cued targets, were measured using a computerized spatial orienting task. Both measures were related through logistic regression and a novel ridge regression method to anatomical damage measured with magnetic resonance imaging. While many regions were common to both deficit maps, a deficit in lateralized spatial orienting was more associated with lesions in the white matter underlying the posterior parietal cortex, and middle and inferior frontal gyri. A deficit in re-orienting of attention toward unattended locations was associated with lesions in the white matter of the posterior parietal cortex, insular cortex and less so with white matter involvement of the anterior frontal lobe. An hodological analysis also supports this partial dissociation between the white matter tracts that are damaged in lateralized spatial biases versus impaired re-orienting. Our results underscore that the integrity of fronto-parietal white matter tracts is crucial for visuospatial attention and that different attention components are mediated by partially distinct neuronal substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Differentiating Spatial Memory from Spatial Transformations

    ERIC Educational Resources Information Center

    Street, Whitney N.; Wang, Ranxiao Frances

    2014-01-01

    The perspective-taking task is one of the most common paradigms used to study the nature of spatial memory, and better performance for certain orientations is generally interpreted as evidence of spatial representations using these reference directions. However, performance advantages can also result from the relative ease in certain…

  3. The role of visualization in learning from computer-based images

    NASA Astrophysics Data System (ADS)

    Piburn, Michael D.; Reynolds, Stephen J.; McAuliffe, Carla; Leedy, Debra E.; Birk, James P.; Johnson, Julia K.

    2005-05-01

    Among the sciences, the practice of geology is especially visual. To assess the role of spatial ability in learning geology, we designed an experiment using: (1) web-based versions of spatial visualization tests, (2) a geospatial test, and (3) multimedia instructional modules built around QuickTime Virtual Reality movies. Students in control and experimental sections were administered measures of spatial orientation and visualization, as well as a content-based geospatial examination. All subjects improved significantly in their scores on spatial visualization and the geospatial examination. There was no change in their scores on spatial orientation. A three-way analysis of variance, with the geospatial examination as the dependent variable, revealed significant main effects favoring the experimental group and a significant interaction between treatment and gender. These results demonstrate that spatial ability can be improved through instruction, that learning of geological content will improve as a result, and that differences in performance between the genders can be eliminated.

  4. Endogenous orienting in the archer fish.

    PubMed

    Saban, William; Sekely, Liora; Klein, Raymond M; Gabay, Shai

    2017-07-18

    The literature has long emphasized the neocortex's role in volitional processes. In this work, we examined endogenous orienting in an evolutionarily older species, the archer fish, which lacks neocortex-like cells. We used Posner's classic endogenous cuing task, in which a centrally presented, spatially informative cue is followed by a target. The fish responded to the target by shooting a stream of water at it. Interestingly, the fish demonstrated a human-like "volitional" facilitation effect: their reaction times to targets that appeared on the side indicated by the precue were faster than their reaction times to targets on the opposite side. The fish also exhibited inhibition of return, an aftermath of orienting that commonly emerges only in reflexive orienting tasks in human participants. We believe that this pattern demonstrates the acquisition of an arbitrary connection between spatial orienting and a nonspatial feature of a centrally presented stimulus in nonprimate species. In the literature on human attention, orienting in response to such contingencies has been strongly associated with volitional control. We discuss the implications of these results for the evolution of orienting, and for the study of volitional processes in all species, including humans.

  5. Selective attention neutralizes the adverse effects of low socioeconomic status on memory in 9-month-old infants

    PubMed Central

    Markant, Julie; Ackerman, Laura K.; Nussenbaum, Kate; Amso, Dima

    2015-01-01

    Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting (“facilitation”) versus a spatial selective attention orienting mechanism that engages distractor suppression (“IOR”). This work showed that object encoding in the context of IOR boosted 9-month-old infants’ recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory links further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. PMID:26597046

  6. The association between reading abilities and visual-spatial attention in Hong Kong Chinese children.

    PubMed

    Liu, Sisi; Liu, Duo; Pan, Zhihui; Xu, Zhengye

    2018-03-25

    A growing body of research suggests that visual-spatial attention is important for reading achievement. However, few studies have been conducted in non-alphabetic orthographies. This study extended the current research to reading development in Chinese, a logographic writing system known for its visual complexity. Eighty Hong Kong Chinese children were selected and divided into poor reader and typical reader groups, based on their performance on the measures of reading fluency, Chinese character reading, and reading comprehension. The poor and typical readers were matched on age and nonverbal intelligence. A Posner's spatial cueing task was adopted to measure the exogenous and endogenous orienting of visual-spatial attention. Although the typical readers showed the cueing effect in the central cue condition (i.e., responses to targets following valid cues were faster than those to targets following invalid cues), the poor readers did not respond differently in valid and invalid conditions, suggesting an impairment of the endogenous orienting of attention. The two groups, however, showed a similar cueing effect in the peripheral cue condition, indicating intact exogenous orienting in the poor readers. These findings generally supported a link between the orienting of covert attention and Chinese reading, providing evidence for the attentional-deficit theory of dyslexia. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Spatial irregularities in Jupiter's upper ionosphere observed by Voyager radio occultations

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.; Tyler, G. L.

    1982-01-01

    Radio scintillations (at 3.6 and 13 cm) produced by scattering from ionospheric irregularities during the Voyager occultations are interpreted using a weak-scattering theory. Least squares solutions for ionospheric parameters derived from the observed fluctuation spectra yield estimates of (1) the axial ratio, (2) angular orientation of the anisotropic irregularities, (3) the power law exponent of the spatial spectrum of irregularities, and (4) the magnitude of the spatial variations in electron density. It is shown that the measured angular orientation of the anisotropic irregularities indicates magnetic field direction and may provide a basis for refining Jovian magnetic field models.

  8. Measurement of Spatial Ability: Construction and Validation of the Spatial Reasoning Instrument for Middle School Students

    ERIC Educational Resources Information Center

    Ramful, Ajay; Lowrie, Thomas; Logan, Tracy

    2017-01-01

    This article describes the development and validation of a newly designed instrument for measuring the spatial ability of middle school students (11-13 years old). The design of the Spatial Reasoning Instrument (SRI) is based on three constructs (mental rotation, spatial orientation, and spatial visualization) and is aligned to the type of spatial…

  9. 37 CFR 1.52 - Language, paper, writing, margins, compact disc specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to identify, maintain, and interpret (e.g., tables in landscape orientation should be identified as landscape orientation or be identified when inquired about) the information on the compact disc. Compact...

  10. 37 CFR 1.52 - Language, paper, writing, margins, compact disc specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to identify, maintain, and interpret (e.g., tables in landscape orientation should be identified as landscape orientation or be identified when inquired about) the information on the compact disc. Compact...

  11. Rigorous Combination of GNSS and VLBI: How it Improves Earth Orientation and Reference Frames

    NASA Astrophysics Data System (ADS)

    Lambert, S. B.; Richard, J. Y.; Bizouard, C.; Becker, O.

    2017-12-01

    Current reference series (C04) of the International Earth Rotation and Reference Systems Service (IERS) are produced by a weighted combination of Earth orientation parameters (EOP) time series built up by combination centers of each technique (VLBI, GNSS, Laser ranging, DORIS). In the future, we plan to derive EOP from a rigorous combination of the normal equation systems of the four techniques.We present here the results of a rigorous combination of VLBI and GNSS pre-reduced, constraint-free, normal equations with the DYNAMO geodetic analysis software package developed and maintained by the French GRGS (Groupe de Recherche en GeÌodeÌsie Spatiale). The used normal equations are those produced separately by the IVS and IGS combination centers to which we apply our own minimal constraints.We address the usefulness of such a method with respect to the classical, a posteriori, combination method, and we show whether EOP determinations are improved.Especially, we implement external validations of the EOP series based on comparison with geophysical excitation and examination of the covariance matrices. Finally, we address the potential of the technique for the next generation celestial reference frames, which are currently determined by VLBI only.

  12. Large scale database scrubbing using object oriented software components.

    PubMed

    Herting, R L; Barnes, M R

    1998-01-01

    Now that case managers, quality improvement teams, and researchers use medical databases extensively, the ability to share and disseminate such databases while maintaining patient confidentiality is paramount. A process called scrubbing addresses this problem by removing personally identifying information while keeping the integrity of the medical information intact. Scrubbing entire databases, containing multiple tables, requires that the implicit relationships between data elements in different tables of the database be maintained. To address this issue we developed DBScrub, a Java program that interfaces with any JDBC compliant database and scrubs the database while maintaining the implicit relationships within it. DBScrub uses a small number of highly configurable object-oriented software components to carry out the scrubbing. We describe the structure of these software components and how they maintain the implicit relationships within the database.

  13. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, M.

    1994-04-19

    A self-referencing Mach-Zehnder interferometer is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.

  14. Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI

    PubMed Central

    Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2017-01-01

    The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations. PMID:28845484

  15. Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI.

    PubMed

    Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2015-10-01

    The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations.

  16. The Relation of Prosocial Orientation to Peer Interactions, Family Social Environment and Personality of Chinese Adolescents

    ERIC Educational Resources Information Center

    Ma, Hing Keung; Cheung, Ping Chung; Shek, Daniel T. L.

    2007-01-01

    This study investigated the relation of peer interactions, family social environment and personality to prosocial orientation in Chinese adolescents. The results indicated no sex differences in general prosocial orientation and inclination to help others, but sex differences in inclination to maintain an affective relationship and inclination to…

  17. Concerning the Motion of FTEs and Attendant Signatures

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    2010-01-01

    We employ the Cooling et al. [2001] model to predict the location, orientation, and motion of flux transfer events (FTEs) generated along finite length component and anti parallel reconnection lines for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) orientations in the plane perpendicular to the SunEarth line at the solstices and equinoxes. For duskward and northward or southward IMF orientations, events formed by component reconnection originate along reconnection curves passing through the sub solar point that tilt from southern dawn to northern dusk. They maintain this orientation as they move either northward into the northern dawn quadrant or southward into the southern dusk quadrant. By contrast, events formed by antiparallel reconnection originate along reconnection curves running from northern dawn to southern dusk in the southern dawn and northern dusk quadrants and maintain these orientations as they move anti sunward into both these quadrants. Although both the component and antiparallel reconnection models can explain previously reported event orientations on the southern dusk magnetopause during intervals of northward and dawn ward IMF orientation, only the component model explains event occurrence near the subsolar magnetopause during intervals when the IMF does not point due southward.

  18. Adaptation to vestibular disorientation. XII, Habituation of vestibular responses : an overview.

    DOT National Transportation Integrated Search

    1974-03-01

    Vestibular and visual mechanisms are critical sensing systems in spatial orientation and in spatial disorientation. In aviation or space environments in particular, the role of the vestibular system is central to the problems of spatial disorientatio...

  19. Enhanced Facilitation of Spatial Attention in Schizophrenia

    PubMed Central

    Spencer, Kevin M.; Nestor, Paul G.; Valdman, Olga; Niznikiewicz, Margaret A.; Shenton, Martha E.; McCarley, Robert W.

    2010-01-01

    Objective While attentional functions are usually found to be impaired in schizophrenia, a review of the literature on the orienting of spatial attention in schizophrenia suggested that voluntary attentional orienting in response to a valid cue might be paradoxically enhanced. We tested this hypothesis with orienting tasks involving the cued detection of a laterally-presented target stimulus. Method Subjects were chronic schizophrenia patients (SZ) and matched healthy control subjects (HC). In Experiment 1 (15 SZ, 16 HC), cues were endogenous (arrows) and could be valid (100% predictive) or neutral with respect to the subsequent target position. In Experiment 2 (16 SZ, 16 HC), subjects performed a standard orienting task with unpredictive exogenous cues (brightening of the target boxes). Results In Experiment 1, SZ showed a larger attentional facilitation effect on reaction time than HC. In Experiment 2, no clear sign of enhanced attentional facilitation was found in SZ. Conclusions The voluntary, facilitatory shifting of spatial attention may be relatively enhanced in individuals with schizophrenia in comparison to healthy individuals. This effect bears resemblance to other relative enhancements of information processing in schizophrenia such as saccade speed and semantic priming. PMID:20919764

  20. Enhanced facilitation of spatial attention in schizophrenia.

    PubMed

    Spencer, Kevin M; Nestor, Paul G; Valdman, Olga; Niznikiewicz, Margaret A; Shenton, Martha E; McCarley, Robert W

    2011-01-01

    While attentional functions are usually found to be impaired in schizophrenia, a review of the literature on the orienting of spatial attention in schizophrenia suggested that voluntary attentional orienting in response to a valid cue might be paradoxically enhanced. We tested this hypothesis with orienting tasks involving the cued detection of a laterally presented target stimulus. Subjects were chronic schizophrenia patients (SZ) and matched healthy control subjects (HC). In Experiment 1 (15 SZ, 16 HC), cues were endogenous (arrows) and could be valid (100% predictive) or neutral with respect to the subsequent target position. In Experiment 2 (16 SZ, 16 HC), subjects performed a standard orienting task with unpredictive exogenous cues (brightening of the target boxes). In Experiment 1, SZ showed a larger attentional facilitation effect on reaction time than HC. In Experiment 2, no clear sign of enhanced attentional facilitation was found in SZ. The voluntary, facilitatory shifting of spatial attention may be relatively enhanced in individuals with schizophrenia in comparison to healthy individuals. This effect bears resemblance to other relative enhancements of information processing in schizophrenia such as saccade speed and semantic priming. (c) 2010 APA, all rights reserved.

  1. Exogenous orienting of attention depends upon the ability to execute eye movements.

    PubMed

    Smith, Daniel T; Rorden, Chris; Jackson, Stephen R

    2004-05-04

    Shifts of attention can be made overtly by moving the eyes or covertly with attention being allocated to a region of space that does not correspond to the current direction of gaze. However, the precise relationship between eye movements and the covert orienting of attention remains controversial. The influential premotor theory proposes that the covert orienting of attention is produced by the programming of (unexecuted) eye movements and thus predicts a strong relationship between the ability to execute eye movements and the operation of spatial attention. Here, we demonstrate for the first time that impaired spatial attention is observed in an individual (AI) who is neurologically healthy but who cannot execute eye movements as a result of a congenital impairment in the elasticity of her eye muscles. This finding provides direct support for the role of the eye-movement system in the covert orienting of attention and suggests that whereas intact cortical structures may be necessary for normal attentional reflexes, they are not sufficient. The ability to move our eyes is essential for the development of normal patterns of spatial attention.

  2. Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre

    PubMed Central

    Dodge, Kara L.; Galuardi, Benjamin; Lutcavage, Molly E.

    2015-01-01

    Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. PMID:25761714

  3. A SOA-based approach to geographical data sharing

    NASA Astrophysics Data System (ADS)

    Li, Zonghua; Peng, Mingjun; Fan, Wei

    2009-10-01

    In the last few years, large volumes of spatial data have been available in different government departments in China, but these data are mainly used within these departments. With the e-government project initiated, spatial data sharing become more and more necessary. Currently, the Web has been used not only for document searching but also for the provision and use of services, known as Web services, which are published in a directory and may be automatically discovered by software agents. Particularly in the spatial domain, the possibility of accessing these large spatial datasets via Web services has motivated research into the new field of Spatial Data Infrastructure (SDI) implemented using service-oriented architecture. In this paper a Service-Oriented Architecture (SOA) based Geographical Information Systems (GIS) is proposed, and a prototype system is deployed based on Open Geospatial Consortium (OGC) standard in Wuhan, China, thus that all the departments authorized can access the spatial data within the government intranet, and also these spatial data can be easily integrated into kinds of applications.

  4. Spatial adaptation of the cortical visual evoked potential of the cat.

    PubMed

    Bonds, A B

    1984-06-01

    Adaptation that is spatially specific for the adapting pattern has been seen psychophysically in humans. This is indirect evidence for independent analyzers (putatively single units) that are specific for orientation and spatial frequency in the human visual system, but it is unclear how global adaptation characteristics may be related to single unit performance. Spatially specific adaptation was sought in the cat visual evoked potential (VEP), with a view towards relating this phenomenon with what we know of cat single units. Adaptation to sine-wave gratings results in a temporary loss of cat VEP amplitude, with induction and recovery similar to that seen in human psychophysical experiments. The amplitude loss was specific for both the spatial frequency and orientation of the adapting pattern. The bandwidth of adaptation was not unlike the average selectivity of a population of cat single units.

  5. Technical Note: Orientation of cracks and hydrology in a shrink-swell soil

    USDA-ARS?s Scientific Manuscript database

    Crack orientations are an important soil physical property that affects water flow, particularly in vertic soils. However, the spatial and temporal variability of crack orientations across different land uses and gilgai features is not well-documented and addressed in hydrology models. Thus there is...

  6. Expert Design Advisor

    DTIC Science & Technology

    1990-10-01

    to economic, technological, spatial or logistic concerns, or involve training, man-machine interfaces, or integration into existing systems. Once the...probabilistic reasoning, mixed analysis- and simulation-oriented, mixed computation- and communication-oriented, nonpreemptive static priority...scheduling base, nonrandomized, preemptive static priority scheduling base, randomized, simulation-oriented, and static scheduling base. The selection of both

  7. Note on evaluating safety performance of road infrastructure to motivate safety competition.

    PubMed

    Han, Sangjin

    2016-01-01

    Road infrastructures are usually developed and maintained by governments or public sectors. There is no competitor in the market of their jurisdiction. This monopolic feature discourages road authorities from improving the level of safety with proactive motivation. This study suggests how to apply a principle of competition for roads, in particular by means of performance evaluation. It first discusses why road infrastructure has been slow in safety oriented development and management in respect of its business model. Then it suggests some practical ways of how to promote road safety between road authorities, particularly by evaluating safety performance of road infrastructure. These are summarized as decision of safety performance indicators, classification of spatial boundaries, data collection, evaluation, and reporting. Some consideration points are also discussed to make safety performance evaluation on road infrastructure lead to better road safety management.

  8. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex.

    PubMed

    Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu

    2012-11-15

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex

    PubMed Central

    Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu

    2012-01-01

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989

  10. Microfluidic Devices for Analysis of Spatial Orientation Behaviors in Semi-Restrained Caenorhabditis elegans

    PubMed Central

    McCormick, Kathryn E.; Gaertner, Bryn E.; Sottile, Matthew; Phillips, Patrick C.; Lockery, Shawn R.

    2011-01-01

    This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans). Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities. PMID:22022437

  11. Think spatial: the representation in mental rotation is nonvisual.

    PubMed

    Liesefeld, Heinrich R; Zimmer, Hubert D

    2013-01-01

    For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information influences rotational speed, one can infer that it was contained in the rotated representation. In Experiment 1, rotational speed of university students (10 men, 11 women) was found to be influenced exclusively by the amount of represented orientation-dependent spatial-relational information but not by orientation-independent spatial-relational information, visual complexity, or the number of stimulus parts. As information in mental-rotation tasks is initially presented visually, this finding implies that at some point during each trial, orientation-dependent information is extracted from visual information. Searching for more direct evidence for this extraction, we recorded the EEG of another sample of university students (12 men, 12 women) during mental rotation of the same stimuli. In an early time window, the observed working memory load-dependent slow potentials were sensitive to the stimuli's visual complexity. Later, in contrast, slow potentials were sensitive to the amount of orientation-dependent information only. We conclude that only orientation-dependent information is contained in the rotated representation. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  12. Spatial Cognitive Performance During Adaptation to Conflicting Tilt-Translation Stimuli as a Sensorimotor Spaceflight Analog

    NASA Technical Reports Server (NTRS)

    Kayanickupuram, A. J.; Ramos, K. A.; Cordova, M. L.; Wood, S. J.

    2009-01-01

    The need to resolve new patterns of sensory feedback in altered gravitoinertial environments requires cognitive processes to develop appropriate reference frames for spatial orientation awareness. The purpose of this study was to examine deficits in spatial cognitive performance during adaptation to conflicting tilt-translation stimuli. Fourteen subjects were tilted within a lighted enclosure that simultaneously translated at one of 3 frequencies. Tilt and translation motion was synchronized to maintain the resultant gravitoinertial force aligned with the longitudinal body axis, resulting in a mismatch analogous to spaceflight in which the canals and vision signal tilt while the otoliths do not. Changes in performance on different spatial cognitive tasks were compared 1) without motion, 2) with tilt motion alone (pitch at 0.15, 0.3 and 0.6 Hz or roll at 0.3 Hz), and 3) with conflicting tilt-translation motion. The adaptation paradigm was continued for up to 30 min or until the onset of nausea. The order of the adaptation conditions were counter-balanced across 4 different test sessions. There was a significant effect of stimulus frequency on both motion sickness and spatial cognitive performance. Only 3 of 14 were able to complete the full 30 min protocol at 0.15 Hz, while 7 of 14 completed 0.3 Hz and 13 of 14 completed 0.6 Hz. There were no changes in simple visual-spatial cognitive tests, e.g., mental rotation or match-to-sample. There were significant deficits during 0.15 Hz adaptation in both accuracy and reaction time during a spatial reference task in which subjects are asked to identify a match of a 3D reoriented cube assemblage. Our results are consistent with antidotal reports of cognitive impairment that are common during sensorimotor adaptation with G-transitions. We conclude that these cognitive deficits stem from the ambiguity of spatial reference frames for central processing of inertial motion cues.

  13. Number-space associations without language: Evidence from preverbal human infants and non-human animal species.

    PubMed

    Rugani, Rosa; de Hevia, Maria-Dolores

    2017-04-01

    It is well known that humans describe and think of numbers as being represented in a spatial configuration, known as the 'mental number line'. The orientation of this representation appears to depend on the direction of writing and reading habits present in a given culture (e.g., left-to-right oriented in Western cultures), which makes this factor an ideal candidate to account for the origins of the spatial representation of numbers. However, a growing number of studies have demonstrated that non-verbal subjects (preverbal infants and non-human animals) spontaneously associate numbers and space. In this review, we discuss evidence showing that pre-verbal infants and non-human animals associate small numerical magnitudes with short spatial extents and left-sided space, and large numerical magnitudes with long spatial extents and right-sided space. Together this evidence supports the idea that a more biologically oriented view can account for the origins of the 'mental number line'. In this paper, we discuss this alternative view and elaborate on how culture can shape a core, fundamental, number-space association.

  14. Comparison of grain to grain orientation and stiffness mapping by spatially resolved acoustic spectroscopy and EBSD.

    PubMed

    Mark, A F; Li, W; Sharples, S; Withers, P J

    2017-07-01

    Our aim was to establish the capability of spatially resolved acoustic spectroscopy (SRAS) to map grain orientations and the anisotropy in stiffness at the sub-mm to micron scale by comparing the method with electron backscatter diffraction (EBSD) undertaken within a scanning electron microscope. In the former the grain orientations are deduced by measuring the spatial variation in elastic modulus; conversely, in EBSD the elastic anisotropy is deduced from direct measurements of the crystal orientations. The two test-cases comprise mapping the fusion zones for large TIG and MMA welds in thick power plant austenitic and ferritic steels, respectively; these are technologically important because, among other things, elastic anisotropy can cause ultrasonic weld inspection methods to become inaccurate because it causes bending in the paths of sound waves. The spatial resolution of SRAS is not as good as that for EBSD (∼100 μm vs. ∼a few nm), nor is the angular resolution (∼1.5° vs. ∼0.5°). However the method can be applied to much larger areas (currently on the order of 300 mm square), is much faster (∼5 times), is cheaper and easier to perform, and it could be undertaken on the manufacturing floor. Given these advantages, particularly to industrial users, and the on-going improvements to the method, SRAS has the potential to become a standard method for orientation mapping, particularly in cases where the elastic anisotropy is important over macroscopic/component length scales. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  15. Using Geo-Spatial Technologies for Field Applications in Higher Geography Education

    ERIC Educational Resources Information Center

    Karatepe, Akif

    2012-01-01

    Today's important geo-spatial technologies, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Google Earth have been widely used in geography education. Transferring spatially oriented data taken by GPS to the GIS and Google Earth has provided great benefits in terms of showing the usage of spatial technologies for field…

  16. From Spatial Intelligence to Spatial Competences: The Results of Applied Geo-Research in Italian Schools

    ERIC Educational Resources Information Center

    Sarno, Emilia

    2012-01-01

    This contribution explains the connection between spatial intelligence and spatial competences and by indicating how the first is the cognitive matrix of abilities necessary to move in space as well as to represent it. Indeed, two are principal factors involved in the spatial intelligence: orientation and representation. Both are based on a close…

  17. Oriented modulation for watermarking in direct binary search halftone images.

    PubMed

    Guo, Jing-Ming; Su, Chang-Cheng; Liu, Yun-Fu; Lee, Hua; Lee, Jiann-Der

    2012-09-01

    In this paper, a halftoning-based watermarking method is presented. This method enables high pixel-depth watermark embedding, while maintaining high image quality. This technique is capable of embedding watermarks with pixel depths up to 3 bits without causing prominent degradation to the image quality. To achieve high image quality, the parallel oriented high-efficient direct binary search (DBS) halftoning is selected to be integrated with the proposed orientation modulation (OM) method. The OM method utilizes different halftone texture orientations to carry different watermark data. In the decoder, the least-mean-square-trained filters are applied for feature extraction from watermarked images in the frequency domain, and the naïve Bayes classifier is used to analyze the extracted features and ultimately to decode the watermark data. Experimental results show that the DBS-based OM encoding method maintains a high degree of image quality and realizes the processing efficiency and robustness to be adapted in printing applications.

  18. Gender differences in the use of external landmarks versus spatial representations updated by self-motion.

    PubMed

    Lambrey, Simon; Berthoz, Alain

    2007-09-01

    Numerous data in the literature provide evidence for gender differences in spatial orientation. In particular, it has been suggested that spatial representations of large-scale environments are more accurate in terms of metric information in men than in women but are richer in landmark information in women than in men. One explanatory hypothesis is that men and women differ in terms of navigational processes they used in daily life. The present study investigated this hypothesis by distinguishing two navigational processes: spatial updating by self-motion and landmark-based orientation. Subjects were asked to perform a pointing task in three experimental conditions, which differed in terms of reliability of the external landmarks that could be used. Two groups of subjects were distinguished, a mobile group and an immobile group, in which spatial updating of environmental locations did not have the same degree of importance for the correct performance of the pointing task. We found that men readily relied on an internal egocentric representation of where landmarks were expected to be in order to perform the pointing task, a representation that could be updated during self-motion (spatial updating). In contrast, women seemed to take their bearings more readily on the basis of the stable landmarks of the external world. We suggest that this gender difference in spatial orientation is not due to differences in information processing abilities but rather due to the differences in higher level strategies.

  19. Tactile spatial resolution in blind braille readers.

    PubMed

    Van Boven, R W; Hamilton, R H; Kauffman, T; Keenan, J P; Pascual-Leone, A

    2000-06-27

    To determine if blind people have heightened tactile spatial acuity. Recently, studies using magnetic source imaging and somatosensory evoked potentials have shown that the cortical representation of the reading fingers of blind Braille readers is expanded compared to that of fingers of sighted subjects. Furthermore, the visual cortex is activated during certain tactile tasks in blind subjects but not sighted subjects. The authors hypothesized that the expanded cortical representation of fingers used in Braille reading may reflect an enhanced fidelity in the neural transmission of spatial details of a stimulus. If so, the quantitative limit of spatial acuity would be superior in blind people. The authors employed a grating orientation discrimination task in which threshold performance is accounted for by the spatial resolution limits of the neural image evoked by a stimulus. The authors quantified the psychophysical limits of spatial acuity at the middle and index fingers of 15 blind Braille readers and 15 sighted control subjects. The mean grating orientation threshold was significantly (p = 0.03) lower in the blind group (1.04 mm) compared to the sighted group (1.46 mm). The self-reported dominant reading finger in blind subjects had a mean grating orientation threshold of 0.80 mm, which was significantly better than other fingers tested. Thresholds at non-Braille reading fingers in blind subjects averaged 1.12 mm, which were also superior to sighted subjects' performances. Superior tactile spatial acuity in blind Braille readers may represent an adaptive, behavioral correlate of cortical plasticity.

  20. Super-channel oriented routing, spectrum and core assignment under crosstalk limit in spatial division multiplexing elastic optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhu, Ye; Wang, Chunhui; Yu, Xiaosong; Liu, Chuan; Liu, Binglin; Zhang, Jie

    2017-07-01

    With the capacity increasing in optical networks enabled by spatial division multiplexing (SDM) technology, spatial division multiplexing elastic optical networks (SDM-EONs) attract much attention from both academic and industry. Super-channel is an important type of service provisioning in SDM-EONs. This paper focuses on the issue of super-channel construction in SDM-EONs. Mixed super-channel oriented routing, spectrum and core assignment (MS-RSCA) algorithm is proposed in SDM-EONs considering inter-core crosstalk. Simulation results show that MS-RSCA can improve spectrum resource utilization and reduce blocking probability significantly compared with the baseline RSCA algorithms.

  1. Selective attention neutralizes the adverse effects of low socioeconomic status on memory in 9-month-old infants.

    PubMed

    Markant, Julie; Ackerman, Laura K; Nussenbaum, Kate; Amso, Dima

    2016-04-01

    Socioeconomic status (SES) has a documented impact on brain and cognitive development. We demonstrate that engaging spatial selective attention mechanisms may counteract this negative influence of impoverished environments on early learning. We previously used a spatial cueing task to compare target object encoding in the context of basic orienting ("facilitation") versus a spatial selective attention orienting mechanism that engages distractor suppression ("IOR"). This work showed that object encoding in the context of IOR boosted 9-month-old infants' recognition memory relative to facilitation (Markant and Amso, 2013). Here we asked whether this attention-memory link further interacted with SES in infancy. Results indicated that SES was related to memory but not attention orienting efficacy. However, the correlation between SES and memory performance was moderated by the attention mechanism engaged during encoding. SES predicted memory performance when objects were encoded with basic orienting processes, with infants from low-SES environments showing poorer memory than those from high-SES environments. However, SES did not predict memory performance among infants who engaged selective attention during encoding. Spatial selective attention engagement mitigated the effects of SES on memory and may offer an effective mechanism for promoting learning among infants at risk for poor cognitive outcomes related to SES. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Knowing where is different from knowing what: Distinct response time profiles and accuracy effects for target location, orientation, and color probability.

