Sample records for maintained higher leaf

  1. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change.

    PubMed

    Eller, Cleiton B; Lima, Aline L; Oliveira, Rafael S

    2016-07-01

    Many tropical montane cloud forest (TMCF) trees are capable of foliar water uptake (FWU) during leaf-wetting events. In this study, we tested the hypothesis that maintenance of leaf turgor during periods of fog exposure and soil drought is related to species' FWU capacity. We conducted several experiments using apoplastic tracers, deuterium labeling and leaf immersion in water to evaluate differences in FWU among three common TMCF tree species. We also measured the effect of regular fog exposure on the leaf water potential of plants subjected to soil drought and used these data to model species' response to long-term drought. All species were able to absorb water through their leaf cuticles and/or trichomes, although the capacity to do so differed between species. During the drought experiment, the species with higher FWU capacity maintained leaf turgor for a longer period when exposed to fog, whereas the species with lower FWU exerted tighter stomatal regulation to maintain leaf turgor. Model results suggest that without fog, species with high FWU are more likely to lose turgor during seasonal droughts. We show that leaf-wetting events are essential for trees with high FWU, which tend to be more anisohydric, maintaining leaf turgor during seasonal droughts. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Drought effect on growth, gas exchange and yield, in two strains of local barley Ardhaoui, under water deficit conditions in southern Tunisia.

    PubMed

    Thameur, Afwa; Lachiheb, Belgacem; Ferchichi, Ali

    2012-12-30

    Two local barley strains cv. Ardhaoui originated from Tlalit and Switir, sourthern Tunisia were grown in pots in a glasshouse assay, under well-watered conditions for a month. Plants were then either subjected to water deficit (treatment) or continually well-watered (control). Control pots were irrigated several times each week to maintain soil moisture near field capacity (FC), while stress pots experienced soil drying by withholding irrigation until they reached 50% of FC. Variation in relative water content, leaf area, leaf appearance rate and leaf gas exchange (i.e. net CO(2) assimilation rate (A), transpiration (E), and stomatal conductance (gs)) in response to water deficit was investigated. High leaf relative water content (RWC) was maintained in Tlalit by stomatal closure and a reduction of leaf area. Reduction in leaf area was due to decline in leaf gas exchange during water deficit. Tlalit was found to be drought tolerant and able to maintain higher leaf RWC under drought conditions. Water deficit treatment reduced stomatal conductance by 43% at anthesis. High net CO(2) assimilation rate under water deficit was associated with high RWC (r = 0.998; P < 0.01). Decline in net CO(2) assimilation rate was due mainly to stomatal closure. Significant differences between studied strains in leaf gas exchange parameters were found, which can give some indications on the degree of drought tolerance. Thus, the ability of the low leaf area plants to maintain higher RWC could explain the differences in drought tolerance in studied barley strains. Results showed that Tlalit showed to be more efficient and more productive than Switir. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Leaf movements and photoinhibition in relation to water stress in field-grown beans.

    PubMed

    Pastenes, Claudio; Pimentel, Paula; Lillo, Jacob

    2005-01-01

    Photoinhibition in plants depends on the extent of light energy being absorbed in excess of what can be used in photochemistry and is expected to increase as environmental constraints limit CO2 assimilation. Water stress induces the closure of stomata, limiting carbon availability at the carboxylation sites in the chloroplasts and, therefore, resulting in an excessive excitation of the photosynthetic apparatus, particularly photosystem II (PSII). Mechanisms have evolved in plants in order to protect against photoinhibition, such as non-photochemical energy dissipation, chlorophyll concentration changes, chloroplast movements, increases in the capacity for scavenging the active oxygen species, and leaf movement or paraheliotropism, avoiding direct exposure to sun. In beans (Phaseolus vulgaris L.), paraheliotropism seems to be an important feature of the plant to avoid photoinhibition. The extent of the leaf movement is increased as the water potential drops, reducing light interception and maintaining a high proportion of open PSII reaction centres. Photoinhibition in water-stressed beans, measured as the capacity to recover F(v)/F(m), is not higher than in well-watered plants and leaf temperature is maintained below the ambient, despite the closure of stomata. Bean leaves restrained from moving, increase leaf temperature and reduce qP, the content of D1 protein and the capacity to recover F(v)/F(m) after dark adaptation, the extent of such changes being higher in water-stressed plants. Data are presented suggesting that even though protective under water stress, paraheliotropism, by reducing light interception, affects the capacity to maintain high CO2 assimilation rates throughout the day in well-watered plants.

  4. [Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat].

    PubMed

    Zhao, Jun; Dong, Shu-ting; Liu, Peng; Zhang, Ji-wang; Zhao, Bin

    2015-08-01

    A field experiment was conducted using the winter wheat (Triticum aestivum) variety Shimai 15. The source of organic nitrogen was cow manure, and four fertilization treatments were included, i.e., no N fertilizer application, single application of urea, single application of cow manure, and mixed application of urea and cow manure. The effects of different applications of inorganic and organic nitrogen on canopy apparent photosynthesis (CAP), photosynthetic rate of flag leaves (Pn), leaf area index (LAI), florescence parameters and grain yield of winter wheat were determined. The results showed that urea had the largest effect on the early growth period, as at this stage the CAP, Pn and LAI of the single application of urea were the highest, which was followed by the mixed application and the single application of cow manure. However, 10 days after anthesis, the single application of cow manure and the mixed application delayed the leaf senescence process when compared with the single application of urea. This could be due to the two treatments having higher anti-oxidant enzyme activity and promoting a longer green leaf duration, which could maintain a higher photosynthetic capability. What' s more, the mixed application had a better performance and got the highest grain yield. Consequently, the mixed application of organic and inorganic fertilizers could delay leaf senescence and maintain a better canopy structure and higher photosynthesis capability at the late grain filling stage, which resulted in a higher grain yield.

  5. Abscisic Acid Down-Regulates Hydraulic Conductance of Grapevine Leaves in Isohydric Genotypes Only1[OPEN

    PubMed Central

    Masclef, Diane; Lebon, Eric; Christophe, Angélique

    2017-01-01

    Plants evolved different strategies to cope with water stress. While isohydric species maintain their midday leaf water potential (ΨM) under soil water deficit by closing their stomata, anisohydric species maintain higher stomatal aperture and exhibit substantial reductions in ΨM. It was hypothesized that isohydry is related to a locally higher sensitivity of stomata to the drought-hormone abscisic acid (ABA). Interestingly, recent lines of evidence in Arabidopsis (Arabidopsis thaliana) suggested that stomatal responsiveness is also controlled by an ABA action on leaf water supply upstream from stomata. Here, we tested the possibility in grapevine (Vitis vinifera) that different genotypes ranging from near isohydric to more anisohydric may have different sensitivities in these ABA responses. Measurements on whole plants in drought conditions were combined with assays on detached leaves fed with ABA. Two different methods consistently showed that leaf hydraulic conductance (Kleaf) was down-regulated by exogenous ABA, with strong variations depending on the genotype. Importantly, variation between isohydry and anisohydry correlated with Kleaf sensitivity to ABA, with Kleaf in the most anisohydric genotypes being unresponsive to the hormone. We propose that the observed response of Kleaf to ABA may be part of the overall ABA regulation of leaf water status. PMID:28899961

  6. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    PubMed

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  7. Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability.

    PubMed

    Hochberg, Uri; Bonel, Andrea Giulia; David-Schwartz, Rakefet; Degu, Asfaw; Fait, Aaron; Cochard, Hervé; Peterlunger, Enrico; Herrera, Jose Carlos

    2017-06-01

    Drought-acclimated vines maintained higher gas exchange compared to irrigated controls under water deficit; this effect is associated with modified leaf turgor but not with improved petiole vulnerability to cavitation. A key feature for the prosperity of plants under changing environments is the plasticity of their hydraulic system. In the present research we studied the hydraulic regulation in grapevines (Vitis vinifera L.) that were first acclimated for 39 days to well-watered (WW), sustained water deficit (SD), or transient-cycles of dehydration-rehydration-water deficit (TD) conditions, and then subjected to varying degrees of drought. Vine development under SD led to the smallest leaves and petioles, but the TD vines had the smallest mean xylem vessel and calculated specific conductivity (k ts ). Unexpectedly, both the water deficit acclimation treatments resulted in vines more vulnerable to cavitation in comparison to WW, possibly as a result of developmental differences or cavitation fatigue. When exposed to drought, the SD vines maintained the highest stomatal (g s ) and leaf conductance (k leaf ) under low stem water potential (Ψ s ), despite their high xylem vulnerability and in agreement with their lower turgor loss point (Ψ TLP ). These findings suggest that the down-regulation of k leaf and g s is not associated with embolism, and the ability of drought-acclimated vines to maintain hydraulic conductance and gas exchange under stressed conditions is more likely associated with the leaf turgor and membrane permeability.

  8. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    PubMed

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines

    PubMed Central

    Zhang, Yong-Jiang; Sack, Lawren; Cao, Kun-Fang; Wei, Xue-Mei; Li, Nan

    2017-01-01

    We tested for a tradeoff across species between plant maximum photosynthetic rate and the ability to maintain photosynthesis under adverse conditions in the unfavorable season. Such a trade-off would be consistent with the observed trade-off between maximum speed and endurance in athletes and some animals that has been explained by cost-benefit theory. This trend would have importance for the general understanding of leaf design, and would simplify models of annual leaf carbon relations. We tested for such a trade-off using a database analysis across vascular plants and using an experimental approach for 29 cycad species, representing an ancient plant lineage with diversified evergreen leaves. In both tests, a higher photosynthetic rate per mass or per area in the favorable season was associated with a stronger absolute or percent decline in the unfavorable season. We resolved a possible mechanism based on biomechanics and nitrogen allocation; cycads with high leaf toughness (leaf mass per area) and higher investment in leaf construction than in physiological function (C/N ratio) tended to have lower warm season photosynthesis but less depression in the cool season. We propose that this trade-off, consistent with cost-benefit theory, represents a significant physio-phenological constraint on the diversity and seasonal dynamics of photosynthetic rate. PMID:28186201

  10. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees.

    PubMed

    Gotsch, Sybil G; Geiger, Erika L; Franco, Augusto C; Goldstein, Guillermo; Meinzer, Frederick C; Hoffmann, William A

    2010-06-01

    Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.

  11. Homeostasis in leaf water potentials on leeward and windward sides of desert shrub crowns: water loss control vs. high hydraulic efficiency.

    PubMed

    Iogna, Patricia A; Bucci, Sandra J; Scholz, Fabián G; Goldstein, Guillermo

    2013-11-01

    Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.

  12. Response of Leaf Water Potential, Stomatal Resistance, and Leaf Rolling to Water Stress

    PubMed Central

    O'Toole, John C.; Cruz, Rolando T.

    1980-01-01

    Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent. Stomatal resistance increased more on the abaxial than the adaxial leaf surface in both cultivars. This was associated with a change in leaf form or rolling inward of the upper leaf surface. Both responses, increased stomatal resistance and leaf rolling, were initiated in a similar leaf water potential range (−8 to −12 bars). Leaves of IR28 became fully rolled at leaf water potential of about −22 bars; however, total leaf diffusive resistance was only about 4 to 5 seconds per centimeter (conductance 0.25 to 0.2 centimeter per second) at that stage. Leaf diffusive resistance and degree of leaf rolling were linearly related to leaf water potential. Thus, leaf rolling in rice may be used as an estimate of the other two less obvious effects of water deficit. PMID:16661206

  13. Growth and physiological responses of isohydric and anisohydric poplars to drought

    DOE PAGES

    Attia, Ziv; Domec, Jean-Christophe; Oren, Ram; ...

    2015-05-07

    Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P. balsamifera x simonii (BSxSI, anisohydric genotype) were studied to assess the physiological basis for biomass accumulation and water-use efficiency across a range of water availabilities. Under ample water, whole plant stomatal conductance (g s), transpiration (E), and growth rates were higher in anisohydric genotypes (SI and BSxSI) than in isohydric poplars (BS). Undermore » drought, all genotypes regulated the leaf to stem water potential gradient via changes in gs, synchronizing leaf hydraulic conductance (K leaf) and E: isohydric plants reduced K leaf, g s, and E, whereas anisohydric genotypes maintained high K leaf and E, which reduced both leaf and stem water potentials. Nevertheless, SI poplars reduced their plant hydraulic conductance (K plant) during water stress and, unlike, BSxSI plants, recovered rapidly from drought. Low gs of the isohydric BS under drought reduced CO 2 assimilation rates and biomass potential under moderate water stress. While anisohydric genotypes had the fastest growth under ample water and higher photosynthetic rates under increasing water stress, isohydric poplars had higher water-use efficiency. Overall, the results indicate three strategies for how closely related biomass species deal with water stress: survival-isohydric (BS), sensitive-anisohydric (BSxSI), and resilience-anisohydric (SI). Lastly, we discuss implications for woody biomass growth, water-use efficiency, and survival under variable environmental conditions.« less

  14. Determination of drought tolerance related traits in Helianthus argophyllus, Helianthus annuus, and their hybrids.

    PubMed

    Hussain, Muhammad Mubashar; Rauf, Saeed; Riaz, Muhammad Asam; Al-Khayri, Jameel Muhammad; Monneveux, Philippe

    2017-06-01

    Drought is a major constraint for sunflower ( Helianthus annuus ) production worldwide. Drought tolerance traits have been identified in the related wild species Helianthus argophyllus . This study was initiated to develop sunflower drought-tolerant genotypes by crossing cultivated sunflower with this species and analyze drought tolerance traits in the H. annuus and H. argophyllus populations, H. annuus intraspecific hybrids, and H. annuus × H. argophyllus interspecific hybrids along with the commercial hybrid Hysun-33 under three stress regimes: exogenous application of ABA, both by foliar spray and irrigation, and 5% PEG-induced osmotic stress. H. argophyllus populations had a significantly lower leaf area and higher water-use efficiency and leaf cuticular wax content under all treatments, and maintained a higher net photosynthetic rate and stomatal conductance under osmotic stress. Small leaf area and high cuticular waxes content of the wild species were, however, not inherited in interspecific hybrids which suggested for selection in F 2 for these traits. Therefore, transgressive plants were selected in the F 2 population to establish F 3 plant progenies with silver-leafed canopy of H. argophyllus which showed higher achene yield under stress condition. These results are discussed with a view to using H. argophyllus to improve drought tolerance in cultivated sunflower.

  15. Determination of drought tolerance related traits in Helianthus argophyllus, Helianthus annuus, and their hybrids

    PubMed Central

    Hussain, Muhammad Mubashar; Rauf, Saeed; Riaz, Muhammad Asam; Al-Khayri, Jameel Muhammad; Monneveux, Philippe

    2017-01-01

    Drought is a major constraint for sunflower (Helianthus annuus) production worldwide. Drought tolerance traits have been identified in the related wild species Helianthus argophyllus. This study was initiated to develop sunflower drought-tolerant genotypes by crossing cultivated sunflower with this species and analyze drought tolerance traits in the H. annuus and H. argophyllus populations, H. annuus intraspecific hybrids, and H. annuus × H. argophyllus interspecific hybrids along with the commercial hybrid Hysun-33 under three stress regimes: exogenous application of ABA, both by foliar spray and irrigation, and 5% PEG-induced osmotic stress. H. argophyllus populations had a significantly lower leaf area and higher water-use efficiency and leaf cuticular wax content under all treatments, and maintained a higher net photosynthetic rate and stomatal conductance under osmotic stress. Small leaf area and high cuticular waxes content of the wild species were, however, not inherited in interspecific hybrids which suggested for selection in F2 for these traits. Therefore, transgressive plants were selected in the F2 population to establish F3 plant progenies with silver-leafed canopy of H. argophyllus which showed higher achene yield under stress condition. These results are discussed with a view to using H. argophyllus to improve drought tolerance in cultivated sunflower. PMID:28744179

  16. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    PubMed

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  17. Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes.

    PubMed

    Fini, Alessio; Frangi, Piero; Amoroso, Gabriele; Piatti, Riccardo; Faoro, Marco; Bellasio, Chandra; Ferrini, Francesco

    2011-11-01

    The aim of this work was to evaluate the effects of selected mycorrhiza obtained in the urban environment on growth, leaf gas exchange, and drought tolerance of containerized plants growing in the nursery. Two-year-old uniform Acer campestre L., Tilia cordata Mill., and Quercus robur L. were inoculated with a mixture of infected roots and mycelium of selected arbuscular (maple, linden) and/or ectomycorrhiza (linden, oak) fungi and grown in well-watered or water shortage conditions. Plant biomass and leaf area were measured 1 and 2 years after inoculation. Leaf gas exchange, chlorophyll fluorescence, and water relations were measured during the first and second growing seasons after inoculation. Our data suggest that the mycelium-based inoculum used in this experiment was able to colonize the roots of the tree species growing in the nursery. Plant biomass was affected by water shortage, but not by inoculation. Leaf area was affected by water regime and, in oak and linden, by inoculation. Leaf gas exchange was affected by inoculation and water stress. V(cmax) and J(max) were increased by inoculation and decreased by water shortage in all species. F(v)/F(m) was also generally higher in inoculated plants than in control. Changes in PSII photochemistry and photosynthesis may be related to the capacity of inoculated plants to maintain less negative leaf water potential under drought conditions. The overall data suggest that inoculated plants were better able to maintain physiological activity during water stress in comparison to non-inoculated plants.

  18. Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO2 enrichment.

    PubMed

    Chen, Charles P; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro

    2014-02-01

    The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol(-1) above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety 'Koshihikari'. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2].

  19. Do the Rich Always Become Richer? Characterizing the Leaf Physiological Response of the High-Yielding Rice Cultivar Takanari to Free-Air CO2 Enrichment

    PubMed Central

    Chen, Charles P.; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro

    2014-01-01

    The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol−1 above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety ‘Koshihikari’. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2]. PMID:24443497

  20. [Regulation effect of water storage in deeper soil layers on root physiological characteristics and leaf photosynthetic traits of cotton with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Du, Ming-Wei; Huang, Jian-Jun; Zhang, Ya-Li; Zhang, Wang-Feng

    2009-06-01

    A soil column culture experiment was conducted under the ecological and climatic conditions of Xinjiang to study the effects of water storage in deeper (> 60 cm) soil layers on the root physiological characteristics and leaf photosynthetic traits of cotton variety Xinluzao 13. Two treatments were installed, i.e., well-watered and no watering. The moisture content in plough layer was controlled at 70% +/- 5% and 55% +/- 5% of field capacity by drip irrigation under mulch during growth season. It was shown that the water storage in deeper soil layers enhanced the SOD activity and the vigor of cotton root, and increased the water use efficiency of plant as well as the leaf water potential, chlorophyll content, and net photosynthesis rate, which finally led to a higher yield of seed cotton and higher water use efficiency. Under well-watered condition and when the moisture content in plough layer was maintained at 55% of field capacity, the senescence of roots in middle and lower soil layers was slower, and the higher root vigor compensated the negative effects of impaired photosynthesis caused by water deficit to some extent. The yield of seed cotton was lower when the moisture content in plough layer was maintained at 55% of field capacity than at 70% of field capacity, but no significant difference was observed in the water use efficiency. Our results emphasized the importance of pre-sowing irrigation in winter or in spring to increase the water storage of deeper soil layers. In addition, proper cultivation practices and less frequent drip irrigation (longer intervals between successive rounds of irrigation) were also essential for conserving irrigation water and achieving higher yield.

  1. Increasing atmospheric [CO2] from glacial through future levels affects drought tolerance via impacts on leaves, xylem and their integrated function

    PubMed Central

    Medeiros, Juliana S.; Ward, Joy K.

    2013-01-01

    Summary Changes in atmospheric carbon dioxide concentration ([CO2]) affect plant carbon/water trade-offs, with implications for drought tolerance. Leaf-level studies often indicate that drought tolerance may increase with rising [CO2], but integrated leaf and xylem responses are not well understood in this respect. In addition, the influence of low [CO2] of the last glacial period on drought tolerance and xylem properties is not well understood.We investigated the interactive effects of a broad range of [CO2] and plant water potentials on leaf function, xylem structure and function and the integration of leaf and xylem function in Phaseolus vulgaris.Elevated [CO2] decreased vessel implosion strength, reduced conduit specific hydraulic conductance, and compromised leaf specific xylem hydraulic conductance under moderate drought. By contrast, at glacial [CO2], transpiration was maintained under moderate drought via greater conduit specific and leaf specific hydraulic conductance in association with increased vessel implosion strength.Our study involving the integration of leaf and xylem responses suggests that increasing [CO2] does not improve drought tolerance. We show that under glacial conditions changes in leaf and xylem properties could increase drought tolerance, while under future conditions greater productivity may only occur when higher water use can be accommodated. PMID:23668237

  2. Photomorphogenesis and photoassimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources

    NASA Technical Reports Server (NTRS)

    Britz, S. J.; Sager, J. C.; Knott, W. M. (Principal Investigator)

    1990-01-01

    The role of blue light in plant growth and development was investigated in soybean (Glycine max [L.] Merr. cv Williams) and sorghum (Sorghum bicolor [L.] Moench. cv Rio) grown under equal photosynthetic photon fluxes (approximately 500 micromoles per square meter per second) from broad spectrum daylight fluorescent or blue-deficient, narrow-band (589 nanometers) low pressure sodium (LPS) lamps. Between 14 and 18 days after sowing, it was possible to relate adaptations in photosynthesis and leaf growth to dry matter accumulation. Soybean development under LPS light was similar in several respects to that of shaded plants, consistent with an important role for blue light photoreceptors in regulation of growth response to irradiance. Thus, soybeans from LPS conditions partitioned relatively more growth to leaves and maintained higher average leaf area ratios (mean LAR) that compensated lower net assimilation rates (mean NAR). Relative growth rates were therefore comparable to plants from daylight fluorescent lamps. Reductions in mean NAR were matched by lower rates of net photosynthesis (A) on an area basis in the major photosynthetic source (first trifoliolate) leaf. Lower A in soybean resulted from reduced leaf dry matter per unit leaf area, but lower A under LPS conditions in sorghum correlated with leaf chlorosis and reduced total nitrogen (not observed in soybean). In spite of a lower A, mean NAR was larger in sorghum from LPS conditions, resulting in significantly greater relative growth rates (mean LAR was approximately equal for both light conditions). Leaf starch accumulation rate was higher for both species and starch content at the end of the dark period was elevated two- and three-fold for sorghum and soybean, respectively, under LPS conditions. Possible relations between starch accumulation, leaf export, and plant growth in response to spectral quality were considered.

  3. Fagus sylvatica L. provenances maintain different leaf metabolic profiles and functional response

    NASA Astrophysics Data System (ADS)

    Aranda, Ismael; Sánchez-Gómez, David; de Miguel, Marina; Mancha, Jose Antonio; Guevara, María Angeles; Cadahía, Estrella; Fernández de Simón, María Brígida

    2017-07-01

    Most temperate forest tree species will suffer important environmental changes as result of the climate change. Adaptiveness to local conditions could change at different sites in the future. In this context, the study of intra-specific variability is important to clarify the singularity of different local populations. Phenotypic differentiation between three beech provenances covering a wide latitudinal range (Spain/ES, Germany/DE and Sweden/SE), was studied in a greenhouse experiment. Non-target leaf metabolite profiles and ecophysiological response was analyzed in well-watered and water stressed seedlings. There was a provenance-specific pattern in the relative concentrations of some leaf metabolites regardless watering treatment. The DE and SE from the center and north of the distribution area of the species showed a clear differentiation from the ES provenance in the relative concentration of some metabolites. Thus the ES provenance from the south maintained larger relative concentration of some organic and amino acids (e.g. fumaric and succinic acids or valine and isoleucine), and in some secondary metabolites (e.g. kaempferol, caffeic and ferulic acids). The ecophysiological response to mild water stress was similar among the three provenances as a consequence of the moderate water stress applied to seedlings, although leaf N isotope composition (δ15N) and leaf C:N ratio were higher and lower respectively in DE than in the other two provenances. This would suggest potential differences in the capacity to uptake and post-process nitrogen according to provenance. An important focus of the study was to address for the first time inter-provenance leaf metabolic diversity in beech from a non-targeted metabolic profiling approach that allowed differentiation of the three studied provenances.

  4. Evaluation of drought response of two poplar clones (Populus x canadensis Monch 'I-214' and P. deltoides Marsh. 'Dvina') through high resolution analysis of stem growth.

    PubMed

    Giovannelli, Alessio; Deslauriers, Annie; Fragnelli, Giuseppe; Scaletti, Luciano; Castro, Gaetano; Rossi, Sergio; Crivellaro, Alan

    2007-01-01

    Different irrigation effects on stem radius variation (DeltaR) and maximum daily shrinkage (MDS) in Populus deltoides 'Dvina' and Populusxcanadensis 'I-214' were studied to assess differences in drought tolerance between clones. One-year-old trees growing in concrete tanks were submitted to two irrigation regimes (natural rainfall and irrigation) from 24 June to 10 August, and DeltaR was monitored by automatic point dendrometers. Independently of the irrigation regime, 'Dvina' showed a higher stem radial increment than 'I-214'. In both clones, the first response to changed soil water content was a significant increase in MDS, whilst DeltaR decreased about 20 d later when pre-dawn leaf water potential (Psipd) dropped below -0.4 MPa. However, they displayed different strategies to overcome drought. 'Dvina' maintained a positive DeltaR for longer than 'I-214', which had lower leaf Psipd and greater leaf abscission at the end of the drought period. After irrigation resumed, 'Dvina' showed a higher capacity to restore stem growth. 'I-214' was probably unable to recover secondary growth because of higher leaf abscission during drought stress and the production of newly expanded leaves during recovery. It is concluded that the larger radial growth of 'Dvina' derived from a better water use (carbon uptake versus water loss) than 'I-214' under limited water availability.

  5. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season

    PubMed Central

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726

  6. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna.

    PubMed

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2016-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a "safety valve" to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia , drought-deciduous Terminthia paniculata , and winter-deciduous Lannea coromandelica , to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50 leaf-stem ) was positive in P. weinmanniifolia and L. coromandelica , whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains the hydraulic safety of the more carbon-costly stems by sacrificing cheaper and more vulnerable leaves, while the evergreen species exhibits a hydraulic strategy of drought tolerance with strong stomatal regulation. In contrast, the drought-deciduous species lacks vulnerability segmentation and sheds leaves at the expense of top shoots during peak drought. This study demonstrates that even sympatric tree species that differ in leaf phenology can exhibit divergent adaptive hydraulic safety strategies.

  7. Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape

    PubMed Central

    Liu, Tao; Ren, Tao; White, Philip J; Cong, Rihuan

    2018-01-01

    Abstract Storage nitrogen (N) is a buffer pool for maintaining leaf growth and synthesizing photosynthetic proteins, but the dynamics of its forms within the life cycle of a single leaf and how it is influenced by N supply remain poorly understood. A field experiment was conducted to estimate the influence of N supply on leaf growth, photosynthetic characteristics, and N partitioning inthe sixth leaf of winter oilseed rape (Brassica napus L.) from emergence through senescence. Storage N content (Nstore) decreased gradually along with leaf expansion. The relative growth rate based on leaf area (RGRa) was positively correlated with Nstore during leaf expansion. The water-soluble protein form of storage N was the main N source for leaf expansion. After the leaves fully expanded, the net photosynthetic rate (An) followed a linear–plateau response to Nstore, with An stabilizing at the highest value above a threshold and declining below the threshold. Non-protein and SDS (detergent)-soluble protein forms of storage N were the main N sources for maintaining photosynthesis. For the leaf N economy, storage N is used for co-ordinating leaf expansion and photosynthetic capacity. N supply can improve Nstore, thereby promoting leaf growth and biomass. PMID:29669007

  8. Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress.

    PubMed

    Kazachkova, Yana; Batushansky, Albert; Cisneros, Aroldo; Tel-Zur, Noemi; Fait, Aaron; Barak, Simon

    2013-07-01

    Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.

  9. The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress.

    PubMed

    Hein, Jordan A; Sherrard, Mark E; Manfredi, Kirk P; Abebe, Tilahun

    2016-11-09

    Photosynthetic organs of the cereal spike (ear) provide assimilate for grain filling, but their response to drought is poorly understood. In this study, we characterized the drought response of individual organs of the barley spike (awn, lemma, and palea) and compared them with a vegetative organ (fifth leaf). Understanding differences in physiological and metabolic responses between the leaf and spike organs during drought can help us develop high yielding cultivars for environments where terminal drought is prevalent. We exposed barley plants to drought by withholding water for 4 days at the grain filling stage and compared changes in: (1) relative water content (RWC), (2) osmotic potential (Ψ s ), (3) osmotic adjustment (OA), (4) gas exchange, and (5) metabolite content between organs. Drought reduced RWC and Ψ s in all four organs, but the decrease in RWC was greater and there was a smaller change in Ψ s in the fifth leaf than the spike organs. We detected evidence of OA in the awn, lemma, and palea, but not in the fifth leaf. Rates of gas exchange declined more rapidly in the fifth leaf than awn during drought. We identified 18 metabolites but, only ten metabolites accumulated significantly during drought in one or more organs. Among these, proline accumulated in all organs during drought while accumulation of the other metabolites varied between organs. This may suggest that each organ in the same plant uses a different set of osmolytes for drought resistance. Our results suggest that photosynthetic organs of the barley spike maintain higher water content, greater osmotic adjustment, and higher rates of gas exchange than the leaf during drought.

  10. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-01-01

    Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  11. Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin.

    PubMed

    Ribeiro, Aurislaine S; Ribeiro, Mariana S; Bertolucci, Suzan K V; Bittencourt, Wanderley J M; Carvalho, Alexandre A DE; Tostes, Wesley N; Alves, Eduardo; Pinto, José E B P

    2018-04-16

    The purpose of this investigation was to determine the influence of colored shade nets on the growth, anatomy and essential oil content, yield and chemical composition of Pogostemon cablin. The plants were cultivated under full sunlight, black, blue and red nets. The harvesting was performed 5 months after planting and it was followed by the analysis of plant growth parameters, leaf anatomy, essential oil content, yield and chemical composition. The plants grown under red net have produced more leaf, shoot, total dry weight and leaf area. Plants cultivated under colored nets showed differences in morphological features. Plants maintained under red net had a higher leaf blade thickness and polar and equatorial diameter of the stomata ratio. Additionally, higher yield of essential oil in the leaves was observed under red and blue colored shade net. The essential oil of the plants grown under red net showed the highest relative percentage of patchoulol (66.84%). Therefore, it is possible using colored shade nets to manipulate P. cablin growth, as well as its essential oil production with several chemical compositions. The analyses of principal components allowed observing that pogostol has negative correlation with α-guaiene and α-bulnesene. There was difference in total dry weight and patchoulol content when the patchouli is cultured under the red colored shade nets.

  12. Effects of functionally asexual reproduction on quantitative genetic variation in the evening primroses (Oenothera, Onagraceae).

    PubMed

    Godfrey, Ryan M; Johnson, Marc T J

    2014-11-01

    It has long been predicted that a loss of sexual reproduction leads to decreased heritable variation within populations and increased differentiation between populations. Despite an abundance of theory, there are few empirical tests of how sex affects genetic variation in phenotypic traits, especially for plants. Here we test whether repeated losses of two critical components of sex (recombination and segregation) in the evening primroses (Oenothera L., Onagraceae) affect quantitative genetic variation within and between populations. We sampled multiple genetic families from 3-5 populations from each of eight Oenothera species, which represented four independent transitions between sexual reproduction and a functionally asexual genetic system called "permanent translocation heterozygosity." We used quantitative genetics methods to partition genetic variation within and between populations for eight plant traits related to growth, leaf physiology, flowering, and resistance to herbivores. Heritability was, on average, 74% higher in sexual Oenothera populations than in functionally asexual populations, with plant growth rate, specific leaf area, and the percentage of leaf water content showing the strongest differences. By contrast, genetic differentiation among populations was 2.8× higher in functionally asexual vs. sexual Oenothera species. This difference was particularly strong for specific leaf area. Sexual populations tended to exhibit higher genetic correlations among traits, but this difference was weakly supported. These results support the prediction that sexual reproduction maintains higher genetic variation within populations, which may facilitate adaptive evolution. We also found partial support for the prediction that a loss of sex leads to greater population differentiation, which may elevate speciation rates. © 2014 Botanical Society of America, Inc.

  13. Seasonal variations in photosystem I compared with photosystem II of three alpine evergreen broad-leaf tree species.

    PubMed

    Huang, Wei; Yang, Ying-Jie; Hu, Hong; Zhang, Shi-Bao

    2016-12-01

    Low temperature associated with high light can induce photoinhibition of photosystem I (PSI) and photosystem II (PSII). However, the photosynthetic electron flow and specific photoprotective responses in alpine evergreen broad-leaf plants in winter is unclear. We analyzed seasonal changes in PSI and PSII activities, and energy quenching in PSI and PSII in three alpine broad-leaf tree species, Quercus guyavifolia (Fagaceae), Rhododendron decorum (Ericaceae), Euonymus tingens (Celastraceae). In winter, PSII activity remained stable in Q. guyavifolia but decreased significantly in R. decorum and E. tingens. Q. guyavifolia showed much higher capacities of cyclic electron flow (CEF), water-water cycle (WWC), non-photochemical quenching (NPQ) than R. decorum and E. tingens in winter. These results indicated that in alpine evergreen broad-leaf tree species the PSII activity in winter was closely related to these photoprotective mechanisms. Interestingly, unlike PSII, PSI activity was maintained stable in winter in the three species. Meanwhile, photosynthetic electron flow from PSII to PSI (ETRII) was much higher in Q. guyavifolia, suggesting that the mechanisms protecting PSI activity against photoinhibition in winter differed among the three species. A high level of CEF contributed the stability of PSI activity in Q. guyavifolia. By comparison, R. decorum and E. tingens prevented PSI photoinhibition through depression of electron transport to PSI. Taking together, CEF, WWC and NPQ played important roles in coping with excess light energy in winter for alpine evergreen broad-leaf tree species. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Leaf gas exchange and nutrient use efficiency help explain the distribution of two Neotropical mangroves under contrasting flooding and salinity

    USGS Publications Warehouse

    Cardona-Olarte, Pablo; Krauss, Ken W.; Twilley, Robert R.

    2013-01-01

    Rhizophora mangle and Laguncularia racemosa co-occur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation (A), stomatal conductance (gw), intercellular CO2 concentration (Ci), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and stomatal conductance and gw, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for assimilation at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  15. Bulk elastic moduli and solute potentials in leaves of freshwater, coastal and marine hydrophytes. Are marine plants more rigid?

    PubMed Central

    Touchette, Brant W.; Marcus, Sarah E.; Adams, Emily C.

    2014-01-01

    Bulk modulus of elasticity (ɛ), depicting the flexibility of plant tissues, is recognized as an important component in maintaining internal water balance. Elevated ɛ and comparatively low osmotic potential (Ψπ) may work in concert to effectively maintain vital cellular water content. This concept, termed the ‘cell water conservation hypothesis’, may foster tolerance for lower soil-water potentials in plants while minimizing cell dehydration and shrinkage. Therefore, the accumulation of solutes in marine plants, causing decreases in Ψπ, play an important role in plant–water relations and likely works with higher ɛ to achieve favourable cell volumes. While it is generally held that plants residing in marine systems have higher leaf tissue ɛ, to our knowledge no study has specifically addressed this notion in aquatic and wetland plants residing in marine and freshwater systems. Therefore, we compared ɛ and Ψπ in leaf tissues of 38 freshwater, coastal and marine plant species using data collected in our laboratory, with additional values from the literature. Overall, 8 of the 10 highest ɛ values were observed in marine plants, and 20 of the lowest 25 ɛ values were recorded in freshwater plants. As expected, marine plants often had lower Ψπ, wherein the majority of marine plants were below −1.0 MPa and the majority of freshwater plants were above −1.0 MPa. While there were no differences among habitat type and symplastic water content (θsym), we did observe higher θsym in shrubs when compared with graminoids, and believe that the comparatively low θsym observed in aquatic grasses may be attributed to their tendency to develop aerenchyma that hold apoplastic water. These results, with few exceptions, support the premise that leaf tissues of plants acclimated to marine environments tend to have higher ɛ and lower Ψπ, and agree with the general tenets of the cell water conservation hypothesis. PMID:24876296

  16. Interaction specificity between leaf-cutting ants and vertically transmitted Pseudonocardia bacteria.

    PubMed

    Andersen, Sandra B; Yek, Sze Huei; Nash, David R; Boomsma, Jacobus J

    2015-02-25

    The obligate mutualism between fungus-growing ants and microbial symbionts offers excellent opportunities to study the specificity and stability of multi-species interactions. In addition to cultivating fungus gardens, these ants have domesticated actinomycete bacteria to defend gardens against the fungal parasite Escovopsis and possibly other pathogens. Panamanian Acromyrmex echinatior leaf-cutting ants primarily associate with actinomycetes of the genus Pseudonocardia. Colonies are inoculated with one of two vertically transmitted phylotypes (Ps1 or Ps2), and maintain the same phylotype over their lifetime. We performed a cross-fostering experiment to test whether co-adaptations between ants and bacterial phylotypes have evolved, and how this affects bacterial growth and ant prophylactic behavior after infection with Escovopsis. We show that Pseudonocardia readily colonized ants irrespective of their colony of origin, but that the Ps2 phylotype, which was previously shown to be better able to maintain its monocultural integrity after workers became foragers than Ps1, reached a higher final cover when grown on its native host than on alternative hosts. The frequencies of major grooming and weeding behaviors co-varied with symbiont/host combinations, showing that ant behavior also was affected when cuticular actinomycete phylotypes were swapped. These results show that the interactions between leaf-cutting ants and Pseudonocardia bear signatures of mutual co-adaptation within a single ant population.

  17. [Adsorption Capacity of the Air Particulate Matter in Urban Landscape Plants in Different Polluted Regions of Beijing].

    PubMed

    Zhang, Wei-kang; Wang, Bing; Niu, Xiang

    2015-07-01

    Urban landscape plants, as one of the important factors of the urban ecosystem, play an important role in stagnating airborne particulates and purifying urban atmospheric environment. In this article, six kinds of common garden plants were studied, and aerosol generator (QRJZFSQ-I) was used to measure the ability of their leaves to stagnate atmospheric particulates (TSP and PM2.5) in different polluted regions. Meanwhile, environmental scanning electron microscope was used to observe changes in the leaf structure of the tested tree species. The results showed: (1)Among the tested tree species, the ability of coniferous species to stagnate atmospheric particulates was higher than that of broad-leaved species per unit leaf area. Pinus tabuliformis stagnated the highest volume of (3. 89± 0. 026) µg . m-2, followed by Pinus bungeana of (2. 82 ± 0. 392) µg . cm-2, and Populus tomentosa stagnated the minimum of (2. 00 ± 0. 118) µg . cm-2; (2) Through observing the leaf microstructure morphology, coniferous species were found to have tightly packed stomas, stoma density and surface roughness higher than those of broad-leaved species, and they could also secrete oil; (3) In different polluted regions, the leaves of the same tree species showed significant difference in stagnating TSP. Per unit leaf area, the tree species leaves situated around the 5th Ring Road had higher ability to absorb TSP than the tree species leaves at Botanical Garden, while their abilities to absorb PM2.5 showed no significant difference; (4) In different polluted regions, significantly adaptive changes were found in leaf structure. Comparing to the region with light pollution, the outer epidermal cells of the plant leaves in region with heavy pollution shrank, and the roughness of the leaf skin textures as well as the stomatal frequency and villous length increased. In spite of the significant changes in plant leaves exposed to the heavy pollution, these plants could still maintain normal and healthy growth.

  18. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.

    PubMed

    Villagra, Mariana; Campanello, Paula I; Montti, Lia; Goldstein, Guillermo

    2013-03-01

    A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments were maintained regardless of soil nutrient status.

  19. Inflorescence photosynthetic contribution to fitness releases Arabidopsis thaliana plants from trade-off constraints on early flowering.

    PubMed

    Gnan, Sebastian; Marsh, Tom; Kover, Paula X

    2017-01-01

    Leaves are thought to be the primary carbon source for reproduction in plants, so a positive relationship between vegetative size and reproductive output is expected, establishing a trade-off between time to reproduction and reproductive output. A common response to higher temperatures due to climate changes is the induction of earlier transition into reproduction. Thus, in annual plants, earlier transition into flowering can potentially constrain plant size and reduce seed production. However, trade-offs between early reproduction and fitness are not always observed, suggesting mechanisms to escape the constraints of early flowering do exist. Here, we test whether inflorescence photosynthesis contribution to the reproductive output of Arabidopsis thaliana can offset the cost of early reproduction. We followed the development, growth rate and fitness of 15 accessions, and removed all rosette leaves at flowering (prior to the completion of inflorescence development or any fruit production) in half of the plants to determine the ability of inflorescences to maintain fitness in the absence of leaves. Although leaf removal significantly reduced fruit number, seed weight and plant height, even the most severely impacted accessions maintained 35% of their fitness with the inflorescence as the sole photosynthetic organ; and some accessions experienced no reduction in fitness. Differences between accessions in their ability to maintain fitness after leaf removal is best explained by earlier flowering time and the ability to maintain as many or more branches after leaf removal as in the control treatment. Although earlier flowering does constrain plant vegetative size, we found that inflorescence photosynthesis can significantly contribute to seed production, explaining why early flowering plants can maintain high fitness despite a reduction in vegetative size. Thus, plants can be released from the usually assumed trade-offs associated with earlier reproduction, and selection on inflorescence traits can mediate the impact of climate change on phenology.

  20. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors

    PubMed Central

    Li, T.; Heuvelink, E.; Dueck, T. A.; Janse, J.; Gort, G.; Marcelis, L. F. M.

    2014-01-01

    Background and Aims Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Methods Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. Key Results The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when global irradiance was high. Conclusions Diffuse light enhanced crop photosynthesis. A more uniform horizontal PPFD distribution played the most important role in this enhancement, and a more uniform vertical PPFD distribution and higher leaf photosynthetic capacity contributed more to the enhancement of crop photosynthesis than did higher values of LAI. PMID:24782436

  1. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis

    PubMed Central

    Brouwer, Bastiaan; Gardeström, Per; Keech, Olivier

    2014-01-01

    Phytochrome is thought to control the induction of leaf senescence directly, however, the signalling and molecular mechanisms remain unclear. In the present study, an ecophysiological approach was used to establish a functional connection between phytochrome signalling and the physiological processes underlying the induction of leaf senescence in response to shade. With shade it is important to distinguish between complete and partial shading, during which either the whole or only a part of the plant is shaded, respectively. It is first shown here that, while PHYB is required to maintain chlorophyll content in a completely shaded plant, only PHYA is involved in maintaining the leaf chlorophyll content in response to partial plant shading. Second, it is shown that leaf yellowing associated with strong partial shading in phyA-mutant plants actually correlates to a decreased biosynthesis of chlorophyll rather than to an increase of its degradation. Third, it is shown that the physiological impact of this decreased biosynthesis of chlorophyll in strongly shaded phyA-mutant leaves is accompanied by a decreased capacity to adjust the Light Compensation Point. However, the increased leaf yellowing in phyA-mutant plants is not accompanied by an increase of senescence-specific molecular markers, which argues against a direct role of PHYA in inducing leaf senescence in response to partial shade. In conclusion, it is proposed that PHYA, but not PHYB, is essential for fine-tuning the chlorophyll biosynthetic pathway in response to partial shading. In turn, this mechanism allows the shaded leaf to adjust its photosynthetic machinery to very low irradiances, thus maintaining a positive carbon balance and repressing the induction of leaf senescence, which can occur under prolonged periods of shade. PMID:24604733

  2. Physiological Plasticity Is Important for Maintaining Sugarcane Growth under Water Deficit

    PubMed Central

    Marchiori, Paulo E. R.; Machado, Eduardo C.; Sales, Cristina R. G.; Espinoza-Núñez, Erick; Magalhães Filho, José R.; Souza, Gustavo M.; Pires, Regina C. M.; Ribeiro, Rafael V.

    2017-01-01

    The water availability at early phenological stages is critical for crop establishment and sugarcane varieties show differential performance under drought. Herein, we evaluated the relative importance of morphological and physiological plasticity of young sugarcane plants grown under water deficit, testing the hypothesis that high phenotypic plasticity is associated with drought tolerance. IACSP95-5000 is a high yielding genotype and IACSP94-2094 has good performance under water limiting environments. Plants were grown in rhizotrons for 35 days under three water availabilities: high (soil water matric potential [Ψm] higher than -20 kPa); intermediate (Ψm reached -65 and -90 kPa at the end of experimental period) and low (Ψm reached values lower than -150 kPa). Our data revealed that morphological and physiological responses of sugarcane to drought are dependent on genotype and intensity of water deficit. In general, IACSP95-5000 showed higher physiological plasticity given by leaf gas exchange and photochemical traits, whereas IACSP94-2094 showed higher morphological plasticity determined by changes in leaf area (LA) and specific LA. As IACSP94-2094 accumulated less biomass than IACSP95-5000 under varying water availability, it is suggested that high morphological plasticity does not always represent an effective advantage to maintain plant growth under water deficit. In addition, our results revealed that sugarcane varieties face water deficit using distinct strategies based on physiological or morphological changes. When the effectiveness of those changes in maintaining plant growth under low water availability is taken into account, our results indicate that the physiological plasticity is more important than the morphological one in young sugarcane plants. PMID:29326744

  3. Bioavailability of Bioactive Molecules from Olive Leaf Extracts and its Functional Value.

    PubMed

    Martín-Vertedor, Daniel; Garrido, María; Pariente, José Antonio; Espino, Javier; Delgado-Adámez, Jonathan

    2016-07-01

    Olive leaves are an important low-cost source of bioactive compounds. The present study aimed to examine the effect of in vitro digestibility of an olive leaf aqueous extract so as to prove the availability of its phenolic compounds as well as its antioxidant, antimicrobial, and anticancer activity after a simulated digestion process. The total phenolic content was significantly higher in the pure lyophilized extract. Phenolic compounds, however, decreased by 60% and 90% in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), respectively. Regarding antioxidant activity, it was reduced by 10% and 50% after gastric and intestinal digestion, respectively; despite this fact, high antioxidant capacity was found in both SGF and SIF. Moreover, the olive leaf extract showed an unusual combined antimicrobial action at low concentration, which suggested their great potential as nutraceuticals, particularly as a source of phenolic compounds. Finally, olive leaf extracts produced a general dose-dependent cytotoxic effect against U937 cells. To sum up, these findings suggest that the olive leaf aqueous extract maintains its beneficial properties after a simulated digestion process, and therefore its regular consumption could be helpful in the management and the prevention of oxidative stress-related chronic disease, bacterial infection, or even cancer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Developmental Expression of Violaxanthin De-Epoxidase in Leaves of Tobacco Growing under High and Low Light1

    PubMed Central

    Bugos, Robert C.; Chang, Sue-Hwei; Yamamoto, Harry Y.

    1999-01-01

    Violaxanthin de-epoxidase (VDE) is a lumen-localized enzyme that catalyzes the de-epoxidation of violaxanthin in the thylakoid membrane upon formation of a transthylakoid pH gradient. We investigated the developmental expression of VDE in leaves of mature tobacco (Nicotiana tabacum) plants grown under high-light conditions (in the field) and low-light conditions (in a growth chamber). The difference in light conditions was evident by the increased pool size (violaxanthin + antheraxanthin + zeaxanthin, VAZ) throughout leaf development in field-grown plants. VDE activity based on chlorophyll or leaf area was low in the youngest leaves, with the levels increasing with increasing leaf age in both high- and low-light-grown plants. However, in high-light-grown plants, the younger leaves in early leaf expansion showed a more rapid increase in VDE activity and maintained higher levels of VDE transcript in more leaves, indicating that high light may induce greater levels of VDE. VDE transcript levels decreased substantially in leaves of mid-leaf expansion, while the levels of enzyme continued to increase, suggesting that the VDE enzyme does not turn over rapidly. The level of VDE changed in an inverse, nonlinear relationship with respect to the VAZ pool, suggesting that enzyme levels could be indirectly regulated by the VAZ pool. PMID:10482676

  5. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light.

    PubMed

    Bugos, R C; Chang, S H; Yamamoto, H Y

    1999-09-01

    Violaxanthin de-epoxidase (VDE) is a lumen-localized enzyme that catalyzes the de-epoxidation of violaxanthin in the thylakoid membrane upon formation of a transthylakoid pH gradient. We investigated the developmental expression of VDE in leaves of mature tobacco (Nicotiana tabacum) plants grown under high-light conditions (in the field) and low-light conditions (in a growth chamber). The difference in light conditions was evident by the increased pool size (violaxanthin + antheraxanthin + zeaxanthin, VAZ) throughout leaf development in field-grown plants. VDE activity based on chlorophyll or leaf area was low in the youngest leaves, with the levels increasing with increasing leaf age in both high- and low-light-grown plants. However, in high-light-grown plants, the younger leaves in early leaf expansion showed a more rapid increase in VDE activity and maintained higher levels of VDE transcript in more leaves, indicating that high light may induce greater levels of VDE. VDE transcript levels decreased substantially in leaves of mid-leaf expansion, while the levels of enzyme continued to increase, suggesting that the VDE enzyme does not turn over rapidly. The level of VDE changed in an inverse, nonlinear relationship with respect to the VAZ pool, suggesting that enzyme levels could be indirectly regulated by the VAZ pool.

  6. How Does Temperature Impact Leaf Size and Shape in Four Woody Dicot Species? Testing the Assumptions of Leaf Physiognomy-Climate Models

    NASA Astrophysics Data System (ADS)

    McKee, M.; Royer, D. L.

    2017-12-01

    The physiognomy (size and shape) of fossilized leaves has been used to reconstruct the mean annual temperature of ancient environments. Colder temperatures often select for larger and more abundant leaf teeth—serrated edges on leaf margins—as well as a greater degree of leaf dissection. However, to be able to accurately predict paleotemperature from the morphology of fossilized leaves, leaves must be able to react quickly and in a predictable manner to changes in temperature. We examined the extent to which temperature affects leaf morphology in four tree species: Carpinus caroliniana, Acer negundo, Ilex opaca, and Ostrya virginiana. Saplings of these species were grown in two growth cabinets under contrasting temperatures (17 and 25 °C). Compared to the cool treatment, in the warm treatment Carpinus caroliniana leaves had significantly fewer leaf teeth and a lower ratio of total number of leaf teeth to internal perimeter; and Acer negundo leaves had a significantly lower feret diameter ratio (a measure of leaf dissection). In addition, a two-way ANOVA tested the influence of temperature and species on leaf physiognomy. This analysis revealed that all plants, regardless of species, tended to develop more highly dissected leaves with more leaf teeth in the cool treatment. Because the cabinets maintained equivalent moisture, humidity, and CO2 concentration between the two treatments, these results demonstrate that these species could rapidly adapt to changes in temperature. However, not all of the species reacted identically to temperature changes. For example, Acer negundo, Carpinus caroliniana, and Ostrya virginiana all had a higher number of total teeth in the cool treatment compared to the warm treatment, but the opposite was true for Ilex opaca. Our work questions a fundamental assumption common to all models predicting paleotemperature from the physiognomy of fossilized leaves: a given climate will inevitably select for the same leaf physiognomy, regardless of species composition. To more accurately compensate for differences among species, models should incorporate phylogenetic information.

  7. Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings.

    PubMed

    Eyles, Alieta; Pinkard, Elizabeth A; Davies, Noel W; Corkrey, Ross; Churchill, Keith; O'Grady, Anthony P; Sands, Peter; Mohammed, Caroline

    2013-04-01

    Increases in photosynthetic capacity (A1500) after defoliation have been attributed to changes in leaf-level biochemistry, water, and/or nutrient status. The hypothesis that transient photosynthetic responses to partial defoliation are regulated by whole-plant (e.g. source-sink relationships or changes in hydraulic conductance) rather than leaf-level mechanisms is tested here. Temporal variation in leaf-level gas exchange, chemistry, whole-plant soil-to-leaf hydraulic conductance (KP), and aboveground biomass partitioning were determined to evaluate mechanisms responsible for increases in A1500 of Eucalyptus globulus L. potted saplings. A1500 increased in response to debudding (B), partial defoliation (D), and combined B&D treatments by up to 36% at 5 weeks after treatment. Changes in leaf-level factors partly explained increases in A1500 of B and B&D treatments but not for D treatment. By week 5, saplings in B, B&D, and D treatments had similar leaf-specific KP to control trees by maintaining lower midday water potentials and higher transpiration rate per leaf area. Whole-plant source:sink ratios correlated strongly with A1500. Further, unlike KP, temporal changes in source:sink ratios tracked well with those observed for A1500. The results indicate that increases in A1500 after partial defoliation treatments were largely driven by an increased demand for assimilate by developing sinks rather than improvements in whole-plant water relations and changes in leaf-level factors. Three carbohydrates, galactional, stachyose, and, to a lesser extent, raffinose, correlated strongly with photosynthetic capacity, indicating that these sugars may function as signalling molecules in the regulation of longer term defoliation-induced gas exchange responses.

  8. Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings

    PubMed Central

    Eyles, Alieta

    2013-01-01

    Increases in photosynthetic capacity (A1500) after defoliation have been attributed to changes in leaf-level biochemistry, water, and/or nutrient status. The hypothesis that transient photosynthetic responses to partial defoliation are regulated by whole-plant (e.g. source–sink relationships or changes in hydraulic conductance) rather than leaf-level mechanisms is tested here. Temporal variation in leaf-level gas exchange, chemistry, whole-plant soil-to-leaf hydraulic conductance (KP), and aboveground biomass partitioning were determined to evaluate mechanisms responsible for increases in A1500 of Eucalyptus globulus L. potted saplings. A1500 increased in response to debudding (B), partial defoliation (D), and combined B&D treatments by up to 36% at 5 weeks after treatment. Changes in leaf-level factors partly explained increases in A1500 of B and B&D treatments but not for D treatment. By week 5, saplings in B, B&D, and D treatments had similar leaf-specific KP to control trees by maintaining lower midday water potentials and higher transpiration rate per leaf area. Whole-plant source:sink ratios correlated strongly with A1500. Further, unlike KP, temporal changes in source:sink ratios tracked well with those observed for A1500. The results indicate that increases in A1500 after partial defoliation treatments were largely driven by an increased demand for assimilate by developing sinks rather than improvements in whole-plant water relations and changes in leaf-level factors. Three carbohydrates, galactional, stachyose, and, to a lesser extent, raffinose, correlated strongly with photosynthetic capacity, indicating that these sugars may function as signalling molecules in the regulation of longer term defoliation-induced gas exchange responses. PMID:23382548

  9. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance.

    PubMed

    Costa E Silva, F; Shvaleva, A; Broetto, F; Ortuño, M F; Rodrigues, M L; Almeida, M H; Chaves, M M; Pereira, J S

    2009-01-01

    We tested the hypothesis that Eucalyptus globulus Labill. genotypes that are more resistant to dry environments might also exhibit higher cold tolerances than drought-sensitive plants. The effect of low temperatures was evaluated in acclimated and unacclimated ramets of a drought-resistant clone (CN5) and a drought-sensitive clone (ST51) of E. globulus. We studied the plants' response via leaf gas exchanges, leaf water and osmotic potentials, concentrations of soluble sugars, several antioxidant enzymes and leaf electrolyte leakage. Progressively lowering air temperatures (from 24/16 to 10/-2 degrees C, day/night) led to acclimation of both clones. Acclimated ramets exhibited higher photosynthetic rates, stomatal conductances and lower membrane relative injuries when compared to unacclimated ramets. Moreover, low temperatures led to significant increases of soluble sugars and antioxidant enzymes activity (glutathione reductase, ascorbate peroxidase and superoxide dismutases) of both clones in comparison to plants grown at control temperature (24/16 degrees C). On the other hand, none of the clones, either acclimated or not, exhibited signs of photoinhibition under low temperatures and moderate light. The main differences in the responses to low temperatures between the two clones resulted mainly from differences in carbon metabolism, including a higher accumulation of soluble sugars in the drought-resistant clone CN5 as well as a higher capacity for osmotic regulation, as compared to the drought-sensitive clone ST51. Although membrane injury data suggested that both clones had the same inherent freezing tolerance before and after cold acclimation, the results also support the hypothesis that the drought-resistant clone had a greater cold tolerance at intermediate levels of acclimation than the drought-sensitive clone. A higher capacity to acclimate in a short period can allow a clone to maintain an undamaged leaf surface area along sudden frost events, increasing growth capacity. Moreover, it can enhance survival chances in frost-prone sites expanding the plantation range with more adaptive clones.

  10. Ephemeroptera, Plecoptera and Trichoptera (Insecta) Abundance, Diversity and Role in Leaf Litter Breakdown in Tropical Headwater River

    PubMed Central

    Ab Hamid, Suhaila; Md Rawi, Che Salmah

    2017-01-01

    Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT. PMID:28890763

  11. Ephemeroptera, Plecoptera and Trichoptera (Insecta) Abundance, Diversity and Role in Leaf Litter Breakdown in Tropical Headwater River.

    PubMed

    Ab Hamid, Suhaila; Md Rawi, Che Salmah

    2017-07-01

    Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT.

  12. Carbohydrate Partitioning and the Capacity of Apparent Nitrogen Fixation of Soybean Plants Grown Outdoors

    PubMed Central

    Millhollon, Eddie P.; Williams, Larry E.

    1986-01-01

    Patterns of leaf carbohydrate partitioning and nodule activity in soybean plants grown under natural conditions and the irradiance level required to produce sufficient carbohydrate to obtain maximum rates of apparent N2-fixation (acetylene reduction) were measured. Soybean plants, grown outdoors, maintained constant levels of leaf soluble sugars while leaf starch pools varied diurnally. When root temperature was kept at 25°C and shoot temperature was allowed to vary with ambient temperature, the plants maintained constant rates of apparent N2-fixation and root+nodule respiration. Results from a second experiment, in which the entire plant was kept at 25°C, were similar to those of the first experiment. Shoot carbon exchange rate of plants from the second experiment was light saturated at photosynthetic photon flux densities between 400 and 600 micromoles per square meter per second. When plants were subjected to an extended 40-hour dark period to deplete carbohydrate reserves, apparent N2-fixation was unaffected during the first 10 hours of darkness, decreased rapidly between 10 and 16 hours, and plateaued at one-third the initial level thereafter. After the extended dark period, plants were exposed to photosynthetic photon flux density from 200 to 1000 micromoles per square meter per second for 10 hours. Photosynthetic photon flux densities of 200 micromoles per square meter per second and greater resulted in maximum leaf soluble sugar content and nodule activity. Leaf starch content increased with irradiance levels up to 600 micromoles per square meter per second with no further increase at higher irradiance levels. Results presented here indicate that maximum nodule activity occurs at irradiance levels that do not saturate the plant's photosynthetic apparatus. This response would allow for maximum N2-fixation to occur in a nodulated legume during periods of inclement weather. PMID:16664789

  13. Decomposition of oak leaf litter and millipede faecal pellets in soil under temperate mixed oak forest

    NASA Astrophysics Data System (ADS)

    Tajovský, Karel; Šimek, Miloslav; Háněl, Ladislav; Šantrůčková, Hana; Frouz, Jan

    2015-04-01

    The millipedes Glomeris hexasticha (Diplopoda, Glomerida) were maintained under laboratory conditions and fed on oak leaf litter collected from a mixed oak forest (Abieto-Quercetum) in South Bohemia, Czech Republic. Every fourth day litter was changed and produced faecal pellets were separated and afterwards analysed. Content of organic carbon and C:N ratio lowered in faecal pellets as compared with consumed litter. Changes in content of chemical elements (P, K, Ca, Mg, Na) were recognised as those characteristic for the first stage of degradation of plant material. Samples of faecal pellets and oak leaf litter were then exposed in mesh bags between the F and H layers of forest soil for up to one year, subsequently harvested and analysed. A higher rate of decomposition of exposed litter than that of faecal pellets was found during the first two weeks. After 1-year exposure, the weight of litter was reduced to 51%, while that of pellets to 58% only, although the observed activity of present biotic components (algae, protozoans, nematodes; CO2 production, nitrogenase activity) in faecal pellets was higher as compared with litter. Different micro-morphological changes were observed in exposed litter and in pellets although these materials originated from the same initial sources. Comparing to intact leaf litter, another structural and functional processes occurred in pellets due to the fragmentation of plant material by millipedes. Both laboratory and field experiments showed that the millipede faecal pellets are not only a focal point of biodegradation activity in upper soil layers, but also confirmed that millipede feces undergo a slower decomposition than original leaf litter.