    PubMed

    Jabar, Syaheed B; Filipowicz, Alex; Anderson, Britt

    2017-11-01

    When a location is cued, targets appearing at that location are detected more quickly. When a target feature is cued, targets bearing that feature are detected more quickly. These attentional cueing effects are only superficially similar. More detailed analyses find distinct temporal and accuracy profiles for the two different types of cues. This pattern parallels work with probability manipulations, where both feature and spatial probability are known to affect detection accuracy and reaction times. However, little has been done by way of comparing these effects. Are probability manipulations on space and features distinct? In a series of five experiments, we systematically varied spatial probability and feature probability along two dimensions (orientation or color). In addition, we decomposed response times into initiation and movement components. Targets appearing at the probable location were reported more quickly and more accurately regardless of whether the report was based on orientation or color. On the other hand, when either color probability or orientation probability was manipulated, response time and accuracy improvements were specific for that probable feature dimension. Decomposition of the response time benefits demonstrated that spatial probability only affected initiation times, whereas manipulations of feature probability affected both initiation and movement times. As detection was made more difficult, the two effects further diverged, with spatial probability disproportionally affecting initiation times and feature probability disproportionately affecting accuracy. In conclusion, all manipulations of probability, whether spatial or featural, affect detection. However, only feature probability affects perceptual precision, and precision effects are specific to the probable attribute.

  3. Endogenous orienting in the archer fish

    PubMed Central

    Sekely, Liora; Klein, Raymond M.; Gabay, Shai

    2017-01-01

    The literature has long emphasized the neocortex’s role in volitional processes. In this work, we examined endogenous orienting in an evolutionarily older species, the archer fish, which lacks neocortex-like cells. We used Posner’s classic endogenous cuing task, in which a centrally presented, spatially informative cue is followed by a target. The fish responded to the target by shooting a stream of water at it. Interestingly, the fish demonstrated a human-like “volitional” facilitation effect: their reaction times to targets that appeared on the side indicated by the precue were faster than their reaction times to targets on the opposite side. The fish also exhibited inhibition of return, an aftermath of orienting that commonly emerges only in reflexive orienting tasks in human participants. We believe that this pattern demonstrates the acquisition of an arbitrary connection between spatial orienting and a nonspatial feature of a centrally presented stimulus in nonprimate species. In the literature on human attention, orienting in response to such contingencies has been strongly associated with volitional control. We discuss the implications of these results for the evolution of orienting, and for the study of volitional processes in all species, including humans. PMID:28673997

  4. Effects of spatial cues on color-change detection in humans

    PubMed Central

    Herman, James P.; Bogadhi, Amarender R.; Krauzlis, Richard J.

    2015-01-01

    Studies of covert spatial attention have largely used motion, orientation, and contrast stimuli as these features are fundamental components of vision. The feature dimension of color is also fundamental to visual perception, particularly for catarrhine primates, and yet very little is known about the effects of spatial attention on color perception. Here we present results using novel dynamic color stimuli in both discrimination and color-change detection tasks. We find that our stimuli yield comparable discrimination thresholds to those obtained with static stimuli. Further, we find that an informative spatial cue improves performance and speeds response time in a color-change detection task compared with an uncued condition, similar to what has been demonstrated for motion, orientation, and contrast stimuli. Our results demonstrate the use of dynamic color stimuli for an established psychophysical task and show that color stimuli are well suited to the study of spatial attention. PMID:26047359

  5. Improvement of axial excitation confinement in temporal focusing-based multiphoton microscopy via spatially modulated illumination

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Yuan; Chen, Shean-Jen

    2017-02-01

    Conventional temporal focusing-based multiphoton excitation microscopy (TFMPEM) can offer widefield optical sectioning with an axial excitation confinement (AEC) of a few microns. Herein, a developed TFMPEM with a digital micromirror device (DMD), acting as the blazed grating for light spatial dispersion and simultaneous patterned illumination, has been extended to implement spatially modulated illumination at structured frequency and orientation. By implementing the spatially modulated illumination, the beam coverage at the back-focal aperture of the objective lens can be increased. As a result, the AEC can be condensed from 3.0 μm to 1.5 μm in full width at half maximum for a 2-fold enhancement. Furthermore, by using HiLo microscopy with two structured illuminations at the same spatial frequency but different orientation, biotissue images according to the structured illumination with condensed AEC is obviously superior in contrast and scattering suppression.

  6. Sub-micron resolution selected area electron channeling patterns.

    PubMed

    Guyon, J; Mansour, H; Gey, N; Crimp, M A; Chalal, S; Maloufi, N

    2015-02-01

    Collection of selected area channeling patterns (SACPs) on a high resolution FEG-SEM is essential to carry out quantitative electron channeling contrast imaging (ECCI) studies, as it facilitates accurate determination of the crystal plane normal with respect to the incident beam direction and thus allows control the electron channeling conditions. Unfortunately commercial SACP modes developed in the past were limited in spatial resolution and are often no longer offered. In this contribution we present a novel approach for collecting high resolution SACPs (HR-SACPs) developed on a Gemini column. This HR-SACP technique combines the first demonstrated sub-micron spatial resolution with high angular accuracy of about 0.1°, at a convenient working distance of 10mm. This innovative approach integrates the use of aperture alignment coils to rock the beam with a digitally calibrated beam shift procedure to ensure the rocking beam is maintained on a point of interest. Moreover a new methodology to accurately measure SACP spatial resolution is proposed. While column considerations limit the rocking angle to 4°, this range is adequate to index the HR-SACP in conjunction with the pattern simulated from the approximate orientation deduced by EBSD. This new technique facilitates Accurate ECCI (A-ECCI) studies from very fine grained and/or highly strained materials. It offers also new insights for developing HR-SACP modes on new generation high-resolution electron columns. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Solving Navigational Uncertainty Using Grid Cells on Robots

    PubMed Central

    Milford, Michael J.; Wiles, Janet; Wyeth, Gordon F.

    2010-01-01

    To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments. PMID:21085643

  8. Strategy generalization across orientation tasks: testing a computational cognitive model.

    PubMed

    Gunzelmann, Glenn

    2008-07-08

    Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human performance was measured on an orientation task requiring participants to identify the location of a target either on a map (find-on-map) or within an egocentric view of a space (find-in-scene). A general strategy instantiated in a computational cognitive model of the find-on-map task, based on the results from Gunzelmann and Anderson (2006), was adapted to perform both tasks and used to generate performance predictions for a new study. The qualitative fit of the model to the human data supports the view that participants were able to tailor a general strategy to the requirements of particular spatial tasks. The quantitative differences between the predictions of the model and the performance of human participants in the new experiment expose individual differences in sample populations. The model provides a means of accounting for those differences and a framework for understanding how human spatial abilities are applied to naturalistic spatial tasks that involve reasoning with maps. 2008 Cognitive Science Society, Inc.

  9. The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention.

    PubMed

    Munsters, Nicolette M; van den Boomen, Carlijn; Hooge, Ignace T C; Kemner, Chantal

    2016-01-01

    Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli.

  10. Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces.

    PubMed

    Neves-Petersen, Maria Teresa; Snabe, Torben; Klitgaard, Søren; Duroux, Meg; Petersen, Steffen B

    2006-02-01

    Photonic induced immobilization is a novel technology that results in spatially oriented and spatially localized covalent coupling of biomolecules onto thiol-reactive surfaces. Immobilization using this technology has been achieved for a wide selection of proteins, such as hydrolytic enzymes (lipases/esterases, lysozyme), proteases (human plasminogen), alkaline phosphatase, immunoglobulins' Fab fragment (e.g., antibody against PSA [prostate specific antigen]), Major Histocompability Complex class I protein, pepsin, and trypsin. The reaction mechanism behind the reported new technology involves "photonic activation of disulfide bridges," i.e., light-induced breakage of disulfide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol-reactive surfaces (see Fig. 1). Interestingly, the spatial proximity of aromatic residues and disulfide bridges in proteins has been preserved throughout molecular evolution. The new photonic-induced method for immobilization of proteins preserves the native structural and functional properties of the immobilized protein, avoiding the use of one or more chemical/thermal steps. This technology allows for the creation of spatially oriented as well as spatially defined multiprotein/DNA high-density sensor arrays with spot size of 1 microm or less, and has clear potential for biomedical, bioelectronic, nanotechnology, and therapeutic applications.

  11. Biologically Inspired Model for Inference of 3D Shape from Texture

    PubMed Central

    Gomez, Olman; Neumann, Heiko

    2016-01-01

    A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer. PMID:27649387

  12. Synthesis of spatially variant lattices.

    PubMed

    Rumpf, Raymond C; Pazos, Javier

    2012-07-02

    It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.

  13. Early Development of Spatial-Numeric Associations: Evidence from Spatial and Quantitative Performance of Preschoolers

    ERIC Educational Resources Information Center

    Opfer, John E.; Thompson, Clarissa A.; Furlong, Ellen E.

    2010-01-01

    Numeric magnitudes often bias adults' spatial performance. Partly because the direction of this bias (left-to-right versus right-to-left) is culture-specific, it has been assumed that the orientation of spatial-numeric associations is a late development, tied to reading practice or schooling. Challenging this assumption, we found that preschoolers…

  14. Spatial Structure of Seagrass Suggests That Size-Dependent Plant Traits Have a Strong Influence on the Distribution and Maintenance of Tropical Multispecies Meadows

    PubMed Central

    Ooi, Jillian L. S.; Van Niel, Kimberly P.; Kendrick, Gary A.; Holmes, Karen W.

    2014-01-01

    Background Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Methods and Results Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2–3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5–50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5–140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. Conclusion In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial models of seagrasses which have largely focused on monospecific temperate meadows. PMID:24497978

  15. Spatial structure of seagrass suggests that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical multispecies meadows.

    PubMed

    Ooi, Jillian L S; Van Niel, Kimberly P; Kendrick, Gary A; Holmes, Karen W

    2014-01-01

    Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2-3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5-50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5-140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial models of seagrasses which have largely focused on monospecific temperate meadows.

  16. View-invariant object category learning, recognition, and search: how spatial and object attention are coordinated using surface-based attentional shrouds.

    PubMed

    Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio

    2009-02-01

    How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation. The model provides a powerful framework for unifying many data about spatial and object attention, and their interactions during perception, cognition, and action.

  17. Subjective Straight Ahead Orientation in Microgravity

    NASA Technical Reports Server (NTRS)

    Clement, G.; Reschke, M. F.; Wood, S. J.

    2015-01-01

    This joint ESA NASA study will address adaptive changes in spatial orientation related to the subjective straight ahead and the use of a vibrotactile sensory aid to reduce perceptual errors. The study will be conducted before and after long-duration expeditions to the International Space Station (ISS) to examine how spatial processing of target location is altered following exposure to microgravity. This study addresses the sensorimotor research gap to "determine the changes in sensorimotor function over the course of a mission and during recovery after landing."

  18. Spatial coding of eye movements relative to perceived earth and head orientations during static roll tilt

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Paloski, W. H.; Reschke, M. F.

    1998-01-01

    This purpose of this study was to examine the spatial coding of eye movements during static roll tilt (up to +/-45 degrees) relative to perceived earth and head orientations. Binocular videographic recordings obtained in darkness from eight subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the true earth and head orientations. We found that both variability and curvature of gaze trajectories increased with roll tilt. The trajectories of eye movements made along the perceived earth-horizontal (PEH) were more accurate than movements along the perceived head-horizontal (PHH). The trajectories of both PEH and PHH saccades tended to deviate in the same direction as the head tilt. The deviations in gaze trajectories along the perceived earth-vertical (PEV) and perceived head-vertical (PHV) were both similar to the PHH orientation, except that saccades along the PEV deviated in the opposite direction relative to the head tilt. The magnitude of deviations along the PEV, PHH, and PHV corresponded to perceptual overestimations of roll tilt obtained from verbal reports. Both PEV gaze trajectories and perceptual estimates of tilt orientation were different following clockwise rather than counterclockwise tilt rotation; however, the PEH gaze trajectories were less affected by the direction of tilt rotation. Our results suggest that errors in gaze trajectories along PEV and perceived head orientations increase during roll tilt in a similar way to perceptual errors of tilt orientation. Although PEH and PEV gaze trajectories became nonorthogonal during roll tilt, we conclude that the spatial coding of eye movements during roll tilt is overall more accurate for the perceived earth reference frame than for the perceived head reference frame.

  19. Modeling Mental Spatial Reasoning about Cardinal Directions

    ERIC Educational Resources Information Center

    Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas

    2014-01-01

    This article presents research into human mental spatial reasoning with orientation knowledge. In particular, we look at reasoning problems about cardinal directions that possess multiple valid solutions (i.e., are spatially underdetermined), at human preferences for some of these solutions, and at representational and procedural factors that lead…

  20. Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight.

    PubMed

    Lutz, Claudia C; Robinson, Gene E

    2013-06-01

    The natural history of adult worker honey bees (Apis mellifera) provides an opportunity to study the molecular basis of learning in an ecological context. Foragers must learn to navigate between the hive and floral locations that may be up to miles away. Young pre-foragers prepare for this task by performing orientation flights near the hive, during which they begin to learn navigational cues such as the appearance of the hive, the position of landmarks, and the movement of the sun. Despite well-described spatial learning and navigation behavior, there is currently limited information on the neural basis of insect spatial learning. We found that Egr, an insect homolog of Egr-1, is rapidly and transiently upregulated in the mushroom bodies in response to orientation. This result is the first example of an Egr-1 homolog acting as a learning-related immediate-early gene in an insect and also demonstrates that honey bee orientation uses a molecular mechanism that is known to be involved in many other forms of learning. This transcriptional response occurred both in naïve bees and in foragers induced to re-orient. Further experiments suggest that visual environmental novelty, rather than exercise or memorization of specific visual cues, acts as the stimulus for Egr upregulation. Our results implicate the mushroom bodies in spatial learning and emphasize the deep conservation of Egr-related pathways in experience-dependent plasticity.

  1. Attentional Orienting towards Emotion: P2 and N400 ERP Effects

    ERIC Educational Resources Information Center

    Kanske, Philipp; Plitschka, Jan; Kotz, Sonja A.

    2011-01-01

    Attention can be oriented to different spatial locations yielding faster processing of attended compared to unattended stimuli. Similarly attention can be oriented to a semantic category such as "animals" or "tools". Words from the attended category will also be recognized faster than words from an unattended category. Here, we asked whether it is…

  2. Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre.

    PubMed

    Dodge, Kara L; Galuardi, Benjamin; Lutcavage, Molly E

    2015-04-07

    Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. An instrumented spatial linkage for measuring knee joint kinematics.

    PubMed

    Rosvold, Joshua M; Atarod, Mohammad; Frank, Cyril B; Shrive, Nigel G

    2016-01-01

    In this study, the design and development of a highly accurate instrumented spatial linkage (ISL) for kinematic analysis of the ovine stifle joint is described. The ovine knee is a promising biomechanical model of the human knee joint. The ISL consists of six digital rotational encoders providing six degrees of freedom (6-DOF) to its motion. The ISL makes use of the complete and parametrically continuous (CPC) kinematic modeling method to describe the kinematic relationship between encoder readings and the relative positions and orientation of its two ends. The CPC method is useful when calibrating the ISL, because a small change in parameters corresponds to a small change in calculated positions and orientations and thus a smaller optimization error, compared to other kinematic models. The ISL is attached rigidly to the femur and the tibia for motion capture, and the CPC kinematic model is then employed to transform the angle sensor readings to relative motion of the two ends of the linkage, and thereby, the stifle joint motion. The positional accuracy for ISL after calibration and optimization was 0.3±0.2mm (mean +/- standard deviation). The ISL was also evaluated dynamically to ensure that accurate results were maintained, and achieved an accuracy of 0.1mm. Compared to the traditional motion capture methods, this system provides increased accuracy, reduced processing time, and ease of use. Future work will be on the application of the ISL to the ovine gait and determination of in vivo joint motions and tissue loads. Accurate measurement of knee joint kinematics is essential in understanding injury mechanisms and development of potential preventive or treatment strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Posture, locomotion, spatial orientation, and motion sickness as a function of space flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.; Layne, C.; McDonald, V.

    1998-01-01

    This article summarizes a variety of newly published findings obtained by the Neuroscience Laboratory, Johnson Space Center, and attempts to place this work within a historical framework of previous results on posture, locomotion, motion sickness, and perceptual responses that have been observed in conjunction with space flight. In this context, we have taken the view that correct transduction and integration of signals from all sensory systems is essential to maintaining stable vision, postural and locomotor control, and eye-hand coordination as components of spatial orientation. The plasticity of the human central nervous system allows individuals to adapt to altered stimulus conditions encountered in a microgravity environment. However, until some level of adaptation is achieved, astronauts and cosmonauts often experience space motion sickness, disturbances in motion control and eye-hand coordination, unstable vision, and illusory motion of the self, the visual scene, or both. Many of the same types of disturbances encountered in space flight reappear immediately after crew members return to earth. The magnitude of these neurosensory, sensory-motor and perceptual disturbances, and the time needed to recover from them, tend to vary as a function of mission duration and the space travelers prior experience with the stimulus rearrangement of space flight. To adequately chart the development of neurosensory changes associated with space flight, we recommend development of enhanced eye movement systems and body position measurement. We also advocate the use of a human small radius centrifuge as both a research tool and as a means of providing on-orbit countermeasures that will lessen the impact of living for long periods of time with out exposure to altering gravito-inertial forces. Copyright 1998 Elsevier Science B.V.

  5. Functional connectivity supporting the selective maintenance of feature-location binding in visual working memory

    PubMed Central

    Takahama, Sachiko; Saiki, Jun

    2014-01-01

    Information on an object's features bound to its location is very important for maintaining object representations in visual working memory. Interactions with dynamic multi-dimensional objects in an external environment require complex cognitive control, including the selective maintenance of feature-location binding. Here, we used event-related functional magnetic resonance imaging to investigate brain activity and functional connectivity related to the maintenance of complex feature-location binding. Participants were required to detect task-relevant changes in feature-location binding between objects defined by color, orientation, and location. We compared a complex binding task requiring complex feature-location binding (color-orientation-location) with a simple binding task in which simple feature-location binding, such as color-location, was task-relevant and the other feature was task-irrelevant. Univariate analyses showed that the dorsolateral prefrontal cortex (DLPFC), hippocampus, and frontoparietal network were activated during the maintenance of complex feature-location binding. Functional connectivity analyses indicated cooperation between the inferior precentral sulcus (infPreCS), DLPFC, and hippocampus during the maintenance of complex feature-location binding. In contrast, the connectivity for the spatial updating of simple feature-location binding determined by reanalyzing the data from Takahama et al. (2010) demonstrated that the superior parietal lobule (SPL) cooperated with the DLPFC and hippocampus. These results suggest that the connectivity for complex feature-location binding does not simply reflect general memory load and that the DLPFC and hippocampus flexibly modulate the dorsal frontoparietal network, depending on the task requirements, with the infPreCS involved in the maintenance of complex feature-location binding and the SPL involved in the spatial updating of simple feature-location binding. PMID:24917833

  6. Functional connectivity supporting the selective maintenance of feature-location binding in visual working memory.

    PubMed

    Takahama, Sachiko; Saiki, Jun

    2014-01-01

    Information on an object's features bound to its location is very important for maintaining object representations in visual working memory. Interactions with dynamic multi-dimensional objects in an external environment require complex cognitive control, including the selective maintenance of feature-location binding. Here, we used event-related functional magnetic resonance imaging to investigate brain activity and functional connectivity related to the maintenance of complex feature-location binding. Participants were required to detect task-relevant changes in feature-location binding between objects defined by color, orientation, and location. We compared a complex binding task requiring complex feature-location binding (color-orientation-location) with a simple binding task in which simple feature-location binding, such as color-location, was task-relevant and the other feature was task-irrelevant. Univariate analyses showed that the dorsolateral prefrontal cortex (DLPFC), hippocampus, and frontoparietal network were activated during the maintenance of complex feature-location binding. Functional connectivity analyses indicated cooperation between the inferior precentral sulcus (infPreCS), DLPFC, and hippocampus during the maintenance of complex feature-location binding. In contrast, the connectivity for the spatial updating of simple feature-location binding determined by reanalyzing the data from Takahama et al. (2010) demonstrated that the superior parietal lobule (SPL) cooperated with the DLPFC and hippocampus. These results suggest that the connectivity for complex feature-location binding does not simply reflect general memory load and that the DLPFC and hippocampus flexibly modulate the dorsal frontoparietal network, depending on the task requirements, with the infPreCS involved in the maintenance of complex feature-location binding and the SPL involved in the spatial updating of simple feature-location binding.

  7. Specificity of V1-V2 Orientation Networks in the Primate Visual Cortex

    PubMed Central

    Roe, Anna W.; Ts'o, Daniel Y.

    2015-01-01

    The computation of texture and shape involves integration of features of various orientations. Orientation networks within V1 tend to involve cells which share similar orientation selectivity. However, emergent properties in V2 require the integration of multiple orientations. We now show that, unlike interactions within V1, V1-V2 orientation interactions are much less synchronized and are not necessarily orientation dependent. We find V1-V2 orientation networks are of two types: a more tightly synchronized, orientation-preserving network and a less synchronized orientation-diverse network. We suggest that such diversity of V1-V2 interactions underlies the spatial and functional integration required for computation of higher order contour and shape in V2. PMID:26314798

  8. A gender- and sexual orientation-dependent spatial attentional effect of invisible images.

    PubMed

    Jiang, Yi; Costello, Patricia; Fang, Fang; Huang, Miner; He, Sheng

    2006-11-07

    Human observers are constantly bombarded with a vast amount of information. Selective attention helps us to quickly process what is important while ignoring the irrelevant. In this study, we demonstrate that information that has not entered observers' consciousness, such as interocularly suppressed (invisible) erotic pictures, can direct the distribution of spatial attention. Furthermore, invisible erotic information can either attract or repel observers' spatial attention depending on their gender and sexual orientation. While unaware of the suppressed pictures, heterosexual males' attention was attracted to invisible female nudes, heterosexual females' attention was attracted to invisible male nudes, gay males behaved similarly to heterosexual females, and gay/bisexual females performed in-between heterosexual males and females.

  9. One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal.

    PubMed

    Zhang, Peng; Ma, Yanghua; Zhao, Jianlin; Yang, Dexing; Xu, Honglai

    2006-04-01

    The anisotropic dependence of the formation of one-dimensional (1-D) spatial dark solitons on the orientation of intensity gradients in lithium niobate crystal is numerically specified. Based on this, we propose an approach to fabricate channel waveguides by employing 1-D spatial dark solitons. By exposure of two 1-D dark solitons with different orientations, channel waveguides can be created. The structures of the channel waveguides can be tuned by adjustment of the widths of the solitons and/or the angles between the two exposures. A square channel waveguide is experimentally demonstrated in an iron-doped lithium niobate crystal by exposure of two orthogonal 1-D dark solitons in sequence.

  10. A gender- and sexual orientation-dependent spatial attentional effect of invisible images

    PubMed Central

    Jiang, Yi; Costello, Patricia; Fang, Fang; Huang, Miner; He, Sheng

    2006-01-01

    Human observers are constantly bombarded with a vast amount of information. Selective attention helps us to quickly process what is important while ignoring the irrelevant. In this study, we demonstrate that information that has not entered observers' consciousness, such as interocularly suppressed (invisible) erotic pictures, can direct the distribution of spatial attention. Furthermore, invisible erotic information can either attract or repel observers' spatial attention depending on their gender and sexual orientation. While unaware of the suppressed pictures, heterosexual males' attention was attracted to invisible female nudes, heterosexual females' attention was attracted to invisible male nudes, gay males behaved similarly to heterosexual females, and gay/bisexual females performed in-between heterosexual males and females. PMID:17075055

  11. The Abilities of Understanding Spatial Relations, Spatial Orientation, and Spatial Visualization Affect 3D Product Design Performance: Using Carton Box Design as an Example

    ERIC Educational Resources Information Center

    Liao, Kun-Hsi

    2017-01-01

    Three-dimensional (3D) product design is an essential ability that students of subjects related to product design must acquire. The factors that affect designers' performance in 3D design are numerous, one of which is spatial abilities. Studies have reported that spatial abilities can be used to effectively predict people's performance in…

  12. Material condition assessment with eddy current sensors

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Sheiretov, Yanko K. (Inventor); Schlicker, Darrell E. (Inventor); Lyons, Robert J. (Inventor); Windoloski, Mark D. (Inventor); Craven, Christopher A. (Inventor); Tsukernik, Vladimir B. (Inventor); Grundy, David C. (Inventor)

    2010-01-01

    Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.

  13. Conjunction of color and form without attention: evidence from an orientation-contingent color aftereffect.

    PubMed

    Houck, M R; Hoffman, J E

    1986-05-01

    According to feature-integration theory (Treisman & Gelade, 1980), separable features such as color and shape exist in separate maps in preattentive vision and can be integrated only through the use of spatial attention. Many perceptual aftereffects, however, which are also assumed to reflect the features available in preattentive vision, are sensitive to conjunctions of features. One possible resolution of these views holds that adaptation to conjunctions depends on spatial attention. We tested this proposition by presenting observers with gratings varying in color and orientation. The resulting McCollough aftereffects were independent of whether the adaptation stimuli were presented inside or outside of the focus of spatial attention. Therefore, color and shape appear to be conjoined preattentively, when perceptual aftereffects are used as the measure. These same stimuli, however, appeared to be separable in two additional experiments that required observers to search for gratings of a specified color and orientation. These results show that different experimental procedures may be tapping into different stages of preattentive vision.

  14. Perceptual Simulations and Linguistic Representations Have Differential Effects on Speeded Relatedness Judgments and Recognition Memory

    PubMed Central

    Tse, Chi-Shing; Kurby, Christopher A.; Du, Feng

    2010-01-01

    We examined the effect of spatial iconicity (a perceptual simulation of canonical locations of objects) and word-order frequency on language processing and episodic memory of orientation. Participants made speeded relatedness judgments to pairs of words presented in locations typical to their real world arrangements (e.g., ceiling on top and floor on bottom). They then engaged in a surprise orientation recognition task for the word pairs. We replicated Louwerse’s finding (2008) that word-order frequency has a stronger effect on semantic relatedness judgments than spatial iconicity. This is consistent with recent suggestions that linguistic representations have a stronger impact on immediate decisions about verbal materials than perceptual simulations. In contrast, spatial iconicity enhanced episodic memory of orientation to a greater extent than word-order frequency did. This new finding indicates that perceptual simulations have an important role in episodic memory. Results are discussed with respect to theories of perceptual representation and linguistic processing. PMID:19742388

  15. Effects of Artificial Gravity and Bed Rest on Spatial Orientation and Balance Control

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Moore, S. T.; Feiveson, A. H.; Taylor, L. C.

    2007-01-01

    While the vestibular system should be well-adapted to bed rest (a condition it experiences approximately 8/24 hrs each day), questions remain regarding the degree to which repeated exposures to the unusual gravito-inertial force environment of a short-radius centrifuge might affect central processing of vestibular information used in spatial orientation and balance control. Should these functions be impaired by intermittent AG, its feasibility as a counter-measure would be diminished. We, therefore, examined the effects of AG on spatial orientation and balance control in 15 male volunteers before and after 21 days of 6 HDT bed rest (BR). Eight of the subjects were treated with daily 1hr AG exposures (2.5g at the feet; 1.0g at the heart) aboard a short radius (3m) centrifuge, while the other seven served as controls (C). Spatial orientation was assessed by measures of ocular counter-rolling (OCR; rotation of the eye about the line of sight, an otolith-mediated reflex) and subjective visual vertical (SVV; perception of the spatial upright). Both OCR and SVV measurements were made with the subject upright, lying on their left sides, and lying on their right sides. OCR was measured from binocular eye orientation recordings made while the subjects fixated for 10s on a point target directly in front of the face at a distance of 1 m. SVV was assessed by asking subjects (in the dark) to adjust to upright (using a handheld controller) the orientation of a luminous bar randomly perturbed (15) to either side of the vertical meridian. Balance control performance was assessed using a computerized dynamic posturography (CDP) protocol similar to that currently required for all returning crew members. During each session, the subjects completed a combination of trials of sensory organization test (SOT) 2 (eyes closed, fixed platform) and SOT 5 (eyes closed, sway-referenced platform) with and without static and dynamic pitch plane head movements (plus or minus 20 deg., dynamic paced by an audible tone at 0.33Hz). OCR and CDP performance were unaffected by BR and BR+AG; post-BR measures were unchanged from baseline for both AG and C groups. Similarly, BR did not affect SVV in the C group. However, BR+AG disrupted one measure of spatial orientation: SVV error was significantly increased on R+0 and R+1 following BR in the AG group. These results suggest a transient untoward effect on central vestibular processing may accompany repeated exposure to intermittent AG, a potential side-effect that should be studied more closely in future studies.

  16. Pregnenolone sulphate enhances spatial orientation and object discrimination in adult male rats: evidence from a behavioural and electrophysiological study.

    PubMed

    Plescia, Fulvio; Sardo, Pierangelo; Rizzo, Valerio; Cacace, Silvana; Marino, Rosa Anna Maria; Brancato, Anna; Ferraro, Giuseppe; Carletti, Fabio; Cannizzaro, Carla

    2014-01-01

    Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10mg/kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of both spatial orientation-acquisition and object discrimination in a simple and in a complex version of the visual task. Electrophysiological recordings were also performed in vivo, after acute PREGS systemic administration in order to investigate on the neuronal activation in the hippocampus and the perirhinal cortex. Our results indicate that, PREGS induces an improvement in spatial orientation-acquisition and in object discrimination in the simple and in the complex visual task; the behavioural responses were also confirmed by electrophysiological recordings showing a potentiation in the neuronal activity of the hippocampus and the perirhinal cortex. In conclusion, this study demonstrates that PREGS systemic administration in rats exerts cognitive enhancing properties which involve both the acquisition and utilization of spatial information, and object discrimination memory, and also correlates the behavioural potentiation observed to an increase in the neuronal firing of discrete cerebral areas critical for spatial learning and object recognition. This provides further evidence in support of the role of PREGS in exerting a protective and enhancing role on human memory. Copyright © 2013. Published by Elsevier B.V.

  17. Attention improves encoding of task-relevant features in the human visual cortex

    PubMed Central

    Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank

    2011-01-01

    When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942

  18. Relationship between selected orientation rest frame, circular vection and space motion sickness

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Parker, D. E.; Reschke, M. F.; Skinner, N. C.

    1998-01-01

    Space motion sickness (SMS) and spatial orientation and motion perception disturbances occur in 70-80% of astronauts. People select "rest frames" to create the subjective sense of spatial orientation. In microgravity, the astronaut's rest frame may be based on visual scene polarity cues and on the internal head and body z axis (vertical body axis). The data reported here address the following question: Can an astronaut's orientation rest frame be related and described by other variables including circular vection response latencies and space motion sickness? The astronaut's microgravity spatial orientation rest frames were determined from inflight and postflight verbal reports. Circular vection responses were elicited by rotating a virtual room continuously at 35 degrees/s in pitch, roll and yaw with respect to the astronaut. Latency to the onset of vection was recorded from the time the crew member opened their eyes to the onset of vection. The astronauts who used visual cues exhibited significantly shorter vection latencies than those who used internal z axis cues. A negative binomial regression model was used to represent the observed total SMS symptom scores for each subject for each flight day. Orientation reference type had a significant effect, resulting in an estimated three-fold increase in the expected motion sickness score on flight day 1 for astronauts who used visual cues. The results demonstrate meaningful classification of astronauts' rest frames and their relationships to sensitivity to circular vection and SMS. Thus, it may be possible to use vection latencies to predict SMS severity and duration.

  19. Attention improves encoding of task-relevant features in the human visual cortex.

    PubMed

    Jehee, Janneke F M; Brady, Devin K; Tong, Frank

    2011-06-01

    When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.

  20. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.

    PubMed

    Doricchi, Fabrizio; Macci, Enrica; Silvetti, Massimo; Macaluso, Emiliano

    2010-07-01

    Voluntary orienting of visual attention is conventionally measured in tasks with predictive central cues followed by frequent valid targets at the cued location and by infrequent invalid targets at the uncued location. This implies that invalid targets entail both spatial reorienting of attention and breaching of the expected spatial congruency between cues and targets. Here, we used event-related functional magnetic resonance imaging (fMRI) to separate the neural correlates of the spatial and expectancy components of both endogenous orienting and stimulus-driven reorienting of attention. We found that during endogenous orienting with predictive cues, there was a significant deactivation of the right Temporal-Parietal Junction (TPJ). We also discovered that the lack of an equivalent deactivation with nonpredictive cues was matched to drop in attentional costs and preservation of attentional benefits. The right TPJ showed equivalent responses to invalid targets following predictive and nonpredictive cues. On the contrary, infrequent-unexpected invalid targets following predictive cues specifically activated the right Middle and Inferior Frontal Gyrus (MFG-IFG). Additional comparisons with spatially neutral trials demonstrated that, independently of cue predictiveness, valid targets activate the left TPJ, whereas invalid targets activate both the left and right TPJs. These findings show that the selective right TPJ activation that is found in the comparison between invalid and valid trials results from the reciprocal cancelling of the different activations that in the left TPJ are related to the processing of valid and invalid targets. We propose that left and right TPJs provide "matching and mismatching to attentional template" signals. These signals enable reorienting of attention and play a crucial role in the updating of the statistical contingency between cues and targets.

  1. Three-dimensional precise orientation of bilateral auricular trial prosthesis using a facebow for a young adult with Crouzon syndrome

    PubMed Central

    Rathee, Manu; Tamrakar, Amit Kumar; Kundu, Renu; Yunus, Nadeem

    2014-01-01

    Facial deformity can be debilitating, especially in the psychological and cosmetic aspects. Although surgical correction or replacement of deformed or missing parts is the ideal treatment, prosthetic replacement serves the purpose in case of surgical limitations. Prosthetic rehabilitation of a missing auricle is an acceptable option as it provides better control over the tortuous anatomical shape and shade of the missing portion. Improper spatial orientation of the prosthetic ear on the face can damage the results of even the most aesthetic prosthesis. This case report describes a simple and innovative method for precise spatial orientation of auricular trial prosthesis using a facebow and custom-made adjustable mechanical retention design using stainless steel wire. PMID:25096652

  2. The development of wing shape in Lepidoptera: mitotic density, not orientation, is the primary determinant of shape.

    PubMed

    Nijhout, H Frederik; Cinderella, Margaret; Grunert, Laura W

    2014-03-01

    The wings of butterflies and moths develop from imaginal disks whose structure is always congruent with the final adult wing. It is therefore possible to map every point on the imaginal disk to a location on the adult wing throughout ontogeny. We studied the growth patterns of the wings of two distantly related species with very different adult wing shapes, Junonia coenia and Manduca sexta. The shape of the wing disks change throughout their growth phase in a species-specific pattern. We measured mitotic densities and mitotic orientation in successive stages of wing development approximately one cell division apart. Cell proliferation was spatially patterned, and the density of mitoses was highly correlated with local growth. Unlike other systems in which the direction of mitoses has been viewed as the primary determinant of directional growth, we found that in these two species the direction of growth was only weakly correlated with the orientation of mitoses. Directional growth appears to be imposed by a constantly changing spatial pattern of cell division coupled with a weak bias in the orientation of cell division. Because growth and cell division in imaginal disk require ecdysone and insulin signaling, the changing spatial pattern of cell division may due to a changing pattern of expression of receptors or downstream elements in the signaling pathways for one or both of these hormones. Evolution of wing shape comes about by changes in the progression of spatial patterns of cell division. © 2014 Wiley Periodicals, Inc.

  3. The interaction of feature and space based orienting within the attention set.

    PubMed

    Lim, Ahnate; Sinnett, Scott

    2014-01-01

    The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the "attention set" (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects.

  4. The interaction of feature and space based orienting within the attention set

    PubMed Central

    Lim, Ahnate; Sinnett, Scott

    2014-01-01

    The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the “attention set” (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects. PMID:24523682

  5. Orientation of human optokinetic nystagmus to gravity: a model-based approach

    NASA Technical Reports Server (NTRS)

    Gizzi, M.; Raphan, T.; Rudolph, S.; Cohen, B.

    1994-01-01

    Optokinetic nystagmus (OKN) was induced by having subjects watch a moving display in a binocular, head-fixed apparatus. The display was composed of 3.3 degrees stripes moving at 35 degrees/s for 45 s. It subtended 88 degrees horizontally by 72 degrees vertically of the central visual field and could be oriented to rotate about axes that were upright or tilted 45 degrees or 90 degrees. The head was held upright or was tilted 45 degrees left or right on the body during stimulation. Head-horizontal (yaw axis) and head-vertical (pitch axis) components of OKN were recorded with electro-oculography (EOG). Slow phase velocity vectors were determined and compared with the axis of stimulation and the spatial vertical (gravity axis). With the head upright, the axis of eye rotation during yaw axis OKN was coincident with the stimulus axis and the spatial vertical. With the head tilted, a significant vertical component of eye velocity appeared during yaw axis stimulation. As a result the axis of eye rotation shifted from the stimulus axis toward the spatial vertical. Vertical components developed within 1-2 s of stimulus onset and persisted until the end of stimulation. In the six subjects there was a mean shift of the axis of eye rotation during yaw axis stimulation of approximately 18 degrees with the head tilted 45 degrees on the body. Oblique optokinetic stimulation with the head upright was associated with a mean shift of the axis of eye rotation toward the spatial vertical of 9.2 degrees. When the head was tilted and the same oblique stimulation was given, the axis of eye rotation rotated to the other side of the spatial vertical by 5.4 degrees. This counterrotation of the axis of eye rotation is similar to the "Muller (E) effect," in which the perception of the upright is counterrotated to the opposite side of the spatial vertical when subjects are tilted in darkness. The data were simulated by a model of OKN with a "direct" and "indirect" pathway. It was assumed that the direct visual pathway is oriented in a body, not a spatial frame of reference. Despite the short optokinetic after-nystagmus time constants, strong horizontal to vertical cross-coupling could be produced if the horizontal and vertical time constants were in proper ratio and there were no suppression of nystagmus in directions orthogonal to the stimulus direction. The model demonstrates that the spatial orientation of OKN can be achieved by restructuring the system matrix of velocity storage. We conclude that an important function of velocity storage is to orient slow-phase velocity toward the spatial vertical during movement in a terrestrial environment.

  6. Development of orientation tuning in simple cells of primary visual cortex

    PubMed Central

    Moore, Bartlett D.

    2012-01-01

    Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intracortical mechanisms. The hierarchical processing idea implies mainly linear connections, whereas cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized 4-wk postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, whereas predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex. PMID:22323631

  7. Spatial filtering and spatial primitives in early vision: an explanation of the Zöllner-Judd class of geometrical illusion.

    PubMed

    Morgan, M J; Casco, C

    1990-10-22

    The apparent length and orientation of short lines is altered when they abut against oblique lines (the Zöllner and Judd illusions). Here we present evidence that the length and orientation biases are geometrically related and probably depend upon the same underlying mechanism. Measurements were done with an 'H' figure, in which the apparent length and orientation of the cross-bar was assessed by the method of adjustment while the orientation of the outer flanking lines was varied. When the flanking lines are oblique the apparent length of the central line is reduced and its orientation is shifted so that it appears more nearly at right-angles to the obliques than is in fact the case. Measurements of the orientation and length effects were made in three observers, over a range of flanking-line angles (90, 63, 45, 34 and 27 deg) and central line lengths (9, 17, 33 and 67 arc min). The biases increased with the tilt of the flanking-lines, and decreased with central line length. The extent of the length bias could be accurately predicted from the angular shift by simple trigonometry. We describe physiological and computational models to account for the relation between the orientation and length biases.

  8. Rapid measurement of the three-dimensional distribution of leaf orientation and the leaf angle probability density function using terrestrial LiDAR scanning

    USDA-ARS?s Scientific Manuscript database

    Leaf orientation plays a fundamental role in many transport processes in plant canopies. At the plant or stand level, leaf orientation is often highly anisotropic and heterogeneous, yet most analyses neglect such complexity. In many cases, this is due to the difficulty in measuring the spatial varia...

  9. Social-Emotional Inhibition of Return in Children with Autism Spectrum Disorder versus Typical Development

    ERIC Educational Resources Information Center

    Antezana, Ligia; Mosner, Maya G.; Troiani, Vanessa; Yerys, Benjamin E.

    2016-01-01

    In typical development there is a bias to orient visual attention to social information. Children with ASD do not reliably demonstrate this bias, and the role of attention orienting has not been well studied. We examined attention orienting via the inhibition of return (IOR) mechanism in a spatial cueing task using social-emotional cues; we…

  10. Gravity, light and plant form

    NASA Technical Reports Server (NTRS)

    Hangarter, R. P.

    1997-01-01

    Plants have evolved highly sensitive and selective mechanisms that detect and respond to various aspects of their environment. As a plant develops, it integrates the environmental information perceived by all of its sensory systems and adapts its growth to the prevailing environmental conditions. Light is of critical importance because plants depend on it for energy and, thus, survival. The quantity, quality and direction of light are perceived by several different photosensory systems that together regulate nearly all stages of plant development, presumably in order to maintain photosynthetic efficiency. Gravity provides an almost constant stimulus that is the source of critical spatial information about its surroundings and provides important cues for orientating plant growth. Gravity plays a particularly important role during the early stages of seedling growth by stimulating a negative gravitropic response in the primary shoot that orientates it towards the source of light, and a positive gravitropic response in the primary root that causes it to grow down into the soil, providing support and nutrient acquisition. Gravity also influences plant form during later stages of development through its effect on lateral organs and supporting structures. Thus, the final form of a plant depends on the cumulative effects of light, gravity and other environmental sensory inputs on endogenous developmental programs. This article is focused on developmental interactions modulated by light and gravity.

  11. Atomistic Insights Into the Oriented Attachment of Tunnel-Based Oxide Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yifei; Wood, Stephen M; He, Kun

    Controlled synthesis of nanomaterials is one of the grand challenges facing materials scientists. In particular, how tunnel-based nanomaterials aggregate during synthesis while maintaining their well-aligned tunneled structure is not fully understood. Here, we describe the atomistic mechanism of oriented attachment (OA) during solution synthesis of tunneled α-MnO2 nanowires based on a combination of in situ liquid cell transmission electron microscopy (TEM), aberration-corrected scanning TEM with subangstrom spatial resolution, and first-principles calculations. It is found that primary tunnels (1 × 1 and 2 × 2) attach along their common {110} lateral surfaces to form interfaces corresponding to 2 × 3 tunnelsmore » that facilitate their short-range ordering. The OA growth of α-MnO2 nanowires is driven by the stability gained from elimination of {110} surfaces and saturation of Mn atoms at {110}-edges. During this process, extra [MnOx] radicals in solution link the two adjacent {110} surfaces and bond with the unsaturated Mn atoms from both surface edges to produce stable nanowire interfaces. Our results provide insights into the controlled synthesis and design of nanomaterials in which tunneled structures can be tailored for use in catalysis, ion exchange, and energy storage applications.« less

  12. Orthogonal switching of AMS axes during type-2 fold interference: Insights from integrated X-ray computed tomography, AMS and 3D petrography

    NASA Astrophysics Data System (ADS)

    Sayab, Mohammad; Miettinen, Arttu; Aerden, Domingo; Karell, Fredrik

    2017-10-01

    We applied X-ray computed microtomography (μ-CT) in combination with anisotropy of magnetic susceptibility (AMS) analysis to study metamorphic rock fabrics in an oriented drill core sample of pyrite-pyrrhotite-quartz-mica schist. The sample is extracted from the Paleoproterozoic Martimo metasedimentary belt of northern Finland. The μ-CT resolves the spatial distribution, shape and orientation of 25,920 pyrrhotite and 153 pyrite grains localized in mm-thick metapelitic laminae. Together with microstructural analysis, the μ-CT allows us to interpret the prolate symmetry of the AMS ellipsoid and its relationship to the deformation history. AMS of the sample is controlled by pyrrhotite porphyroblasts that grew syntectonically during D1 in subhorizontal microlithons. The short and intermediate axes (K3 and K2) of the AMS ellipsoid interchanged positions during a subsequent deformation (D2) that intensely crenulated S1 and deformed pyrrhotite, while the long axes (K1) maintained a constant position parallel to the maximum stretching direction. However, it is likely that all the three AMS axes switched, similar to the three principal axes of the shape ellipsoid of pyrite porphyroblasts from D1 to D2. The superposition of D1 and D2 produced a type-2 fold interference pattern.

  13. Gravity, light and plant form.

    PubMed

    Hangarter, R P

    1997-06-01

    Plants have evolved highly sensitive and selective mechanisms that detect and respond to various aspects of their environment. As a plant develops, it integrates the environmental information perceived by all of its sensory systems and adapts its growth to the prevailing environmental conditions. Light is of critical importance because plants depend on it for energy and, thus, survival. The quantity, quality and direction of light are perceived by several different photosensory systems that together regulate nearly all stages of plant development, presumably in order to maintain photosynthetic efficiency. Gravity provides an almost constant stimulus that is the source of critical spatial information about its surroundings and provides important cues for orientating plant growth. Gravity plays a particularly important role during the early stages of seedling growth by stimulating a negative gravitropic response in the primary shoot that orientates it towards the source of light, and a positive gravitropic response in the primary root that causes it to grow down into the soil, providing support and nutrient acquisition. Gravity also influences plant form during later stages of development through its effect on lateral organs and supporting structures. Thus, the final form of a plant depends on the cumulative effects of light, gravity and other environmental sensory inputs on endogenous developmental programs. This article is focused on developmental interactions modulated by light and gravity.

  14. Role of Right Posterior Parietal Cortex in Maintaining Attention to Spatial Locations over Time

    ERIC Educational Resources Information Center

    Malhotra, Paresh; Coulthard, Elizabeth J.; Husain, Masud

    2009-01-01

    Recent models of human posterior parietal cortex (PPC) have variously emphasized its role in spatial perception, visuomotor control or directing attention. However, neuroimaging and lesion studies also suggest that the right PPC might play a special role in maintaining an alert state. Previously, assessments of right-hemisphere patients with…

  15. Spatial orientation of caloric nystagmus in semicircular canal-plugged monkeys.

    PubMed

    Arai, Yasuko; Yakushin, Sergei B; Cohen, Bernard; Suzuki, Jun-Ichi; Raphan, Theodore

    2002-08-01

    We studied caloric nystagmus before and after plugging all six semicircular canals to determine whether velocity storage contributed to the spatial orientation of caloric nystagmus. Monkeys were stimulated unilaterally with cold ( approximately 20 degrees C) water while upright, supine, prone, right-side down, and left-side down. The decline in the slow phase velocity vector was determined over the last 37% of the nystagmus, at a time when the response was largely due to activation of velocity storage. Before plugging, yaw components varied with the convective flow of endolymph in the lateral canals in all head orientations. Plugging blocked endolymph flow, eliminating convection currents. Despite this, caloric nystagmus was readily elicited, but the horizontal component was always toward the stimulated (ipsilateral) side, regardless of head position relative to gravity. When upright, the slow phase velocity vector was close to the yaw and spatial vertical axes. Roll components became stronger in supine and prone positions, and vertical components were enhanced in side down positions. In each case, this brought the velocity vectors toward alignment with the spatial vertical. Consistent with principles governing the orientation of velocity storage, when the yaw component of the velocity vector was positive, the cross-coupled pitch or roll components brought the vector upward in space. Conversely, when yaw eye velocity vector was downward in the head coordinate frame, i.e., negative, pitch and roll were downward in space. The data could not be modeled simply by a reduction in activity in the ipsilateral vestibular nerve, which would direct the velocity vector along the roll direction. Since there is no cross coupling from roll to yaw, velocity storage alone could not rotate the vector to fit the data. We postulated, therefore, that cooling had caused contraction of the endolymph in the plugged canals. This contraction would deflect the cupula toward the plug, simulating ampullofugal flow of endolymph. Inhibition and excitation induced by such cupula deflection fit the data well in the upright position but not in lateral or prone/supine conditions. Data fits in these positions required the addition of a spatially orientated, velocity storage component. We conclude, therefore, that three factors produce cold caloric nystagmus after canal plugging: inhibition of activity in ampullary nerves, contraction of endolymph in the stimulated canals, and orientation of eye velocity to gravity through velocity storage. Although the response to convection currents dominates the normal response to caloric stimulation, velocity storage probably also contributes to the orientation of eye velocity.

  16. Muscle activity patterns altered during pedaling at different body orientations.

    PubMed

    Brown, D A; Kautz, S A; Dairaghi, C A

    1996-10-01

    Gravity is a contributing force that is believed to influence strongly the control of limb movements since it affects sensory input and also contributes to task mechanics. By altering the relative contribution of gravitational force to the overall forces used to control pedaling at different body orientations, we tested the hypothesis that joint torque and muscle activation patterns would be modified to generate steady-state pedaling at altered body orientations. Eleven healthy subjects pedaled a modified ergometer at different body orientations (from horizontal to vertical), maintaining the same workload (80 J), cadence (60 rpm), and hip and knee kinematics. Pedal reaction forces and crank and pedal kinematics were measured and used to calculate joint torques and angles. EMG was recorded from four muscles (tibialis anterior, triceps surae, rectus femoris, biceps femoris). Measures of muscle activation (joint torque and EMG activity) showed strong dependence on body orientation, indicating that muscle activity is not fixed and is modified in response to altered body orientation. Simulations confirmed that, while joint torque changes were not necessary to pedal at different body orientations, observed changes were necessary to maintain consistent crank angular velocity profiles. Dependence of muscle activity on body orientation may be due to neural integration of sensory information with an internal model that includes characteristics of the endpoint, to produce consistent pedaling trajectories. Thus, both sensory consequences and mechanical aspects of gravitational forces are important determinants of locomotor tasks such as pedaling.

  17. a Robust Descriptor Based on Spatial and Frequency Structural Information for Visible and Thermal Infrared Image Matching

    NASA Astrophysics Data System (ADS)

    Fu, Z.; Qin, Q.; Wu, C.; Chang, Y.; Luo, B.

    2017-09-01

    Due to the differences of imaging principles, image matching between visible and thermal infrared images still exist new challenges and difficulties. Inspired by the complementary spatial and frequency information of geometric structural features, a robust descriptor is proposed for visible and thermal infrared images matching. We first divide two different spatial regions to the region around point of interest, using the histogram of oriented magnitudes, which corresponds to the 2-D structural shape information to describe the larger region and the edge oriented histogram to describe the spatial distribution for the smaller region. Then the two vectors are normalized and combined to a higher feature vector. Finally, our proposed descriptor is obtained by applying principal component analysis (PCA) to reduce the dimension of the combined high feature vector to make our descriptor more robust. Experimental results showed that our proposed method was provided with significant improvements in correct matching numbers and obvious advantages by complementing information within spatial and frequency structural information.

  18. A spatial disorientation predictor device to enhance pilot situational awareness regarding aircraft attitude

    NASA Technical Reports Server (NTRS)

    Chelette, T. L.; Repperger, Daniel W.; Albery, W. B.

    1991-01-01

    An effort was initiated at the Armstrong Aerospace Medical Research Laboratory (AAMRL) to investigate the improvement of the situational awareness of a pilot with respect to his aircraft's spatial orientation. The end product of this study is a device to alert a pilot to potentially disorienting situations. Much like a ground collision avoidance system (GCAS) is used in fighter aircraft to alert the pilot to 'pull up' when dangerous flight paths are predicted, this device warns the pilot to put a higher priority on attention to the orientation instrument. A Kalman filter was developed which estimates the pilot's perceived position and orientation. The input to the Kalman filter consists of two classes of data. The first class of data consists of noise parameters (indicating parameter uncertainty), conflict signals (e.g. vestibular and kinesthetic signal disagreement), and some nonlinear effects. The Kalman filter's perceived estimates are now the sum of both Class 1 data (good information) and Class 2 data (distorted information). When the estimated perceived position or orientation is significantly different from the actual position or orientation, the pilot is alerted.

  19. EVLA observations of radio-loud quasars selected to study radio orientation

    NASA Astrophysics Data System (ADS)

    Maithil, Jaya; Brotherton, Michael S.; Runnoe, Jessie; Wardle, John F. C.; DiPompeo, Michael; De Breuck, Carlos; Wills, Beverley J.

    2018-06-01

    We present preliminary work to develop an unbiased sample of radio-loud quasars to test orientation indicators. We have obtained radio data of 147 radio-loud quasars using EVLA at 10 GHz and with the A-array. With this high-resolution data we have measured the uncontaminated core flux density to determine orientation indicators based on radio core dominance. The radio cores of quasars have a flat spectrum over a broad range of frequencies, so we expect that the core flux density at the FIRST and the observed frequencies should be the same in the absence of variability. Jackson & Brown (2012) pointed out that the survey measurements of core flux density, like FIRST, often doesn't have the spatial resolution to distinguish cores from extended emission. Our measurements show that at FIRST spatial resolution, core flux measurements are indeed systematically high. Our results establish that orientation studies need high-resolution radio data as compared to survey data, and that the optical emission is a better normalization than the extended radio emission for a core dominance parameter to track orientation.

  20. ERP evidence for selective drop in attentional costs in uncertain environments: challenging a purely premotor account of covert orienting of attention.

    PubMed

    Lasaponara, Stefano; Chica, Ana B; Lecce, Francesca; Lupianez, Juan; Doricchi, Fabrizio

    2011-07-01

    Several studies have proved that the reliability of endogenous spatial cues linearly modulates the reaction time advantage in the processing of targets at validly cued vs. invalidly cued locations, i.e. the "validity effect". This would imply that with non-predictive cues, no "validity effect" should be observed. However, contrary to this prediction, one could hypothesize that attentional benefits by valid cuing (i.e. the RT advantage for validly vs. neutrally cued targets) can still be maintained with non-predictive cues, if the brain were endowed with mechanisms allowing the selective reduction in costs of reorienting from invalidly cued locations (i.e. the reduction of the RT disadvantage for invalidly vs. neutrally cued targets). This separated modulation of attentional benefits and costs would be adaptive in uncertain contexts where cues predict at chance level the location of targets. Through the joint recording of manual reaction times and event-related cerebral potentials (ERPs), we have found that this is the case and that relying on non-predictive endogenous cues results in abatement of attentional costs and the difference in the amplitude of the P1 brain responses evoked by invalidly vs. neutrally cued targets. In contrast, the use of non-predictive cues leaves unaffected attentional benefits and the difference in the amplitude of the N1 responses evoked by validly vs. neutrally cued targets. At the individual level, the drop in costs with non-predictive cues was matched with equivalent lateral biases in RTs to neutrally and invalidly cued targets presented in the left and right visual field. During the cue period, the drop in costs with non-predictive cues was preceded by reduction of the Early Directing Attention Negativity (EDAN) on posterior occipital sites and by enhancement of the frontal Anterior Directing Attention Negativity (ADAN) correlated to preparatory voluntary orienting. These findings demonstrate, for the first time, that the segregation of mechanisms regulating attentional benefits and costs helps efficiency of orienting in "uncertain" visual spatial contexts characterized by poor probabilistic association between cues and targets. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Virtual Technologies to Develop Visual-Spatial Ability in Engineering Students

    ERIC Educational Resources Information Center

    Roca-González, Cristina; Martin-Gutierrez, Jorge; García-Dominguez, Melchor; Carrodeguas, Mª del Carmen Mato

    2017-01-01

    The present study assessed a short training experiment to improve spatial abilities using two tools based on virtual technologies: one focused on manipulation of specific geometric virtual pieces, and the other consisting of virtual orienteering game. The two tools can help improve spatial abilities required for many engineering problem-solving…

  2. Spatial Cognition and Map Interpretation

    DTIC Science & Technology

    1987-09-01

    Terrain association Spatial cognition Map reading Videogames aa mldm II naeaaaaiy and Hontlty by block numbor) Spatial memory span Orientation...ability. Finally, field and classroom performance was compared to wayfinding in a simulated ( videogame ) environment in which position coordinates were...a simulated ( videogame ) environment. Findings: MITAC instruction significantly improved the experimental group’s ability to perform terrain

  3. Spatial Associations for Musical Stimuli: A Piano in the Head?

    ERIC Educational Resources Information Center

    Lidji, Pascale; Kolinsky, Regine; Lochy, Aliette; Morais, Jose

    2007-01-01

    This study was aimed at examining whether pitch height and pitch change are mentally represented along spatial axes. A series of experiments explored, for isolated tones and 2-note intervals, the occurrence of effects analogous to the spatial numerical association of response codes (SNARC) effect. Response device orientation (horizontal vs.…

  4. Oblique interaction of spatial dark-soliton stripes in nonlocal media.

    PubMed

    Fischer, Robert; Neshev, Dragomir N; Krolikowski, Wieslaw; Kivshar, Yuri S; Iturbe-Castillo, David; Chavez-Cerda, Sabino; Meneghetti, Mario R; Caetano, Dilson P; Hickman, Jandir M

    2006-10-15

    We report what we believe to be the first experimental observation of a large spatial lateral shift in the interaction of obliquely oriented spatial dark-soliton stripes. We demonstrate by numerical simulations that this new effect can be attributed to the specific features of optical media with a nonlocal nonlinear response.

  5. The Spatial Distribution of Attention within and across Objects

    ERIC Educational Resources Information Center

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.

    2012-01-01

    Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a "grouped array"). Using a modified version of the Egly et…

  6. Interaction of visual and vestibular stimulation on spatial coordinates for eye movements in rabbits.

    PubMed

    Pettorossi, V E; Errico, P; Ferraresi, A; Minciotti, M; Barmack, N H

    1998-07-01

    Researchers investigated how vestibular and optokinetic signals alter the spatial transformation of the coordinate system that governs the spatial orientation of reflexive eye movements. Also examined were the effects of sensory stimulation when vestibular and optokinetic signals act synergistically and when the two signals are in conflict.

  7. Engineers' Spatial Orientation Ability Development at the European Space for Higher Education

    ERIC Educational Resources Information Center

    Carrera, C. Carbonell; Perez, J. L. Saorin; Cantero, J. de la Torre; Gonzalez, A. M. Marrero

    2011-01-01

    The aim of this research was to determine whether the new geographic information technologies, included as teaching objectives in the new European Space for Higher Education Engineering degrees, develop spatial abilities. Bearing this in mind, a first year seminar using the INSPIRE Geoportal (Infrastructure for Spatial Information in Europe) was…

  8. Is social attention impaired in schizophrenia? Gaze, but not pointing gestures, is associated with spatial attention deficits.

    PubMed

    Dalmaso, Mario; Galfano, Giovanni; Tarqui, Luana; Forti, Bruno; Castelli, Luigi

    2013-09-01

    The nature of possible impairments in orienting attention to social signals in schizophrenia is controversial. The present research was aimed at addressing this issue further by comparing gaze and arrow cues. Unlike previous studies, we also included pointing gestures as social cues, with the goal of addressing whether any eventual impairment in the attentional response was specific to gaze signals or reflected a more general deficit in dealing with social stimuli. Patients with schizophrenia or schizoaffective disorder and matched controls performed a spatial-cuing paradigm in which task-irrelevant centrally displayed gaze, pointing finger, and arrow cues oriented rightward or leftward, preceded a lateralized target requiring a simple detection response. Healthy controls responded faster to spatially congruent targets than to spatially incongruent targets, irrespective of cue type. In contrast, schizophrenic patients responded faster to spatially congruent targets than to spatially incongruent targets only for arrow and pointing finger cues. No cuing effect emerged for gaze cues. The results support the notion that gaze cuing is impaired in schizophrenia, and suggest that this deficit may not extend to all social cues.

  9. Effects of task-oriented robot training on arm function, activity, and quality of life in chronic stroke patients: a randomized controlled trial.

    PubMed

    Timmermans, Annick A A; Lemmens, Ryanne J M; Monfrance, Maurice; Geers, Richard P J; Bakx, Wilbert; Smeets, Rob J E M; Seelen, Henk A M

    2014-03-31

    Over fifty percent of stroke patients experience chronic arm hand performance problems, compromising independence in daily life activities and quality of life. Task-oriented training may improve arm hand performance after stroke, whereby augmented therapy may lead to a better treatment outcome. Technology-supported training holds opportunities for increasing training intensity. However, the effects of robot-supported task-oriented training with real life objects in stroke patients are not known to date. The aim of the present study was to investigate the effectiveness and added value of the Haptic Master robot combined with task-oriented arm hand training in chronic stroke patients. In a single-blind randomized controlled trial, 22 chronic stroke patients were randomly allocated to receive either task-oriented robot-assisted arm-hand training (experimental group) or task-oriented non-robotic arm-hand training (control group). For training, the T-TOAT (Technology-supported Task-Oriented Arm Training) method was applied. Training was provided during 8 weeks, 4 times/week, 2 × 30 min/day. A significant improvement after training on the Action Research Arm Test (ARAT) was demonstrated in the experimental group (p = 0.008). Results were maintained until 6 months after cessation of the training. On the perceived performance measure (Motor Activity Log (MAL)), both, the experimental and control group improved significantly after training (control group p = 0.008; experimental group p = 0.013). The improvements on MAL in both groups were maintained until 6 months after cessation of the training. With regard to quality of life, only in the control group a significant improvement after training was found (EuroQol-5D p = 0.015, SF-36 physical p = 0.01). However, the improvement on SF-36 in the control group was not maintained (p = 0.012). No between-group differences could be demonstrated on any of the outcome measures. Arm hand performance improved in chronic stroke patients, after eight weeks of task oriented training. The use of a Haptic Master robot in support of task-oriented arm training did not show additional value over the video-instructed task-oriented exercises in highly functional stroke patients. Current Controlled Trials ISRCTN82787126.