  14. Leaf removal by sesarmid crabs in Bangrong mangrove forest, Phuket, Thailand; with emphasis on the feeding ecology of Neoepisesarma versicolor

    NASA Astrophysics Data System (ADS)

    Thongtham, Nalinee; Kristensen, Erik; Puangprasan, Som-Ying

    2008-12-01

    Field measurements on leaf removal by populations of sesarmid crabs at different locations in the Bangrong mangrove forest, Phuket, Thailand, indicated that crabs on average can remove 87% of the daily leaf litter fall by ingestion or burial. The removal rate is correlated positively with the number of crab burrows and negatively with tidal inundation time. The results from the field were supplemented with observations on the behavior of Neoepisesarma versicolor in laboratory microcosms and a mangrove mesocosm. N. versicolor feeds primarily at night and total time spent feeding was up to an order of magnitude higher in the artificial microcosms than under simulated in situ conditions in the mesocosm. Most of the time during both day and night was spent resting near the entrance or inside burrows. N. versicolor mainly feeds on mangrove leaves and scraps of food material from the sediment surface. This is supported by examinations of stomach content, which showed that 62% is composed of higher plant material and 38% of detritus and mineral particles from the sediment. The nutritive value of leaves and detritus is insufficient to maintain crab growth. Sesarmid crabs may instead obtain the needed nutrients by occasional consumption of nitrogen-rich animal tissues, such as carcasses of fish and crustaceans, as indicated by the presence of animal remains in the stomach and the willingness of crabs to consume fish meat. Laboratory experiments on leaf consumption and leaf preferences of N. versicolor indicate that they preferentially feed on brown leaves, if available, followed by green and yellow leaves. If all species of sesarmid crabs in the Bangrong mangrove forest consume leaves at the same rate as N. versicolor, they could potentially ingest 52% of the total litter fall.

  15. Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod

    USGS Publications Warehouse

    Krauss, Ken W.; Twilley, Robert R.; Doyle, Thomas W.; Gardiner, Emile S.

    2006-01-01

    We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation–light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings..

  16. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Treesearch

    Steven L. Voelker; J. Renee Brooks; Frederick C. Meinzer; Rebecca Anderson; Martin K.-F. Bader; Giovanna Battipaglia; Katie M. Becklin; David Beerling; Didier Bert; Julio L. Betancourt; Todd E. Dawson; Jean-Christophe Domec; Richard P. Guyette; Christian K??rner; Steven W. Leavitt; Sune Linder; John D. Marshall; Manuel Mildner; Jerome Ogee; Irina Panyushkina; Heather J. Plumpton; Kurt S. Pregitzer; Matthias Saurer; Andrew R. Smith; Rolf T. W. Siegwolf; Michael C. Stambaugh; Alan F. Talhelm; Jacques C. Tardif; Peter K. Van de Water; Joy K. Ward; Lisa Wingate

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO...

  17. Physiological and morphological responses to permanent and intermittent waterlogging in seedlings of four evergreen trees of temperate swamp forests.

    PubMed

    Zúñiga-Feest, Alejandra; Bustos-Salazar, Angela; Alves, Fernanda; Martinez, Vanessa; Smith-Ramírez, Cecilia

    2017-06-01

    Waterlogging decreases a plant's metabolism, stomatal conductance (gs) and photosynthetic rate (A); however, some evergreen species show acclimation to waterlogging. By studying both the physiological and morphological responses to waterlogging, the objective of this study was to assess the acclimation capacity of four swamp forest species that reside in different microhabitats. We proposed that species (Luma apiculata [D.C.] Burret. and Drimys winteri J.R. et G. Forster.) abundant in seasonally and intermittently waterlogged areas (SIWA) would have a higher acclimation capacity than species abundant in the inner swamp (Blepharocalyx cruckshanksii [H et A.] Mied. and Myrceugenia exsucca [D.C.] Berg.) where permanent waterlogging occurs (PWA); it was expected that the species from SIWA would maintain leaf expansion and gas exchange rates during intermittent waterlogging treatments. Conversely, we expected that PWA species would have higher constitutive waterlogging tolerance, and this would be reflected in the formation of lenticels and adventitious roots. Over the course of 2 months, we subjected seedlings to different waterlogging treatments: (i) permanent (sudden, SW), (ii) intermittent (gradual) or (iii) control (field capacity, C). Survival after waterlogging was high (≥80%) for all species and treatments, and only the growth rate of D. winteri subjected to SW was affected. Drimys winteri plants had low, but constant A and g during both waterlogging treatments. Conversely, L. apiculata had the highest A and g values, and g increased significantly during the first several days of waterlogging. In general, seedlings of all species subjected to waterlogging produced more adventitious roots and fully expanded leaves and had higher specific leaf area (SLA) and stomatal density (StD) than seedlings in the C treatment. From the results gathered here, we partially accept our hypothesis as all species showed high tolerance to waterlogging, maintained growth, and had increased A or g during different time points of waterlogging. Differences in leaf (SLA) and stomata functioning (gs, StD) plasticity likely allows plants to maintain positive carbon gains when waterlogging occurs. The species-specific differences found here were not entirely related to microhabitat distribution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Hypobaric Control of Ethylene-Induced Leaf Senescence in Intact Plants of Phaseolus vulgaris L. 1

    PubMed Central

    Nilsen, Karl N.; Hodges, Clinton F.

    1983-01-01

    A controlled atmospheric-environment system (CAES) designed to sustain normal or hypobaric ambient growing conditions was developed, described, and evaluated for its effectiveness as a research tool capable of controlling ethylene-induced leaf senescence in intact plants of Phaseolus vulgaris L. Senescence was prematurely-induced in primary leaves by treatment with 30 parts per million ethephon. Ethephon-derived endogenous ethylene reached peak levels within 6 hours at 26°C. Total endogenous ethylene levels then temporarily stabilized at approximately 1.75 microliters per liter from 6 to 24 hours. Thereafter, a progressive rise in ethylene resulted from leaf tissue metabolism and release. Throughout the study, the endogenous ethylene content of ethephon-treated leaves was greater than that of nontreated leaves. Subjecting ethephon-treated leaves to atmospheres of 200 millibars, with O2 and CO2 compositions set to approximate normal atmospheric partial pressures, prevented chlorophyll loss. Alternately, subjecting ethephon-treated plants to 200 millibars of air only partially prevented chlorophyll loss. Hypobaric conditions (200 millibars), with O2 and CO2 at normal atmospheric availability, could be delayed until 48 hours after ethephon treatment and still prevent most leaf senescence. In conclusion, hypobaric conditions established and maintained within the CAES prevented ethylene-induced senescence (chlorosis) in intact plants, provided O2 and CO2 partial pressures were maintained at levels approximating normal ambient availability. An unexpected increase in endogenous ethylene was detected within nontreated control leaves 48 hours subsequent to relocation from winter greenhouse conditions (latitude, 42°00″ N) to the CAES operating at normal ambient pressure. The longer photoperiod and/or higher temperature utilized within the CAES are hypothesized to influence ethylene metabolism directly and growth-promotive processes (e.g. response thresholds) indirectly. PMID:16662806

  19. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.

    PubMed

    Li, T; Heuvelink, E; Dueck, T A; Janse, J; Gort, G; Marcelis, L F M

    2014-07-01

    Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when global irradiance was high. Diffuse light enhanced crop photosynthesis. A more uniform horizontal PPFD distribution played the most important role in this enhancement, and a more uniform vertical PPFD distribution and higher leaf photosynthetic capacity contributed more to the enhancement of crop photosynthesis than did higher values of LAI. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna

    PubMed Central

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2017-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a “safety valve” to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia, drought-deciduous Terminthia paniculata, and winter-deciduous Lannea coromandelica, to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50leaf−stem) was positive in P. weinmanniifolia and L. coromandelica, whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains the hydraulic safety of the more carbon-costly stems by sacrificing cheaper and more vulnerable leaves, while the evergreen species exhibits a hydraulic strategy of drought tolerance with strong stomatal regulation. In contrast, the drought-deciduous species lacks vulnerability segmentation and sheds leaves at the expense of top shoots during peak drought. This study demonstrates that even sympatric tree species that differ in leaf phenology can exhibit divergent adaptive hydraulic safety strategies. PMID:28149302

  1. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    PubMed

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.

  2. TALE and Shape: How to Make a Leaf Different.

    PubMed

    Di Giacomo, Elisabetta; Iannelli, Maria Adelaide; Frugis, Giovanna

    2013-05-06

    The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which are involved in shoot apical meristem (SAM) function, as well as in the determination and morphological development of leaves, stems and inflorescences. Selective protein-protein interactions between KNOXs and BLHs affect heterodimer subcellular localization and target affinity. KNOXs exert their roles by maintaining a proper balance between undifferentiated and differentiated cell state through the modulation of multiple hormonal pathways. A pivotal function of KNOX in evolutionary diversification of leaf morphology has been assessed. In the SAM of both simple- and compound-leafed seed species, downregulation of most class 1 KNOX (KNOX1) genes marks the sites of leaf primordia initiation. However, KNOX1 expression is re-established during leaf primordia development of compound-leafed species to maintain transient indeterminacy and morphogenetic activity at the leaf margins. Despite the increasing knowledge available about KNOX1 protein function in plant development, a comprehensive view on their downstream effectors remains elusive. This review highlights the role of TALE proteins in leaf initiation and morphological plasticity with a focus on recent advances in the identification of downstream target genes and pathways.

  3. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species

    PubMed Central

    Onoda, Yusuke; Schieving, Feike; Anten, Niels P. R.

    2015-01-01

    Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young’s moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. PMID:25675956

  4. Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability

    PubMed Central

    Romero, Pascual; Dodd, Ian C.; Martinez-Cutillas, Adrian

    2012-01-01

    Different spatial distributions of soil moisture were imposed on field-grown grapevines by applying the same irrigation volumes to the entire (DI; deficit irrigation) or part of the (PRD; partial root zone drying) root zone. Five treatments were applied: controls irrigated at 60% ETc (crop evapotranspiration) for the whole season (308 mm year−1); DI-1 and PRD-1 that received the same irrigation as controls before fruit set, 30% ETc from fruit set to harvest and 45% ETc post-harvest (192 mm year−1); and DI-2 and PRD-2 that were the same, except that 15% ETc was applied from fruit set to harvest (142 mm year−1). Compared with DI-1, PRD-1 maintained higher leaf area post-veraison and increased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, but decreased intrinsic gas exchange efficiency without causing differences in leaf xylem abscisic acid (ABA) concentration. Compared with DI-2, PRD-2 increased leaf xylem ABA concentration and decreased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, mainly at the beginning of PRD cycles. Distinctive PRD effects (e.g. greater stomatal closure) depended on the volumetric soil water content of the wet root zone, as predicted from a model of root-to-shoot ABA signalling. PMID:22451721

  5. Tree differences in primary and secondary growth drive convergent scaling in leaf area to sapwood area across Europe.

    PubMed

    Petit, Giai; von Arx, Georg; Kiorapostolou, Natasa; Lechthaler, Silvia; Prendin, Angela Luisa; Anfodillo, Tommaso; Caldeira, Maria C; Cochard, Hervé; Copini, Paul; Crivellaro, Alan; Delzon, Sylvain; Gebauer, Roman; Gričar, Jožica; Grönholm, Leila; Hölttä, Teemu; Jyske, Tuula; Lavrič, Martina; Lintunen, Anna; Lobo-do-Vale, Raquel; Peltoniemi, Mikko; Peters, Richard L; Robert, Elisabeth M R; Roig Juan, Sílvia; Senfeldr, Martin; Steppe, Kathy; Urban, Josef; Van Camp, Janne; Sterck, Frank

    2018-06-01

    Trees scale leaf (A L ) and xylem (A X ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in A L  : A X balance in response to climate conditions, but whether trees of different species acclimate in A L  : A X in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of A L vs A X in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, A L and A X change in equal proportion (isometric scaling: b ˜ 1) as for trees. Branches of similar length converged in the scaling of A L vs A X with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  6. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

    PubMed

    Rowland, Lucy; Lobo-do-Vale, Raquel L; Christoffersen, Bradley O; Melém, Eliane A; Kruijt, Bart; Vasconcelos, Steel S; Domingues, Tomas; Binks, Oliver J; Oliveira, Alex A R; Metcalfe, Daniel; da Costa, Antonio C L; Mencuccini, Maurizio; Meir, Patrick

    2015-12-01

    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. © 2015 John Wiley & Sons Ltd.

  7. Application of edible coating from cassava peel – bay leaf on avocado

    NASA Astrophysics Data System (ADS)

    Handayani, M. N.; Karlina, S.; Sugiarti, Y.; Cakrawati, D.

    2018-05-01

    Avocados have a fairly short shelf life and are included in climacteric fruits. Edible coating application is one alternative to maintain the shelf life of avocado. Cassava peel starch is potential to be used as raw material for edible coating making. Addition of bay leaf extract containing antioxidants can increase the functional value of edible coating. The purpose of this study is to know the shrinkage of weight, acid number, color change and respiration rate of avocado coated with edible coating from cassava peel starch with an addition of bay leaf extract. The study consisted of making cassava peel starch, bay leaf extraction, edible coating making, edible coating application on avocado, and analysis of avocado characteristics during storage at room temperature. The results showed that addition of bay leaf extract on cassava peel starch edible coating applied to avocado, an effect on characteristics of avocado. Avocado applied edible coating and stored at room temperatures had lower weight loss than avocado without edible coating, lower acid number, tend to be more able to maintain color rather than avocado without edible coating.

  8. Effects of low sink demand on leaf photosynthesis under potassium deficiency.

    PubMed

    Pan, Yonghui; Lu, Zhifeng; Lu, Jianwei; Li, Xiaokun; Cong, Rihuan; Ren, Tao

    2017-04-01

    The interaction between low sink demand and potassium (K) deficiency in leaf photosynthesis was not intensively investigated, therefore this interaction was investigated in winter oilseed rape (Brassica napus L.). Plants subjected to sufficient (+K) or insufficient (-K) K supply treatments were maintained or removed their flowers and pods; these conditions were defined as high sink demand (HS) or low sink demand (LS), respectively. The low sink demand induced a lower photosynthetic rate (P n ), especially in the -K treatment during the first week. A negative relationship between P n and carbohydrate concentration was observed in the -K treatment but not in the +K treatment, suggesting that the decrease in P n in the -K treatment was the result of sink feedback regulation under low sink demand. Longer sink removal duration increased carbohydrate concentration, but the enhanced assimilate did not influence P n . On the contrary, low sink demand resulted in a high K concentration, slower chloroplast degradation rate and better PSII activity, inducing a higher P n compared with HS. Consequently, low sink demand decreased leaf photosynthesis over the short term due to sink feedback regulation, and potassium deficiency enhanced the photosynthetic decrease through carbohydrate accumulation and a lower carbohydrate concentration threshold for initiating photosynthesis depression. A longer duration of limited sink demand and sufficient potassium supply resulted in a higher photosynthesis rate because of delayed chloroplast degradation. This finding indicates that the nutritional status plays a role in leaf photosynthesis variations due to sink-source manipulation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Conservative decrease in water potential in existing leaves during new leaf expansion in temperate and tropical evergreen Quercus species.

    PubMed

    Saito, Takami; Naiola, B Paul; Terashima, Ichiro

    2007-12-01

    This study aimed at clarifying how the water potential gradient (deltapsi) is maintained in the shoots of evergreen trees with expanding leaves, whose leaf water potentials at the turgor loss point (psi(tlp)) are generally high. The water relations were examined in current-year expanding (CEX) and 1-year-old (OLD) leaves on the same shoots in temperate (Osaka, Japan) and tropical (Bogor, Indonesia) areas. A temperate evergreen species, Quercus glauca growing in both sites, was compared with a temperate deciduous species, Q. serrata, in Osaka, and two tropical evergreen species, Q. gemelliflora and Q. subsericea, in Bogor. (1) In Osaka, the midday leaf water potential (psi(midday)) was slightly higher in OLD (-0.5 MPa) than in CEX leaves (-0.6 MPa), whereas psi(tlp) was significantly lower in OLD (-2.9 MPa) than in CEX leaves (-1.0 MPa). In Bogor, psi(midday) was also higher in OLD leaves (-1.0 MPa) despite the low psi(tlp) (-1.9 MPa), although stomatal conductance was not always low in OLD leaves. In the branch bearing CEX and OLD leaves, most of the hydraulic resistance (86 %) exists in the current-year branch, leading to differences in water supply between CEX and OLD leaves. The removal of buds just before breaking did not affect the high psi(midday) in OLD leaves after 1 month. Psi(midday) in OLD leaves thus appears to be independent of that in CEX leaves. The moderate decrease in psi(midday) in OLD leaves would contribute to maintenance of deltapsi in the shoots during leaf expansion.

  10. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest.

    PubMed

    Inoue, Yuta; Ichie, Tomoaki; Kenzo, Tanaka; Yoneyama, Aogu; Kumagai, Tomo'omi; Nakashizuka, Tohru

    2017-10-01

    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf water relations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Characterization of a rice variety with high hydraulic conductance and identification of the chromosome region responsible using chromosome segment substitution lines

    PubMed Central

    Adachi, Shunsuke; Tsuru, Yukiko; Kondo, Motohiko; Yamamoto, Toshio; Arai-Sanoh, Yumiko; Ando, Tsuyu; Ookawa, Taiichiro; Yano, Masahiro; Hirasawa, Tadashi

    2010-01-01

    Background and Aims The rate of photosynthesis in paddy rice often decreases at noon on sunny days because of water stress, even under submerged conditions. Maintenance of higher rates of photosynthesis during the day might improve both yield and dry matter production in paddy rice. A high-yielding indica variety, ‘Habataki’, maintains a high rate of leaf photosynthesis during the daytime because of the higher hydraulic conductance from roots to leaves than in the standard japonica variety ‘Sasanishiki’. This research was conducted to characterize the trait responsible for the higher hydraulic conductance in ‘Habataki’ and identified a chromosome region for the high hydraulic conductance. Methods Hydraulic conductance to passive water transport and to osmotic water transport was determined for plants under intense transpiration and for plants without transpiration, respectively. The varietal difference in hydraulic conductance was examined with respect to root surface area and hydraulic conductivity (hydraulic conductance per root surface area, Lp). To identify the chromosome region responsible for higher hydraulic conductance, chromosome segment substitution lines (CSSLs) derived from a cross between ‘Sasanishiki’ and ‘Habataki’ were used. Key Results The significantly higher hydraulic conductance resulted from the larger root surface area not from Lp in ‘Habataki’. A chromosome region associated with the elevated hydraulic conductance was detected between RM3916 and RM2431 on the long arm of chromosome 4. The CSSL, in which this region was substituted with the ‘Habataki’ chromosome segment in the ‘Sasanishiki’ background, had a larger root mass than ‘Sasanishiki’. Conclusions The trait for increasing plant hydraulic conductance and, therefore, maintaining the higher rate of leaf photosynthesis under the conditions of intense transpiration in ‘Habataki’ was identified, and it was estimated that there is at least one chromosome region for the trait located on chromosome 4. PMID:20810742

  12. Divergent phenological and leaf gas exchange strategies of two competing tree species drive contrasting responses to drought at their altitudinal boundary.

    PubMed

    Fernández-de-Uña, Laura; Aranda, Ismael; Rossi, Sergio; Fonti, Patrick; Cañellas, Isabel; Gea-Izquierdo, Guillermo

    2018-04-27

    In Mediterranean mountains, Pinus sylvestris L. is expected to be displaced under a warming climate by more drought-tolerant species such as the sub-Mediterranean Quercus pyrenaica Willd. Understanding how environmental factors drive tree physiology and phenology is, therefore, essential to assess the effect of changing climatic conditions on the performance of these species and, ultimately, their distribution. We compared the cambial and leaf phenology and leaf gas exchange of Q. pyrenaica and P. sylvestris at their altitudinal boundary in Central Spain and assessed the environmental variables involved. Results indicate that P. sylvestris cambial phenology was more sensitive to weather conditions (temperature at the onset and water deficit at the end of the growing season) than Q. pyrenaica. On the other hand, Q. pyrenaica cambial and leaf phenology were synchronized and driven by photoperiod and temperatures. Pinus sylvestris showed lower photosynthetic nitrogen-use efficiency and higher intrinsic water-use efficiency than Q. pyrenaica as a result of a tighter stomatal control in response to summer dry conditions, despite its less negative midday leaf water potentials. These phenological and leaf gas exchange responses evidence a stronger sensitivity to drought of P. sylvestris than that of Q. pyrenaica, which may therefore hold a competitive advantage over P. sylvestris under the predicted increase in recurrence and intensity of drought events. On the other hand, both species could benefit from warmer springs through an advanced phenology, although this effect could be limited in Q. pyrenaica if it maintains a photoperiod control over the onset of xylogenesis.

  13. Photosynthetic capacity and water use efficiency in Ricinus communis (L.) under drought stress in semi-humid and semi-arid areas.

    PubMed

    Santos, Claudiana M Dos; Endres, Laurício; Ferreira, Vilma M; Silva, José V; Rolim, Eduardo V; Wanderley, Humberto C L

    2017-01-01

    Castor bean is one of the crops with potential to provide raw material for production of oils for biodiesel. This species possess adaptive mechanisms for maintaining the water status when subjected to drought stress. A better understanding these mechanisms under field conditions can unravel the survival strategies used by this species. This study aimed to compare the physiological adaptations of Ricinus communis (L.) in two regions with different climates, the semi-arid and semi-humid subject to water stress. The plants showed greater vapor pressure deficit during the driest hours of the day, which contributed to higher values of the leaf temperature and leaf transpiration, however, the VPD(leaf-air) had the greatest effect on plants in the semi-arid region. In both regions, between 12:00 p.m. and 2:00 p.m., the plants presented reduction in the rates of photosynthesis and intracellular CO2 concentration in response to stomatal closure. During the dry season in the semi-arid region, photoinhibition occurred in the leaves of castor bean between 12:00 p.m. and 2:00 p.m. These results suggest that castor bean plants possess compensatory mechanisms for drought tolerance, such as: higher stomatal control and maintenance of photosynthetic capacity, allowing the plant to survive well in soil with low water availability.

  14. Leaf seal for gas turbine stator shrouds and a nozzle band

    DOEpatents

    Burdgick, Steven Sebastian; Sexton, Brendan Francis

    2002-01-01

    A leaf seal assembly is secured to the trailing edge of a shroud segment for sealing between the shroud segment and the leading edge side wall of a nozzle outer band. The leaf seal includes a circumferentially elongated seal plate biased by a pair of spring clips disposed in a groove along the trailing edge of the shroud segment to maintain the seal plate in engagement with the flange on the leading edge side wall of the nozzle outer band. The leaf seal plate and spring clips receive pins tack-welded to the shroud segment to secure the leaf seal assembly in place.

  15. Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees.

    PubMed

    Petit, Giai; Savi, Tadeja; Consolini, Martina; Anfodillo, Tommaso; Nardini, Andrea

    2016-11-01

    Efficient leaf water supply is fundamental for assimilation processes and tree growth. Renovating the architecture of the xylem transport system requires an increasing carbon investment while growing taller, and any deficiency of carbon availability may result in increasing hydraulic constraints to water flow. Therefore, plants need to coordinate carbon assimilation and biomass allocation to guarantee an efficient and safe long-distance transport system. We tested the hypothesis that reduced branch elongation rates together with carbon-saving adjustments of xylem anatomy hydraulically compensate for the reduction in biomass allocation to xylem. We measured leaf biomass, hydraulic and anatomical properties of wood segments along the main axis of branches in 10 slow growing (SG) and 10 fast growing (FG) Fraxinus ornus L. trees. Branches of SG trees had five times slower branch elongation rate (7 vs 35 cm year -1 ), and produced a higher leaf biomass (P < 0.0001) and thinner xylem rings with fewer but larger vessels (P < 0.0001). On the contrary, we found no differences between SG and FG trees in terms of leaf-specific conductivity (P > 0.05) and xylem safety (Ψ 50 ≈ -3.2 MPa). Slower elongation rate coupled with thinner annual rings and larger vessels allows the reduction of carbon costs associated with growth, while maintaining similar leaf-specific conductivity and xylem safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies.

    PubMed

    Saura-Mas, S; Lloret, F

    2007-03-01

    Post-fire regeneration is a key process in Mediterranean shrubland dynamics, strongly determining the functional properties of the community. In this study, a test is carried out to determine whether there is co-variation between species regenerative types and functional attributes related to water use. An analysis was made of the seasonal variations in leaf relative water content (RWC), leaf dry matter content (LDMC), leaf moisture (LM) and live fine fuel moisture (LFFM) in 30 woody species of a coastal shrubland, with different post-fire regenerative strategies (seeding, resprouting or both). RWC results suggest that the studied resprouters have more efficient mechanisms to reduce water losses and maintain water supply between seasons. In contrast, seeders are more drought tolerant. LDMC is higher in resprouters over the course of the year, suggesting a more efficient conservation of nutrients. The weight of the phylogenetic constraint to understand differences between regenerative strategies tends to be important for LDMC, while it is not the case for variables such as RWC. Groups of species with different post-fire regenerative strategies (seeders and resprouters) have different functional traits related to water use. In addition to the role of phylogenetical constraints, these differences are also likely to be related to the respective life history characteristics. Therefore, the presence and abundance of species with different post-fire regenerative responses influence the functional properties of the communities.

  17. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species.

    PubMed

    Onoda, Yusuke; Schieving, Feike; Anten, Niels P R

    2015-05-01

    Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young's moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites.

    PubMed

    Szota, Christopher; Farrell, Claire; Koch, John M; Lambers, Hans; Veneklaas, Erik J

    2011-10-01

    This study describes the physiological response of two co-occurring tree species (Eucalyptus marginata and Corymbia calophylla) to seasonal drought at low- and high-quality restored bauxite mine sites in south-western Australia. Seasonal changes in photosynthesis (A), stomatal conductance (g(s)), leaf water potential (ψ), leaf osmotic potential (ψ), leaf relative water content (RWC) and pressure-volume analysis were captured over an 18-month field study to (i) determine the nature and severity of physiological stress in relation to site quality and (ii) identify any physiological differences between the two species. Root system restriction at the low-quality site reduced maximum rates of gas exchange (g(s) and A) and increased water stress (midday ψ and daily RWC) in both species during drought. Both species showed high stomatal sensitivity during drought; however, E. marginata demonstrated a higher dehydration tolerance where ψ and RWC fell to -3.2 MPa and 73% compared with -2.4 MPa and 80% for C. calophylla. Corymbia calophylla showed lower g(s) and higher ψ and RWC during drought, indicating higher drought tolerance. Pressure-volume curves showed that cell-wall elasticity of E. marginata leaves increased in response to drought, while C. calophylla leaves showed lower osmotic potential at zero turgor in summer than in winter, indicating osmotic adjustment. Both species are clearly able to tolerate seasonal drought at hostile sites; however, by C. calophylla closing stomata earlier in the drought cycle, maintaining a higher water status during drought and having the additional mechanism of osmotic adjustment, it may have a greater capacity to survive extended periods of drought.

  19. [Effects of water conditions and controlled release urea on yield and leaf senescence physiological characteristics in summer maize.

    PubMed

    Li, Guang Hao; Liu, Ping Ping; Zhao, Bin; Dong, Shu Ting; Liu, Peng; Zhang, Ji Wang; Tian, Cui Xia; He, Zai Ju

    2017-02-01

    In an soil column experiment with Zhengdan 958 (a summer maize cultivar planted widely in China), treatments of three water levels,severe water stress W 1 which the soil moisture kept (35±5)% of the field capacity, mild water stress W 2 which was (55±5)%,normal water W 3 which was (75±5)%, and four levels of controlled release urea fertilizer (N 0 , N 1 was 150 kg N·hm -2 ,N 2 was 225 kg N·hm -2 and N 3 was 300 kg N·hm -2 ) were included to study the interactive effects of water and controlled release urea on yield and leaf senescence characteristics of summer maize. The results showed that the coupling of water and controlled release urea had significant effects on increasing yield, delaying the senescence and keeping the high efficiency of the functional leaves. Under the same nitrogen condition, yield, LAI, chlorophyll content and the activities of SOD, POD, CAT and soluble protein content in summer maize ear leaf were significantly increased with more water supplying, and the content of MDA decreased significantly. Under the condition of the same moisture, these indicators were also significantly increased with the increasing nitrogen application and MDA content was reduced significantly. However, these indicators (except MDA) of W 3 N 3 , W 3 N 2 and W 2 N 3 treatments were maintained at a higher level and the MDA content was lo-wer compared with other treatments despite the fact that there were no significant difference among these three treatments, which indicated that the interactive effects of water and controlled release urea had an important role in maintaining the function of ear leaf, delaying the leaf senescence, and was beneficial to the photosynthates production and obtaining higher yield of summer maize. Integrating the yield, LAI, chlorophyll content, various protective enzymes activity, MDA and soluble protein content, controlled release urea application rate of 225 kg N·hm -2 was the best treatment as the soil moisture content was (75±5)% of field capacity. Continuous increase in the nitrogen application could not enhance the activities of protective enzymes, oppositely, it could cause the decline of protective enzymes activities and the increase of MDA content rapidly and speed up plants translation to senescence, which was not conductive to the efficient use of nitrogen. We suggested that coupling controlled release urea application rate of 300 kg N·hm -2 with soil moisture content of (55±5)% of field capacity was optimum.

  20. A Constrained Maximization Model for inspecting the impact of leaf shape on optimal leaf size and stoma resistance

    NASA Astrophysics Data System (ADS)

    Ding, J.; Johnson, E. A.; Martin, Y. E.

    2017-12-01

    Leaf is the basic production unit of plants. Water is the most critical resource of plants. Its availability controls primary productivity of plants by affecting leaf carbon budget. To avoid the damage of cavitation from lowering vein water potential t caused by evapotranspiration, the leaf must increase the stomatal resistance to reduce evapotranspiration rate. This comes at the cost of reduced carbon fixing rate as increasing stoma resistance meanwhile slows carbon intake rate. Studies suggest that stoma will operate at an optimal resistance to maximize the carbon gain with respect to water. Different plant species have different leaf shapes, a genetically determined trait. Further, on the same plant leaf size can vary many times in size that is related to soil moisture, an indicator of water availability. According to metabolic scaling theory, increasing leaf size will increase total xylem resistance of vein, which may also constrain leaf carbon budget. We present a Constrained Maximization Model of leaf (leaf CMM) that incorporates metabolic theory into the coupling of evapotranspiration and carbon fixation to examine how leaf size, stoma resistance and maximum net leaf primary productivity change with petiole xylem water potential. The model connects vein network structure to leaf shape and use the difference between petiole xylem water potential and the critical minor vein cavitation forming water potential as the budget. The CMM shows that both maximum net leaf primary production and optimal leaf size increase with petiole xylem water potential while optimal stoma resistance decreases. Narrow leaf has overall lower optimal leaf size and maximum net leaf carbon gain and higher optimal stoma resistance than those of broad leaf. This is because with small width to length ratio, total xylem resistance increases faster with leaf size. Total xylem resistance of narrow leaf increases faster with leaf size causing higher average and marginal cost of xylem water potential with respect to net leaf carbon gain. With same leaf area, total xylem resistance of narrow leaf is higher than broad leaf. Given same stoma resistance and petiole water potential, narrow leaf will lose more xylem water potential than broad leaf. Consequently, narrow leaf has smaller size and higher stoma resistance at optimum.

  1. Factors contributing to deep supercooling capability and cold survival in dwarf bamboo (Sasa senanensis) leaf blades.

    PubMed

    Ishikawa, Masaya; Oda, Asuka; Fukami, Reiko; Kuriyama, Akira

    2014-01-01

    Wintering Sasa senanensis, dwarf bamboo, is known to employ deep supercooling as the mechanism of cold hardiness in most of its tissues from leaves to rhizomes. The breakdown of supercooling in leaf blades has been shown to proceed in a random and scattered manner with a small piece of tissue surrounded by longitudinal and transverse veins serving as the unit of freezing. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels (LT20: the lethal temperature at which 20% of the leaf blades are injured) seasonally increased from August (-11°C) to December (-20°C). This coincided with the increases in supercooling capability of the leaf blades as expressed by the initiation temperature of low temperature exotherms (LTE) detected in differential thermal analyses (DTA). When leaf blades were stored at -5°C for 1-14 days, there was no nucleation of the supercooled tissue units either in summer or winter. However, only summer leaf blades suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (-20°C), a longer storage period (1-7 days) increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units. LTE were shifted to higher temperatures (2-5°C) after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice barriers such as development of sclerenchyma and biochemical mechanisms to increase the stability of supercooling are considered important. These mechanisms are discussed in regard to ecological and physiological significance in winter survival.

  2. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna.

    PubMed

    Cernusak, Lucas A; Hutley, Lindsay B; Beringer, Jason; Tapper, Nigel J

    2006-04-01

    We measured stem CO2 efflux and leaf gas exchange in a tropical savanna ecosystem in northern Australia, and assessed the impact of fire on these processes. Gas exchange of mature leaves that flushed after a fire showed only slight differences from that of mature leaves on unburned trees. Expanding leaves typically showed net losses of CO2 to the atmosphere in both burned and unburned trees, even under saturating irradiance. Fire caused stem CO2 efflux to decline in overstory trees, when measured 8 weeks post-fire. This decline was thought to have resulted from reduced availability of C substrate for respiration, due to reduced canopy photosynthesis caused by leaf scorching, and to priority allocation of fixed C towards reconstruction of a new canopy. At the ecosystem scale, we estimated the annual above-ground woody-tissue CO2 efflux to be 275 g C m(-2) ground area year(-1) in a non-fire year, or approximately 13% of the annual gross primary production. We contrasted the canopy physiology of two co-dominant overstory tree species, one of which has a smooth bark on its branches capable of photosynthetic re-fixation (Eucalyptus miniata), and the other of which has a thick, rough bark incapable of re-fixation (Eucalyptus tetrodonta). Eucalyptus miniata supported a larger branch sapwood cross-sectional area in the crown per unit subtending leaf area, and had higher leaf stomatal conductance and photosynthesis than E. tetrodonta. Re-fixation by photosynthetic bark reduces the C cost of delivering water to evaporative sites in leaves, because it reduces the net C cost of constructing and maintaining sapwood. We suggest that re-fixation allowed leaves of E. miniata to photosynthesize at higher rates than those of E. tetrodonta, while the two invested similar amounts of C in the maintenance of branch sapwood.

  3. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis

    PubMed Central

    Merewitz, Emily B.; Gianfagna, Thomas; Huang, Bingru

    2011-01-01

    Cytokinins (CKs) may be involved in the regulation of plant adaptation to drought stress. The objectives of the study were to identify proteomic changes in leaves and roots in relation to improved drought tolerance in transgenic creeping bentgrass (Agrostis stolonifera) containing a senescence-activated promoter (SAG12) and the isopentyl transferase (ipt) transgene that increases endogenous CK content. Leaves of SAG12-ipt bentgrass exhibited less severe senescence under water stress, as demonstrated by maintaining lower electrolyte leakage and lipid peroxidation, and higher photochemical efficiency (Fv/Fm), compared with the null transformant (NT) plants. SAG12-ipt plants had higher root/shoot ratios and lower lipid peroxidation in leaves under water stress than the NT plants. The suppression of drought-induced leaf senescence and root dieback in the transgenic plants was associated with the maintenance of greater antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase). The SAG12-ipt and NT plants exhibited differential protein expression patterns under well-watered and drought conditions in both leaves and roots. Under equivalent leaf water deficit (47% relative water content), SAG12-ipt plants maintained higher abundance of proteins involved in (i) energy production within both photosynthesis and respiration [ribulose 1,5-bisphosphate carboxylase (RuBisCO) and glyceraldehyde phosphate dehydrogenase (GAPDH)]; (ii) amino acid synthesis (methionine and glutamine); (iii) protein synthesis and destination [chloroplastic elongation factor (EF-Tu) and protein disulphide isomerases (PDIs)]; and (iv) antioxidant defence system (catalase and peroxidase) than the NT plants. These results suggest that increased endogenous CKs under drought stress may directly or indirectly regulate protein abundance and enzymatic activities involved in the above-mentioned metabolic processes, thereby enhancing plant drought tolerance. PMID:21831843

  4. Evergreen shrub traits and peatland carbon cycling under high nutrient load

    NASA Astrophysics Data System (ADS)

    Larmola, Tuula; Bui, Vi; Bubier, Jill L.; Wang, Meng; Murphy, Meaghan; Moore, Tim R.

    2016-04-01

    The reactive nitrogen (N) assimilated by plants is usually invested in chlorophyll to improve light harvesting capacity and in soluble proteins such as Rubisco to enhance carbon (C) assimilation. We studied the effects of simulated atmospheric N deposition on different traits of two evergreen shrubs Chamaedaphne calyculata and Rhododendron groenlandicum in a nutrient-poor Mer Bleue Bog, Canada that has been fertilized with N as NO3 and NH4 (2-8 times ambient annual wet deposition) with or without phosphorus (P) and potassium (K) for 7-12 years. We examined how nutrient addition influences the plant performance at leaf and canopy level and linked the trait responses with ecosystem C cycling. At the leaf level, we measured physiological and biochemical traits: CO2 exchange and chlorophyll fluorescence, an indicator of plant stress in terms of light harvesting capacity; and to study changes in photosynthetic nutrient use efficiency, we also determined the foliar chlorophyll, N, and P contents. At the canopy level, we examined morphological and phenological traits: growth responses and leaf longevity during two growing seasons. Regardless of treatment, the majority of leaves showed no signs of stress in terms of light harvesting capacity. The plants were N saturated: with increasing foliar N content, the higher proportion of N was not used in photosynthesis. Foliar net CO2 assimilation rates did not differ significantly among treatments, but the additions of N, P, and K together resulted in higher respiration rates. The analysis of the leaf and canopy traits showed that the two shrubs had different strategies: C. calyculata was more responsive to nutrient additions, more deciduous-like, whereas R. groenlandicum maintained evergreen features under nutrient load, shedding its leaves even later in the season. In all, simulated atmospheric N deposition did not benefit the photosynthetic apparatus of the dominant shrubs, but resulted in higher foliar respiration, contributing to stress and a weaker ecosystem C sink. Thus, elevated atmospheric deposition of nutrients to these systems may endanger C storage in peatlands.

  5. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.

    PubMed

    Sala, Anna; Peters, Gregory D; McIntyre, Lorna R; Harrington, Michael G

    2005-03-01

    Low-elevation ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) forests of the northern Rocky Mountains historically experienced frequent low-intensity fires that maintained open uneven-aged stands. A century of fire exclusion has contributed to denser ponderosa pine forests with greater competition for resources, higher tree stress and greater risk of insect attack and stand-destroying fire. Active management intended to restore a semblance of the more sustainable historic stand structure and composition includes selective thinning and prescribed fire. However, little is known about the relative effects of these management practices on the physiological performance of ponderosa pine. We measured soil water and nitrogen availability, physiological performance and wood radial increment of second growth ponderosa pine trees at the Lick Creek Experimental Site in the Bitterroot National Forest, Montana, 8 and 9 years after the application of four treatments: thinning only; thinning followed by prescribed fire in the spring; thinning followed by prescribed fire in the fall; and untreated controls. Volumetric soil water content and resin capsule ammonium did not differ among treatments. Resin capsule nitrate in the control treatment was similar to that in all other treatments, although burned treatments had lower nitrate relative to the thinned-only treatment. Trees of similar size and canopy condition in the three thinned treatments (with and without fire) displayed higher leaf-area-based photosynthetic rate, stomatal conductance and mid-morning leaf water potential in June and July, and higher wood radial increment relative to trees in control units. Specific leaf area, mass-based leaf nitrogen content and carbon isotope discrimination did not vary among treatments. Our results suggest that, despite minimal differences in soil resource availability, trees in managed units where basal area was reduced had improved gas exchange and growth compared with trees in unmanaged units. Prescribed fire (either in the spring or in the fall) in addition to thinning, had no measurable effect on the mid-term physiological performance and wood growth of second growth ponderosa pine.

  6. Conservative Decrease in Water Potential in Existing Leaves during New Leaf Expansion in Temperate and Tropical Evergreen Quercus Species

    PubMed Central

    Saito, Takami; Naiola, B. Paul; Terashima, Ichiro

    2007-01-01

    Background and Aims This study aimed at clarifying how the water potential gradient (ΔΨ) is maintained in the shoots of evergreen trees with expanding leaves, whose leaf water potentials at the turgor loss point (Ψtlp) are generally high. Materials The water relations were examined in current-year expanding (CEX) and 1-year-old (OLD) leaves on the same shoots in temperate (Osaka, Japan) and tropical (Bogor, Indonesia) areas. A temperate evergreen species, Quercus glauca growing in both sites, was compared with a temperate deciduous species, Q. serrata, in Osaka, and two tropical evergreen species, Q. gemelliflora and Q. subsericea, in Bogor. Key Results (1) In Osaka, the midday leaf water potential (Ψmidday) was slightly higher in OLD (−0·5 MPa) than in CEX leaves (−0·6 MPa), whereas Ψtlp was significantly lower in OLD (−2·9 MPa) than in CEX leaves (−1·0 MPa). In Bogor, Ψmidday was also higher in OLD leaves (−1·0 MPa) despite the low Ψtlp (−1·9 MPa), although stomatal conductance was not always low in OLD leaves. In the branch bearing CEX and OLD leaves, most of the hydraulic resistance (86 %) exists in the current-year branch, leading to differences in water supply between CEX and OLD leaves. The removal of buds just before breaking did not affect the high Ψmidday in OLD leaves after 1 month. Ψmidday in OLD leaves thus appears to be independent of that in CEX leaves. Conclusions The moderate decrease in Ψmidday in OLD leaves would contribute to maintenance of ΔΨ in the shoots during leaf expansion. PMID:17855379

  7. Leaf Area Adjustment As an Optimal Drought-Adaptation Strategy

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Beyer, F.; Thompson, S. E.; Vico, G.; Weih, M.

    2014-12-01

    Leaf phenology plays a major role in land-atmosphere mass and energy exchanges. Much work has focused on phenological responses to light and temperature, but less to leaf area changes during dry periods. Because the duration of droughts is expected to increase under future climates in seasonally-dry as well as mesic environments, it is crucial to (i) predict drought-related phenological changes and (ii) to develop physiologically-sound models of leaf area dynamics during dry periods. Several optimization criteria have been proposed to model leaf area adjustment as soil moisture decreases. Some theories are based on the plant carbon (C) balance, hypothesizing that leaf area will decline when instantaneous net photosynthetic rates become negative (equivalent to maximization of cumulative C gain). Other theories draw on hydraulic principles, suggesting that leaf area should adjust to either maintain a constant leaf water potential (isohydric behavior) or to avoid leaf water potentials with negative impacts on photosynthesis (i.e., minimization of water stress). Evergreen leaf phenology is considered as a control case. Merging these theories into a unified framework, we quantify the effect of phenological strategy and climate forcing on the net C gain over the entire growing season. By accounting for the C costs of leaf flushing and the gains stemming from leaf photosynthesis, this metric assesses the effectiveness of different phenological strategies, under different climatic scenarios. Evergreen species are favored only when the dry period is relatively short, as they can exploit most of the growing season, and only incur leaf maintenance costs during the short dry period. In contrast, deciduous species that lower maintenance costs by losing leaves are advantaged under drier climates. Moreover, among drought-deciduous species, isohydric behavior leads to lowest C gains. Losing leaves gradually so as to maintain a net C uptake equal to zero during the driest period in the growing season provides the highest gain. Since these strategies are all defined based on often-modeled quantities, they can be implemented in ecosystem models depending on plant functional type and climate.

  8. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum.

    PubMed

    Agarie, Sakae; Shimoda, Toshifumi; Shimizu, Yumi; Baumann, Kathleen; Sunagawa, Haruki; Kondo, Ayumu; Ueno, Osamu; Nakahara, Teruhisa; Nose, Akihiro; Cushman, John C

    2007-01-01

    The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.

  9. Paraheliotropism can protect water-stressed bean (Phaseolus vulgaris L.) plants against photoinhibition.

    PubMed

    Pastenes, Claudio; Porter, Victor; Baginsky, Cecilia; Horton, Peter; González, Javiera

    2004-12-01

    In order to estimate the importance of leaf movements on photosynthesis in well-watered and water-stressed field grown bean cultivars (Arroz Tuscola (AT), Orfeo INIA (OI), Bayos Titan (BT), and Hallados Dorado (HD)), CO2 assimilation, leaf temperature, and capacity for the maximum quantum yield recovery, measured as Fv/Fm, were assessed. Leaf water potential was lower in water-stressed compared to control plants throughout the day. Water status determined a decrease in the CO2 assimilation and stomatal conductance as light intensity and temperature increased up to maximal intensities at midday. Both parameters were lower in stressed compared to control plants. Even though high light intensity and water-stress induced stomatal closure is regarded as a photoinhibitory condition, the recovery of variable to maximal fluorescence (Fv/Fm) after 30min of darkness was nearly constant in both water regimes. In fact, higher values were observed in OI and AT when under stress. Photochemical and non-photochemical fluorescence quenching resulted in minor changes during the day and were similar between watered and stressed plants. It is concluded that paraheliotropism, present in the four bean cultivars, efficiently protects stressed plants from photoinhibition in the field and helps maintain leaf temperatures far below the ambient temperatures, however, it may also be responsible for low CO2 assimilation rates in watered plants.

  10. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    PubMed

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  11. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  12. Photosynthetic and Heterotrophic Ferredoxin Isoproteins Are Colocalized in Fruit Plastids of Tomato1

    PubMed Central

    Aoki, Koh; Yamamoto, Miyuki; Wada, Keishiro

    1998-01-01

    Fruit tissues of tomato (Lycopersicon esculentum Mill.) contain both photosynthetic and heterotrophic ferredoxin (FdA and FdE, respectively) isoproteins, irrespective of their photosynthetic competence, but we did not previously determine whether these proteins were colocalized in the same plastids. In isolated fruit chloroplasts and chromoplasts, both FdA and FdE were detected by immunoblotting. Colocalization of FdA and FdE in the same plastids was demonstrated using double-staining immunofluorescence microscopy. We also found that FdA and FdE were colocalized in fruit chloroplasts and chloroamyloplasts irrespective of sink status of the plastid. Immunoelectron microscopy demonstrated that FdA and FdE were randomly distributed within the plastid stroma. To investigate the significance of the heterotrophic Fd in fruit plastids, Glucose 6-phosphate dehydrogenase (G6PDH) activity was measured in isolated fruit and leaf plastids. Fruit chloroplasts and chromoplasts showed much higher G6PDH activity than did leaf chloroplasts, suggesting that high G6PDH activity is linked with FdE to maintain nonphotosynthetic production of reducing power. This result suggested that, despite their morphological resemblance, fruit chloroplasts are functionally different from their leaf counterparts. PMID:9765529

  13. Caudex growth and phenology of Cyathea atrovirens (Langsd. & Fisch.) Domin (Cyatheaceae) in secondary forest, southern Brazil.

    PubMed

    Schmitt, J L; Windisch, P G

    2012-05-01

    The leaf production and senescence, formation and release of spores of Cyathea atrovirens (Langsd. & Fisch.) Domin were analysed based on the monthly monitoring of 50 plants growing in a secondary forest, in the municipality of Novo Hamburgo, in the state of Rio Grande do Sul, during the year 2004. The caudex height and number of mature and fertile leaves were recorded annually in 2004-09. In 2004, monthly production and senescence of leaves were concomitant, without total leaf abscission. Population synchrony at emergence (Z = 0.86) and leaf senescence (Z = 0.82) increased in spring but did not correlate with temperature and photoperiod. All individuals were fertile and the sporangia production and spore liberation presented higher and equal synchrony (Z = 0.84) respectively in spring and summer. Sporangia production was related with temperature and photoperiod, however taller plants did not produce more fertile leaves. Phenological events analysed were not influenced by precipitation, as expected for forests in non-seasonal climate. Over five years (2004-09), the annual mean caudex growth varied between 1.19 and 2.50 cm.year-1 and the plants appeared to have an ability to maintain a relatively stable amount of leaves throughout this period.

  14. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    PubMed Central

    Koeslin-Findeklee, Fabian; Becker, Martin A.; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J.

    2015-01-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency. PMID:25944925

  15. Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor.

    PubMed

    Worland, Belinda; Robinson, Nicole; Jordan, David; Schmidt, Susanne; Godwin, Ian

    2017-09-01

    Crops only use ∼50% of applied nitrogen (N) fertilizer creating N losses and pollution. Plants need to efficiently uptake and utilize N to meet growing global food demands. Here we investigate how the supply and timing of nitrate affects N status and yield in Sorghum bicolor (sorghum). Sorghum was grown in pots with either 10mM (High) or 1mM (Low) nitrate supply. Shortly before anthesis the nitrate supply was either maintained, increased 10-fold or eliminated. Leaf sheaths of sorghum grown with High nitrate accumulated nitrate in concentrations >3-times higher than leaves. Removal of nitrate supply pre-anthesis resulted in the rapid reduction of stored nitrate in all organs. Plants receiving a 10-fold increase in nitrate supply pre-anthesis achieved similar grain yield and protein content and 29% larger grains than those maintained on High nitrate, despite receiving 24% less nitrate over the whole growth period. In sorghum, plant available N is important throughout development, particularly anthesis and grain filling, for grain yield and grain protein content. Nitrate accumulation in leaf sheaths presents opportunities for the genetic analysis of mechanisms behind nitrate storage and remobilization in sorghum to improve N use efficiency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Evolutionary transitions in enzyme activity of ant fungus gardens.

    PubMed

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G; Boomsma, Jacobus J

    2010-07-01

    Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.

  17. Salt excretion in Suaeda fruticosa.

    PubMed

    Labidi, Nehla; Ammari, Manel; Mssedi, Dorsaf; Benzerti, Maali; Snoussi, Sana; Abdelly, C

    2010-09-01

    Suaeda fruticosa is a perennial "includer" halophyte devoid of glands or trichomes with a strong ability of accumulating and sequestrating Na(+) and Cl(-). We were interested in determining whether leaf cuticle salt excretion could be involved as a further mechanism in salt response of this species after long-term treatment with high salinity levels. Seedlings had been treated for three months with seawater (SW) diluted with tap water (0, 25, 50 and 75% SW). Leaf scanning electron microscopy revealed a convex adaxial side sculpture and a higher accumulation of saline crystals at the lamina margin, with a large variability on repartition and size between treatments. No salt gland or salt bladder was found. Threedimensional wax decorations were the only structures found on leaf surface. Washing the leaf surface with water indicated that sodium and chloride predominated in excreted salts, and that potassium was poorly represented. Optimal growth of whole plant was recorded at 25% SW, correlating with maximum Na(+) and Cl(-) absolute secretion rate. The leaves of plants treated with SW retained more water than those of plants treated with tap water due to lower solute potential, especially at 25% SW. Analysis of compatible solute, such as proline, total soluble carbohydrates and glycinebetaine disclosed strong relationship between glycinebetaine and osmotic potential (r = 0.92) suggesting that tissue hydration was partly maintained by glycinebetaine accumulation. Thus in S. fruticosa , increased solute accumulation associated with water retention, and steady intracellular ion homeostasis confirms the "includer" strategy of salt tolerance previously demonstrated. However, salt excretion at leaf surface also participated in conferring to this species a capacity in high salinity tolerance.

  18. Spatial and Temporal Distribution of Soil-Applied Neonicotinoids in Citrus Tree Foliage.

    PubMed

    Langdon, Kevin W; Schumann, Rhonda; Stelinski, Lukasz L; Rogers, Michael E

    2018-04-23

    Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the insect vector of Candidatus Liberibacter asiaticus (CLas), the presumed cause of huanglongbing (HLB) in citrus (Rutaceae). Soil-applied neonicotinoids are used to manage vector populations and thus reduce the spread of HLB in Florida citrus. Studies were conducted in the greenhouse and field to quantify the spatial and temporal distribution of three neonicotinoid insecticides within individually sampled leaves and throughout the tree canopy. Following field application, no difference in parent material titer was observed between leaf middles versus leaf margins following application of Platinum 75SG or Belay 2.13SC; however, imidacloprid titer was higher in leaf margins than leaf middle following application of Admire Pro. The bottom region of trees contained more imidacloprid than other regions, but was not different from the spherical center region. In the greenhouse, imidacloprid and clothianidin titers peaked 5 wk following application of Admire and Belay, respectively, and thiamethoxam titer peaked 3 wk after application of Platinum. There was no effect of leaf age on uptakes of any insecticides tested. Titers of soil-applied neonicotinoids quantified in the field failed to reach known levels required to kill D. citri. Exposure of D. citri to sublethal dosages of neonicotinoids is of concern for HLB management because of possible failure to protect treated plants from D. citri and selection pressure for development of neonicotinoid resistance. Our results suggest that current soil-based use patterns of neonicotinoids for D. citri management may be suboptimal and require reevaluation to maintain the utility of this chemical class in citrus.

  19. Leaf temperature and stomatal influences on sap velocity diurnal hysteresis in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Gimenez, B.; Negron Juarez, R. I.; Koven, C.; Powell, T.; Higuchi, N.; Chambers, J.; Varadharajan, C.

    2016-12-01

    In order to improve our ability to predict terrestrial evapotranspiration fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, but remains poorly characterized, especially in tropical ecosystems. In this study we show a tight positive correlation between sap velocity (at 1 m of height) and leaf surface temperature (LST, 20-30 m of height) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As leaf temperatures varied throughout the day, sap velocity responded with little delay (<15 min). Positive sap velocity was often observed at night, but also closely followed night time LSTs. When plotted versus LST, sap velocity showed an exponential increase before reaching a reflection point and a plateau and is characterized as a sigmoidal curve, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity was evident with morning periods showing higher temperature sensitivities than afternoon and night periods. Diurnal leaf observations showed a morning peak in stomatal conductance ( 10:00-10:30), but a mid-day to afternoon peak in transpiration and leaf temperature (12:00-14:00). Our observations suggest the sap velocity-LST hysteresis pattern arises due to the temporal offset between stomatal conductance and vapor pressure deficits (VPD) and demonstrates the dominating effect of VPD over stomatal conductance in maintaining high transpiration/sap flow rates under elevated temperatures. Our results have important implications for modeling tropical forest transpiration and suggests the possibility of predicting evapotranspiration fluxes at the ecosystem to regional scales based on remote sensed vegetation temperature.

  20. Responses of tropical legumes from the Brazilian Atlantic Rainforest to simulated acid rain.

    PubMed

    Andrade, Guilherme C; Silva, Luzimar C

    2017-07-01

    We investigated the morphological and anatomical effects of simulated acid rain on leaves of two species native to the Brazilian Atlantic Rainforest: Paubrasilia echinata and Libidibia ferrea var. leiostachya. Saplings were subjected to acid rain in a simulation chamber during 10 days for 15 min daily, using H 2 SO 4 solution pH 3.0 and, in the control, deionized water. At the end of the experiment, fragments from young and expanding leaves were anatomically analyzed. Although L. ferrea var. leiostachya leaves are more hydrophobic, rain droplets remained in contact with them for a longer time, as in the hydrophilic P. echinata leaves, droplets coalesce and rapidly run off. Visual symptomatology consisted in interveinal and marginal necrotic dots. Microscopic damage found included epicuticular wax flaking, turgor loss and epidermal cell shape alteration, hypertrophy of parenchymatous cells, and epidermal and mesophyll cell collapse. Formation of a wound tissue was observed in P. echinata, and it isolated the necrosis to the adaxial leaf surface. Acid rain increased thickness of all leaf tissues except spongy parenchyma in young leaves of L. ferrea var. leiostachya, and such thickness was maintained throughout leaf expansion. To our knowledge, this is the first report of acidity causing increase in leaf tissue thickness. This could represent the beginning of cell hypertrophy, which was seen in visually affected leaf regions. Paubrasilia echinata was more sensitive, showing earlier symptoms, but the anatomical damage in L. ferrea var. leiostachya was more severe, probably due to the higher time of contact with acid solution in this species.

  1. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    PubMed

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that there were no drawbacks in the leaf physiological performance which could be attributed to the micropropagated plants of fast growing hybrid poplar. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Parasitism rate, parasitoid community composition and host specificity on exposed and semi-concealed caterpillars from a tropical rainforest.

    PubMed

    Hrcek, Jan; Miller, Scott E; Whitfield, James B; Shima, Hiroshi; Novotny, Vojtech

    2013-10-01

    The processes maintaining the enormous diversity of herbivore-parasitoid food webs depend on parasitism rate and parasitoid host specificity. The two parameters have to be evaluated in concert to make conclusions about the importance of parasitoids as natural enemies and guide biological control. We document parasitism rate and host specificity in a highly diverse caterpillar-parasitoid food web encompassing 266 species of lepidopteran hosts and 172 species of hymenopteran or dipteran parasitoids from a lowland tropical forest in Papua New Guinea. We found that semi-concealed hosts (leaf rollers and leaf tiers) represented 84% of all caterpillars, suffered a higher parasitism rate than exposed caterpillars (12 vs. 5%) and their parasitoids were also more host specific. Semi-concealed hosts may therefore be generally more amenable to biological control by parasitoids than exposed ones. Parasitoid host specificity was highest in Braconidae, lower in Diptera: Tachinidae, and, unexpectedly, the lowest in Ichneumonidae. This result challenges the long-standing view of low host specificity in caterpillar-attacking Tachinidae and suggests higher suitability of Braconidae and lower suitability of Ichneumonidae for biological control of caterpillars. Semi-concealed hosts and their parasitoids are the largest, yet understudied component of caterpillar-parasitoid food webs. However, they still remain much closer in parasitism patterns to exposed hosts than to what literature reports on fully concealed leaf miners. Specifically, semi-concealed hosts keep an equally low share of idiobionts (2%) as exposed caterpillars.