  10. Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex.

    PubMed

    Hore, Victoria R A; Troy, John B; Eglen, Stephen J

    2012-11-01

    The receptive fields of on- and off-center parasol cell mosaics independently tile the retina to ensure efficient sampling of visual space. A recent theoretical model represented the on- and off-center mosaics by noisy hexagonal lattices of slightly different density. When the two lattices are overlaid, long-range Moiré interference patterns are generated. These Moiré interference patterns have been suggested to drive the formation of highly structured orientation maps in visual cortex. Here, we show that noisy hexagonal lattices do not capture the spatial statistics of parasol cell mosaics. An alternative model based upon local exclusion zones, termed as the pairwise interaction point process (PIPP) model, generates patterns that are statistically indistinguishable from parasol cell mosaics. A key difference between the PIPP model and the hexagonal lattice model is that the PIPP model does not generate Moiré interference patterns, and hence stimulated orientation maps do not show any hexagonal structure. Finally, we estimate the spatial extent of spatial correlations in parasol cell mosaics to be only 200-350 μm, far less than that required to generate Moiré interference. We conclude that parasol cell mosaics are too disordered to drive the formation of highly structured orientation maps in visual cortex.

  11. Emotion improves and impairs early vision.

    PubMed

    Bocanegra, Bruno R; Zeelenberg, René

    2009-06-01

    Recent studies indicate that emotion enhances early vision, but the generality of this finding remains unknown. Do the benefits of emotion extend to all basic aspects of vision, or are they limited in scope? Our results show that the brief presentation of a fearful face, compared with a neutral face, enhances sensitivity for the orientation of subsequently presented low-spatial-frequency stimuli, but diminishes orientation sensitivity for high-spatial-frequency stimuli. This is the first demonstration that emotion not only improves but also impairs low-level vision. The selective low-spatial-frequency benefits are consistent with the idea that emotion enhances magnocellular processing. Additionally, we suggest that the high-spatial-frequency deficits are due to inhibitory interactions between magnocellular and parvocellular pathways. Our results suggest an emotion-induced trade-off in visual processing, rather than a general improvement. This trade-off may benefit perceptual dimensions that are relevant for survival at the expense of those that are less relevant.

  12. Effects of Spatial Attention on Motion Discrimination are Greater in the Left than Right Visual Field

    PubMed Central

    Bosworth, Rain G.; Petrich, Jennifer A.; Dobkins, Karen R.

    2012-01-01

    In order to investigate differences in the effects of spatial attention between the left visual field (LVF) and the right visual field (RVF), we employed a full/poor attention paradigm using stimuli presented in the LVF vs. RVF. In addition, to investigate differences in the effects of spatial attention between the Dorsal and Ventral processing streams, we obtained motion thresholds (motion coherence thresholds and fine direction discrimination thresholds) and orientation thresholds, respectively. The results of this study showed negligible effects of attention on the orientation task, in either the LVF or RVF. In contrast, for both motion tasks, there was a significant effect of attention in the LVF, but not in the RVF. These data provide psychophysical evidence for greater effects of spatial attention in the LVF/right hemisphere, specifically, for motion processing in the Dorsal stream. PMID:22051893

  13. Studies of the Interactions Between Vestibular Function and Tactual Orientation Display Systems

    NASA Technical Reports Server (NTRS)

    Cholewiak, Roger W.; Reschke, Millard F.

    1997-01-01

    When humans experience conditions in which internal vestibular cues to movement or spatial location are challenged or contradicted by external visual information, the result can be spatial disorientation, often leading to motion sickness. Spatial disorientation can occur in any situation in which the individual is passively moved in the environment, but is most common in automotive, aircraft, or undersea travel. Significantly, the incidence of motion sickness in space travel is great: The majority of individuals in Shuttle operations suffer from the syndrome. Even after the space-sickness-producing influences of spatial disorientation dissipate, usually within several days, there are other situations in which, because of the absence of reliable or familiar vestibular cues, individuals in space still experience disorientation, resulting in a reliance on the already preoccupied sense of vision. One possible technique to minimize the deleterious effects of spatial disorientation might be to present attitude information (including orientation, direction, and motion) through another less-used sensory modality - the sense of touch. Data from experiences with deaf and blind persons indicate that this channel can provide useful communication and mobility information on a real-time basis. More recently, technologies have developed to present effective attitude information to pilots in situations in which dangerously ambiguous and conflicting visual and vestibular sensations occur. This summers project at NASA-Johnson Space Center will evaluate the influence of motion-based spatial disorientation on the perception of tactual stimuli representing veridical position and orientation information, presented by new dynamic vibrotactile array display technologies. In addition, the possibility will be explored that tactile presentations of motion and direction from this alternative modality might be useful in mitigating or alleviating spatial disorientation produced by multi-axis rotatory systems, monitored by physiological recording techniques developed at JSC.

  14. Children can implicitly, but not voluntarily, direct attention in time.

    PubMed

    Johnson, Katherine A; Burrowes, Emma; Coull, Jennifer T

    2015-01-01

    Children are able to use spatial cues to orient their attention to discrete locations in space from around 4 years of age. In contrast, no research has yet investigated the ability of children to use informative cues to voluntarily predict when an event will occur in time. The spatial and temporal attention task was used to determine whether children were able to voluntarily orient their attention in time, as well as in space: symbolic spatial and temporal cues predicted where or when an imperative target would appear. Thirty typically developing children (average age 11 yrs) and 32 adults (average age 27 yrs) took part. Confirming previous findings, adults made use of both spatial and temporal cues to optimise behaviour, and were significantly slower to respond to invalidly cued targets in either space or time. Children were also significantly slowed by invalid spatial cues, demonstrating their use of spatial cues to guide expectations. In contrast, children's responses were not slowed by invalid temporal cues, suggesting that they were not using the temporal cue to voluntarily orient attention through time. Children, as well as adults, did however demonstrate signs of more implicit forms of temporal expectation: RTs were faster for long versus short cue-target intervals (the variable foreperiod effect) and slower when the preceding trial's cue-target interval was longer than that on the current trial (sequential effects). Overall, our results suggest that although children implicitly made use of the temporally predictive information carried by the length of the current and previous trial's cue-target interval, they could not deliberately use symbolic temporal cues to speed responses. The developmental trajectory of the ability to voluntarily use symbolic temporal cues is therefore delayed, relative both to the use of symbolic (arrow) spatial cues, and to the use of implicit temporal information.

  15. Spatial language and converseness.

    PubMed

    Burigo, Michele; Coventry, Kenny R; Cangelosi, Angelo; Lynott, Dermot

    2016-12-01

    Typical spatial language sentences consist of describing the location of an object (the located object) in relation to another object (the reference object) as in "The book is above the vase". While it has been suggested that the properties of the located object (the book) are not translated into language because they are irrelevant when exchanging location information, it has been shown that the orientation of the located object affects the production and comprehension of spatial descriptions. In line with the claim that spatial language apprehension involves inferences about relations that hold between objects it has been suggested that during spatial language apprehension people use the orientation of the located object to evaluate whether the logical property of converseness (e.g., if "the book is above the vase" is true, then also "the vase is below the book" must be true) holds across the objects' spatial relation. In three experiments using sentence acceptability rating tasks we tested this hypothesis and demonstrated that when converseness is violated people's acceptability ratings of a scene's description are reduced indicating that people do take into account geometric properties of the located object and use it to infer logical spatial relations.

  16. Soft X-ray Spectromicroscopy of Polymers

    NASA Astrophysics Data System (ADS)

    Ade, Harald

    1997-03-01

    The development of Near Edge X-ray Absorption Fine Structure (NEXAFS) microscopy^1 and linear dichroism microscopy^2 over the last few years utilizing the X1-Scanning Transmission X-ray Microscope (X1-STXM) at the National Synchrotron Light Source provides excellent specificity to various functional groups and moieties in organic molecules and polymeric materials at a spatial resolution of 50 nm. This chemical specificity can be utilized to map the distribution of various compounds in a material, or to micro-chemically analyze small sample areas. Examples of applications include the study of various phase-separated polymers (polyurethanes, liquid crystalline polyesters), multicomponent polymer blends, polymer laminates, and other organic materials such as coal^3. Linear dichroism microscopy furthermore explores the polarization dependence of NEXAFS in (partially) oriented materials, and can determine the orientation of specific functional groups. Applications of linear dichroism microscopy have focused so far on determining the relative degree of radial orientation in Kevlar fibers^3. ^1 H. Ade, X. Zhang, S. Cameron, C. Costello, J. Kirz, and S. Williams, Science 258, 972 (1992). ^2 H. Ade and B. Hsiao, Science 262, 1427 (1993). ^3 Acknowledgement: My callaborators are B. Hsiao, S. Subramoney, B. Wood, I. Plotzker, E. Rightor, G. Mitchell, C. Sloop, D.-J. Liu, S.-C. Liu, J. Marti, C. Zimba, A. P. Smith, R. Spontak, R. Fornes, R. Gilbert, C. Cody, A. Hitchcock and S. Urquhart. The X1-STXM is built and maintained by J. Kirz and C. Jacobsen and their groups. Work supported by: NSF Young Investigator Award (DMR-9458060), DuPont Young Professor Grant, and Dow Chemical.

  17. Effects of Monomer Structure on Their Organization and Polymerization in a Smectic Liquid Crystal

    PubMed

    Guymon; Hoggan; Clark; Rieker; Walba; Bowman

    1997-01-03

    Photopolymerizable diacrylate monomers dissolved in fluid-layer smectic A and smectic C liquid crystal (LC) hosts exhibited significant spatial segregation and orientation that depend strongly on monomer structure. Small, flexible monomers such as 1,6-hexanediol diacrylate (HDDA) oriented parallel to the smectic layers and intercalated, whereas rod-shaped mesogen-like monomers such as 1,4-di-(4-(6-acryloyloxyhexyloxy)benzoyloxy)-2-methylbenzene (C6M) oriented normal to the smectic layers and collected within them. Such spatial segregation caused by the smectic layering dramatically enhanced photopolymerization rates; for HDDA, termination rates were reduced, whereas for C6M, both the termination and propagation rates were increased. These polymerization precursor structures suggest novel materials-design paradigms for gel LCs and nanophase-separated polymer systems.

  18. Three-dimensional precise orientation of bilateral auricular trial prosthesis using a facebow for a young adult with Crouzon syndrome.

    PubMed

    Rathee, Manu; Tamrakar, Amit Kumar; Kundu, Renu; Yunus, Nadeem

    2014-08-05

    Facial deformity can be debilitating, especially in the psychological and cosmetic aspects. Although surgical correction or replacement of deformed or missing parts is the ideal treatment, prosthetic replacement serves the purpose in case of surgical limitations. Prosthetic rehabilitation of a missing auricle is an acceptable option as it provides better control over the tortuous anatomical shape and shade of the missing portion. Improper spatial orientation of the prosthetic ear on the face can damage the results of even the most aesthetic prosthesis. This case report describes a simple and innovative method for precise spatial orientation of auricular trial prosthesis using a facebow and custom-made adjustable mechanical retention design using stainless steel wire. 2014 BMJ Publishing Group Ltd.

  19. Azimuthal Anisotropy beneath the Contiguous United States Revealed by Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Liu, K. H.; Yang, B.; Liu, Y.; Dahm, H. H.; Refayee, H. A.; Gao, S. S.

    2017-12-01

    We have produced a uniformly-measured XKS (including SKS, SKKS, and PKS) splitting database for the contiguous United States and adjacent areas. The database consists of about 30,000 pairs of splitting parameters from 3185 stations. Both the fast orientations and splitting times show systematic spatial variations. The vast majority of the fast orientations are in agreement with the absolute plate motion (APM) direction computed under a fixed hot-spot reference frame. Spatial coherency analysis of the splitting parameters indicates that for the majority of the study area, where a single layer of anisotropy with a horizontal axis of symmetry is inferred, the source of anisotropy is located in the rheologically transitional zone between the lithosphere and asthenosphere. Beneath the western U.S., the previously recognized semi-circular feature of the fast orientations has a much greater spatial coverage, extending to northern Mexico and the Rio Grande Rift. The fast orientations are parallel to the western, southern, and southeastern edges of the North American Craton and can be interpreted by simple shear strain associated with mantle flow around the cratonic keel. The combination of anisotropy induced by this around keel flow and the APM can effectively explain the E-W fast orientations beneath the southern margin of the North American Craton and NE U.S., as well as the nearly N-S fast orientations and small splitting times observed in the SE U.S. The splitting times show a systematic decrease from both the western and eastern U.S. toward the central U.S., where the thickness of the lithosphere is the largest in the study area. This trend can be explained by the reduced efficiency of anisotropy development at greater depth, as well as by the lack of around keel flow in the continental interior.

  20. Filling the Gaps for Indoor Wayfinding

    ERIC Educational Resources Information Center

    Ross, David A.; Kelly, Gary W.

    2009-01-01

    Orientation and wayfinding are critical skills for successful mobility of people with visual impairments. The inability to perform these skills successfully may result in a person becoming lost, injured, and discouraged from further mobility. At times, it may be impossible to maintain orientation. The person may temporarily travel without cues…

  1. Modeling ground-based timber harvesting systems using computer simulation

    Treesearch

    Jingxin Wang; Chris B. LeDoux

    2001-01-01

    Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...

  2. Testing the Behavioral Interaction and Integration of Attentional Networks

    ERIC Educational Resources Information Center

    Fan, Jin; Gu, Xiaosi; Guise, Kevin G.; Liu, Xun; Fossella, John; Wang, Hongbin; Posner, Michael I.

    2009-01-01

    One current conceptualization of attention subdivides it into functions of alerting, orienting, and executive control. Alerting describes the function of tonically maintaining the alert state and phasically responding to a warning signal. Automatic and voluntary orienting are involved in the selection of information among multiple sensory inputs.…

  3. Orienting attention to locations in mental representations

    PubMed Central

    Astle, Duncan Edward; Summerfield, Jennifer; Griffin, Ivan; Nobre, Anna Christina

    2014-01-01

    Many cognitive processes depend on our ability to hold information in mind, often well beyond the offset of the original sensory input. The capacity of this ‘visual short-term memory’ (VSTM) is limited to around three to four items. Recent research has demonstrated that the content of VSTM can be modulated by top-down attentional biases. This has been demonstrated using retrodictive spatial cues, termed ‘retro-cues’, which orient participants’ attention to spatial locations within VSTM. In the current paper, we tested whether the use of these cues is modulated by memory load and cue delay. There are a number of important conclusions: i) top-down biases can operate upon very brief iconic traces as well as older VSTM representations (Experiment 1); ii) when operating within capacity, subjects use the cue to prioritize where they initiate their memory search, rather than to discard un-cued items (Experiments 2 and 3); iii) when capacity is exceeded there is little benefit to top-down biasing relative to a neutral condition, however, unattended items are lost, with there being a substantial cost of invalid spatial cueing (Experiment 3); iv) these costs and benefits of orienting spatial attention differ across iconic memory and VSTM representations when VSTM capacity is exceeded (Experiment 4). PMID:21972046

  4. Cell shape can mediate the spatial organization of the bacterial cytoskeleton

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan; Wingreen, Ned

    2013-03-01

    The bacterial cytoskeleton guides the synthesis of cell wall and thus regulates cell shape. Since spatial patterning of the bacterial cytoskeleton is critical to the proper control of cell shape, it is important to ask how the cytoskeleton spatially self-organizes in the first place. In this work, we develop a quantitative model to account for the various spatial patterns adopted by bacterial cytoskeletal proteins, especially the orientation and length of cytoskeletal filaments such as FtsZ and MreB in rod-shaped cells. We show that the combined mechanical energy of membrane bending, membrane pinning, and filament bending of a membrane-attached cytoskeletal filament can be sufficient to prescribe orientation, e.g. circumferential for FtsZ or helical for MreB, with the accuracy of orientation increasing with the length of the cytoskeletal filament. Moreover, the mechanical energy can compete with the chemical energy of cytoskeletal polymerization to regulate filament length. Notably, we predict a conformational transition with increasing polymer length from smoothly curved to end-bent polymers. Finally, the mechanical energy also results in a mutual attraction among polymers on the same membrane, which could facilitate tight polymer spacing or bundling. The predictions of the model can be verified through genetic, microscopic, and microfluidic approaches.

  5. Perceived orientation in physical and virtual environments: changes in perceived orientation as a function of idiothetic information available

    NASA Technical Reports Server (NTRS)

    Lathrop, William B.; Kaiser, Mary K.

    2002-01-01

    Two experiments examined perceived spatial orientation in a small environment as a function of experiencing that environment under three conditions: real-world, desktop-display (DD), and head-mounted display (HMD). Across the three conditions, participants acquired two targets located on a perimeter surrounding them, and attempted to remember the relative locations of the targets. Subsequently, participants were tested on how accurately and consistently they could point in the remembered direction of a previously seen target. Results showed that participants were significantly more consistent in the real-world and HMD conditions than in the DD condition. Further, it is shown that the advantages observed in the HMD and real-world conditions were not simply due to nonspatial response strategies. These results suggest that the additional idiothetic information afforded in the real-world and HMD conditions is useful for orientation purposes in our presented task domain. Our results are relevant to interface design issues concerning tasks that require spatial search, navigation, and visualization.

  6. Optical switch based on the electrically controlled liquid crystal interface.

    PubMed

    Komar, Andrei A; Tolstik, Alexei L; Melnikova, Elena A; Muravsky, Alexander A

    2015-06-01

    The peculiarities of the linearly polarized light beam reflection at the interface within the bulk of a nematic liquid crystal (NLC) cell with different orientations of the director are analyzed. Two methods to create the interface are considered. Combination of the planar and homeotropic orientations of the NLC director is realized by means of a spatially structured electrode under the applied voltage. In-plane patterned azimuthal alignment of the NLC director is created by the patterned rubbing alignment technique. All possible orthogonal orientations of the LC director are considered; the configurations for realization of total internal reflection are determined. The revealed relationship between the propagation of optical beams in a liquid crystal material and polarization of laser radiation has enabled realization of the spatial separation for the orthogonally polarized light beams at the interface between two regions of NLC with different director orientations (domains). Owing to variations in the applied voltage and, hence, in the refractive index gradient, the light beam propagation directions may be controlled electrically.

  7. Does Changing the Reference Frame Affect Infant Categorization of the Spatial Relation BETWEEN?

    ERIC Educational Resources Information Center

    Quinn, Paul C.; Doran, Matthew M.; Papafragou, Anna

    2011-01-01

    Past research has shown that variation in the target objects depicting a given spatial relation disrupts the formation of a category representation for that relation. In the current research, we asked whether changing the orientation of the referent frame depicting the spatial relation would also disrupt the formation of a category representation…

  8. Spatial Foundations of Science Education: The Illustrative Case of Instruction on Introductory Geological Concepts

    ERIC Educational Resources Information Center

    Liben, Lynn S.; Kastens, Kim A.; Christensen, Adam E.

    2011-01-01

    To study the role of spatial concepts in science learning, 125 college students with high, medium, or low scores on a horizontality (water-level) spatial task were given information about geological strike and dip using existing educational materials. Participants mapped an outcrop's strike and dip, a rod's orientation, pointed to a distant…

  9. Spatial dynamics of two oriental fruit fly (Diptera: Tephritidae) parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead)(Hymenoptera: Braconidae), in a guava orchard in Hawaii

    USDA-ARS?s Scientific Manuscript database

    We examined temporal and spatial patterns of both sexes of Bactrocera dorsalis (Hendel) and its two most abundant parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) in a commercial guava orchard. Bactrocera dorsalis spatial patterns were initially random, but became high...

  10. Genetic structuring of northern myotis (Myotis septentrionalis) at multiple spatial scales

    USGS Publications Warehouse

    Johnson, Joshua B.; Roberts, James H.; King, Timothy L.; Edwards, John W.; Ford, W. Mark; Ray, David A.

    2014-01-01

    Although groups of bats may be genetically distinguishable at large spatial scales, the effects of forest disturbances, particularly permanent land use conversions on fine-scale population structure and gene flow of summer aggregations of philopatric bat species are less clear. We genotyped and analyzed variation at 10 nuclear DNA microsatellite markers in 182 individuals of the forest-dwelling northern myotis (Myotis septentrionalis) at multiple spatial scales, from within first-order watersheds scaling up to larger regional areas in West Virginia and New York. Our results indicate that groups of northern myotis were genetically indistinguishable at any spatial scale we considered, and the collective population maintained high genetic diversity. It is likely that the ability to migrate, exploit small forest patches, and use networks of mating sites located throughout the Appalachian Mountains, Interior Highlands, and elsewhere in the hibernation range have allowed northern myotis to maintain high genetic diversity and gene flow regardless of forest disturbances at local and regional spatial scales. A consequence of maintaining high gene flow might be the potential to minimize genetic founder effects following population declines caused currently by the enzootic White-nose Syndrome.

  11. Quantifying the In-Flight Yaw, Pitch, and Roll of a Semi-Rigidly Mounted Potassium Vapour Magnetometer Suspended Under a Heavy-Lift Multi-Rotor UAV and its Impact on Data Quality

    NASA Astrophysics Data System (ADS)

    Walter, C. A.; Braun, A.; Fotopoulos, G.

    2017-12-01

    Research is being conducted to develop an Unmanned Aerial System (UAS) that is capable of reliably and efficiently collecting high resolution, industry standard magnetic data (magnetic data with a fourth difference of +/- 0.05 nT) via an optically pumped vapour magnetometer. The benefits of developing a UAS with these capabilities include improvements in the resolution of localized airborne surveys (2.5 km by 2.5 km) and the ability to conduct 3D magnetic gradiometry surveys in the observation gap evident between traditional terrestrial and manned airborne magnetic surveys (surface elevation up to 120 m). Quantifying the extent of an optically pumped vapour magnetometer's 3D orientation variations, while in-flight and suspended under a UAS, is a significant advancement to existing knowledge as optically pumped magnetometers have an orientation-dependent (to the primary magnetic field vector) process for measuring the magnetic field. This study investigates the orientation characteristics of a GEM Systems potassium vapour magnetometer, GSMP-35U, while semi-rigidly suspended 3 m under a DJI S900, heavy-lift multi-rotor UAV (Unmanned Aerial Vehicle) during an airborne surveying campaign conducted Northeast of Thunder Bay, Ontario, Canada. A nine degrees of freedom IMU (Inertial Measurement Unit), the Adafruit GY-80, was used to quantify the 3D orientation variations (yaw, pitch and roll) of the magnetic sensor during flight. The orientation and magnetic datasets were indexed and linked with a date and time stamp (within 1 ms) via a Raspberry Pi 2, acting as an on-board computer and data storage system. Analysing the two datasets allowed for the in-flight orientation variations of the potassium vapour magnetometer to be directly compared with the gathered magnetic and signal quality data of the magnetometer. The in-flight orientation characteristics of the magnetometer were also quantified for a range of air-speeds and flight maneuvers throughout the survey. Overall, this study validates that maintaining magnetometer yaw, pitch and roll variations within quantified limits (+/- 5 degrees yaw, +/- 10 degrees pitch, +/- 10 degrees roll) during flight can yield reliable and repeatable industry standard magnetic measurements at an increased spatial resolution over manned airborne surveys.

  12. Generational Differences in the Orientation of Time in Cantonese Speakers as a Function of Changes in the Direction of Chinese Writing

    PubMed Central

    de Sousa, Hilário

    2012-01-01

    It has long been argued that spatial aspects of language influence people’s conception of time. However, what spatial aspect of language is the most influential in this regard? To test this, two experiments were conducted in Hong Kong and Macau with literate Cantonese speakers. The results suggest that the crucial factor in literate Cantonese people’s spatial conceptualization of time is their experience with writing and reading Chinese script. In Hong Kong and Macau, Chinese script is written either in the traditional vertical orientation, which is still used, or the newer horizontal orientation, which is more common these days. Before the 1950s, the dominant horizontal direction was right-to-left. However, by the 1970s, the dominant horizontal direction had become left-to-right. In both experiments, the older participants predominately demonstrated time in a right-to-left direction, whereas younger participants predominately demonstrated time in a left-to-right direction, consistent with the horizontal direction that was prevalent when they first became literate. PMID:22855679

  13. Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception

    PubMed Central

    Liu, Sheng; Angelaki, Dora E.

    2009-01-01

    Visual and vestibular signals converge onto the dorsal medial superior temporal area (MSTd) of the macaque extrastriate visual cortex, which is thought to be involved in multisensory heading perception for spatial navigation. Peripheral otolith information, however, is ambiguous and cannot distinguish linear accelerations experienced during self-motion from those due to changes in spatial orientation relative to gravity. Here we show that, unlike peripheral vestibular sensors but similar to lobules 9 and 10 of the cerebellar vermis (nodulus and uvula), MSTd neurons respond selectively to heading and not to changes in orientation relative to gravity. In support of a role in heading perception, MSTd vestibular responses are also dominated by velocity-like temporal dynamics, which might optimize sensory integration with visual motion information. Unlike the cerebellar vermis, however, MSTd neurons also carry a spatial orientation-independent rotation signal from the semicircular canals, which could be useful in compensating for the effects of head rotation on the processing of optic flow. These findings show that vestibular signals in MSTd are appropriately processed to support a functional role in multisensory heading perception. PMID:19605631

  14. When Numbers Get Heavy: Is the Mental Number Line Exclusively Numerical?

    PubMed Central

    Holmes, Kevin J.; Lourenco, Stella F.

    2013-01-01

    The mental number line, with its left-to-right orientation of increasing numerical values, is often regarded as evidence for a unique connection between space and number. Yet left-to-right orientation has been shown to extend to other dimensions, consistent with a general magnitude system wherein different magnitudes share neural and conceptual resources. Such observations raise a fundamental, yet relatively unexplored, question about spatial-numerical associations: What is the nature of the information represented along the mental number line? Here we show that this information is not exclusive to number, simultaneously accommodating numerical and non-numerical magnitudes. Participants completed the classic SNARC (Spatial-Numerical Association of Response Codes) task while sometimes wearing wrist weights. Weighting the left wrist–thereby linking less and more weight to right and left, respectively–worked against left-to-right orientation of number, leaving no behavioral trace of the mental number line. Our findings point to the dynamic integration of magnitude dimensions, with spatial organization instantiating representational currency (i.e., more/less relations) shared across magnitudes. PMID:23484023

  15. Attentional focus affects how events are segmented and updated in narrative reading.

    PubMed

    Bailey, Heather R; Kurby, Christopher A; Sargent, Jesse Q; Zacks, Jeffrey M

    2017-08-01

    Readers generate situation models representing described events, but the nature of these representations may differ depending on the reading goals. We assessed whether instructions to pay attention to different situational dimensions affect how individuals structure their situation models (Exp. 1) and how they update these models when situations change (Exp. 2). In Experiment 1, participants read and segmented narrative texts into events. Some readers were oriented to pay specific attention to characters or space. Sentences containing character or spatial-location changes were perceived as event boundaries-particularly if the reader was oriented to characters or space, respectively. In Experiment 2, participants read narratives and responded to recognition probes throughout the texts. Readers who were oriented to the spatial dimension were more likely to update their situation models at spatial changes; all readers tracked the character dimension. The results from both experiments indicated that attention to individual situational dimensions influences how readers segment and update their situation models. More broadly, the results provide evidence for a global situation model updating mechanism that serves to set up new models at important narrative changes.

  16. Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex.

    PubMed

    Allison, J D; Smith, K R; Bonds, A B

    2001-01-01

    A sinusoidal mask grating oriented orthogonally to and superimposed onto an optimally oriented base grating reduces a cortical neuron's response amplitude. The spatial selectivity of cross-orientation suppression (XOR) has been described, so for this paper we investigated the temporal properties of XOR. We recorded from single striate cortical neurons (n = 72) in anesthetized and paralyzed cats. After quantifying the spatial and temporal characteristics of each cell's excitatory response to a base grating, we measured the temporal-frequency tuning of XOR by systematically varying the temporal frequency of a mask grating placed at a null orientation outside of the cell's excitatory orientation domain. The average preferred temporal frequency of the excitatory response of the neurons in our sample was 3.8 (+/- 1.5 S.D.) Hz. The average cutoff frequency for the sample was 16.3 (+/- 1.7) Hz. The average preferred temporal frequency (7.0 +/- 2.6 Hz) and cutoff frequency (20.4 +/- 6.9 Hz) of the XOR were significantly higher. The differences averaged 1.1 (+/- 0.6) octaves for the peaks and 0.3 (+/- 0.4) octaves for the cutoffs. The XOR mechanism's preference for high temporal frequencies suggests a possible extrastriate origin for the effect and could help explain the low-pass temporal-frequency response profile displayed by most striate cortical neurons.

  17. Not all memories are the same: Situational context influences spatial recall within one's city of residency.

    PubMed

    Meilinger, Tobias; Frankenstein, Julia; Simon, Nadine; Bülthoff, Heinrich H; Bresciani, Jean-Pierre

    2016-02-01

    Reference frames in spatial memory encoding have been examined intensively in recent years. However, their importance for recall has received considerably less attention. In the present study, passersby used tags to arrange a configuration map of prominent city center landmarks. It has been shown that such configurational knowledge is memorized within a north-up reference frame. However, participants adjusted their maps according to their body orientations. For example, when participants faced south, the maps were likely to face south-up. Participants also constructed maps along their location perspective-that is, the self-target direction. If, for instance, they were east of the represented area, their maps were oriented west-up. If the location perspective and body orientation were in opposite directions (i.e., if participants faced away from the city center), participants relied on location perspective. The results indicate that reference frames in spatial recall depend on the current situation rather than on the organization in long-term memory. These results cannot be explained by activation spread within a view graph, which had been used to explain similar results in the recall of city plazas. However, the results are consistent with forming and transforming a spatial image of nonvisible city locations from the current location. Furthermore, prior research has almost exclusively focused on body- and environment-based reference frames. The strong influence of location perspective in an everyday navigational context indicates that such a reference frame should be considered more often when examining human spatial cognition.

  18. Exercise-Induced Fatigue and Caffeine Supplementation Affect Psychomotor Performance but Not Covert Visuo-Spatial Attention

    PubMed Central

    Connell, Charlotte J. W.; Thompson, Benjamin; Kuhn, Gustav; Gant, Nicholas

    2016-01-01

    Fatigue resulting from strenuous exercise can impair cognition and oculomotor control. These impairments can be prevented by administering psychostimulants such as caffeine. This study used two experiments to explore the influence of caffeine administered at rest and during fatiguing physical exercise on spatial attention—a cognitive function that is crucial for task-based visually guided behavior. In independent placebo-controlled studies, cohorts of 12 healthy participants consumed caffeine and rested or completed 180 min of stationary cycling. Covert attentional orienting was measured in both experiments using a spatial cueing paradigm. We observed no alterations in attentional facilitation toward spatial cues suggesting that covert attentional orienting is not influenced by exercise fatigue or caffeine supplementation. Response times were increased (impaired) after exercise and this deterioration was prevented by caffeine supplementation. In the resting experiment, response times across all conditions and cues were decreased (improved) with caffeine. Covert spatial attention was not influenced by caffeine. Together, the results of these experiments suggest that covert attentional orienting is robust to the effects of fatiguing exercise and not influenced by caffeine. However, exercise fatigue impairs response times, which can be prevented by caffeine, suggesting that pre-motor planning and execution of the motor responses required for performance of the cueing task are sensitive to central nervous system fatigue. Caffeine improves response time in both fatigued and fresh conditions, most likely through action on networks controlling motor function. PMID:27768747

  19. Exercise-Induced Fatigue and Caffeine Supplementation Affect Psychomotor Performance but Not Covert Visuo-Spatial Attention.

    PubMed

    Connell, Charlotte J W; Thompson, Benjamin; Kuhn, Gustav; Gant, Nicholas

    2016-01-01

    Fatigue resulting from strenuous exercise can impair cognition and oculomotor control. These impairments can be prevented by administering psychostimulants such as caffeine. This study used two experiments to explore the influence of caffeine administered at rest and during fatiguing physical exercise on spatial attention-a cognitive function that is crucial for task-based visually guided behavior. In independent placebo-controlled studies, cohorts of 12 healthy participants consumed caffeine and rested or completed 180 min of stationary cycling. Covert attentional orienting was measured in both experiments using a spatial cueing paradigm. We observed no alterations in attentional facilitation toward spatial cues suggesting that covert attentional orienting is not influenced by exercise fatigue or caffeine supplementation. Response times were increased (impaired) after exercise and this deterioration was prevented by caffeine supplementation. In the resting experiment, response times across all conditions and cues were decreased (improved) with caffeine. Covert spatial attention was not influenced by caffeine. Together, the results of these experiments suggest that covert attentional orienting is robust to the effects of fatiguing exercise and not influenced by caffeine. However, exercise fatigue impairs response times, which can be prevented by caffeine, suggesting that pre-motor planning and execution of the motor responses required for performance of the cueing task are sensitive to central nervous system fatigue. Caffeine improves response time in both fatigued and fresh conditions, most likely through action on networks controlling motor function.

  20. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  1. Multi-Scale and Object-Oriented Analysis for Mountain Terrain Segmentation and Geomorphological Assessment

    NASA Astrophysics Data System (ADS)

    Marston, B. K.; Bishop, M. P.; Shroder, J. F.

    2009-12-01

    Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.

  2. Pro-Social Goals in Achievement Situations: Amity Goal Orientation Enhances the Positive Effects of Mastery Goal Orientation.

    PubMed

    Levontin, Liat; Bardi, Anat

    2018-04-01

    Research has neglected the utility of pro-social goals within achievement situations. In this article, four studies demonstrate that amity goal orientation, promoting mutual success of oneself together with others, enhances the utility of mastery goal orientation. We demonstrate this in longitudinally predicting performance (Studies 1 and 2) and in maintaining motivation after a disappointing performance (Studies 3 and 4). The studies demonstrate the same interaction effect in academic and in work achievement contexts. Specifically, whereas amity goal orientation did not predict achievement on its own, it enhanced the positive effect of mastery goal orientation. Together, these studies establish the importance of amity goal orientation while also advancing our understanding of the effects of other achievement goal orientations. We suggest future directions in examining the utility of amity goals in other contexts.

  3. 76 FR 4703 - Statement of Organization, Functions, and Delegations of Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... regarding medical loss ratio standards and the insurance premium rate review process, and issues premium... Oriented Plan program. Collects, compiles and maintains comparative pricing data for an Internet portal... benefit from the new health insurance system. Collects, compiles and maintains comparative pricing data...

  4. Landscape Management: Field Operator.

    ERIC Educational Resources Information Center

    Smith, Carole A.

    These materials for a six-unit course were developed to prepare secondary and postsecondary students for entry-level positions in landscape management. The six units are on orientation, hand tools, light power equipment, water and watering techniques, planting and maintaining plant beds, and establishing and maintaining turf. The first section is…

  5. Maintained expression of the planar cell polarity molecule Vangl2 and reformation of hair cell orientation in the regenerating inner ear.

    PubMed

    Warchol, Mark E; Montcouquiol, Mireille

    2010-09-01

    The avian inner ear possesses a remarkable ability to regenerate sensory hair cells after ototoxic injury. Regenerated hair cells possess phenotypes and innervation that are similar to those found in the undamaged ear, but little is known about the signaling pathways that guide hair cell differentiation during the regenerative process. The aim of the present study was to examine the factors that specify the orientation of hair cell stereocilia bundles during regeneration. Using organ cultures of the chick utricle, we show that hair cells are properly oriented after having regenerated entirely in vitro and that orientation is not affected by surgical removal of the striolar reversal zone. These results suggest that the orientation of regenerating stereocilia is not guided by the release of a diffusible morphogen from the striolar reversal zone but is specified locally within the regenerating sensory organ. In order to determine the nature of the reorientation cues, we examined the expression patterns of the core planar cell polarity molecule Vangl2 in the normal and regenerating utricle. We found that Vangl2 is asymmetrically expressed on cells within the sensory epithelium and that this expression pattern is maintained after ototoxic injury and throughout regeneration. Notably, treatment with a small molecule inhibitor of c-Jun-N-terminal kinase disrupted the orientation of regenerated hair cells. Both of these results are consistent with the hypothesis that noncanonical Wnt signaling guides hair cell orientation during regeneration.

  6. openPSTD: The open source pseudospectral time-domain method for acoustic propagation

    NASA Astrophysics Data System (ADS)

    Hornikx, Maarten; Krijnen, Thomas; van Harten, Louis

    2016-06-01

    An open source implementation of the Fourier pseudospectral time-domain (PSTD) method for computing the propagation of sound is presented, which is geared towards applications in the built environment. Being a wave-based method, PSTD captures phenomena like diffraction, but maintains efficiency in processing time and memory usage as it allows to spatially sample close to the Nyquist criterion, thus keeping both the required spatial and temporal resolution coarse. In the implementation it has been opted to model the physical geometry as a composition of rectangular two-dimensional subdomains, hence initially restricting the implementation to orthogonal and two-dimensional situations. The strategy of using subdomains divides the problem domain into local subsets, which enables the simulation software to be built according to Object-Oriented Programming best practices and allows room for further computational parallelization. The software is built using the open source components, Blender, Numpy and Python, and has been published under an open source license itself as well. For accelerating the software, an option has been included to accelerate the calculations by a partial implementation of the code on the Graphical Processing Unit (GPU), which increases the throughput by up to fifteen times. The details of the implementation are reported, as well as the accuracy of the code.

  7. Self-Motion Perception: Assessment by Real-Time Computer Generated Animations

    NASA Technical Reports Server (NTRS)

    Parker, Donald E.

    1999-01-01

    Our overall goal is to develop materials and procedures for assessing vestibular contributions to spatial cognition. The specific objective of the research described in this paper is to evaluate computer-generated animations as potential tools for studying self-orientation and self-motion perception. Specific questions addressed in this study included the following. First, does a non- verbal perceptual reporting procedure using real-time animations improve assessment of spatial orientation? Are reports reliable? Second, do reports confirm expectations based on stimuli to vestibular apparatus? Third, can reliable reports be obtained when self-motion description vocabulary training is omitted?

  8. 49 CFR 572.197 - Abdomen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vertical orientation. (4) Push the dummy at the knees and at mid-sternum of the upper torso with just sufficient horizontally oriented force towards the seat back until the back of the upper torso is in contact with the seat back. (5) While maintaining the dummy's position as specified in paragraph (b)(3) and (4...

  9. 49 CFR 572.196 - Thorax without arm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... orientation. (4) Push the dummy at the knees and at mid-sternum of the upper torso with just sufficient horizontally oriented force towards the seat back until the back of the upper torso is in contact with the seat back. (5) While maintaining the dummy's position as specified in paragraphs (b)(3) and (4) of this...

  10. 49 CFR 572.198 - Pelvis acetabulum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the dummy is in vertical orientation. (4) Push the dummy at the knees and at mid-sternum of the upper torso with just sufficient horizontally oriented force towards the seat back until the back of the upper torso is in contact with the seat back. (5) While maintaining the dummy's position as specified in...

  11. 49 CFR 572.195 - Thorax with arm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... dummy is in vertical orientation. (4) Push the dummy at the knees and at mid-sternum of the upper torso with just sufficient horizontally oriented force towards the seat back until the back of the upper torso is in contact with the seat back. (5) While maintaining the dummy's position as specified in...

  12. Structured self-reflection as a tool to enhance perceived performance and maintain effort in adult recreational salsa dancers

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to determine if the use of structured self-reflection in community dance classes would influence achievement goal orientations, levels of intrinsic motivation, or perceived dance performance. The Task and Ego Orientation in Sport Questionnaire (TEOSQ) and the Intrinsic...

  13. Recrystallized arrays of bismuth nanowires with trigonal orientation.

    PubMed

    Limmer, Steven J; Yelton, W Graham; Erickson, Kristopher J; Medlin, Douglas L; Siegal, Michael P

    2014-01-01

    We demonstrate methods to improve the crystalline-quality of free-standing Bi nanowires arrays on a Si substrate and enhance the preferred trigonal orientation for thermoelectric performance by annealing the arrays above the 271.4 °C Bi melting point. The nanowires maintain their geometry during melting due to the formation of a thin Bi-oxide protective shell that contains the molten Bi. Recrystallizing nanowires from the melt improves crystallinity; those cooled rapidly demonstrate a strong trigonal orientation preference.

  14. Spectral information as an orientation cue in dung beetles.

    PubMed

    El Jundi, Basil; Foster, James J; Byrne, Marcus J; Baird, Emily; Dacke, Marie

    2015-11-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation. © 2015 The Author(s).

  15. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.

    PubMed Central

    Picart, C; Dalhaimer, P; Discher, D E

    2000-01-01

    The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the network can be dilated severalfold, filaments have the same membrane-tangent orientation as on a relatively unstrained portion of membrane. Likewise, over the length of the network projection pulled into the micropipette, where the network is strongly sheared in axial extension and circumferential contraction, actin maintains its tangent orientation and is only very weakly aligned with network extension. Similar results are found for the integral membrane protein Band 3. Allowing for thermal fluctuations, we deduce a bound for the effective coupling constant, alpha, between network shear and azimuthal orientation of the protofilament. The finding that alpha must be about an order of magnitude or more below its tight-coupling value illustrates how nanostructural kinematics can decouple from more macroscopic responses. Monte Carlo simulations of spectrin-actin networks at approximately 10-nm resolution further support this conclusion and substantiate an image of protofilaments as elements of a high-temperature spin glass. PMID:11106606

  16. Spatial Structure in the Infrared Spectra of Three Evolved Stars

    NASA Astrophysics Data System (ADS)

    Sloan, G. C.; Tandy, P. C.; Pirger, B. E.; Hodge, T. M.

    1993-05-01

    We have spatially resolved three evolved sources using GLADYS, a long-slit 10 microns spectrometer, at the Wyoming Infrared Observatory. These observations, made in 1993 March, were the first for GLADYS after a complete replacement of the detector drive electronics, ADCs, and hardware co-adder. We studied each source in a north/south and an east/west slit orientation. For each set of observations, we fit a gaussian to the spatial profile at each wavelength to create a spatiogram, or plot of the width of the spectrum as a function of wavelength. In both slit orientations, the spatiogram of alpha Orionis is widest at 10 microns, where the contribution from the silicate dust in the circumstellar shell is strongest. The FWHM at 10 microns is 2.0 arcsec, while our point-source comparison has a FWHM of 1.6 arcsec. These results are very similar to those presented for a N/S slit by Grasdalen, Sloan, and LeVan (1992, ApJ, 384, L25). IRC+10216 is also resolved in both slit orientations, having a FWHM of 1.9 arcsec at 11 microns, compared with 1.5 arcsec for a point source. No spectral structure is apparent in the spatiograms, indicating that there is little change in the spectral character of the emission across the source. AFGL 2688 (the Cygnus Egg) is clearly resolved in the N/S slit orientation, where its FWHM at 11 microns is 2.2 arcsec, but its spatiogram in the E/W slit orientation is barely distinguishable from that of a point source.

  17. Effects of head orientation and lateral body tilt on egocentric coding: cognitive and sensory-motor accuracy.

    PubMed

    Prieur, J-M; Bourdin, C; Sarès, F; Vercher, J-L

    2006-01-01

    A major issue in motor control studies is to determine whether and how we use spatial frames of reference to organize our spatially oriented behaviors. In previous experiments we showed that simulated body tilt during off-axis rotation affected the performance in verbal localization and manual pointing tasks. It was hypothesized that the observed alterations were at least partly due to a change in the orientation of the egocentric frame of reference, which was indeed centered on the body but aligned with the gravitational vector. The present experiments were designed to test this hypothesis in a situation where no inertial constraints (except the usual gravitational one) exist and where the orientation of the body longitudinal z-axis was not aligned with the direction of the gravity. Eleven subjects were exposed to real static body tilt and were required to verbally localize (experiment 1) and to point as accurately as possible towards (experiment 2) memorized visual targets, in two conditions, Head-Free and Head-Fixed conditions. Results show that the performance was only affected by real body tilt in the localization task performed when the subject's head was tilted relative to the body. Thus, dissociation between gravity and body longitudinal z-axis alone is not responsible for localization nor for pointing errors. Therefore, the egocentric frame of reference seems independent from the orientation of the gravity with regard to body z-axis as expected from our previous studies. Moreover, the use of spatial referentials appears to be less mandatory than expected for pointing movements (motor task) than for localization task (cognitive task).

  18. Tactile Acuity Charts: A Reliable Measure of Spatial Acuity

    PubMed Central

    Bruns, Patrick; Camargo, Carlos J.; Campanella, Humberto; Esteve, Jaume; Dinse, Hubert R.; Röder, Brigitte

    2014-01-01

    For assessing tactile spatial resolution it has recently been recommended to use tactile acuity charts which follow the design principles of the Snellen letter charts for visual acuity and involve active touch. However, it is currently unknown whether acuity thresholds obtained with this newly developed psychophysical procedure are in accordance with established measures of tactile acuity that involve passive contact with fixed duration and control of contact force. Here we directly compared tactile acuity thresholds obtained with the acuity charts to traditional two-point and grating orientation thresholds in a group of young healthy adults. For this purpose, two types of charts, using either Braille-like dot patterns or embossed Landolt rings with different orientations, were adapted from previous studies. Measurements with the two types of charts were equivalent, but generally more reliable with the dot pattern chart. A comparison with the two-point and grating orientation task data showed that the test-retest reliability of the acuity chart measurements after one week was superior to that of the passive methods. Individual thresholds obtained with the acuity charts agreed reasonably with the grating orientation threshold, but less so with the two-point threshold that yielded relatively distinct acuity estimates compared to the other methods. This potentially considerable amount of mismatch between different measures of tactile acuity suggests that tactile spatial resolution is a complex entity that should ideally be measured with different methods in parallel. The simple test procedure and high reliability of the acuity charts makes them a promising complement and alternative to the traditional two-point and grating orientation thresholds. PMID:24504346

  19. Perceptual-cognitive skills and performance in orienteering.

    PubMed

    Guzmán, José F; Pablos, Ana M; Pablos, Carlos

    2008-08-01

    The goal was analysis of the perceptual-cognitive skills associated with sport performance in orienteering in a sample of 22 elite and 17 nonelite runners. Variables considered were memory, basic orienteering techniques, map reading, symbol knowledge, map-terrain-map identification, and spatial organisation. A computerised questionnaire was developed to measure the variables. The reliability of the test (agreement between experts) was 90%. Findings suggested that competence in performing basic orienteering techniques efficiently was a key variable differentiating between the elite and the nonelite athletes. The results are discussed in comparison with previous studies.

  20. Multiple Systems of Spatial Memory: Evidence from Described Scenes

    ERIC Educational Resources Information Center

    Avraamides, Marios N.; Kelly, Jonathan W.

    2010-01-01

    Recent models in spatial cognition posit that distinct memory systems are responsible for maintaining transient and enduring spatial relations. The authors used perspective-taking performance to assess the presence of these enduring and transient spatial memories for locations encoded through verbal descriptions. Across 3 experiments, spatial…

  1. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.

    PubMed

    Murphy-Baum, Benjamin L; Taylor, W Rowland

    2015-09-30

    Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the strength and speed of excitation on both local and wide-field spatial scales. This study demonstrates how different synaptic inputs are regulated to tune a neuron to respond to specific features in the visual scene. Copyright © 2015 the authors 0270-6474/15/3513336-15$15.00/0.

  2. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1994-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  3. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1996-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  4. Hemispheric Differences in Attentional Orienting by Social Cues

    ERIC Educational Resources Information Center

    Greene, Deanna J.; Zaidel, Eran

    2011-01-01

    Research points to a right hemisphere bias for processing social stimuli. Hemispheric specialization for attention shifts cued by social stimuli, however, has been rarely studied. We examined the capacity of each hemisphere to orient attention in response to social and nonsocial cues using a lateralized spatial cueing paradigm. We compared the…

  5. Translingual Practice as Spatial Repertoires: Expanding the Paradigm beyond Structuralist Orientations

    ERIC Educational Resources Information Center

    Canagarajah, Suresh

    2018-01-01

    The expanding orientations to translingualism are motivated by a gradual shift from the structuralist paradigm that has been treated as foundational in modern linguistics. Structuralism encouraged scholars to consider language, like other social constructs, as organized as a self-defining and closed structure, set apart from spatiotemporal…

  6. What We Observe Is Biased by What Other People Tell Us: Beliefs about the Reliability of Gaze Behavior Modulate Attentional Orienting to Gaze Cues

    PubMed Central

    Wiese, Eva; Wykowska, Agnieszka; Müller, Hermann J.

    2014-01-01

    For effective social interactions with other people, information about the physical environment must be integrated with information about the interaction partner. In order to achieve this, processing of social information is guided by two components: a bottom-up mechanism reflexively triggered by stimulus-related information in the social scene and a top-down mechanism activated by task-related context information. In the present study, we investigated whether these components interact during attentional orienting to gaze direction. In particular, we examined whether the spatial specificity of gaze cueing is modulated by expectations about the reliability of gaze behavior. Expectations were either induced by instruction or could be derived from experience with displayed gaze behavior. Spatially specific cueing effects were observed with highly predictive gaze cues, but also when participants merely believed that actually non-predictive cues were highly predictive. Conversely, cueing effects for the whole gazed-at hemifield were observed with non-predictive gaze cues, and spatially specific cueing effects were attenuated when actually predictive gaze cues were believed to be non-predictive. This pattern indicates that (i) information about cue predictivity gained from sampling gaze behavior across social episodes can be incorporated in the attentional orienting to social cues, and that (ii) beliefs about gaze behavior modulate attentional orienting to gaze direction even when they contradict information available from social episodes. PMID:24722348

  7. Visual selective attention in amnestic mild cognitive impairment.

    PubMed

    McLaughlin, Paula M; Anderson, Nicole D; Rich, Jill B; Chertkow, Howard; Murtha, Susan J E

    2014-11-01

    Subtle deficits in visual selective attention have been found in amnestic mild cognitive impairment (aMCI). However, few studies have explored performance on visual search paradigms or the Simon task, which are known to be sensitive to disease severity in Alzheimer's patients. Furthermore, there is limited research investigating how deficiencies can be ameliorated with exogenous support (auditory cues). Sixteen individuals with aMCI and 14 control participants completed 3 experimental tasks that varied in demand and cue availability: visual search-alerting, visual search-orienting, and Simon task. Visual selective attention was influenced by aMCI, auditory cues, and task characteristics. Visual search abilities were relatively consistent across groups. The aMCI participants were impaired on the Simon task when working memory was required, but conflict resolution was similar to controls. Spatially informative orienting cues improved response times, whereas spatially neutral alerting cues did not influence performance. Finally, spatially informative auditory cues benefited the aMCI group more than controls in the visual search task, specifically at the largest array size where orienting demands were greatest. These findings suggest that individuals with aMCI have working memory deficits and subtle deficiencies in orienting attention and rely on exogenous information to guide attention. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Investigating shape representation using sensitivity to part- and axis-based transformations.

    PubMed

    Denisova, Kristina; Feldman, Jacob; Su, Xiaotao; Singh, Manish

    2016-09-01

    Part- and axis-based approaches organize shape representations in terms of simple parts and their spatial relationships. Shape transformations that alter qualitative part structure have been shown to be more detectable than those that preserve it. We compared sensitivity to various transformations that change quantitative properties of parts and their spatial relationships, while preserving qualitative part structure. Shape transformations involving changes in length, width, curvature, orientation and location were applied to a small part attached to a larger base of a two-part shape. Increment thresholds were estimated for each transformation using a 2IFC procedure. Thresholds were converted into common units of shape difference to enable comparisons across transformations. Higher sensitivity was consistently found for transformations involving a parameter of a single part (length, width, curvature) than those involving spatial relations between two parts (relative orientation and location), suggesting a single-part superiority effect. Moreover, sensitivity to shifts in part location - a biomechanically implausible shape transformation - was consistently poorest. The influence of region-based geometry was investigated via stereoscopic manipulation of figure and ground. Sensitivity was compared across positive parts (protrusions) and negative parts (indentations) for transformations involving a change in orientation or location. For changes in part orientation (biomechanically plausible), sensitivity was better for positive than negative parts; whereas for changes in part location (biomechanically implausible), no systematic difference was observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. INVESTIGATING SHAPE REPRESENTATION USING SENSITIVITY TO PART- AND AXIS-BASED TRANSFORMATIONS

    PubMed Central

    Denisova, Kristina; Feldman, Jacob; Su, Xiaotao; Singh, Manish

    2015-01-01

    Part -and axis-based approaches organize shape representations in terms of simple parts and their spatial relationships. Shape transformations that alter qualitative part structure have been shown to be more detectable than those that preserve it. We compared sensitivity to various transformations that change quantitative properties of parts and their spatial relationships, while preserving qualitative part structure. Shape transformations involving changes in length, width, curvature, orientation and location were applied to a small part attached to a larger base of a two-part shape. Increment thresholds were estimated for each transformation using a 2IFC procedure. Thresholds were converted into common units of shape difference to enable comparisons across transformations. Higher sensitivity was consistently found for transformations involving a parameter of a single part (length, width, curvature) than those involving spatial relations between two parts (relative orientation and location), suggesting a single-part superiority effect. Moreover, sensitivity to shifts in part location—a biomechanically implausible shape transformation—was consistently poorest. The influence of region-based geometry was investigated via stereoscopic manipulation of figure and ground. Sensitivity was compared across positive parts (protrusions) and negative parts (indentations) for transformations involving a change in orientation or location. For changes in part orientation (biomechanically plausible), sensitivity was better for positive than negative parts; whereas for changes in part location (biomechanically implausible), no systematic difference was observed. PMID:26325393

  10. Apolipoprotein ɛ4 breaks the association between declarative long-term memory and memory-based orienting of spatial attention in middle-aged individuals.

    PubMed

    Salvato, Gerardo; Patai, Eva Z; McCloud, Tayla; Nobre, Anna C

    2016-09-01

    Apolipoprotein (APOE) ɛ4 genotype has been identified as a risk factor for late-onset Alzheimer disease (AD). The memory system is mostly involved in AD, and memory deficits represent its key feature. A growing body of studies has focused on the earlier identification of cognitive dysfunctions in younger and older APOE ɛ4 carriers, but investigation on middle-aged individuals remains rare. Here we sought to investigate if the APOE ɛ4 genotype modulates declarative memory and its influences on perception in the middle of the life span. We tested 60 middle-aged individuals recruited according to their APOE allele variants (ɛ3/ɛ3, ɛ3/ɛ4, ɛ4/ɛ4) on a long-term memory-based orienting of attention task. Results showed that the APOE ɛ4 genotype impaired neither explicit memory nor memory-based orienting of spatial attention. Interestingly, however, we found that the possession of the ɛ4 allele broke the relationship between declarative long-term memory and memory-guided orienting of visuo-spatial attention, suggesting an earlier modulation exerted by pure genetic characteristics on cognition. These findings are discussed in light of possible accelerated brain ageing in middle-aged ɛ4-carriers, and earlier structural changes in the brain occurring at this stage of the lifespan. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Coding of Velocity Storage in the Vestibular Nuclei.

    PubMed

    Yakushin, Sergei B; Raphan, Theodore; Cohen, Bernard

    2017-01-01

    Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.

  12. Coding of Velocity Storage in the Vestibular Nuclei

    PubMed Central

    Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard

    2017-01-01

    Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons. PMID:28861030

  13. High spatial resolution mapping of folds and fractures using Unmanned Aerial Vehicle (UAV) photogrammetry

    NASA Astrophysics Data System (ADS)

    Cruden, A. R.; Vollgger, S.

    2016-12-01

    The emerging capability of UAV photogrammetry combines a simple and cost-effective method to acquire digital aerial images with advanced computer vision algorithms that compute spatial datasets from a sequence of overlapping digital photographs from various viewpoints. Depending on flight altitude and camera setup, sub-centimeter spatial resolution orthophotographs and textured dense point clouds can be achieved. Orientation data can be collected for detailed structural analysis by digitally mapping such high-resolution spatial datasets in a fraction of time and with higher fidelity compared to traditional mapping techniques. Here we describe a photogrammetric workflow applied to a structural study of folds and fractures within alternating layers of sandstone and mudstone at a coastal outcrop in SE Australia. We surveyed this location using a downward looking digital camera mounted on commercially available multi-rotor UAV that autonomously followed waypoints at a set altitude and speed to ensure sufficient image overlap, minimum motion blur and an appropriate resolution. The use of surveyed ground control points allowed us to produce a geo-referenced 3D point cloud and an orthophotograph from hundreds of digital images at a spatial resolution < 10 mm per pixel, and cm-scale location accuracy. Orientation data of brittle and ductile structures were semi-automatically extracted from these high-resolution datasets using open-source software. This resulted in an extensive and statistically relevant orientation dataset that was used to 1) interpret the progressive development of folds and faults in the region, and 2) to generate a 3D structural model that underlines the complex internal structure of the outcrop and quantifies spatial variations in fold geometries. Overall, our work highlights how UAV photogrammetry can contribute to new insights in structural analysis.

  14. Plasticity of spatial hearing: behavioural effects of cortical inactivation

    PubMed Central

    Nodal, Fernando R; Bajo, Victoria M; King, Andrew J

    2012-01-01

    The contribution of auditory cortex to spatial information processing was explored behaviourally in adult ferrets by reversibly deactivating different cortical areas by subdural placement of a polymer that released the GABAA agonist muscimol over a period of weeks. The spatial extent and time course of cortical inactivation were determined electrophysiologically. Muscimol-Elvax was placed bilaterally over the anterior (AEG), middle (MEG) or posterior ectosylvian gyrus (PEG), so that different regions of the auditory cortex could be deactivated in different cases. Sound localization accuracy in the horizontal plane was assessed by measuring both the initial head orienting and approach-to-target responses made by the animals. Head orienting behaviour was unaffected by silencing any region of the auditory cortex, whereas the accuracy of approach-to-target responses to brief sounds (40 ms noise bursts) was reduced by muscimol-Elvax but not by drug-free implants. Modest but significant localization impairments were observed after deactivating the MEG, AEG or PEG, although the largest deficits were produced in animals in which the MEG, where the primary auditory fields are located, was silenced. We also examined experience-induced spatial plasticity by reversibly plugging one ear. In control animals, localization accuracy for both approach-to-target and head orienting responses was initially impaired by monaural occlusion, but recovered with training over the next few days. Deactivating any part of the auditory cortex resulted in less complete recovery than in controls, with the largest deficits observed after silencing the higher-level cortical areas in the AEG and PEG. Although suggesting that each region of auditory cortex contributes to spatial learning, differences in the localization deficits and degree of adaptation between groups imply a regional specialization in the processing of spatial information across the auditory cortex. PMID:22547635

  15. Dynamic modulation of ocular orientation during visually guided saccades and smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Hess, Bernhard J M.; Angelaki, Dora E.

    2003-01-01

    Rotational disturbances of the head about an off-vertical yaw axis induce a complex vestibuloocular reflex pattern that reflects the brain's estimate of head angular velocity as well as its estimate of instantaneous head orientation (at a reduced scale) in space coordinates. We show that semicircular canal and otolith inputs modulate torsional and, to a certain extent, also vertical ocular orientation of visually guided saccades and smooth-pursuit eye movements in a similar manner as during off-vertical axis rotations in complete darkness. It is suggested that this graviceptive control of eye orientation facilitates rapid visual spatial orientation during motion.

  16. Vertical spatial sensitivity and exploration depth of low-induction-number electromagnetic-induction instruments

    USGS Publications Warehouse

    Callegary, J.B.; Ferré, T.P.A.; Groom, R.W.

    2007-01-01

    Vertical spatial sensitivity and effective depth of exploration (d e) of low-induction-number (LIN) instruments over a layered soil were evaluated using a complete numerical solution to Maxwell's equations. Previous studies using approximate mathematical solutions predicted a vertical spatial sensitivity for instruments operating under LIN conditions that, for a given transmitter-receiver coil separation (s), coil orientation, and transmitter frequency, should depend solely on depth below the land surface. When not operating under LIN conditions, vertical spatial sensitivity and de also depend on apparent soil electrical conductivity (??a) and therefore the induction number (??). In this new evaluation, we determined the range of ??a and ?? values for which the LIN conditions hold and how de changes when they do not. Two-layer soil models were simulated with both horizontal (HCP) and vertical (VCP) coplanar coil orientations. Soil layers were given electrical conductivity values ranging from 0.1 to 200 mS m-1. As expected, de decreased as ??a increased. Only the least electrically conductive soil produced the de expected when operating under LIN conditions. For the VCP orientation, this was 1.6s, decreasing to 0.8s in the most electrically conductive soil. For the HCP orientation, de decreased from 0.76s to 0.51s. Differences between this and previous studies are attributed to inadequate representation of skin-depth effect and scattering at interfaces between layers. When using LIN instruments to identify depth to water tables, interfaces between soil layers, and variations in salt or moisture content, it is important to consider the dependence of de on ??a. ?? Soil Science Society of America.