  3. Arrhenius equation modeling for the shelf life prediction of tomato paste containing a natural preservative.

    PubMed

    Jafari, Seid Mahdi; Ganje, Mohammad; Dehnad, Danial; Ghanbari, Vahid; Hajitabar, Javad

    2017-12-01

    The shelf life of tomato paste with microencapsulated olive leaf extract was compared with that of samples containing a commercial preservative by accelerated shelf life testing. Based on previous studies showing that olive leaf extract as a rich source of phenolic compounds can have antimicrobial properties, application of its encapsulated form to improve the storage stability of tomato paste is proposed here. Regarding total soluble solids, the control and the sample containing 1000 µg g -1 sodium benzoate had the lowest (Q 10  = 1.63) and highest (Q 10  = 1.88) sensitivity to temperature changes respectively; also, the microencapsulated sample containing 1000 µg g -1 encapsulated olive leaf extract (Q 10  = 1.83) followed the sample containing 1000 µg g -1 sodium benzoate in terms of the highest kinetic rates. In the case of consistency, the lowest and highest activation energies (E a ) corresponded to samples containing 1000 µg g -1 non-encapsulated olive leaf extract and 1000 µg g -1 microencapsulated olive leaf extract respectively. Interestingly, samples containing microencapsulated olive leaf extract could maintain the original quality of the tomato paste very well, while those with non-encapsulated olive leaf extract rated the worst performance (among all specimens) in terms of maintaining their quality indices for a long time period. Overall, the shelf life equation was able to predict the consistency index of all tomato paste samples during long-time storage with high precision. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. An Evaluation of Frankliniella occidentalis (Thysanoptera: Thripidae) and Frankliniella intonsa (Thysanoptera: Thripidae) Performance on Different Plant Leaves Based on Life History Characteristics

    PubMed Central

    Li, Wei-Di; Zhang, Peng-Jun; Zhang, Jing-Ming; Zhang, Zhi-Jun; Huang, Fang; Bei, Ya-Wei; Lin, Wen-Cai; Lu, Yao-Bin

    2015-01-01

    To compare the performance of Frankliniella occidentalis (Pergande) and native Frankliniella intonsa (Trybom) on cucumber and tomato leaves in laboratory, life history characters were investigated, and life tables were constructed using the method of age-stage, two-sex table life. Compared with tomato leaf, there were shorter total preoviposition period (TPOP), higher fecundity, longer female longevity, and higher intrinsic rate of increase (r) of both F. occidentalis and F. intonsa on cucumber leaf. Meanwhile, on cucumber leaf, the shorter TPOP, higher fecundity, longer female longevity, and higher value of r were found on population of F. intonsa but on tomato leaf which were found on population of F. occidentalis. From above, cucumber leaf was the preference to population development of both F. occidentalis and F. intonsa compared with tomato leaf. Nevertheless, on cucumber leaf, population of F. intonsa would grow faster than that of F. occidentalis, which was the opposite on tomato leaf. As to the population development in fields, much more factors would be taken into account, such as pollen, insecticide resistance, and effects of natural enemies etc. PMID:25673049

  5. Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia

    PubMed Central

    Ens, Emilie; Hutley, Lindsay B.; Rossiter-Rachor, Natalie A.; Douglas, Michael M.; Setterfield, Samantha A.

    2015-01-01

    Comparative studies of plant resource use and ecophysiological traits of invasive and native resident plant species can elucidate mechanisms of invasion success and ecosystem impacts. In the seasonal tropics of north Australia, the alien C4 perennial grass Andropogon gayanus (gamba grass) has transformed diverse, mixed tree-grass savanna ecosystems into dense monocultures. To better understand the mechanisms of invasion, we compared resource acquisition and usage efficiency using leaf-scale ecophysiological and stand-scale growth traits of A. gayanus with a co-habiting native C4 perennial grass Alloteropsis semialata. Under wet season conditions, A. gayanus had higher rates of stomatal conductance, assimilation, and water use, plus a longer daily assimilation period than the native species A. semialata. Growing season length was also ~2 months longer for the invader. Wet season measures of leaf scale water use efficiency (WUE) and light use efficiency (LUE) did not differ between the two species, although photosynthetic nitrogen use efficiency (PNUE) was significantly higher in A. gayanus. By May (dry season) the drought avoiding native species A. semialata had senesced. In contrast, rates of A. gayanus gas exchange was maintained into the dry season, albeit at lower rates that the wet season, but at higher WUE and PNUE, evidence of significant physiological plasticity. High PNUE and leaf 15N isotope values suggested that A. gayanus was also capable of preferential uptake of soil ammonium, with utilization occurring into the dry season. High PNUE and fire tolerance in an N-limited and highly flammable ecosystem confers a significant competitive advantage over native grass species and a broader niche width. As a result A. gayanus is rapidly spreading across north Australia with significant consequences for biodiversity and carbon and retention. PMID:26300890

  6. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought.

    PubMed

    Limousin, Jean-Marc; Rambal, Serge; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesus; Pérez-Ramos, Ignacio M; Rodríguez-Cortina, Raquel; Misson, Laurent; Joffre, Richard

    2012-06-01

    Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial throughfall exclusion for 7 years. The leaf area index rapidly declined in the throughfall-exclusion plot and was 19% lower than in the control plot after 7 years of treatment. Consequently, leaf litterfall was significantly lower in the dry treatment. Such a decline in leaf area occurred through a change in branch allometry with a decreased number of ramifications produced and a reduction of the leaf area supported per unit sapwood area of the shoot (LA/SA). The leafing phenology was slightly delayed and the median leaf life span was slightly longer in the dry treatment. The canopy dynamics in both treatments were driven by water availability with a 1-year lag: leaf shedding and production were reduced following dry years; in contrast, leaf turnover was increased following wet years. The drought-induced decrease in leaf area, resulting from both plasticity in shoot development and slower leaf turnover, appeared to be a hydraulic adjustment to limit canopy transpiration and maintain leaf-specific hydraulic conductivity under drier conditions.

  7. Ion Relations of Symplastic and Apoplastic Space in Leaves from Spinacia oleracea L. and Pisum sativum L. under Salinity 1

    PubMed Central

    Speer, Michael; Kaiser, Werner M.

    1991-01-01

    Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl−) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3−/Cl− uptake by roots. PMID:16668541

  8. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    PubMed

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  9. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    PubMed Central

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China. PMID:29675008

  10. Growth responses of Phragmites karka - a candidate for second generation biofuel from degraded saline lands

    NASA Astrophysics Data System (ADS)

    Zaheer Ahmed, Muhammad; Shoukat, Erum; Abideen, Zainul; Aziz, Irfan; Gulzar, Salman; Ajmal Khan, M.

    2017-04-01

    Global changes like rapidly increasing population, limited fresh water resources, increasing salinity and aridity are the major causes of land degradation. Increasing feed production for bioenergy through direct and indirect land use cause major threat to biodiversity besides competing with food resources. Growing halophytes on saline lands would provide alternate source of energy without compromising food and cash crop farming. Phragmites karkahas recently emerged as a potential bio-fuel crop, which maintains optimal growth at 100 mM NaCl with high ligno-cellulosic biomass. However, temporal and organ specific plant responses under salinity needs to be understood for effective management of degraded saline lands. This study was designed to investigate variation in growth, water relations, ion-flux, damage markers, soluble sugars, stomatal stoichiometry and photosynthetic responses of P. karka to short (0-7 days) and long (15-30 days) term exposure with 0 (control), 100 (moderate) and 300 (high) mM NaCl. A reduced shoot growth ( 45%) during earlier (within 7 days) phase was observed in 300 mM NaCl compared to control and moderate salinity. Reduced leaf elongation rate and leaf senescence from 7th day in 300 mM NaCl (and later in moderate salinity) correspond to increasing hydrogen peroxide and malondialdehyde contents. Leaf turgor loss represents the osmotic effect of NaCl at both concentrations, however turgor recovered completely in moderate salinity within a week. Plant appeared to use both organic solutes (soluble sugars) and ions (Na++K++Cl-) for osmotic adjustment along with improved water use efficiency under saline conditions. Turgor loss in high salinity (300 mM NaCl) was related to increased bulk elastic modulus and decreased hydraulic capacitance which ultimately resulted in low water potential. Leaf Na+ and Cl- accumulation increased earlier (from 7th day) in 300 mM NaCl and later in 100 mM. Higher ion sequestration in different organs was found in the following order: root > senesced leaves > young leaves. Moreover, plants maintained nutrient homeostasis (K+, Ca++, Mg++, NO-) by selective uptake via root and transport towards leaf. Moderate salinity increased instantaneous carboxylation efficiency and water use efficiency with stomatal density and smaller pore size compared to control which supported unchanged photosynthetic rate by protecting light harvesting machinery. Low photosynthetic rate in early phase of higher salinity was related to reduced stomatal conductance, while in later phase (15-30 days) due to decreased carboxylation efficiency, effective quantum yield and Fv/Fm (at noon). In conclusion, organ specific responses to short and long term exposure in moderate salinity ensures successful plant survival, whereas long term exposure tohigh salinitywas toxic for plant growth. It is recommended that P. karka could be grown as a biofuel crop on marginally saline and degraded lands.

  11. Influence of Water Relations and Temperature on Leaf Movements of Rhododendron Species 1

    PubMed Central

    Nilsen, Erik Tallak

    1987-01-01

    Rhododendron maximum L. and R. Catawbiense L. are subcanopy evergreen shrubs of the eastern United States deciduous forest. Field measurements of climate factors and leaf movements of these species indicated a high correlation between leaf temperature and leaf curling; and between leaf water potential and leaf angle. Laboratory experiments were performed to isolate the influence of temperature and cellular water relations on leaf movements. Significant differences were found between the patterns of temperature induction of leaf curling in the two species. Leaves of the species which curled at higher temperatures (R. catawbiense) also froze at higher leaf temperatures. However, in both cases leaf curling occurred at leaf temperatures two to three degrees above the leaf freezing point. Pressure volume curves indicated that cellular turgor loss was associated with a maximum of 45% curling while 100% or more curling occurred in field leaves which still had positive cell turgor. Moisture release curves indicated that 70% curling requires a loss of greater than 60% of symplastic water which corresponds to leaf water potentials far below those experienced in field situations. Conversely, most laboratory induced changes in leaf angle could be related to leaf cell turgor loss. PMID:16665296

  12. Spatial distribution of SPAD value and determination of the suitable leaf for N diagnosis in cucumber

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Li, Chenxiao; Wen, Yifang; Gao, Xinhao; Shi, Feifei; Han, Luhua

    2018-01-01

    To determine the best leaf position for nitrogen diagnosis in cucumber with SPAD meter, greenhouse experiments were carried out to study spatial distribution of SPAD value of different position of the 3rd fully expanded cucumber leaf in the effect of different nitrogen levels, and the correlations between SPAD values and nitrogen concentration of chlorophyll. The results show that there is remarkable different SPAD value in different positions of the 3rd fully expanded leaf in the flowering and fruiting stage. Comparing the coefficients of SPAD value variation, we find that the coefficient of variation of leaf edge was significantly higher than the edge of the main vein, and the coefficient of variation of triangular area of leaf tip is significantly higher than any other leaf area. There is a significant correlation between SPAD values and leaf nitrogen content. Preliminary study shows that triangular area of leaf tip from the 20% leaf tip to leaf edge is the best position for nitrogen diagnosis.

  13. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan

    PubMed Central

    Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-01-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630

  14. Can the exceptional chilling tolerance of C4 photosynthesis found in Miscanthus × giganteus be exceeded? Screening of a novel Miscanthus Japanese germplasm collection.

    PubMed

    Głowacka, Katarzyna; Jørgensen, Uffe; Kjeldsen, Jens B; Kørup, Kirsten; Spitz, Idan; Sacks, Erik J; Long, Stephen P

    2015-05-01

    A clone of the hybrid perennial C4 grass Miscanthus × giganteus (Mxg) is known for achieving exceptionally high rates of leaf CO2 uptake during chilling. This is a requisite of success in the early spring, as is the ability of the leaves to survive occasional frosts. The aim of this study was to search for genotypes with greater potential than Mxg for photosynthesis and frost survival under these conditions. A total of 864 accessions representing 164 local populations of M. sacchariflorus (Msa), M. sinensis (Msi) and M. tinctorius (Mti) collected across Japan were studied. Accessions whose leaves survived a natural late frost in the field were screened for high maximum photosystem II efficiency (Fv/Fm) following chilling weather, as an indicator of their capacity for light-limited photosynthesis. Those showing the highest Fv/Fm were transferred to a high-light-controlled environment and maintained at chilling temperatures, where they were further screened for their capacities for high-light-limited and light-saturated leaf uptake of CO2 (ΦCO2,max and Asat, respectively). For the first time, relatives of Mxg with significantly superior capacities for photosynthesis at chilling temperatures were identified. Msa accession '73/2' developed leaves in the spring that survived night-time frost, and during growth under chilling maintained a statistically significant 79 % higher ΦCO2,max, as a measure of light-limited photosynthesis, and a 70 % higher Asat, as a measure of light-saturated photosynthesis. A second Msa accession, '73/3' also showed significantly higher rates of leaf uptake of CO2. As remarkable as Mxg has proved in its chilling tolerance of C4 photosynthesis, this study shows that there is still value and potential in searching for yet more superior tolerance. Msa accession '73/2' shows rates of light-limited and light-saturated photosynthesis at chilling temperatures that are comparable with those of the most cold-tolerant C3 species. This adds further proof to the thesis that C4 photosynthesis is not inherently limited to warm climates. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Coordination of physiological and structural traits in Amazon forest trees

    NASA Astrophysics Data System (ADS)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2011-05-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants modulate their structural investments to best maintain and utilise their physiological capabilities, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1040 tree species located in 53 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five genetically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions also influenced structural traits with ρx decreasing with increased soil fertility and decreasing with increased temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus although genetically determined foliar traits such as those associated with leaf construction costs coordinate independently of structural characteristics, others tend to covary with leaf size, ΦLS, S tolerance strategies. Several traits such as MA and [C] are important components of more than one dimension with their ambiguous nature reflecting different underlying causes of variation. Environmental effects on structural and physiological characteristics are also coordinated but in a different way to the gamut of linkages associated with genotypic differences.

  16. Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss.

    PubMed

    Matthews, Jack S A; Vialet-Chabrand, Silvere R M; Lawson, Tracy

    2017-06-01

    Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO 2 diffusion into the leaf to maintain photosynthetic rates ( A ). Stomatal conductance often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has been suggested that a mesophyll-driven signal coordinates A and stomatal conductance responses to maintain this relationship; however, the signal has yet to be fully elucidated. Despite this correlation under stable environmental conditions, the responses of both parameters vary spatially and temporally and are dependent on species, environment, and plant water status. Most current models neglect these aspects of gas exchange, although it is clear that they play a vital role in the balance of carbon fixation and water loss. Future efforts should consider the dynamic nature of whole-plant gas exchange and how it represents much more than the sum of its individual leaf-level components, and they should take into consideration the long-term effect on gas exchange over time. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. An evaluation of Frankliniella occidentalis (Thysanoptera: Thripidae) and Frankliniella intonsa (Thysanoptera: Thripidae) performance on different plant leaves based on life history characteristics.

    PubMed

    Li, Wei-Di; Zhang, Peng-Jun; Zhang, Jing-Ming; Zhang, Zhi-Jun; Huang, Fang; Bei, Ya-Wei; Lin, Wen-Cai; Lu, Yao-Bin

    2015-01-01

    To compare the performance of Frankliniella occidentalis (Pergande) and native Frankliniella intonsa (Trybom) on cucumber and tomato leaves in laboratory, life history characters were investigated, and life tables were constructed using the method of age-stage, two-sex table life. Compared with tomato leaf, there were shorter total preoviposition period (TPOP), higher fecundity, longer female longevity, and higher intrinsic rate of increase (r) of both F. occidentalis and F. intonsa on cucumber leaf. Meanwhile, on cucumber leaf, the shorter TPOP, higher fecundity, longer female longevity, and higher value of r were found on population of F. intonsa but on tomato leaf which were found on population of F. occidentalis. From above, cucumber leaf was the preference to population development of both F. occidentalis and F. intonsa compared with tomato leaf. Nevertheless, on cucumber leaf, population of F. intonsa would grow faster than that of F. occidentalis, which was the opposite on tomato leaf. As to the population development in fields, much more factors would be taken into account, such as pollen, insecticide resistance, and effects of natural enemies etc. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  18. Variation in defence strategies in two species of the genus Beilschmiedia under differing soil nutrient and rainfall conditions.

    PubMed

    Simon, J; Miller, R E; Woodrow, I E

    2007-01-01

    The relationships between various leaf functional traits that are important in plant growth (e.g., specific leaf area) have been investigated in recent studies; however, research in this context on plants that are highly protected by chemical defences, particularly resource-demanding nitrogen-based defence, is lacking. We collected leaves from cyanogenic (N-defended) Beilschmiedia collina B. Hyland and acyanogenic (C-defended) Beilschmiedia tooram (F. M. Bailey) B. Hyland at high- and low-soil nutrient sites in two consecutive years that varied significantly in rainfall. We then measured the relationships between chemical defence and morphological and functional leaf traits under the different environmental conditions. We found that the two species differed significantly in their resource allocation to defence as well as leaf morphology and function. The N defended species had a higher leaf nitrogen concentration, whereas the C-defended species had higher amounts of C-based chemical defences (i.e., total phenolics and condensed tannins). The C-defended species also tended to have higher force to fracture and increased leaf toughness. In B. collina, cyanogenic glycoside concentration was higher with higher rainfall, but not with higher soil nutrients. Total phenolic concentration was higher at the high soil nutrient site in B. tooram, but lower in B. collina; however, with higher rainfall an increase was found in B. tooram, while phenolics decreased in B. collina. Condensed tannin concentration decreased in both species with rainfall and nutrient availability. We conclude that chemical defence is correlated with leaf functional traits and that variation in environmental resources affects this correlation.

  19. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance.

    PubMed

    Drake, John E; Tjoelker, Mark G; Vårhammar, Angelica; Medlyn, Belinda E; Reich, Peter B; Leigh, Andrea; Pfautsch, Sebastian; Blackman, Chris J; López, Rosana; Aspinwall, Michael J; Crous, Kristine Y; Duursma, Remko A; Kumarathunge, Dushan; De Kauwe, Martin G; Jiang, Mingkai; Nicotra, Adrienne B; Tissue, David T; Choat, Brendan; Atkin, Owen K; Barton, Craig V M

    2018-06-01

    Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole-canopy exchange of CO 2 and H 2 O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales. © 2018 John Wiley & Sons Ltd.

  20. [Effects of water supply tension on photosynthetic characteristics and root activity of greenhouse cucumber].

    PubMed

    Li, Shao; Xue, Xu-Zhang; Guo, Wen-Shan; Li, Xia; Chen, Fei

    2010-01-01

    To study the effects of soil water content on the photosynthesis, fluorescence parameters, and root growth of greenhouse cucumber (Cucumis sativus L.), a pot experiment was conducted, using a negative pressure water supplying and controlling device to control soil moisture regime. Seven levels of water supply tension (WST), i. e., 1, 3, 5, 7, 9, 11, and 13 kPa, were designed. The WST was inversely proportional to soil water content, and the gravimetric soil water content was maintained in the range of 14.23%-42.32%. With increasing WST, the leaf net photosynthetic rate (P(n)) in different growth periods showed a parabolic trend, being higher when the WST was 7-11 kPa at initial flowering stage, and was 3-5 kPa at fruiting stage. The reason for the decreased P(n) at 9-13 kPa WST was stomatal limitation. Under 1-5 kPa WST, the actual photochemical efficiency (phi(PS II) had a high value, and the possibility of photo inhibition was small. Both the leaf transpiration rate and the chlorophyll content were positively correlated with leaf P(n) in different growth periods. Root growth and activity also had a parabolic trend with increasing WST. The maximum root dry mass and root activity happened at 7 kPa and 5 kPa WST, respectively. Our results indicated that a WST of 3-7 kPa was more profitable for the leaf photosynthesis and root growth of greenhouse cucumber.

  1. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves.

    PubMed

    Hu, Wei; Coomer, Taylor D; Loka, Dimitra A; Oosterhuis, Derrick M; Zhou, Zhiguo

    2017-06-01

    Potassium (K) plays important roles in the metabolism of carbon (C) and nitrogen (N), but studies of K deficiency affecting C-N balance are lacking. This study explored the influence of K deficiency on C-N interaction in cotton leaves by conducting a field experiment with cotton cultivar DP0912 under two K rates (K0: 0 kg K 2 O ha -1 and K67: 67 kg K 2 O ha -1 ) and a controlled environment experiment with K-deficient solution (K1: 0 mM K + ) and K-sufficient solution (K2: 6 mM K + ). The results showed that leaf K content, leaf number, leaf area, boll number, reproductive dry weight and total dry weight were significant lower under K deficiency (K0 or K1). Lower total chlorophyll content and Chl a/b ratio, and decreased Pn along with lower Gs and higher Ci were measured under K deficiency, suggesting that the decrease in Pn was resulted from non-stomatal limitation. Leaf glucose, fructose, sucrose and starch contents were higher under K deficiency, because lower sucrose export was detected in phloem. Although leaf nitrate and ammonium contents significantly decreased, free amino acid content was increased by 40-63% under K deficiency, since lower amino acid export was also measured in phloem. K deficiency also induced lower soluble protein content in leaves. Leaf ATP level was significantly increased under K deficiency, indicating ATP utilization was lower, so that less energy was supplied to C and N metabolism. The ratio of soluble sugar to free amino acid and the C/N ratio markedly increased under K deficiency, and one reason was that the phloem export reduced more prominent for sucrose (54.6-78.0%) than amino acid (36.7-85.4%) under K deficiency. In addition, lower phosphoenolpyruvate carboxylase activity limited malate and citrate biosynthesis under K deficiency, causing a decrease of C flux into the amino acids, which was not beneficial for maintaining C-N balance. Sucrose phosphate synthase and nitrate reductase activities were lower under K deficiency, which would limit sucrose biosynthesis and nitrate assimilation. This was another factor altering soluble sugar to free amino acid ratio and C/N ratio in the K-deficient leaves. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Leaf Tissue C:N and Soil N are Modified by Growing Season and Goose Grazing Phenology in a Sub-Arctic Coastal Wetland of Western Alaska

    NASA Astrophysics Data System (ADS)

    Choi, R. T.; Beard, K. H.; Leffler, A. J.; Schmutz, J. A.; Welker, J. M.

    2014-12-01

    Climate change in Arctic wetlands is resulting in a widening phenological mismatch between the onset of the growing season and the arrival and hatch date of migratory geese, the primary consumers in the system. During the past three decades, the growing season has advanced but geese have not advanced arrival or hatch date at the same rate. Geese now arrive into a system that has been growing longer than in the past with potential changes in forage quality because sedges have their highest nutrient density shortly following emergence. One potential concomitant result of this phenological gap is altered carbon to nitrogen ratio (C:N) of leaf tissue being returned to the ecosystem as feces that is more N-poor. Altering the C:N of these inputs can further influence C and N cycling in the system. We examine the influence of advanced growing season and different arrival times by black brant on leaf and soil C:N ratio and soil N-form. Our experiment consists of six blocks with nine study plots each. Half the plots are warmed to advance the growing season. Two plots each receive early, typical, late, and no grazing; one plot is a control that is not warmed and grazing is natural. Leaf tissue was collected to determine C and N concentration using an elemental analyzer. Anion and cation exchange membranes were used to monitor inorganic N forms in soil; samples were analyzed via fluorescence following extraction. Soil water collected from lysimeters was analyzed for organic N. Warming advanced plant growth between one and two weeks and resulted in higher C:N of leaf tissue Geese maintained 'grazing lawns', areas of exceptionally short vegetation, where plants had high N compared to non-grazed areas. Grazing early in the season promoted higher N content of leaves and soil while grazing late had little influence on N. The timing of the growing season and grazing both have important implications for C and N in this system.

  3. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness

    PubMed Central

    Wang, Xianzhong; Lewis, James D.; Tissue, David T.; Seemann, Jeffrey R.; Griffin, Kevin L.

    2001-01-01

    Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO2 on leaf R during illumination are largely unknown. We studied the effects of elevated CO2 on leaf R in light (RL) and in darkness (RD) in Xanthium strumarium at different developmental stages. Leaf RL was estimated by using the Kok method, whereas leaf RD was measured as the rate of CO2 efflux at zero light. Leaf RL and RD were significantly higher at elevated than at ambient CO2 throughout the growing period. Elevated CO2 increased the ratio of leaf RL to net photosynthesis at saturated light (Amax) when plants were young and also after flowering, but the ratio of leaf RD to Amax was unaffected by CO2 levels. Leaf RN was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO2-grown plants. The ratio of leaf RL to RD was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO2 concentrations but to a lesser degree for elevated (17–24%) than for ambient (29–35%) CO2-grown plants, presumably because elevated CO2-grown plants had a higher demand for energy and carbon skeletons than ambient CO2-grown plants in light. Our results suggest that using the CO2 efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO2-grown plants. PMID:11226264

  4. Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness.

    PubMed

    Wang, X; Lewis, J D; Tissue, D T; Seemann, J R; Griffin, K L

    2001-02-27

    Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO(2) on leaf R during illumination are largely unknown. We studied the effects of elevated CO(2) on leaf R in light (R(L)) and in darkness (R(D)) in Xanthium strumarium at different developmental stages. Leaf R(L) was estimated by using the Kok method, whereas leaf R(D) was measured as the rate of CO(2) efflux at zero light. Leaf R(L) and R(D) were significantly higher at elevated than at ambient CO(2) throughout the growing period. Elevated CO(2) increased the ratio of leaf R(L) to net photosynthesis at saturated light (A(max)) when plants were young and also after flowering, but the ratio of leaf R(D) to A(max) was unaffected by CO(2) levels. Leaf R(N) was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO(2)-grown plants. The ratio of leaf R(L) to R(D) was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO(2) concentrations but to a lesser degree for elevated (17-24%) than for ambient (29-35%) CO(2)-grown plants, presumably because elevated CO(2)-grown plants had a higher demand for energy and carbon skeletons than ambient CO(2)-grown plants in light. Our results suggest that using the CO(2) efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO(2)-grown plants.

  5. Osmotic Adjustment in Leaves of VA Mycorrhizal and Nonmycorrhizal Rose Plants in Response to Drought Stress.

    PubMed

    Augé, R M; Schekel, K A; Wample, R L

    1986-11-01

    Osmotic adjustment in Rosa hybrida L. cv Samantha was characterized by the pressure-volume approach in drought-acclimated and unacclimated plants brought to the same level of drought strain, as assayed by stomatal closure. Plants were colonized by either of the vesicular-arbuscular mycorrhizal fungi Glomus deserticola Trappe, Bloss and Menge or G. intraradices Schenck and Smith, or were nonmycorrhizal. Both the acclimation and the mycorrhizal treatments decreased the osmotic potential (Psi(pi)) of leaves at full turgor and at the turgor loss point, with a corresponding increase in pressure potential at full turgor. Mycorrhizae enabled plants to maintain leaf turgor and conductance at greater tissue water deficits, and lower leaf and soil water potentials, when compared with nonmycorrhizal plants. As indicated by the Psi(pi) at the turgor loss point, the active Psi(pi) depression which attended mycorrhizal colonization alone was 0.4 to 0.6 megapascals, and mycorrhizal colonization and acclimation in concert 0.6 to 0.9 megapascals, relative to unacclimated controls without mycorrhizae. Colonization levels and sporulation were higher in plants subjected to acclimation. In unacclimated hosts, leaf water potential, water saturation deficit, and soil water potential at a particular level of drought strain were affected most by G. intraradices. G. deserticola had the greater effect after drought preconditioning.

  6. Common bean varieties demonstrate differential physiological and metabolic responses to the pathogenic fungus Sclerotinia sclerotiorum.

    PubMed

    Robison, Faith M; Turner, Marie F; Jahn, Courtney E; Schwartz, Howard F; Prenni, Jessica E; Brick, Mark A; Heuberger, Adam L

    2018-02-24

    Plant physiology and metabolism are important components of a plant response to microbial pathogens. Physiological resistance of common bean (Phaseolus vulgaris L.) to the fungal pathogen Sclerotinia sclerotiorum has been established, but the mechanisms of resistance are largely unknown. Here, the physiological and metabolic responses of bean varieties that differ in physiological resistance to S. sclerotiorum are investigated. Upon infection, the resistant bean variety A195 had a unique physiological response that included reduced photosynthesis and maintaining a higher leaf surface pH during infection. Leaf metabolomics was performed on healthy tissue adjacent to the necrotic lesion at 16, 24, and 48 hr post inoculation, and 144 metabolites were detected that varied between A195 and Sacramento following infection. The metabolites that varied in leaves included amines/amino acids, organic acids, phytoalexins, and ureides. The metabolic pathways associated with resistance included amine metabolism, uriede-based nitrogen remobilization, antioxidant production, and bean-specific phytoalexin production. A second experiment was conducted in stems of 13 bean genotypes with varying resistance. Stem resistance was associated with phytoalexin production, but unlike leaf metabolism, lipid changes were associated with susceptibility. Taken together, the data supports a multifaceted, physiometabolic response of common bean to S. sclerotiorum that mediates resistance. © 2018 John Wiley & Sons Ltd.

  7. Are gas exchange responses to resource limitation and defoliation linked to source:sink relationships?

    PubMed

    Pinkard, E A; Eyles, A; O'Grady, A P

    2011-10-01

    Productivity of trees can be affected by limitations in resources such as water and nutrients, and herbivory. However, there is little understanding of their interactive effects on carbon uptake and growth. We hypothesized that: (1) in the absence of defoliation, photosynthetic rate and leaf respiration would be governed by limiting resource(s) and their impact on sink limitation; (2) photosynthetic responses to defoliation would be a consequence of changing source:sink relationships and increased availability of limiting resources; and (3) photosynthesis and leaf respiration would be adjusted in response to limiting resources and defoliation so that growth could be maintained. We tested these hypotheses by examining how leaf photosynthetic processes, respiration, carbohydrate concentrations and growth rates of Eucalyptus globulus were influenced by high or low water and nitrogen (N) availability, and/or defoliation. Photosynthesis of saplings grown with low water was primarily sink limited, whereas photosynthetic responses of saplings grown with low N were suggestive of source limitation. Defoliation resulted in source limitation. Net photosynthetic responses to defoliation were linked to the degree of resource availability, with the largest responses measured in treatments where saplings were ultimately source rather than sink limited. There was good evidence of acclimation to stress, enabling higher rates of C uptake than might otherwise have occurred. © 2011 Blackwell Publishing Ltd.

  8. Changes in water, nitrogen and carbon cycling in loblolly pine (Pinus taeda L.) during a mortality event

    NASA Astrophysics Data System (ADS)

    Renninger, H. J.; Hornslein, N.; Siegert, C. M.

    2017-12-01

    Depending on the type of disturbance, the mortality process of an individual tree may occur over an extended period leading to changes in tree and ecosystem functioning throughout this time period and before ultimate tree death is evident. Therefore, the goals of this research were to quantify physiological changes occurring in loblolly pine (Pinus taeda L.) during an extended mortality event. In July 2015, ten trees were girdled to simulate a Southern pine beetle disturbance and trees were monitored until their eventual mortality which occurred from Aug. to Dec. of 2016. Sapflow rates and litterfall were monitored throughout the mortality process and photosynthetic rates and leaf nitrogen concentrations were measured at the height of the 2016 growing season. Girdled pines had significantly higher sapflow compared with control pines in the first month following girdling, then sapflow did not differ significantly for the remainder of the 2015 growing season. From Dec. 2015 to Dec. 2016, control trees had about 25% higher sapflow compared with girdled pines, but both groups maintained a similar relationship between sapflow and soil moisture. Extensive litterfall occurred throughout the 2016 growing season and litter had 50% higher N concentration than the prior growing season. N concentration of fresh leaves collected in 2016 did not differ in girdled vs. control pines but control pines had 64% higher maximum Rubisco-limited carboxylation rates (Vcmax) and 68% higher electron transport-limited carboxylation rates (Jmax) compared to girdled pines. Control pines also had 66% higher foliage densities and 44% larger growth ring widths than girdled pines at the end of the 2016 growing season. Taken together, these results highlight the physiological changes that occur in pines undergoing mortality before needles completely discolor and drop. Compared with control pines, girdled pines exhibited greater changes in carbon and nitrogen compared with water use suggesting that sapflow per unit leaf area was increased to compensate for the losses in total leaf area. These data highlight the importance of physiological measurements taken throughout a mortality event to more accurately quantify the changes in ecosystem-scale water, nitrogen and carbon balance occurring during disturbance episodes.

  9. Drought induced changes of leaf-to-root relationships in two tomato genotypes.

    PubMed

    Moles, Tommaso Michele; Mariotti, Lorenzo; De Pedro, Leandro Federico; Guglielminetti, Lorenzo; Picciarelli, Piero; Scartazza, Andrea

    2018-07-01

    Water deficit triggers a dynamic and integrated cross-talk between leaves and roots. Tolerant plants have developed several physiological and molecular mechanisms to establish new cell metabolism homeostasis, avoiding and/or escaping from permanent impairments triggered by drought. Two tomato genotypes (a Southern Italy landrace called Ciettaicale and the well-known commercial cultivar Moneymaker) were investigated at vegetative stage to assess leaf and root metabolic strategies under 20 days of water deficit. Physiological and metabolic changes, in terms of ABA, IAA, proline, soluble sugars and phenols contents, occurred in both tomato genotypes under water stress. Overall, our results pointed out the higher plasticity of Ciettaicale to manage plant water status under drought in order to preserve the source-sink relationships. This aim was achieved by maintaining a more efficient leaf photosystem II (PSII) photochemistry, as suggested by chlorophyll fluorescence parameters, associated with a major investment towards root growth and activity to improve water uptake. On the contrary, the higher accumulation of carbon compounds, resulting from reduced PSII photochemistry and enhanced starch reserve mobilization, in leaves and roots of Moneymaker under drought could play a key role in the osmotic adjustment, although causing a feedback disruption of the source-sink relations. This hypothesis was also supported by the different drought-induced redox unbalance, as suggested by H 2 O 2 and MDA contents. This could affect both PSII photochemistry and root activity, leading to a major involvement of NPQ and antioxidant system in response to drought in Moneymaker than Ciettaicale. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species.

    PubMed

    De Guzman, Mark E; Santiago, Louis S; Schnitzer, Stefan A; Álvarez-Cansino, Leonor

    2017-10-01

    In tropical forest canopies, it is critical for upper shoots to efficiently provide water to leaves for physiological function while safely preventing loss of hydraulic conductivity due to cavitation during periods of soil water deficit or high evaporative demand. We compared hydraulic physiology of upper canopy trees and lianas in a seasonally dry tropical forest to test whether trade-offs between safety and efficiency of water transport shape differences in hydraulic function between these two major tropical woody growth forms. We found that lianas showed greater maximum stem-specific hydraulic conductivity than trees, but lost hydraulic conductivity at less negative water potentials than trees, resulting in a negative correlation and trade-off between safety and efficiency of water transport. Lianas also exhibited greater diurnal changes in leaf water potential than trees. The magnitude of diurnal water potential change was negatively correlated with sapwood capacitance, indicating that lianas are highly reliant on conducting capability to maintain leaf water status, whereas trees relied more on stored water in stems to maintain leaf water status. Leaf nitrogen concentration was related to maximum leaf-specific hydraulic conductivity only for lianas suggesting that greater water transport capacity is more tied to leaf processes in lianas compared to trees. Our results are consistent with a trade-off between safety and efficiency of water transport and may have implications for increasing liana abundance in neotropical forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Variation in Leaf Respiration Rates at Night Correlates with Carbohydrate and Amino Acid Supply1[OPEN

    PubMed Central

    Lee, Chun Pong; Cheng, Riyan

    2017-01-01

    Plant respiration can theoretically be fueled by and dependent upon an array of central metabolism components; however, which ones are responsible for the quantitative variation found in respiratory rates is unknown. Here, large-scale screens revealed 2-fold variation in nighttime leaf respiration rate (RN) among mature leaves from an Arabidopsis (Arabidopsis thaliana) natural accession collection grown under common favorable conditions. RN variation was mostly maintained in the absence of genetic variation, which emphasized the low heritability of RN and its plasticity toward relatively small environmental differences within the sampling regime. To pursue metabolic explanations for leaf RN variation, parallel metabolite level profiling and assays of total protein and starch were performed. Within an accession, RN correlated strongly with stored carbon substrates, including starch and dicarboxylic acids, as well as sucrose, major amino acids, shikimate, and salicylic acid. Among different accessions, metabolite-RN correlations were maintained with protein, sucrose, and major amino acids but not stored carbon substrates. A complementary screen of the effect of exogenous metabolites and effectors on leaf RN revealed that (1) RN is stimulated by the uncoupler FCCP and high levels of substrates, demonstrating that both adenylate turnover and substrate supply can limit leaf RN, and (2) inorganic nitrogen did not stimulate RN, consistent with limited nighttime nitrogen assimilation. Simultaneous measurements of RN and protein synthesis revealed that these processes were largely uncorrelated in mature leaves. These results indicate that differences in preceding daytime metabolic activities are the major source of variation in mature leaf RN under favorable controlled conditions. PMID:28615345

  12. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening.

    PubMed

    Terfa, Meseret Tesema; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar; Olsen, Jorunn Elisabeth; Torre, Sissel

    2013-05-01

    Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance-dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light-emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS-grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax ) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED-grown leaves also displayed a more sun-type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower. Copyright © Physiologia Plantarum 2012.

  13. Effect of harvest timing and leaf hairiness on fiber quality

    USDA-ARS?s Scientific Manuscript database

    Recent concerns over leaf grades have generated questions of how both time of day cotton is harvested, as well as leaf hairiness levels of certain varieties, influence fiber quality. To address this, two smooth leaf varieties and two varieties with higher levels of leaf pubescence were harvested at...

  14. Antimicrobial activity of aqueous extract of leaf and stem extract of Santalum album

    PubMed Central

    Kumar, M. Giriram; Jeyraaj, Indira A.; Jeyaraaj, R.; Loganathan, P.

    2006-01-01

    The antimicrobial activity of aqueous extract leaf and stem of Santalum album was performed against Escherichia coli, Staphylococcus aureus and Pseudomonas. S. album leaf extract showed inhibition to E.coli (0.8mm), Staphylococcus aureus (1.0mm) and Pseudomonas (1.4mm) were as stem extract showed inhibition on E.coli (0.6mm), Staphylococcus aureus (0.4mm) and seudomonas (1.0mm) respectively. However leaf extract showed significantly higher inhibition when compared to stem extract. This might be due to presence of higher amount of secondary metabolites in the aqueous leaf extract. PMID:22557199

  15. Photo-oxidative stress in emerging and senescing leaves: a mirror image?

    PubMed

    Juvany, Marta; Müller, Maren; Munné-Bosch, Sergi

    2013-08-01

    The life cycle of a leaf can be characterized as consisting of different stages: from primordial leaf initiation in the shoot apical meristem (SAM) to leaf senescence. Leaf development, from early leaf growth to senescence, is tightly controlled by plant development and the environment. Here, we primarily focus on summarizing current evidence indicating that photo-oxidative stress occurs at the two extremes of a leaf's lifespan. Some recent studies clearly indicate that--as happens in senescing leaves--emerging new leaves suffer from photo-oxidative stress, which suggests that oxidative stress plays a key role at both ends of the leaf life cycle. We discuss the causes and consequences of suffering from photo-oxidative stress during leaf development, paying attention to the particularities of this process at the two extremes of leaf development. Of particular importance is the current evidence showing mechanisms that maintain an adequate cellular reactive oxygen species/antioxidant (redox) balance that allows growth and prevents oxidative damage in young emerging leaves, while later on photo-oxidative stress induces cell death in senescing leaves. Also of interest is the fact that reductions in the efficiency of photosystem II photochemistry may not necessarily indicate photo-oxidative stress in emerging leaves. In this review, we summarize current knowledge of photoinhibition, photoprotection, and photo-oxidative stress at the two ends of the leaf life cycle: early leaf growth and leaf senescence.

  16. Nitrogen Nutrition Improves the Potential of Wheat (Triticum aestivum L.) to Alleviate the Effects of Drought Stress during Vegetative Growth Periods.

    PubMed

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Cui, Yakun; Liu, Yang; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo

    2016-01-01

    Efficient nitrogen (N) nutrition has the potential to alleviate drought stress in crops by maintaining metabolic activities even at low tissue water potential. This study was aimed to understand the potential of N to minimize the effects of drought stress applied/occur during tillering (Feekes stage 2) and jointing (Feekes stage 6) growth stages of wheat by observing the regulations and limitations of physiological activities, crop growth rate during drought periods as well as final grain yields at maturity. In present study, pot cultured plants of a wheat cultivar Yangmai-16 were exposed to three water levels [severe stress at 35-40% field capacity (FC), moderate stress at 55-60% FC and well-watered at 75-80% FC] under two N rates (0.24 g and 0.16 g/kg soil). The results showed that the plants under severe drought stress accompanied by low N exhibited highly downregulated photosynthesis, and chlorophyll (Chl) fluorescence during the drought stress periods, and showed an accelerated grain filling rate with shortened grain filling duration (GFD) at post-anthesis, and reduced grain yields. Severe drought-stressed plants especially at jointing, exhibited lower Chl and Rubisco contents, lower efficiency of photosystem II and greater grain yield reductions. In contrast, drought-stressed plants under higher N showed tolerance to drought stress by maintaining higher leaf water potential, Chl and Rubisco content; lower lipid peroxidation associated with higher superoxide dismutase and ascorbate peroxidase activities during drought periods. The plants under higher N showed delayed senescence, increased GFD and lower grain yield reductions. The results of the study suggested that higher N nutrition contributed to drought tolerance in wheat by maintaining higher photosynthetic activities and antioxidative defense system during vegetative growth periods.

  17. Nebulized water cooling of the canopy affects leaf temperature, berry composition and wine quality of Sauvignon blanc.

    PubMed

    Paciello, Pericle; Mencarelli, Fabio; Palliotti, Alberto; Ceccantoni, Brunella; Thibon, Cécile; Darriet, Philippe; Pasquini, Massimiliano; Bellincontro, Andrea

    2017-03-01

    The present paper details a new technique based on spraying nebulized water on vine canopy to counteract the negative impact of the current wave of hot summers with temperatures above 30 °C, which usually determine negative effects on vine yield, grape composition and wine quality. The automatized spraying system was able to maintain air temperature at below 30 °C (the threshold temperature to start spraying) for all of August 2013, when in the canopy of uncooled vines the temperature was as high as 36 °C. The maintenance of temperature below 30 °C reduced leaf stress linked to high temperature and irradiance regimes as highlighted by the decrease of H 2 O 2 content and catalase activity in the leaves. A higher amount of total polyphenols and organic acids and lower sugars characterized the grapes of cooled vines. Wine from these grapes had a higher content of some volatile thiols like 3-sulfanylhexanol (3SH) and 3-sulfanylhexylacetate (3SHA), and lower content of 4-methyl-4-sulfanylpentan-2-one (4MSP). Under conditions of high temperature and irradiance regimes, water nebulization on the vine canopy can represent a valid solution to reduce and/or avoid oxidative stress and associated effects in the leaves, ensure a regular berry ripening and maintain high wine quality. The consumption of water during nebulization was acceptable, being 180 L ha -1 min -1 , which lasted an average of about 1 min to reduce the temperature below the threshold value of 30 °C. A total of 85-90 hL (from 0.8 to 0.9 mm) of water per hectare per day was required. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Flood regime and leaf fall determine soil inorganic nitrogen dynamics in semiarid riparian forests.

    PubMed

    Shah, J J Follstad; Dahm, C N

    2008-04-01

    Flow regulation has reduced the exchange of water, energy, and materials between rivers and floodplains, caused declines in native plant populations, and advanced the spread of nonnative plants. Naturalized flow regimes are regarded as a means to restore degraded riparian areas. We examined the effects of flood regime (short [SIFI] vs. long [LIFI] inter-flood interval) on plant community and soil inorganic nitrogen (N) dynamics in riparian forests dominated by native Populus deltoides var. wislizenii Eckenwalder (Rio Grande cottonwood) and nonnative Tamarix chinensis Lour. (salt cedar) along the regulated middle Rio Grande of New Mexico. The frequency of inundation (every 2-3 years) at SIFI sites better reflected inundation patterns prior to the closure of an upstream dam relative to the frequency of inundation at LIFI sites (> or =10 years). Riparian inundation at SIFI sites varied from 7 to 45 days during the study period (April 2001-July 2004). SIFI vs. LIFI sites had higher soil moisture but greater groundwater table elevation fluctuation in response to flooding and drought. Rates of net N mineralization were consistently higher at LIFI vs. SIFI sites, and soil inorganic N concentrations were greatest at sites with elevated leaf-litter production. Sites with stable depth to ground water (approximately 1.5 m) supported the greatest leaf-litter production. Reduced leaf production at P. deltoides SIFI sites was attributed to drought-induced recession of ground water and prolonged inundation. We recommend that natural resource managers and restoration practitioners (1) utilize naturalized flows that help maintain riparian groundwater elevations between 1 and 3 m in reaches with mature P. deltoides or where P. deltoides revegetation is desired, (2) identify areas that naturally undergo long periods of inundation and consider restoring these areas to seasonal wetlands, and (3) use native xeric-adapted riparian plants to revegetate LIFI and SIFI sites where groundwater elevations commonly drop below 3 m.

  19. High water-use efficiency and growth contribute to success of non-native Erodium cicutarium in a Sonoran Desert winter annual community.

    PubMed

    Kimball, Sarah; Gremer, Jennifer R; Barron-Gafford, Greg A; Angert, Amy L; Huxman, Travis E; Venable, D Lawrence

    2014-01-01

    The success of non-native, invasive species may be due to release from natural enemies, superior competitive abilities, or both. In the Sonoran Desert, Erodium cicutarium has increased in abundance over the last 30 years. While native species in this flora exhibit a strong among-species trade-off between relative growth rate and water-use efficiency, E. cicutarium seems to have a higher relative growth rate for its water-use efficiency value relative to the pattern across native species. This novel trait combination could provide the non-native species with a competitive advantage in this water-limited environment. To test the hypothesis that E. cicutarium is able to achieve high growth rates due to release from native herbivores, we compared the effects of herbivory on E. cicutarium and its native congener, Erodium texanum. We also compared these two species across a range of environmental conditions, both in a common garden and in two distinct seasons in the field, using growth analysis, isotopic compositions and leaf-level gas exchange. Additionally, we compared the competitive abilities of the two Erodium species in a greenhouse experiment. We found no evidence of herbivory to either species. Physiological measurements in a common environment revealed that E. cicutarium was able to achieve high growth rates while simultaneously controlling leaf-level water loss. Non-native E. cicutarium responded to favourable conditions in the field with greater specific leaf area and leaf area ratio than native E. texanum. The non-native Erodium was a stronger competitor than its native congener in a greenhouse competition experiment. The ability to maintain relatively higher values of water-use efficiency:relative growth rate in comparison to the native flora may be what enables E. cictarium to outcompete native species in both wet and dry years, resulting in an increase in abundance in the highly variable Sonoran Desert.

  20. Predicting Fire Susceptibility in the Forests of Amazonia

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel C.; Brown, I. Foster; Setzer, Alberto

    2000-01-01

    Although fire is the single greatest threat to the ecological integrity of Amazon forests, our ability to predict the occurrence of Amazon forest fires is rudimentary. Part of the difficulty encountered in making such predictions is the remarkable capacity of Amazon forests to tolerate drought by tapping moisture stored in deep soil. These forests can avoid drought-induced leaf shedding by withdrawing moisture to depths of 8 meters and more. Hence, the absorption of deep soil moisture allows these forests to maintain their leaf canopies following droughts of several months duration, thereby maintaining the deep shade and high relative humidity of the forest interior that prevents these ecosystems from burning. But the drought- and fire-avoidance that is conferred by this deep-rooting phenomenon is not unlimited. During successive years of drought, such as those provoked by El Nino episodes, deep soil moisture can be depleted, and drought-induced leaf shedding begins. The goal of this project was to incorporate this knowledge of Amazon forest fire ecology into a predictive model of forest flammability.

  1. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress.

    PubMed

    Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo

    2017-08-01

    To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean.

    PubMed

    Weber, Ricardo Luís Mayer; Wiebke-Strohm, Beatriz; Bredemeier, Christian; Margis-Pinheiro, Márcia; de Brito, Giovani Greigh; Rechenmacher, Ciliana; Bertagnolli, Paulo Fernando; de Sá, Maria Eugênia Lisei; Campos, Magnólia de Araújo; de Amorim, Regina Maria Santos; Beneventi, Magda Aparecida; Margis, Rogério; Grossi-de-Sa, Maria Fátima; Bodanese-Zanettini, Maria Helena

    2014-12-10

    Drought is by far the most important environmental factor contributing to yield losses in crops, including soybeans [Glycine max (L.) Merr.]. To address this problem, a gene that encodes an osmotin-like protein isolated from Solanum nigrum var. americanum (SnOLP) driven by the UBQ3 promoter from Arabidopsis thaliana was transferred into the soybean genome by particle bombardment. Two independently transformed soybean lines expressing SnOLP were produced. Segregation analyses indicated single-locus insertions for both lines. qPCR analysis suggested a single insertion of SnOLP in the genomes of both transgenic lines, but one copy of the hpt gene was inserted in the first line and two in the second line. Transgenic plants exhibited no remarkable phenotypic alterations in the seven analyzed generations. When subjected to water deficit, transgenic plants performed better than the control ones. Leaf physiological measurements revealed that transgenic soybean plants maintained higher leaf water potential at predawn, higher net CO2 assimilation rate, higher stomatal conductance and higher transpiration rate than non-transgenic plants. Grain production and 100-grain weight were affected by water supply. Decrease in grain productivity and 100-grain weight were observed for both transgenic and non-transgenic plants under water deficit; however, it was more pronounced for non-transgenic plants. Moreover, transgenic lines showed significantly higher 100-grain weight than non-transgenic plants under water shortage. This is the first report showing that expression of SnOLP in transgenic soybeans improved physiological responses and yield components of plants when subjected to water deficit, highlighting the potential of this gene for biotechnological applications.

  3. Variation in vegetative growth and trichomes in Cannabis sativa L. (Marihuana) in response to enviromental pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, G.K.; Mann, S.K.

    Four populations of Cannabis sativa L. (marihuana) growing in their native habitat and exposed to different levels of environmental pollution were studied for several leaf morphology and leaf trichome features. Leaf length, petiole length, length and width of central leaflet, and the number of teeth on leaf margin decreased with increase in pollution. Trichome length and trichome density values were found to be higher in populations exposed to higher levels of environmental pollution.

  4. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    PubMed

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  5. Active suppression of a leaf meristem orchestrates determinate leaf growth

    PubMed Central

    Alvarez, John Paul; Furumizu, Chihiro; Efroni, Idan; Eshed, Yuval; Bowman, John L

    2016-01-01

    Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved. DOI: http://dx.doi.org/10.7554/eLife.15023.001 PMID:27710768

  6. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2‰ at the end of the experiment. Enrichment of roots was significantly higher than leaves (δ13C range: 111.5-219.2‰; δ15N range: 1516.9-3939.3‰) indicating that nutrients were translocated away from leaves prior to senescence, which is supported by the increase in C:N ratio between the initial (19.0) and final (60.1) leaf sampling. Despite the variable levels of enrichment, leaves from all species were sufficiently labeled for use in future studies aimed at tracking the transformation of carbon and nitrogen during decomposition. The greatest challenges were treating diseases and pests and creating ideal growing conditions for many species within the same chamber. Reducing the number of individuals and better pest management will lead to even higher level enrichment in the future.

  7. Photosynthetic responses to altitude: an explanation based on optimality principles

    NASA Astrophysics Data System (ADS)

    Wang, Han; Prenticce, Iain Colin; Davis, Tyler; Keenan, Trevor; Wright, Ian; Peng, Changhui

    2017-04-01

    Increasing altitude is commonly accompanied by a declining ratio of leaf-internal to ambient CO2 partial pressures (ci:ca; hereafter, χ) and an increase in carboxylation capacity (Vcmax), while carbon assimilation (A) shows little to no change. Here we provide a consistent, quantitative explanation for these responses based on the 'least-cost hypothesis' for the regulation of χ and the 'co-ordination hypothesis' for the regulation of Vcmax. With leaf temperature held constant, our analysis predicts that the cost of maintaining water transport capacity increases with altitude (due to declining atmospheric pressure and increasing vapour pressure deficit, VPD) while the cost of maintaining carboxylation capacity decreases (due to the enhanced affinity of Rubisco for CO2 at low O2 partial pressures). Both effects favour investment in carboxylation capacity rather than water transport capacity. The response of A then reflects the competing effects of stronger CO2 limitation at low ci versus increased radiation penetration through a thinner atmosphere. These effects of atmospheric pressure are expected to be most strongly expressed in herbaceous plants that can maintain leaf temperatures in a narrow range. In leaves closely coupled to the atmosphere additional effects of declining temperature on photosynthesis are expected to modify but not obliterate those of pressure.

  8. Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility

    NASA Technical Reports Server (NTRS)

    Neumann, P. M.; Van Volkenburgh, E.; Cleland, R. E.

    1988-01-01

    Treatment of bean (Phaseolus vulgaris L.) seedlings with low levels of salinity (50 or 100 millimolar NaCl) decreased the rate of light-induced leaf cell expansion in the primary leaves over a 3 day period. This decrease could be due to a reduction in one or both of the primary cellular growth parameters: wall extensibility and cell turgor. Wall extensibility was assessed by the Instron technique. Salinity did not decrease extensibility and caused small increases relative to the controls after 72 hours. On the other hand, 50 millimolar NaCl caused a significant reduction in leaf bulk turgor at 24 hours; adaptive decreases in leaf osmotic potential (osmotic adjustment) were more than compensated by parallel decreases in xylem tension potential and the leaf apoplastic solute potential, resulting in a decreased leaf water potential. It is concluded that in bean seedlings, mild salinity initially affects leaf growth rate by a decrease in turgor rather than by a reduction in wall extensibility. Moreover, long-term salinization (10 days) resulted in an apparent mechanical adjustment, i.e. an increase in wall extensibility, which may help counteract reductions in turgor and maintain leaf growth rates.

  9. Regulation of Compound Leaf Development by PHANTASTICA in Medicago truncatula1[C][W][OPEN

    PubMed Central

    Ge, Liangfa; Peng, Jianling; Berbel, Ana; Madueño, Francisco; Chen, Rujin

    2014-01-01

    Plant leaves, simple or compound, initiate as peg-like structures from the peripheral zone of the shoot apical meristem, which requires class I KNOTTED-LIKE HOMEOBOXI (KNOXI) transcription factors to maintain its activity. The MYB domain protein encoded by the ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) gene, together with other factors, excludes KNOXI gene expression from incipient leaf primordia to initiate leaves and specify leaf adaxial identity. However, the regulatory relationship between ARP and KNOXI is more complex in compound-leafed species. Here, we investigated the role of ARP and KNOXI genes in compound leaf development in Medicago truncatula. We show that the M. truncatula phantastica mutant exhibited severe compound leaf defects, including curling and deep serration of leaf margins, shortened petioles, increased rachises, petioles acquiring motor organ characteristics, and ectopic development of petiolules. On the other hand, the M. truncatula brevipedicellus mutant did not exhibit visible compound leaf defects. Our analyses show that the altered petiole development requires ectopic expression of ELONGATED PETIOLULE1, which encodes a lateral organ boundary domain protein, and that the distal margin serration requires the auxin efflux protein M. truncatula PIN-FORMED10 in the M. truncatula phantastica mutant. PMID:24218492

  10. Divergent variations in concentrations of chemical elements among shrub organs in a temperate desert

    PubMed Central

    He, Mingzhu; Song, Xin; Tian, Fuping; Zhang, Ke; Zhang, Zhishan; Chen, Ning; Li, Xinrong

    2016-01-01

    Desert shrubs, a dominant component of desert ecosystems, need to maintain sufficient levels of nutrients in their different organs to ensure operation of various physiological functions for the purpose of survival and reproduction. In the present study, we analyzed 10 elements in leaves, stems, and roots of 24 dominant shrub species from 52 sites across a temperate desert ecosystem in northwestern China. We found that concentrations of all 10 elements were higher in leaves than in stems and roots, that non-legumes had higher levels of leaf Na and Mg than did legumes, and that Na was more concentrated in C4 leaves than in C3 leaves. Scaling relationships of elements between the photosynthetic organ (leaf) and non-photosynthetic organs (stem and root) were allometric. Results of principal components analysis (PCA) highlighted the important role of the elements responsible for osmoregulation (K and Na) in water utilization of desert shrubs. Soil properties and taxonomy explained most variation of element concentrations in desert shrubs. Desert shrubs may not be particularly susceptible to future change in climate factors, because most elements (including N, P, K, Ca, Mn, Zn, and Cu) associated with photosynthesis, osmoregulation, enzyme activity, and water use efficiency primarily depend on soil conditions. PMID:26818575

  11. Divergent variations in concentrations of chemical elements among shrub organs in a temperate desert.

    PubMed

    He, Mingzhu; Song, Xin; Tian, Fuping; Zhang, Ke; Zhang, Zhishan; Chen, Ning; Li, Xinrong

    2016-01-28

    Desert shrubs, a dominant component of desert ecosystems, need to maintain sufficient levels of nutrients in their different organs to ensure operation of various physiological functions for the purpose of survival and reproduction. In the present study, we analyzed 10 elements in leaves, stems, and roots of 24 dominant shrub species from 52 sites across a temperate desert ecosystem in northwestern China. We found that concentrations of all 10 elements were higher in leaves than in stems and roots, that non-legumes had higher levels of leaf Na and Mg than did legumes, and that Na was more concentrated in C4 leaves than in C3 leaves. Scaling relationships of elements between the photosynthetic organ (leaf) and non-photosynthetic organs (stem and root) were allometric. Results of principal components analysis (PCA) highlighted the important role of the elements responsible for osmoregulation (K and Na) in water utilization of desert shrubs. Soil properties and taxonomy explained most variation of element concentrations in desert shrubs. Desert shrubs may not be particularly susceptible to future change in climate factors, because most elements (including N, P, K, Ca, Mn, Zn, and Cu) associated with photosynthesis, osmoregulation, enzyme activity, and water use efficiency primarily depend on soil conditions.

  12. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    NASA Astrophysics Data System (ADS)

    Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing

    2018-04-01

    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations, despite the broad climate gradient on the plateau. Temperature and drought induced shifts in shrub type distribution will influence the nutrient accumulation in mountainous shrubs.

  13. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.

    PubMed

    Dornbusch, Tino; Michaud, Olivier; Xenarios, Ioannis; Fankhauser, Christian

    2014-10-01

    In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits. © 2014 American Society of Plant Biologists. All rights reserved.

  14. Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state

    PubMed Central

    Scoffoni, Christine; McKown, Athena D.; Rawls, Michael; Sack, Lawren

    2012-01-01

    Leaf hydraulic conductance (Kleaf) is a major determinant of photosynthetic rate in well-watered and drought-stressed plants. Previous work assessed the decline of Kleaf with decreasing leaf water potential (Ψleaf), most typically using rehydration kinetics methods, and found that species varied in the shape of their vulnerability curve, and that hydraulic vulnerability correlated with other leaf functional traits and with drought sensitivity. These findings were tested and extended, using a new steady-state evaporative flux method under high irradiance, and the function for the vulnerability curve of each species was determined individually using maximum likelihood for 10 species varying strongly in drought tolerance. Additionally, the ability of excised leaves to recover in Kleaf with rehydration was assessed, and a new theoretical framework was developed to estimate how rehydration of measured leaves may affect estimation of hydraulic parameters. As hypothesized, species differed in their vulnerability function. Drought-tolerant species showed shallow linear declines and more negative Ψleaf at 80% loss of Kleaf (P80), whereas drought-sensitive species showed steeper, non-linear declines, and less negative P80. Across species, the maximum Kleaf was independent of hydraulic vulnerability. Recovery of Kleaf after 1 h rehydration of leaves dehydrated below their turgor loss point occurred only for four of 10 species. Across species without recovery, a more negative P80 correlated with the ability to maintain Kleaf through both dehydration and rehydration. These findings indicate that resistance to Kleaf decline is important not only in maintaining open stomata during the onset of drought, but also in enabling sustained function during drought recovery. PMID:22016424

  15. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain.