  17. Psychological symptoms and spatial orientation during the first 3 months after acute unilateral vestibular lesion.

    PubMed

    Gómez-Alvarez, Fatima B; Jáuregui-Renaud, Kathrine

    2011-02-01

    We undertook this study to assess the correlation between the results of simple tests of spatial orientation and the occurrence of common psychological symptoms during the first 3 months after an acute, unilateral, peripheral, vestibular lesion. Ten vestibular patients were selected and accepted to participate in the study. During a 3-month follow-up, we recorded the static visual vertical (VV), the estimation error of reorientation in the yaw plane and the responses to a standardized questionnaire of balance symptoms, the Dizziness Handicap Inventory (DHI), the depersonalization/derealization inventory by Cox and Swinson (DD), the Dissociative Experiences Scale (DES), the 12-item General Health Questionnaire (GHQ-12), the Zung Instrument for Anxiety Disorders and the Hamilton Depression Rating Scale. At week 1, all patients showed a VV >2° and failed to reorient themselves effectively. They reported several balance symptoms and handicap as well as DD symptoms, including attention/concentration difficulties; 80% of the patients had a Hamilton score ≥8. At this time the balance symptom score correlated with the DHI. After 3 months, all scores decreased. Multiple regression analysis of the differences from baseline showed that the DD score difference was related to the difference on the balance score, the reorientation error and the DHI score (p <0.01). No other linear relationships were observed (p >0.5). During the acute phase of a unilateral, peripheral, vestibular lesion, patients may show poor spatial orientation concurrent with DD symptoms including attention/concentration difficulties, and somatic depression symptoms. After vestibular rehabilitation, DD symptoms decrease as the spatial orientation improves, even if somatic symptoms of depression persist. Copyright © 2011 IMSS. Published by Elsevier Inc. All rights reserved.

  18. The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis

    PubMed Central

    Boehm, Bernd; Westerberg, Henrik; Lesnicar-Pucko, Gaja; Raja, Sahdia; Rautschka, Michael; Cotterell, James; Swoger, Jim; Sharpe, James

    2010-01-01

    Although the vertebrate limb bud has been studied for decades as a model system for spatial pattern formation and cell specification, the cellular basis of its distally oriented elongation has been a relatively neglected topic by comparison. The conventional view is that a gradient of isotropic proliferation exists along the limb, with high proliferation rates at the distal tip and lower rates towards the body, and that this gradient is the driving force behind outgrowth. Here we test this hypothesis by combining quantitative empirical data sets with computer modelling to assess the potential role of spatially controlled proliferation rates in the process of directional limb bud outgrowth. In particular, we generate two new empirical data sets for the mouse hind limb—a numerical description of shape change and a quantitative 3D map of cell cycle times—and combine these with a new 3D finite element model of tissue growth. By developing a parameter optimization approach (which explores spatial patterns of tissue growth) our computer simulations reveal that the observed distribution of proliferation rates plays no significant role in controlling the distally extending limb shape, and suggests that directional cell activities are likely to be the driving force behind limb bud outgrowth. This theoretical prediction prompted us to search for evidence of directional cell orientations in the limb bud mesenchyme, and we thus discovered a striking highly branched and extended cell shape composed of dynamically extending and retracting filopodia, a distally oriented bias in Golgi position, and also a bias in the orientation of cell division. We therefore provide both theoretical and empirical evidence that limb bud elongation is achieved by directional cell activities, rather than a PD gradient of proliferation rates. PMID:20644711

  19. GEMAS: Spatial pattern analysis of Ni by using digital image processing techniques on European agricultural soil data

    NASA Astrophysics Data System (ADS)

    Jordan, Gyozo; Petrik, Attila; De Vivo, Benedetto; Albanese, Stefano; Demetriades, Alecos; Sadeghi, Martiya

    2017-04-01

    Several studies have investigated the spatial distribution of chemical elements in topsoil (0-20 cm) within the framework of the EuroGeoSurveys Geochemistry Expert Group's 'Geochemical Mapping of Agricultural and Grazing Land Soil' project . Most of these studies used geostatistical analyses and interpolated concentration maps, Exploratory and Compositional Data and Analysis to identify anomalous patterns. The objective of our investigation is to demonstrate the use of digital image processing techniques for reproducible spatial pattern recognition and quantitative spatial feature characterisation. A single element (Ni) concentration in agricultural topsoil is used to perform the detailed spatial analysis, and to relate these features to possible underlying processes. In this study, simple univariate statistical methods were implemented first, and Tukey's inner-fence criterion was used to delineate statistical outliers. The linear and triangular irregular network (TIN) interpolation was used on the outlier-free Ni data points, which was resampled to a 10*10 km grid. Successive moving average smoothing was applied to generalise the TIN model and to suppress small- and at the same time enhance significant large-scale features of Nickel concentration spatial distribution patterns in European topsoil. The TIN map smoothed with a moving average filter revealed the spatial trends and patterns without losing much detail, and it was used as the input into digital image processing, such as local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction calculation, second derivative profile curvature calculation, edge detection, local variability assessment, lineament density and directional variogram analyses. The detailed image processing analysis revealed several NE-SW, E-W and NW-SE oriented elongated features, which coincide with different spatial parameter classes and alignment with local maxima and minima. The NE-SW oriented linear pattern is the dominant feature to the south of the last glaciation limit. Some of these linear features are parallel to the suture zone of the Iapetus Ocean, while the others follow the Alpine and Carpathian Chains. The highest variability zones of Ni concentration in topsoil are located in the Alps and in the Balkans where mafic and ultramafic rocks outcrop. The predominant NE-SW oriented pattern is also captured by the strong anisotropy in the semi-variograms in this direction. A single major E-W oriented north-facing feature runs along the southern border of the last glaciation zone. This zone also coincides with a series of local maxima in Ni concentration along the glaciofluvial deposits. The NW-SE elongated spatial features are less dominant and are located in the Pyrenees and Scandinavia. This study demonstrates the efficiency of systematic image processing analysis in identifying and characterising spatial geochemical patterns that often remain uncovered by the usual visual map interpretation techniques.

  20. Robust Synchronization Models for Presentation System Using SMIL-Driven Approach

    ERIC Educational Resources Information Center

    Asnawi, Rustam; Ahmad, Wan Fatimah Wan; Rambli, Dayang Rohaya Awang

    2013-01-01

    Current common Presentation System (PS) models are slide based oriented and lack synchronization analysis either with temporal or spatial constraints. Such models, in fact, tend to lead to synchronization problems, particularly on parallel synchronization with spatial constraints between multimedia element presentations. However, parallel…

  1. In situ analysis of the organic framework in the prismatic layer of mollusc shell.

    PubMed

    Tong, Hua; Hu, Jiming; Ma, Wentao; Zhong, Guirong; Yao, Songnian; Cao, Nianxing

    2002-06-01

    A novel in situ analytic approach was constructed by means of ion sputtering, decalcification and deprotein techniques combining with scanning electron microscopy (SEM) and transmission electron microscope (TEM) ultrastructural analysis. The method was employed to determine the spatial distribution of the organic framework outside and the inner crystal and organic/inorganic interface spatial geometrical relationship in the prismatic layer of cristaris plicate (leach). The results show that there is a substructure of organic matrix in the intracrystalline region. The prismatic layer forms according to strict hierarchical configuration of regular pattern. Each unit of organic template of prismatic layer can uniquely determine the column crystal growth direction, spatial orientation and size. Cavity templates are responsible for supporting. limiting size and shape and determining the crystal growth spatial orientation, while the intracrystal organic matrix is responsible for providing nucleation point and inducing the nucleation process of calcite. The stereo hierarchical fabrication of prismatic layer was elucidated for the first time.

  2. Enhancing Allocentric Spatial Recall in Pre-schoolers through Navigational Training Programme

    PubMed Central

    Boccia, Maddalena; Rosella, Michela; Vecchione, Francesca; Tanzilli, Antonio; Palermo, Liana; D'Amico, Simonetta; Guariglia, Cecilia; Piccardi, Laura

    2017-01-01

    Unlike for other abilities, children do not receive systematic spatial orientation training at school, even though navigational training during adulthood improves spatial skills. We investigated whether navigational training programme (NTP) improved spatial orientation skills in pre-schoolers. We administered 12-week NTP to seventeen 4- to 5-year-old children (training group, TG). The TG children and 17 age-matched children (control group, CG) who underwent standard didactics were tested twice before (T0) and after (T1) the NTP using tasks that tap into landmark, route and survey representations. We determined that the TG participants significantly improved their performances in the most demanding navigational task, which is the task that taps into survey representation. This improvement was significantly higher than that observed in the CG, suggesting that NTP fostered the acquisition of survey representation. Such representation is typically achieved by age seven. This finding suggests that NTP improves performance on higher-level navigational tasks in pre-schoolers. PMID:29085278

  3. The effects of transient attention on spatial resolution and the size of the attentional cue.

    PubMed

    Yeshurun, Yaffa; Carrasco, Marisa

    2008-01-01

    It has been shown that transient attention enhances spatial resolution, but is the effect of transient attention on spatial resolution modulated by the size of the attentional cue? Would a gradual increase in the size of the cue lead to a gradual decrement in spatial resolution? To test these hypotheses, we used a texture segmentation task in which performance depends on spatial resolution, and systematically manipulated the size of the attentional cue: A bar of different lengths (Experiment 1) or a frame of different sizes (Experiments 2-3) indicated the target region in a texture segmentation display. Observers indicated whether a target patch region (oriented line elements in a background of an orthogonal orientation), appearing at a range of eccentricities, was present in the first or the second interval. We replicated the attentional enhancement of spatial resolution found with small cues; attention improved performance at peripheral locations but impaired performance at central locations. However, there was no evidence of gradual resolution decrement with large cues. Transient attention enhanced spatial resolution at the attended location when it was attracted to that location by a small cue but did not affect resolution when it was attracted by a large cue. These results indicate that transient attention cannot adapt its operation on spatial resolution on the basis of the size of the attentional cue.

  4. Oppugning the assumptions of spatial averaging of segment and joint orientations.

    PubMed

    Pierrynowski, Michael Raymond; Ball, Kevin Arthur

    2009-02-09

    Movement scientists frequently calculate "arithmetic averages" when examining body segment or joint orientations. Such calculations appear routinely, yet are fundamentally flawed. Three-dimensional orientation data are computed as matrices, yet three-ordered Euler/Cardan/Bryant angle parameters are frequently used for interpretation. These parameters are not geometrically independent; thus, the conventional process of averaging each parameter is incorrect. The process of arithmetic averaging also assumes that the distances between data are linear (Euclidean); however, for the orientation data these distances are geodesically curved (Riemannian). Therefore we question (oppugn) whether use of the conventional averaging approach is an appropriate statistic. Fortunately, exact methods of averaging orientation data have been developed which both circumvent the parameterization issue, and explicitly acknowledge the Euclidean or Riemannian distance measures. The details of these matrix-based averaging methods are presented and their theoretical advantages discussed. The Euclidian and Riemannian approaches offer appealing advantages over the conventional technique. With respect to practical biomechanical relevancy, examinations of simulated data suggest that for sets of orientation data possessing characteristics of low dispersion, an isotropic distribution, and less than 30 degrees second and third angle parameters, discrepancies with the conventional approach are less than 1.1 degrees . However, beyond these limits, arithmetic averaging can have substantive non-linear inaccuracies in all three parameterized angles. The biomechanics community is encouraged to recognize that limitations exist with the use of the conventional method of averaging orientations. Investigations requiring more robust spatial averaging over a broader range of orientations may benefit from the use of matrix-based Euclidean or Riemannian calculations.

  5. Target-object integration, attention distribution, and object orientation interactively modulate object-based selection.

    PubMed

    Al-Janabi, Shahd; Greenberg, Adam S

    2016-10-01

    The representational basis of attentional selection can be object-based. Various studies have suggested, however, that object-based selection is less robust than spatial selection across experimental paradigms. We sought to examine the manner by which the following factors might explain this variation: Target-Object Integration (targets 'on' vs. part 'of' an object), Attention Distribution (narrow vs. wide), and Object Orientation (horizontal vs. vertical). In Experiment 1, participants discriminated between two targets presented 'on' an object in one session, or presented as a change 'of' an object in another session. There was no spatial cue-thus, attention was initially focused widely-and the objects were horizontal or vertical. We found evidence of object-based selection only when targets constituted a change 'of' an object. Additionally, object orientation modulated the sign of object-based selection: We observed a same-object advantage for horizontal objects, but a same-object cost for vertical objects. In Experiment 2, an informative cue preceded a single target presented 'on' an object or as a change 'of' an object (thus, attention was initially focused narrowly). Unlike in Experiment 1, we found evidence of object-based selection independent of target-object integration. We again found that the sign of selection was modulated by the objects' orientation. This result may reflect a meridian effect, which emerged due to anisotropies in the cortical representations when attention is oriented endogenously. Experiment 3 revealed that object orientation did not modulate object-based selection when attention was oriented exogenously. Our findings suggest that target-object integration, attention distribution, and object orientation modulate object-based selection, but only in combination.

  6. Visual cues to geographical orientation during low-level flight

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Delzell, Suzanne

    1991-01-01

    A field study of an operational Emergency Medical Service (EMS) unit was conducted to investigate the relationships among geographical orientation, pilot decision making, and workload in EMS flights. The map data collected during this study were compared to protocols gathered in the laboratory, where pilots viewed a simulated flight over different types of unfamiliar terrain and verbally identified the features utilized to maintain geographical orientation. The EMS pilot's questionnaire data were compared with data from non-EMS helicopter pilots with comparable flight experience.

  7. The effect of synaptic plasticity on orientation selectivity in a balanced model of primary visual cortex

    PubMed Central

    Gonzalo Cogno, Soledad; Mato, Germán

    2015-01-01

    Orientation selectivity is ubiquitous in the primary visual cortex (V1) of mammals. In cats and monkeys, V1 displays spatially ordered maps of orientation preference. Instead, in mice, squirrels, and rats, orientation selective neurons in V1 are not spatially organized, giving rise to a seemingly random pattern usually referred to as a salt-and-pepper layout. The fact that such different organizations can sharpen orientation tuning leads to question the structural role of the intracortical connections; specifically the influence of plasticity and the generation of functional connectivity. In this work, we analyze the effect of plasticity processes on orientation selectivity for both scenarios. We study a computational model of layer 2/3 and a reduced one-dimensional model of orientation selective neurons, both in the balanced state. We analyze two plasticity mechanisms. The first one involves spike-timing dependent plasticity (STDP), while the second one considers the reconnection of the interactions according to the preferred orientations of the neurons. We find that under certain conditions STDP can indeed improve selectivity but it works in a somehow unexpected way, that is, effectively decreasing the modulated part of the intracortical connectivity as compared to the non-modulated part of it. For the reconnection mechanism we find that increasing functional connectivity leads, in fact, to a decrease in orientation selectivity if the network is in a stable balanced state. Both counterintuitive results are a consequence of the dynamics of the balanced state. We also find that selectivity can increase due to a reconnection process if the resulting connections give rise to an unstable balanced state. We compare these findings with recent experimental results. PMID:26347615

  8. Bow Your Head in Shame, or, Hold Your Head Up with Pride: Semantic Processing of Self-Esteem Concepts Orients Attention Vertically.

    PubMed

    Taylor, J Eric T; Lam, Timothy K; Chasteen, Alison L; Pratt, Jay

    2015-01-01

    Embodied cognition holds that abstract concepts are grounded in perceptual-motor simulations. If a given embodied metaphor maps onto a spatial representation, then thinking of that concept should bias the allocation of attention. In this study, we used positive and negative self-esteem words to examine two properties of conceptual cueing. First, we tested the orientation-specificity hypothesis, which predicts that conceptual cues should selectively activate certain spatial axes (in this case, valenced self-esteem concepts should activate vertical space), instead of any spatial continuum. Second, we tested whether conceptual cueing requires semantic processing, or if it can be achieved with shallow visual processing of the cue words. Participants viewed centrally presented words consisting of high or low self-esteem traits (e.g., brave, timid) before detecting a target above or below the cue in the vertical condition, or on the left or right of the word in the horizontal condition. Participants were faster to detect targets when their location was compatible with the valence of the word cues, but only in the vertical condition. Moreover, this effect was observed when participants processed the semantics of the word, but not when processing its orthography. The results show that conceptual cueing by spatial metaphors is orientation-specific, and that an explicit consideration of the word cues' semantics is required for conceptual cueing to occur.

  9. On the Performance Evaluation of a MIMO-WCDMA Transmission Architecture for Building Management Systems.

    PubMed

    Tsampasis, Eleftherios; Gkonis, Panagiotis K; Trakadas, Panagiotis; Zahariadis, Theodοre

    2018-01-08

    The goal of this study was to investigate the performance of a realistic wireless sensor nodes deployment in order to support modern building management systems (BMSs). A three-floor building orientation is taken into account, where each node is equipped with a multi-antenna system while a central base station (BS) collects and processes all received information. The BS is also equipped with multiple antennas; hence, a multiple input-multiple output (MIMO) system is formulated. Due to the multiple reflections during transmission in the inner of the building, a wideband code division multiple access (WCDMA) physical layer protocol has been considered, which has already been adopted for third-generation (3G) mobile networks. Results are presented for various MIMO orientations, where the mean transmission power per node is considered as an output metric for a specific signal-to-noise ratio (SNR) requirement and number of resolvable multipath components. In the first set of presented results, the effects of multiple access interference on overall transmission power are highlighted. As the number of mobile nodes per floor or the requested transmission rate increases, MIMO systems of a higher order should be deployed in order to maintain transmission power at adequate levels. In the second set of results, a comparison is performed among transmission in diversity combining and spatial multiplexing mode, which clearly indicate that the first case is the most appropriate solution for indoor communications.

  10. Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.

    PubMed

    Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein

    2012-10-15

    Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Comparison study of thickness swell performance of commercial oriented strandboard flooring products

    Treesearch

    Hongmei Gu; Siqun Wang; Trairat Neimsuwan; Sunguo Wang

    2005-01-01

    The multiple layer structure of oriented strandboard (OSB) has a significant influence on its performance, including thickness swell (TS). TS is recognized as an important performance property for OSB products. Optimization of TS through layer property ma- nipulation to achieve the lowest total TS while maintaining acceptable mechanical properties is attainable if the...

  12. Use of Communication Strategies by Tourism-Oriented EFL Learners in Relation to Gender and Perceived Language Ability

    ERIC Educational Resources Information Center

    Zhao, Tao; Intaraprasert, Channarong

    2013-01-01

    This study was intended to explore the relationship of gender, perceived language ability with communication strategy use by tourism-oriented EFL learners studying at the universities in the Southwest China to improve and maintain their oral communication in English. The Communication Strategy Questionnaire was used for data collection, and the…

  13. What's Being Served for Dinner? Maternal Mood, Child Orientation, and Mother-Child Interaction during Family Dinnertime Conversation.

    ERIC Educational Resources Information Center

    Crosby, Danielle A.

    The emotion-goal-regulation model of parenting maintains that the degree to which parents' behavior, cognitions, and emotions are organized by outcomes important to children (child orientation) is an important influence on parent-child interaction. This study examined the impact of negative parental moods on parents' ability and motivation to…

  14. A Comparison of the Critical Thinking Skills and Spatial Ability of Fifth Grade Children Using Simulation Software or Logo.

    ERIC Educational Resources Information Center

    Vasu, Ellen Storey; Tyler, Doris Kennedy

    1997-01-01

    Examined the effects of using Logo or problem-solving oriented simulation software on the spatial and critical thinking skills of fifth graders. Found that the Logo group had a significant pretest-posttest change in spatial scores, and the Simulation group had a significant pretest-posttest change in critical thinking scores. No significant change…

  15. A novel spatial performance metric for robust pattern optimization of distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, C.; Koch, J.

    2017-12-01

    Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing platforms. We see great potential of spaef across environmental disciplines dealing with spatially distributed modelling.

  16. The impact of sedimentary anisotropy on solute mixing in stacked scour-pool structures

    NASA Astrophysics Data System (ADS)

    Bennett, Jeremy P.; Haslauer, Claus P.; Cirpka, Olaf A.

    2017-04-01

    The spatial variability of hydraulic conductivity is known to have a strong impact on solute spreading and mixing. In most investigations, its local anisotropy has been neglected. Recent studies have shown that spatially varying orientation in sedimentary anisotropy can lead to twisting flow enhancing transverse mixing, but most of these studies used geologically implausible geometries. We use an object-based approach to generate stacked scour-pool structures with either isotropic or anisotropic filling which are typically reported in glacial outwash deposits. We analyze how spatially variable isotropic conductivity and variation of internal anisotropy in these features impacts transverse plume deformation and both longitudinal and transverse spreading and mixing. In five test cases, either the scalar values of conductivity or the spatial orientation of its anisotropy is varied between the scour-pool structures. Based on 100 random configurations, we compare the variability of velocity components, stretching and folding metrics, advective travel-time distributions, one and two-particle statistics in advective-dispersive transport, and the flux-related dilution indices for steady state advective-dispersive transport among the five test cases. Variation in the orientation of internal anisotropy causes strong variability in the lateral velocity components, which leads to deformation in transverse directions and enhances transverse mixing, whereas it hardly affects the variability of the longitudinal velocity component and thus longitudinal spreading and mixing. The latter is controlled by the spatial variability in the scalar values of hydraulic conductivity. Our results demonstrate that sedimentary anisotropy is important for transverse mixing, whereas it may be neglected when considering longitudinal spreading and mixing.

  17. Fractional Fourier transform of Lorentz-Gauss vortex beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang

    2013-08-01

    An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.

  18. Identifying mangrove species and their surrounding land use and land cover classes using object-oriented approach with a lacunarity spatial measure

    USGS Publications Warehouse

    Myint, S.W.; Giri, C.P.; Wang, L.; Zhu, Z.; Gillete, S.C.

    2008-01-01

    Accurate and reliable information on the spatial distribution of mangrove species is needed for a wide variety of applications, including sustainable management of mangrove forests, conservation and reserve planning, ecological and biogeographical studies, and invasive species management. Remotely sensed data have been used for such purposes with mixed results. Our study employed an object-oriented approach with the use of a lacunarity technique to identify different mangrove species and their surrounding land use and land cover classes in a tsunami-affected area of Thailand using Landsat satellite data. Our results showed that the object-oriented approach with lacunarity-transformed bands is more accurate (over-all accuracy 94.2%; kappa coefficient = 0.91) than traditional per-pixel classifiers (overall accuracy 62.8%; and kappa coefficient = 0.57). Copyright ?? 2008 by Bellwether Publishing, Ltd. All rights reserved.

  19. The influence of chromatic context on binocular color rivalry: Perception and neural representation

    PubMed Central

    Hong, Sang Wook; Shevell, Steven K.

    2008-01-01

    The predominance of rivalrous targets is affected by surrounding context when stimuli rival in orientation, motion or color. This study investigated the influence of chromatic context on binocular color rivalry. The predominance of rivalrous chromatic targets was measured in various surrounding contexts. The first experiment showed that a chromatic surround's influence was stronger when the surround was uniform or a grating with luminance contrast (chromatic/black grating) compared to an equiluminant grating (chromatic/white). The second experiment revealed virtually no effect of the orientation of the surrounding chromatic context, using chromatically rivalrous vertical gratings. These results are consistent with a chromatic representation of the context by a non-oriented, chromatically selective and spatially antagonistic receptive field. Neither a double-opponent receptive field nor a receptive field without spatial antagonism accounts for the influence of context on binocular color rivalry. PMID:18331750

  20. Sensory experience modifies feature map relationships in visual cortex

    PubMed Central

    Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S

    2016-01-01

    The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI: http://dx.doi.org/10.7554/eLife.13911.001 PMID:27310531

  1. Experiment K305: Quantitative analysis of selected bone parameters. Supplement 3A: Trabecular spacing and orientation in the long bones

    NASA Technical Reports Server (NTRS)

    Judy, M. M.

    1981-01-01

    Values of mean trabecular spacing computed from optical diffraction patterns of 1:1 X-ray micrographs of tibial metaphysis and those obtained by standard image digitization techniques show excellent agreement. Upper limits on values of mean trabecular orientation deduced from diffraction patterns and the images are also in excellent agreement. Values of the ratio of mean trabecular spatial density in a region of 300 micrometers distal to the downwardly directed convexity in the cartilage growth plate to the value adjacent to the plate determined for flight animals sacrificed at recovery were significantly smaller than values for vivarium control animals. No significant differences were found in proximal regions. No significant differences in mean trabecular orientation were detected. Decreased values of trabecular spatial density and of both obsteoblastic activity and trabecular cross-sectional area noted in collateral researches suggest decreased modeling activity under weightlessness.

  2. Strain and lattice orientation distribution in SiN/Ge complementary metal–oxide–semiconductor compatible light emitting microstructures by quick x-ray nano-diffraction microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chahine, G. A.; Schülli, T. U.; Zoellner, M. H.

    2015-02-16

    This paper presents a study of the spatial distribution of strain and lattice orientation in CMOS-fabricated strained Ge microstripes using high resolution x-ray micro-diffraction. The recently developed model-free characterization tool, based on a quick scanning x-ray diffraction microscopy technique can image strain down to levels of 10{sup −5} (Δa/a) with a spatial resolution of ∼0.5 μm. Strain and lattice tilt are extracted using the strain and orientation calculation software package X-SOCS. The obtained results are compared with the biaxial strain distribution obtained by lattice parameter-sensitive μ-Raman and μ-photoluminescence measurements. The experimental data are interpreted with the help of finite element modelingmore » of the strain relaxation dynamics in the investigated structures.« less

  3. A study on off-fault aftershock pattern at N-Adria microplate

    NASA Astrophysics Data System (ADS)

    Bressan, Gianni; Barnaba, Carla; Magrin, Andrea; Rossi, Giuliana

    2018-03-01

    The spatial features of the aftershock sequences triggered by three moderate magnitude events with coda-duration magnitudes 4.1, 5.1 and 5.6, which occurred in Northeastern Italy and Western Slovenia, were investigated. The fractal dimension and the orientations of the planar features fitting the hypocentral data have been inferred. The spatial organization is articulated through two temporal phases. The first phase is characterized by the decreasing of the fractal dimension and by vertically oriented planes fitting the hypocentral foci. The second phase is marked by an increase of the fractal dimension and by the activation of different planes, with more widespread orientation. The aftershock temporal distribution is analysed with a model based on a static fatigue process. The process is favoured by the decrease of the overburden pressure, the sharp variations of the mechanical properties of the medium and the unclamping effect resulting from positive normal stress changes caused by the mainshock stress step.

  4. Goal-oriented robot navigation learning using a multi-scale space representation.

    PubMed

    Llofriu, M; Tejera, G; Contreras, M; Pelc, T; Fellous, J M; Weitzenfeld, A

    2015-12-01

    There has been extensive research in recent years on the multi-scale nature of hippocampal place cells and entorhinal grid cells encoding which led to many speculations on their role in spatial cognition. In this paper we focus on the multi-scale nature of place cells and how they contribute to faster learning during goal-oriented navigation when compared to a spatial cognition system composed of single scale place cells. The task consists of a circular arena with a fixed goal location, in which a robot is trained to find the shortest path to the goal after a number of learning trials. Synaptic connections are modified using a reinforcement learning paradigm adapted to the place cells multi-scale architecture. The model is evaluated in both simulation and physical robots. We find that larger scale and combined multi-scale representations favor goal-oriented navigation task learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Shear-induced migration and orientation of rigid fibers

    NASA Astrophysics Data System (ADS)

    Butler, Jason; Strednak, Scott; Shaikh, Saif; Guazzelli, Elisabeth

    2017-11-01

    The spatial and orientation distributions are measured for a suspension of fibers during pressure-driven flow. The fibers are rigid and non-colloidal, and two aspect ratios (length to diameter ratios) of 12 and 24 were tested; the suspending fluid is viscous, Newtonian, and density matched to the particles. As with the migration of spheres in parabolic flows, the fibers migrate toward the centerline of the channel if the concentration is sufficiently high. Migration is not observed for concentrations below a volume fraction of 0.035 for aspect ratio 24 and 0.07 for aspect ratio 12. The orientation distribution of the fibers is spatially dependent. Fibers near the center of the channel align closely with the flow direction, but fibers near the wall are observed to preferentially align in the vorticity (perpendicular to the flow and gradient) direction. National Science Foundation (Grants #1511787 and #1362060).

  6. Classroom-Oriented Research from a Complex Systems Perspective

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2016-01-01

    Bringing a complex systems perspective to bear on classroom-oriented research challenges researchers to think differently, seeing the classroom ecology as one dynamic system nested in a hierarchy of such systems at different levels of scale, all of which are spatially and temporally situated. This article begins with an introduction to complex…

  7. Attentional Control in Visual Signal Detection: Effects of Abrupt-Onset and No-Onset Stimuli

    ERIC Educational Resources Information Center

    Sewell, David K.; Smith, Philip L.

    2012-01-01

    The attention literature distinguishes two general mechanisms by which attention can benefit performance: gain (or resource) models and orienting (or switching) models. In gain models, processing efficiency is a function of a spatial distribution of capacity or resources; in orienting models, an attentional spotlight must be aligned with the…

  8. Beneath the Surface: Understanding Patterns of Intra-Domain Orientational Order

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa; Grason, Gregory

    Block copolymers (BCP) self assemble into a rich spectrum of ordered phases due to asymmetry in copolymer architecture. Despite extensive study of spatially-ordered composition patterns of BCP, knowledge of orientational order of chain segments that underlie these spatial patterns is evidently missing. We show using self consistent field (SCF) theory and coarse-grained molecular dynamics (MD) simulations that, even without explicit orientational interactions between segments, BCP exhibit generic patterns of intra-domain segment orientation, which vary both within a given morphology and from morphology to morphology. We find that segment alignment is usually both normal and parallel to the interface within different local regions of a BCP sub-domain. We describe principles that control relative strength and directionality of alignment in different morphologies and report a surprising yet generic emergence of biaxial segment order in morphologies with anisotropic curved interfaces, such as cylinders and gyroid phases. Finally, we focus our study on cholesteric textures that pervade mesochiral BCP morphologies, specifically alternating double gyroid (aDG) and helical cylinder (H*) phases, and analyze patterns of twisted (nematic and polar) segment order within these domains.