    PubMed

    Bai, Kundong; He, Chengxin; Wan, Xianchong; Jiang, Debing

    2015-06-08

    The ecophysiological mechanisms underlying the pattern of bimodal elevational distribution of evergreen tree species remain incompletely understood. Here we used leaf economics spectrum (LES) theory to explain such patterns. We measured leaf economic traits and constructed an LES for the co-existing 19 evergreen and 15 deciduous species growing in evergreen broad-leaved forest at low elevation, beech-mixed forest at middle elevation and hemlock-mixed forest at high elevation in Mao'er Mountain, Guangxi, Southern China (25°50'N, 110°49'E). Leaf economic traits presented low but significant phylogenetic signal, suggesting trait similarity between closely related species. After considering the effects of phylogenetic history, deciduous species in general showed a more acquisitive leaf strategy with a higher ratio of leaf water to dry mass, higher leaf nitrogen and phosphorous contents, higher photosynthetic and respiratory rates and greater photosynthetic nitrogen-use efficiency. In contrast, evergreen species exhibited a more conservative leaf strategy with higher leaf mass per area, greater construction costs and longer leaf life span. With the elevation-induced decreases of temperature and soil fertility, both evergreen and deciduous species showed greater resource conservation, suggesting the increasing importance of environmental filtering to community assembly with increasing elevation. We found close inter-specific correlations between leaf economic traits, suggesting that there are strong genetic constraints limiting the independent evolution of LES traits. Phylogenetic signal increased with decreasing evolutionary rate across leaf economic traits, suggesting that genetic constraints are important for the process of trait evolution. We found a significantly positive relationship between primary axis species score (PASS) distance and phylogenetic distance across species pairs and an increasing average PASS distance between evergreen and deciduous species with increasing elevation, implying that the frequency of distantly related evergreen and deciduous pairs with wide spreading of leaf economic values increases with increasing elevation. Our findings thus suggest that elevation acts as an environmental filter to both select the locally adapted evergreen and deciduous species with sufficient phylogenetic variation and regulate their distribution along the elevational gradient based on their coordinated spreading of phylogenetic divergence and leaf economic variation. Published by Oxford University Press on behalf of the Annals of Botany Company.

  16. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  17. Effect of Euphorbia hirta plant leaf extract on immunostimulant response of Aeromonas hydrophila infected Cyprinus carpio

    PubMed Central

    Sukumaran, NatarajaPillai

    2014-01-01

    The main objective of the present study is to improve the immune power of Cyprinus carpio by using Euphorbia hirta plant leaf extract as immunostimulants. The haematological, immunological and enzymatic studies were conducted on the medicated fish infected with Aeromonas hydrophila pathogen. The results obtained from the haematological studies show that the RBC count, WBC count and haemoglobin content were increased in the infected fish at higher concentration of leaf extract. The feeds with leaf extract of Euphorbia hirta were able to stimulate the specific immune response by increasing the titre value of antibody. It was able to stimulate the antibody production only up to the 5th day, when fed with higher concentrations of (25 g and 50 g) plant leaf extract. The plant extract showed non-specific immune responses such as lysozyme activity, phagocytic ratio, NBT assay, etc. at higher concentration (50 g) and in the same concentration (50 g), the leaf extract of Euphorbia hirta significantly eliminated the pathogen in blood and kidney. It was observed that fish have survival percentage significantly at higher concentration (50 g) of Euphorbia hirta, when compared with the control. The obtained results are statistically significant at P < 0.05 and P < 0.01 levels. This research work suggests that the plant Euphorbia hirta has immunostimulant activity by stimulating both specific and non-specific immunity at higher concentrations. PMID:25405077

  18. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest

    PubMed Central

    Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J.; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang

    2012-01-01

    Background and Aims The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. Methods A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. Key Results It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am. Conclusions The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves. PMID:22585930

  19. Survival patterns and mortality in the North American population of silvered leaf monkeys (Trachypithecus cristatus).

    PubMed

    Shelmidine, Nichole; McAloose, Denise; McCann, Colleen

    2013-03-01

    This study examines mortality in the North American (N.A.) population of silvered leaf monkeys (Trachypithecus cristatus) maintained in Association of Zoos and Aquarium's zoos. Understanding the causes of death associated with mortality rates (MR) can highlight relative susceptibility to intrinsic/extrinsic factors and differences between age and sex classes. Overall, life tables can provide insight into a species' population dynamics. We expect that the MR will fit the general mammalian and primate trends of a U-shaped curve when graphed, that males will have a higher MR and shorter life expectancy than females and that infant survival will be higher in captivity than in wild populations. Our results indicate that the N.A. captive population fits expected MR trends of a U-shaped curve. However, no differences in MR or life expectancy were found between the sexes. Infant survivorship did not differ from the wild or other leaf monkey populations (both captive and wild). The majority of infant deaths occurred on day 1 of life (52.8% of all infant deaths) and infant survivorship to 1 year was 66%. Neonates (n = 6, 31.6%) and infants (n = 4, 44.4%) died from trauma, juveniles (n = 2, 33.3%) from nutritional reasons, adults from non-infectious diseases (n = 7, 29.2%) and from post-surgical complications (n = 7, 29.2%), and older adults from idiopathic diseases (n = 4, 26.7%) and non-infectious diseases (n = 4, 26.7%). Only older adult males died from degenerative diseases (i.e., heart failure, n = 3, 42.9%). In general, this captive population demonstrated some similar trends to those observed in mammalian and Old World monkey populations. © 2013 Wiley Periodicals, Inc.

  20. How far can sodium substitute for potassium in red beet?

    NASA Technical Reports Server (NTRS)

    Subbarao, G. V.; Wheeler, R. M.; Stutte, G. W.; Levine, L. H.; Sager, J. C. (Principal Investigator)

    1999-01-01

    Sodium (Na) movement between plants and humans is one of the more critical aspects of bioregenerative systems of life support, which NASA is studying for the establishment of long-term bases on the Lunar or Martian surface. This study was conducted to determine the extent to which Na can replace potassium (K) in red beet (Beta vulgaris L. ssp vulgaris) without adversely affecting metabolic functions such as water relations, photosynthetic rates, and thus growth. Two cultivars, Ruby Queen and Klein Bol, were grown for 42 days at 1200 micromoles mol-1 CO2 in a growth chamber using a re-circulating nutrient film technique with 0%, 75%, 95%, and 98% Na substitution for K in a modified half-strength Hoagland solution. Total biomass of Ruby Queen was greatest at 95% Na substitution and equal at 0% and 98% Na substitution. For Klein Bol, there was a 75% reduction in total biomass at 98% Na substitution. Nearly 95% of the total plant K was replaced with Na at 98% Na substitution in both cultivars. Potassium concentrations in leaves decreased from 120 g kg-1 dwt in 0% Na substitution to 3.5 g kg-1 dwt at 98% Na substitution. Leaf chlorophyll concentration, photosynthetic rate, and osmotic potential were not affected in either cultivar by Na substitution for K. Leaf glycinebetaine levels were doubled at 75% Na substitution in Klein Bol, but decreased at higher levels of Na substitution. For Ruby Queen, glycinebetaine levels in leaf increased with the first increase of Na levels and were maintained at the higher Na levels. These results indicate that in some cultivars of red beet, 95% of the normal tissue K can be replaced by Na without a reduction in growth.

  1. Structural adjustments in resprouting trees drive differences in post-fire transpiration.

    PubMed

    Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J

    2014-02-01

    Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hér following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (<2 m) was found to be significantly different to foliage in the tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have important implications for modelling stand-level water fluxes in forests capable of resprouting, which is frequently done on the basis of the leaf area index.

  2. Internal aeration of paddy field rice (Oryza sativa) during complete submergence---importance of light and floodwater O2.

    PubMed

    Winkel, Anders; Colmer, Timothy D; Ismail, Abdelbagi M; Pedersen, Ole

    2013-03-01

    Flash floods can submerge paddy field rice (Oryza sativa), with adverse effects on internal aeration, sugar status and survival. Here, we investigated the in situ aeration of roots of rice during complete submergence, and elucidated how underwater photosynthesis and floodwater pO(2) influence root aeration in anoxic soil. In the field, root pO(2) was measured using microelectrodes during 2 d of complete submergence. Leaf gas films that formed on the superhydrophobic leaves were left intact, or experimentally removed, to elucidate their effect on internal aeration. In darkness, root pO(2) declined to very low concentrations (0.24 kPa) and was strongly correlated with floodwater pO(2). In light, root pO(2) was high (14 kPa) and primarily a function of the incident light determining the rates of underwater net photosynthesis. Plants with intact leaf gas films maintained higher underwater net photosynthesis relative to plants without gas films when the submerged shoots were in light. During complete submergence, internal aeration of rice in the field relies on underwater photosynthesis during the day and entry of O(2) from the floodwater during the night. Leaf gas films enhance photosynthesis during submergence leading to improved O(2) production and sugar status, and therefore contribute to the submergence tolerance of rice. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  3. Loss‐of‐function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice

    PubMed Central

    Fan, Xiaolei; Wu, Jiemin; Chen, Taiyu; Tie, Weiwei; Chen, Hao; Zhou, Fei

    2015-01-01

    Abstract Plants absorb sunlight to power the photochemical reactions of photosynthesis, which can potentially damage the photosynthetic machinery. However, the mechanism that protects chloroplasts from the damage remains unclear. In this work, we demonstrated that rice (Oryza sativa L.) SLAC7 is a generally expressed membrane protein. Loss‐of‐function of SLAC7 caused continuous damage to the chloroplasts of mutant leaves under normal light conditions. Ion leakage indicators related to leaf damage such as H2O2 and abscisic acid levels were significantly higher in slac7‐1 than in the wild type. Consistently, the photosynthesis efficiency and Fv/Fm ratio of slac7‐1 were significantly decreased (similar to photoinhibition). In response to chloroplast damage, slac7‐1 altered its leaf morphology (curled or fused leaf) by the synergy between plant hormones and transcriptional factors to decrease the absorption of light, suggesting that a photoprotection mechanism for chloroplast damage was activated in slac7‐1. When grown in dark conditions, slac7‐1 displayed a normal phenotype. SLAC7 under the control of the AtSLAC1 promoter could partially complement the phenotypes of Arabidopsis slac1 mutants, indicating a partial conservation of SLAC protein functions. These results suggest that SLAC7 is essential for maintaining the chloroplast stability in rice. PMID:25739330

  4. Enzymatic activities in different strains isolated from healthy and brittle leaf disease affected date palm leaves: study of amylase production conditions.

    PubMed

    Mouna, Jrad; Imen, Fendri; Choba Ines, Ben; Nourredine, Drira; Adel, Kadri; Néji, Gharsallah

    2015-02-01

    The present study aimed to investigate and compare the enzymatic production of endophytic bacteria isolated from healthy and brittle leaf disease affected date palm leaves (pectinase, cellulase, lipase, and amylase). The findings revealed that the enzymatic products from the bacterial isolates of healthy date palm leaves were primarily 33% amylolytic enzyme, 33 % cellulase, 25 % pectinase, and 25 % lipase. The isolates from brittle leaf disease date palm leaves, on the other hand, were noted to produce 16 % amylolytic enzyme, 20 % cellulose, 50 % pectinase, and 50 % lipase. The effects of temperature and pH on amylase, pectinase, and cellulose activities were investigated. The Bacillus subtilis JN934392 strain isolated from healthy date palm leaves produced higher levels of amylase activity at pH 7. A Box Behnken Design (BBD) was employed to optimize amylase extraction. Maximal activity was observed at pH and temperature ranges of pH 6-6.5 and 37-39 °C, respectively. Under those conditions, amylase activity was noted to be attained 9.37 U/ml. The results showed that the enzyme was able to maintain more than 50 % of its activity over a temperature range of 50-80 °C, with an optimum at 70 °C. This bacterial amylase showed high activity compared to other bacteria, which provides support for its promising candidacy for future industrial application.

  5. Post-harvest light treatment increases expression levels of recombinant proteins in transformed plastids of potato tubers.

    PubMed

    Larraya, Luis M; Fernández-San Millán, Alicia; Ancín, María; Farran, Inmaculada; Veramendi, Jon

    2015-09-01

    Plastid genetic engineering represents an attractive system for the production of foreign proteins in plants. Although high expression levels can be achieved in leaf chloroplasts, the results for non-photosynthetic plastids are generally discouraging. Here, we report the expression of two thioredoxin genes (trx f and trx m) from the potato plastid genome to study transgene expression in amyloplasts. As expected, the highest transgene expression was detected in the leaf (up to 4.2% of TSP). The Trx protein content in the tuber was approximately two to three orders of magnitude lower than in the leaf. However, we demonstrate that a simple post-harvest light treatment of microtubers developed in vitro or soil-grown tubers induces up to 55 times higher accumulation of the recombinant protein in just seven to ten days. After the applied treatment, the Trx f levels in microtubers and soil-grown tubers increased to 0.14% and 0.11% of TSP, respectively. Moreover, tubers stored for eight months maintained the capacity of increasing the foreign protein levels after the light treatment. Post-harvest cold induction (up to five times) at 4°C was also detected in microtubers. We conclude that plastid transformation and post-harvest light treatment could be an interesting approach for the production of foreign proteins in potato. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies.

    PubMed

    Voelker, Steven L; Brooks, J Renée; Meinzer, Frederick C; Anderson, Rebecca; Bader, Martin K-F; Battipaglia, Giovanna; Becklin, Katie M; Beerling, David; Bert, Didier; Betancourt, Julio L; Dawson, Todd E; Domec, Jean-Christophe; Guyette, Richard P; Körner, Christian; Leavitt, Steven W; Linder, Sune; Marshall, John D; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina; Plumpton, Heather J; Pregitzer, Kurt S; Saurer, Matthias; Smith, Andrew R; Siegwolf, Rolf T W; Stambaugh, Michael C; Talhelm, Alan F; Tardif, Jacques C; Van de Water, Peter K; Ward, Joy K; Wingate, Lisa

    2016-02-01

    Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca  - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca  - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain. © 2015 John Wiley & Sons Ltd.

  7. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    USGS Publications Warehouse

    Voelker, Steven L.; Brooks, J. Renée; Meinzer, Frederick C.; Anderson, Rebecca D.; Bader, Martin K.-F.; Battipaglia, Giovanna; Becklin, Katie M.; Beerling, David; Bert, Didier; Betancourt, Julio L.; Dawson, Todd E.; Domec, Jean-Christophe; Guyette, Richard P.; Körner, Christian; Leavitt, Steven W.; Linder, Sune; Marshall, John D.; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina P.; Plumpton, Heather J.; Pregitzer, Kurt S.; Saurer, Matthias; Smith, Andrew R.; Siegwolf, Rolf T.W.; Stambaugh, Michael C.; Talhelm, Alan F.; Tardif, Jacques C.; Van De Water, Peter K.; Ward, Joy K.; Wingate, Lisa

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], ci, a constant drawdown in CO2(ca − ci), and a constant ci/ca. These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca. The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca. To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ13C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca-induced changes in ci/ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca − ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci. Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca, when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca, when photosystems are saturated and water loss is large for each unit C gain.

  8. The site of water stress governs the pattern of ABA synthesis and transport in peanut

    PubMed Central

    Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling

    2016-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957

  9. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  10. OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity.

    PubMed

    Sahoo, Ranjan Kumar; Ansari, Mohammad Wahid; Tuteja, Renu; Tuteja, Narendra

    2014-01-01

    The SUV3 (suppressor of Var 3) gene encodes a DNA and RNA helicase, which is localized in the mitochondria. Plant SUV3 has not yet been characterized in detail. However, the Arabidopsis ortholog of SUV3 (AT4G14790) has been shown to be involved in embryo sac development. Previously, we have reported that rice SUV3 functions as DNA and RNA helicase and provides salinity stress tolerance by maintaining photosynthesis and antioxidant machinery. Here, we report further analysis of the transgenic OsSUV3 rice plants under salt stress. The transgenic OsSUV3 overexpressing rice T1 lines showed significantly higher endogenous content of plant hormones viz., gibberellic acid (GA3), zeatin (Z) and indole-3-acetic acid (IAA) in leaf, stem and root as compared to wild-type (WT), vector control (VC) and antisense (AS) plants under salt (200 mM NaCl) stress condition. A similar trend of endogenous plant hormones profile was also reflected in the T2 generation of OsSUV3 transgenic rice under defined parameters and stress condition. In response to stress, OsSUV3 rice plants maintained plant hormone levels that regulate the expression of several stress-induced genes and reduce adverse effects of salt on plant growth and development and therefore sustains crop productivity.

  11. How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits?

    PubMed

    Bunce, James A

    2006-08-01

    A reduction in leaf stomatal conductance (g) with increasing leaf-to-air difference in water vapour pressure (D) is nearly ubiquitous. Ecological comparisons of sensitivity have led to the hypothesis that the reduction in g with increasing D serves to maintain leaf water potentials above those that would cause loss of hydraulic conductance. A reduction in leaf water potential is commonly hypothesized to cause stomatal closure at high D. The importance of these particular hydraulic factors was tested by exposing Abutilon theophrasti, Glycine max, Gossypium hirsutum and Xanthium strumarium to D high enough to reduce g and then decreasing ambient carbon dioxide concentration ([CO2]), and observing the resulting changes in g, transpiration rate and leaf water potential, and their reversibility. Reducing the [CO2] at high D increased g and transpiration rate and lowered leaf water potential. The abnormally high transpiration rates did not result in reductions in hydraulic conductance. Results indicate that low water potential effects on g at high D could be overcome by low [CO2], and that even lower leaf water potentials did not cause a reduction in hydraulic conductance in these well-watered plants. Reduced g at high D in these species resulted primarily from increased stomatal sensitivity to [CO2] at high D, and this increased sensitivity may mediate stomatal responses to leaf hydraulics at high D.

  12. Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density

    PubMed Central

    Ogawa, Takahiro; Oikawa, Shimpei; Hirose, Tadaki

    2015-01-01

    Background and Aims Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite is true when the plant becomes reproductive and develops a strong N sink. Methods Stands of Xanthium canadense were established at two densities. Emergence, growth and death of every leaf on the main stem and branches, and plant growth and N uptake were determined from germination to full senescence. Mean residence time and dry mass productivity were calculated per leaf number, leaf area, leaf mass and leaf N (collectively termed ‘leaf variables’) in order to analyse leaf dynamics and its effect on plant growth. Key Results Branching and reproductive activities were higher at low than at high density. Overall there was no significant difference in mean residence time of leaf variables between the two stands. However, early leaf cohorts on the main stem had a longer retention time at low density, whereas later cohorts had a longer retention time at high density. Branch leaves emerged earlier and tended to live longer at low than at high density. Leaf efficiencies, defined as carbon export per unit investment of leaf variables, were higher at low density in all leaf variables except for leaf number. Conclusions In the vegetative phase of plant growth, the light gradient strongly controls leaf longevity, whereas later the effects of branching and reproductive activities become stronger and over-rule the effect of light environment. As leaf N supports photosynthesis and also works as an N source for plant development, N use is pivotal in linking leaf dynamics with plant growth and reproduction. PMID:26248476

  13. Effects of regulated deficit irrigation during the pre-harvest period on gas exchange, leaf development and crop yield of mature almond trees.

    PubMed

    Romero, Pascual; Navarro, Josefa Maria; García, Francisco; Botía Ordaz, Pablo

    2004-03-01

    We investigated the effects of regulated deficit irrigation (RDI) during the pre-harvest period (kernel-filling stage) on water relations, leaf development and crop yield in mature almond (Prunus dulcis (Mill.) D.A. Webb cv. Cartagenera) trees during a 2-year field experiment. Trees were either irrigated at full-crop evapotranspiration (ETc=100%) (well-irrigated control treatment) or subjected to an RDI treatment that consisted of full irrigation for the full season, except from early June to early August (kernel-filling stage), when 20% ETc was applied. The severity of water stress was characterized by measurements of soil water content, predawn leaf water potential (Psipd) and relative water content (RWC). Stomatal conductance (gs), net CO2 assimilation rate (A), transpiration rate (E), leaf abscission, leaf expansion rate and crop yield were also measured. In both years, Psipd and RWC of well-irrigated trees were maintained above -1.0 MPa and 92%, respectively, whereas the corresponding values for trees in the RDI treatment were -2.37 MPa and 82%. Long-term water stress led to a progressive decline in gs, A and E, with significant reductions after 21 days in the RDI treatment. At the time of maximum stress (48 days after commencement of RDI), A, gs and E were 64, 67 and 56% lower than control values, respectively. High correlations between A, E and gs were observed. Plant water status recovered within 15 days after the resumption of irrigation and was associated with recovery of soil water content. A relatively rapid and complete recovery of A and gs was also observed, although the recovery was slower than for Psipd and RWC. Severe water stress during the kernel-filling stage resulted in premature defoliation (caused by increased leaf abscission) and a reduction in leaf growth rate, which decreased tree leaf area. Although kernel yield was correlated with leaf water potential, RDI caused a nonsignificant 7% reduction in kernel yield and had no effect on kernel size. The RDI treatment also improved water-use efficiency because about 30% less irrigation water was applied in the RDI treatment than in the control treatment. We conclude that high-cropping almonds can be successfully grown in semiarid regions in an RDI regime provided that Psipd is maintained above a threshold value of -2 MPa.

  14. Adhesive Leaf Created by a Corona Discharge.

    PubMed

    Lee, Wonseok; Son, Jongsang; Kim, Seonghyun; Yang, Dongmin; Choi, Seungyeop; Watanabe, Rodrigo Akira; Hwang, Kyo Seon; Lee, Sang Woo; Lee, Gyudo; Yoon, Dae Sung

    2018-01-29

    Here, we report a new concept of both the adhesive manner and material, named "adhesive leaf (AL)," based on the leaf of the plant Heteropanax fragrans. The treatment of the corona discharge on the leaf surface can cause the nano-/microdestruction of the leaf epidermis, resulting in an outward release of sap. The glucose-containing sap provided the AL with a unique ability to stick to various substrates such as steel, polypropylene, and glass. Moreover, we reveal that the AL adhesion strength depends on the AL size, as well as the corona-discharge intensity. Conventional adhesives, such as glue and bond, lose their adhesive property and leave dirty residues upon the removal of the attached material. Unlike the conventional methods, the AL is advantageous as it can be repeatedly attached and detached thoroughly until the sap liquid is exhausted; its adhesive ability is maintained for at least three weeks at room temperature. Our findings shed light on a new concept of a biodegradable adhesive material that is created by a simple surface treatment.

  15. Relative growth rate in phylogenetically related deciduous and evergreen woody species.

    PubMed

    Antúnez, Isabel; Retamosa, Emilio C; Villar, Rafael

    2001-07-01

    Relative growth rate (RGR) and other growth parameters were studied in eight pairs of closely related deciduous and evergreen species (within the same genus or family). The main objective of this study was to test the association between leaf turnover rate and RGR, specific leaf area (SLA, leaf area/leaf dry weight) and other growth variables. Plants were grown for 6 months in a greenhouse under favourable water and nutrient conditions. Variation in RGR among the 16 woody species was due mainly to differences in morphological parameters such as leaf area ratio (LAR, whole plant area/whole plant dry weight) and SLA). However, temporal variation in RGR within species was due mainly to variation in net assimilation rate. When phylogeny was not taken into account, analyses showed that deciduous species grew faster than evergreens. In contrast, when phylogeny was taken into account, the data analysis showed that a faster RGR is not consistently associated with the deciduous habit (in five pairs it was, but in the other three it was not). The faster growth of the deciduous trees (in the five positive contrasts) could be explained by their higher LAR and higher SLA relative to evergreens. The lack of differences in RGR between deciduous and evergreens (in three pairs) was due to the higher leaf mass ratio (LMR, leaf dry biomass/total dry biomass) for the evergreens, which offset the higher SLA of the deciduous species, resulting in a similar LAR in both functional groups (LAR=LMR×SLA). Deciduous species had consistently higher SLA than evergreens. We suggest that SLA, more than RGR, could be an important parameter in determining adaptive advantages of deciduous and evergreen species.

  16. Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers.

    PubMed

    Donovan, Lisa A; Dudley, Susan A; Rosenthal, David M; Ludwig, Fulco

    2007-05-01

    Plant water-use efficiency (WUE) is expected to affect plant fitness and thus be under natural selection in arid habitats. Although many natural population studies have assessed plant WUE, only a few related WUE to fitness. The further determination of whether selection on WUE is direct or indirect through functionally related traits has yielded no consistent results. For natural populations of two desert annual sunflowers, Helianthus anomalus and H. deserticola, we used phenotypic selection analysis with vegetative biomass as the proxy for fitness to test (1) whether there was direct and indirect selection on WUE (carbon isotope ratio) and related traits (leaf N, area, succulence) and (2) whether direct selection was consistent with hypothesized drought/dehydration escape and avoidance strategies. There was direct selection for lower WUE in mesic and dry H. anomalus populations, consistent with dehydration escape, even though it is the longer lived of the two species. For mesic H. anomalus, direct selection favored lower WUE and higher N, suggesting that plants may be "wasting water" to increase N delivery via the transpiration stream. For the shorter lived H. deserticola in the direr habitat, there was indirect selection for lower WUE, inconsistent with drought escape. There was also direct selection for higher leaf N, succulence and leaf size. There was no direct selection for higher WUE consistent with dehydration avoidance in either species. Thus, in these natural populations of two desert dune species higher fitness was associated with some combination direct and indirect selection for lower WUE, higher leaf N and larger leaf size. Our understanding of the adaptive value of plant ecophysiological traits will benefit from further consideration of related traits such as leaf nitrogen and more tests in natural populations.

  17. Different mechanisms drive the performance of native and invasive woody species in response to leaf phosphorus supply during periods of drought stress and recovery.

    PubMed

    Oliveira, Marciel Teixeira; Medeiros, Camila Dias; Frosi, Gabriella; Santos, Mauro Guida

    2014-09-01

    The effects of drought stress and leaf phosphorus (Pi) supply on photosynthetic metabolism in woody tropical species are not known, and given the recent global environmental change models that forecast lower precipitation rates and periods of prolonged drought in tropical areas, this type of study is increasingly important. The effects of controlled drought stress and Pi supply on potted young plants of two woody species, Anadenanthera colubrina (native) and Prosopis juliflora (invasive), were determined by analyzing leaf photosynthetic metabolism, biochemical properties and water potential. In the maximum stress, both species showed higher leaf water potential (Ψl) in the treatment drought +Pi when compared with the respective control -Pi. The native species showed higher gas exchange under drought +Pi than under drought -Pi conditions, while the invasive species showed the same values between drought +Pi and -Pi. Drought affected the photochemical part of photosynthetic machinery more in the invasive species than in the native species. The invasive species showed higher leaf amino acid content and a lower leaf total protein content in both Pi treatments with drought. The two species showed different responses to the leaf Pi supply under water stress for several variables measured. In addition, the strong resilience of leaf gas exchange in the invasive species compared to the native species during the recovery period may be the result of higher efficiency of Pi use. The implications of this behavior for the success of this invasive species in semiarid environments are discussed. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. [Effects of postponed basal nitrogen application with reduced nitrogen rate on grain yield and nitrogen use efficiency of south winter wheat].

    PubMed

    Zhang, Lei; Shao, Yu Hang; Gu, Shi Lu; Hu, Hang; Zhang, Wei Wei; Tian, Zhong Wei; Jiang, Dong; Dai, Ting Bo

    2016-12-01

    Excessive nitrogen (N) fertilizer application has led to a reduction of nitrogen use efficiency and environmental problems. It was of great significance for high-yield and high-efficiency cultivation to reduce N fertilizer application with modified application strategies. A two-year field experiment was conducted to study effects of different N application rates at basal and seedling application stages on grain yield and nitrogen use efficiency. Taking the conventional nitrogen application practice (240 kg N·hm -2 with application at basal, jointing, and booting stages at ratios of 5:3:2, respectively) as control, a field trial was conducted at different N application rates (240, 180 and 150 kg N·hm -2 , N 240 , N 180 and N 150 , respectively) and different application times [basal (L 0 ), fourth (L 4 ) and sixth leaf stage (L 6 )] to investigate the effects on grain yield and nitrogen use efficiency. The results indicated that grain yield decreased along with reducing the N application rate, but it had no significant difference between N 240 and N 180 while decreased significantly under N 150 . Nitrogen agronomy and recovery efficiency were all highest under N 180 . Among different N application stages, grain yield and nitrogen use efficiency were highest under L 4 . N 180 L 4 had no signifi-cant difference with control in grain yield, but its nitrogen use efficiency was significantly higher. The leaf area index, flag leaf photosynthesis rate, leaf nitrogen content, activity of nitrogen reductase and glutamine synthase in flag leaf, dry matter and N accumulation after jointing of N 180 L 4 had no significant difference with control. In an overall view, postponing basal N fertilizer application at reduced nitrogen rate could maintain high yield and improve nitrogen use efficiency through improving photosynthetic production capacity and promoting nitrogen uptake and assimilation.

  19. Coordination and plasticity in leaf anatomical traits of invasive and native vine species.

    PubMed

    Osunkoya, Olusegun O; Boyne, Richard; Scharaschkin, Tanya

    2014-09-01

    • Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the data set for this premise rarely includes linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance.• Three ecological pairs of invasive vs. noninvasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g., water-use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored.• Except for stomatal size, mean leaf anatomical traits differed significantly between the two groups. Plasticity of traits and, to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration.• The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum. © 2014 Botanical Society of America, Inc.

  20. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    PubMed

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Leaf habit does not determine the investment in both physical and chemical defences and pair-wise correlations between these defensive traits.

    PubMed

    Moreira, X; Pearse, I S

    2017-05-01

    Plant life-history strategies associated with resource acquisition and economics (e.g. leaf habit) are thought to be fundamental determinants of the traits and mechanisms that drive herbivore pressure, resource allocation to plant defensive traits, and the simultaneous expression (positive correlations) or trade-offs (negative correlations) between these defensive traits. In particular, it is expected that evergreen species - which usually grow slower and support constant herbivore pressure in comparison with deciduous species - will exhibit higher levels of both physical and chemical defences and a higher predisposition to the simultaneous expression of physical and chemical defensive traits. Here, by using a dataset which included 56 oak species (Quercus genus), we investigated whether leaf habit of plant species governs the investment in both physical and chemical defences and pair-wise correlations between these defensive traits. Our results showed that leaf habit does not determine the production of most leaf physical and chemical defences. Although evergreen oak species had higher levels of leaf toughness and specific leaf mass (physical defences) than deciduous oak species, both traits are essentially prerequisites for evergreenness. Similarly, our results also showed that leaf habit does not determine pair-wise correlations between defensive traits because most physical and chemical defensive traits were simultaneously expressed in both evergreen and deciduous oak species. Our findings indicate that leaf habit does not substantially contribute to oak species differences in plant defence investment. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Xeromorphic traits help to maintain photosynthesis in the perhumid climate of a Taiwanese cloud forest.

    PubMed

    Pariyar, Shyam; Chang, Shih-Chieh; Zinsmeister, Daniel; Zhou, Haiyang; Grantz, David A; Hunsche, Mauricio; Burkhardt, Juergen

    2017-07-01

    Previous flux measurements in the perhumid cloud forest of northeastern Taiwan have shown efficient photosynthesis of the endemic tree species Chamaecyparis obtusa var. formosana even under foggy conditions in which leaf surface moisture would be expected. We hypothesized this to be the result of 'xeromorphic' traits of the Chamaecyparis leaves (hydrophobicity, stomatal crypts, stomatal clustering), which could prevent coverage of stomata by precipitation, fog, and condensation, thereby maintaining CO 2 uptake. Here we studied the amount, distribution, and composition of moisture accumulated on Chamaecyparis leaf surfaces in situ in the cloud forest. We studied the effect of surface tension on gas penetration to stomata using optical O 2 microelectrodes in the laboratory. We captured the dynamics of condensation to the leaf surfaces with an environmental scanning electron microscope (ESEM). In spite of substantial surface hydrophobicity, the mean water film thickness on branchlets under foggy conditions was 80 µm (upper surface) and 40 µm (lower surface). This amount of water could cover stomata and prevent CO 2 uptake. This is avoided by the clustered arrangement of stomata within narrow clefts and the presence of Florin rings. These features keep stomatal pores free from water due to surface tension and provide efficient separation of plant and atmosphere in this perhumid environment. Air pollutants, particularly hygroscopic aerosol, may disturb this functionality by enhancing condensation and reducing the surface tension of leaf surface water.

  3. Water use in forest canopy black cherry trees and its relationship to leaf gas exchange and environment

    Treesearch

    B. J. Joyce; K. C. Steiner; J. M. Skelly

    1996-01-01

    Models of canopy gas exchange are needed to connect leaf-level measurement to higher scales. Because of the correspondence between leaf gas exchange and water use, it may be possible to predict variation in leaf gas exchange at the canopy level by monitoring rates of branch water use.

  4. The Photosynthesis, Na+/K+ Homeostasis and Osmotic Adjustment of Atriplex canescens in Response to Salinity

    PubMed Central

    Pan, Ya-Qing; Guo, Huan; Wang, Suo-Min; Zhao, Bingyu; Zhang, Jin-Lin; Ma, Qing; Yin, Hong-Ju; Bao, Ai-Ke

    2016-01-01

    Atriplex canescens (fourwing saltbush) is a C4 perennial fodder shrub with excellent resistance to salinity. However, the mechanisms underlying the salt tolerance in A. canescens are poorly understood. In this study, 5-weeks-old A. canescens seedlings were treated with various concentrations of external NaCl (0–400 mM). The results showed that the growth of A. canescens seedlings was significantly stimulated by moderate salinity (100 mM NaCl) and unaffected by high salinity (200 or 400 mM NaCl). Furthermore, A. canescens seedlings showed higher photosynthetic capacity under NaCl treatments (except for 100 mM NaCl treatment) with significant increases in net photosynthetic rate and water use efficiency. Under saline conditions, the A. canescens seedlings accumulated more Na+ in either plant tissues or salt bladders, and also retained relatively constant K+ in leaf tissues and bladders by enhancing the selective transport capacity for K+ over Na+ (ST value) from stem to leaf and from leaf to bladder. External NaCl treatments on A. canescens seedlings had no adverse impact on leaf relative water content, and this resulted from lower leaf osmotic potential under the salinity conditions. The contribution of Na+ to the leaf osmotic potential (Ψs) was sharply enhanced from 2% in control plants to 49% in plants subjected to 400 mM NaCl. However, the contribution of K+ to Ψs showed a significant decrease from 34% (control) to 9% under 400 mM NaCl. Interestingly, concentrations of betaine and free proline showed significant increase in the leaves of A. canescens seedlings, these compatible solutes presented up to 12% of contribution to Ψs under high salinity. These findings suggest that, under saline environments, A. canescens is able to enhance photosynthetic capacity, increase Na+ accumulation in tissues and salt bladders, maintain relative K+ homeostasis in leaves, and use inorganic ions and compatible solutes for osmotic adjustment which may contribute to the improvement of water status in plant. PMID:27379134

  5. Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin.

    PubMed

    Moeller, Carina; Evers, Jochem B; Rebetzke, Greg

    2014-01-01

    Tillering is a core constituent of plant architecture, and influences light interception to affect plant and crop performance. Near-isogenic lines (NILs) varying for a tiller inhibition (tin) gene and representing two genetic backgrounds were investigated for tillering dynamics, organ size distribution, leaf area, light interception, red: far-red ratio, and chlorophyll content. Tillering ceased earlier in the tin lines to reduce the frequencies of later primary and secondary tillers compared to the free-tillering NILs, and demonstrated the genetically lower tillering plasticity of tin-containing lines. The distribution of organ sizes along shoots varied between NILs contrasting for tin. Internode elongation commenced at a lower phytomer, and the peduncle was shorter in the tin lines. The flag leaves of tin lines were larger, and the longest leaf blades were observed at higher phytomers in the tin than in free-tillering lines. Total leaf area was reduced in tin lines, and non-tin lines invested more leaf area at mid-canopy height. The tiller economy (ratio of seed-bearing shoots to numbers of shoots produced) was 10% greater in the tin lines (0.73-0.76) compared to the free-tillering sisters (0.62-0.63). At maximum tiller number, the red: far-red ratio (light quality stimulus that is thought to induce the cessation of tillering) at the plant-base was 0.18-0.22 in tin lines and 0.09-0.11 in free-tillering lines at levels of photosynthetic active radiation of 49-53% and 30-33%, respectively. The tin lines intercepted less radiation compared to their free-tillering sisters once genotypic differences in tiller numbers had established, and maintained green leaf area in the lower canopy later into the season. Greater light extinction coefficients (k) in tin lines prior to, but reduced k after, spike emergence indicated that differences in light interception between NILs contrasting in tin cannot be explained by leaf area alone but that geometric and optical canopy properties contributed. The careful characterization of specifically-developed NILs is refining the development of a physiology-based model for tillering to improve understanding of the value of architectural traits for use in cereal improvement.

  6. Effect of Solar Ultraviolet-B Radiation during Springtime Ozone Depletion on Photosynthesis and Biomass Production of Antarctic Vascular Plants1

    PubMed Central

    Xiong, Fusheng S.; Day, Thomas A.

    2001-01-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O2 evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations. PMID:11161031

  7. [Responses of soil microbial carbon metabolism to the leaf litter composition in Liaohe River Nature Reserve of northern Hebei Province, China].

    PubMed

    Li, Tian-yu; Kang, Feng-feng; Han, Hai-rong; Gao, Jing; Song, Xiao-shuai; Yu, Shu; Zhao, Jin-long; Yu, Xiao-wen

    2015-03-01

    Using litter bag method, we studied the effects of single and mixed litters from Betula platyphlla, Populus davidiana and Quercus mongolica on soil microbial biomass carbon (MBC), microbial respiration (MR) and microbial metabolic quotient (qCO2) in 0-5, 5-10 and 10-20 cm soil layers. The results showed that the average contents of MBC in 0-20 cm soil layer were 124.84, 325.29, 349.79 and 319.02 mg . kg-1 in the leaf litter removal treatment, Betula platyphlla treatment, Populus davidiana treatment and Quercus mongolica treatment, and the corresponding average rates of MR were 0.66, 1.12, 1.16 and 1.10 µg . g-1 . h-1, respectively. Meanwhile, in 0-20 cm soil layer, the average contents of MBC in the treatments with single leaf litter, mixed litter of two plant species and mixed litter of three plant species were 331. 37, 418. 52 and 529. 34 mg . kg-1, and the corresponding average rates of MR were 1.13, 1.30 and 1.46 µg . g-1 . h-1, respectively. In contrast to the MBC and MR, qCO2 in soil showed a reverse pattern. Our study suggested that characteristics of microbial carbolic metabolism were influenced by litter quality. Namely, the treatment with high litter quality had higher MBC, MR and utilization efficiency of soil carbon, compared with the treatment with low litter quality. Moreover, mixture of different species of leaf litter improved soil microbial activities, increased utilization efficiency on soil carbon and promoted diversity of microbial metabolic pathways, which could then contribute to maintaining and enhancing soil quality of forestland.

  8. Ungulate herbivory alters leaf functional traits and recruitment of regenerating aspen.

    PubMed

    Rhodes, Aaron C; Anderson, Val; St Clair, Samuel B

    2017-03-01

    Herbivory by ungulates can affect forest regeneration success, but its long-term impacts on tree function and recruitment are less studied. We evaluated strategies of resistance, tolerance and vertical escape against ungulate herbivory by evaluating leaf traits (photosynthesis, morphology and chemistry) and growth rates of aspen in the presence and absence of ungulate herbivores 1, 2, 3 and 26 years after fires initiated aspen suckering. Over the initial 3-year period, ~60% of aspen stems in unfenced plots showed evidence of being browsed by ungulates. After 3 years, aspen in unfenced plots had smaller leaves, were 50% shorter, and had 33% lower nonstructural carbohydrate concentrations and 33% greater concentrations of condensed tannins, when compared with fenced aspen. Aspen exposed to ungulate herbivory over a 26-year period maintained smaller leaves, had lower annual radial growth rates and were still below the critical height threshold of 2 m required to escape ungulate herbivory for successful recruitment. In contrast, the average height of aspen protected from ungulates was approaching 6 m. Over the 26-year period leaves in unfenced plots had 41% lower nonstructural carbohydrate concentrations and greater expression of defense compounds-condensed tannins (63%) and phenolic glycosides (102%)-than leaves in fenced plots. Photosynthetic rates were slightly higher in aspen that experienced ungulate browsing, suggesting that changes in leaf anatomy and chemistry due to ungulate herbivory did not interfere with photosynthesis. Our data suggest that ungulate browsing increases investment in chemical defense, lowers nonstructural carbohydrate concentrations and reduces leaf area, which decreases the recruitment potential of regenerating aspen. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants.

    PubMed

    Xiong, F S; Day, T A

    2001-02-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O(2) evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations.

  10. SEMI-ROLLED LEAF1 Encodes a Putative Glycosylphosphatidylinositol-Anchored Protein and Modulates Rice Leaf Rolling by Regulating the Formation of Bulliform Cells1[W][OA

    PubMed Central

    Xiang, Jing-Jing; Zhang, Guang-Heng; Qian, Qian; Xue, Hong-Wei

    2012-01-01

    Leaf rolling is an important agronomic trait in rice (Oryza sativa) breeding and moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency and grain yields. Although a few rolled-leaf mutants have been identified and some genes controlling leaf rolling have been isolated, the molecular mechanisms of leaf rolling still need to be elucidated. Here we report the isolation and characterization of SEMI-ROLLED LEAF1 (SRL1), a gene involved in the regulation of leaf rolling. Mutants srl1-1 (point mutation) and srl1-2 (transferred DNA insertion) exhibit adaxially rolled leaves due to the increased numbers of bulliform cells at the adaxial cell layers, which could be rescued by complementary expression of SRL1. SRL1 is expressed in various tissues and is expressed at low levels in bulliform cells. SRL1 protein is located at the plasma membrane and predicted to be a putative glycosylphosphatidylinositol-anchored protein. Moreover, analysis of the gene expression profile of cells that will become epidermal cells in wild type but probably bulliform cells in srl1-1 by laser-captured microdissection revealed that the expression of genes encoding vacuolar H+-ATPase (subunits A, B, C, and D) and H+-pyrophosphatase, which are increased during the formation of bulliform cells, were up-regulated in srl1-1. These results provide the transcript profile of rice leaf cells that will become bulliform cells and demonstrate that SRL1 regulates leaf rolling through inhibiting the formation of bulliform cells by negatively regulating the expression of genes encoding vacuolar H+-ATPase subunits and H+-pyrophosphatase, which will help to understand the mechanism regulating leaf rolling. PMID:22715111

  11. Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration.

    PubMed

    Scoffoni, Christine; Albuquerque, Caetano; Brodersen, Craig R; Townes, Shatara V; John, Grace P; Bartlett, Megan K; Buckley, Thomas N; McElrone, Andrew J; Sack, Lawren

    2017-02-01

    Leaf hydraulic supply is crucial to maintaining open stomata for CO 2 capture and plant growth. During drought-induced dehydration, the leaf hydraulic conductance (K leaf ) declines, which contributes to stomatal closure and, eventually, to leaf death. Previous studies have tended to attribute the decline of K leaf to embolism in the leaf vein xylem. We visualized at high resolution and quantified experimentally the hydraulic vulnerability of xylem and outside-xylem pathways and modeled their respective influences on plant water transport. Evidence from all approaches indicated that the decline of K leaf during dehydration arose first and foremost due to the vulnerability of outside-xylem tissues. In vivo x-ray microcomputed tomography of dehydrating leaves of four diverse angiosperm species showed that, at the turgor loss point, only small fractions of leaf vein xylem conduits were embolized, and substantial xylem embolism arose only under severe dehydration. Experiments on an expanded set of eight angiosperm species showed that outside-xylem hydraulic vulnerability explained 75% to 100% of K leaf decline across the range of dehydration from mild water stress to beyond turgor loss point. Spatially explicit modeling of leaf water transport pointed to a role for reduced membrane conductivity consistent with published data for cells and tissues. Plant-scale modeling suggested that outside-xylem hydraulic vulnerability can protect the xylem from tensions that would induce embolism and disruption of water transport under mild to moderate soil and atmospheric droughts. These findings pinpoint outside-xylem tissues as a central locus for the control of leaf and plant water transport during progressive drought. © 2017 The author(s). All Rights Reserved.

  12. Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease.

    PubMed

    Durkovic, Jaroslav; Canová, Ingrid; Lagana, Rastislav; Kucerová, Veronika; Moravcík, Michal; Priwitzer, Tibor; Urban, Josef; Dvorák, Milon; Krajnáková, Jana

    2013-02-01

    Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids 'Groeneveld' and 'Dodoens' which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of 'Groeneveld' and 'Dodoens' grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. 'Dodoens' had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. 'Groeneveld' had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of 'Dodoens' were unaffected by the DED fungus. 'Dodoens' proved to be a valuable elm germplasm for further breeding strategies.

  13. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.

    PubMed

    Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu

    2018-01-24

    Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.

  14. Chlorotic feeding injury by the black pecan aphid (hemiptera: aphididae) to pecan foliage promotes aphid settling and nymphal development.

    PubMed

    Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi

    2009-04-01

    The nature of the interaction between the black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), and the chlorosis it causes to foliage of its pecan [Carya illinoinensis (Wangenh.) K. Koch)] host is poorly understood. Laboratory experiments were conducted on the settling behavior of the black pecan aphid, when provided chlorotic pecan leaf discs resulting from previous black pecan aphid feeding and nonchlorotic leaf discs, under a normal photoperiod and constant dark. Additionally, aphid development from the first instar to the adult stage was examined when nymphs were either allowed to feed on the same leaf disc or moved daily to a new, nondamaged, same age leaf disc. After 24 h, a significantly higher percentage of black pecan aphids settled on chlorotic than on nonchlorotic leaf discs, regardless of photoperiod. When starting from the first instar, nymphs that were prevented from inducing leaf chlorosis by moving daily to new, same-age leaf discs took approximately 5 d longer to complete development, had a shorter body length, and had higher mortality than when aphids remained on the same leaf disc. These results show that black pecan aphid-induced leaf chlorosis plays an important role in the interaction of the black pecan aphid with its pecan host.

  15. Strategies of leaf expansion in Ficus carica under semiarid conditions.

    PubMed

    González-Rodríguez, A M; Peters, J

    2010-05-01

    Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.

  16. Differences in photosynthesis and isoprene emission in post oak (Quercus stellata) and sweetgum (Liquidambar styraciflua) trees along an urban-to-rural gradient in Texas

    NASA Astrophysics Data System (ADS)

    Crossett, C.; Lahr, E.; Haas, G.; Schade, G. W.

    2014-12-01

    Many plants produce isoprene, a volatile organic compound that can mitigate damage to photosynthetic systems during short- or long-term increases in leaf temperature. After its production within leaves, isoprene is emitted to the atmosphere and influences regional atmospheric chemistry. Here, we use an urban-to-rural gradient to explore future effects of climate change on tree eco-physiology and feedbacks to atmospheric chemistry. Urban areas mimic many of the conditions expected to occur in the future; in particular, cities have warmer temperatures due to the urban heat island (UHI) effect, and less water availability relative to rural areas. Along a 90 km urban-to-rural gradient, we measured photosynthesis and isoprene emission from trees at three sites in eastern Texas: Houston (urban), The Woodlands (suburban) and Sam Houston National Forest (rural). Isoprene emission from post oak (Quercus stellata) was higher in Houston than the other sites, and when leaf temperatures were increased above ambient conditions, trees produced more isoprene. Leaves produced more isoprene at high leaf temperatures in early summer than in late summer, suggesting gradual acclimation of photosynthetic processes over the course of the summer. We also found that sweetgum (Liquidambar styraciflua) emitted more isoprene than post oak, but when leaf temperatures were increased, isoprene emission was exhausted more quickly in sweetgum relative to post oak. At the same time, post oak maintained higher levels of photosynthesis seasonally and during short-term temperature increases. Both post oak and sweetgum are significant isoprene emitters and represent approximately two and four percent crown cover in the United States, respectively. Our results suggest that in a warming climate, we can expect trees to produce more isoprene seasonally and in response to short-term temperature extremes, and that species-specific differences in photosynthesis and isoprene emission may play an important role in forest dynamics, particularly in long-term forest growth and carbon storage. Further exploration of the interactive effect of increased CO2, temperature, and drought on tree physiology will improve our understanding of forest dynamics and forest-climate feedbacks.

  17. Dry Season Impact on Physiological Functioning of Two Tropical Tree Species in the Daintree Rainforest, Northeast Australia

    NASA Astrophysics Data System (ADS)

    Cernusak, L. A.; Dempsey, R.; Cheesman, A.; Meir, P.; Laurance, S.

    2016-12-01

    We measured leaf gas exchange, leaf biochemistry, and stem growth in two tropical tree species in the Daintree rainforest. The site experiences an average dry season length of three months, with global climate change predictions indicating that this could increase. Of the two studied species, Elaeocarpus angustifolius is wide-spread and early-successional, whereas Endiandra microneura is locally endemic and late-successional. Measurements started in 2014 and ended in 2015, thus encompassing the 2014 dry season. Upper canopy foliage was accessed from a 48 m tall canopy crane. Photosynthetic rates were higher during the wet season in Elaeocarpus than in Endiandra, consistent with its pioneering habit. Elaeocarpus showed larger reductions in both photosynthesis and stomatal conductance in response to the dry season than did Endiandra. Dry season depression of photosynthesis was associated with reduced intercellular carbon dioxide concentrations in Endiandra, but not in Elaeocarpus, indicating a role for photo-inhibition in restricting photosynthesis during the dry season in the early successional species, but not in the late successional species. Consistently, Endiandra invested more heavily in photoprotective and anti-oxidative compounds in its upper canopy foliage than did Elaeocarpus. Stem growth rates were four-fold higher in Elaeocarpus than in Endiandra during the wet season, reflecting the successional status of the two species. Stem growth slowed in both species in response to the dry season, and all but ceased by the late dry season. With the onset of the early wet season, stem growth increased markedly, and Elaeocarpus again maintained much faster growth than Endiandra. Overall, our results indicate that at the leaf level, biochemical and physiological processes associated with photosynthesis were more vulnerable to dry season stress in Elaeocarpus than in Endiandra; however, at the whole-plant level, our measurements and the geographic distribution of Elaeocarpus suggest that its overall performance is robust in the face of the dry season. The difference between insights at the leaf-level and those at the whole-plant level presumably reflects a strategy in Elaeocarpus of investing in cheaper, shorter lived, and more easily replaced leaves than does the late successional species, Endiandra.

  18. Caffeine biosynthesis and degradation in tea [Camellia sinensis (L.) O. Kuntze] is under developmental and seasonal regulation.

    PubMed

    Mohanpuria, Prashant; Kumar, Vinay; Joshi, Robin; Gulati, Ashu; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2009-10-01

    To study caffeine biosynthesis and degradation, here we monitored caffeine synthase gene expression and caffeine and allantoin content in various tissues of four Camellia sinensis (L.) O. Kuntze cultivars during non-dormant (ND) and dormant (D) growth phases. Caffeine synthase expression as well as caffeine content was found to be higher in commercially utilized tissues like apical bud, 1st leaf, 2nd leaf, young stem, and was lower in old leaf during ND compared to D growth phase. Among fruit parts, fruit coats have higher caffeine synthase expression, caffeine content, and allantoin content. On contrary, allantoin content was found lower in the commercially utilized tissues and higher in old leaf. Results suggested that caffeine synthesis and degradation in tea appears to be under developmental and seasonal regulation.

  19. Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport.

    PubMed

    Stiles, Kari A; Van Volkenburgh, Elizabeth

    2002-07-01

    Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.

  20. Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species.

    PubMed

    Falster, Daniel S; Reich, Peter B; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2012-01-01

    • Co-occurring species often differ in their leaf lifespan (LL) and it remains unclear how such variation is maintained in a competitive context. Here we test the hypothesis that leaves of long-LL species yield a greater return in carbon (C) fixed per unit C or nutrient invested by the plant than those of short-LL species. • For 10 sympatric woodland species, we assessed three-dimensional shoot architecture, canopy openness, leaf photosynthetic light response, leaf dark respiration and leaf construction costs across leaf age sequences. We then used the YPLANT model to estimate light interception and C revenue along the measured leaf age sequences. This was done under a series of simulations that incorporated the potential covariates of LL in an additive fashion. • Lifetime return in C fixed per unit C, N or P invested increased with LL in all simulations. • In contrast to other recent studies, our results show that extended LL confers a fundamental economic advantage by increasing a plant's return on investment in leaves. This suggests that time-discounting effects, that is, the compounding of income that arises from quick reinvestment of C revenue, are key in allowing short-LL species to succeed in the face of this economic handicap. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  1. Mercury in leaf litter in typical suburban and urban broadleaf forests in China.

    PubMed

    Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Zhangwei; Ci, Zhijia

    2011-01-01

    To study the role of leaf litter in the mercury (Hg) cycle in suburban broadleaf forests and the distribution of Hg in urban forests, we collected leaf litter and soil from suburban evergreen and deciduous broadleaf forests and from urban forests in Beijing. The Hg concentrations in leaf litter from the suburban forests varied from 8.3 to 205.0 ng/g, with an average (avg) of (49.7 +/- 36.9) ng/g. The average Hg concentration in evergreen broadleaf forest leaf litter (50.8 + 39.4) ng/g was higher than that in deciduous broadleaf forest leaf litter (25.8 +/- 10.1) ng/g. The estimated Hg fluxes of leaf litter in suburban evergreen and deciduous broadleaf forests were 179.0 and 83.7 mg/(ha x yr), respectively. The Hg concentration in organic horizons (O horizons) ((263.1 +/- 237.2) ng/g) was higher than that in eluvial horizons (A horizons) ((83.9 +/- 52.0) ng/g). These results indicated that leaf litterfall plays an important role in transporting atmospheric mercury to soil in suburban forests. For urban forests in Beijing, the Hg concentrations in leaf litter ranged from 8.8-119.0 (avg 28.1 +/- 16.6) ng/g, with higher concentrations at urban sites than at suburban sites for each tree. The Hg concentrations in surface soil in Beijing were 32.0-25300.0 ng/g and increased from suburban sites to urban sites, with the highest value from Jingshan (JS) Park at the centre of Beijing. Therefore, the distribution of Hg in Beijing urban forests appeared to be strongly influenced by anthropogenic activities.

  2. Leaf breakdown in streams differing in catchment land use

    USGS Publications Warehouse

    Paul, M.J.; Meyer, J.L.; Couch, C.A.

    2006-01-01

    1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

  3. Apparent Overinvestment in Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in Arid Habitats1[OPEN

    PubMed Central

    de Boer, Hugo J.; Drake, Paul L.; Wendt, Erin; Price, Charles A.; Schulze, Ernst-Detlef; Turner, Neil C.; Nicolle, Dean

    2016-01-01

    Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. PMID:27784769

  4. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    PubMed

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass , R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits.

  5. Gold leaf counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  6. Micropropagation and cryopreservation of garlic (Allium sativum L.).

    PubMed

    Keller, E R Joachim; Senula, Angelika

    2013-01-01

    Garlic (Allium sativum L.) is a very important medicinal and spice plant. It is conventionally propagated by daughter bulbs ("cloves") and bulbils from the flower head. Micropropagation is used for speeding up the vegetative propagation mainly using the advantage to produce higher numbers of healthy plants free of viruses, which have higher yield than infected material. Using primary explants from bulbs and/or bulbils (shoot tips) or unripe inflorescence bases, in vitro cultures are initiated on MS-based media containing auxins, e.g., naphthalene acetic acid, and cytokinins, e.g., 6-γ-γ-(dimethylallylaminopurine) (2iP). Rooting is accompanying leaf formation. It does not need special culture phases. The main micropropagation methods rely on growth of already formed meristems. Long-term storage of micropropagated material, cryopreservation, is well-developed to maintain germplasm. The main method is vitrification using the cryoprotectant mixture PVS3.

  7. Biomonitoring of Urban Pollution Using Silicon-Accumulating Species, Phyllostachys aureosulcata 'Aureocaulis'.

    PubMed

    Morina, Filis; Vidović, Marija; Srećković, Tatjana; Radović, Vesela; Veljović-Jovanović, Sonja

    2017-12-01

    We investigated metal accumulation in bamboo leaves during three seasons at three urban locations differing in pollution levels. The higher content of Cu, Pb, and Zn in the leaves was in correlation with the highest bioavailable content of these elements in the soil at the most polluted location. The content of leaf trace elements was higher in summer and autumn compared to spring. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed that Si accumulation in bamboo leaves was the highest in epidermis and vascular tissue, and was co-localized with trace metals. Analysis of phytoliths showed co-deposition of Al, C, and Si, implying the involvement of Si in metal detoxification. Compared to a common urban tree, linden, bamboo showed better capacity to maintain cellular redox homeostasis under deteriorated environmental conditions. The results suggest that bamboo can be efficiently used for biomonitoring of air and soil metal pollution and remediation in urban areas.

  8. The Powdering Process with a Set of Ceramic Mills for Green Tea Promoted Catechin Extraction and the ROS Inhibition Effect.

    PubMed

    Fujioka, Kouki; Iwamoto, Takeo; Shima, Hidekazu; Tomaru, Keiko; Saito, Hideki; Ohtsuka, Masaki; Yoshidome, Akihiro; Kawamura, Yuri; Manome, Yoshinobu

    2016-04-11

    For serving green tea, there are two prominent methods: steeping the leaf or the powdered leaf (matcha style) in hot water. The purpose of the present study was to reveal chemical and functional differences before and after the powdering process of green tea leaf, since powdered green tea may contribute to expanding the functionality because of the different ingesting style. In this study, we revealed that the powdering process with a ceramic mill and stirring in hot water increased the average extracted concentration of epigallocatechin gallate (EGCG) by more than three times compared with that in leaf tea using high-performance liquid chromatography (HPLC) and liquid chromatography-tandem mass Spectrometry (LC-MS/MS) analyses. Moreover, powdered green tea has a higher inhibition effect of reactive oxygen species (ROS) production in vitro compared with the same amount of leaf tea. Our data suggest that powdered green tea might have a different function from leaf tea due to the higher catechin contents and particles.

  9. Leaf miner-induced morphological, physiological and molecular changes in mangrove plant Avicennia marina (Forsk.) Vierh.

    PubMed

    Chen, Juan; Shen, Zhi-Jun; Lu, Wei-Zhi; Liu, Xiang; Wu, Fei-Hua; Gao, Gui-Feng; Liu, Yi-Ling; Wu, Chun-Sheng; Yan, Chong-Ling; Fan, Hang-Qing; Zhang, Yi-Hui; Zheng, Hai-Lei; Tsai, Chung-Jui

    2017-01-31

    Avicennia marina (Forsk.) Vierh is a widespread mangrove species along the southeast coasts of China. Recently, the outbreak of herbivorous insect, Phyllocnistis citrella Stainton, a leaf miner, have impacted on the growth of A. marina. Little is reported about the responses of A. marina to leaf miner infection at the biochemical, physiological and molecular levels. Here, we reported the responses of A. marina to leaf miner infection from the aspects of leaf structure, photosynthesis, and antioxidant system and miner responsive genes expression. A. marina leaves attacked by the leaf miner exhibited significant decreases in chlorophyll, carbon and nitrogen contents, as well as a decreased photosynthetic rate. Scanning and transmission electron microscopic observations revealed that the leaf miner only invaded the upper epidermis and destroyed the epidermal cell, which lead to the exposure of salt glands. In addition, the chloroplasts of mined leaves (ML) were swollen and the thylakoids degraded. The maximal net photosynthetic rate, stomatal conductance (Gs), carboxylation efficiency (CE), dark respiration (Rd), light respiration (Rp) and quantum yields (AQE) significantly decreased in the ML, whereas the light saturation point (Lsp), light compensation point (Lcp), water loss and CO2 compensation point (Г) increased in the ML. Moreover, chlorophyll fluorescence features also had been changed by leaf miner attacks. Interestingly, higher generation rate of O2ˉ· and lower antioxidant enzyme expression in the mined portion (MP) were found; on the contrary, higher H2O2 level and higher antioxidant enzyme expression in the non-mined portion (NMP) were revealed, implying that the NMP may be able to sense that the leaf miner attacks had happened in the MP of the A. marina leaf via H2O2 signaling. Besides, the protein expression of glutathione S-transferase (GST) and the glutathione (GSH) content were increased in the ML. In addition, insect resistance-related gene expression such as chitinase 3, RAR1, topless and PIF3 had significantly increased in the ML. Taken together, our data suggest that leaf miners could significantly affect leaf structure, photosynthesis, the antioxidant system and miner responsive gene expression in A. marina leaves.

  10. Allelopathic potential of leaf and seed of Mucuna bracteata DC. ex Kurz on Eleusine indica (L.) gaertn

    NASA Astrophysics Data System (ADS)

    Halimshah, Syamimi; Ismail B., S.; Ahmad, Wan Juliana Wan

    2015-09-01

    A study was conducted to determine the allelopathic potential of leaf and seed of Mucuna bracteata on the growth of E. indica through aqueous extract and debris (incorporated into the soil) experiment. Three concentrations of leaf and seed aqueous extract (16.7, 33.3 and 66.7 g/L) and debris (2.5, 5.0 and 10.0 g/500 g soil) of M. bracteata were used in the experiment. Complete randomized design (CRD) with three replications was applied in this experiment which was conducted twice. Results demonstrated that the leaf and seed extracts of M. bracteata exhibited higher suppression effect on the growth and germination of E. indica as the concentration increased. The leaf and seed extracts significantly reduced all measured parameters at all concentrations except for the shoot length and germination of E. indica by seed extract at 16.7 g/L which recorded insignificant reduction by 40.5% and 4% respectively. The leaf and seed debris significantly reduced the root length of E. indica at all treatments. Seed debris also showed significant reduction on the germination at all treatments and other seedling growth parameters (shoot length, fresh weight and dry weight) at 2.5 and 10.0 g/500 g soil. Meanwhile, the leaf debris demonstrated stimulation effect on the seedling growth parameters. As a whole, the leaf showed higher suppression effect in aqueous extract experiment while the seed recorded higher suppression effect in the debris experiment. Further studies need to be conducted to investigate the type of inhibition mechanism involved in both experiments.

  11. Interactions among cluster-root investment, leaf phosphorus concentration, and relative growth rate in two Lupinus species.

    PubMed

    Wang, Xing; Veneklaas, Erik J; Pearse, Stuart J; Lambers, Hans

    2015-09-01

    Cluster-root (CR) formation is a desirable trait to improve phosphorus (P) acquisition as global P resources are dwindling. CRs in some lupine species are suppressed at higher P status. Whether increased growth rate enhances CR formation due to a "dilution" of leaf P concentration is unknown. We investigated interactive effects of leaf P status and relative growth rate (RGR) on CR formation in two Lupinus species, which differ in their CR biomass investment. Variation in RGR was imposed by varying day length. Lupinus albus and L. pilosus were grown hydroponically with KH2PO4 at a day length of 6, 10, or 14 h. We used a slightly higher P supply at longer day lengths to avoid a decline in leaf P concentration, which would induce CRs. Cluster-root percentage, leaf P concentrations, and RGR were determined at 22, 38, and 52 d after sowing. Lupinus species grown at similar root P availability, but with a faster growth rate, as dependent on day length, showed a greater CR percentage. Because our aim to achieve exactly the same leaf P concentrations at different day lengths was only partially achieved, we carried out a multiple regression analysis. This analysis showed the CR percentage was strongly and negatively correlated with plant P status and only marginally and positively correlated with RGR. The two Lupinus species invariably formed fewer cluster roots at higher leaf P status, irrespective of RGR. Differences in RGR or leaf P concentration cannot explain the species-specific variation in cluster-root investment. © 2015 Botanical Society of America.

  12. Ontogenetic and temporal variations in herbivory and defense of Handroanthus spongiosus (Bignoniaceae) in a Brazilian tropical dry forest.

    PubMed

    Oliveira, Karla N; Espírito-Santo, Mário M; Silva, Jhonathan O; Melo, Geraldo A

    2012-06-01

    We compared the richness and abundance of free-feeding herbivore insects (sap-sucking and leaf-chewing), leaf herbivory damage, leaf toughness and total phenolic content between two ontogenetic stages (juvenile and reproductive) of Handroanthus spongiosus (Rizzini) S. O. Grose (Bignoniaceae) throughout the rainy season in a Brazilian seasonally dry tropical forest. Twenty marked individuals of H. spongiosus were sampled per ontogenetic stage in each period of the rainy season (beginning, middle, and end). Herbivore richness and abundance did not differ between ontogenetic stages, but higher percentage of leaf damage, higher concentration of phenolic compounds, and lower leaf toughness were observed for juvenile individuals. The greatest morphospecies abundance was found at the beginning of the rainy season, but folivory increment was higher at the end, despite the fact that leaf toughness and total phenolic content increased in the same period. No significant relationships between leaf damage and both total phenolic content and leaf toughness were observed. These results suggest that insect richness and abundance do not track changes in foliage quality throughout plant ontogeny, but their decrease along rainy season confirms what was predicted for tropical dry forests. The general trends described in the current study corroborate those described in the literature about herbivores and plant ontogeny. However, the lack of relationship between herbivore damage and the two plant attributes considered here indicates that the analyses of multiple defensive traits (the defense syndrome) must be more enlightening to determine the mechanisms driving temporal and spatial patterns of herbivore attack.

  13. Effects of seasonal change and experimental warming on the temperature dependence of photosynthesis in the canopy leaves of Quercus serrata.

    PubMed

    Yamaguchi, Daisuke P; Nakaji, Tatsuro; Hiura, Tsutom; Hikosaka, Kouki

    2016-10-01

    The effects of warming on the temperature response of leaf photosynthesis have become an area of major concern in recent decades. Although growth temperature (GT) and day length (DL) affect leaf gas exchange characteristics, the way in which these factors influence the temperature dependence of photosynthesis remains uncertain. We established open-top canopy chambers at the canopy top of a deciduous forest, in which average daytime leaf temperature was increased by 1.0 °C. We conducted gas exchange measurements for the canopy leaves of deciduous trees exposed to artificial warming during different seasons. The carbon dioxide assimilation rate at 20 °C (A 20 ) was not affected by warming, whereas that at 25 °C (A 25 ) tended to be higher in leaves exposed to warming. Warming increased the optimal temperature of photosynthesis by increasing the activation energy for the maximum rate of carboxylation. Regression analysis indicated that both GT and DL strongly influenced gas exchange characteristics. Sensitivity analysis revealed that DL affected A without obvious effects on the temperature dependence of A, whereas GT almost maintained constant A 20 and strongly influenced the temperature dependence. These results indicate that GT and DL have different influences on photosynthesis; GT and DL affect the 'slope' and intercept' of the temperature dependence of photosynthesis, respectively. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy.

    PubMed

    Mänd, Pille; Hallik, Lea; Peñuelas, Josep; Kull, Olevi

    2013-02-01

    We investigated changes in chlorophyll a fluorescence from alternate leaf surfaces to assess the intraleaf light acclimation patterns in combination with natural variations in radiation, leaf angles, leaf mass per area (LMA), chlorophyll content (Chl) and leaf optical parameters. Measurements were conducted on bottom- and top-layer leaves of Tilia cordata Mill. (a shade-tolerant sub-canopy species, sampled at heights of 11 and 16 m) and Populus tremula L. (a light-demanding upper canopy species, sampled at canopy heights of 19 and 26 m). The upper canopy species P. tremula had a six times higher PSII quantum yield (Φ(II)) and ratio of open reaction centres (qP), and a two times higher LMA than T. cordata. These species-specific differences were also present when the leaves of both species were in similar light conditions. Leaf adaxial/abaxial fluorescence ratio was significantly larger in the case of more horizontal leaves. Populus tremula (more vertical leaves), had smaller differences in fluorescence parameters between alternate leaf sides compared with T. cordata (more horizontal leaves). However, optical properties on alternate leaf sides showed a larger difference for P. tremula. Intraspecifically, the measured optical parameters were better correlated with LMA than with leaf Chl. Species-specific differences in leaf anatomy appear to enhance the photosynthetic potential of leaf biochemistry by decreasing the interception of excess light in P. tremula and increasing the light absorptance in T. cordata. Our results indicate that intraleaf light absorption gradient, described here as leaf adaxial/abaxial side ratio of chlorophyll a fluorescence, varies significantly with changes in leaf light environment in a multi-layer multi-species tree canopy. However, this variation cannot be described merely as a simple function of radiation, leaf angle, Chl or LMA, and species-specific differences in light acclimation strategies should also be considered.

  15. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China

    PubMed Central

    Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007

  16. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China.

    PubMed

    Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.

  17. Leaf litter quality affects aquatic insect emergence: contrasting patterns from two foundation trees.

    PubMed

    Compson, Zacchaeus G; Adams, Kenneth J; Edwards, Joeseph A; Maestas, Jesse M; Whitham, Thomas G; Marks, Jane C

    2013-10-01

    Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m(-2) day(-1)) was 25% higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon's H') was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.

  18. Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity.

    PubMed

    Sellin, Arne; Niglas, Aigar; Õunapuu-Pikas, Eele; Kupper, Priit

    2014-03-24

    Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P < 0.001) effect on gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity. The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.

  19. Leaf rolling and stem fasciation in grass pea (Lathyrus sativus L.) mutant are mediated through glutathione-dependent cellular and metabolic changes and associated with a metabolic diversion through cysteine during phenotypic reversal.

    PubMed

    Talukdar, Dibyendu; Talukdar, Tulika

    2014-01-01

    A Lathyrus sativus L. mutant isolated in ethylmethane sulfonate-treated M2 progeny of mother variety BioL-212 and designated as rlfL-1 was characterized by inwardly rolled-leaf and stem and bud fasciations. The mutant exhibited karyomorphological peculiarities in both mitosis and meiosis with origin of aneuploidy. The mitosis was vigorous with high frequency of divisional cells and their quick turnover presumably steered cell proliferations. Significant transcriptional upregulations of cysteine and glutathione synthesis and concomitant stimulations of glutathione-mediated antioxidant defense helped rlfL-1 mutant to maintain balanced reactive oxygen species (ROS) metabolisms, as deduced by ROS-imaging study. Glutathione synthesis was shut down in buthionine sulfoximine- (BSO-) treated mother plant and mutant, and leaf-rolling and stems/buds fasciations in the mutant were reversed, accompanied by normalization of mitotic cell division process. Antioxidant defense was downregulated under low glutathione-redox but cysteine-desulfurations and photorespiratory glycolate oxidase transcripts were markedly overexpressed, preventing cysteine overaccumulation but resulted in excess H2O2 in BSO-treated mutant. This led to oxidative damage in proliferating cells, manifested by severe necrosis in rolled-leaf and fasciated stems. Results indicated vital role of glutathione in maintaining abnormal proliferations in plant organs, and its deficiency triggered phenotypic reversal through metabolic diversions of cysteine and concomitant cellular and metabolic modulations.

  20. Antioxidant compounds and activities of the stem, flower, and leaf extracts of the anti-smoking Thai medicinal plant: Vernonia cinerea Less

    PubMed Central

    Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara

    2017-01-01

    Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (−)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model. PMID:28243061

  1. Antioxidant compounds and activities of the stem, flower, and leaf extracts of the anti-smoking Thai medicinal plant: Vernonia cinerea Less.

    PubMed

    Ketsuwan, Nitinet; Leelarungrayub, Jirakrit; Kothan, Suchart; Singhatong, Supawatchara

    2017-01-01

    Vernonia cinerea (VC) Less has been proposed as a medicinal plant with interesting activities, such as an aid for smoking cessation worldwide. Despite its previous clinical success in smoking cessation by exhibiting reduced oxidative stress, it has not been approved. The aim of this study was to investigate various antioxidant activity and active compounds that have not been approved, including the protective activity in human red blood cells (RBCs), from the stem, flower, and leaf extracts of VC Less in vitro. These extracts were tested for their antioxidant activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and analyzed by high-performance liquid chromatography (HPLC) for their active compounds: total tannin, five catechin (C) compounds (epicatechin gallate [ECG], C, epicatechin [EC], epigallocatechin gallate [EGCG], and (-)-epigallocatechin [EGC]), flavonoid, nitrite, nitrate, caffeine, and nicotine. Moreover, antioxidant activities of the extracts were evaluated in 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-treated RBCs. The results showed that the flower and leaf of VC Less had higher activity than the stem in scavenging DPPH radicals. The tannin content in the flower and leaf was higher than that in the stem. The leaf had the highest content of the five catechins (C, EC, EGCG, ECG, and EGC), the same as in the flavonoid, when compared to the stem and flower. Furthermore, the leaf extract had higher nitrate and nitrite than the stem. Nicotine content was found to be higher in the leaf when compared to the flower. In addition, the leaf showed protective activity in glutathione (GSH), malondialdehyde (MDA), and protein carbonyl, with a dose response in AAPH-oxidized RBCs, the same as in standard EGCG. Thus, this study concluded that radical scavenging and antioxidant compounds such as catechins, flavonoid, nitrate and nitrite, and nicotine are present in different VC Less parts and are included in the AAPH-oxidized RBC model.

  2. Seasonal variation of temperature response of respiration in invasive Berberis thunbergii (Japanese barberry) and two co-occurring native understory shrubs in a northeastern US deciduous forest.

    PubMed

    Xu, Cheng-Yuan; Schuster, W S F; Griffin, Kevin L

    2007-10-01

    In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C "subsidy" when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R(0)) and the temperature response coefficient (E(0)), were different among the three shrubs and species-specific negative correlations were observed between R(0) and E(0). All three shrubs showed significant correlation between respiration rate on an area basis (20 degrees C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.

  3. Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs.

    PubMed

    Yang, Shi-Jian; Sun, Mei; Yang, Qiu-Yun; Ma, Ren-Yi; Zhang, Jiao-Lin; Zhang, Shi-Bao

    2016-01-01

    Epiphytes are an important component of tropical and subtropical flora, and serve vital ecological functions in forest hydrology and nutrient fluxes. However, they often encounter water deficits because there is no direct contact between their roots and the soil. The strategies employed by epiphytes for maintaining water balance in relatively water-limited habitats are not completely understood. In the present study, we investigated the anatomical traits, water loss rates, and physiology of leaves and pseudobulbs of four Dendrobium species with different pseudobulb morphologies to understand the roles of leaf and pseudobulb in maintaining water balance of epiphytic orchids. Our results showed that two species (D. chrysotoxum and D. officinale), with lower rates of water loss, have thicker leaves and upper cuticles, but lower epidermal thickness and leaf dry mass per area. In contrast, the other two species (D. chrysanthum and D. crystallinum) with thinner cuticles and higher rates of water loss, have less tissue density and greater saturated water contents in their pseudobulbs. Therefore, our results indicate that these latter two species may resist drought by storing water in the pseudobulbs to compensate for their thin cuticles and rapid water loss through the leaves. Under the same laboratory conditions, excised pseudobulbs with attached leaves had lower rates of water loss when compared with samples comprising only excised leaves. This implies that epiphytic orchids utilize two different strategies for sustaining water balance: thick cuticles to conserve water in leaves and water storage in pseudobulbs. Our results also show that Dendrobium species with thin cuticles tend to have pseudobulbs with high water storage capacity that compensates for their faster rates of water loss. These outcomes contribute to our understanding of the adaptive water-use strategies in Dendrobium species, which is beneficial for the conservation and cultivation of epiphytic orchids. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs

    PubMed Central

    Yang, Shi-Jian; Sun, Mei; Yang, Qiu-Yun; Ma, Ren-Yi; Zhang, Jiao-Lin; Zhang, Shi-Bao

    2016-01-01

    Epiphytes are an important component of tropical and subtropical flora, and serve vital ecological functions in forest hydrology and nutrient fluxes. However, they often encounter water deficits because there is no direct contact between their roots and the soil. The strategies employed by epiphytes for maintaining water balance in relatively water-limited habitats are not completely understood. In the present study, we investigated the anatomical traits, water loss rates, and physiology of leaves and pseudobulbs of four Dendrobium species with different pseudobulb morphologies to understand the roles of leaf and pseudobulb in maintaining water balance of epiphytic orchids. Our results showed that two species (D. chrysotoxum and D. officinale), with lower rates of water loss, have thicker leaves and upper cuticles, but lower epidermal thickness and leaf dry mass per area. In contrast, the other two species (D. chrysanthum and D. crystallinum) with thinner cuticles and higher rates of water loss, have less tissue density and greater saturated water contents in their pseudobulbs. Therefore, our results indicate that these latter two species may resist drought by storing water in the pseudobulbs to compensate for their thin cuticles and rapid water loss through the leaves. Under the same laboratory conditions, excised pseudobulbs with attached leaves had lower rates of water loss when compared with samples comprising only excised leaves. This implies that epiphytic orchids utilize two different strategies for sustaining water balance: thick cuticles to conserve water in leaves and water storage in pseudobulbs. Our results also show that Dendrobium species with thin cuticles tend to have pseudobulbs with high water storage capacity that compensates for their faster rates of water loss. These outcomes contribute to our understanding of the adaptive water-use strategies in Dendrobium species, which is beneficial for the conservation and cultivation of epiphytic orchids. PMID:27339052

  5. Reading the Leaves’ Palm: Leaf Traits and Herbivory along the Microclimatic Gradient of Forest Layers

    PubMed Central

    Entling, Martin H.; Mantilla-Contreras, Jasmin

    2017-01-01

    Microclimate in different positions on a host plant has strong direct effects on herbivores. But little is known about indirect effects due to changes of leaf traits. We hypothesized that herbivory increases from upper canopy to lower canopy and understory due to a combination of direct and indirect pathways. Furthermore, we hypothesized that herbivory in the understory differs between tree species in accordance with their leaf traits. We investigated herbivory by leaf chewing insects along the vertical gradient of mixed deciduous forest stands on the broad-leaved tree species Fagus sylvatica L. (European beech) with study sites located along a 140 km long transect. Additionally, we studied juvenile Acer pseudoplatanus L. (sycamore maple) and Carpinus betulus L. (hornbeam) individuals within the understory as a reference of leaf traits in the same microclimate. Lowest levels of herbivory were observed in upper canopies, where temperatures were highest. Temperature was the best predictor for insect herbivory across forest layers in our study. However, the direction was opposite to the generally known positive relationship. Herbivory also varied between the three tree species with lowest levels for F. sylvatica. Leaf carbon content was highest for F. sylvatica and probably indicates higher amounts of phenolic defense compounds. We conclude that the effect of temperature must have been indirect, whereby the expected higher herbivory was suppressed due to unfavorable leaf traits (lower nitrogen content, higher toughness and carbon content) of upper canopy leaves compared to the understory. PMID:28099483

  6. Seedling growth strategies in Bauhinia species: comparing lianas and trees.

    PubMed

    Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans

    2007-10-01

    Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25% of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (A(area)) and similar photosynthetic rates per unit mass (A(mass)) than the trees. Across species, RGR was positively related to SLA, but not to LAR and A(area). It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species.

  7. Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees

    PubMed Central

    Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans

    2007-01-01

    Background and Aims Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Methods Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25 % of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. Key Results The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (Aarea) and similar photosynthetic rates per unit mass (Amass) than the trees. Across species, RGR was positively related to SLA, but not to LAR and Aarea. Conclusions It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species. PMID:17720978

  8. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    PubMed

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  9. Leaf physico-chemical and physiological properties of maize (Zea mays L.) populations from different origins.

    PubMed

    Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José

    2016-10-01

    In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?

    PubMed

    Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R

    2006-03-01

    Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.

  11. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems.

    PubMed

    Hao, Guang-You; Hoffmann, William A; Scholz, Fabian G; Bucci, Sandra J; Meinzer, Frederick C; Franco, Augusto C; Cao, Kun-Fang; Goldstein, Guillermo

    2008-03-01

    Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K (leaf)) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K (leaf) values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K (leaf) or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.

  12. Convergence of tree water use within an arid-zone woodland.

    PubMed

    O'Grady, A P; Cook, P G; Eamus, D; Duguid, A; Wischusen, J D H; Fass, T; Worldege, D

    2009-07-01

    We examined spatial and temporal patterns of tree water use and aspects of hydraulic architecture in four common tree species of central Australia--Corymbia opaca, Eucalyptus victrix, E. camaldulensis and Acacia aneura--to better understand processes that constrain water use in these environments. These four widely distributed species occupy contrasting niches within arid environments including woodlands, floodplains and riparian environments. Measurements of tree water use and leaf water potential were made at two sites with contrasting water table depths during a period of high soil water availability following summer rainfall and during a period of low soil water availability following 7 months of very little rainfall during 2007. There were significant differences in specific leaf area (SLA), sapwood area to leaf area ratios and sapwood density between species. Sapwood to leaf area ratio increased in all species from April to November indicating a decline in leaf area per unit sapwood area. Despite very little rainfall in the intervening period three species, C. opaca, E. victrix and E. camaldulensis maintained high leaf water potentials and tree water use during both periods. In contrast, leaf water potential and water use in the A. aneura were significantly reduced in November compared to April. Despite contrasting morphology and water use strategies, we observed considerable convergence in water use among the four species. Wood density in particular was strongly related to SLA, sapwood area to leaf area ratios and soil to leaf conductance, with all four species converging on a common relationship. Identifying convergence in hydraulic traits can potentially provide powerful tools for scaling physiological processes in natural ecosystems.

  13. Unraveling the Effects of Plant Hydraulics on Stomatal Closure during Water Stress in Walnut

    PubMed Central

    Cochard, Hervé; Coll, Lluis; Le Roux, Xavier; Améglio, Thierry

    2002-01-01

    The objectives of the study were to identify the relevant hydraulic parameters associated with stomatal regulation during water stress and to test the hypothesis of a stomatal control of xylem embolism in walnut (Juglans regia × nigra) trees. The hydraulic characteristics of the sap pathway were experimentally altered with different methods to alter plant transpiration (Eplant) and stomatal conductance (gs). Potted trees were exposed to a soil water depletion to alter soil water potential (Ψsoil), soil resistance (Rsoil), and root hydraulic resistances (Rroot). Soil temperature was changed to alter Rroot alone. Embolism was created in the trunk to increase shoot resistance (Rshoot). Stomata closed in response to these stresses with the effect of maintaining the water pressure in the leaf rachis xylem (Prachis) above −1.4 MPa and the leaf water potential (Ψleaf) above −1.6 MPa. The same dependence of Eplant and gs on Prachis or Ψleaf was always observed. This suggested that stomata were not responding to changes in Ψsoil, Rsoil, Rroot, or Rshoot per se but rather to their impact on Prachis and/or Ψleaf. Leaf rachis was the most vulnerable organ, with a threshold Prachis for embolism induction of −1.4 MPa. The minimum Ψleaf values corresponded to leaf turgor loss point. This suggested that stomata are responding to leaf water status as determined by transpiration rate and plant hydraulics and that Prachis might be the physiological parameter regulated by stomatal closure during water stress, which would have the effect of preventing extensive developments of cavitation during water stress. PMID:11788773

  14. Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis1[OPEN

    PubMed Central

    Drewry, Darren T.; VanLoocke, Andy; Cho, Young B.

    2018-01-01

    The hypothesis that reducing chlorophyll content (Chl) can increase canopy photosynthesis in soybeans was tested using an advanced model of canopy photosynthesis. The relationship among leaf Chl, leaf optical properties, and photosynthetic biochemical capacity was measured in 67 soybean (Glycine max) accessions showing large variation in leaf Chl. These relationships were integrated into a biophysical model of canopy-scale photosynthesis to simulate the intercanopy light environment and carbon assimilation capacity of canopies with wild type, a Chl-deficient mutant (Y11y11), and 67 other mutants spanning the extremes of Chl to quantify the impact of variation in leaf-level Chl on canopy-scale photosynthetic assimilation and identify possible opportunities for improving canopy photosynthesis through Chl reduction. These simulations demonstrate that canopy photosynthesis should not increase with Chl reduction due to increases in leaf reflectance and nonoptimal distribution of canopy nitrogen. However, similar rates of canopy photosynthesis can be maintained with a 9% savings in leaf nitrogen resulting from decreased Chl. Additionally, analysis of these simulations indicate that the inability of Chl reductions to increase photosynthesis arises primarily from the connection between Chl and leaf reflectance and secondarily from the mismatch between the vertical distribution of leaf nitrogen and the light absorption profile. These simulations suggest that future work should explore the possibility of using reduced Chl to improve canopy performance by adapting the distribution of the “saved” nitrogen within the canopy to take greater advantage of the more deeply penetrating light. PMID:29061904

  15. Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease

    PubMed Central

    Ďurkovič, Jaroslav; Čaňová, Ingrid; Lagaňa, Rastislav; Kučerová, Veronika; Moravčík, Michal; Priwitzer, Tibor; Urban, Josef; Dvořák, Miloň; Krajňáková, Jana

    2013-01-01

    Background and Aims Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids ‘Groeneveld’ and ‘Dodoens’ which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Methods Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of ‘Groeneveld’ and ‘Dodoens’ grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. Key Results ‘Dodoens’ had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. ‘Groeneveld’ had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Conclusions Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of ‘Dodoens’ were unaffected by the DED fungus. ‘Dodoens’ proved to be a valuable elm germplasm for further breeding strategies. PMID:23264236

  16. Apparent Overinvestment in Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in Arid Habitats.

    PubMed

    de Boer, Hugo J; Drake, Paul L; Wendt, Erin; Price, Charles A; Schulze, Ernst-Detlef; Turner, Neil C; Nicolle, Dean; Veneklaas, Erik J

    2016-12-01

    Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO 2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (d x ) is equal to the distance from these veins to the epidermis (d y ), expressed as d x :d y ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce d x :d y below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing d x beyond d y using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in d x :d y ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing d x beyond d y is to offset the reduction in leaf gas exchange that would result from maintaining d x :d y at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Enemy release and plant invasion: patterns of defensive traits and leaf damage in Hawaii.

    PubMed

    Funk, Jennifer L; Throop, Heather L

    2010-04-01

    Invasive species may be released from consumption by their native herbivores in novel habitats and thereby experience higher fitness relative to native species. However, few studies have examined release from herbivory as a mechanism of invasion in oceanic island systems, which have experienced particularly high loss of native species due to the invasion of non-native animal and plant species. We surveyed putative defensive traits and leaf damage rates in 19 pairs of taxonomically related invasive and native species in Hawaii, representing a broad taxonomic diversity. Leaf damage by insects and pathogens was monitored in both wet and dry seasons. We found that native species had higher leaf damage rates than invasive species, but only during the dry season. However, damage rates across native and invasive species averaged only 2% of leaf area. Native species generally displayed high levels of structural defense (leaf toughness and leaf thickness, but not leaf trichome density) while native and invasive species displayed similar levels of chemical defenses (total phenolics). A defense index, which integrated all putative defense traits, was significantly higher for native species, suggesting that native species may allocate fewer resources to growth and reproduction than do invasive species. Thus, our data support the idea that invasive species allocate fewer resources to defense traits, allowing them to outperform native species through increased growth and reproduction. While strong impacts of herbivores on invasion are not supported by the low damage rates we observed on mature plants, population-level studies that monitor how herbivores influence recruitment, mortality, and competitive outcomes are needed to accurately address how herbivores influence invasion in Hawaii.

  18. Differential expression of ion transporters and aquaporins in leaves may contribute to different salt tolerance in Malus species.

    PubMed

    Liu, Changhai; Li, Chao; Liang, Dong; Wei, Zhiwei; Zhou, Shasha; Wang, Rongchao; Ma, Fengwang

    2012-09-01

    Maintaining ion and water homeostasis in plants is an important defense strategy against salinity stress. Divergence in ion homeostasis between the salt-tolerant Malus hupehensis Rehd. and salt-sensitive Malus prunifolia 'yingyehaitang' was studied to understand their mechanisms for tolerance. Compared with the control on Day 15, plants of those two genotypes under high-salinity treatment had less K(+) in the leaves, stems, and roots. Contents were higher in the roots but lower in the leaves of M. hupehensis while levels in the stems were similar to those from M. prunifolia. For both genotypes, the sodium content increased after salinity treatment in all tissue types. However, the leaves from M. hupehensis had less Na(+) and maintained a lower Na(+)/K(+) ratio. To understand the basis for these differences, we studied the ion transporters and regulation of aquaporin transcripts in the leaves. Transcript levels for both MdHKT1 and MdSOS1 were higher in M. hupehensis, implying that this species had better capacity to exclude sodium so that less Na(+) occurred in the leaves but more in the stems. M. hupehensis also had a greater amount of MdNHX1 transcripts, which could have assisted in sequestering excess Na(+) into the vacuoles and sustaining a better cellular environment. A relatively higher level of aquaporin transcript was also found in M. hupehensis, suggesting that those plants were more capable of maintaining a better leaf water status and diluting excess ions effectively under high-salinity conditions. Therefore, these tested transporters may play important roles in determining how salinity tolerance is conferred in Malus species. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners.

    PubMed

    Feng, Yu-Long; Fu, Gai-Lan; Zheng, Yu-Long

    2008-08-01

    Comparisons between invasive and native species may not characterize the traits of invasive species, as native species might be invasive elsewhere if they were introduced. In this study, invasive Oxalis corymbosa and Peperomia pellucida were compared with their respective noninvasive alien congeners. We hypothesized that the invasive species have higher specific leaf (SLA) than their respective noninvasive alien congeners, and analyzed the physiological and ecological consequences of the higher SLA. Higher SLA was indeed the most important trait for the two invaders, which was associated with their lower leaf construction cost, higher nitrogen (N) allocation to photosynthesis and photosynthetic N use efficiency (PNUE). The higher N allocation to photosynthesis of the invaders in turn increased their PNUE, N content in photosynthesis, biochemical capacity for photosynthesis, and therefore light-saturated photosynthetic rate. The above resource capture-, use- and growth-related traits may facilitate the two invaders' invasion, while further comparative studies on a wider range of invasive and noninvasive congeners are needed to understand the generality of this pattern and to fully assess the competitive advantages afforded by these traits.

  20. Bryophyllum pinnatum: A Great Teaching Aid.

    ERIC Educational Resources Information Center

    Martin, Francis L.

    1983-01-01

    Suggests using Bryophyllum pinnatum to illustrate botanical principles. Includes tips for keeping and maintaining the plant in the classroom and suggests several student activities, including observing root/shoot growth, investigating apical dominance, exploring multiple leaf development, and others. (JN)

  1. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.

    PubMed

    Villagra, Mariana; Campanello, Paula I; Bucci, Sandra J; Goldstein, Guillermo

    2013-12-01

    Leaves can be both a hydraulic bottleneck and a safety valve against hydraulic catastrophic dysfunctions, and thus changes in traits related to water movement in leaves and associated costs may be critical for the success of plant growth. A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) addition was done in a semideciduous Atlantic forest in northeastern Argentina. Saplings of five dominant canopy species were grown in similar gaps inside the forests (five control and five N + P addition plots). Leaf lifespan (LL), leaf mass per unit area (LMA), leaf and stem vulnerability to cavitation, leaf hydraulic conductance (K(leaf_area) and K(leaf_mass)) and leaf turgor loss point (TLP) were measured in the five species and in both treatments. Leaf lifespan tended to decrease with the addition of fertilizers, and LMA was significantly higher in plants with nutrient addition compared with individuals in control plots. The vulnerability to cavitation of leaves (P50(leaf)) either increased or decreased with the nutrient treatment depending on the species, but the average P50(leaf) did not change with nutrient addition. The P50(leaf) decreased linearly with increasing LMA and LL across species and treatments. These trade-offs have an important functional significance because more expensive (higher LMA) and less vulnerable leaves (lower P50(leaf)) are retained for a longer period of time. Osmotic potentials at TLP and at full turgor became more negative with decreasing P50(leaf) regardless of nutrient treatment. The K(leaf) on a mass basis was negatively correlated with LMA and LL, indicating that there is a carbon cost associated with increased water transport that is compensated by a longer LL. The vulnerability to cavitation of stems and leaves were similar, particularly in fertilized plants. Leaves in the species studied may not function as safety valves at low water potentials to protect the hydraulic pathway from water stress-induced cavitation. The lack of rainfall seasonality in the subtropical forest studied probably does not act as a selective pressure to enhance hydraulic segmentation between leaves and stems.

  2. Apparatus and method for variable angle slant hole collimator

    DOEpatents

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  3. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels ofmore » GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.« less

  4. Relating Stomatal Conductance to Leaf Functional Traits.

    PubMed

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  5. Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species

    PubMed Central

    Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483

  6. Climate influences the leaf area/sapwood area ratio in Scots pine.

    PubMed

    Mencuccini, M; Grace, J

    1995-01-01

    We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.

  7. Leaf photoacclimatory responses of the tropical seagrass Thalassia testudinum under mesocosm conditions: a mechanistic scaling-up study.

    PubMed

    Cayabyab, Napo M; Enríquez, Susana

    2007-01-01

    Here, the leaf photoacclimatory plasticity and efficiency of the tropical seagrass Thalassia testudinum were examined. Mesocosms were used to compare the variability induced by three light conditions, two leaf sections and the variability observed at the collection site. The study revealed an efficient photosynthetic light use at low irradiances, but limited photoacclimatory plasticity to increase maximum photosynthetic rates (P(max)) and saturation (E(k)) and compensation (E(c)) irradiances under high light irradiance. A strong, positive and linear association between the percentage of daylight hours above saturation and the relative maximum photochemical efficiency (F(V)/F(M)) reduction observed between basal and apical leaf sections was also found. The results indicate that T. testudinum leaves have a shade-adapted physiology. However, the large amount of heterotrophic biomass that this seagrass maintains may considerably increase plant respiratory demands and their minimum quantum requirements for growth (MQR). Although the MQR still needs to be quantified, it is hypothesized that the ecological success of this climax species in the oligotrophic and highly illuminated waters of the Caribbean may rely on the ability of the canopy to regulate the optimal leaf light environment and the morphological plasticity of the whole plant to enhance total leaf area and to reduce carbon respiratory losses.

  8. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants.

    PubMed

    Turcotte, Martin M; Davies, T Jonathan; Thomsen, Christina J M; Johnson, Marc T J

    2014-07-22

    The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Nontoxic fluorescent carbon nanodot serving as a light conversion material in plant for UV light utilization.

    PubMed

    Sai, Liman; Liu, Siqi; Qian, Xuexue; Yu, Yahui; Xu, Xiaofeng

    2018-05-21

    In this study, water-soluble fluorescent carbon nanodots (CNDs) were directly injected into the leaf of nicotiana tabacum. With the help of UV-to-blue light conversion nanomaterial, the photosynthetic rate of the leaf was improved 18% upon additional 6 W UV irradiation. The photostability and toxicity of different kinds of CNDs were discussed. The results showed that CNDs functionalized with NH 2 -groups on their surfaces could maintain good fluorescence in plant leaf, and CNDs with complex surface groups tended to have high toxicity to the plant. The NH 2 -functionalized CNDs with non-toxicity and good photostability were used as in vivo light conversion material for direct utilization of UV light in the solar energy. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations.

    PubMed

    Bazihizina, Nadia; Colmer, Timothy D; Barrett-Lennard, Edward G

    2009-09-01

    Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na(+) and Cl(-) concentrations were 1.9- to 2.3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K(+) concentrations were 1.2- to 2.0-fold higher in the non-uniform treatment. Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments.

  11. Photosynthetic light capture and processing from cell to canopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenberg, P.; DeLucia, E.H.; Schoettle, A.W.

    1995-07-01

    We have addressed the unique structural features of conifers, as they relate to photosynthetic production, at different levels of organization (from needle to canopy). Many concepts and measures must be defined for conifers so that they are consistent with the structural properties of needles and shoots. Consistency is needed in comparing the photosynthetic performance of conifers and broad leaves, wherein it is important to distinguish the effect of structural factors on light capture from differences in the photosynthetic response at a fixed interception. Needles differ from broad leaves both with respect to inner structure and external shape, which includes amore » continuum from nearly flat to cylindrical. For nonflat three-dimensional objects such as for conifer needles, total surface area is the natural measure. The meaning of the one-sided area of needles is not clear, but consistency requires that it be defined as half the total needle surface area, as concluded. Characteristic structural factors of conifers that affect their ability to harvest light are a deep canopy combined with a small needle size, which create an important penumbra effect, and the clustering of needles on shoots, which creates a discontinuous distribution of needle area. These factors imply that, at a fixed leaf area index, the intercepted PAR would be smaller in coniferous than in broad-leafed canopies, but the vertical gradient of light in conifers is less steep and light reaching the lower canopy is all penumbral (diffuse). Conifers can maintain a higher leaf area index, and this may be accomplished by a more even distribution of light between shoots at different locations in the canopy and also because shade shoots have a structure that effectively intercepts light. Broad leaves in general have higher maximum photosynthetic rates than do needles, and yet conifers are at least equally productive on a stand basis. Possible reasons are discussed.« less

  12. Plants in a crowded stand regulate their height growth so as to maintain similar heights to neighbours even when they have potential advantages in height growth.

    PubMed

    Nagashima, Hisae; Hikosaka, Kouki

    2011-07-01

    Although being tall is advantageous in light competition, plant height growth is often similar among dominant plants in crowded stands (height convergence). Previous theoretical studies have suggested that plants should not overtop neighbours because greater allocation to supporting tissues is necessary in taller plants, which in turn lowers leaf mass fraction and thus carbon gain. However, this model assumes that a competitor has the same potential of height growth as their neighbours, which does not necessarily account for the fact that height convergence occurs even among individuals with various biomass. Stands of individually potted plants of Chenopodium album were established, where target plants were lifted to overtop neighbours or lowered to be overtopped. Lifted plants were expected to keep overtopping because they intercept more light without increased allocation to stems, or to regulate their height to similar levels of neighbours, saving biomass allocation to the supporting organ. Lowered plants were expected to be suppressed due to the low light availability or to increase height growth so as to have similar height to the neighbours. Lifted plants reduced height growth in spite of the fact that they received higher irradiance than others. Lowered plants, on the other hand, increased the rate of stem elongation despite the reduced irradiance. Consequently, lifted and lowered plants converged to the same height. In contrast to the expectation, lifted plants did not increase allocation to leaf mass despite the decreased stem length. Rather, they allocated more biomass to roots, which might contribute to improvement of mechanical stability or water status. It is suggested that decreased leaf mass fraction is not the sole cost of overtopping neighbours. Wind blowing, which may enhance transpiration and drag force, might constrain growth of overtopping plants. The results show that plants in crowded stands regulate their height growth to maintain similar height to neighbours even when they have potential advantages in height growth. This might contribute to avoidance of stresses caused by wind blowing.

  13. Static Design and Finite Element Analysis of Innovative CFRP Transverse Leaf Spring

    NASA Astrophysics Data System (ADS)

    Carello, M.; Airale, A. G.; Ferraris, A.; Messana, A.; Sisca, L.

    2017-12-01

    This paper describes the design and the numerical modelization of a novel transverse Carbon Fiber Reinforced Plastic (CFRP) leaf-spring prototype for a multilink suspension. The most significant innovation is in the functional integration where the leaf spring has been designed to work as spring, anti-roll bar, lower and longitudinal arms at the same time. In particular, the adopted work flow maintains a very close correlation between virtual simulations and experimental tests. Firstly, several tests have been conducted on the CFRP specimen to characterize the material property. Secondly, a virtual card fitting has been carried out in order to set up the leaf-spring Finite Element (FE) model using CRASURV formulation as material law and RADIOSS as solver. Finally, extensive tests have been done on the manufactured component for validation. The results obtained show a good agreement between virtual simulation and experimental tests. Moreover, this solution enabled the suspension to reduce about 75% of the total mass without losing performance.

  14. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat

    NASA Technical Reports Server (NTRS)

    Hinzman, L. D.; Bauer, M. E.; Daughtry, C. S. T.

    1986-01-01

    The use of remote sensing to determine seasonal changes in agronomic and spectral properties of winter wheat canopies with different levels of N fertilization is investigated. Field experiments were conducted at Purdue Agronomy Farm, West Lafayette, IN during the 1978-1979 and 1979-1980 growing season. Spectral reflectance, total leaf N concentration, leaf chlorophyll concentration, leaf are index (LAI), and fresh and dry phytomass are measured and analyzed. Three distinct wheat canopies are detected for the O, 60, and 120 kg N/ha levels of fertilization; it is observed that with an increase in N the reflectance in the visible, and middle IR wavelengths decrease, and the IR reflectance is increased. The canopies with 120 kg N/ha display the highest LAI, maintain green leaf area the longest, and increase in fresh and dry phytomass. The relationship between spectral and agronomic variables is examined; the effect of changing chlorophyll concentration and LAI on the reflectance is studied.

  15. Thermal Infrared Hot Spot and Dependence on Canopy Geometry

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ballard, Jerrell R., Jr.; Smith, David E. (Technical Monitor)

    2001-01-01

    We perform theoretical calculations of the canopy thermal infrared (TIR) hot spot using a first principles 3-D model described earlier. Various theoretical canopies of varying leaf size and for differing canopy height are used to illustrate the magnitude of the TIR effect. Our results are similar to predicted behavior in the reflective hot spot as a function of canopy geometry and comparable to TIR measurements from the literature and our own simple ground experiments. We apply the MODTRAN atmospheric code to estimate the at-sensor variation in brightness temperature with view direction in the solar principal plane. For simple homogeneous canopies, we predict canopy thermal infrared hot spot variations of 2 degrees C at the surface with respect to nadir viewing. Dependence on leaf size is weak as long as the ratio of leaf size to canopy height is maintained. However, the angular width of the hot spot increases as the ratio of leaf diameter to canopy height increases. Atmospheric effects minimize but do not eliminate the TIR hot spot at satellite altitudes.

  16. Post-fire environments are favourable for plant functioning of seeder and resprouter Mediterranean shrubs, even under drought.

    PubMed

    Parra, Antonio; Moreno, José M

    2017-05-01

    Understanding how drought affects seeder and resprouter plants during post-fire regeneration is important for the anticipation of Mediterranean vegetation vulnerability in a context of increasing drought and fire caused by climate change. A Mediterranean shrubland was subjected to various drought treatments (including 45% rainfall reduction, 7 months drought yr -1 ), before and after experimental burning, by means of a rainout-shelter system with an irrigation facility. Predawn shoot water potential (Ψ pd ), relative growth rate (RGR), specific leaf area (SLA) and bulk leaf carbon isotopic composition (δ 13 C) were monitored in the main woody species during the first 3 yr after fire. Cistus ladanifer seedlings showed higher Ψ pd , RGR and SLA, and lower δ 13 C, than unburned plants during the first two post-fire years. Seedlings under drought maintained relatively high Ψ pd , but suffered a decrease in Ψ pd and RGR, and an increase in δ 13 C, relative to control treatments. Erica arborea, E. scoparia and Phillyrea angustifolia resprouts had higher Ψ pd and RGR than unburned plants during the first post-fire year. Resprouters were largely unaffected by drought. Overall, despite marked differences between the two functional groups, post-fire environments were favourable for plant functioning of both seeder and resprouter shrubs, even under the most severe drought conditions implemented. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    PubMed

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. © 2015 John Wiley & Sons Ltd.

  18. The length of the dry season may be associated with leaf scleromorphism in cerrado plants.

    PubMed

    Souza, Marcelo C; Franco, Augusto C; Haridasan, Mundayatan; Rossatto, Davi R; de Araújo, Janaína F; Morellato, Leonor P C; Habermann, Gustavo

    2015-09-01

    Despite limitations of low fertility and high acidity of the soils, the cerrado flora is the richest amongst savannas. Many cerrado woody species show sclerophyllous leaves, which might be related to the availability of water and nutrients in the soil. To better understand the function and structure of cerrado vegetation within its own variations, we compared two cerrado communities: one in its core region in central Brazil (Brasília, DF) and the other on its southern periphery (Itirapina, SP). We contrasted the length of the dry season, soil fertility rates, leaf concentrations of N, P, K, Ca and Mg and the specific leaf area (SLA) between these communities. The dry season was shorter on the periphery, where the soil was more fertile although more acidic. Plants from the periphery showed higher SLA and higher leaf concentrations of N, P, Ca and Mg. We propose that the higher SLA of plants from the periphery is related to the shorter dry season, which allows better conditions for nutrient uptake.

  19. Regulation of water balance in mangroves

    PubMed Central

    Reef, Ruth; Lovelock, Catherine E.

    2015-01-01

    Background Mangroves are a group of highly salt-tolerant woody plants. The high water use efficiency of mangroves under saline conditions suggests that regulation of water transport is a crucial component of their salinity tolerance. Scope This review focuses on the processes that contribute to the ability of mangroves to maintain water uptake and limit water loss to the soil and the atmosphere under saline conditions, from micro to macro scales. These processes include: (1) efficient filtering of the incoming water to exclude salt; (2) maintenance of internal osmotic potentials lower than that of the rhizosphere; (3) water-saving properties; and (4) efficient exploitation of less-saline water sources when these become available. Conclusions Mangroves are inherently plastic and can change their structure at the root, leaf and stand levels in response to salinity in order to exclude salt from the xylem stream, maintain leaf hydraulic conductance, avoid cavitation and regulate water loss (e.g. suberization of roots and alterations of leaf size, succulence and angle, hydraulic anatomy and biomass partitioning). However, much is still unknown about the regulation of water uptake in mangroves, such as how they sense and respond to heterogeneity in root zone salinity, the extent to which they utilize non-stomatally derived CO2 as a water-saving measure and whether they can exploit atmospheric water sources. PMID:25157072

  20. The Determination of Blood Glucose Lowering and Metabolic Effects of Mespilus germanica L. Hydroacetonic Extract on Streptozocin-Induced Diabetic Balb/c Mice.

    PubMed

    Shafiee, Fatemeh; Khoshvishkaie, Elnaz; Davoodi, Ali; Dashti Kalantar, Ayat; Bakhshi Jouybari, Hossein; Ataee, Ramin

    2018-01-01

    Background: The serum glucose lowering, normalization animal body weight, and antioxidative stress effects of Mespilus germanica L. leaf extract were investigated in normal and streptozotocin-induced Balb/C mice. Methods: The phenol and flavonoid of the leaves of M. germanica were extracted by percolation and concentrated using a rotary evaporator. Its total phenol and flavonoid content was determined using folin and aluminum chloride methods, respectively. The study was conducted on 48 matured male Balb/C mice (20-30 g) divided into 6 groups ( n = 8). Diabetes mellitus was induced by single intraperitoneal injection of 35 mg/kg of streptozotocin (STZ). Extracts of Mespilus germanica were used orally at the dose of 50, 100, and 200 mg/kg body weight per day for 21 days. Results: Oral administrations of the M. germanica L. leaf extract significantly decreased serum glucose, oxidative stress, and lipid peroxidation and maintained animal body weight during treatment period ( p < 0.05) compared to metformin (200 mg/kg) in over 100 mg/kg, 200 mg/kg, and 50 mg/kg dosages, respectively. Conclusions: The present study indicated that the Mespilus germanica leaf extract significantly decreased serum glucose and maintained normal body weight in Balb/C diabetic mice.

  1. Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity

    PubMed Central

    2014-01-01

    Background Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. Results The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P < 0.001) effect on gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity. Conclusions The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale. PMID:24655599

  2. Storage effects on genomic DNA in rolled and mature coca leaves.

    PubMed

    Johnson, Emanuel L; Kim, Soo-Hyung; Emche, Stephen D

    2003-08-01

    Rolled and mature leaf tissue was harvested from Erythroxylum coca var. coca Lam. (coca) to determine a method for storage that would maintain DNA with high quality and content up to 50 days. Harvesting coca leaf tissue under Andean field conditions often requires storage from 3 to 10 days before extraction where tissue integrity is lost. All samples of rolled and mature coca leaf tissue were harvested and separately stored fresh in RNAlater for 50 days at 4 degrees, -20 degrees, and 23 degrees C, while similar samples were air-dried for 72 h at 23 degrees C or oven-dried for 72 h at 40 degrees C after storage, before extraction. Triplicate samples of each tissue type were extracted for DNA at 10-day intervals and showed that DNA integrity and content were preserved in leaf tissue stored at 4 degrees and -20 degrees C for 50 days. Rolled and mature leaf tissue stored at 4 degrees, -20 degrees, and 23 degrees C showed insignificant degradation of DNA after 10 days, and by day 50, only leaf tissue stored at 4 degrees and -20 degrees C had not significantly degraded. All air- and oven-dried leaf tissue extracts showed degradation upon drying (day 0) and continuous degradation up to day 50, despite storage conditions. Amplified fragment length polymorphism analysis of DNA from rolled and mature leaf tissue of coca stored at 4 degrees and -20 degrees C for 0, 10, and 50 days showed that DNA integrity and content were preserved. We recommend that freshly harvested rolled or mature coca leaf tissue be stored at 4 degrees, -20 degrees, and 23 degrees C for 10 days after harvest, and if a longer storage is required, then store at 4 degrees or -20 degrees C.

  3. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution.

    PubMed

    de Boer, Hugo Jan; Eppinga, Maarten B; Wassen, Martin J; Dekker, Stefan C

    2012-01-01

    The revolutionary rise of broad-leaved (flowering) angiosperm plant species during the Cretaceous initiated a global ecological transformation towards modern biodiversity. Still, the mechanisms involved in this angiosperm radiation remain enigmatic. Here we show that the period of rapid angiosperm evolution initiated after the leaf interior (post venous) transport path length for water was reduced beyond the leaf interior transport path length for CO2 at a critical leaf vein density of 2.5-5 mm mm(-2). Data and our modelling approaches indicate that surpassing this critical vein density was a pivotal moment in leaf evolution that enabled evolving angiosperms to profit from developing leaves with more and smaller stomata in terms of higher carbon returns from equal water loss. Surpassing the critical vein density may therefore have facilitated evolving angiosperms to develop leaves with higher gas exchange capacities required to adapt to the Cretaceous CO2 decline and outcompete previously dominant coniferous species in the upper canopy.

  4. Leaf surface traits and water storage retention affect photosynthetic responses to leaf surface wetness among wet tropical forest and semiarid savanna plants.

    PubMed

    Aparecido, Luiza M T; Miller, Gretchen R; Cahill, Anthony T; Moore, Georgianne W

    2017-10-01

    While it is reasonable to predict that photosynthetic rates are inhibited while leaves are wet, leaf gas exchange measurements during wet conditions are challenging to obtain due to equipment limitations and the complexity of canopy-atmosphere interactions in forested environments. Thus, the objective of this study was to evaluate responses of seven tropical and three semiarid savanna plant species to simulated leaf wetness and test the hypotheses that (i) leaf wetness reduces photosynthetic rates (Anet), (ii) leaf traits explain different responses among species and (iii) leaves from wet environments are better adapted for wet leaf conditions than those from drier environments. The two sites were a tropical rainforest in northern Costa Rica with ~4200 mm annual rainfall and a savanna in central Texas with ~1100 mm. Gas exchange measurements were collected under dry and wet conditions on five sun-exposed leaf replicates from each species. Additional measurements included leaf wetness duration and stomatal density. We found that Anet responses varied greatly among species, but all plants maintained a baseline of activity under wet leaf conditions, suggesting that abaxial leaf Anet was a significant percentage of total leaf Anet for amphistomatous species. Among tropical species, Anet responses immediately after wetting ranged from -31% (Senna alata (L.) Roxb.) to +21% (Zamia skinneri Warsz. Ex. A. Dietr.), while all savanna species declined (up to -48%). After 10 min of drying, most species recovered Anet towards the observed status prior to wetting or surpassed it, with the exception of Quercus stellata Wangenh., a savanna species, which remained 13% below Anet dry. The combination of leaf wetness duration and leaf traits, such as stomatal density, trichomes or wax, most likely influenced Anet responses positively or negatively. There was also overlap between leaf traits and Anet responses of savanna and tropical plants. It is possible that these species converge on a relatively conservative response to wetness, each for divergent purposes (cooling, avoiding stomatal occlusion, or by several unique means of rapid drying). A better understanding of leaf wetness inhibiting photosynthesis is vital for accurate modeling of growth in forested environments; however, species adapted for wet environments may possess compensatory traits that mitigate these effects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes.

    PubMed

    Sánchez-Blanco, Ma Jesús; Alvarez, Sara; Navarro, Alejandra; Bañón, Sebastián

    2009-03-15

    Geranium plants are an important part of urban green areas but suffer from drought, especially when grown in containers with a limited volume of medium. In this experiment, we examined the response of potted geraniums to different irrigation levels. Geranium (Pelargoniumxhortorum L.) seedlings were grown in a growth chamber and exposed to three irrigation treatments, whereby the plants were irrigated to container capacity (control), 60% of the control (moderate deficit irrigation, MDI), or 40% of the control (severe deficit irrigation, SDI). Deficit irrigation was maintained for 2 months, and then all the plants were exposed to a recovery period of 112 month. Exposure to drought induced a decrease in shoot dry weight and leaf area and an increase in the root/shoot ratio. Height and plant width were significantly inhibited by the SDI, while flower color parameters were not affected by deficit treatment. The number of wilting and yellow leaves increased, coinciding with the increase in the number of inflorescences and open flowers. Deficit irrigation led to a leaf water potential of about -0.8MPa at midday, which could have caused an important decrease in stomatal conductance, affecting the photosynthetic rate (Pn). Chlorophyll fluorescence (Fvm) values of 0.80 in all treatments throughout the experiment demonstrate the lack of drought-induced damage to PSII photochemistry. Pressure-volume analysis revealed low osmotic adjustment values of 0.2MPa in the SDI treatment, accompanied by increases in the bulk tissue elastic modulus (epsilon, wall rigidity) and resulting in turgor loss at lower leaf water potential values (-1.38MPa compared with -1.0MPa for the control). Leaf water potential values throughout the experiment below those for Psitlp were not found at any sampling time. By the end of the recovery period, the leaf water potential, stomatal conductance and net photosynthesis had recovered. We infer from these results that moderate deficit irrigation in geranium reduced the consumption of water, while maintaining the good overall quality of plants. However, when SDI was applied, a reduction in the number of flowers per plant was observed.

  6. Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration1[CC-BY

    PubMed Central

    Townes, Shatara V.; Bartlett, Megan K.; Buckley, Thomas N.; McElrone, Andrew J.; Sack, Lawren

    2017-01-01

    Leaf hydraulic supply is crucial to maintaining open stomata for CO2 capture and plant growth. During drought-induced dehydration, the leaf hydraulic conductance (Kleaf) declines, which contributes to stomatal closure and, eventually, to leaf death. Previous studies have tended to attribute the decline of Kleaf to embolism in the leaf vein xylem. We visualized at high resolution and quantified experimentally the hydraulic vulnerability of xylem and outside-xylem pathways and modeled their respective influences on plant water transport. Evidence from all approaches indicated that the decline of Kleaf during dehydration arose first and foremost due to the vulnerability of outside-xylem tissues. In vivo x-ray microcomputed tomography of dehydrating leaves of four diverse angiosperm species showed that, at the turgor loss point, only small fractions of leaf vein xylem conduits were embolized, and substantial xylem embolism arose only under severe dehydration. Experiments on an expanded set of eight angiosperm species showed that outside-xylem hydraulic vulnerability explained 75% to 100% of Kleaf decline across the range of dehydration from mild water stress to beyond turgor loss point. Spatially explicit modeling of leaf water transport pointed to a role for reduced membrane conductivity consistent with published data for cells and tissues. Plant-scale modeling suggested that outside-xylem hydraulic vulnerability can protect the xylem from tensions that would induce embolism and disruption of water transport under mild to moderate soil and atmospheric droughts. These findings pinpoint outside-xylem tissues as a central locus for the control of leaf and plant water transport during progressive drought. PMID:28049739

  7. Growth and stoichiometry of a common aquatic detritivore respond to changes in resource stoichiometry.

    PubMed

    Fuller, Chris L; Evans-White, Michelle A; Entrekin, Sally A

    2015-03-01

    Consumer growth determines the quantity of nutrients transferred through food webs. The extent to which leaf composition and consumer physiology interact to constrain consumer production is not well understood. For example, detritivore growth, and thus material transfer, could change with detrital elemental composition. Detrital type and associated microbial biofilms can mediate the amount and rate of detritus consumed and used towards growth. Detritivore body stoichiometry or the threshold elemental ratio, the food ratio resulting in optimal growth, may predict taxon-specific growth response to stoichiometrically-altered detritus. Empirical measures of detritivore growth responses across a range of detrital stoichiometry are rare. We fed a common detritivore, Tipula abdominalis, maple or oak leaves that spanned a gradient of carbon:phosphorus (C:P) to examine how leaf identity and C:P interact to influence growth, consumption, assimilation efficiencies, and post-assimilatory processes. Tipula abdominalis growth and consumption varied with leaf type and stoichiometry. Individuals fed oak grew faster and ate more compared to individuals fed maple. Individuals fed maple grew faster and ate more as leaf C:P decreased. All individuals lost most of the material they assimilated through respiration and excretion regardless of leaf type or leaf stoichiometry. Consumption and growth rates of T. abdominalis increased with maple nutrient enrichment, but not oak, indicating leaf-specific nutrient enrichment affected leaf palatability. Slightly non-homeostatic T. abdominalis C:P was maintained by varied consumption, carbon assimilation, and P excretion. Our study underlines the importance of how detritivore consumption and post-assimilatory processing could influence whole-stream material storage and nutrient cycling in detrital-based ecosystems.

  8. Distribution of leaf characteristics in relation to orientation within the canopy of woody species

    NASA Astrophysics Data System (ADS)

    Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia

    2013-04-01

    Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.

  9. Bioinformatic pipelines in Python with Leaf

    PubMed Central

    2013-01-01

    Background An incremental, loosely planned development approach is often used in bioinformatic studies when dealing with custom data analysis in a rapidly changing environment. Unfortunately, the lack of a rigorous software structuring can undermine the maintainability, communicability and replicability of the process. To ameliorate this problem we propose the Leaf system, the aim of which is to seamlessly introduce the pipeline formality on top of a dynamical development process with minimum overhead for the programmer, thus providing a simple layer of software structuring. Results Leaf includes a formal language for the definition of pipelines with code that can be transparently inserted into the user’s Python code. Its syntax is designed to visually highlight dependencies in the pipeline structure it defines. While encouraging the developer to think in terms of bioinformatic pipelines, Leaf supports a number of automated features including data and session persistence, consistency checks between steps of the analysis, processing optimization and publication of the analytic protocol in the form of a hypertext. Conclusions Leaf offers a powerful balance between plan-driven and change-driven development environments in the design, management and communication of bioinformatic pipelines. Its unique features make it a valuable alternative to other related tools. PMID:23786315

  10. A unique approach to demonstrating that apical bud temperature specifically determines leaf initiation rate in the dicot Cucumis sativus.

    PubMed

    Savvides, Andreas; Dieleman, Janneke A; van Ieperen, Wim; Marcelis, Leo F M

    2016-04-01

    Leaf initiation rate is largely determined by the apical bud temperature even when apical bud temperature largely deviates from the temperature of other plant organs. We have long known that the rate of leaf initiation (LIR) is highly sensitive to temperature, but previous studies in dicots have not rigorously demonstrated that apical bud temperature controls LIR independent of other plant organs temperature. Many models assume that apical bud and leaf temperature are the same. In some environments, the temperature of the apical bud, where leaf initiation occurs, may differ by several degrees Celsius from the temperature of other plant organs. In a 28-days study, we maintained temperature differences between the apical bud and the rest of the individual Cucumis sativus plants from -7 to +8 °C by enclosing the apical buds in transparent, temperature-controlled, flow-through, spheres. Our results demonstrate that LIR was completely determined by apical bud temperature independent of other plant organs temperature. These results emphasize the need to measure or model apical bud temperatures in dicots to improve the prediction of crop development rates in simulation models.

  11. Self-propulsion of dew drops on lotus leaves: a potential mechanism for self cleaning.

    PubMed

    Watson, Gregory S; Gellender, Marty; Watson, Jolanta A

    2014-01-01

    This study shows that condensation on the hierarchically structured lotus leaf can facilitate self-propulsion of water droplets off the surface. Droplets on leaves inclined at high angles can be completely removed from the surface by self-propulsion with the assistance of gravity. Due to the small size of mobile droplets, light breezes may also fully remove the propelled droplets, which are typically projected beyond the boundary layer of the leaf cuticle. Moreover the self-propelled droplets/condensate were able to remove contaminants (eg silica particles) from the leaf surface. The biological significance of this process may be associated with maintaining a healthy cuticle surface when the action of rain to clean the surface via the lotus effect is not possible (due to no precipitation). Indeed, the native lotus plants in this study were located in a region with extended time periods (several months) without rain. Thus, dew formation on the leaf may provide an alternative self-cleaning mechanism during times of drought and optimise the functional efficiency of the leaf surface as well as protecting the surface from long term exposure to pathogens such as bacteria and fungi.