  9. Influence of gait mode and body orientation on following a walking avatar.

    PubMed

    Meerhoff, L Rens A; de Poel, Harjo J; Jowett, Tim W D; Button, Chris

    2017-08-01

    Regulating distance with a moving object or person is a key component of human movement and of skillful interpersonal coordination. The current set of experiments aimed to assess the role of gait mode and body orientation on distance regulation using a cyclical locomotor tracking task in which participants followed a virtual leader. In the first experiment, participants moved in the backward-forward direction while the body orientation of the virtual leader was manipulated (i.e., facing towards, or away from the follower), hence imposing an incongruence in gait mode between leader and follower. Distance regulation was spatially less accurate when followers walked backwards. Additionally, a clear trade-off was found between spatial leader-follower accuracy and temporal synchrony. Any perceptual effects were overshadowed by the effect of one's gait mode. In the second experiment we examined lateral following. The results suggested that lateral following was also constrained strongly by perceptual information presented by the leader. Together, these findings demonstrated how locomotor tracking depends on gait mode, but also on the body orientation of whoever is being followed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Comment on “Models of stochastic, spatially varying stress in the crust compatible with focal‐mechanism data, and how stress inversions can be biased toward the stress rate” by Deborah Elaine Smith and Thomas H. Heaton

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2015-01-01

    This model makes specific predictions about the orientations and heterogeneity of earthquake focal mechanisms. Smith and Heaton (2011) attempt to validate this heterogeneous stress model using observations of earthquake focal‐mechanism variability from Hardebeck (2006). They then demonstrate that the model predicts a bias in the orientations of earthquake focal mechanisms, which are biased away from the background stress and toward the stressing rate. They suggest the focal‐mechanism bias in this model invalidates the large body of work over the last several decades, that has inferred stress orientations from the inversion of earthquake focal mechanisms. The question of whether or not the Smith and Heaton (2011) model is applicable to the real Earth is therefore important not only for understanding spatial stress variability but also for evaluating the numerous studies that have inferred crustal stress orientations from earthquake focal mechanisms (e.g., as compiled by Heidbach et al., 2008).

  11. Seismic link at plate boundary

    NASA Astrophysics Data System (ADS)

    Ramdani, Faical; Kettani, Omar; Tadili, Benaissa

    2015-06-01

    Seismic triggering at plate boundaries has a very complex nature that includes seismic events at varying distances. The spatial orientation of triggering cannot be reduced to sequences from the main shocks. Seismic waves propagate at all times in all directions, particularly in highly active zones. No direct evidence can be obtained regarding which earthquakes trigger the shocks. The first approach is to determine the potential linked zones where triggering may occur. The second step is to determine the causality between the events and their triggered shocks. The spatial orientation of the links between events is established from pre-ordered networks and the adapted dependence of the spatio-temporal occurrence of earthquakes. Based on a coefficient of synchronous seismic activity to grid couples, we derive a network link by each threshold. The links of high thresholds are tested using the coherence of time series to determine the causality and related orientation. The resulting link orientations at the plate boundary conditions indicate that causal triggering seems to be localized along a major fault, as a stress transfer between two major faults, and parallel to the geothermal area extension.

  12. Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate

    NASA Astrophysics Data System (ADS)

    Hongo, Motoharu; Matsuo, Shigeki

    2016-06-01

    Laser-induced periodic surface structures (LIPSS) were fabricated on a prescratched silicon surface by irradiation with subnanosecond laser pulses. Low-spatial-frequency LIPSS (LSFL) were observed in the central and peripheral regions; both had a period Λ close to the laser wavelength λ, and the wavevector orientation was parallel to the electric field of the laser beam. The LSFL in the peripheral region seemed to be growing, that is, expanding in length with increasing number of pulses, into the outer regions. In addition, high-spatial-frequency LIPSS, Λ ≲ λ /2, were found along the scratches, and their wavevector orientation was parallel to the scratches.

  13. Spatial attention improves the quality of population codes in human visual cortex.

    PubMed

    Saproo, Sameer; Serences, John T

    2010-08-01

    Selective attention enables sensory input from behaviorally relevant stimuli to be processed in greater detail, so that these stimuli can more accurately influence thoughts, actions, and future goals. Attention has been shown to modulate the spiking activity of single feature-selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the combined output from many such neurons is required to form stable representations of relevant objects and little empirical work has formally investigated the relationship between attentional modulations on population responses and improvements in encoding precision. Here, we used functional MRI and voxel-based feature tuning functions to show that spatial attention induces a multiplicative scaling in orientation-selective population response profiles in early visual cortex. In turn, this multiplicative scaling correlates with an improvement in encoding precision, as evidenced by a concurrent increase in the mutual information between population responses and the orientation of attended stimuli. These data therefore demonstrate how multiplicative scaling of neural responses provides at least one mechanism by which spatial attention may improve the encoding precision of population codes. Increased encoding precision in early visual areas may then enhance the speed and accuracy of perceptual decisions computed by higher-order neural mechanisms.

  14. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  15. Combination of oriented partial differential equation and shearlet transform for denoising in electronic speckle pattern interferometry fringe patterns.

    PubMed

    Xu, Wenjun; Tang, Chen; Gu, Fan; Cheng, Jiajia

    2017-04-01

    It is a key step to remove the massive speckle noise in electronic speckle pattern interferometry (ESPI) fringe patterns. In the spatial-domain filtering methods, oriented partial differential equations have been demonstrated to be a powerful tool. In the transform-domain filtering methods, the shearlet transform is a state-of-the-art method. In this paper, we propose a filtering method for ESPI fringe patterns denoising, which is a combination of second-order oriented partial differential equation (SOOPDE) and the shearlet transform, named SOOPDE-Shearlet. Here, the shearlet transform is introduced into the ESPI fringe patterns denoising for the first time. This combination takes advantage of the fact that the spatial-domain filtering method SOOPDE and the transform-domain filtering method shearlet transform benefit from each other. We test the proposed SOOPDE-Shearlet on five experimentally obtained ESPI fringe patterns with poor quality and compare our method with SOOPDE, shearlet transform, windowed Fourier filtering (WFF), and coherence-enhancing diffusion (CEDPDE). Among them, WFF and CEDPDE are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. The experimental results have demonstrated the good performance of the proposed SOOPDE-Shearlet.

  16. Rhesus monkeys (Macaca mulatta) map number onto space

    PubMed Central

    Drucker, Caroline B.; Brannon, Elizabeth M.

    2014-01-01

    Humans map number onto space. However, the origins of this association, and particularly the degree to which it depends upon cultural experience, are not fully understood. Here we provide the first demonstration of a number-space mapping in a non-human primate. We trained four adult male rhesus macaques (Macaca mulatta) to select the fourth position from the bottom of a five-element vertical array. Monkeys maintained a preference to choose the fourth position through changes in the appearance, location, and spacing of the vertical array. We next asked whether monkeys show a spatially-oriented number mapping by testing their responses to the same five-element stimulus array rotated ninety degrees into a horizontal line. In these horizontal probe trials, monkeys preferentially selected the fourth position from the left, but not the fourth position from the right. Our results indicate that rhesus macaques map number onto space, suggesting that the association between number and space in human cognition is not purely a result of cultural experience and instead has deep evolutionary roots. PMID:24762923

  17. KeyWare: an open wireless distributed computing environment

    NASA Astrophysics Data System (ADS)

    Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir

    1995-12-01

    Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.

  18. Setting and changing feature priorities in visual short-term memory.

    PubMed

    Kalogeropoulou, Zampeta; Jagadeesh, Akshay V; Ohl, Sven; Rolfs, Martin

    2017-04-01

    Many everyday tasks require prioritizing some visual features over competing ones, both during the selection from the rich sensory input and while maintaining information in visual short-term memory (VSTM). Here, we show that observers can change priorities in VSTM when, initially, they attended to a different feature. Observers reported from memory the orientation of one of two spatially interspersed groups of black and white gratings. Using colored pre-cues (presented before stimulus onset) and retro-cues (presented after stimulus offset) predicting the to-be-reported group, we manipulated observers' feature priorities independently during stimulus encoding and maintenance, respectively. Valid pre-cues reliably increased observers' performance (reduced guessing, increased report precision) as compared to neutral ones; invalid pre-cues had the opposite effect. Valid retro-cues also consistently improved performance (by reducing random guesses), even if the unexpected group suddenly became relevant (invalid-valid condition). Thus, feature-based attention can reshape priorities in VSTM protecting information that would otherwise be forgotten.

  19. Detection and extraction of orientation-and-scale-dependent information from two-dimensional GPR data with tuneable directional wavelet filters

    NASA Astrophysics Data System (ADS)

    Tzanis, Andreas

    2013-02-01

    The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures, etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets. This paper introduces a method to de-noise GPR data and extract geometric information from scale-and-dip dependent structural features, based on one-dimensional B-Spline Wavelets, two-dimensional directional B-Spline Wavelet (BSW) Filters and two-dimensional Gabor Filters. A directional BSW Filter is built by sidewise arranging s identical one-dimensional wavelets of length L, tapering the s-parallel direction (span) with a suitable window function and rotating the resulting matrix to the desired orientation. The length L of the wavelet defines the temporal and spatial scale to be isolated and the span determines the length over which to smooth (spatial resolution). The Gabor Filter is generated by multiplying an elliptical Gaussian by a complex plane wave; at any orientation the temporal or spatial scale(s) to be isolated are determined by the wavelength. λ of the plane wave and the spatial resolution by the spatial aspect ratio γ, which specifies the ellipticity of the support of the Gabor function. At any orientation, both types of filter may be tuned at any frequency or spatial wavenumber by varying the length or the wavelength respectively. The filters can be applied directly to two-dimensional radargrams, in which case they abstract information about given scales at given orientations. Alternatively, they can be rotated to different orientations under adaptive control, so that they remain tuned at a given frequency or wavenumber and the resulting images can be stacked in the LS sense, so as to obtain a complete representation of the input data at a given temporal or spatial scale. In addition to isolating geometrical information for further scrutiny, the proposed filtering methods can be used to enhance the S/N ratio in a manner particularly suitable for GPR data, because the frequency response of the filters mimics the frequency characteristics of the source wavelet. Finally, signal attenuation and temporal localization are closely associated: low attenuation interfaces tend to produce reflections rich in high frequencies and fine-scale localization as a function of time. Conversely, high attenuation interfaces will produce reflections rich in low frequencies and broad localization. Accordingly, the temporal localization characteristics of the filters may be exploited to investigate the characteristics of signal propagation (hence material properties). The method is shown to be very effective in extracting fine to coarse scale information from noisy data and is demonstrated with applications to noisy GPR data from archaeometric and geotechnical surveys.

  20. Maplike representation of celestial E-vector orientations in the brain of an insect.

    PubMed

    Heinze, Stanley; Homberg, Uwe

    2007-02-16

    For many insects, the polarization pattern of the blue sky serves as a compass cue for spatial navigation. E-vector orientations are detected by photoreceptors in a dorsal rim area of the eye. Polarized-light signals from both eyes are finally integrated in the central complex, a brain area consisting of two subunits, the protocerebral bridge and the central body. Here we show that a topographic representation of zenithal E-vector orientations underlies the columnar organization of the protocerebral bridge in a locust. The maplike arrangement is highly suited to signal head orientation under the open sky.

  1. The display of spatial information and visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas

    1991-01-01

    The basic informational elements of spatial orientation are attitude and position within a coordinate system. The problem that faces aeronautical designers is that a pilot must deal with several coordinate systems, sometimes simultaneously. The display must depict unambiguously not only position and attitude, but also designate the relevant coordinate system. If this is not done accurately, spatial disorientation can occur. The different coordinate systems used in aeronautical tasks and the problems that occur in the display of spatial information are explained.

  2. Spatial Data Management System (SDMS)

    NASA Technical Reports Server (NTRS)

    Hutchison, Mark W.

    1994-01-01

    The Spatial Data Management System (SDMS) is a testbed for retrieval and display of spatially related material. SDMS permits the linkage of large graphical display objects with detail displays and explanations of its smaller components. SDMS combines UNIX workstations, MIT's X Window system, TCP/IP and WAIS information retrieval technology to prototype a means of associating aggregate data linked via spatial orientation. SDMS capitalizes upon and extends previous accomplishments of the Software Technology Branch in the area of Virtual Reality and Automated Library Systems.

  3. Expectancy modulates pupil size during endogenous orienting of spatial attention.

    PubMed

    Dragone, Alessio; Lasaponara, Stefano; Pinto, Mario; Rotondaro, Francesca; De Luca, Maria; Doricchi, Fabrizio

    2018-05-01

    fMRI investigations in healthy humans have documented phasic changes in the level of activation of the right temporal-parietal junction (TPJ) during cued voluntary orienting of spatial attention. Cues that correctly predict the position of upcoming targets in the majority of trials, i.e., predictive cues, produce higher deactivation of the right TPJ as compared with non-predictive cues. Since the right TPJ is the recipient of noradrenergic (NE) innervation, it has been hypothesised that changes in the level of TPJ activity are matched with changes in the level of NE activity. Based on aforementioned fMRI findings, this might imply that orienting with predictive cues is matched with different levels of NE activity as compared with non-predictive cues. To test this hypothesis, we measured changes in pupil dilation, an indirect index of NE activity, during voluntary orienting of attention with highly predictive (80% validity) or non-predictive (50% validity) cues. In agreement with current interpretations of the tonic/phasic activity of the Locus Coeruleus-Norepinephrinic system (LC-NE), we found that the steady level of cue predictiveness that characterised both the predictive and non-predictive conditions caused, across consecutive blocks of trials, a progressive decrement in pupil dilation during the baseline-fixation period that anticipated the cue period. With predictive cues we observed increased pupil dilation as compared with non-predictive cues. In addition, the relative reduction in pupil size observed with non-predictive cues increased as a function of cue-duration. These results show that changes in the predictiveness of cues that guide voluntary orienting of spatial attention are matched with changes in pupil dilation and, putatively, with corresponding changes in LC-NE activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Single transverse-orientation cage via MIS-TLIF approach for the treatment of degenerative lumbar disease: a technical note.

    PubMed

    Wang, Shan-Jin; Han, Ying-Chao; Pan, Fu-Min; Ma, Bin; Tan, Jun

    2015-01-01

    Single transverse cage placed in the anterior vertebral column can better maintain lumbar lordosis and sagittal alignment and is frequently used via the lateral transpsoas approach. However, there is no clear description in the literature of the steps required to place the single transverse cage during the instrumented transforaminal lumbar interbody fusion (TLIF) procedure for the treatment of degenerative lumbar disease. The objective of this study is to describe the technique using single transverse-orientation cage when performing TLIF procedures. We present 18 illustrative cases in which single transverse-orientation cage was placed according to a step-by-step technique that can be used during the TLIF procedure. Information acquired included procedure time, intraoperative blood loss and postoperative complications. The preoperative and postoperative Oswestry Disability Index (ODI) and the visual analogue scale (VAS) scores were recorded. Changes in disc height and segmental lordosis were measured at radiographs. The single transverse-orientation cage was successfully placed in 18 patients in a stepwise technique to achieve lumbar fusion. Using this technique, the patients significantly improved clinically and radiographically at postoperative visits. This is the first report demonstrating the safety and efficacy of instrumented TLIF with single transverse-orientation cage for the treatment of degenerative lumbar disease. Single transverse-orientation cage via MIS-TLIF approach can maintain greater lumbar lordosis and avoid the unique complications of lateral transpsoas approach. Understanding the options for cage placement is important for surgeons considering the use of this technique.

  5. A morphological basis for orientation tuning in primary visual cortex.

    PubMed

    Mooser, François; Bosking, William H; Fitzpatrick, David

    2004-08-01

    Feedforward connections are thought to be important in the generation of orientation-selective responses in visual cortex by establishing a bias in the sampling of information from regions of visual space that lie along a neuron's axis of preferred orientation. It remains unclear, however, which structural elements-dendrites or axons-are ultimately responsible for conveying this sampling bias. To explore this question, we have examined the spatial arrangement of feedforward axonal connections that link non-oriented neurons in layer 4 and orientation-selective neurons in layer 2/3 of visual cortex in the tree shrew. Target sites of labeled boutons in layer 2/3 resulting from focal injections of biocytin in layer 4 show an orientation-specific axial bias that is sufficient to confer orientation tuning to layer 2/3 neurons. We conclude that the anisotropic arrangement of axon terminals is the principal source of the orientation bias contributed by feedforward connections.

  6. The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Cüneyd Demirel, Mehmet; Stisen, Simon

    2018-05-01

    The process of model evaluation is not only an integral part of model development and calibration but also of paramount importance when communicating modelling results to the scientific community and stakeholders. The modelling community has a large and well-tested toolbox of metrics to evaluate temporal model performance. In contrast, spatial performance evaluation does not correspond to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study makes a contribution towards advancing spatial-pattern-oriented model calibration by rigorously testing a multiple-component performance metric. The promoted SPAtial EFficiency (SPAEF) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multiple-component approach is found to be advantageous in order to achieve the complex task of comparing spatial patterns. SPAEF, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are applied in a spatial-pattern-oriented model calibration of a catchment model in Denmark. Results suggest the importance of multiple-component metrics because stand-alone metrics tend to fail to provide holistic pattern information. The three SPAEF components are found to be independent, which allows them to complement each other in a meaningful way. In order to optimally exploit spatial observations made available by remote sensing platforms, this study suggests applying bias insensitive metrics which further allow for a comparison of variables which are related but may differ in unit. This study applies SPAEF in the hydrological context using the mesoscale Hydrologic Model (mHM; version 5.8), but we see great potential across disciplines related to spatially distributed earth system modelling.

  7. Design and implementation of spatial knowledge grid for integrated spatial analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiangnan; Guan, Li; Wang, Ping

    2006-10-01

    Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.

  8. Gas turbine system simulation: An object-oriented approach

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Follen, Gregory J.; Putt, Charles W.

    1993-01-01

    A prototype gas turbine engine simulation has been developed that offers a generalized framework for the simulation of engines subject to steady-state and transient operating conditions. The prototype is in preliminary form, but it successfully demonstrates the viability of an object-oriented approach for generalized simulation applications. Although object oriented programming languages are-relative to FORTRAN-somewhat austere, it is proposed that gas turbine simulations of an interdisciplinary nature will benefit significantly in terms of code reliability, maintainability, and manageability. This report elucidates specific gas turbine simulation obstacles that an object-oriented framework can overcome and describes the opportunity for interdisciplinary simulation that the approach offers.

  9. Three-dimensional cell to tissue development process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2008-01-01

    An improved three-dimensional cell to tissue development process using a specific time varying electromagnetic force, pulsed, square wave, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.

  10. "Commentary": Object and Spatial Visualization in Geosciences

    ERIC Educational Resources Information Center

    Kastens, Kim

    2010-01-01

    Cognitive science research shows that the brain has two systems for processing visual information, one specialized for spatial information such as position, orientation, and trajectory, and the other specialized for information used to identify objects, such as color, shape and texture. Some individuals seem to be more facile with the spatial…

  11. Measuring Attention in the Hemispheres: The Lateralized Attention Network Test (LANT)

    ERIC Educational Resources Information Center

    Greene, Deanna J.; Barnea, Anat; Herzberg, Kristin; Rassis, Anat; Neta, Maital; Raz, Amir; Zaidel, Eran

    2008-01-01

    The attention network test (ANT) is a brief computerized battery measuring three independent behavioral components of attention: Conflict resolution (ability to overcome distracting stimuli), spatial Orienting (the benefit of valid spatial pre-cues), and Alerting (the benefit of temporal pre-cues). Imaging, clinical, and behavioral evidence…

  12. Geometric Determinants of Human Spatial Memory

    ERIC Educational Resources Information Center

    Hartley, Tom; Trinkler, Iris; Burgess, Neil

    2004-01-01

    Geometric alterations to the boundaries of a virtual environment were used to investigate the representations underlying human spatial memory. Subjects encountered a cue object in a simple rectangular enclosure, with distant landmarks for orientation. After a brief delay, during which they were removed from the arena, subjects were returned to it…

  13. Common Spatial Organization of Number and Emotional Expression: A Mental Magnitude Line

    ERIC Educational Resources Information Center

    Holmes, Kevin J.; Lourenco, Stella F.

    2011-01-01

    Converging behavioral and neural evidence suggests that numerical representations are mentally organized in left-to-right orientation. Here we show that this format of spatial organization extends to emotional expression. In Experiment 1, right-side responses became increasingly faster as number (represented by Arabic numerals) or happiness…

  14. Requirements Modeling with the Aspect-oriented User Requirements Notation (AoURN): A Case Study

    NASA Astrophysics Data System (ADS)

    Mussbacher, Gunter; Amyot, Daniel; Araújo, João; Moreira, Ana

    The User Requirements Notation (URN) is a recent ITU-T standard that supports requirements engineering activities. The Aspect-oriented URN (AoURN) adds aspect-oriented concepts to URN, creating a unified framework that allows for scenario-based, goal-oriented, and aspect-oriented modeling. AoURN is applied to the car crash crisis management system (CCCMS), modeling its functional and non-functional requirements (NFRs). AoURN generally models all use cases, NFRs, and stakeholders as individual concerns and provides general guidelines for concern identification. AoURN handles interactions between concerns, capturing their dependencies and conflicts as well as the resolutions. We present a qualitative comparison of aspect-oriented techniques for scenario-based and goal-oriented requirements engineering. An evaluation carried out based on the metrics adapted from literature and a task-based evaluation suggest that AoURN models are more scalable than URN models and exhibit better modularity, reusability, and maintainability.

  15. Reconstruction of paleoenvironments by analyzing spatial shell orientation

    NASA Astrophysics Data System (ADS)

    Lukeneder, Susanne; Lukeneder, Alexander; Weber, Gerhard W.; Exner, Ulrike

    2013-04-01

    Fossils, especially their mass-occurrences, can be exploited as useful source of information about the depositional conditions. Particularly abundant fossils with elongated shape such as belemnites are useful indicators to draw conclusions about influencing factors (e.g. paleocurrents) of paleoenvironments. Orthocone cephalopods, gastropods, bivalves, foraminifers, vertebrate bones and others have been used so far in field-based spatial orientation studies (Flügel 2004). Normal coiled (planispiral) cephalopods can also provide such depositional information. A new method for reconstructing spatial shell orientation in 3D is presented here. A roughly 225 million-year-old (Carnian, Triassic) monospecific mass-occurrence of the ammonoid Kasimlarceltites krystyni from the Taurus Mountains in Turkey (project FWF P22109-B17; Lukeneder et al. 2012), embedded in limestone, is used for this pilot study. The most obvious method for digitization of the ammonoids, μ-computed tomography (CT), was not successful in this case due to the lack of density differences between the ammonoids (i.e. secondary calcite shells) and the embedding source rock (carbonate). Therefore we had to come back to the classic method of grinding, which, despite its invasive character, cannot always be disregarded, particularly if digital recording methods are not applicable and samples are large enough to sacrifice parts. A 150x170x140 mm block of the ammonoid bearing limestone bed has been grinded to 70 slices, with a distance of 2mm between each slice. By using a semi-automatic region growing algorithm of the 3D visualization software Amira, the ammonoids were segmented, and a 3D model of this mass-occurrence reconstructed. We used landmarks as well as trigonometric and vector-based calculations to compute the diameters and the spatial orientation of each ammonoid. For the diameters, the longest distance (longitudinal axis) of each shell (landmark a & b) and the orthogonal distance from this cord to one side of the shell (transverse axis) was measured (landmark s & c). Spatial orientation was characterized by dip and dip direction of the longitudinal axis, as well as by strike and azimuth of a plane defined by both axes. The exact spatial orientation data was determined for a sample of 699 ammonoids within the bed and statistically analyzed. The results provide a hint on the geodynamic processes (paleocurrents), depositional conditions (allochthonous or autochthonous) and other general information about the ancient environment. The method can be adapted for other mass-occurring fossils and thus represents a good template for studies of topographical paleoenvironmental factors. References: Flügel, E. 2004. Microfacies of carbonate rocks. Analysis, Interpretation and Application. Springer, Berlin Heidelberg New York, p.182. Lukeneder S., Lukeneder A., Harzhauser M., Islamoglu Y., Krystyn L., Lein R. 2012. A delayed carbonate factory breakdown during the Tethyan-wide Carnian Pluvial Episode along the Cimmerian terranes (Taurus, Turkey). Facies 58: 279-296.

  16. Structural Constraints On The Spatial Distribution of Aftershocks

    NASA Astrophysics Data System (ADS)

    McCloskey, J.; Nalbant, S. S.; Steacy, S.; Nostro, C.; Scotti, O.; Baumont, D.

    Real-time, forward modelling of spatial distributions of potentially damaging after- shocks by calculating stress perturbations due to large earthquakes may produce so- cially useful, time- dependent hazard estimates in the foreseeable future. Such calcula- tions, however, rely on the resolution of a stress perturbation tensor (SPT) onto planes whose geometry is unknown and decisions as to the orientations of these planes have a first order effect on the geometry of the resulting hazard distributions. Commonly, these decisions are based on the assumption that structures optimally oriented for fail- ure in the regional stress field, exist everywhere and stress maps are produced by resolving onto these orientations. Here we investigate this proposition using a 3D cal- culation for the optimally oriented planes (OOPs) for the 1992 Landers earthquake (M = 7.3). We examine the encouraged mechanisms as a function of location and show that enhancement for failure exists over a much wider area than in the equivalent, and more usual, 2.5D calculations. Mechanisms predicted in these areas are not consistent with the local structural geology, however, and corresponding aftershocks are gener- ally not observed. We argue that best hazard estimates will result from geometrically restricted versions of the OOP concept in which observed structure constrains possible orientations for failure.

  17. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy

    PubMed Central

    Valades Cruz, Cesar Augusto; Shaban, Haitham Ahmed; Kress, Alla; Bertaux, Nicolas; Monneret, Serge; Mavrakis, Manos; Savatier, Julien; Brasselet, Sophie

    2016-01-01

    Essential cellular functions as diverse as genome maintenance and tissue morphogenesis rely on the dynamic organization of filamentous assemblies. For example, the precise structural organization of DNA filaments has profound consequences on all DNA-mediated processes including gene expression, whereas control over the precise spatial arrangement of cytoskeletal protein filaments is key for mechanical force generation driving animal tissue morphogenesis. Polarized fluorescence is currently used to extract structural organization of fluorescently labeled biological filaments by determining the orientation of fluorescent labels, however with a strong drawback: polarized fluorescence imaging is indeed spatially limited by optical diffraction, and is thus unable to discriminate between the intrinsic orientational mobility of the fluorophore labels and the real structural disorder of the labeled biomolecules. Here, we demonstrate that quantitative single-molecule polarized detection in biological filament assemblies allows not only to correct for the rotational flexibility of the label but also to image orientational order of filaments at the nanoscale using superresolution capabilities. The method is based on polarized direct stochastic optical reconstruction microscopy, using dedicated optical scheme and image analysis to determine both molecular localization and orientation with high precision. We apply this method to double-stranded DNA in vitro and microtubules and actin stress fibers in whole cells. PMID:26831082

  18. Seismic anisotropy of northeastern Algeria from shear-wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Radi, Zohir; Yelles-Chaouche, Abdelkrim; Bokelmann, Götz

    2015-11-01

    There are few studies of internal deformation under northern Africa; here we present such a study. We analyze teleseismic shear-wave splitting for northeast Algeria, to improve our knowledge of lithospheric and asthenospheric deformation mechanisms in this region. We study waveform data generated by tens of teleseismic events recorded at five recently installed broadband (BB) stations in Algeria. These stations cover an area 2° across, extending from the Tellian geological units in the North to the Saharan Atlas units in the South. Analysis of SKS-wave splitting results insignificant spatial variations in fast polarization orientation, over a scale length of at most 100 km. The seismic anisotropy shows three clear spatial patterns. A general ENE-WSW orientation is observed under the stations in the north. This polarization orientation follows the direction of the Tell Atlas mountain chain, which is perpendicular to the convergence direction between Africa and Eurasia. Delay times vary significantly across the region, between 0.6 and 2.0 s. At several stations there is an indication of a WNW-ESE polarization orientation, which is apparently related to a later geodynamic evolutionary phase in this region. A third pattern of seismic anisotropy emerges in the South, with an orientation of roughly N-S. We discuss these observations in light of geodynamic models and present-day geodetic motion.

  19. Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.

    PubMed

    Dombert, Pascasie L; Kuhns, Anna; Mengotti, Paola; Fink, Gereon R; Vossel, Simone

    2016-11-15

    Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Computational Approaches to Spatial Orientation: From Transfer Functions to Dynamic Bayesian Inference

    PubMed Central

    MacNeilage, Paul R.; Ganesan, Narayan; Angelaki, Dora E.

    2008-01-01

    Spatial orientation is the sense of body orientation and self-motion relative to the stationary environment, fundamental to normal waking behavior and control of everyday motor actions including eye movements, postural control, and locomotion. The brain achieves spatial orientation by integrating visual, vestibular, and somatosensory signals. Over the past years, considerable progress has been made toward understanding how these signals are processed by the brain using multiple computational approaches that include frequency domain analysis, the concept of internal models, observer theory, Bayesian theory, and Kalman filtering. Here we put these approaches in context by examining the specific questions that can be addressed by each technique and some of the scientific insights that have resulted. We conclude with a recent application of particle filtering, a probabilistic simulation technique that aims to generate the most likely state estimates by incorporating internal models of sensor dynamics and physical laws and noise associated with sensory processing as well as prior knowledge or experience. In this framework, priors for low angular velocity and linear acceleration can explain the phenomena of velocity storage and frequency segregation, both of which have been modeled previously using arbitrary low-pass filtering. How Kalman and particle filters may be implemented by the brain is an emerging field. Unlike past neurophysiological research that has aimed to characterize mean responses of single neurons, investigations of dynamic Bayesian inference should attempt to characterize population activities that constitute probabilistic representations of sensory and prior information. PMID:18842952

  1. Predictions of the spontaneous symmetry-breaking theory for visual code completeness and spatial scaling in single-cell learning rules.

    PubMed

    Webber, C J

    2001-05-01

    This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.

  2. Rebalancing Spatial Attention: Endogenous Orienting May Partially Overcome the Left Visual Field Bias in Rapid Serial Visual Presentation.

    PubMed

    Śmigasiewicz, Kamila; Hasan, Gabriel Sami; Verleger, Rolf

    2017-01-01

    In dynamically changing environments, spatial attention is not equally distributed across the visual field. For instance, when two streams of stimuli are presented left and right, the second target (T2) is better identified in the left visual field (LVF) than in the right visual field (RVF). Recently, it has been shown that this bias is related to weaker stimulus-driven orienting of attention toward the RVF: The RVF disadvantage was reduced with salient task-irrelevant valid cues and increased with invalid cues. Here we studied if also endogenous orienting of attention may compensate for this unequal distribution of stimulus-driven attention. Explicit information was provided about the location of T1 and T2. Effectiveness of the cue manipulation was confirmed by EEG measures: decreasing alpha power before stream onset with informative cues, earlier latencies of potentials evoked by T1-preceding distractors at the right than at the left hemisphere when T1 was cued left, and decreasing T1- and T2-evoked N2pc amplitudes with informative cues. Importantly, informative cues reduced (though did not completely abolish) the LVF advantage, indicated by improved identification of right T2, and reflected by earlier N2pc latency evoked by right T2 and larger decrease in alpha power after cues indicating right T2. Overall, these results suggest that endogenously driven attention facilitates stimulus-driven orienting of attention toward the RVF, thereby partially overcoming the basic LVF bias in spatial attention.