  12. Acclimation of light and dark respiration to experimental and seasonal warming are mediated by changes in leaf nitrogen in Eucalyptus globulus.

    PubMed

    Crous, K Y; Wallin, G; Atkin, O K; Uddling, J; Af Ekenstam, A

    2017-08-01

    Quantifying the adjustments of leaf respiration in response to seasonal temperature variation and climate warming is crucial because carbon loss from vegetation is a large but uncertain part of the global carbon cycle. We grew fast-growing Eucalyptus globulus Labill. trees exposed to +3 °C warming and elevated CO2 in 10-m tall whole-tree chambers and measured the temperature responses of leaf mitochondrial respiration, both in light (RLight) and in darkness (RDark), over a 20-40 °C temperature range and during two different seasons. RLight was assessed using the Laisk method. Respiration rates measured at a standard temperature (25 °C - R25) were higher in warm-grown trees and in the warm season, related to higher total leaf nitrogen (N) investment with higher temperatures (both experimental and seasonal), indicating that leaf N concentrations modulated the respiratory capacity to changes in temperature. Once differences in leaf N were accounted for, there were no differences in R25 but the Q10 (i.e., short-term temperature sensitivity) was higher in late summer compared with early spring. The variation in RLight between experimental treatments and seasons was positively correlated with carboxylation capacity and photorespiration. RLight was less responsive to short-term changes in temperature than RDark, as shown by a lower Q10 in RLight compared with RDark. The overall light inhibition of R was ∼40%. Our results highlight the dynamic nature of leaf respiration to temperature variation and that the responses of RLight do not simply mirror those of RDark. Therefore, it is important not to assume that RLight is the same as RDark in ecosystem models, as doing so may lead to large errors in predicting plant CO2 release and productivity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest.

    PubMed

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C; Angeles, Guillermo

    2016-02-01

    In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees of a tropical dry forest, and identified biophysical traits most closely associated with plant water-use strategies. We also explored whether early and late secondary successional species occupy different portions of trade-off axes. As predicted, species that maintained carbon capture, hydraulic function and leaf area at higher plant water deficits during drought had low photosynthetic rates, xylem hydraulic conductivity and growth rate under non-limiting water supply. Drought tolerance was associated with more dense leaf, stem and root tissues, whereas rapid resource acquisition was associated with greater stem water storage, larger vessel diameter and larger leaf area per mass invested. We offer evidence that the water exploitation versus drought tolerance trade-off drives species differentiation in the ability of tropical dry forest trees to deal with alternating water-drought pulses. However, we detected no evidence of strong functional differentiation between early and late successional species along the proposed trade-off axes, suggesting that the environmental gradient of water availability across secondary successional habitats in the dry tropics does not filter out physiological strategies of water use among species, at least at the seedling stage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves

    PubMed Central

    Adachi, Shunsuke; Tsuru, Yukiko; Nito, Naoko; Murata, Kazumasa; Yamamoto, Toshio; Ebitani, Takeshi; Ookawa, Taiichiro; Hirasawa, Tadashi

    2011-01-01

    DNA marker-assisted selection appears to be a promising strategy for improving rates of leaf photosynthesis in rice. The rate of leaf photosynthesis was significantly higher in a high-yielding indica variety, Habataki, than in the most popular Japanese variety, Koshihikari, at the full heading stage as a result of the higher level of leaf nitrogen at the same rate of application of nitrogen and the higher stomatal conductance even when the respective levels of leaf nitrogen were the same. The higher leaf nitrogen content of Habataki was caused by the greater accumulation of nitrogen by plants. The higher stomatal conductance of Habataki was caused by the higher hydraulic conductance. Using progeny populations and selected lines derived from a cross between Koshihikari and Habataki, it was possible to identify the genomic regions responsible for the rate of photosynthesis within a 2.1 Mb region between RM17459 and RM17552 and within a 1.2 Mb region between RM6999 and RM22529 on the long arm of chromosome 4 and on the short arm of chromosome 8, respectively. The designated region on chromosome 4 of Habataki was responsible for both the increase in the nitrogen content of leaves and hydraulic conductance in the plant by increasing the root surface area. The designated region on chromosome 8 of Habataki was responsible for the increase in hydraulic conductance by increasing the root hydraulic conductivity. The results suggest that it may be possible to improve photosynthesis in rice leaves by marker-assisted selection that focuses on these regions of chromosomes 4 and 8. PMID:21296764

  15. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis.

    PubMed

    Xiaochuang, Cao; Chu, Zhong; Lianfeng, Zhu; Junhua, Zhang; Hussain, Sajid; Lianghuan, Wu; Qianyu, Jin

    2017-03-01

    To investigate the response of rice growth and photosynthesis to different nitrogen (N) sources under cold stress, hydroponic cultivation of rice was done in greenhouse, with glycine, ammonium, and nitrate as the sole N sources. The results demonstrate that exposure to low temperature reduced the rice biomass and leaf chlorophyll content, but their values in the glycine-treated plants were significantly higher than in the ammonium- and nitrate-treated plants. This might be attributed to the higher N uptake rate and root area and activity in the glycine-treated plants. The glycine-treated plants also maintained high contents of soluble proteins, soluble sugars, and proline as well as enhanced antioxidant enzyme activities to protect themselves against chilling injury. Under cold stress, reduced stomatal conductance (g s ) and effective quantum efficiency of PSII (Φ PSII ) significantly inhibited the leaf photosynthesis; however, glycine treatment alleviated these effects compared to the ammonium and nitrate treatments. The high non-photochemical quenching (qN) and excess energy dissipative energy (E x ) in the glycine-treated plants were beneficial for the release of extra energy, thereby, strengthening their photochemical efficiency. We, therefore, conclude that the strengthened cold tolerance of glycine-treated rice plants was closely associated with the higher accumulation of dry matter and photosynthesis through the up-regulation of N-uptake, and increase in the content of osmoprotectants, activities of the antioxidant defense enzymes, and photochemical efficiency. The results of the present study provide new ideas for improving the plant tolerance to extreme temperatures by nutrient resource management in the cold regions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Differential survival of chaparral seedlings during the first summer drought after wildfire.

    PubMed

    Frazer, J M; Davis, S D

    1988-07-01

    Big Pod Ceanothus (Ceanothus megacarpus) is an obligate seeder after fire; Laurel Sumac (Rhus laurina) is primarily a resprouter after fire. Both species commonly occur together in mixed stands and are dominant members of the coastal chaparral of southern California. We compared the mean survival of post-fire seedlings of each species during the first summer drought after fire and found C. megacarpus to have a mean survival of 54% while R. laurina had a mean survival of only 0.1%. Rooting dephs were similar between species but predawn water potentials and leaf temperatures were higher for R. laurina seedlings. Leaf temperatures for R. laurina reached a mean value of 46.8° C on hot, summer days, about 5° C higher than seedlings of C. megacarpus. By the end of the first growing season, 92% of all C. megacarpus seedlings had suffered herbivory compared to only 17% of all R. laurina seedlings. Herbivory did not appear to be the immediate cause of seedling mortality. Transect data indicated that full recovery of prefire species composition and density at our study site was likely but the mode of recovery was different for the species examined. R. laurina recovered primarily by sprouting, C. megacarpus totally by seedling establishment and a third species, Adenostoma fasciculatum (chamise), by a combination of sprouting and seedling establishment. We attribute the higher mortality of R. laurina seedlings to the greater sensitivity of its tissue to water stress. It may be that differential survival of shrub seedlings and differential modes of reestablishment after fire play an important role in maintaining species diversity in the chaparral communities of coastal, southern California.

  17. Management practices impact vine carbohydrate status to a greater extent than vine productivity

    PubMed Central

    Pellegrino, Anne; Clingeleffer, Peter; Cooley, Nicola; Walker, Rob

    2014-01-01

    Light pruning and deficit irrigation regimes are practices which are widely used in high yielding commercial vineyards in the warm climate regions of Australia. Little information is available on their impacts on carbohydrate dynamics in vegetative organs within and between seasons, and on the resulting plant capacity to maintain productivity and ripen fruits. This study was conducted to address this gap in knowledge over five vintages on Vitis vinifera L. cv. Cabernet Franc, Shiraz, and Cabernet Sauvignon in the Sunraysia region of Victoria, Australia. Lighter pruning did not change the total carbohydrates concentration and composition in wood and roots within seasons in Cabernet Franc and Shiraz. However, the total carbohydrate pool (starch and soluble sugars) at the end of dormancy increased under lighter pruning, due to higher vine size, associated with retention and growth of old-wood (trunk and cordons). Water deficit negatively impacted trunk and leaf starch concentrations, over the day and within seasons in Cabernet Sauvignon. Soluble sugars concentrations in these tissues tended to be higher under limited water supply, possibly due to higher sugar mobilization as photosynthesis decreased. Trunk carbohydrate concentrations markedly varied within and between seasons, highlighting the importance of interactive factors such as crop load and climate on carbon status. The period between fruit-set and véraison was shown to be critical for its impact on the balance between carbon accretion and depletion, especially under water deficit. The lower leaf and trunk starch concentration under water deficit resulted in a decrease of yield components at harvest, while similar yields were reached for all pruning systems. The sugar allocated to berries at harvest remained remarkably stable for all practices and seasons, irrespective of vine yield and carbohydrate status in vegetative organs in Shiraz and Cabernet Sauvignon. PMID:25018758

  18. Tree leaf trade-offs are stronger for sub-canopy trees: leaf traits reveal little about growth rates in canopy trees.

    PubMed

    Wills, Jarrah; Herbohn, John; Hu, Jing; Sohel, Shawkat; Baynes, Jack; Firn, Jennifer

    2018-06-01

    Can morphological plant functional traits predict demographic rates (e.g., growth) within plant communities as diverse as tropical forests? This is one of the most important next-step questions in trait-based ecology and particularly for global reforestation efforts. Due to the diversity of tropical tree species and their longevity, it is difficult to predict their performance prior to reforestation efforts. In this study, we investigate if simple leaf traits are predictors of the more complex ecological process of plant growth in regenerating selectively logged natural forest within the Wet Tropics (WTs) bioregion of Australia. This study used a rich historical data set to quantify tree growth within plots located at Danbulla National Park and State Forest on the Atherton Tableland. Leaf traits were collected from trees that have exhibited fast or slow growth over the last ~50 yr of measurement. Leaf traits were found to be poor predictors of tree growth for trees that have entered the canopy; however, for sub-canopy trees, leaf traits had a stronger association with growth rates. Leaf phosphorus concentrations were the strongest predictor of Periodic Annual Increment (PAI) for trees growing within the sub-canopy, with trees with higher leaf phosphorus levels showing a higher PAI. Sub-canopy tree leaves also exhibited stronger trade-offs between leaf traits and adhere to theoretical predictions more so than for canopy trees. We suggest that, in order for leaf traits to be more applicable to reforestation, size dependence of traits and growth relationships need to be more carefully considered, particularly when reforestation practitioners assign mean trait values to tropical tree species from multiple canopy strata. © 2018 by the Ecological Society of America.

  19. Carbon budget of leaves of the tropical intertidal seagrass Thalassia hemprichii

    NASA Astrophysics Data System (ADS)

    Chiu, Shih-Han; Huang, Yen-Hsun; Lin, Hsing-Juh

    2013-07-01

    The question of whether seagrass beds are effective carbon sinks has recently attracted much attention. Leaf production and consumption, and detrital export and decomposition were determined to quantify the carbon budget of leaf production in a southern Taiwan seagrass bed composed of the tropical intertidal seagrass Thalassia hemprichii, which is widely distributed in intertidal zones of the western Pacific. The influence of elevation in the intertidal zone on these processes was also investigated. Leaf production and consumption, and export of leaf detritus showed seasonal variations, with higher rates in the wet season (summer and autumn) and lower rates in the dry season (winter and spring). At the high-elevation site, leaf consumption by fish was significantly higher than that by sea urchins. At the low-elevation site, however, the proportion of leaves consumed by sea urchins was equivalent to that by fish. Leaf detritus decomposed rapidly within the first 9 days, then gradually slowed down, and stabilised after 212 days, at which only 8.7% of dry weight remained in the litterbags. The carbon budget of seagrass leaves demonstrated that 20% of leaf production was grazed by fish and sea urchins and 80% flowed to detritus. This suggests that seagrass leaves are important food sources for inhabiting herbivores. Most of the detritus decomposed (44% of leaf production) or was exported (32% of leaf production), and only 4% of leaf production or 22 g C m-2 yr-1 was stored in this tropical intertidal seagrass bed. Mass balance calculations support this tropical seagrass bed acting as a carbon sink and an outwelling system which exports organic detritus to neighboring coral reefs.

  20. Photosynthesis, plant growth and nitrogen nutrition in Alaskan tussock tundra: Response to experimental warming

    NASA Astrophysics Data System (ADS)

    Dynes, E.; Welker, J. M.; Moore, D. J.; Sullivan, P.; Ebbs, L.; Pattison, R.

    2009-12-01

    Temperature is predicted to rise significantly in northern latitudes over the next century. The Arctic tundra is a fragile ecosystem with low rates of photosynthesis and low nutrient mineralisation. Rising temperatures may increase photosynthetic capacity in the short term through direct stimulation of photosynthetic rates and also in the longer term due to enhanced nutrient availability. Different species and plant functional types may have different responses to warming which may have an impact on plant community structure. As part of the International Tundra Experiment (ITEX) to investigate the effects of warming on arctic vegetation, a series of open top chambers (OTCs) have been established at the Toolik Field Station (68°38’N, 149°36’W, elevation 720 m). This study employs 12 plots; 6 control plots and 6 warming plots covered with OTCs which maintain a temperature on average +1.54 °C degrees higher than ambient temperatures. The response of photosynthesis to temperature was measured using an infra-red gas analyzer (IRGA) with a cooling adaptor to manipulate leaf temperature and determine AMAX in two contrasting species, Eriophorum vaginatum (sedge) and Betula nana (shrub). Temperature within the chamber head of the IRGA was manipulated from 10 through 25 °C. We also measured the leaf area index of plots using a Decagon Accupar Ceptometer to provide insights into potential differences in canopy cover. In both OTC and control plots the photosynthetic rate of B. nana was greater than that of E. vaginatum, with the AMAX of B. nana peaking at 20.08°C and E. vaginatum peaking slightly lower at 19.7°C in the control plots. There was no apparent difference in the temperature optimum of photosynthesis of either species when exposed to the warming treatment. Although there was no difference in temperature optimum there were differences in the peak values of AMAX between treatment and control plots. In the case of B. nana, AMAX was higher in the OTCs than in the control plots with the highest rate being 17.2 μmol/m2/s in OTCs and 16.8 μmol/m2/s in control. Similarly, AMAX of E. vaginatum was also higher in OTCs with the highest rate being 10.4 μmol/m2/s in the control and 11 μmol/m2/s in the OTCs. Leaf area (LAI) was higher in the warming plots (mean = .39(0.095)) than LAI in the control plots (mean =.3 (.067)) in the control plots. This difference was significant as p<0.05. The higher photosynthetic rate and temperature optimum of photosynthesis in B. nana may indicate shrubs ability to cope with rising temperatures more efficiently than E. vagination which may lead to shifts in total leaf area and species composition.

  1. Photosynthesis in developing leaf of juveniles and adults of three Mediterranean species with different growth forms.

    PubMed

    Chondrogiannis, Christos; Grammatikopoulos, George

    2016-12-01

    Leaf development is influenced by almost all the prevailing environmental conditions as well as from the conditions at the time of bud formation. Furthermore, the growth form of a plant determines the leaf longevity and subsequently the investment in biomass and the internal structure of the mesophyll. Therefore, photosynthetic traits of a growing leaf, though, partly predetermined, should also acclimate to temporal changes during developmental period. In addition, the age of the plant can affect photosynthesis of the growing leaf, yet, in the majority of studies, the age is associated to the size of the plant. To test if the reproductive status of the plant affects the time kinetics of the photosynthetic capacity of a growing leaf and the relative contribution of the plants' growth form to the whole procedure, field measurements were conducted in juveniles (prereproductive individuals) and adults (fully reproductive individuals) of an evergreen sclerophyllous shrub (Nerium oleander), a semi-deciduous dimorphic shrub (Phlomis fruticosa), and a winter deciduous tree with pre-leafing flowering (Cercis siliquastrum). PSII structural and functional integrity was progressively developed in all species, but already completed, only some days after leaf expansion in P. fruticosa. Developing leaf as well as fully developed leaf in adults of C. siliquastrum showed enhanced relative size of the pool of final PSI electron acceptors. Photosynthetic traits between juveniles and adults of P. fruticosa were similar, though the matured leaf of adults exhibited lower transpiration rates and improved water-use efficiency than that of juveniles. Adults of the evergreen shrub attained higher CO 2 assimilation rate than juveniles in matured leaf which can be attributed to higher electron flow devoted to carboxylation, and lower photorespiration rate. The reproductive phase of the plant seemed to be involved in modifications of the PSII and PSI functions of the deciduous tree, in carboxylation and photorespiration traits of the evergreen shrub, and in water conductance efficiency of the semi-deciduous shrub. However, it is interesting, that regardless of the growth form of the plant and the prospective leaf longevity of the developing leaf, adults need to support flowering outmatch juveniles, in terms of photosynthesis.

  2. Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo; Drake, Paul; Veneklaas, Erik

    2017-04-01

    The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on transpiration, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Critical is that leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy≈1. Although this theory is supported by observations on many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis we assembled leaf hydraulic, morphological and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent over-investment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf lifespan, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. Our results highlight the need to consider the specific leaf hydraulic architecture of aridity-adapted plants when studying ecohydrological processes in arid ecosystems.

  3. Antioxidant activity of insect gall extracts of Pistacia integerrima.

    PubMed

    Eshwarappa, Ravi Shankara Birur; Lakshmikantha, Ramachandra Yarappa; Subaramaihha, Sundara Rajan; Subbaiah, Sujan Ganapathy Pasura; Surendranath, Austin Richard; Dhananjaya, Bhadrapura Lakkappa

    2015-01-01

    Pistacia integerrima (P. integerrina) insect galls are widely used in ayurveda and siddha system of medicine as karkatasringi. The use of leaf galls as a rejuvenator may be attributed to antioxidant property, however there is less scientific evidence. Therefore, the aim of this study was to evaluate the chemical composition and the antioxidant potential of leaf gall extracts (aqueous and ethanol) of P. integerrina, which is extensively used in the preparation of traditional medications. The antioxidant activities of aqueous and ethanolic leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), hydroxyl scavenging and ferric reducing power (FRAP) methods. The presences of phenolics, tannins, phytosterols, triterpenoids, saponins, flavonoids and reducing sugars were identified in both the extracts. In comparison to the aqueous extract, the ethanolic extract had the highest total phenolic and flavonoid content at 234 ±2.4 mg of GAE/g d.w. and 95.5 ±3.2 mg of QUE/g d.w., respectively. This higher content of total phenolics and flavonoids found in the ethanolic extract was directly associated with higher antioxidant activity. This study demonstrates the poetnet antioxidant activities of P. integerrima leaf gall extracts. Further, there was a strong association between the higher antioxidant activities with that of higher total phenolic and flavonoid content in the ethanolic leaf gall extracts of P. integerrima. The results encourage the use of P. integerrima leaf gall extracts for medicinal health, functional food and nutraceuticals applications, due to their antioxidant properties. Future work will be interesting to learn the chemical composition and better understand the mechanism of action of the antioxidants present in the extract for development as a drug for therapeutic application.

  4. Size-dependent enhancement of water relations during post-fire resprouting.

    PubMed

    Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A

    2014-04-01

    In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.

  5. Litter Breakdown and Microbial Succession on Two Submerged Leaf Species in a Small Forested Stream

    PubMed Central

    Newman, Molli M.; Liles, Mark R.; Feminella, Jack W.

    2015-01-01

    Microbial succession during leaf breakdown was investigated in a small forested stream in west-central Georgia, USA, using multiple culture-independent techniques. Red maple (Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days, and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal intergenic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was faster for red maple than water oak. PLFA revealed a significant time effect on microbial lipid profiles for both leaf species. Microbial assemblages on maple contained a higher relative abundance of bacterial lipids than oak, and oak microbial assemblages contained higher relative abundance of fungal lipids than maple. RISA showed that incubation time was more important in structuring bacterial assemblages than leaf physicochemistry. DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-generation sequencing revealed temporal shifts in dominant taxa within the phylum Proteobacteria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria dominated after 1 month of instream incubation; the latter groups contain taxa that are predicted to be capable of using organic material to fuel further breakdown. Our results suggest that incubation time is more important than leaf species physicochemistry in influencing leaf litter microbial assemblage composition, and indicate the need for investigation into seasonal and temporal dynamics of leaf litter microbial assemblage succession. PMID:26098687

  6. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid ‘Dodoens’

    PubMed Central

    Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav

    2016-01-01

    To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in ‘Dodoens’, a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of ‘Dodoens’ trees. PMID:26843210

  7. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    PubMed

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.

  8. Effects of water temperature and substrate type on spore production and release in eastern Tubifex tubifex worms infected with Myxobolus cerebralis

    USGS Publications Warehouse

    Blazer, V.S.; Waldrop, T.B.; Schill, W.B.; Densmore, Christine L.; Smith, D.

    2003-01-01

    Eastern Tubifex tubifex worms were exposed to Myxobolus cerebralis spores at 9, 13, 17, and 20 C in 1-L jars that contained sand, mud, or leaf litter as substrata. Beginning 60 days after exposure, water from each jar was filtered daily and examined for the presence of waterborne triactinomyxon spores (TAMs). On discovering a single TAM from an experimental jar, 48 T. tubifex worms from that jar were placed individually into 24-well plates. Spores released from individual infected T. tubifex worms were quantified to determine the first day of TAM release from infected worms, the infection rate, the total number of TAMs released per worm, and the duration of release. No TAMs were found in any of the jars incubated at 20 C or in uninfected, control worms at any temperature. The total number of TAMs released by infected worms in mud and sand was highest at 13 C compared with other temperatures. Infection rates among individual worms increased with temperature between 9 and 17 C. Higher temperatures (up to 17 C) induced earlier TAM releases among infected worms, and substratum did not influence this production parameter. The average duration of TAM release decreased as the temperature increased from 9 to 17 C, and there was a significant effect of substratum in the groups maintained at 13 and 17 C. In all temperature treatments between 9 and 17 C, the duration of release was least in the worms maintained in leaf litter, as was the total number of TAMs released during the experimental period and the median number of TAMs per production day.

  9. Effects of Elevated CO2 Concentration on Photosynthesis and Respiration of Populus Deltodies

    NASA Technical Reports Server (NTRS)

    Anderson, Angela M.

    1998-01-01

    To determine how increased atmospheric CO2 will affect the physiology of cottonwood trees, cuttings of the cloned Populus deltodies [cottonwood] were grown in open-top chambers containing ambient or elevated CO2 concentration. The control treatment was maintained at ambient Biosphere 2 atmospheric CO2 (c. 450 +/- 50 micro l/l), and elevated CO2 treatment was maintained at approximately double ambient Biosphere 2 atmospheric CO2 (c. 1000 +/- 50 micro l/l). The effects of elevated CO2 on leaf photosynthesis, and stomatal conductance were measured. The cottonwoods exposed to CO2 enrichment showed no significant indication of photosynthetic down-regulation. There was no significant difference in the maximum assimilation rate between the treatment and the control (P less than 0.24). The CO2 enriched treatment showed a decreased stomatal conductance of 15% (P less than 0.03). The elevated CO2 concentrated atmosphere had an effect on the respiration rates of the plants; the compensation point of the treatment was on average 13% higher than the control (P less than 0.01).

  10. Temperature Variation under Continuous Light Restores Tomato Leaf Photosynthesis and Maintains the Diurnal Pattern in Stomatal Conductance

    PubMed Central

    Haque, Mohammad S.; de Sousa, Alexandra; Soares, Cristiano; Kjaer, Katrine H.; Fidalgo, Fernanda; Rosenqvist, Eva; Ottosen, Carl-Otto

    2017-01-01

    The response of tomato plants (Solanum lycopersicum L. cv. Aromata) to continuous light (CL) in relation to photosynthesis, abscisic acid (ABA) and reactive oxygen species (ROS) was investigated to improve the understanding of the development and/or alleviation of CL-induced leaf injury in constant and diurnal temperature fluctuations with similar daily light integral and daily mean temperature. The plants were grown in three photoperiodic treatments for 15 days; One treatment with a 16/8 h light/dark period and a light/dark temperature of 27/17°C (Control), two CL treatments with 24 h photoperiods, one with a constant temperature of 24°C (CLCT) and the other one with variable temperature of 27/17°C for 16/8 ho, respectively (CLVT). A diurnal pattern of stomatal conductance (gs) and [ABA] was observed in the plants grown in the control and CLVT conditions, while the plants in CLCT conditions experienced a significant decrease in stomatal conductance aligned with an increase in ABA. The net photosynthesis (A) was significantly reduced in CLCT, aligned with a significant decrease in the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax) and mesophyll diffusion conductance to CO2 (gm) in comparison to the control and CLVT. An increased production of H2O2 and O2•- linked with increased activities of antioxidative enzymes was seen in both CL treatments, but despite of this, leaf injuries were only observed in the CLCT treatment. The results suggest that the diurnal temperature fluctuations alleviated the CL injury symptoms, probably because the diurnal cycles of cellular mechanisms were maintained. The ROS were shown not to be directly involved in CL-induced leaf injury, since both ROS production and scavenging was highest in CLVT without leaf chlorotic symptoms. PMID:28979273

  11. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area.

    PubMed

    Zhang, Yanqun; Oren, Ram; Kang, Shaozhong

    2012-03-01

    Vineyards were planted in the arid region of northwest China to meet the local economic strategy while reducing agricultural water use. Sap flow, environmental variables, a plant characteristic (sapwood-to-leaf area ratio, A(s)/A(l)) and a canopy characteristic (leaf area index, L) were measured in a vineyard in the region during the growing season of 2009, and hourly canopy stomatal conductance (G(si)) was estimated for individual vines to quantify the relationships between G(si) and these variables. After accounting for the effects of vapor pressure deficit (D) and solar radiation (R(s)) on G(si), much of the remaining variation of reference G(si) (G(siR)) was driven by that of leaf-specific hydraulic conductivity, which in turn was driven by that of A(s)/A(l). After accounting for that effect on G(siR), appreciable temporal variation remained in the decline rate of G(siR) with decreasing vineyard-averaged relative extractable soil water (θ(E)). This variation was related to the differential decline ofθ(E) near each monitored vine, decreasing faster between irrigation events near vines where L was greater, thus adding to the spatiotemporal variation of G(siR) observed in the vineyard. We also found that the vines showed isohydric-like behavior whenθ(E) was low, but switched to anisohydric-like behavior with increasingθ(E). Modeledθ(E) and associated G(s) of a canopy with even L (1.9 m(2) m(-2)) were greater than that of the same average L but split between the lowest and highest L observed along sections of rows in the vineyard (1.2 and 2.6 m(2) m(-2)) by 6 and 12%, respectively. Our results suggest that managing sectional L near the average, rather than allowing a wide variation, can reduce soil water depletion, maintaining G(s) higher, thus potentially enhancing yield.

  12. The negative effects of cadmium on Bermuda grass growth might be offset by submergence.

    PubMed

    Tan, Shuduan; Huang, Huang; Zhu, Mingyong; Zhang, Kerong; Xu, Huaqin; Wang, Zhi; Wu, Xiaoling; Zhang, Quanfa

    2013-10-01

    Revegetation in the water-level-fluctuation zone (WLFZ) could stabilize riverbanks, maintain local biodiversity, and improve reservoir water quality in the Three Gorges Reservoir Region (TGRR). However, submergence and cadmium (Cd) may seriously affect the survival of transplantations. Bermuda grass (Cynodon dactylon) is a stoloniferous and rhizomatous prostrate weed displaying high growth rate. A previous study has demonstrated that Bermuda grass can tolerate deep submergence and Cd stress, respectively. In the present study, we further analyzed physiological responses of Bermuda grass induced by Cd-and-submergence stress. The ultimate goal was to explore the possibility of using Bermuda grass for revegetation in the WLFZ of China's TGRR and other riparian areas. The Cd-and-submergence-treated plants had higher malondialdehyde contents and peroxidase than control, and both increased with the Cd concentration increase. All treated plants catalase activity increased with the experimental duration increases, and their superoxide dismutase also gradually increased with the Cd concentration from 1 day to 15 days. Total biomass of the same Cd-and-submergence plants increased along the experimental duration as well. Plants exposed to Cd-and-submergence stress showed shoot elongation. The heights of all treated plants were taller than those of the control. Leaf chlorophyll contents, maximum leaf length, and soluble sugars contents of all the Cd-and-submergence-treated plants were more than those of the untreated control. Although Cd inhibits plants growth, decreases chlorophyll and biomass content, and with the submergence induced the leaf and shoot elongation, more part of the Cd-and-submergence stress plants appeared in the air, exhibited fast growth with maintenance of leaf color, which guaranteed the plants' photosynthesis, and ensured the total biomass and carbohydrate sustainability, further promoting Cd-and-submergence tolerance. The results imply that the negative effects of cadmium on Bermuda grass growth might be offset by submergence.

  13. Bioefficacy of Graviola leaf extracts in scavenging free radicals and upregulating antioxidant genes.

    PubMed

    Son, Yu-Ra; Choi, Eun-Hye; Kim, Goon-Tae; Park, Tae-Sik; Shim, Soon-Mi

    2016-02-01

    The aims of this study were to determine bioactive components of Graviola leaf extracts and to examine the radical scavenging capacity, gene expression and transcription factors of antioxidant enzymes. Rutin, kaempferol-rutinoside, and vitamin U were identified from the steaming and 50% EtOH extracts of Graviola leaves. Graviola leaf extracts effectively scavenged peroxy and nitrogen radicals. 50% EtOH of Graviola leaves provided a 1-2.9 times higher trolox equivalent than the steaming extract. It also had a higher VCEAC. Graviola leaf extracts reduced the generation of reactive oxygen species (ROS) induced by H2O2 in a dose-dependent manner. The 50% EtOH extract of Graviola leaves upregulated SOD1 and Nrf2, but catalase and HMOX1 were not altered by the 50% EtOH extract of Graviola leaves.

  14. Ontogenetic changes in leaf traits of tropical rainforest trees differing in juvenile light requirement.

    PubMed

    Houter, Nico C; Pons, Thijs L

    2012-05-01

    Relationships between leaf traits and the gap dependence for regeneration, and ontogenetic changes therein, were investigated in juvenile and adult tropical rainforest tree species. The juveniles of the 17 species included in the study were grown in high light, similar to the exposed crowns of the adult trees. The traits were structural, biomechanical, chemical and photosynthetic. With increasing species gap dependence, leaf mass per area (LMA) decreased only slightly in juveniles and remained constant in adults, whereas punch strength together with tissue density decreased, and photosynthetic capacity and chlorophyll increased. Contrary to what has been mostly found in evergreen tropical rainforest, the trade-off between investment in longevity and in productivity was evident at an essentially constant LMA. Of the traits pertaining to the chloroplast level, photosynthetic capacity per unit chlorophyll increased with gap dependence, but the chlorophyll a/b ratio showed no relationship. Adults had a twofold higher LMA, but leaf strength was on average only about 50% larger. Leaf tissue density, and chlorophyll and leaf N per area were also higher, whereas chlorophyll and leaf N per unit dry mass were lower. Ranking of the species, relationships between traits and with the gap dependence of the species were similar for juveniles and adults. However, the magnitudes of most ontogenetic changes were not clearly related to a species' gap dependence. The adaptive value of the leaf traits for juveniles and adults is discussed.

  15. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple.

    PubMed

    Tian, Ji; Peng, Zhen; Zhang, Jie; Song, Tingting; Wan, Huihua; Zhang, Meiling; Yao, Yuncong

    2015-09-01

    The ever-red leaf trait, which is important for breeding ornamental and higher anthocyanin plants, rarely appears in Malus families, but little is known about the regulation of anthocyanin biosynthesis involved in the red leaves. In our study, HPLC analysis showed that the anthocyanin concentration in ever-red leaves, especially cyanidin, was significantly higher than that in evergreen leaves. The transcript level of McMYB10 was significantly correlated with anthocyanin synthesis between the 'Royalty' and evergreen leaf 'Flame' cultivars during leaf development. We also found the ever-red leaf colour cultivar 'Royalty' contained the known R6 : McMYB10 sequence, but was not in the evergreen leaf colour cultivar 'Flame', which have been reported in apple fruit. The distinction in promoter region maybe is the main reason why higher expression level of McMYB10 in red foliage crabapple cultivar. Furthermore, McMYB10 promoted anthocyanin biosynthesis in crabapple leaves and callus at low temperatures and during long-day treatments. Both heterologous expression in tobacco (Nicotiana tabacum) and Arabidopsis pap1 mutant, and homologous expression in crabapple and apple suggested that McMYB10 could promote anthocyanins synthesis and enhanced anthocyanin accumulation in plants. Interestingly, electrophoretic mobility shift assays, coupled with yeast one-hybrid analysis, revealed that McMYB10 positively regulates McF3'H via directly binding to AACCTAAC and TATCCAACC motifs in the promoter. To sum up, our results demonstrated that McMYB10 plays an important role in ever-red leaf coloration, by positively regulating McF3'H in crabapple. Therefore, our work provides new perspectives for ornamental fruit tree breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization.

    PubMed

    Estrada-Luna, Andrés A; Davies, Fred T

    2003-09-01

    Little is known about the role of arbuscular mycorrhiza fungi (AMF) on physiological changes of micropropagated plantlets during acclimatization and post-acclimatization. Using chile ancho pepper (Capsicum annuum L. cv. San Luis), measurements were made of water relations, gas exchange, abscisic acid (ABA), plantlet growth and AMF development. Plantlets had low photosynthetic rates (A) and poor initial growth during acclimatization. Relative water content (RWC) decreased during the first days after transfer from tissue culture containers to ex vitro conditions. Consequently, transpiration rates (E) and stomatal conductance (gs) declined, confirming that in vitro formed stomata were functional and able to respond ex vitro to partial desiccation--thus avoiding excessive leaf dehydration and plant death. Colonization by AMF occurred within 3 days after inoculation. Colonized plantlets had lower leaf ABA and higher RWC than noncolonized (NonAMF) plantlets during peak plant dehydration (6 days after plant transfer)--and a higher A and gs as early as days 5 and 7. During post-acclimatization [after day 8, when RWC increased and stabilized], A increased in all plantlets; however, more dramatic changes occurred with AMF plantlets. Within 48 days, 45% of the roots sampled of inoculated plantlets were colonized and had extensive arbuscule development. At this time, AMF plantlets also had greater E, A, leaf chlorophyll, leaf elemental N, P and K, leaf dry biomass and leaf area, fruit production and differences in carbon partitioning [lower root/shoot ratio and higher leaf area ratio] compared with NonAMF plantlets. Rapid AMF colonization enhanced physiological adjustments, which helped plantlets recover rapidly during acclimatization and obtain greater growth during post-acclimatization.

  17. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits.

    PubMed

    Atkin, Owen K; Bloomfield, Keith J; Reich, Peter B; Tjoelker, Mark G; Asner, Gregory P; Bonal, Damien; Bönisch, Gerhard; Bradford, Matt G; Cernusak, Lucas A; Cosio, Eric G; Creek, Danielle; Crous, Kristine Y; Domingues, Tomas F; Dukes, Jeffrey S; Egerton, John J G; Evans, John R; Farquhar, Graham D; Fyllas, Nikolaos M; Gauthier, Paul P G; Gloor, Emanuel; Gimeno, Teresa E; Griffin, Kevin L; Guerrieri, Rossella; Heskel, Mary A; Huntingford, Chris; Ishida, Françoise Yoko; Kattge, Jens; Lambers, Hans; Liddell, Michael J; Lloyd, Jon; Lusk, Christopher H; Martin, Roberta E; Maksimov, Ayal P; Maximov, Trofim C; Malhi, Yadvinder; Medlyn, Belinda E; Meir, Patrick; Mercado, Lina M; Mirotchnick, Nicholas; Ng, Desmond; Niinemets, Ülo; O'Sullivan, Odhran S; Phillips, Oliver L; Poorter, Lourens; Poot, Pieter; Prentice, I Colin; Salinas, Norma; Rowland, Lucy M; Ryan, Michael G; Sitch, Stephen; Slot, Martijn; Smith, Nicholas G; Turnbull, Matthew H; VanderWel, Mark C; Valladares, Fernando; Veneklaas, Erik J; Weerasinghe, Lasantha K; Wirth, Christian; Wright, Ian J; Wythers, Kirk R; Xiang, Jen; Xiang, Shuang; Zaragoza-Castells, Joana

    2015-04-01

    Leaf dark respiration (Rdark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark . Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, Rdark at a standard T (25°C, Rdark (25) ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark (25) at a given photosynthetic capacity (Vcmax (25) ) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark (25) values at any given Vcmax (25) or [N] were higher in herbs than in woody plants. The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs). © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China].

    PubMed

    Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan

    2014-09-01

    Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in Qinghai-Tibetan Plateau area.

  19. Nitrogen Can Alleviate the Inhibition of Photosynthesis Caused by High Temperature Stress under Both Steady-State and Flecked Irradiance.

    PubMed

    Huang, Guanjun; Zhang, Qiangqiang; Wei, Xinghai; Peng, Shaobing; Li, Yong

    2017-01-01

    Nitrogen is one of the most important elements for plants and is closely related to photosynthesis. High temperature stress significantly inhibits photosynthesis under both steady-state and flecked irradiance. However, it is not known whether nitrogen can affect the decrease in photosynthesis caused by high temperature, especially under flecked irradiance. In the present study, a pot experiment was conducted under two nitrogen (N) supplies with rice plants, and the steady-state and dynamic photosynthesis rates were measured under 28 and 40°C. High temperature significantly increased leaf hydraulic conductance ( K leaf ) under high N supply (HN) but not under low N supply (LN). The increased K leaf maintained a constant leaf water potential (Ψ leaf ) and steady-state stomatal conductance ( g s,sat ) under HN, while the Ψ leaf and g s,sat significantly decreased under high temperature in LN conditions. This resulted in a more severe decrease in steady-state photosynthesis ( A sat ) under high temperature in the LN conditions. After shifting from low to high light, high temperature significantly delayed the recovery of photosynthesis, which resulted in more carbon loss under flecked irradiance. These effects were obtained under HN to a lesser extent than under LN supply. Therefore, it is concluded that nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance.

  20. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species.

    PubMed

    Nolf, Markus; Creek, Danielle; Duursma, Remko; Holtum, Joseph; Mayr, Stefan; Choat, Brendan

    2015-12-01

    Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the world's most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within-plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure-volume relations and in situ pre-dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50 ) was lost at -2.1 to -3.1 MPa in stems and at -1.7 to -2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 - stem P50 ) were very narrow at -0.4 to -1.4 MPa. Pressure-volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem. © 2015 John Wiley & Sons Ltd.

  1. Leaf-rolling in maize crops: from leaf scoring to canopy-level measurements for phenotyping

    PubMed Central

    Madec, Simon; Irfan, Kamran; Lopez, Jeremy; Comar, Alexis; Hemmerlé, Matthieu; Dutartre, Dan; Praud, Sebastien; Tixier, Marie Helene

    2018-01-01

    Abstract Leaf rolling in maize crops is one of the main plant reactions to water stress that can be visually scored in the field. However, leaf-scoring techniques do not meet the high-throughput requirements needed by breeders for efficient phenotyping. Consequently, this study investigated the relationship between leaf-rolling scores and changes in canopy structure that can be determined by high-throughput remote-sensing techniques. Experiments were conducted in 2015 and 2016 on maize genotypes subjected to water stress. Leaf-rolling was scored visually over the whole day around the flowering stage. Concurrent digital hemispherical photographs were taken to evaluate the impact of leaf-rolling on canopy structure using the computed fraction of intercepted diffuse photosynthetically active radiation, FIPARdif. The results showed that leaves started to roll due to water stress around 09:00 h and leaf-rolling reached its maximum around 15:00 h (the photoperiod was about 05:00–20:00 h). In contrast, plants maintained under well-watered conditions did not show any significant rolling during the same day. A canopy-level index of rolling (CLIR) is proposed to quantify the diurnal changes in canopy structure induced by leaf-rolling. It normalizes for the differences in FIPARdif between genotypes observed in the early morning when leaves are unrolled, as well as for yearly effects linked to environmental conditions. Leaf-level rolling score was very strongly correlated with changes in canopy structure as described by the CLIR (r2=0.86, n=370). The daily time course of rolling was characterized using the amplitude of variation, and the rate and the timing of development computed at both the leaf and canopy levels. Results obtained from eight genotypes common between the two years of experiments showed that the amplitude of variation of the CLIR was the more repeatable trait (Spearman coefficient ρ=0.62) as compared to the rate (ρ=0.29) and the timing of development (ρ=0.33). The potential of these findings for the development of a high-throughput method for determining leaf-rolling based on aerial drone observations are considered. PMID:29617837

  2. Leaf Dynamics of Panicum maximum under Future Climatic Changes

    PubMed Central

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. ‘Mombaça’ (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day-1) and leaf elongation rate (LER, cm day-1) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change. PMID:26894932

  3. Rapid Leaf Deployment Strategies in a Deciduous Savanna

    PubMed Central

    2016-01-01

    Deciduous plants avoid the costs of maintaining leaves in the unfavourable season, but carry the costs of constructing new leaves every year. Deciduousness is therefore expected in ecological situations with pronounced seasonality and low costs of leaf construction. In our study system, a seasonally dry tropical savanna, many trees are deciduous, suggesting that leaf construction costs must be low. Previous studies have, however, shown that nitrogen is limiting in this system, suggesting that leaf construction costs are high. Here we examine this conundrum using a time series of soil moisture availability, leaf phenology and nitrogen distribution in the tree canopy to illustrate how trees resorb nitrogen before leaf abscission and use stored reserves of nitrogen and carbon to construct new leaves at the onset of the growing season. Our results show that trees deployed leaves shortly before and in anticipation of the first rains with its associated pulse of nitrogen mineralisation. Our results also show that trees rapidly constructed a full canopy of leaves within two weeks of the first rains. We detected an increase in leaf nitrogen content that corresponded with the first rains and with the movement of nitrogen to more distal branches, suggesting that stored nitrogen reserves are used to construct leaves. Furthermore the stable carbon isotope ratios (δ13C) of these leaves suggest the use of stored carbon for leaf construction. Our findings suggest that the early deployment of leaves using stored nitrogen and carbon reserves is a strategy that is integrally linked with the onset of the first rains. This strategy may confer a competitive advantage over species that deploy leaves at or after the onset of the rains. PMID:27310398

  4. Dynamics of vacuum-sealed, double-leaf partitions

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  5. Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage.

    PubMed

    Freschi, Luciano; Takahashi, Cassia Ayumi; Cambui, Camila Aguetoni; Semprebom, Thais Ribeiro; Cruz, Aline Bertinatto; Mioto, Paulo Tamoso; de Melo Versieux, Leonardo; Calvente, Alice; Latansio-Aidar, Sabrina Ribeiro; Aidar, Marcos Pereira Marinho; Mercier, Helenice

    2010-05-01

    Leaves comprise most of the vegetative body of tank bromeliads and are usually subjected to strong longitudinal gradients. For instance, while the leaf base is in contact with the water accumulated in the tank, the more light-exposed middle and upper leaf sections have no direct access to this water reservoir. Therefore, the present study attempted to investigate whether different leaf portions of Guzmania monostachia, a tank-forming C(3)-CAM bromeliad, play distinct physiological roles in response to water shortage, which is a major abiotic constraint in the epiphytic habitat. Internal and external morphological features, relative water content, pigment composition and the degree of CAM expression were evaluated in basal, middle and apical leaf portions in order to allow the establishment of correlations between the structure and the functional importance of each leaf region. Results indicated that besides marked structural differences, a high level of functional specialization is also present along the leaves of this bromeliad. When the tank water was depleted, the abundant hydrenchyma of basal leaf portions was the main reservoir for maintaining a stable water status in the photosynthetic tissues of the apical region. In contrast, the CAM pathway was intensified specifically in the upper leaf section, which is in agreement with the presence of features more suitable for the occurrence of photosynthesis at this portion. Gas exchange data indicated that internal recycling of respiratory CO(2) accounted for virtually all nighttime acid accumulation, characterizing a typical CAM-idling pathway in the drought-exposed plants. Altogether, these data reveal a remarkable physiological complexity along the leaves of G. monostachia, which might be a key adaptation to the intermittent water supply of the epiphytic niche. Copyright 2009 Elsevier GmbH. All rights reserved.

  6. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    PubMed

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  7. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    PubMed Central

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  8. Leaf Morphological Characters Can Be a Factor for Intra-Varietal Preference of Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among Eggplant Varieties.

    PubMed

    Hasanuzzaman, Abu Tayeb Mohammad; Islam, Md Nazrul; Zhang, Yi; Zhang, Chen-Yang; Liu, Tong-Xian

    2016-01-01

    The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1, is considered a serious pest of horticultural and many other crops. While eggplant (Solanum melongena) is one of the most favored host plants, the whiteflies exhibit preferences among different varieties. We hypothesized that certain morphological leaf characteristics of different varieties, like leaf trichome density, trichome length, leaf lamina thickness and leaf color, may affect whitefly landing, feeding and oviposition. In this study, we investigated the variation in leaf morphological characters among selected eggplant varieties and evaluated the effect of these leaf characteristics in rendering eggplant varieties either susceptible or resistant to B. tabaci. We evaluated eight eggplant varieties in choice feeding tests, and we found that the varieties JinSheng Zilongchangqie (JSZ) and H149 were the highly preferred varieties with the highest numbers of whitefly adults and eggs. Significantly lower numbers of whitefly adult eggs were found on the resistant variety Tuo Lu Bamu (TLB). The varieties JinGuangbo Luqie (JGL), JinGuangbo Ziquanqie (JGZ), DaYang Ziguanqie (DYZ), QinXing Ziguanqie (QXZ), and QinXing Niuxinqie (QXN) were moderately favored by B. tabaci. Leaf trichome density, trichome length and leaf lamina thickness were positively correlated with numbers of whitefly adults and eggs. B. tabaci was less attracted to the leaves that reflect long and middle wavelength light (higher R and G values) than to the bright green leaves (medium G value), but the short wavelength light (higher B value) had no significant effect on whitefly preference. The degree of hue had a positive effect, and saturation and brightness had a negative effect on whitefly attraction.

  9. Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age.

    PubMed

    Fischer, Ravit; Nitzan, Nadav; Chaimovitsh, David; Rubin, Baruch; Dudai, Nativ

    2011-05-11

    The aroma in sweet basil is a factor affecting the commercial value of the crop. In previous studies leaf age was considered to be a factor that influences the composition of essential oil (EO). In this study it was hypothesized that a single observation of the EO content in leaves from different positions on the main stem (young vs old) could predict the developmental changes in the plant during its life cycle. Plants harvested at week 16 demonstrated an exponential increase (R(2) = 0.92) in EO concentration in leaves on the main stem and lateral shoots, indicating higher EO concentrations in younger than in older leaves. Eugenol and methyleugenol predominated (28-77%) in the extract. Eugenol levels were higher in younger leaves (∼53%), and methyl-eugenol levels predominated in older leaves (∼68%). Linalool was lower in mature leaves than in younger leaves. This suggested that eugenol converted into methyleugenol and linalool decreased as leaf mature. However, in weekly monitored plants, the levels of these compounds in the EO had limited variation in the maturing leaf regardless of its position on the stem. This proposed that the EO composition in an individual leaf is mostly affected by the leaf position on the stem and not by its maturation process. Because leaf position is related to plant development, it is probable that the plant's physiological age at the time of leaf formation from the primordial tissue is the factor affecting the EO composition. It was concluded that interpretation of scientific observations should be carried out with caution and that hypotheses should be tested utilizing multifaceted approaches.

  10. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid 'Dodoens'.

    PubMed

    Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav

    2016-03-01

    To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in 'Dodoens', a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of 'Dodoens' trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.).

    PubMed

    Abid, Muhammad; Ali, Shafaqat; Qi, Lei Kang; Zahoor, Rizwan; Tian, Zhongwei; Jiang, Dong; Snider, John L; Dai, Tingbo

    2018-03-15

    Defining the metabolic strategies used by wheat to tolerate and recover from drought events will be important for ensuring yield stability in the future, but studies addressing this critical research topic are limited. To this end, the current study quantified the physiological, biochemical, and agronomic responses of a drought tolerant and drought sensitive cultivar to periods of water deficit and recovery. Drought stress caused a reversible decline in leaf water relations, membrane stability, and photosynthetic activity, leading to increased reactive oxygen species (ROS) generation, lipid peroxidation and membrane injury. Plants exhibited osmotic adjustment through the accumulation of soluble sugars, proline, and free amino acids and increased enzymatic and non-enzymatic antioxidant activities. After re-watering, leaf water potential, membrane stability, photosynthetic processes, ROS generation, anti-oxidative activities, lipid peroxidation, and osmotic potential completely recovered for moderately stressed plants and did not fully recover in severely stressed plants. Higher photosynthetic rates during drought and rapid recovery after re-watering produced less-pronounced yield declines in the tolerant cultivar than the sensitive cultivar. These results suggested that the plant's ability to maintain functions during drought and to rapidly recover after re-watering during vegetative periods are important for determining final productivity in wheat.

  12. Dual role of betel leaf extract on thyroid function in male mice.

    PubMed

    Panda, S; Kar, A

    1998-12-01

    The effects of betel leaf extract (0.10, 0.40, 0.80 and 2.0 g kg-1 day-1 for 15 days) on the alterations in thyroid hormone concentrations. lipid peroxidation (LPO) and on the activities of superoxide dismutase (SOD) and catalase (CAT) were investigated in male Swiss mice. Administration of betel leaf extract exhibited a dual role, depending on the different doses. While the lowest dose decreased thyroxine (T4) and increased serum triiodothyronine (T3) concentrations, reverse effects were observed at two higher doses. Higher doses also increased LPO with a concomitant decrease in SOD and CAT activities. However, with the lowest dose most of these effects were reversed. These findings suggest that betel leaf can be both stimulatory and inhibitory to thyroid function, particularly for T3 generation and lipid peroxidation in male mice, depending on the amount consumed.

  13. Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays

    PubMed Central

    Luqman, Suaib; Srivastava, Suchita; Kumar, Ritesh; Maurya, Anil Kumar; Chanda, Debabrata

    2012-01-01

    We have investigated effect of Moringa oleifera leaf and fruit extracts on markers of oxidative stress, its toxicity evaluation, and correlation with antioxidant properties using in vitro and in vitro assays. The aqueous extract of leaf was able to increase the GSH and reduce MDA level in a concentration-dependent manner. The ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity. The antioxidant capacity of ethanolic extract of both fruit and leaf was higher in the in vitro assay compared to aqueous extract which showed higher potential in vivo. Safety evaluation studies showed no toxicity of the extracts up to a dose of 100 mg/kg body weight. Our results support the potent antioxidant activity of aqueous and ethanolic extract of Moringa oleifera which adds one more positive attribute to its known pharmacological importance. PMID:22216055

  14. Refining the application of direct embryogenesis in sugarcane: Effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency.

    PubMed

    Snyman, S J; Meyer, G M; Richards, J M; Haricharan, N; Ramgareeb, S; Huckett, B I

    2006-10-01

    A rapid in vitro protocol using direct somatic embryogenesis and microprojectile bombardment was investigated to establish the developmental phases most suitable for efficient sugarcane transformation. Immature leaf roll disc explants with and without pre-emergent inflorescence tissue were compared. It was shown that for effective transformation to occur, explants should be cultured for several days to allow initiation of embryo development prior to bombardment. Leaf roll discs with pre-emergent inflorescences showed a higher degree of embryogenic competence than non-flowering explants, and transformation efficiency was higher when explants containing floral initials were bombarded. Despite the occurrence of high numbers of phenotypically negative plants, combining the use of inflorescent leaf roll discs with direct embryogenic regeneration has the potential to improve the speed and efficiency of transgenesis in sugarcane.

  15. Humidity does not appear to trigger leaf out in woody plants

    NASA Astrophysics Data System (ADS)

    Zipf, Lucy; Primack, Richard B.

    2017-12-01

    In order to anticipate the ecological impacts of climate change and model changes to forests, it is important to understand the factors controlling spring leaf out. Leaf out phenology in woody trees and shrubs is generally considered to be strongly controlled by a combination of spring warming, winter chilling requirement, and photoperiod. However, researchers have recently suggested that temperature-related air humidity, rather than temperature itself, might be the main trigger of the spring leaf-out of woody plants. Here, we sought to examine the relationship between air humidity and leaf-out across a range of humidities and plant functional groups. We did not find any consistent, measurable effect of high humidity advancing leaf-out in the 15 woody shrubs and trees examined in this study, and we did not see progressive patterns of earlier leaf-out in successively higher humidities. Our results indicate that more work must be done on this topic before researchers can properly determine the effect of humidity on the leafing out process for woody species.

  16. Antioxidant potential of curry (Murraya koenigii L.) and mint (Mentha spicata) leaf extracts and their effect on colour and oxidative stability of raw ground pork meat during refrigeration storage.

    PubMed

    Biswas, A K; Chatli, M K; Sahoo, J

    2012-07-15

    The aim of this study was to investigate the antioxidant activity of different solvent extracts of curry and mint leaf and their effect on colour and oxidative stability of raw ground pork meat stored at 4 ± 1°C. The results indicated that among the two individual leaf categories, the ethanol extract of curry leaf (EHEC) and the water extract of mint leaf (WEM) showed higher DPPH and ABTS(+) activity. EHEC also exhibited the highest total phenolic contents while these were the lowest for WEM. WEM showed the highest superoxide anionic scavenging activity (%). The pork meat samples treated with EHEC and WEM showed a decrease in the Hunter L- and a-values and a increase in b-value during storage at 4°C. However, the pH and TBARS values were higher in control samples irrespective of storage periods. In conclusion, EHEC and WEM have the potential to be used as natural antioxidants to minimise lipid oxidation of pork products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    PubMed

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  18. Desiccation by Foliar Deposition of Hygroscopic Aerosols may link Air Pollution to Forest Decline and Tree Mortality associated with Global-Change-Type Drought

    NASA Astrophysics Data System (ADS)

    Burkhardt, J.; Grantz, D. A.; Hunsche, M.; Pariyar, S.; Sutton, M. A.; Zinsmeister, D.

    2016-12-01

    Leaf surfaces are a major sink for atmospheric aerosol deposition. Plants benefit from aerosol associated nutrients and are able to increase deposition by leaf surface micromorphology. Recent studies have shown that deposited hygroscopic aerosols can also influence plant water relations. This might be an important issue even for remote forest ecosystems, given the strong anthropogenic influence on aerosol production and efficient atmospheric transport. We study processes of aerosol deposition to plant surfaces and their impact on water relations and drought tolerance, both for experimental particle amendment and for aerosol exclusion in filtered air (FA). FA plants experience an environment with < 10% concentration of hygroscopic aerosols compared to ambient air (AA), but no difference in trace gases. Increasing particle concentration leads to decreasing water use efficiency and increasing minimum epidermal conductance (gmin; a measure of uncontrolled water loss inversely related to drought tolerance). After particle amendment, anisohydric beech seedlings increased transpiration and maintained photosynthesis, while isohydric pine seedlings maintained transpiration and tended to reduce photosynthesis. FA seedlings of pine, oak, and fir showed lower gmin than corresponding AA seedlings. The results support the concept of hydraulic activation of stomata (HAS) and an associated wick action caused by leaf surface particles. Concentrated salt solutions formed by hygroscopicity even in unsaturated air may create a thin liquid film that penetrates the stomatal pore, allowing evaporation of liquid water at the leaf surface. Increased gmin suggests the significance of this process under ambient conditions. The direct impact of air pollution on plant drought tolerance is poorly integrated in current scenarios of forest decline and tree mortality, but might represent an important component.

  19. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland.

    PubMed

    Throop, Heather L; Reichmann, Lara G; Sala, Osvaldo E; Archer, Steven R

    2012-06-01

    Increases in woody vegetation and declines in grasses in arid and semi-arid ecosystems have occurred globally since the 1800s, but the mechanisms driving this major land-cover change remain uncertain and controversial. Working in a shrub-encroached grassland in the northern Chihuahuan Desert where grasses and shrubs typically differ in leaf-level nitrogen allocation, photosynthetic pathway, and root distribution, we asked if differences in leaf-level ecophysiology could help explain shrub proliferation. We predicted that the relative performance of grasses and shrubs would vary with soil moisture due to the different morphological and physiological characteristics of the two life-forms. In a 2-year experiment with ambient, reduced, and enhanced precipitation during the monsoon season, respectively, the encroaching C(3) shrub (honey mesquite Prosopis glandulosa) consistently and substantially outperformed the historically dominant C(4) grass (black grama Bouteloua eriopoda) in terms of photosynthetic rates while also maintaining a more favorable leaf water status. These differences persisted across a wide range of soil moisture conditions, across which mesquite photosynthesis was decoupled from leaf water status and moisture in the upper 50 cm of the soil profile. Mesquite's ability to maintain physiologically active leaves for a greater fraction of the growing season than black grama potentially amplifies and extends the importance of physiological differences. These physiological and phenological differences may help account for grass displacement by shrubs in drylands. Furthermore, the greater sensitivity of the grass to low soil moisture suggests that grasslands may be increasingly susceptible to shrub encroachment in the face of the predicted increases in drought intensity and frequency in the desert of the southwestern USA.

  20. New dimension analyses with error analysis for quaking aspen and black spruce

    NASA Technical Reports Server (NTRS)

    Woods, K. D.; Botkin, D. B.; Feiveson, A. H.

    1987-01-01

    Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.

  1. Olea europaea L. leaf extract and derivatives: antioxidant properties.

    PubMed

    Briante, Raffaella; Patumi, Maurizio; Terenziani, Stefano; Bismuto, Ettore; Febbraio, Ferdinando; Nucci, Roberto

    2002-08-14

    This paper reports a very simple and fast method to collect eluates with high amounts of hydroxytyrosol, biotransforming Olea europaea L. leaf extract by a thermophilic beta-glycosidase immobilized on chitosan. Some phenolic compounds in the leaf tissue and in the eluates obtained by biotransformation are identified. To propose the eluates as natural substances from a vegetal source, their antioxidant properties have been compared with those of the leaf extract from which they are originated. The eluates possess a higher concentration of simple phenols, characterized by a stronger antioxidant capacity, than those available in extra virgin olive oils and in many tablets of olive leaf extracts, commercially found as dietetic products and food integrators.

  2. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species.