  3. Comparison of Sex-Role Orientation and Personality Variables in Traditional Women and College Re-Entry Women.

    ERIC Educational Resources Information Center

    Pierce, Norma F.

    Studies have indicated that mature women maintain a permanent role identity along two dimensions, i.e., traditional women or nontraditional women. However, the lifeset of many mature adult women may be on the continuum between these two positions, i.e., in the position of "deferred achiever." The personality variables and sex-role orientations of…

  4. Infants learn better from left to right: a directional bias in infants' sequence learning.

    PubMed

    Bulf, Hermann; de Hevia, Maria Dolores; Gariboldi, Valeria; Macchi Cassia, Viola

    2017-05-26

    A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds' ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants' ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.

  5. In-flight edge response measurements for high-spatial-resolution remote sensing systems

    NASA Astrophysics Data System (ADS)

    Blonski, Slawomir; Pagnutti, Mary A.; Ryan, Robert; Zanoni, Vickie

    2002-09-01

    In-flight measurements of spatial resolution were conducted as part of the NASA Scientific Data Purchase Verification and Validation process. Characterization included remote sensing image products with ground sample distance of 1 meter or less, such as those acquired with the panchromatic imager onboard the IKONOS satellite and the airborne ADAR System 5500 multispectral instrument. Final image products were used to evaluate the effects of both the image acquisition system and image post-processing. Spatial resolution was characterized by full width at half maximum of an edge-response-derived line spread function. The edge responses were analyzed using the tilted-edge technique that overcomes the spatial sampling limitations of the digital imaging systems. As an enhancement to existing algorithms, the slope of the edge response and the orientation of the edge target were determined by a single computational process. Adjacent black and white square panels, either painted on a flat surface or deployed as tarps, formed the ground-based edge targets used in the tests. Orientation of the deployable tarps was optimized beforehand, based on simulations of the imaging system. The effects of such factors as acquisition geometry, temporal variability, Modulation Transfer Function compensation, and ground sample distance on spatial resolution were investigated.

  6. Straight Ahead in Microgravity

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Vanya, R. D.; Clement, G.

    2014-01-01

    This joint ESA-NASA study will address adaptive changes in spatial orientation related to the subjective straight ahead, and the use of a vibrotactile sensory aid to reduce perceptual errors. The study will be conducted before and after long-duration expeditions to the International Space Station (ISS) to examine how spatial processing of target location is altered following exposure to microgravity. This project specifically addresses the sensorimotor research gap "What are the changes in sensorimotor function over the course of a mission?" Six ISS crewmembers will be requested to participate in three preflight sessions (between 120 and 60 days prior to launch) and then three postflight sessions on R+0/1 day, R+4 +/-2 days, and R+8 +/-2 days. The three specific aims include: (a) fixation of actual and imagined target locations at different distances; (b) directed eye and arm movements along different spatial reference frames; and (c) the vestibulo-ocular reflex during translation motion with fixation targets at different distances. These measures will be compared between upright and tilted conditions. Measures will then be compared with and without a vibrotactile sensory aid that indicates how far one has tilted relative to the straight-ahead direction. The flight study was been approved by the medical review boards and will be implemented in the upcoming Informed Crew Briefings to solicit flight subject participation. Preliminary data has been recorded on 6 subjects during parabolic flight to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. During some parabolas, a vibrotactile sensory aid provided feedback of body orientation relative to the plane coordinates. RESULTS Both variability and curvature of gaze trajectories increased during roll tilt compared to the upright position. The saccades were less accurate during parabolic flight compared to measurements obtained in normal gravity. Although subjects were instructed to look off in the distance while performing the eye movements, fixation distance varied with vertical gaze direction independent of whether the saccades were made along perceived aircraft or head orientations. The increased errors in gaze trajectories along both perceived orientations during microgravity can be attributed to the otolith's role in spatial coding of eye movements. A change in an individual's egocentric reference might have negative consequences on evaluating the direction of an approaching object or on the accuracy of reaching movements or locomotion. Consequently, investigating how microgravity affects the target location will have theoretical, operational and even clinical implications for future space exploration missions. The use of vibrotactile feedback as a sensorimotor countermeasure is applicable to balance therapy applications for vestibular loss patients and the elderly to mitigate risks due to loss of orientation.

  7. Temporal orientation.

    PubMed

    Maglio, Sam J; Trope, Yaacov

    2018-05-18

    Time in the mind orients people in one of two directions. An inward orientation points to the present, contracting the scope of thought to immediate concerns. An outward orientation, in contrast, points away from the present to the past or the future, expanding the scope of thought to a wider consideration set. These oriented arrows need not solely be used for mental time travel, as a similar inward/outward orientation can apply to social distance, spatial distance, and probability. We review recent findings illuminated by this broad form distancing, as illustrated in how people learn from and compare themselves to others, before concluding with a discussion of how change necessarily transpires over time, providing opportunities for future research at the intersection of future thought and present behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Measurement of subcellular texture by optical Gabor-like filtering with a digital micromirror device

    PubMed Central

    Pasternack, Robert M.; Qian, Zhen; Zheng, Jing-Yi; Metaxas, Dimitris N.; White, Eileen; Boustany, Nada N.

    2010-01-01

    We demonstrate an optical Fourier processing method to quantify object texture arising from subcellular feature orientation within unstained living cells. Using a digital micromirror device as a Fourier spatial filter, we measured cellular responses to two-dimensional optical Gabor-like filters optimized to sense orientation of nonspherical particles, such as mitochondria, with a width around 0.45 μm. Our method showed significantly rounder structures within apoptosis-defective cells lacking the proapoptotic mitochondrial effectors Bax and Bak, when compared with Bax/Bak expressing cells functional for apoptosis, consistent with reported differences in mitochondrial shape in these cells. By decoupling spatial frequency resolution from image resolution, this method enables rapid analysis of nonspherical submicrometer scatterers in an under-sampled large field of view and yields spatially localized morphometric parameters that improve the quantitative assessment of biological function. PMID:18830354

  9. Generation of laser-induced periodic surface structures on transparent material-fused silica

    NASA Astrophysics Data System (ADS)

    Schwarz, Simon; Rung, Stefan; Hellmann, Ralf

    2016-05-01

    We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionization and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.

  10. Generation of laser-induced periodic surface structures on transparent material-fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Simon; Rung, Stefan; Hellmann, Ralf

    2016-05-02

    We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionizationmore » and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.« less

  11. Understanding neighbourhoods, communities and environments: new approaches for social work research.

    PubMed

    Holland, Sally; Burgess, Stephen; Grogan-Kaylor, Andy; Delva, Jorge

    2010-06-01

    This article discusses some new ways in which social work research can explore the interaction between neighbourhoods and child and adult wellbeing. The authors note that social work practices are often criticised for taking an individualistic approach and paying too little attention to the service user's environment. The article uses examples of research projects from Chile, the United States of America and Wales, to discuss the use of spatially oriented research methods for understanding neighbourhood factors. Quantitative, qualitative and mixed methods approaches that are particularly appropriate for investigating social work relevant topics are discussed in turn, including quantitative and qualitative uses for geographical information systems (GIS), hierarchical linear modelling (HLM) for analysing spatially clustered data and qualitative mobile interviews. The article continues with a discussion of the strengths and limitations of using spatially orientated research designs in social work research settings and concludes optimistically with suggestions for future directions in this area.

  12. Cross-sensory reference frame transfer in spatial memory: the case of proprioceptive learning.

    PubMed

    Avraamides, Marios N; Sarrou, Mikaella; Kelly, Jonathan W

    2014-04-01

    In three experiments, we investigated whether the information available to visual perception prior to encoding the locations of objects in a path through proprioception would influence the reference direction from which the spatial memory was formed. Participants walked a path whose orientation was misaligned to the walls of the enclosing room and to the square sheet that covered the path prior to learning (Exp. 1) and, in addition, to the intrinsic structure of a layout studied visually prior to walking the path and to the orientation of stripes drawn on the floor (Exps. 2 and 3). Despite the availability of prior visual information, participants constructed spatial memories that were aligned with the canonical axes of the path, as opposed to the reference directions primed by visual experience. The results are discussed in the context of previous studies documenting transfer of reference frames within and across perceptual modalities.

  13. Controlling the opto-electronic properties of nc-SiOx:H films by promotion of 〈220〉 orientation in the growth of ultra-nanocrystallites at the grain boundary

    NASA Astrophysics Data System (ADS)

    Das, Debajyoti; Samanta, Subhashis

    2018-01-01

    A systematic development of undoped nc-SiOx:H thin films from (SiH4 + CO2) plasma diluted by a combination of H2 and He has been investigated through structural, optical and electrical characterization and correlation. Gradual inclusion of O into a highly crystalline silicon network progressively produces a two-phase structure where Si-nanocrystals (Si-nc) are embedded into the a-SiOx:H matrix. However, at the intermediate grain boundary region the growth of ultra-nanocrystallites controls the effectiveness of the material. The ultra-nanocrystallites are the part and portion of crystallinity accommodating the dominant fraction of thermodynamically preferred 〈220〉 crystallographic orientation, most favourable for stacked layer device performance. Atomic H plays a dominant role in maintaining an improved nanocrystalliny in the network even during O inclusion, while He in its excited state (He*) maintains a good energy balance at the grain boundary and produces a significant fraction of ultra-nanocrystalline component which has been demonstrated to organize the energetically favourable 〈220〉 crystallographic orientation in the network. The nc-SiOx:H films, maintaining proportionally good electrical conductivity over an wide range of optical band gap, remarkably low microstructure factor and simultaneous high crystalline volume fraction dominantly populated by ultra-nanocrystallites of 〈220〉 crystallographic orientation mostly at the grain boundary, have been obtained in technologically most popular 13.56 MHz PECVD SiH4 plasma even at a low substrate temperature ∼250 °C, convenient for device fabrication.

  14. AN EXPERIMENT IN TEACHING TOPOGRAPHICAL ORIENTATION AND SPATIAL ORGANIZATION TO CONGENITALLY BLIND CHILDREN.

    ERIC Educational Resources Information Center

    ASCARELLI, ANNA; GARRY, RALPH

    THIS RESEARCH ATTEMPTED TO ESTABLISH A BETTER UNDERSTANDING OF THE PROBLEMS OF CONGENITALLY TOTALLY BLIND CHILDREN AND TO TEST THE POSSIBILITY OF MEETING THESE PROBLEMS WITH A SPECIAL TRAINING PROGRAM IN GENERAL ORIENTATION AND SPACE PERCEPTION. A SAMPLE OF 60 CHILDREN WAS SELECTED FOR THE EXPERIMENT. THESE SUBJECTS WERE WITHOUT ADDITIONAL…

  15. (Dis)Orientation and Spatial Sense: Topological Thinking in the Middle Grades

    ERIC Educational Resources Information Center

    de Freitas, Elizabeth; McCarthy, MaryJean

    2014-01-01

    In this paper, we focus on topological approaches to space and we argue that experiences with topology allow middle school students to develop a more robust understanding of orientation and dimension. We frame our argument in terms of the phenomenological literature on perception and corporeal space. We discuss findings from a quasi-experimental…

  16. Design and development of a brushless, direct drive solar array reorientation system

    NASA Technical Reports Server (NTRS)

    Jessee, R. D.

    1972-01-01

    This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.

  17. Is attention based on spatial contextual memory preferentially guided by low spatial frequency signals?

    PubMed

    Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina

    2013-01-01

    A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception.

  18. Is Attention Based on Spatial Contextual Memory Preferentially Guided by Low Spatial Frequency Signals?

    PubMed Central

    Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina

    2013-01-01

    A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception. PMID:23776509

  19. The paradox of managing a project-oriented matrix: establishing coherence within chaos.

    PubMed

    Greiner, L E; Schein, V E

    1981-01-01

    Projects that require the flexible coordination of multidisciplinary teams have tended to adopt a matrix structure to accomplish complex tasks. Yet these project-oriented matrix structures themselves require careful coordination if they are to realize the objectives set for them. The authors identify the basic organizational questions that project-oriented matrix organizations must face. They examine the relationship between responsibility and authority; the tradeoffs between economic efficiency and the technical quality of the work produced; and the sensitive issues of managing individualistic, highly trained professionals while also maintaining group cohesiveness.

  20. A Snapshot-Based Mechanism for Celestial Orientation.

    PubMed

    El Jundi, Basil; Foster, James J; Khaldy, Lana; Byrne, Marcus J; Dacke, Marie; Baird, Emily

    2016-06-06

    In order to protect their food from competitors, ball-rolling dung beetles detach a piece of dung from a pile, shape it into a ball, and roll it away along a straight path [1]. They appear to rely exclusively on celestial compass cues to maintain their bearing [2-8], but the mechanism that enables them to use these cues for orientation remains unknown. Here, we describe the orientation strategy that allows dung beetles to use celestial cues in a dynamic fashion. We tested the underlying orientation mechanism by presenting beetles with a combination of simulated celestial cues (sun, polarized light, and spectral cues). We show that these animals do not rely on an innate prediction of the natural geographical relationship between celestial cues, as other navigating insects seem to [9, 10]. Instead, they appear to form an internal representation of the prevailing celestial scene, a "celestial snapshot," even if that scene represents a physical impossibility for the real sky. We also find that the beetles are able to maintain their bearing with respect to the presented cues only if the cues are visible when the snapshot is taken. This happens during the "dance," a behavior in which the beetle climbs on top of its ball and rotates about its vertical axis [11]. This strategy for reading celestial signals is a simple but efficient mechanism for straight-line orientation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reality of working in a community-based, recovery-oriented mental health rehabilitation unit: A pragmatic grounded theory analysis.

    PubMed

    Parker, Stephen; Dark, Frances; Newman, Ellie; Korman, Nicole; Rasmussen, Zoe; Meurk, Carla

    2017-08-01

    In the present study, we explored the experiences of staff working at a recovery-oriented, community-based residential mental health rehabilitation unit in Brisbane, Australia, called a 'community care unit' (CCU). A pragmatic approach to grounded theory was taken in the analysis of the transcripts of semistructured interviews with eight staff. Convenience sampling was used, and there was representation of junior and senior staff across nursing, allied health, and non-clinical support roles. Four key themes emerged from the analysis: (i) rehabilitation is different to treatment; (ii) the CCU is a positive transitional space; (iii) they (consumers) have to be ready to engage; and (iv) recovery is central to rehabilitation practice. Staff understandings of recovery in rehabilitation work were complex and included consideration of both personal and clinical recovery concepts. Rehabilitation readiness was considered important to the ability to deliver recovery-oriented care; however, the shared role of staff in maintaining engagement was acknowledged. Threats to recovery-oriented rehabilitation practice included staff burnout and external pressure to accept consumers who are not ready. The reality of working at a community-based recovery-oriented rehabilitation unit is complex. Active vigilance is needed to maintain a focus on recovery and rehabilitation. Leadership needs to focus on reducing burnout and in adapting these services to emergent needs. © 2016 Australian College of Mental Health Nurses Inc.

  2. Distinct representations for shifts of spatial attention and changes of reward contingencies in the human brain

    PubMed Central

    Tosoni, Annalisa; Shulman, Gordon L.; Pope, Anna L. W.; McAvoy, Mark P.; Corbetta, Maurizio

    2012-01-01

    Success in a dynamically changing world requires both rapid shifts of attention to the location of important objects and the detection of changes in motivational contingencies that may alter future behavior. Here we addressed the relationship between these two processes by measuring the blood-oxygenation-level-dependent (BOLD) signal during a visual search task in which the location and the color of a salient cue respectively indicated where a rewarded target would appear and the monetary gain (large or small) associated with its detection. While cues that either shifted or maintained attention were presented every 4 to 8 seconds, the reward magnitude indicated by the cue changed roughly every 30 seconds, allowing us to distinguish a change in expected reward magnitude from a maintained state of expected reward magnitude. Posterior cingulate cortex was modulated by cues signaling an increase in expected reward magnitude, but not by cues for shifting versus maintaining spatial attention. Dorsal fronto-parietal regions in precuneus and FEF also showed increased BOLD activity for changes in expected reward magnitude from low to high, but in addition showed large independent modulations for shifting versus maintaining attention. In particular, the differential activation for shifting versus maintaining attention was not affected by expected reward magnitude. These results indicate that BOLD activations for shifts of attention and increases in expected reward magnitude are largely separate. Finally, visual cortex showed sustained spatially selective signals that were significantly enhanced when greater reward magnitude was expected, but this reward-related modulation was not observed in spatially selective regions of dorsal fronto-parietal cortex. PMID:22578709

  3. Handling Different Spatial Resolutions in Image Fusion by Multivariate Curve Resolution-Alternating Least Squares for Incomplete Image Multisets.

    PubMed

    Piqueras, Sara; Bedia, Carmen; Beleites, Claudia; Krafft, Christoph; Popp, Jürgen; Maeder, Marcel; Tauler, Romà; de Juan, Anna

    2018-06-05

    Data fusion of different imaging techniques allows a comprehensive description of chemical and biological systems. Yet, joining images acquired with different spectroscopic platforms is complex because of the different sample orientation and image spatial resolution. Whereas matching sample orientation is often solved by performing suitable affine transformations of rotation, translation, and scaling among images, the main difficulty in image fusion is preserving the spatial detail of the highest spatial resolution image during multitechnique image analysis. In this work, a special variant of the unmixing algorithm Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) for incomplete multisets is proposed to provide a solution for this kind of problem. This algorithm allows analyzing simultaneously images collected with different spectroscopic platforms without losing spatial resolution and ensuring spatial coherence among the images treated. The incomplete multiset structure concatenates images of the two platforms at the lowest spatial resolution with the image acquired with the highest spatial resolution. As a result, the constituents of the sample analyzed are defined by a single set of distribution maps, common to all platforms used and with the highest spatial resolution, and their related extended spectral signatures, covering the signals provided by each of the fused techniques. We demonstrate the potential of the new variant of MCR-ALS for multitechnique analysis on three case studies: (i) a model example of MIR and Raman images of pharmaceutical mixture, (ii) FT-IR and Raman images of palatine tonsil tissue, and (iii) mass spectrometry and Raman images of bean tissue.

  4. Haptic spatial matching in near peripersonal space.

    PubMed

    Kaas, Amanda L; Mier, Hanneke I van

    2006-04-01

    Research has shown that haptic spatial matching at intermanual distances over 60 cm is prone to large systematic errors. The error pattern has been explained by the use of reference frames intermediate between egocentric and allocentric coding. This study investigated haptic performance in near peripersonal space, i.e. at intermanual distances of 60 cm and less. Twelve blindfolded participants (six males and six females) were presented with two turn bars at equal distances from the midsagittal plane, 30 or 60 cm apart. Different orientations (vertical/horizontal or oblique) of the left bar had to be matched by adjusting the right bar to either a mirror symmetric (/ \\) or parallel (/ /) position. The mirror symmetry task can in principle be performed accurately in both an egocentric and an allocentric reference frame, whereas the parallel task requires an allocentric representation. Results showed that parallel matching induced large systematic errors which increased with distance. Overall error was significantly smaller in the mirror task. The task difference also held for the vertical orientation at 60 cm distance, even though this orientation required the same response in both tasks, showing a marked effect of task instruction. In addition, men outperformed women on the parallel task. Finally, contrary to our expectations, systematic errors were found in the mirror task, predominantly at 30 cm distance. Based on these findings, we suggest that haptic performance in near peripersonal space might be dominated by different mechanisms than those which come into play at distances over 60 cm. Moreover, our results indicate that both inter-individual differences and task demands affect task performance in haptic spatial matching. Therefore, we conclude that the study of haptic spatial matching in near peripersonal space might reveal important additional constraints for the specification of adequate models of haptic spatial performance.

  5. The functional role of dorso-lateral premotor cortex during mental rotation: an event-related fMRI study separating cognitive processing steps using a novel task paradigm.

    PubMed

    Lamm, Claus; Windischberger, Christian; Moser, Ewald; Bauer, Herbert

    2007-07-15

    Subjects deciding whether two objects presented at angular disparity are identical or mirror versions of each other usually show response times that linearly increase with the angle between objects. This phenomenon has been termed mental rotation. While there is widespread agreement that parietal cortex plays a dominant role in mental rotation, reports concerning the involvement of motor areas are less consistent. From a theoretical point of view, activation in motor areas suggests that mental rotation relies upon visuo-motor rather than visuo-spatial processing alone. However, the type of information that is processed by motor areas during mental rotation remains unclear. In this study we used event-related fMRI to assess whether activation in parietal and dorsolateral premotor areas (dPM) during mental rotation is distinctively related to processing spatial orientation information. Using a newly developed task paradigm we explicitly separated the processing steps (encoding, mental rotation proper and object matching) required by mental rotation tasks and additionally modulated the amount of spatial orientation information that had to be processed. Our results show that activation in dPM during mental rotation is not strongly modulated by the processing of spatial orientation information, and that activation in dPM areas is strongest during mental rotation proper. The latter finding suggests that dPM is involved in more generalized processes such as visuo-spatial attention and movement anticipation. We propose that solving mental rotation tasks is heavily dependent upon visuo-motor processes and evokes neural processing that may be considered as an implicit simulation of actual object rotation.

  6. Social Beliefs and Visual Attention: How the Social Relevance of a Cue Influences Spatial Orienting.

    PubMed

    Gobel, Matthias S; Tufft, Miles R A; Richardson, Daniel C

    2018-05-01

    We are highly tuned to each other's visual attention. Perceiving the eye or hand movements of another person can influence the timing of a saccade or the reach of our own. However, the explanation for such spatial orienting in interpersonal contexts remains disputed. Is it due to the social appearance of the cue-a hand or an eye-or due to its social relevance-a cue that is connected to another person with attentional and intentional states? We developed an interpersonal version of the Posner spatial cueing paradigm. Participants saw a cue and detected a target at the same or a different location, while interacting with an unseen partner. Participants were led to believe that the cue was either connected to the gaze location of their partner or was generated randomly by a computer (Experiment 1), and that their partner had higher or lower social rank while engaged in the same or a different task (Experiment 2). We found that spatial cue-target compatibility effects were greater when the cue related to a partner's gaze. This effect was amplified by the partner's social rank, but only when participants believed their partner was engaged in the same task. Taken together, this is strong evidence in support of the idea that spatial orienting is interpersonally attuned to the social relevance of the cue-whether the cue is connected to another person, who this person is, and what this person is doing-and does not exclusively rely on the social appearance of the cue. Visual attention is not only guided by the physical salience of one's environment but also by the mental representation of its social relevance. © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  7. Lateralization of Frequency-Specific Networks for Covert Spatial Attention to Auditory Stimuli

    PubMed Central

    Thorpe, Samuel; D'Zmura, Michael

    2011-01-01

    We conducted a cued spatial attention experiment to investigate the time–frequency structure of human EEG induced by attentional orientation of an observer in external auditory space. Seven subjects participated in a task in which attention was cued to one of two spatial locations at left and right. Subjects were instructed to report the speech stimulus at the cued location and to ignore a simultaneous speech stream originating from the uncued location. EEG was recorded from the onset of the directional cue through the offset of the inter-stimulus interval (ISI), during which attention was directed toward the cued location. Using a wavelet spectrum, each frequency band was then normalized by the mean level of power observed in the early part of the cue interval to obtain a measure of induced power related to the deployment of attention. Topographies of band specific induced power during the cue and inter-stimulus intervals showed peaks over symmetric bilateral scalp areas. We used a bootstrap analysis of a lateralization measure defined for symmetric groups of channels in each band to identify specific lateralization events throughout the ISI. Our results suggest that the deployment and maintenance of spatially oriented attention throughout a period of 1,100 ms is marked by distinct episodes of reliable hemispheric lateralization ipsilateral to the direction in which attention is oriented. An early theta lateralization was evident over posterior parietal electrodes and was sustained throughout the ISI. In the alpha and mu bands punctuated episodes of parietal power lateralization were observed roughly 500 ms after attentional deployment, consistent with previous studies of visual attention. In the beta band these episodes show similar patterns of lateralization over frontal motor areas. These results indicate that spatial attention involves similar mechanisms in the auditory and visual modalities. PMID:21630112

  8. Magical ideation modulates spatial behavior.

    PubMed

    Mohr, Christine; Bracha, H Stefan; Brugger, Peter

    2003-01-01

    Previous research has found that animals as well as persons with psychotic disorders preferentially orient away from the cerebral hemisphere with the more active dopamine system. This study investigated the modulation of spatial behavior by a mode of thinking reminiscent of the positive symptoms of psychosis. In a non-treatment-seeking sample of healthy volunteers (20 women and 16 men), the authors assessed the lateral biases in turning and veering behavior and in line bisection as a function of their magical ideation, that is, a mild form of schizotypy. Across tasks, pronounced magical ideation was associated with reduced right-sided orientation preferences. This finding suggests a relative hyperdopaminergia of the right hemisphere as the biological basis of magical ideation.

  9. Is There a Geometric Module for Spatial Orientation? Insights from a Rodent Navigation Model

    ERIC Educational Resources Information Center

    Sheynikhovich, Denis; Chavarriaga, Ricardo; Strosslin, Thomas; Arleo, Angelo; Gerstner, Wulfram

    2009-01-01

    Modern psychological theories of spatial cognition postulate the existence of a geometric module for reorientation. This concept is derived from experimental data showing that in rectangular arenas with distinct landmarks in the corners, disoriented rats often make diagonal errors, suggesting their preference for the geometric (arena shape) over…

  10. Attention: Reaction Time and Accuracy Reveal Different Mechanisms

    ERIC Educational Resources Information Center

    Prinzmetal, William; McCool, Christin; Park, Samuel

    2005-01-01

    The authors propose that there are 2 different mechanisms whereby spatial cues capture attention. The voluntary mechanism is the strategic allocation of perceptual resources to the location most likely to contain the target. The involuntary mechanism is a reflexive orienting response that occurs even when the spatial cue does not indicate the…

  11. A study of spatial data management and analysis systems

    NASA Technical Reports Server (NTRS)

    Christopher, Clyde; Galle, Richard

    1989-01-01

    The Earth Resources Laboratory of the NASA Stennis Space Center is a center of space related technology for Earth observations. It has assumed the task, in a joint effort with Jackson State University, to reach out to the science community and acquire information pertaining to characteristics of spatially oriented data processing.

  12. Why Size Counts: Children's Spatial Reorientation in Large and Small Enclosures

    ERIC Educational Resources Information Center

    Learmonth, Amy E.; Newcombe, Nora S.; Sheridan, Natalie; Jones, Meredith

    2008-01-01

    When mobile organisms are spatially disoriented, for instance by rapid repetitive movement, they must re-establish orientation. Past research has shown that the geometry of enclosing spaces is consistently used for reorientation by a wide variety of species, but that non-geometric features are not always used. Based on these findings, some…

  13. The Importance of Spatial Ability and Mental Models in Learning Anatomy

    ERIC Educational Resources Information Center

    Chatterjee, Allison K.

    2011-01-01

    As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing…

  14. Origin and Function of Tuning Diversity in Macaque Visual Cortex

    PubMed Central

    Goris, Robbe L.T.; Simoncelli, Eero P.; Movshon, J. Anthony

    2016-01-01

    SUMMARY Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells’ diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. PMID:26549331

  15. Multiscale vector fields for image pattern recognition

    NASA Technical Reports Server (NTRS)

    Low, Kah-Chan; Coggins, James M.

    1990-01-01

    A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.

  16. Sexual orientation and spatial position effects on selective forms of object location memory.

    PubMed

    Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary

    2011-04-01

    Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object exchanges, object shifts, and novel objects) relative to veridical center (left compared to right side of the arrays) in a sample of 35 heterosexual men, 35 heterosexual women, and 35 homosexual men. Relative to heterosexual men, heterosexual women showed better location recovery in the right side of the array during object exchanges and homosexual men performed better in the right side during novel objects. However, the difference between heterosexual and homosexual men disappeared after controlling for IQ. Heterosexual women and homosexual men did not differ significantly from each other in location change detection with respect to task or side of array. These data suggest that visual space biases in processing categorical spatial positions may enhance aspects of object location memory in heterosexual women. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Single molecule optical measurements of orientation and rotations of biological macromolecules.

    PubMed

    Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E

    2016-11-22

    Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.

  18. Visual-vestibular integration as a function of adaptation to space flight and return to Earth

    NASA Technical Reports Server (NTRS)

    Reschke, Millard R.; Bloomberg, Jacob J.; Harm, Deborah L.; Huebner, William P.; Krnavek, Jody M.; Paloski, William H.; Berthoz, Alan

    1999-01-01

    Research on perception and control of self-orientation and self-motion addresses interactions between action and perception . Self-orientation and self-motion, and the perception of that orientation and motion are required for and modified by goal-directed action. Detailed Supplementary Objective (DSO) 604 Operational Investigation-3 (OI-3) was designed to investigate the integrated coordination of head and eye movements within a structured environment where perception could modify responses and where response could be compensatory for perception. A full understanding of this coordination required definition of spatial orientation models for the microgravity environment encountered during spaceflight.

  19. Perceived change in orientation from optic flow in the central visual field

    NASA Technical Reports Server (NTRS)

    Dyre, Brian P.; Andersen, George J.

    1988-01-01

    The effects of internal depth within a simulation display on perceived changes in orientation have been studied. Subjects monocularly viewed displays simulating observer motion within a volume of randomly positioned points through a window which limited the field of view to 15 deg. Changes in perceived spatial orientation were measured by changes in posture. The extent of internal depth within the display, the presence or absence of visual information specifying change in orientation, and the frequency of motion supplied by the display were examined. It was found that increased sway occurred at frequencies equal to or below 0.375 Hz when motion at these frequencies was displayed. The extent of internal depth had no effect on the perception of changing orientation.

  20. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.

    PubMed

    Grasso, R; Zago, M; Lacquaniti, F

    2000-01-01

    Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms of the muscle activities and muscle synergies also were affected by the adopted posture. We conclude that maintaining bent postures does not interfere either with the generation of segmental kinematic waveforms or with the planar constraint of intersegmental covariation. These characteristics are maintained at the expense of adjustments in kinetic parameters, muscle synergies and the temporal coupling among the oscillating body segments. We argue that an integrated control of gait and posture is made possible because these two motor functions share some common principles of spatial organization.

Top