    PubMed

    Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong

    2018-03-01

    Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed that leaf morphological features of both E. sylvestris and I. henryi affected their corresponding leaf nutrient traits. These results improve our understanding of the dynamic balance between leaf NSCs and leaf C, N and P components in the nutritional metabolism of shade-tolerant plants. Two species of understory shade-tolerant plants responded differently to varying light intensities in terms of leaf non-structural carbohydrate allocation and the utilization of carbon, nitrogen and phosphorus to balance nutritional metabolism and adapt to environmental stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Growth and Photosynthetic Responses to Salinity of the Salt-marsh Shrub Atriplex portulacoides

    PubMed Central

    Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Davy, Anthony J.; Fernández-Muñoz, Francisco; Castellanos, Eloy M.; Luque, Teresa; Figueroa, M. Enrique

    2007-01-01

    Background and Aims Atriplex (Halimione) portulacoides is a halophytic, C3 shrub. It is virtually confined to coastal salt marshes, where it often dominates the vegetation. The aim of this study was to investigate its growth responses to salinity and the extent to which these could be explained by photosynthetic physiology. Methods The responses of young plants to salinity in the range 0–700 mol m−3 NaCl were investigated in a glasshouse experiment. The performance of plants was examined using classical growth analysis, measurements of gas exchange (infrared gas analysis), determination of chlorophyll fluorescence characteristics (modulated fluorimeter) and photosynthetic pigment concentrations; total ash, sodium, potassium and nitrogen concentrations, and relative water content were also determined. Key Results Plants accumulated Na+ approximately in proportion to external salinity. Salt stimulated growth up to an external concentration of 200 mol m−3 NaCl and some growth was maintained at higher salinities. The main determinant of growth response to salinity was unit leaf rate. This was itself reflected in rates of CO2 assimilation, which were not affected by 200 mol m−3 but were reduced at higher salinities. Reductions in net photosynthetic rate could be accounted for largely by lower stomatal conductance and intercellular CO2 concentration. Apart from possible effects of osmotic shock at the beginning of the experiment, salinity did not have any adverse effect on photosystem II (PSII). Neither the quantum efficiency of PSII (ΦPSII) nor the chlorophyll fluorescence ratio (Fv/Fm) were reduced by salinity, and lower mid-day values recovered by dawn. Mid-day Fv/Fm was in fact depressed more at low external sodium concentration, by the end of the experiment. Conclusions The growth responses of the hygro-halophyte A. portulacoides to salinity appear largely to depend on changes in its rate of photosynthetic gas exchange. Photosynthesis appears to be limited mainly through stomatal conductance and hence intercellular CO2 concentration, rather than by effects on PSII; moderate salinity might stimulate carboxylation capacity. This is in contrast to more extreme halophytes, for which an ability to maintain leaf area can partially offset declining rates of carbon assimilation at high salinity. PMID:17684026

  4. Influence of sewage sludge, as a substrate, in the plasticity of functional characteristics of plants.

    PubMed

    da Silva, Vicente Elício Porfiro Sales Gonçalves; Buarque, Patrícia Marques Carneiro; Ferreira, Wanessa Nepomuceno; Buarque, Hugo Leonardo de Brito; Silva, Maria Amanda Menezes

    2018-04-24

    This work aimed to evaluate the effect of sewage sludge application as fertilizer on the plasticity of functional characteristics of species commonly found in the Caatinga. The research was developed in the nursery of the Federal Institute of Education, Science and Technology of Ceará (IFCE), Quixadá campus, located in northeastern Brazil. Three treatments were applied: raw sludge, sanitized sludge, and no manipulation. In each treatment, five species were planted, each with five individuals, totaling 75 individuals, which were tagged, and 4 months after germination, they were destroyed to obtain dry matter content (TMSF) from leaf, stem (TMSC), fine root (TMSRF), and thick root (TMSRG); leaf area; height and diameter of the seedling; and length above and below the ground. The sanitized sludge was responsible for giving higher values for leaf area, height of the seedlings, and diameter and length of stem and root. However, the dry matter content of the fine roots was higher in the treatment without manipulation. At the community level, as TMSRG increased, TMSC also increased, the same occurred between TMSRG and TMSRF, TMSC and TMSRF, and stem length and leaf area. In the treatment without manipulation, there was a positive correlation between leaf area, height and plant diameter, and negative correlation between root length and plant diameter. Thus, it can be concluded that the use of sanitized sludge is a good tool to increase the availability of soil resources, conferring to individuals' greater dry matter content, greater leaf area, and higher height and diameter above the ground.

  5. Resistance mechanisms in Pieris taxa (Ericaceae) to Stephanitis takeyai (Hemiptera: Tingidae).

    PubMed

    Nair, Shakunthala; Braman, S Kristine; Knauft, D A

    2012-10-01

    This study examines some of the potential mechanisms of resistance in selected Pieris (Ericaceae) taxa to the Andromeda lace bug, Stephanitis takeyai Drake and Maa, based on differences in resistance to lace bug feeding, and the possible role of leaf parameters such as leaf wax, toughness, nutrient composition, and stomatal characters in plant resistance. Experiments with extracts of leaf-surface lipids revealed that Pieris leaf wax did not have a role in resistance to lace bug feeding. Leaf wax extracts from a resistant species P. phillyreifolia (Hook.) DC. applied to leaves of a susceptible cultivar P. japonica (Thunb.) D.Don ex G.Don 'Temple Bells' did not affect feeding, oviposition, or survival of S. takeyai; and neither the extracts from Temple Bells induce susceptibility in P. phillyreifolia. Leaf penetrometer measurements indicated that significantly higher force was required to puncture P. phillyreifolia leaves, which also had higher fiber, lignin, and cellulose, and lower leaf moisture contents. Ultrastructural examination of leaves of Pieris taxa revealed significant differences in the number and size of stomata. P. phillyreifolia leaves had the highest number of stomata per unit area but these were the smallest in size, whereas P. japonica (Thunb.) D.Don ex G.Don Temple Bells leaves had the fewest and largest stomata. Resistance in Pieris taxa to S. takeyai may be attributed to a combination of different factors including leaf toughness, moisture, and stomatal characters. The type of resistance may be described as antixenosis combined with antibiosis, because reduced adult survival and reproduction were observed on the taxa resistant to lace bug feeding.

  6. [Citrus boron nutrient level and its impact factors in the Three Gorges Reservoir region of Chongqing, China].

    PubMed

    Zhou, Wei; Peng, Liang-Zhi; Chun, Chang-Pin; Jiang, Cai-Lun; Ling, Li-Li; Wang, Nan-Qi; Xing, Fei; Huang, Yi

    2014-04-01

    To investigate the level of boron nutrient in citrus and its impact factors, a total of 954 citrus leaf samples and 302 soil samples were collected from representative orchards in the 12 main citrus production counties in the Three Gorges Reservoir region of Chongqing to determine the boron content in citrus leaves, as well as the relationships between leaf boron content with soil available boron content, soil pH value, cultivar, rootstock and the age of tree. Results indicated that the leaf samples from 41.6% orchards (< 35 mg x kg(-1)) and the soil samples from 89.4% orchards (< 0.5 mg x kg(-1)) were boron insufficient. The correlation of leaf boron content and soil available boron content was not significant. The soil pH, cultivar, rootstock and the age of tree did affect the leaf boron content. The leaves from the orchards with soil pH of 4.5-6.4 demonstrated significantly higher boron contents than with the soil pH of 6.5-8.5. The leaf boron contents in the different cultivars was ranged as Satsuma mandarin > pomelo > valencia orange > sweet orange > tangor > navel orange. The citrus on trifoliate orange and sour pomelo rootstocks had significantly higher leaf boron contents than on Carrizo citrange and red tangerine rootstocks. Compared with the adult citrus trees (above 8 year-old), 6.6% more of leaf samples of younger trees (3 to 8 year-old) contained boron contents in the optimum range (35-100 mg x kg(-1)).

  7. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits.

    PubMed

    Zhu, Shi-Dan; Chen, Ya-Jun; Ye, Qing; He, Peng-Cheng; Liu, Hui; Li, Rong-Hua; Fu, Pei-Li; Jiang, Guo-Feng; Cao, Kun-Fang

    2018-05-01

    Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of hydraulic and leaf carbon economics data. We aimed to investigate the variation of πtlp across biomes varying in water availability. We also tested two hypotheses: (i) πtlp predicts leaf hydraulic safety margins and (ii) it is correlated with leaf carbon economics traits. Our results showed that there was a positive relationship between πtlp and aridity index: biomes from humid regions had less negative values than those from arid regions. This supports the idea that πtlp may reflect drought tolerance at the scale of woody biomes. As expected, πtlp was significantly positively correlated with leaf hydraulic safety margins that varied significantly across biomes, indicating that this trait may be useful in modelling changes of forest components in response to increasing drought. Moreover, πtlp was correlated with a suite of coordinated hydraulic and economics traits; therefore, it can be used to predict the position of a given species along the 'fast-slow' whole-plant economics spectrum. This study expands our understanding of the biological significance of πtlp not only in drought tolerance, but also in the plant economics spectrum.

  8. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency

    PubMed Central

    Adams, Mark Andrew; Turnbull, Tarryn L.; Sprent, Janet I.; Buchmann, Nina

    2016-01-01

    Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43–100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea—in distinct challenge to current theories that place the leaf nitrogen–Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea–gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen—in a variety of forms—enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates. PMID:27035971

  9. Physiological and molecular responses to drought in Petunia: the importance of stress severity

    PubMed Central

    Kim, Jongyun

    2012-01-01

    Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m3·m–3) to induce varying levels of drought stress. Plant responses were investigated both during the drying period (θ decreased to the θ thresholds) and while those threshold θ were maintained. Stomatal conductance (gs) and net photosynthesis (A) decreased with decreasing midday leaf water potential (Ψleaf). Leaf ABA concentration increased with decreasing midday Ψleaf and was negatively correlated with gs (r = –0.92). Despite the increase in leaf ABA concentration under drought, no significant effects on the expression of ABA biosynthesis genes were observed. However, the ABA catabolism-related gene CYP707A2 was downregulated, primarily in plants under severe drought (θ = 0.10 m3∙m–3), suggesting a decrease in ABA catabolism under severe drought. Expression of phospholipase Dα (PLDα), involved in regulating stomatal responses to ABA, was enhanced under drought during the drying phase, but there was no relationship between PLDα expression and midday Ψleaf after the θ thresholds had been reached. The results show that drought response of plants depends on the severity of drought stress and the phase of drought progression. PMID:23077204

  10. Antiphase light and temperature cycles affect PHYTOCHROME B-controlled ethylene sensitivity and biosynthesis, limiting leaf movement and growth of Arabidopsis.

    PubMed

    Bours, Ralph; van Zanten, Martijn; Pierik, Ronald; Bouwmeester, Harro; van der Krol, Alexander

    2013-10-01

    In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [-DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and -DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that -DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in -DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under -DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to -DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under -DIF conditions. Indeed, petioles of plants under -DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under -DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the -DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth.

  11. Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum-plasma membrane contact sites.

    PubMed

    Siao, Wei; Wang, Pengwei; Voigt, Boris; Hussey, Patrick J; Baluska, Frantisek

    2016-11-01

    Arabidopsis synaptotagmin 1 (SYT1) is localized on the endoplasmic reticulum-plasma membrane (ER-PM) contact sites in leaf and root cells. The ER-PM localization of Arabidopsis SYT1 resembles that of the extended synaptotagmins (E-SYTs) in animal cells. In mammals, E-SYTs have been shown to regulate calcium signaling, lipid transfer, and endocytosis. Arabidopsis SYT1 was reported to be essential for maintaining cell integrity and virus movement. This study provides detailed insight into the subcellular localization of SYT1 and VAP27-1, another ER-PM-tethering protein. SYT1 and VAP27-1 were shown to be localized on distinct ER-PM contact sites. The VAP27-1-enriched ER-PM contact sites (V-EPCSs) were always in contact with the SYT1-enriched ER-PM contact sites (S-EPCSs). The V-EPCSs still existed in the leaf epidermal cells of the SYT1 null mutant; however, they were less stable than those in the wild type. The polygonal networks of cortical ER disassembled and the mobility of VAP27-1 protein on the ER-PM contact sites increased in leaf cells of the SYT1 null mutant. These results suggest that SYT1 is responsible for stabilizing the ER network and V-EPCSs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Trade-offs in plant responses to herbivory influence trophic routes of production in a freshwater wetland.

    PubMed

    Cherry, Julia A; Gough, Laura

    2009-09-01

    Responses of aquatic macrophytes to leaf herbivory may differ from those documented for terrestrial plants, in part, because the potential to maximize growth following herbivory may be limited by the stress of being rooted in flooded, anaerobic sediments. Herbivory on aquatic macrophytes may have ecosystem consequences by altering the allocation of nutrients and production of biomass within individual plants and changing the quality and quantity of aboveground biomass available to consumers or decomposers. To test the effects of leaf herbivory on plant growth and production, herbivory of a dominant macrophyte, Nymphaea odorata, by chrysomelid beetles and crambid moths was controlled during a 2-year field experiment. Plants exposed to herbivory maintained, or tended to increase, biomass and aboveground net primary production relative to controls, which resulted in 1.5 times more aboveground primary production entering the detrital pathway of the wetland. In a complementary greenhouse experiment, the effects of simulated leaf herbivory on total plant responses, including biomass and nutrient allocation, were investigated. Plants in the greenhouse responded to moderate herbivory by maintaining aboveground biomass relative to controls, but this response occurred at the expense of belowground growth. Results of these studies suggest that N. odorata may tolerate moderate levels of herbivory by reallocating biomass and resources aboveground, which in turn influences the quantity, quality and fate of organic matter available to herbivores and decomposers.

  13. Synergistic Effects of Bacillus amyloliquefaciens (GB03) and Water Retaining Agent on Drought Tolerance of Perennial Ryegrass

    PubMed Central

    Su, An-Yu; Niu, Shu-Qi; Liu, Yuan-Zheng; He, Ao-Lei; Zhao, Qi; Li, Meng-Fei; Han, Qing-Qing; Ali Khan, Sardar

    2017-01-01

    Water retaining agent (WRA) is widely used for soil erosion control and agricultural water saving. Here, we evaluated the effects of the combination of beneficial soil bacterium Bacillus amyloliquefaciens strain GB03 and WRA (the compound is super absorbent hydrogels) on drought tolerance of perennial ryegrass (Lolium perenne L.). Seedlings were subjected to natural drought for maximum 20 days by stopping watering and then rewatered for seven days. Plant survival rate, biomass, photosynthesis, water status and leaf cell membrane integrity were measured. The results showed that under severe drought stress (20-day natural drought), compared to control, GB03, WRA and GB03+WRA all significantly improved shoot fresh weight, dry weight, relative water content (RWC) and chlorophyll content and decreased leaf relative electric conductivity (REC) and leaf malondialdehyde (MDA) content; GB03+WRA significantly enhanced chlorophyll content compared to control and other two treatments. Seven days after rewatering, GB03, WRA and GB03+WRA all significantly enhanced plant survival rate, biomass, RWC and maintained chlorophyll content compared to control; GB03+WRA significantly enhanced plant survival rate, biomass and chlorophyll content compared to control and other two treatments. The results established that GB03 together with water retaining agent promotes ryegrass growth under drought conditions by improving survival rate and maintaining chlorophyll content. PMID:29232909

  14. Synergistic Effects of Bacillus amyloliquefaciens (GB03) and Water Retaining Agent on Drought Tolerance of Perennial Ryegrass.

    PubMed

    Su, An-Yu; Niu, Shu-Qi; Liu, Yuan-Zheng; He, Ao-Lei; Zhao, Qi; Paré, Paul W; Li, Meng-Fei; Han, Qing-Qing; Ali Khan, Sardar; Zhang, Jin-Lin

    2017-12-11

    Water retaining agent (WRA) is widely used for soil erosion control and agricultural water saving. Here, we evaluated the effects of the combination of beneficial soil bacterium Bacillus amyloliquefaciens strain GB03 and WRA (the compound is super absorbent hydrogels) on drought tolerance of perennial ryegrass ( Lolium perenne L.). Seedlings were subjected to natural drought for maximum 20 days by stopping watering and then rewatered for seven days. Plant survival rate, biomass, photosynthesis, water status and leaf cell membrane integrity were measured. The results showed that under severe drought stress (20-day natural drought), compared to control, GB03, WRA and GB03+WRA all significantly improved shoot fresh weight, dry weight, relative water content (RWC) and chlorophyll content and decreased leaf relative electric conductivity (REC) and leaf malondialdehyde (MDA) content; GB03+WRA significantly enhanced chlorophyll content compared to control and other two treatments. Seven days after rewatering, GB03, WRA and GB03+WRA all significantly enhanced plant survival rate, biomass, RWC and maintained chlorophyll content compared to control; GB03+WRA significantly enhanced plant survival rate, biomass and chlorophyll content compared to control and other two treatments. The results established that GB03 together with water retaining agent promotes ryegrass growth under drought conditions by improving survival rate and maintaining chlorophyll content.

  15. A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis.

    PubMed

    Tameshige, Toshiaki; Okamoto, Satoshi; Lee, Jin Suk; Aida, Mitsuhiro; Tasaka, Masao; Torii, Keiko U; Uchida, Naoyuki

    2016-09-26

    Secreted peptides mediate intercellular communication [1, 2]. Several secreted peptides in the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family regulate morphogenesis of tissues, such as stomata and inflorescences in plants [3-15]. The biological functions of other EPFL family members remain unknown. Here, we show that the EPFL2 gene is required for growth of leaf teeth. EPFL2 peptide physically interacts with ERECTA (ER) family receptor-kinases and, accordingly, the attenuation of ER family activities leads to formation of toothless leaves. During the tooth growth process, responses to the phytohormone auxin are maintained at tips of the teeth to promote their growth [16-19]. In the growing tooth tip of epfl2 and multiple er family mutants, the auxin response becomes broader. Conversely, overexpression of EPFL2 diminishes the auxin response, indicating that the EPFL2 signal restricts the auxin response to the tooth tip. Interestingly, the tip-specific auxin response in turn organizes characteristic expression patterns of ER family and EPFL2 by enhancing ER family expression at the tip while eliminating the EPFL2 expression from the tip. Our findings identify the novel ligand-receptor pairs promoting the tooth growth, and further reveal a feedback circuit between the peptide-receptor system and auxin response as a mechanism for maintaining proper auxin maxima during leaf margin morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant.

    PubMed

    Li, Zhaowei; Su, Da; Lei, Bingting; Wang, Fubiao; Geng, Wei; Pan, Gang; Cheng, Fangmin

    2015-03-15

    To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed between AsA level and APX activity in the ongoing senescence of rice leaves. The GSH supply in rice leaves was not the limiting factor for the efficient maintenance of AsA-GSH cycle, despite the senescence-related change in GR activity between the two rice genotypes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Nutritive quality and protein production from grain legumes in a boreal climate.

    PubMed

    Lizarazo, Clara I; Lampi, Anna-Maija; Liu, Jingwei; Sontag-Strohm, Tuula; Piironen, Vieno; Stoddard, Frederick L

    2015-08-15

    Boreal cropping systems are heavily focused on the production of small-grain cereals; to improve their resilience to climate change and to achieve food and feed security, diversification is needed. This study investigated the potential of faba bean, narrow-leafed lupin and lentil as protein crops in southern Finland, where faba bean is traditional but the other two are novel. Early cultivars of narrow-leafed lupin and lentil matured adequately. Protein concentration in faba bean was, at 32%, higher than the world average of 29%, while those of narrow-leafed lupin and lentil were close to their world averages. Protein yields decreased in the order faba bean > narrow-leafed lupin > lentil. Lipid content of faba bean and lentil was about 1.2% and that of narrow-leafed lupin about 5.5%, and fatty acid composition was largely oleic and linoleic in all three species. Both lentil and narrow-leafed lupin can be added to the range of feed and food crops produced at high latitudes in Europe. While faba bean produces the greatest protein yield and lysine concentration, the higher sulfur amino acid concentration in lupin, its oil content and its adaptation to acid, sandy soils not suitable for faba bean make it an attractive alternative. © 2014 Society of Chemical Industry.

  18. Anti-proliferation and Apoptosis Induction of Aqueous Leaf Extract of Carica papaya L. on Human Breast Cancer Cells MCF-7.

    PubMed

    Zuhrotun Nisa, Fatma; Astuti, Mary; Murdiati, Agnes; Mubarika Haryana, Sofia

    2017-01-01

    Breast cancer is the most frequently diagnosed cancer in women. Chemotherapy is the main method of breast cancer treatment but there are side effects. Carica papaya leaves is vegetable foods consumed by most people of Indonesia have potential as anticancer. The aim of this study was to investigate anti-proliferative and apoptotic induced effect of aqueous papaya leaves extracts on human breast cancer cell lines MCF-7. Inhibitory on cell proliferation was measured by MTT assay while apoptosis induction was measured using Annexin V. The results showed that papaya leaf can inhibit the proliferation of human breast cancer cells MCF-7 with IC50 in 1319.25 μg mL-1. The IC50 values of papaya leaf extract was higher than the IC50 value quercetin and doxorubicin. Papaya leaf extract can also induce apoptosis of breast cancer cells MCF-7 about 22.54% for concentration 659.63 μg mL-1 and about 20.73% for concentration 329.81 μg mL-1. The percentage of cell apoptosis of papaya leaf extract lower than doxorubicin but higher than quercetin. This study indicated that papaya leaf extract have potential as anticancer through mechanism anti-proliferation and apoptosis induction.

  19. Turning over a new 'leaf': multiple functional significances of leaves versus phyllodes in Hawaiian Acacia koa.

    PubMed

    Pasquet-Kok, Jessica; Creese, Christine; Sack, Lawren

    2010-12-01

    Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO(2) , vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area-based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass-based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts. © 2010 Blackwell Publishing Ltd.

  20. Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances

    NASA Astrophysics Data System (ADS)

    Couvreur, V.; Vanderborght, J.; Draye, X.; Javaux, M.

    2014-11-01

    Soil water availability for plant transpiration is a key concept in agronomy. The objective of this study is to revisit this concept and discuss how it may be affected by processes locally influencing root hydraulic properties. A physical limitation to soil water availability in terms of maximal flow rate available to plant leaves (Qavail) is defined. It is expressed for isohydric plants, in terms of plant-centered variables and properties (the equivalent soil water potential sensed by the plant, ψs eq; the root system equivalent conductance, Krs; and a threshold leaf water potential, ψleaf lim). The resulting limitation to plant transpiration is compared to commonly used empirical stress functions. Similarities suggest that the slope of empirical functions might correspond to the ratio of Krs to the plant potential transpiration rate. The sensitivity of Qavail to local changes of root hydraulic conductances in response to soil matric potential is investigated using model simulations. A decrease of radial conductances when the soil dries induces earlier water stress, but allows maintaining higher night plant water potentials and higher Qavail during the last week of a simulated 1 month drought. In opposition, an increase of radial conductances during soil drying provokes an increase of hydraulic redistribution and Qavail at short term. This study offers a first insight on the effect of dynamic local root hydraulic properties on soil water availability. By better understanding complex interactions between hydraulic processes involved in soil-plant hydrodynamics, better prospects on how root hydraulic traits mitigate plant water stress might be achieved.

  1. Effects of extreme heat and drought on trees: what do we know and what do we need to know?

    NASA Astrophysics Data System (ADS)

    Teskey, R. O.

    2017-12-01

    It is almost certain that trees will experience heat waves and droughts during their lifetime. In response, they have acquired many adaptations to survive these periods of intense stress. For example, recently we have investigated the surprising role that stomata play in maintaining leaf function at very high temperatures by opening widely to cool the leaf even when photosynthesis is zero. This process and its trade-offs, as well as many other physiological and morphological responses to high temperatures, will be discussed. The current state of knowledge of the mechanisms trees use to cope with extreme drought, including leaf shedding, hydraulic architecture, carbohydrate storage, and changes in wood anatomy will be discussed. Examples of how the interactions between drought and heat affect trees also will be provided. Finally, an assessment of knowledge gaps and recommendations for future research will be provided.

  2. [Effects of nitrogen application on canopy vertical structure, grain-leaf ratio and economic benefit of winter wheat under drip irrigation.

    PubMed

    Zhang, Na; Xu, Wen Xiu; Li, Lan Hai; Wu, Ni Ping; Wu, Pei Jie; Cheng, Xue Feng

    2016-08-01

    To optimize the fertilization rate of winter wheat under drip irrigation in Xinjiang region, a field investigation was carried out to assess effects of nitrogen (N) applications on canopy vertical structure, grain-leaf ratio, yield and economic benefit of winter wheat. Four rates of nitrogen application, 0 kg·hm -2 (N 0 ), 104 kg·hm -2 (N 1 ), 173 kg·hm -2 (N 2 ) and 242 kg·hm -2 (N 3 ) were set in a randomized block experimental design. Meantime, leaf and stem morphological characters, canopy temperature and humidity in flowering stage, grain-leaf area ratio, yield and yield components, economic benefits of winter wheat were observed under different treatments. The results showed that the leaf length and width at different positions of wheat under the nitrogen fertilization treatments were significantly higher than that without nitrogen fertilization (P<0.05), and plant height ranged from 65.57 to 81.58 cm. With an increasing rate of nitrogen fertilization, both leafarea index and stem diameter presented a trend of first increasing and then decreasing, and reached the maximum under N 2 treatment, which was 5.48 and 0.49 cm, respectively. Diurnal variation of canopy temperature and humidity were "convex" and "concave" shape, followed an order of N 0 >N 1 >N 2 >N 3 in temperature, but reversely in canopy humidity. The duration of high temperature higher than 35 ℃ were shorten 1 hour to 3.5 hours as the nitrogen application level increased, and there was significant difference between N 1 and N 3 on grain-leaf ratio. Yield and economic be-nefit decreased initially and then increased with increasing nitrogen application. Yield and economic benefit of treatment N 2 were 32.8% and 77.7% higher than those of treatment N 0 , 12.6% and 5.4% higher than those of treatment N 1 , and 5.2% and 4.2% higher than those of treatment N 3 , respectively. These results indicated that nitrogen application at about 173 kg·hm -2 could be recommended as the optimum rate for winter wheat, which had good leaf and plant morphology, appropriate canopy temperature and humidity, high yield and economic efficiency in the experiment area.

  3. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest.

    PubMed

    Frosi, Gabriella; Barros, Vanessa A; Oliveira, Marciel T; Santos, Mariana; Ramos, Diego G; Maia, Leonor C; Santos, Mauro G

    2016-12-01

    In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (P i ) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (P i ) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H 2 O and -H 2 O), 2 AMF levels (+AMF and -AMF) and 2P i levels (+P i and -P i ). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, P i or AMF+P i plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or P i . After rehydration, those plants submitted to drought with AMF, P i or AMF+P i showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or P i . However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, P i or AMF+P i increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Phenotyping M.sieversii collections from Kazakhstan for leaf traits and tree architecture

    USDA-ARS?s Scientific Manuscript database

    Ecotypes are useful sources of rapid adaptation to new environments. Recent collections of the wild apple (M. sieversii) from Kazakhstan maintained in Geneva, New York, have made available populations from twelve sites in Kazakhstan representing radically different environments. SSR analysis of su...

  5. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

    PubMed Central

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2015-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  6. Internal Water Balance of Barley Under Soil Moisture Stress 1

    PubMed Central

    Millar, Agustin A.; Duysen, Murray E.; Wilkinson, Guy E.

    1968-01-01

    Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments. Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied. The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions. PMID:16656869

  7. Leaf transpiration efficiency of some drought-resistant maize lines

    USDA-ARS?s Scientific Manuscript database

    Field measurements of leaf gas exchange in maize often indicate stomatal conductances higher than required to provide substomatal carbon dioxide concentrations saturating to photosynthesis. Thus maize leaves often operate at lower transpiration efficiency (TE) than potentially achievable for specie...

  8. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields.

    PubMed

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-07-03

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study.

  9. Physiological and morphological acclimation to height in cupressoid leaves of 100-year-old Chamaecyparis obtusa.

    PubMed

    Shiraki, Ayumi; Azuma, Wakana; Kuroda, Keiko; Ishii, H Roaki

    2017-10-01

    Cupressoid (scale-like) leaves are morphologically and functionally intermediate between stems and leaves. While past studies on height acclimation of cupressoid leaves have focused on acclimation to the vertical light gradient, the relationship between morphology and hydraulic function remains unexplored. Here, we compared physiological and morphological characteristics between treetop and lower-crown leaves of 100-year-old Chamaecyparis obtusa Endl. trees (~27 m tall) to investigate whether height-acclimation compensates for hydraulic constraints. We found that physiological acclimation of leaves was determined by light, which drove the vertical gradient of evaporative demand, while leaf morphology and anatomy were determined by height. Compared with lower-crown leaves, treetop leaves were physiologically acclimated to water stress. Leaf hydraulic conductance was not affected by height, and this contributed to higher photosynthetic rates of treetop leaves. Treetop leaves had higher leaf area density and greater leaf mass per area, which increase light interception but could also decrease hydraulic efficiency. We inferred that transfusion tissue flanking the leaf vein, which was more developed in the treetop leaves, contributes to water-stress acclimation and maintenance of leaf hydraulic conductance by facilitating osmotic adjustment of leaf water potential and efficient water transport from xylem to mesophyll. Our findings may represent anatomical adaptation that compensates for hydraulic constraints on physiological function with increasing height. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Industrious leaf cutter ants and their carbon footprints

    NASA Astrophysics Data System (ADS)

    Swanson, A. C.; Dierick, D.; Trahan, N. A.; Allen, M. F.; Schwendenmann, L.; Harmon, T. C.; Oberbauer, S. F.; Fernandez Bou, A. S.; Zelikova, T. J.

    2017-12-01

    Leaf cutter ants (LCA) are considered ecosystem engineers in Neotropical forest ecosystems because they alter physical and environmental conditions for other organisms. LCA excavate large underground nests, maintaining intricate tunnels and fungal and waste chambers, and they continuously bring in vast amounts of fresh leaf material. In order to understand their ecosystem-wide impacts, we set out to determine whether their engineering activities fundamentally alter soil structure, soil nutrient pools, and gas fluxes in a wet tropical rainforest in Costa Rica. To directly compare LCA nest to non-nest sites, we utilized embedded sensor arrays with series of soil moisture, CO2, O2, and temperature sensors placed at four soil depths and automated minirhizotrons (AMR) to measure root and hyphal production and turnover. We also collected soils for biogeochemical analyses and measured soil CO2 fluxes and carbon isotope ratios of below-ground CO2 for two years. Our measurements confirmed that LCA alter their soil environment to regulate internal soil CO2 concentrations, moisture, and temperature, increasing O2 concentrations in the process. There were marked differences in soil structure inside nests relative to non-nests and these were associated with increased root and hyphal production and turnover in nests. Soil C, N, P, and their respective degrading enzymes were highly variable among sites and between nests and controls but N and P increased with soil depth and were generally higher in nests than controls. Contrary to our expectations, C mineralization rates were lower in nests but CO2 fluxes were high from nest vents and similar to non-nests elsewhere. At the system scale, LCA appear to fundamentally change the soil environment inside their nests and create spatial heterogeneity in biogeochemical processes and root and hyphal growth, influencing the overall C balance of Neotropical forests.

  11. Leaf-IT: An Android application for measuring leaf area.

    PubMed

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  12. Warmest extreme year in U.S. history alters thermal requirements for tree phenology.

    PubMed

    Carter, Jacob M; Orive, Maria E; Gerhart, Laci M; Stern, Jennifer H; Marchin, Renée M; Nagel, Joane; Ward, Joy K

    2017-04-01

    The frequency of extreme warm years is increasing across the majority of the planet. Shifts in plant phenology in response to extreme years can influence plant survival, productivity, and synchrony with pollinators/herbivores. Despite extensive work on plant phenological responses to climate change, little is known about responses to extreme warm years, particularly at the intraspecific level. Here we investigate 43 populations of white ash trees (Fraxinus americana) from throughout the species range that were all grown in a common garden. We compared the timing of leaf emergence during the warmest year in U.S. history (2012) with relatively non-extreme years. We show that (a) leaf emergence among white ash populations was accelerated by 21 days on average during the extreme warm year of 2012 relative to non-extreme years; (b) rank order for the timing of leaf emergence was maintained among populations across extreme and non-extreme years, with southern populations emerging earlier than northern populations; (c) greater amounts of warming units accumulated prior to leaf emergence during the extreme warm year relative to non-extreme years, and this constrained the potential for even earlier leaf emergence by an average of 9 days among populations; and (d) the extreme warm year reduced the reliability of a relevant phenological model for white ash by producing a consistent bias toward earlier predicted leaf emergence relative to observations. These results demonstrate a critical need to better understand how extreme warm years will impact tree phenology, particularly at the intraspecific level.

  13. How succulent leaves of Aizoaceae avoid mesophyll conductance limitations of photosynthesis and survive drought.

    PubMed

    Ripley, Brad S; Abraham, Trevor; Klak, Cornelia; Cramer, Michael D

    2013-12-01

    In several taxa, increasing leaf succulence has been associated with decreasing mesophyll conductance (g M) and an increasing dependence on Crassulacean acid metabolism (CAM). However, in succulent Aizoaceae, the photosynthetic tissues are adjacent to the leaf surfaces with an internal achlorophyllous hydrenchyma. It was hypothesized that this arrangement increases g M, obviating a strong dependence on CAM, while the hydrenchyma stores water and nutrients, both of which would only be sporadically available in highly episodic environments. These predictions were tested with species from the Aizoaceae with a 5-fold variation in leaf succulence. It was shown that g M values, derived from the response of photosynthesis to intercellular CO2 concentration (A:C i), were independent of succulence, and that foliar photosynthate δ(13)C values were typical of C3, but not CAM photosynthesis. Under water stress, the degree of leaf succulence was positively correlated with an increasing ability to buffer photosynthetic capacity over several hours and to maintain light reaction integrity over several days. This was associated with decreased rates of water loss, rather than tolerance of lower leaf water contents. Additionally, the hydrenchyma contained ~26% of the leaf nitrogen content, possibly providing a nutrient reservoir. Thus the intermittent use of C3 photosynthesis interspersed with periods of no positive carbon assimilation is an alternative strategy to CAM for succulent taxa (Crassulaceae and Aizoaceae) which occur sympatrically in the Cape Floristic Region of South Africa.

  14. How succulent leaves of Aizoaceae avoid mesophyll conductance limitations of photosynthesis and survive drought

    PubMed Central

    Ripley, Brad S.

    2013-01-01

    In several taxa, increasing leaf succulence has been associated with decreasing mesophyll conductance (g M) and an increasing dependence on Crassulacean acid metabolism (CAM). However, in succulent Aizoaceae, the photosynthetic tissues are adjacent to the leaf surfaces with an internal achlorophyllous hydrenchyma. It was hypothesized that this arrangement increases g M, obviating a strong dependence on CAM, while the hydrenchyma stores water and nutrients, both of which would only be sporadically available in highly episodic environments. These predictions were tested with species from the Aizoaceae with a 5-fold variation in leaf succulence. It was shown that g M values, derived from the response of photosynthesis to intercellular CO2 concentration (A:C i), were independent of succulence, and that foliar photosynthate δ13C values were typical of C3, but not CAM photosynthesis. Under water stress, the degree of leaf succulence was positively correlated with an increasing ability to buffer photosynthetic capacity over several hours and to maintain light reaction integrity over several days. This was associated with decreased rates of water loss, rather than tolerance of lower leaf water contents. Additionally, the hydrenchyma contained ~26% of the leaf nitrogen content, possibly providing a nutrient reservoir. Thus the intermittent use of C3 photosynthesis interspersed with periods of no positive carbon assimilation is an alternative strategy to CAM for succulent taxa (Crassulaceae and Aizoaceae) which occur sympatrically in the Cape Floristic Region of South Africa. PMID:24127513

  15. Photosynthetic capacities of mature tropical forest trees in Rwanda are linked to successional group identity rather than to leaf nutrient content

    NASA Astrophysics Data System (ADS)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Adolfsson, Lisa; Niyonzima, Felix; Nsabimana, Donat; Uddling, Johan

    2014-05-01

    Tropical forests are crucial in the global carbon balance, yet information required to estimate how much carbon that enter these ecosystems through photosynthesis is very limited, in particular for Africa and for tropical montane forests. In order to increases the knowledge of natural variability of photosynthetic capacities in tropical tree species in tropical Africa, measurements of leaf traits and gas exchange were conducted on sun and shade leaves of ten tree species growing in two tropical forests in Rwanda in central Africa. Seven species were studied in Ruhande Arboretum, a forest plantation at mid altitude (1700 m), and six species in Nyungwe National Park, a cooler and higher altitude (at 2500 m) montane rainforest. Three species were common to both sites. At Nyungwe, three species each belonged to the successional groups pioneer and climax species. Climax species had considerably lower maximum rates of photosynthetic carboxylation (Vcmax) and electron transport (Jmax) than pioneer species. This difference was not related to leaf nutrient content, but rather seemed to be caused by differences in within-leaf N allocation between the two successional groups. With respect to N, leaves of climax species invested less N into photosynthetic enzymes (as judged by lower Vcmax and Jmax values) and more N into chlorophyll (as judged by higher SPAD values). Photosynthetic capacities, (i.e., Jmax and Vcmax), Jmax to Vcmax ratio and P content were significantly higher in Nyungwe than in Arboretum. Sun leaves had higher photosynthetic capacities and nutrient content than shade leaves. Across the entire dataset, variation in photosynthetic capacities among species was not related to leaf nutrient content, although significant relationships were found within individual species. This study contributes critical tropical data for global carbon models and suggests that, for montane rainforest trees of different functional types, successional group identity is a better predictor of photosynthetic capacities than leaf nutrient content.

  16. Do we Underestimate the Importance of Leaf Size in Plant Economics? Disproportional Scaling of Support Costs Within the Spectrum of Leaf Physiognomy

    PubMed Central

    Niinemets, Ülo; Portsmuth, Angelika; Tena, David; Tobias, Mari; Matesanz, Silvia; Valladares, Fernando

    2007-01-01

    Background Broad scaling relationships between leaf size and function do not take into account that leaves of different size may contain different fractions of support in petiole and mid-rib. Methods The fractions of leaf biomass in petiole, mid-rib and lamina, and the differences in chemistry and structure among mid-ribs, petioles and laminas were investigated in 122 species of contrasting leaf size, life form and climatic distribution to determine the extent to which differences in support modify whole-lamina and whole-leaf structural and chemical characteristics, and the extent to which size-dependent support investments are affected by plant life form and site climate. Key Results For the entire data set, leaf fresh mass varied over five orders of magnitude. The percentage of dry mass in mid-rib increased strongly with lamina size, reaching more than 40 % in the largest laminas. The whole-leaf percentage of mid-rib and petiole increased with leaf size, and the overall support investment was more than 60 % in the largest leaves. Fractional support investments were generally larger in herbaceous than in woody species and tended to be lower in Mediterranean than in cool temperate and tropical plants. Mid-ribs and petioles had lower N and C percentages, and lower dry to fresh mass ratio, but greater density (mass per unit volume) than laminas. N percentage of lamina without mid-rib was up to 40 % higher in the largest leaves than the total-lamina (lamina and mid-rib) N percentage, and up to 60 % higher than whole-leaf N percentage, while lamina density calculated without mid-rib was up to 80 % less than that with the mid-rib. For all leaf compartments, N percentage was negatively associated with density and dry to fresh mass ratio, while C percentage was positively linked to these characteristics, reflecting the overall inverse scaling between structural and physiological characteristics. However, the correlations between N and C percentages and structural characteristics differed among mid-ribs, petioles and laminas, implying that the mass-weighted average leaf N and C percentage, density, and dry to fresh mass ratio can have different functional values depending on the importance of within-leaf support investments. Conclusions These data demonstrate that variation in leaf size is associated with major changes in within-leaf support investments and in large modifications in integrated leaf chemical and structural characteristics. These size-dependent alterations can importantly affect general leaf structure vs. function scaling relationships. These data further demonstrate important life-form effects on and climatic differentiation in foliage support costs. PMID:17586597

  17. Preliminary measurements of spectral signatures of tropical and temperate plants in the thermal infrared

    NASA Technical Reports Server (NTRS)

    Salisbury, John W.; Milton, N. M.

    1987-01-01

    Spectral reflectance measurements of seven tropical species and six deciduous species were carried out in thermal infrared to establish the species-dependent spectral characteristics and to investigate the effect on spectral signatures of environmental variables, such as leaf maturity, drought, and metal stress. Seasonal variations of spectral signatures occurred between spring and summer leaves, but such variations were minimal during summer and early fall. Overall reflectance of senescent leaves was higher than that of young leaves, as was the reflectance of leaves from trees growing in metal-enriched soils, as compared with leaves from the control area. However, the characteristic spectral features were not changed in either case. It was also found that water stress did not have any effect on the infrared signatures: trees grown during a drought season maintained their characteristic spectral signatures.

  18. Decomposition of terrestrial resource subsidies in headwater streams: Does consumer diversity matter?

    Treesearch

    David Stoker; Amber J. Falkner; Kelly M. Murray; Ashley K. Lang; Thomas R. Barnum; Jeffrey Hepinstall-Cymerman; Michael J. Conroy; Robert J. Cooper; Catherine M. Pringle

    2017-01-01

    Resource subsidies and biodiversity are essential for maintaining community structure and ecosystem functioning, but the relative importance of consumer diversity and resource characteristics to decomposition remains unclear. Forested headwater streams are detritus-based systems, dependent on leaf litter inputs from adjacent riparian ecosystems, and...

  19. 49 CFR 230.109 - Tender trucks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... bolsters. Truck bolsters shall be maintained approximately level. (c) Condemning defects for springs or spring rigging. Springs or spring rigging with any of the following defects shall be taken out of service immediately and renewed or properly repaired: (1) An elliptical spring with its top (long) leaf or any other...

  20. 49 CFR 230.109 - Tender trucks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... bolsters. Truck bolsters shall be maintained approximately level. (c) Condemning defects for springs or spring rigging. Springs or spring rigging with any of the following defects shall be taken out of service immediately and renewed or properly repaired: (1) An elliptical spring with its top (long) leaf or any other...

  1. 49 CFR 230.109 - Tender trucks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... bolsters. Truck bolsters shall be maintained approximately level. (c) Condemning defects for springs or spring rigging. Springs or spring rigging with any of the following defects shall be taken out of service immediately and renewed or properly repaired: (1) An elliptical spring with its top (long) leaf or any other...

  2. 49 CFR 230.109 - Tender trucks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... bolsters. Truck bolsters shall be maintained approximately level. (c) Condemning defects for springs or spring rigging. Springs or spring rigging with any of the following defects shall be taken out of service immediately and renewed or properly repaired: (1) An elliptical spring with its top (long) leaf or any other...

  3. Sporangia production by Phytophthora ramorum on Rhododendron 'Cunningham's White' at different relative humidities

    USDA-ARS?s Scientific Manuscript database

    We examined the impact of relative humidity (RH) and leaf hydration of Rhododendron 'Cunningham's White' on P. ramorum sporangia production. Diseased plants were maintained under continuous moisture in a mist tent for 24 weeks, and sporangia were collected on screens positioned below leaves. Leaves ...

  4. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.

    PubMed

    Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S

    2014-12-01

    Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Canopy Nutrient Cycling In Afromontane Tropical Forests At Different Successional Stages

    NASA Astrophysics Data System (ADS)

    Nyirambangutse, B.; Zibera, E.; Dusenge, M. E.; Nsabimana, D.; Pleijel, H.; Uddling, J.; Wallin, G.

    2017-12-01

    Canopy nutrient composition and cycling control biogeochemical processes and tree growth in forests. However, the understanding of nutrient limitations and cycling in tropical montane forests (TMF) is currently limited, in particular for Afromontane forests. In this study we investigated leaf nutrient composition and resorption, canopy nutrient cycling and soil carbon and nutrient content in 15 permanent plots at different successional stages in a TMF (elevation 1950 to 2550 m a.s.l.) in Rwanda, Central Africa. Leaf concentrations of 12 elements were analyzed in attached green leaves as well as in shed leaves of 10 early (ES) and 10 late (LS) successional tree species. Leaf nutrient concentrations mostly did not differ between ES and LS species (exception: K was 20% higher in ES), but the ratios of P, K and Mg to N were significantly higher in ES species. Mean resorption efficiencies of N (37%), P (48%) and K (46%) were much higher than for other nutrients. Nutrient resorption efficiency exhibited very large interspecific variation, did not differ between ES and LS species, and was not related to the leaf concentration of the respective element. Total leaf litterfall was on average 4.9 t ha-1 yr-1 (66% of total litterfall) and was independent of the successional stage of the forest. The total content of C, N, P and K in leaf litterfall did not differ between ES and LS stands. Ground litter turnover rates of C and N were 0.98 and 0.78 y-1, respectively. High leaf N concentrations, intermediate N:P ratios and low resorption efficiencies compared to values reported for other TMFs indicate high fertility and likely co-limitation by N and P, however progressively increasing towards P limitation during the course of succession. Our results further demonstrate that resorption efficiency and canopy litterfall inputs to soil mostly do not differ between ES and LS species in Afromontane tropical forests.

  6. Insect herbivores associated with an evergreen tree Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) in a tropical dry forest.

    PubMed

    Silva, J O; Neves, F S

    2014-08-01

    Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) is a tree species found in Brazilian tropical dry forests that retain their leaves during the dry season. That being, we addressed the following question: i) How do insect diversity (sap-sucking and chewing), leaf herbivory and defensive traits (tannin and leaf sclerophylly) vary on the evergreen tree species G. marginata between seasons? The abundance of sap-sucking insects was higher in the dry season than in the rainy season. However, we did not verify any difference in the species richness and abundance of chewing insects between seasons. Leaf herbivory was higher in the rainy season, whereas leaf sclerophylly was higher in the dry season. However, herbivory was not related to sclerophylly. Insect herbivores likely decrease their folivory activity during the dry season due to life history patterns or changes in behaviour, possibly entering diapause or inactivity during this period. Therefore, G. marginata acts as a likely keystone species, serving as a moist refuge for the insect fauna during the dry season in tropical dry forest, and the presence of this evergreen species is crucial to conservation strategies of this threatened ecosystem.

  7. Least-cost input mixtures of water and nitrogen for photosynthesis.

    PubMed

    Wright, Ian J; Reich, Peter B; Westoby, Mark

    2003-01-01

    In microeconomics, a standard framework is used for determining the optimal input mix for a two-input production process. Here we adapt this framework for understanding the way plants use water and nitrogen (N) in photosynthesis. The least-cost input mixture for generating a given output depends on the relative cost of procuring and using nitrogen versus water. This way of considering the issue integrates concepts such as water-use efficiency and photosynthetic nitrogen-use efficiency into the more inclusive objective of optimizing the input mix for a given situation. We explore the implications of deploying alternative combinations of leaf nitrogen concentration and stomatal conductance to water, focusing on comparing hypothetical species occurring in low- versus high-humidity habitats. We then present data from sites in both the United States and Australia and show that low-rainfall species operate with substantially higher leaf N concentration per unit leaf area. The extra protein reflected in higher leaf N concentration is associated with a greater drawdown of internal CO2, such that low-rainfall species achieve higher photosynthetic rates at a given stomatal conductance. This restraint of transpirational water use apparently counterbalances the multiple costs of deploying high-nitrogen leaves.

  8. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes.

    PubMed

    Sun, Yanqi; Yan, Fei; Cui, Xiaoyong; Liu, Fulai

    2014-09-01

    The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg(-1) soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination (Δ(13)C) under P0. Midday leaf water potential (Ψleaf) and stomatal conductance (gs) was similar for DI and PRD, which was significantly lower than that of FI. Leaf contents of C, N, K, Ca and Mg were higher in PRD than in DI plants, particularly under P0. When analyzed across the three irrigation regimes, it was found that the P1 plants had significantly higher leaf contents of P and Mg, but significantly lower leaf K content compared to the P0 plants. Linear correlation analyses revealed that SS was positively correlated with Ψleaf and Δ(13)C; whereas SD was negatively correlated with Ψleaf, Δ(13)C and SLA, and positively correlated with leaf C, N and Ca contents. And gs was positively correlated with SS but negatively correlated with SD. Collectively, under low P level, the smaller and denser stomata in PRD plants may bring about a more efficient stomatal control over gas exchange, hereby potentially enhance water-use efficiency as exemplified by the lowered leaf Δ(13)C under fluctuating soil moisture conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Usual and unusual development of the dicot leaf: involvement of transcription factors and hormones.

    PubMed

    Fambrini, Marco; Pugliesi, Claudio

    2013-06-01

    Morphological diversity exhibited by higher plants is essentially related to the tremendous variation of leaf shape. With few exceptions, leaf primordia are initiated postembryonically at the flanks of a group of undifferentiated and proliferative cells within the shoot apical meristem (SAM) in characteristic position for the species and in a regular phyllotactic sequence. Auxin is critical for this process, because genes involved in auxin biosynthesis, transport, and signaling are required for leaf initiation. Down-regulation of transcription factors (TFs) and cytokinins are also involved in the light-dependent leaf initiation pathway. Furthermore, mechanical stresses in SAM determine the direction of cell division and profoundly influence leaf initiation suggesting a link between physical forces, gene regulatory networks and biochemical gradients. After the leaf is initiated, its further growth depends on cell division and cell expansion. Temporal and spatial regulation of these processes determines the size and the shape of the leaf, as well as the internal structure. A complex array of intrinsic signals, including phytohormones and TFs control the appropriate cell proliferation and differentiation to elaborate the final shape and complexity of the leaf. Here, we highlight the main determinants involved in leaf initiation, epidermal patterning, and elaboration of lamina shape to generate small marginal serrations, more deep lobes or a dissected compound leaf. We also outline recent advances in our knowledge of regulatory networks involved with the unusual pattern of leaf development in epiphyllous plants as well as leaf morphology aberrations, such as galls after pathogenic attacks of pests.

  10. Nutrients stimulate leaf breakdown rates and detritivore biomass: Bottom-up effects via heterotrophic pathways

    USGS Publications Warehouse

    Greenwood, J.L.; Rosemond, A.D.; Wallace, J.B.; Cross, W.F.; Weyers, H.S.

    2007-01-01

    Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-term nutrient enrichment in a forested, headwater stream. Our study design consisted of 2 years of pretreatment data in a reference and treatment stream and 2 years of continuous nitrogen (N) + phosphorus addition to the treatment stream. Studies were conducted with two leaf species that differed in initial C:N, Rhododendron maximum (rhododendron) and Acer rubrum (red maple). We determined the effects of nutrient addition on detrital resources (leaf breakdown rates, litter C:N and microbial activity) and tested whether nutrient enrichment affected macroinvertebrate consumers via increased biomass. Leaf breakdown rates were ca. 1.5 and 3?? faster during the first and second years of enrichment, respectively, in the treatment stream for both leaf types. Microbial respiration rates of both leaf types were 3?? higher with enrichment, and macroinvertebrate biomass associated with leaves increased ca. 2-3?? with enrichment. The mass of N in macroinvertebrate biomass relative to leaves tended to increase with enrichment up to 6?? for red maple and up to 44?? for rhododendron leaves. Lower quality (higher C:N) rhododendron leaves exhibited greater changes in leaf nutrient content and macroinvertebrate response to nutrient enrichment than red maple leaves, suggesting a unique response by different leaf species to nutrient enrichment. Nutrient concentrations used in this study were moderate and equivalent to those in streams draining watersheds with altered land use. Thus, our results suggest that similarly moderate levels of enrichment may affect detrital resource quality and subsequently lead to altered energy and nutrient flow in detrital food webs. ?? 2006 Springer-Verlag.

  11. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    PubMed

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  12. Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual

    PubMed Central

    Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro

    2015-01-01

    Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ13C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves. PMID:26433706

  13. Silicification of the adaxial epidermis of leaves of a panicoid grass in relation to leaf position and section and environmental conditions.

    PubMed

    Fernández Honaine, M; Osterrieth, M L

    2012-07-01

    Many studies relate silica content in plants with internal or external factors; however, few works analyse the effect of these factors on the silicification of different cell types. In this study, we examined the effect of leaf section and leaf position, and environmental conditions on the percentages of silicified epidermal cells of a native Pampean panicoid grass, Bothriochloa laguroides D. C. Pilger. Two different environmental situations were selected for the collection of plants: a natural wetland and a quartzite quarry, located in the southeast Buenos Aires province, Argentina. Clarification and staining methodologies were applied so as to study the distribution of silicified cells in different sections of leaves of the plants collected. Two and three-factor anovas were applied to the data. Between 13% and 19% of total cells of the adaxial epidermis of leaf blades were silicified. Typical silica short cells were the largest contributor to total silicified cells (53-98%), while the second largest contributor was bulliform cells (0-30%). Percentages of total silicified cells were higher in superior than in inferior leaves, while values from leaf sections varied. When collection sites were compared, plants growing in Los Padres pond, where the silica content in soils is higher, had the higher percentage of silicified cells. Among all types of cell, bulliform cells showed differences in the proportion of silicified cells between leaf position and section and collection site. These results show that silica availability in soils is an important factor that conditions silica accumulation and overlaps with the transpiration effect. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Vulnerability of native savanna trees and exotic Khaya senegalensis to seasonal drought.

    PubMed

    Arndt, Stefan K; Sanders, Gregor J; Bristow, Mila; Hutley, Lindsay B; Beringer, Jason; Livesley, Stephen J

    2015-07-01

    Seasonally dry ecosystems present a challenge to plants to maintain water relations. While native vegetation in seasonally dry ecosystems have evolved specific adaptations to the long dry season, there are risks to introduced exotic species. African mahogany, Khaya senegalensis Desr. (A. Juss.), is an exotic plantation species that has been introduced widely in Asia and northern Australia, but it is unknown if it has the physiological or phenotypic plasticity to cope with the strongly seasonal patterns of water availability in the tropical savanna climate of northern Australia. We investigated the gas exchange and water relations traits and adjustments to seasonal drought in K. senegalensis and native eucalypts (Eucalyptus tetrodonta F. Muell. and Corymbia latifolia F. Muell.) in a savanna ecosystem in northern Australia. The native eucalypts did not exhibit any signs of drought stress after 3 months of no rainfall and probably had access to deeper soil moisture late into the dry season. Leaf water potential, stomatal conductance, transpiration and photosynthesis all remained high in the dry season but osmotic adjustment was not observed. Overstorey leaf area index (LAI) was 0.6 in the native eucalypt savanna and did not change between wet and dry seasons. In contrast, the K. senegalensis plantation in the wet season was characterized by a high water potential, high stomatal conductance and transpiration and a high LAI of 2.4. In the dry season, K. senegalensis experienced mild drought stress with a predawn water potential -0.6 MPa. Overstorey LAI was halved, and stomatal conductance and transpiration drastically reduced, while minimum leaf water potentials did not change (-2 MPa) and no osmotic adjustment occurred. Khaya senegalensis exhibited an isohydric behaviour and also had a lower hydraulic vulnerability to cavitation in leaves, with a P50 of -2.3 MPa. The native eucalypts had twice the maximum leaf hydraulic conductance but a much higher P50 of -1.5 MPa. Khaya senegalensis has evolved in a wet-dry tropical climate in West Africa (600-800 mm) and appears to be well suited to the seasonal savanna climate of northern Australia. The species exhibited a large phenotypic plasticity through leaf area adjustments and conservative isohydric behaviour in the 6 months dry season while operating well above its critical hydraulic threshold. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars.

    PubMed

    Anjum, Shakeel Ahmad; Tanveer, Mohsin; Ashraf, Umair; Hussain, Saddam; Shahzad, Babar; Khan, Imran; Wang, Longchang

    2016-09-01

    Drought stress is one of the major environmental factors responsible for reduction in crop productivity. In the present study, responses of two maize cultivars (Rung Nong 35 and Dong Dan 80) were examined to explicate the growth, yield, leaf gas exchange, leaf water contents, osmolyte accumulation, membrane lipid peroxidation, and antioxidant activity under progressive drought stress. Maize cultivars were subjected to varying field capacities (FC) viz., well-watered (80 % FC) and drought-stressed (35 % FC) at 45 days after sowing. The effects of drought stress were analyzed at 5, 10, 15, 20, ad 25 days after drought stress (DAS) imposition. Under prolonged drought stress, Rung Nong 35 exhibited higher reduction in growth and yield as compared to Dong Dan 80. Maize cultivar Dong Dan 80 showed higher leaf relative water content (RWC), free proline, and total carbohydrate accumulation than Run Nong 35. Malondialdehyde (MDA) and superoxide anion were increased with prolongation of drought stress, with higher rates in cultivar Run Nong 35 than cultivar Dong Dan 80. Higher production of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and glutathione reductase (GR) resulted in improved growth and yield in Dong Dan 80. Overall, the cultivar Dong Dan 80 was better able to resist the detrimental effects of progressive drought stress as indicated by better growth and yield due to higher antioxidant enzymes, reduced lipid peroxidation, better accumulation of osmolytes, and maintenance of tissue water contents.

  16. Herbivores sculpt leaf traits differently in grasslands depending on life form and land-use histories.

    PubMed

    Firn, Jennifer; Schütz, Martin; Nguyen, Huong; Risch, Anita C

    2017-01-01

    Vertebrate and invertebrate herbivores alter plant communities directly by selectively consuming plant species; and indirectly by inducing morphological and physiological changes to plant traits that provide competitive or survivorship advantages to some life forms over others. Progressively excluding aboveground herbivore communities (ungulates, medium and small sized mammals, invertebrates) over five growing seasons, we explored how leaf morphology (specific leaf area or SLA) and nutrition (nitrogen, carbon, phosphorous, potassium, sodium, and calcium) of different plant life forms (forbs, legumes, grasses, sedges) correlated with their dominance. We experimented in two subalpine grassland types with different land-use histories: (1) heavily grazed, nutrient-rich, short-grass vegetation and (2) lightly grazed, lower nutrient tall-grass vegetation. We found differences in leaf traits between treatments where either all herbivores were excluded or all herbivores were present, showing the importance of considering the impacts of both vertebrates and invertebrates on the leaf traits of plant species. Life forms responses to the progressive exclusion of herbivores were captured by six possible combinations: (1) increased leaf size and resource use efficiency (leaf area/nutrients) where lower nutrient levels are invested in leaf construction, but a reduction in the number of leaves, for example, forbs in both vegetation types, (2) increased leaf size and resource use efficiency, for example, legumes in short grass, (3) increased leaf size but a reduction in the number of leaves, for example, legumes in the tall grass, (4) increased number of leaves produced and increased resource use efficiency, for example, grasses in the short grass, (5) increased resource use efficiency of leaves only, for example, grasses and sedges in the tall grass, and (6) no response in terms of leaf construction or dominance, for example, sedges in the short grass. Although we found multiple possible responses by life forms to progressive exclusion of herbivores, we also found some important generalities. Changes in leaf traits of legumes and grasses correlated with their increasing dominance in the short-grass vegetation and plants were more efficient at constructing photosynthetic tissue when herbivores are present with few exceptions. These results demonstrate that vertebrate and invertebrate herbivores are essential to maintain plant species richness and resource-use efficiency. © 2016 by the Ecological Society of America.

  17. Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichment.

    PubMed

    Gherlenda, Andrew N; Moore, Ben D; Haigh, Anthony M; Johnson, Scott N; Riegler, Markus

    2016-10-19

    Climate change factors such as elevated atmospheric carbon dioxide concentrations (e[CO 2 ]) and altered rainfall patterns can alter leaf composition and phenology. This may subsequently impact insect herbivory. In sclerophyllous forests insects have developed strategies, such as preferentially feeding on new leaf growth, to overcome physical or foliar nitrogen constraints, and this may shift under climate change. Few studies of insect herbivory at elevated [CO 2 ] have occurred under field conditions and none on mature evergreen trees in a naturally established forest, yet estimates for leaf area loss due to herbivory are required in order to allow accurate predictions of plant productivity in future climates. Here, we assessed herbivory in the upper canopy of mature Eucalyptus tereticornis trees at the nutrient-limited Eucalyptus free-air CO 2 enrichment (EucFACE) experiment during the first 19 months of CO 2 enrichment. The assessment of herbivory extended over two consecutive spring-summer periods, with a first survey during four months of the [CO 2 ] ramp-up phase after which full [CO 2 ] operation was maintained, followed by a second survey period from months 13 to 19. Throughout the first 2 years of EucFACE, young, expanding leaves sustained significantly greater damage from insect herbivory (between 25 and 32 % leaf area loss) compared to old or fully expanded leaves (less than 2 % leaf area loss). This preference of insect herbivores for young expanding leaves combined with discontinuous production of new foliage, which occurred in response to rainfall, resulted in monthly variations in leaf herbivory. In contrast to the significant effects of rainfall-driven leaf phenology, elevated [CO 2 ] had no effect on leaf consumption or preference of insect herbivores for different leaf age classes. In the studied nutrient-limited natural Eucalyptus woodland, herbivory contributes to a significant loss of young foliage. Leaf phenology is a significant factor that determines the level of herbivory experienced in this evergreen sclerophyllous woodland system, and may therefore also influence the population dynamics of insect herbivores. Furthermore, leaf phenology appears more strongly impacted by rainfall patterns than by e[CO 2 ]. e[CO 2 ] responses of herbivores on mature trees may only become apparent after extensive CO 2 fumigation periods.

  18. Screen of micro-organisms for inducing the production of dragon's blood by leaf of Dracaena cochinchinensis.

    PubMed

    Wang, X H; Zhang, C H; Wang, Y; Gomes-Laranjo, J

    2010-11-01

    To screen micro-organisms for inducing the production of dragon's blood, which is normally produced by stem xylem and by leaf of Dracaena cochinchinensis, and to evaluate the product by comparing with the standard. Thirty microbial strains were isolated from D. cochinchinensis leaves. Three of them were confirmed to elicit the leaf of D. cochinchinensis producing dragon's blood after inoculation. Upon elicitation, all of the 6-month-old leaves of the inducible trees produced dragon's blood; 60-70% of the 1-year-old leaves elicited produced the resin. All the three strains were identified as Colletotrichum gloeosporioide by morphological and molecular methods. The leaf resin had a similar TLC profile and antioxidant activities to the standard resin. In particular, it had a higher total flavonol content and antimicrobial activity than the standard. Upon the induction of the screened C. gloeosporioide mycelia, D. cochinchinensis leaf produced dragon's blood with higher total flavone content and antimicrobial activity than the standard dragon's blood. This work has provided a strategy for producing dragon's blood in a sustainable way using leaves of C. gloeosporioides by fungal elicitation. © 2010 The Authors. © 2010 The Society for Applied Microbiology.

  19. Carbon Dioxide Metabolism in Leaf Epidermal Tissue 1

    PubMed Central

    Willmer, C. M.; Pallas, J. E.; Black, C. C.

    1973-01-01

    A number of plant species were surveyed to obtain pure leaf epidermal tissue in quantity. Commelina communis L. and Tulipa gesnariana L. (tulip) were chosen for further work. Chlorophyll a/b ratios of epidermal tissues were 2.41 and 2.45 for C. communis and tulip, respectively. Phosphoenolpyruvate carboxylase, ribulose-1,5-diphosphate carboxylase, malic enzyme, and NAD+ and NADP+ malate dehydrogenases were assayed with epidermal tissue and leaf tissue minus epidermal tissue. In both species, there was less ribulose 1,5-diphosphate than phosphoenolpyruvate carboxylase activity in epidermal tissue whether expressed on a protein or chlorophyll basis whereas the reverse was true for leaf tissue minus epidermal tissue. In both species, malic enzyme activities were higher in epidermal tissue than in the remaining leaf tissue when expressed on a protein or chlorophyll basis. In both species, NAD+ and NADP+ malate dehydrogenase activities were higher in the epidermal tissue when expressed on a chlorophyll basis; however, on a protein basis, the converse was true. Microautoradiography of C. communis epidermis and histochemical tests for keto acids suggested that CO2 fixation occurred predominantly in the guard cells. The significance and possible location of the enzymes are discussed in relation to guard cell metabolism. Images PMID:16658581

  20. Older leaves of lettuce (Lactuca spp.) support higher levels of Salmonella enterica ser. Senftenberg attachment and show greater variation between plant accessions than do younger leaves.

    PubMed

    Hunter, Paul J; Shaw, Robert K; Berger, Cedric N; Frankel, Gad; Pink, David; Hand, Paul

    2015-06-01

    Salmonella can bind to the leaves of salad crops including lettuce and survive for commercially relevant periods. Previous studies have shown that younger leaves are more susceptible to colonization than older leaves and that colonization levels are dependent on both the bacterial serovar and the lettuce cultivar. In this study, we investigated the ability of two Lactuca sativa cultivars (Saladin and Iceberg) and an accession of wild lettuce (L. serriola) to support attachment of Salmonella enterica serovar Senftenberg, to the first and fifth to sixth true leaves and the associations between cultivar-dependent variation in plant leaf surface characteristics and bacterial attachment. Attachment levels were higher on older leaves than on the younger ones and these differences were associated with leaf vein and stomatal densities, leaf surface hydrophobicity and leaf surface soluble protein concentrations. Vein density and leaf surface hydrophobicity were also associated with cultivar-specific differences in Salmonella attachment, although the latter was only observed in the older leaves and was also associated with level of epicuticular wax. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat.

    PubMed

    Reid, Rob; Fitzpatrick, Kate

    2009-09-01

    Boron (B) toxicity is common in many areas of the world. Plant tolerance to high B varies widely and has previously been attributed to reduced uptake of B, most commonly as a result of B efflux from roots. In this study, it is shown that the expression of genes encoding B efflux transporters in leaves of wheat (Triticum aestivum) and barley (Hordeum vulgare) is associated with an ability of leaf tissues to withstand higher concentrations of B. In tolerant cultivars, necrosis in leaves occurred at B concentrations more than 2-fold higher than in sensitive cultivars. It is hypothesized that this leaf tolerance is achieved via redistribution of B by efflux transporters from sensitive symplastic compartments into the leaf apoplast. Measurements of B concentrations in leaf protoplasts, and of B released following infiltration of leaves, support this hypothesis. It was also shown that under B-toxic conditions, leaching of B from leaves by rain had a strong positive effect on growth of both roots and shoots. Measurements of rates of guttation and the concentration of B in guttation droplets indicated that the impact of guttation on the alleviation of B toxicity would be small.

  2. Influence of Leaf Tolerance Mechanisms and Rain on Boron Toxicity in Barley and Wheat1[C

    PubMed Central

    Reid, Rob; Fitzpatrick, Kate

    2009-01-01

    Boron (B) toxicity is common in many areas of the world. Plant tolerance to high B varies widely and has previously been attributed to reduced uptake of B, most commonly as a result of B efflux from roots. In this study, it is shown that the expression of genes encoding B efflux transporters in leaves of wheat (Triticum aestivum) and barley (Hordeum vulgare) is associated with an ability of leaf tissues to withstand higher concentrations of B. In tolerant cultivars, necrosis in leaves occurred at B concentrations more than 2-fold higher than in sensitive cultivars. It is hypothesized that this leaf tolerance is achieved via redistribution of B by efflux transporters from sensitive symplastic compartments into the leaf apoplast. Measurements of B concentrations in leaf protoplasts, and of B released following infiltration of leaves, support this hypothesis. It was also shown that under B-toxic conditions, leaching of B from leaves by rain had a strong positive effect on growth of both roots and shoots. Measurements of rates of guttation and the concentration of B in guttation droplets indicated that the impact of guttation on the alleviation of B toxicity would be small. PMID:19625636

  3. Specialised emission pattern of leaf trace in a late Permian (253 million-years old) conifer

    PubMed Central

    Wei, Hai-Bo; Feng, Zhuo; Yang, Ji-Yuan; Chen, Yu-Xuan; Shen, Jia-Jia; He, Xiao-Yuan

    2015-01-01

    Leaf traces are important structures in higher plants that connect leaves and the stem vascular system. The anatomy and emission pattern of leaf traces are well studied in extant vascular plants, but remain poorly understood in fossil lineages. We quantitatively analysed the leaf traces in the late Permian conifer Ningxiaites specialis from Northwest China based on serial sections through pith, primary and secondary xylems. A complete leaf traces emission pattern of a conifer is presented for the first time from the late Palaeozoic. Three to five monarch leaf traces are grouped in clusters, arranged in a helical phyllotaxis. The leaf traces in each cluster can be divided into upper, middle and lower portions, and initiate at the pith periphery and cross the wood horizontally. The upper leaf trace increases its diameter during the first growth increment and then diminishes completely, which indicates leaf abscission at the end of the first year. The middle trace immediately bifurcates once or twice to form two or three vascular bundles. The lower trace persists as a single bundle during its entire length. The intricate leaf trace dynamics indicates this fossil plant had a novel evolutionary habit by promoting photosynthetic capability for the matured plant. PMID:26198410

  4. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation.

    PubMed

    Ohtsuka, Akihiro; Sack, Lawren; Taneda, Haruhiko

    2018-02-01

    The lignification of the leaf vein bundle sheath (BS) has been observed in many species and would reduce conductance from xylem to mesophyll. We hypothesized that lignification of the BS in lower-order veins would provide benefits for water delivery through the vein hierarchy but that the lignification of higher-order veins would limit transport capacity from xylem to mesophyll and leaf hydraulic conductance (K leaf ). We further hypothesized that BS lignification would mediate the relationship of K leaf to vein length per area. We analysed the dependence of K leaf , and its light response, on the lignification of the BS across vein orders for 11 angiosperm tree species. Eight of 11 species had lignin deposits in the BS of the midrib, and two species additionally only in their secondary veins, and for six species up to their minor veins. Species with lignification of minor veins had a lower hydraulic conductance of xylem and outside-xylem pathways and lower K leaf . K leaf could be strongly predicted by vein length per area and highest lignified vein order (R 2  = .69). The light-response of K leaf was statistically independent of BS lignification. The lignification of the BS is an important determinant of species variation in leaf and thus whole plant water transport. © 2017 John Wiley & Sons Ltd.

  5. UV radiation is the primary factor driving the variation in leaf phenolics across Chinese grasslands

    PubMed Central

    Chen, Litong; Niu, Kechang; Wu, Yi; Geng, Yan; Mi, Zhaorong; Flynn, Dan FB; He, Jin-Sheng

    2013-01-01

    Due to the role leaf phenolics in defending against ultraviolet B (UVB) under previously controlled conditions, we hypothesize that ultraviolet radiation (UVR) could be a primary factor driving the variation in leaf phenolics in plants over a large geographic scale. We measured leaf total phenolics, ultraviolet-absorbing compounds (UVAC), and corresponding leaf N, P, and specific leaf area (SLA) in 151 common species. These species were from 84 sites across the Tibetan Plateau and Inner Mongolian grasslands of China with contrasting UVR (354 vs. 161 mW/cm2 on average). Overall, leaf phenolics and UVAC were all significantly higher on the Tibetan Plateau than in the Inner Mongolian grasslands, independent of phylogenetic relationships between species. Regression analyses showed that the variation in leaf phenolics was strongly affected by climatic factors, particularly UVR, and soil attributes across all sites. Structural equation modeling (SEM) identified the primary role of UVR in determining leaf phenolic concentrations, after accounting for colinearities with altitude, climatic, and edaphic factors. In addition, phenolics correlated positively with UVAC and SLA, and negatively with leaf N and N: P. These relationships were steeper in the lower-elevation Inner Mongolian than on the Tibetan Plateau grasslands. Our data support that the variation in leaf phenolics is controlled mainly by UV radiation, implying high leaf phenolics facilitates the adaptation of plants to strong irradiation via its UV-screening and/or antioxidation functions, particularly on the Tibetan Plateau. Importantly, our results also suggest that leaf phenolics may influence on vegetation attributes and indirectly affect ecosystem processes by covarying with leaf functional traits. PMID:24363898

  6. Photo- and Antioxidative Protection During Summer Leaf Senescence in Pistacia lentiscus L. Grown under Mediterranean Field Conditions

    PubMed Central

    MUNNÉ-BOSCH, S.; PEÑUELAS, J.

    2003-01-01

    Summer leaf senescence in Pistacia lentiscus L. plants serves to remobilize nutrients from the oldest leaves to the youngest ones, and therefore contributes to plant survival during the adverse climatic conditions typical of Mediterranean summers, i.e. water deficit superimposed on high solar radiation and high temperatures. To evaluate the extent of photo- and antioxidative protection during leaf senescence of this species, changes in carotenoids, including xanthophyll cycle pigments, and in the levels of ascorbate and α-tocopherol were measured prior to and during summer leaf senescence in 3-year-old plants grown under Mediterranean field conditions. Although a chlorophyll loss of approx. 20 % was observed during the first stages of leaf senescence, no damage to the photosynthetic apparatus occurred as indicated by constant maximum efficiencies of photosystem II photochemistry. During this period the de-epoxidation state of the xanthophyll cycle, and lutein, neoxanthin and ascorbate levels were kept constant. At the same time β-carotene and α-tocopherol levels increased by approx. 9 and 70 %, respectively, presumably conferring photo- and antioxidative protection to the photosynthetic apparatus. By contrast, during the later stages of leaf senescence, characterized by severe chlorophyll loss, carotenoids were moderately degraded (neoxanthin by approx. 20 %, and both lutein and β-carotene by approx. 35 %), ascorbate decreased by approx. 80 % and α-tocopherol was not detected in senescing leaves. This study demonstrates that mechanisms of photo- and antioxidative protection may play a major role in maintaining chloroplast function during the first stages of leaf senescence, while antioxidant defences are lost during the latest stages of senescence. PMID:12871848

  7. Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal leaf senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, W.W. III; Winter, K.; Schreiber, U.

    1990-04-01

    The loss of chlorophyll and total leaf nitrogen during autumnal senescence of leaves from the deciduous tree Platanus occidentalis L. was accompanied by a marked decline in the photosynthetic capacity of O{sub 2} evolution on a leaf area basis. When expressed on a chlorophyll basis, however, the capacity for light- and CO{sub 2}-saturated O{sub 2} evolution did not decline, but rather increased as leaf chlorophyll content decreased. The photon yield of O{sub 2} evolution in white light (400-700 nanometers) declined markedly with decreases in leaf chlorophyll content below 150 milligrams of chlorophyll per square meter on both an incident andmore » an absorbed basis, due largely to the absorption of light by nonphotosynthetic pigments which were not degraded as rapidly as the chlorophylls. Data indicate that the efficiency for photochemical energy conversion of the remaining functional components was maintained at a high level during the natural course of autumnal senescence, and are consistent with previous studies which have characterized leaf senescence as being a controlled process. The loss of chlorophyll during senescence was also accompanied by a decline in fluorescence emanating from PSI, whereas there was little change in PSII fluorescence (measured at 77 Kelvin), presumably due to decreased reabsorption of PSII fluorescence by chlorophyll. Nitrogen was the only element examined to exhibit a decline with senescence on a dry weight basis. However, on a leaf area basis, all elements (C, Ca, K, Mg, N, P, S) declined in senescent leaves, although the contents of sulfur and calcium, which are not easily retranslocated, decreased to the smallest extent.« less

  8. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting

    PubMed Central

    Pérez-Pérez, J. G.; Dodd, I. C.

    2015-01-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. PMID:25740924

  9. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting.

    PubMed

    Pérez-Pérez, J G; Dodd, I C

    2015-04-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. The effect of various media and hormones via suspension culture on secondary metabolic activities of (Cape Jasmine) Gardenia jasminoides Ellis.

    PubMed

    Farzinebrahimi, Reza; Mat Taha, Rosna; Rashid, Kamaludin; Syafawati Yaacob, Jamilah

    2014-01-01

    The leaf of Gardenia jasminoides Ellis was used as explants and was cultured on MS and WPM media supplemented with various concentrations of NAA, IAA, 2,4-D, IBA, TDZ, and Kn (0 to 5 mg L(-1) with 0.5 increment). After six months, the higher percentage of callus (100%) and the best dry and fresh weight of callus were formed on WPM medium supplemented with 2,4-D and NAA (2.0-3.0 mg L(-1)) and this amount was decreased from (84%) to (69%) when this media supplemented with Kinetin and TDZ (1 mg L(-1)) respectively were used. Leaf segments cultured on WPM media added with Kn (1 mg L(-1)) and TDZ (2 mg L(-1)) yielded the least amount of callus. It was found that WPM media added with IAA (4.5-5.0 mg L(-1)) were optimum for root induction from G. jasminoides plantlets. Antibacterial screening of leaf extracts (in vivo) showed no inhibitory effect against E. coli, P. aeruginosa, S. aureus, and B. cereus, in contrast to callus extracts from leaf cultures supplemented with NAA, which showed inhibition activity against E. coli and B. cereus. The callus extracts from leaf cultures grown on both MS and WPM media showed higher antioxidant and superoxide dismutase activities than leaf extracts.

  11. Niche and Neutral Processes Together Determine Diversity Loss in Response to Fertilization in an Alpine Meadow Community

    PubMed Central

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E.; Du, Guo-Zhen

    2015-01-01

    Fertilization via nutrient deposition and agricultural inputs is one of the most important factors driving decreases in plant diversity. However, we still do not fully understand which processes (niche process or neutral process) are more important in leading to decreases in plant diversity caused by fertilization. A hypothesis-based approach was used to test the relative importance of niche versus neutral processes along a fertilization gradient in an alpine meadow community on the eastern Tibetan plateau, China. Niche overlap values were calculated for species biomass, and the null model was used to generate the values of niche overlap expected at random. A linear regression modeling was used to evaluate the relationship between functional traits (specific leaf area, leaf dry matter content, and leaf total nitrogen concentration) and species relative abundance. Our results demonstrated that observed niche overlap for species biomass was significantly higher than expected at lower fertilization gradients. Moreover, we also found a significantly negative correlation between species relative abundance and specific leaf area and leaf dry matter content, but a significantly positive correlation between relative abundance and leaf nitrogen concentration at lower fertilization gradients. However, these relationships were not significant at higher fertilization gradients. We concluded that community assembly is dynamic progression along the environmental gradients, and niche and neutral processes may together determine species diversity loss in response to fertilization. PMID:26280919

  12. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations

    PubMed Central

    Bazihizina, Nadia; Colmer, Timothy D.; Barrett-Lennard, Edward G.

    2009-01-01

    Background and Aims Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Methods Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Key Results Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na+ and Cl− concentrations were 1·9- to 2·3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K+ concentrations were 1·2- to 2·0-fold higher in the non-uniform treatment. Conclusions Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments. PMID:19556265

  13. Spring predictability explains different leaf-out strategies in the woody floras of North America, Europe and East Asia.

    PubMed

    Zohner, Constantin M; Benito, Blas M; Fridley, Jason D; Svenning, Jens-Christian; Renner, Susanne S

    2017-04-01

    Intuitively, interannual spring temperature variability (STV) should influence the leaf-out strategies of temperate zone woody species, with high winter chilling requirements in species from regions where spring warming varies greatly among years. We tested this hypothesis using experiments in 215 species and leaf-out monitoring in 1585 species from East Asia (EA), Europe (EU) and North America (NA). The results reveal that species from regions with high STV indeed have higher winter chilling requirements, and, when grown under the same conditions, leaf out later than related species from regions with lower STV. Since 1900, STV has been consistently higher in NA than in EU and EA, and under experimentally short winter conditions NA species required 84% more spring warming for bud break, EU ones 49% and EA ones only 1%. These previously unknown continental-scale differences in phenological strategies underscore the need for considering regional climate histories in global change models. © 2017 John Wiley & Sons Ltd/CNRS.

  14. Effect of lignin content and subunit composition on digestibility in clones of timothy (Phleum pratense L.).

    PubMed

    Kärkönen, Anna; Tapanila, Tarja; Laakso, Tapio; Seppänen, Mervi M; Isolahti, Mika; Hyrkäs, Maarit; Virkajärvi, Perttu; Saranpää, Pekka

    2014-07-02

    Lignin amount and subunit composition were analyzed from stems and leaf sheaths of timothy (Phleum pratense L.) clones of different in vitro digestibility. Lignin concentration in stems and leaf sheaths was higher in clones of low digestibility than those of high digestibility. No change in lignin concentration occurred in stems as digestibility decreased. Intriguingly, the lignin concentration was lower and the syringyl/guaiacyl (S/G) ratio was higher in stems compared to leaf sheaths at all developmental stages studied. The developmental-associated decrease in digestibility correlated with the increase in S units in lignin in stems and leaf sheaths and in the amounts of p-coumaric acid and ferulic acid residues in the cell wall of stems. Yields of copper oxidation products increased in stems during maturation indicating qualitative changes in the lignin structure. This correlated strongly with the developmentally linked decrease in digestibility. The information obtained is valuable for breeding and for DNA marker development.

  15. Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?

    NASA Technical Reports Server (NTRS)

    Foster, Tammy E.; Brooks, J. Renee

    2004-01-01

    The functional grouping hypothesis, which suggests that complexity in ecosystem function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained Florida scrub regulate exchange of carbon and water with the atmosphere as indicated by both instantaneous gas exchange measurements and integrated measures of function (%N, delta C-13, delta N-15, C-N ratio). Using cluster analysis, five distinct physiologically-based functional groups were identified in the fire maintained scrub. These functional groups were tested to determine if they were robust spatially, temporally, and with management regime. Analysis of Similarities (ANOSIM), a non-parametric multivariate analysis, indicated that these five physiologically-based groupings were not altered by plot differences (R = -0.115, p = 0.893) or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed (R = 0.018, p = 0.349). The physiological groupings also remained robust between the two climatically different years 1999 and 2000 (R = -0.027, p = 0.725). Easy-to-measure morphological characteristics indicating functional groups would be more practical for scaling and modeling ecosystem processes than detailed gas-exchange measurements, therefore we tested a variety of morphological characteristics as functional indicators. A combination of non-parametric multivariate techniques (Hierarchical cluster analysis, non-metric Multi-Dimensional Scaling, and ANOSIM) were used to compare the ability of life form, leaf thickness, and specific leaf area classifications to identify the physiologically-based functional groups. Life form classifications (ANOSIM; R = 0.629, p 0.001) were able to depict the physiological groupings more adequately than either specific leaf area (ANOSIM; R = 0.426, p = 0.001) or leaf thickness (ANOSIM; R 0.344, p 0.001). The ability of life forms to depict the physiological groupings was improved by separating the parasitic Ximenia americana from the shrub category (ANOSIM; R = 0.794, p = 0.001). Therefore, a life form classification including parasites was determined to be a good indicator of the physiological processes of scrub species, and would be a useful method of grouping for scaling physiological processes to the ecosystem level.

  16. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    NASA Astrophysics Data System (ADS)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  17. Leaf water 18 O and 2 H enrichment along vertical canopy profiles in a broadleaved and a conifer forest tree.

    PubMed

    Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar

    2017-07-01

    Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.

  18. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage.

    PubMed

    Centritto, Mauro; Lauteri, Marco; Monteverdi, Maria Cristina; Serraj, Rachid

    2009-01-01

    Genotypic variations in leaf gas exchange and yield were analysed in five upland-adapted and three lowland rice cultivars subjected to a differential soil moisture gradient, varying from well-watered to severely water-stressed conditions. A reduction in the amount of water applied resulted in a significant decrease in leaf gas exchange and, subsequently, in above-ground dry mass and grain yield, that varied among genotypes and distance from the line source. The comparison between the variable J and the Delta values in recently synthesized sugars methods, yielded congruent estimations of mesophyll conductance (g(m)), confirming the reliability of these two techniques. Our data demonstrate that g(m) is a major determinant of photosynthesis (A), because rice genotypes with inherently higher g(m) were capable of keeping higher A in stressed conditions. Furthermore, A, g(s), and g(m) of water-stressed genotypes rapidly recovered to the well-watered values upon the relief of water stress, indicating that drought did not cause any lasting metabolic limitation to photosynthesis. The comparisons between the A/C(i) and corresponding A/C(c) curves, measured in the genotypes that showed intrinsically higher and lower instantaneous A, confirmed this finding. Moreover, the effect of drought stress on grain yield was correlated with the effects on both A and total diffusional limitations to photosynthesis. Overall, these data indicate that genotypes which showed higher photosynthesis and conductances were also generally more productive across the entire soil moisture gradient. The analysis of Delta revealed a substantial variation of water use efficiency among the genotypes, both on the long-term (leaf pellet analysis) and short-term scale (leaf soluble sugars analysis).

  19. Leaf δ18O of remaining trees is affected by thinning intensity in a semiarid pine forest.

    PubMed

    Moreno-Gutiérrez, Cristina; Barberá, Gonzalo G; Nicolás, Emilio; DE Luis, Martín; Castillo, Víctor M; Martínez-Fernández, Faustino; Querejeta, José I

    2011-06-01

    Silvicultural thinning usually improves the water status of remaining trees in water-limited forests. We evaluated the usefulness of a dual stable isotope approach (δ¹³C, δ¹⁸O) for comparing the physiological performance of remaining trees between forest stands subjected to two different thinning intensities (moderate versus heavy) in a 60-year-old Pinus halepensis Mill. plantation in semiarid southeastern Spain. We measured bulk leaf δ¹³C and δ¹⁸O, foliar elemental concentrations, stem water content, stem water δ¹⁸O (δ¹⁸O(stem water)), tree ring widths and leaf gas exchange rates to assess the influence of forest stand density on tree performance. Remaining trees in low-density stands (heavily thinned) showed lower leaf δ¹⁸O, and higher stomatal conductance (g(s)), photosynthetic rate and radial growth than those in moderate-density stands (moderately thinned). By contrast, leaf δ¹³C, intrinsic water-use efficiency, foliar elemental concentrations and δ¹⁸O(stem water) were unaffected by stand density. Lower foliar δ¹⁸O in heavily thinned stands reflected higher g(s) of remaining trees due to decreased inter-tree competition for water, whereas higher photosynthetic rate was largely attributable to reduced stomatal limitation to CO₂ uptake. The dual isotope approach provided insight into the early (12 months) effects of stand density manipulation on the physiological performance of remaining trees. © 2011 Blackwell Publishing Ltd.

  20. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics with Plant Stress

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Knapp, Alan K.

    1999-01-01

    A number of studies have addressed responses of leaf spectral reflectance, transmittance, or absorptance to physiological stress. Stressors included dehydration, ozone, herbicides, disease, insufficient mycorrhizae and N fertilization, flooding and insects. Species included conifers, grasses, and broadleaved trees. Increased reflectance with maximum responses near 700 nm wavelength occurred in all cases. Varying the chlorophyll content in leaves or pigment extracts can simulate this effect. Thus, common optical responses to stress result from decreases in leaf chlorophyll contents or the capacity of chloroplasts to absorb light. Leaf optic can be quite sensitive to any stressor that alters soil-plant-atmosphere processes.

  1. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2015-04-01

    Within-canopy gradients of leaf functional traits have been linked to both light availability and vertical gradients in leaf water potential. While observational studies can reveal patterns in leaf traits, within-canopy experimental manipulations can provide mechanistic insight to tease apart multiple interacting drivers. Our objectives were to disentangle effects of height and light environment on leaf functional traits by experimentally shading branches along vertical gradients within a sugar maple (Acer saccharum) forest. Shading reduced leaf mass per area (LMA), leaf density, area-based leaf nitrogen (N(area)), and carbon:nitrogen (C:N) ratio, and increased mass-based leaf nitrogen (N(mass)), highlighting the importance of light availability on leaf morphology and chemistry. Early in the growing season, midday leaf water potential (Ψ(mid)), LMA, and N(area) were driven primarily by height; later in the growing season, light became the most important driver for LMA and Narea. Carbon isotope composition (δ(13)C) displayed strong, linear correlations with height throughout the growing season, but did not change with shading, implying that height is more influential than light on water use efficiency and stomatal behavior. LMA, leaf density, N(mass), C:N ratio, and δ(13)C all changed seasonally, suggesting that leaf ageing effects on leaf functional traits are equally as important as microclimatic conditions. Overall, our results indicate that: (1) stomatal sensitivity to vapor pressure deficit or Ψ(mid) constrains the supply of CO2 to leaves at higher heights, independent of light environment, and (2) LMA and N(area) distributions become functionally optimized through morphological acclimation to light with increasing leaf age despite height-related constraints.

  2. Evaluation of Magnetic Biomonitoring as a Robust Proxy for Traffic-Derived Pollution.

    NASA Astrophysics Data System (ADS)

    Mitchell, R.; Maher, B.

    2008-12-01

    Inhalation of particulate pollutants below 10 micrometers in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ÷ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 micrometers. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 micrometers, with a significant number of iron-rich spherules < 1 micrometer in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.

  3. Coordination of crown structure, leaf plasticity and carbon gain within the crowns of three winter-deciduous mature trees.

    PubMed

    Uemura, Akira; Harayama, Hisanori; Koike, Nobuya; Ishida, Atsushi

    2006-05-01

    We examined the vertical profiles of leaf characteristics within the crowns of two late-successional (Fagus crenata Blume and Fagus japonica Maxim.) and one early-successional tree species (Betula grossa Sieb. et Zucc.) in a Japanese forest. We also assessed the contributions of the leaves in each crown layer to whole-crown instantaneous carbon gain at midday. Carbon gain was estimated from the relationship between electron transport and photosynthetic rates. We hypothesized that more irradiance can penetrate into the middle of the crown if the upper crown layers have steep leaf inclination angles. We found that such a crown has a high whole-crown carbon gain, even if leaf traits do not change greatly with decreasing crown height. Leaf area indices (LAIs) of the two Fagus trees (5.26-5.52) were higher than the LAI of the B. grossa tree (4.50) and the leaves of the F. crenata tree were more concentrated in the top crown layers than were leaves of the other trees. Whole-crown carbon gain per unit ground area (micromol m(-2) ground s(-1)) at midday on fine days in summer was 16.3 for F. crenata, 11.0 for F. japonica, and 20.4 for B. grossa. In all study trees, leaf dry mass (LMA) and leaf nitrogen content (N) per unit area decreased with decreasing height in the crown, but leaf N per unit mass increased. Variations (plasticity) between the uppermost and lowermost crown layers in LMA, leaf N, the ratio of chlorophyll to N and the ratio of chlorophyll a to b were smaller for F. japonica and B. grossa than for F. crenata. The light extinction coefficients in the crowns were lower for the F. japonica and B. grossa trees than for the F. crenata tree. The leaf carbon isotope ratio (delta(13)C) was higher for F. japonica and B. grossa than for F. crenata, especially in the mid-crown. These results suggest that, in crowns with low leaf plasticity but steep leaf inclination angles, such as those of F. japonica and B. grossa trees, irradiance can penetrate into the middle of the crowns, thereby enhancing whole-crown carbon gain.

  4. Keeping the rhythm: light/dark cycles during postharvest storage preserve the tissue integrity and nutritional content of leafy plants.

    PubMed

    Liu, John D; Goodspeed, Danielle; Sheng, Zhengji; Li, Baohua; Yang, Yiran; Kliebenstein, Daniel J; Braam, Janet

    2015-03-27

    The modular body structure of plants enables detached plant organs, such as postharvest fruits and vegetables, to maintain active responsiveness to environmental stimuli, including daily cycles of light and darkness. Twenty-four hour light/darkness cycles entrain plant circadian clock rhythms, which provide advantage to plants. Here, we tested whether green leafy vegetables gain longevity advantage by being stored under light/dark cycles designed to maintain biological rhythms. Light/dark cycles during postharvest storage improved several aspects of plant tissue performance comparable to that provided by refrigeration. Tissue integrity, green coloration, and chlorophyll content were generally enhanced by cycling of light and darkness compared to constant light or darkness during storage. In addition, the levels of the phytonutrient glucosinolates in kale and cabbage remained at higher levels over time when the leaf tissue was stored under light/dark cycles. Maintenance of the daily cycling of light and dark periods during postharvest storage may slow the decline of plant tissues, such as green leafy vegetables, improving not only appearance but also the health value of the crops through the maintenance of chlorophyll and phytochemical content after harvest.

  5. Effects of combination of leaf resources on competition in container mosquito larvae.

    PubMed

    Reiskind, M H; Zarrabi, A A; Lounibos, L P

    2012-08-01

    Resource diversity is critical to fitness in many insect species, and may determine the coexistence of competitive species and the function of ecosystems. Plant material provides the nutritional base for numerous aquatic systems, yet the consequences of diversity of plant material have not been studied in aquatic container systems important for the production of mosquitoes. To address how diversity in leaf detritus affects container-inhabiting mosquitoes, we examined how leaf species affect competition between two container inhabiting mosquito larvae, Aedes aegypti and Aedes albopictus, that co-occur in many parts of the world. We tested the hypotheses that leaf species changes the outcome of intra- and interspecific competition between these mosquito species, and that combinations of leaf species affect competition in a manner not predictable based upon the response to each leaf species alone (i.e. the response to leaf combinations is non-additive). We find support for our first hypothesis that leaf species can affect competition, evidence that, in general, leaf combination alters competitive interactions, and no support that leaf combination impacts interspecific competition differently than intraspecific competition. We conclude that combinations of leaves increase mosquito production non-additively such that combinations of leaves act synergistically, in general, and result in higher total yield of adult mosquitoes in most cases, although certain leaf combinations for A. albopictus are antagonistic. We also conclude that leaf diversity does not have a different effect on interspecific competition between A. aegypti and A. albopictus, relative to intraspecific competition for each mosquito.

  6. Pharmacognostic studies of the leaves and stem of Careya arborea Roxb.

    PubMed Central

    Gupta, Prakash Chandra; Sharma, Nisha; Rao, Ch V

    2012-01-01

    Objective To study detailed pharmacognostic profile of leaves and stem of Careya arborea (C. arborea) Roxb. (Lecthyidaceae), an important medicinal plant in the Indian system of medicine. Methods Leaf and stem samples of C. arborea were studied by macroscopical, microscopical, physicochemical, phytochemical, fluorescence analysis of powder of the plant and other methods for standardization recommended by WHO. Results Macroscopically, the leaves are simple, broadly obovate in shape, acuminate apex with crenate, dentate margin, petioles (0.1–1.8 cm) long. Microscopically, the leaf showed the presence of median large size vascular bundle covered with fibrous bundle sheath, arrangement of xylem in cup shape and presence of cortical vascular bundle, patches of sclerenchyma, phloem fibers in groups and brown pigment containing cells in stem are some of the diagnostic features noted from anatomical study. Powder microscopy of leaf revealed the presence of parenchyma cells, xylem with pitted vessels and epidermis with anisocytic stomata. The investigations also included leaf surface data; quantitative leaf microscopy and fluorescence analysis. Physiochemical parameters such as loss on drying, swelling index, extractive values and ash values were also determined and results showed that total ash of the stem bark was about two times higher than leaf and water soluble extractive value of leaf and stem bark was two times higher than alcohol soluble extractive value. Preliminary phytochemical screening showed the presence of triterpenoids, saponins, tannins and flavonoids. Conclusions The results of the study can serve as a valuable source of information and provide suitable standards for identification of this plant material in future investigations and applications. PMID:23569939

  7. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech?

    PubMed

    Bresson, Caroline C; Vitasse, Yann; Kremer, Antoine; Delzon, Sylvain

    2011-11-01

    The phenotypic responses of functional traits in natural populations are driven by genetic diversity and phenotypic plasticity. These two mechanisms enable trees to cope with rapid climate change. We studied two European temperate tree species (sessile oak and European beech), focusing on (i) in situ variations of leaf functional traits (morphological and physiological) along two altitudinal gradients and (ii) the extent to which these variations were under environmental and/or genetic control using a common garden experiment. For all traits, altitudinal trends tended to be highly consistent between species and transects. For both species, leaf mass per area displayed a positive linear correlation with altitude, whereas leaf size was negatively correlated with altitude. We also observed a significant increase in leaf physiological performance with increasing altitude: populations at high altitudes had higher maximum rates of assimilation, stomatal conductance and leaf nitrogen content than those at low altitudes. In the common garden experiment, genetic differentiation between populations accounted for 0-28% of total phenotypic variation. However, only two traits (leaf mass per area and nitrogen content) exhibited a significant cline. The combination of in situ and common garden experiments used here made it possible to demonstrate, for both species, a weaker effect of genetic variation than of variations in natural conditions, suggesting a strong effect of the environment on leaf functional traits. Finally, we demonstrated that intrapopulation variability was systematically higher than interpopulation variability, whatever the functional trait considered, indicating a high potential capacity to adapt to climate change.

  8. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica.

    PubMed

    Barrientos, Zaidett

    2012-09-01

    Little is known about how restoration strategies affect aspects like leaf litter's quantity, depth and humidity. I analyzed leaf litter's quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Rio Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010) in each habitat; humidity was measured in 439g samples (average), depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (mean=73.2), followed by secondary forest (mean=63.3) and cypress plantation (mean=52.9) (Kruskall-Wallis=77.93, n=232, p=0.00). In the primary (Kruskal-Wallis=31.63, n=78, p<0.001) and secondary (Kruskal-Wallis=11.79, n=75, p=0.008) forest litter accumulation was higher during April due to strong winds. In the primary forest (Kruskal-wallis=21.83, n=78, p<0.001) and the cypress plantation (Kruskal-wallis=39.99, n=80, p<0.001) leaf litter depth was shallow in October because heavy rains compacted it. Depth patterns were different from quantity patterns and described the leaf litter's structure in different ecosystems though the year. September 01.

  9. Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure

    PubMed Central

    Niu, Mengliang; Huang, Yuan; Sun, Shitao; Sun, Jingyu; Cao, Haishun; Shabala, Sergey

    2018-01-01

    Abstract Plant salt tolerance can be improved by grafting onto salt-tolerant rootstocks. However, the underlying signaling mechanisms behind this phenomenon remain largely unknown. To address this issue, we used a range of physiological and molecular techniques to study responses of self-grafted and pumpkin-grafted cucumber plants exposed to 75 mM NaCl stress. Pumpkin grafting significantly increased the salt tolerance of cucumber plants, as revealed by higher plant dry weight, chlorophyll content and photochemical efficiency (Fv/Fm), and lower leaf Na+ content. Salinity stress resulted in a sharp increase in H2O2 production, reaching a peak 3 h after salt treatment in the pumpkin-grafted cucumber. This enhancement was accompanied by elevated relative expression of respiratory burst oxidase homologue (RBOH) genes RbohD and RbohF and a higher NADPH oxidase activity. However, this increase was much delayed in the self-grafted plants, and the difference between the two grafting combinations disappeared after 24 h. The decreased leaf Na+ content of pumpkin-grafted plants was achieved by higher Na+ exclusion in roots, which was driven by the Na+/H+ antiporter energized by the plasma membrane H+-ATPase, as evidenced by the higher plasma membrane H+-ATPase activity and higher transcript levels for PMA and SOS1. In addition, early stomatal closure was also observed in the pumpkin-grafted cucumber plants, reducing water loss and maintaining the plant’s hydration status. When pumpkin-grafted plants were pretreated with an NADPH oxidase inhibitor, diphenylene iodonium (DPI), the H2O2 level decreased significantly, to the level found in self-grafted plants, resulting in the loss of the salt tolerance. Inhibition of the NADPH oxidase-mediated H2O2 signaling in the root also abolished a rapid stomatal closure in the pumpkin-grafted plants. We concluded that the pumpkin-grafted cucumber plants increase their salt tolerance via a mechanism involving the root-sourced respiratory burst oxidase homologue-dependent H2O2 production, which enhances Na+ exclusion from the root and promotes an early stomatal closure. PMID:29145593

  10. Tomato growth as affected by root-zone temperature and the addition of gibberellic acid and kinetin to nutrient solutions

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; White, J. W.; Salisbury, F. B. (Principal Investigator)

    1984-01-01

    The effect of root-zone temperature on young tomato plants (Lycopersicon esculentum Mill. cv. Heinz 1350) was evaluated in controlled environments using a recirculating solution culture system. Growth rates were measured at root-zone temperatures of 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in a near optimum foliar environment. Optimum growth occurred at 25 degrees to 30 degrees during the first 4 weeks of growth and 20 degrees to 25 degrees during the 5th and 6th weeks. Growth was severely restricted at 15 degrees. Four concentrations of gibberellic acid (GA3) and kinetin were added to the nutrient solution in a separate trial; root-zone temperature was maintained at 15 degrees and 25 degrees. Addition of 15 micromoles GA3 to solutions increased specific leaf area, total leaf area, and dry weight production of plants in both temperature treatments. GA3-induced growth stimulation was greater at 15 degrees than at 25 degrees. GA3 may promote growth by increasing leaf area, enhancing photosynthesis per unit leaf area, or both. Kinetic was not useful in promoting growth at either temperature.

  11. Nondestructive Optical Sensing of Flavonols and Chlorophyll in White Head Cabbage (Brassica oleracea L. var. capitata subvar. alba) Grown under Different Nitrogen Regimens.

    PubMed

    Agati, Giovanni; Tuccio, Lorenza; Kusznierewicz, Barbara; Chmiel, Tomasz; Bartoszek, Agnieszka; Kowalski, Artur; Grzegorzewska, Maria; Kosson, Ryszard; Kaniszewski, Stanislaw

    2016-01-13

    A multiparametric optical sensor was used to nondestructively estimate phytochemical compounds in white cabbage leaves directly in the field. An experimental site of 1980 white cabbages (Brassica oleracea L. var. capitata subvar. alba), under different nitrogen (N) treatments, was mapped by measuring leaf transmittance and chlorophyll fluorescence screening in one leaf/cabbage head. The provided indices of flavonols (FLAV) and chlorophyll (CHL) displayed the opposite response to applied N rates, decreasing and increasing, respectively. The combined nitrogen balance index (NBI = CHL/FLAV) calculated was able to discriminate all of the plots under four N regimens (0, 100, 200, and 400 kg/ha) and was correlated with the leaf N content determined destructively. CHL and FLAV were properly calibrated against chlorophyll (R(2) = 0.945) and flavonol (R(2) = 0.932) leaf contents, respectively, by using a homographic fit function. The proposed optical sensing of cabbage crops can be used to estimate the N status of plants and perform precision fertilization to maintain acceptable crop yield levels and, additionally, to rapidly detect health-promoting flavonol antioxidants in Brassica plants.

  12. Leaf transpiration efficiency in corn varieties grown at elevated carbon dioxide

    USDA-ARS?s Scientific Manuscript database

    Higher leaf transpiration efficiency (TE) without lower photosynthesis has been identified in some varieties of corn in field tests, and could be a useful trait to improve yield under dry conditions without sacrificing yield under favorable conditions. However, because the carbon dioxide concentrat...

  13. Impact of Meloidogyne incognita on Physiological Efficiency of Vitis vinifera.

    PubMed

    Melakeberhan, H; Ferris, H

    1989-01-01

    Four-week-old French Colombard plants rooted from green cuttings were inoculated with 0, 1,000, 2,000, 4,000, or 8,000 Meloidogyne incognita second-stage juveniles and maintained at 25 C night and 30 C day. Leaf area and dry weight and the rates of photosynthesis, stomatal conductance, and internal leaf CO concentration were measured at intervals up to 59 days after inoculation. Nematode stress dosage, measured as the product of cumulative number of juveniles and females and their total energy (calories) demand, was up to 3.4 kcal and accounted for up to 15% of the energy assimilated by the plants. There was a decline in the rate of leaf area expansion and leaf, stem, shoot, root (excluding nematode weight), and total plant dry weight with increasing nematode stress. Root weight including nematodes was not affected. Total respiration, plant photosynthesis, energy assimilated into plant tissue and respiration, and gross production efficiency decreased significantly with nematode stress. Photosynthetic rate, transpiration rate, stomatal conductance, and internal CO concentration were not affected. This study demonstrates that the energy demand for growth and reproduction of M. incognita accounts for a significant portion of the total energy entering the plant system. As a result, less energy is partitioned into leaf area expansion which, in turn, affects the energy entering the system and results in decreased productivity of nematode-infected grape vines.

  14. CINCINNATA in Antirrhinum majus directly modulates genes involved in cytokinin and auxin signaling.

    PubMed

    Das Gupta, Mainak; Aggarwal, Pooja; Nath, Utpal

    2014-12-01

    Mutations in the CINCINNATA (CIN) gene in Antirrhinum majus and its orthologs in Arabidopsis result in crinkly leaves as a result of excess growth towards the leaf margin. CIN homologs code for TCP (TEOSINTE-BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 AND 2) transcription factors and are expressed in a broad zone in a growing leaf distal to the proliferation zone where they accelerate cell maturation. Although a few TCP targets are known, the functional basis of CIN-mediated leaf morphogenesis remains unclear. We compared the global transcription profiles of wild-type and the cin mutant of A. majus to identify the targets of CIN. We cloned and studied the direct targets using RNA in situ hybridization, DNA-protein interaction, chromatin immunoprecipitation and reporter gene analysis. Many of the genes involved in the auxin and cytokinin signaling pathways showed altered expression in the cin mutant. Further, we showed that CIN binds to genomic regions and directly promotes the transcription of a cytokinin receptor homolog HISTIDINE KINASE 4 (AmHK4) and an IAA3/SHY2 (INDOLE-3-ACETIC ACID INDUCIBLE 3/SHORT HYPOCOTYL 2) homolog in A. majus. Our results suggest that CIN limits excess cell proliferation and maintains the flatness of the leaf surface by directly modulating the hormone pathways involved in patterning cell proliferation and differentiation during leaf growth. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  15. PhytoBeta imager: a positron imager for plant biology

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew G.; Kross, Brian; Lee, Seungjoon; McKisson, John; McKisson, J. E.; Xi, Wenze; Zorn, Carl; Reid, Chantal D.; Howell, Calvin R.; Crowell, Alexander S.; Cumberbatch, Laurie; Fallin, Brent; Stolin, Alexander; Smith, Mark F.

    2012-07-01

    Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus many of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.

  16. PhytoBeta imager: a positron imager for plant biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, Andrew G; Lee, Seungjoon; McKisson, John

    2012-06-01

    Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus manymore » of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.« less

  17. Adaptation of rhizome connections in drylands: increasing tolerance of clones to wind erosion.

    PubMed

    Yu, Fei-Hai; Wang, Ning; He, Wei-Ming; Chu, Yu; Dong, Ming

    2008-10-01

    Wind erosion is a severe stress for plants in drylands, but the mechanisms by which plants withstand erosion remain largely unknown. Here, the hypothesis is tested that maintaining rhizome connections helps plants to tolerate erosion. Five transects were established across an inland dune in Inner Mongolia, China, and measurements were made of leaf number, biomass per ramet and rhizome depth of Psammochloa villosa in 45 plots. In 40 x 40 cm plots of P. villosa on another dune, the top 15 or 30 cm of sand was removed for 1.5 or 3 months to simulate short- and long-term moderate and severe erosion, respectively, with untreated plots as controls, and the rhizomes at the edges of half of the plots were severed to mimic loss of rhizome connections. Leaf number and biomass per ramet showed quadric relationships with rhizome depth; when rhizomes were exposed to the air, the associated ramets either died or became very weak. Ramet number, leaf number and biomass per plot decreased with increasing erosion severity. Rhizome connections did not affect these traits under control or short-term erosion, but increased them under long-term erosion. Rhizome connections alleviated the negative effects of erosion on P. villosa, very likely because the erosion-stressed ramets received water and/or photosynthates translocated from those connected ramets that were not subject to erosion. This study provides the first evidence that maintaining rhizome connections helps plants to tolerate erosion in drylands.

  18. Regulation of water balance in mangroves.

    PubMed

    Reef, Ruth; Lovelock, Catherine E

    2015-02-01

    Mangroves are a group of highly salt-tolerant woody plants. The high water use efficiency of mangroves under saline conditions suggests that regulation of water transport is a crucial component of their salinity tolerance. This review focuses on the processes that contribute to the ability of mangroves to maintain water uptake and limit water loss to the soil and the atmosphere under saline conditions, from micro to macro scales. These processes include: (1) efficient filtering of the incoming water to exclude salt; (2) maintenance of internal osmotic potentials lower than that of the rhizosphere; (3) water-saving properties; and (4) efficient exploitation of less-saline water sources when these become available. Mangroves are inherently plastic and can change their structure at the root, leaf and stand levels in response to salinity in order to exclude salt from the xylem stream, maintain leaf hydraulic conductance, avoid cavitation and regulate water loss (e.g. suberization of roots and alterations of leaf size, succulence and angle, hydraulic anatomy and biomass partitioning). However, much is still unknown about the regulation of water uptake in mangroves, such as how they sense and respond to heterogeneity in root zone salinity, the extent to which they utilize non-stomatally derived CO2 as a water-saving measure and whether they can exploit atmospheric water sources. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Seasonal Changes in Leaf Area of Amazon Forests from Leaf Flushing and Abscission

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Knyazikhin, Y.; Xu, L.; Dickinson, R.; Fu, R.; Costa, M. H.; Ganguly, S.; Saatchi, S. S.; Nemani, R. R.; Myneni, R.

    2011-12-01

    A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This has been variously interpreted as seasonal changes in leaf area resulting from net leaf flushing in the dry season and net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) only, from exchanging older leaves with newer ones, with total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based studies of higher leaf area in the dry season relative to the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. A more convincing explanation for the observed increase in NIR reflectance during the dry season and decrease during the wet season is one that invokes changes in both leaf area and leaf optical properties. Such an argument is consistent with known phonological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, reconciles the various seemingly divergent views.

  20. Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission

    NASA Astrophysics Data System (ADS)

    Samanta, Arindam; Knyazikhin, Yuri; Xu, Liang; Dickinson, Robert E.; Fu, Rong; Costa, Marcos H.; Saatchi, Sassan S.; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2012-03-01

    A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This increase has been variously interpreted as seasonal change in leaf area resulting from net leaf flushing in the dry season or net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) resulting from the exchange of older leaves for newer ones, but with the total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based reports of higher leaf area in the dry season than the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. More plausibly, the increase in NIR reflectance during the dry season and the decrease during the wet season would result from changes in both leaf area and leaf optical properties. Such change would be consistent with known phenological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, would reconcile the various seemingly divergent views.

  1. Effect of dietary supplementation of sea buckthorn and giloe leaf meal on the body weight gain, feed conversion ratio, biochemical attributes, and meat composition of turkey poults

    PubMed Central

    Sharma, Aditya; Shukla, Pankaj Kumar; Bhattacharyya, Amitav; Kumar, Upendra; Roy, Debashis; Yadav, Brijesh; Prakash, Atul

    2018-01-01

    Aim: In the recent past, few studies have been carried out about sea buckthorn (SBT) and giloe in chicken as a part of the quest for suitable alternatives to antibiotics. However, studies in turkeys are lacking. Hence, the present study was conducted to evaluate the effects of SBT and giloe leaf meal by dietary feed supplementation in turkey poults. Materials and Methods: A total of 1-day-old turkey poults (n=84) of small white variety were distributed into four dietary treatments having three replicates each with seven birds. The study was conducted in turkey poults during 0-8 weeks of age. During the experiment, the poults were fed basal ration (28% crude protein [CP], 2800 Kcal/kg ME) T1, T2-basal ration was supplemented with SBT leaf meal powder at 0.5%, T3-basal ration was supplemented with giloe leaf meal powder at 0.5%, and T4-basal ration was fed along with supplementation of both SBT at 0.5% and giloe leaf meal powder at 0.5%. Results: T2 turkey poults had a significantly higher (p<0.01) body weight gain than T3 and T4 at 7th week of age. Weekly body weight gain was significantly higher (p<0.05) in T2 than T3 during 5th-8th week and 0-8th week of the growth phase. Feed conversion ratio (FCR) was significantly better (p<0.01) in T2 than other treatment groups during 4th-8th week phase of growth (2.09 vs. 2.36, 2.29 and 2.31). Further, FCR was significantly better (p<0.01) in T2 group as compared to other treatment groups during 0-8th week of growth phase (1.95 vs. 2.21, 2.21 and 2.12). Plasma uric acid was found significantly increased (p<0.05) in T1 than T3 and T4, and alkaline phosphatase value was significantly higher (p<0.05) in T1 and T3 than T2. Zinc content of breast (pectoralis major) muscles was significantly higher (p<0.05) in T2 and T4 as compared to T1, while ether extract (EE) in thigh (ilio tibialis) muscles was significantly higher (p<0.05) in T2 as compared to the other treatment groups. Conclusion: It may be concluded that supplementation of SBT leaf meal at 0.5% may improve production performance of turkey poults. Supplementation of 0.5% SBT leaf meal may result in higher levels of zinc and EE in the breast and thigh cuts of turkey poults. PMID:29479163

  2. Effect of dietary supplementation of sea buckthorn and giloe leaf meal on the body weight gain, feed conversion ratio, biochemical attributes, and meat composition of turkey poults.

    PubMed

    Sharma, Aditya; Shukla, Pankaj Kumar; Bhattacharyya, Amitav; Kumar, Upendra; Roy, Debashis; Yadav, Brijesh; Prakash, Atul

    2018-01-01

    In the recent past, few studies have been carried out about sea buckthorn (SBT) and giloe in chicken as a part of the quest for suitable alternatives to antibiotics. However, studies in turkeys are lacking. Hence, the present study was conducted to evaluate the effects of SBT and giloe leaf meal by dietary feed supplementation in turkey poults. A total of 1-day-old turkey poults (n=84) of small white variety were distributed into four dietary treatments having three replicates each with seven birds. The study was conducted in turkey poults during 0-8 weeks of age. During the experiment, the poults were fed basal ration (28% crude protein [CP], 2800 Kcal/kg ME) T1, T2-basal ration was supplemented with SBT leaf meal powder at 0.5%, T3-basal ration was supplemented with giloe leaf meal powder at 0.5%, and T4-basal ration was fed along with supplementation of both SBT at 0.5% and giloe leaf meal powder at 0.5%. T2 turkey poults had a significantly higher (p<0.01) body weight gain than T3 and T4 at 7 th week of age. Weekly body weight gain was significantly higher (p<0.05) in T2 than T3 during 5 th -8 th week and 0-8 th week of the growth phase. Feed conversion ratio (FCR) was significantly better (p<0.01) in T2 than other treatment groups during 4 th -8 th week phase of growth (2.09 vs. 2.36, 2.29 and 2.31). Further, FCR was significantly better (p<0.01) in T2 group as compared to other treatment groups during 0-8 th week of growth phase (1.95 vs. 2.21, 2.21 and 2.12). Plasma uric acid was found significantly increased (p<0.05) in T1 than T3 and T4, and alkaline phosphatase value was significantly higher (p<0.05) in T1 and T3 than T2. Zinc content of breast (pectoralis major) muscles was significantly higher (p<0.05) in T2 and T4 as compared to T1, while ether extract (EE) in thigh (ilio tibialis) muscles was significantly higher (p<0.05) in T2 as compared to the other treatment groups. It may be concluded that supplementation of SBT leaf meal at 0.5% may improve production performance of turkey poults. Supplementation of 0.5% SBT leaf meal may result in higher levels of zinc and EE in the breast and thigh cuts of turkey poults.

  3. Disease risk of potting media infested with Phytophthora ramorum under nursery conditions

    Treesearch

    S.A. Tjosvold; D.L. Chambers; E.J. Fichtner; S.T. Koike; S.R. Mori

    2009-01-01

    Phytophthora ramorum has been found in potting media of containerized plants; however, the role of infested media on disease development under nursery conditions is unknown. This study assesses pathogen survival, sporulation, and infectivity to rhododendron plants in nursery pots with infected leaf litter that were maintained under greenhouse and...

  4. The Application of Active Paper Incorporated with Oleoresin of Cinnamon Leaf (Cinnamomum burmanii) Distillation Residues on Maintaining Dragon Fruits (Hylocereus costaricensis) Quality during Storage

    NASA Astrophysics Data System (ADS)

    Aziz, M. S. H.; Manuhara, G. J.; Utami, R.; Khasanah, L. U.

    2018-03-01

    The purpose of this study was to determine the effect of active paper placement methods on super red dragon fruits quality during storage at ambient temperature. The active papers were incorporated with oleoresin of cinnamon leaf distillation residues. Various active paper placement methods were applied such as wrapping, placed on the cardboard wall, placed cardboard pad, and scrap of paper on the sidelines. Weight loss, peel color, surface and flesh hardness, total titratable acid, soluble solid total, pH flesh fruit, and total plate count (TPC) of super red dragon fruits samples were investigated during 9 days storage. The result shows that active paper placement methods significantly affected the weight loss, surface firmness and color peel change of super red dragon fruits samples. However, active paper placement methods insignificantly affected the titrable acid total, soluble solid total, pH, flesh firmness and microbial spoilage of super red dragon fruits samples. The best method to maintain the super red dragon fruits quality was wrapping method.

  5. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    PubMed

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper plant lineages that drives the food web structure whereas the terminal relationships play minor roles. In contrast, the specialization and abundance of monophagous guilds are affected mainly by the terminal parts of the plant phylogeny and do not generally reflect deeper host phylogeny. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  6. Evaluation And Application Of Biomagnetic Monitoring Of Traffic-Derived Particulate Pollution.

    NASA Astrophysics Data System (ADS)

    Maher, B.; Mitchell, R.

    2009-05-01

    Inhalation of particulate pollutants below 10 micrometres in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ×ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c.0.1-1 micrometre. Analysis of leaf particles by SEM confirms that their dominant grain size is less than 1 micrometre, with a significant number of iron-rich spherules less than 0.1 micrometre in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (less than 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf SIRM values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating that leaf SIRMs are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.

  7. Effects of feeding different proportions of silver leaf desmodium (Dismodium uncinatum) with banana (Musa paradisiaca) leaf on nutrient utilization in Horro sheep fed a basal diet of natural grass hay.

    PubMed

    Chali, Diriba; Nurfeta, Ajebu; Banerjee, Sandip; Eik, Lars Olav

    2018-03-02

    The objective was to evaluate feed intake, digestibility, body weight change and carcass characteristics of sheep fed a basal diet of hay supplemented with banana leaves and silver leaf desmodium. Thirty yearling lambs with an average initial body weight of 15.85 ± 1.6 kg were grouped into six blocks of five rams in each block. The treatments were: hay alone (T1), hay + 100% banana leaf (T2), hay + 67% banana leaf + 33% desmodium leaf (T3), hay + 33% banana leaf + 67% desmodium leaf (T4) and hay + 100% desmodium leaf (T5). Three hundred grams of treatment diets were offered daily on as fed basis. The feeding and digestibility trial lasted for 84 and 7 days, respectively, followed by carcass evaluation. The total dry matter (DM) intake for T3, T4 and T5 were greater (P<0.05) than those fed T1 and T2 diets. The lowest (P<0.05) organic matter (OM) intake was recorded in rams reared on T1 diet. The total crude protein (CP) intake was in the following order: T5 > T4 > T3 > T2 > T1. Rams lambs receiving supplementary diets had higher (P<0.05) DM, OM, CP, neutral detergent fiber and acid detergent fiber digestibility compared with the control diet. The empty body weight and slaughter weight was highest (P<0.05) in rams receiving T3, T4 and T5 diets. The average daily gain and feed conversion efficiency was highest (P<0.05) in rams receiving the supplementary diets. The DP on the basis of hot carcass weight linearly increased with increasing levels of desmodium. Rams reared on supplementary diet had higher (P<0.05) rib eye area compared with the control diet. In conclusion, when banana leaf is used as a supplement to poor quality grass, better response was obtained when fed in combination with desmodium.

  8. Cross-scale modelling of transpiration from stomata via the leaf boundary layer

    PubMed Central

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart

    2014-01-01

    Background and Aims Leaf transpiration is a key parameter for understanding land surface–climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2–5 %). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. Methods An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10−5–10−1 m), which implies explicitly modelling individual stomata. Key Results BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100 %). Nevertheless, these conventional BLCs (CR of 100 %), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. Conclusions The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be significantly erroneous because they do not account for microscopic stomata, but instead assume a uniform distribution of evaporation such as found for a fully-wet leaf. The model output can be used to correct or upgrade existing BLCs or to feed into higher-scale models, for example within a multiscale framework. PMID:24510217

  9. Cross-scale modelling of transpiration from stomata via the leaf boundary layer.

    PubMed

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart

    2014-09-01

    Leaf transpiration is a key parameter for understanding land surface-climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2-5%). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10⁻⁵-10⁻¹ m), which implies explicitly modelling individual stomata. BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100%). Nevertheless, these conventional BLCs (CR of 100%), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be significantly erroneous because they do not account for microscopic stomata, but instead assume a uniform distribution of evaporation such as found for a fully-wet leaf. The model output can be used to correct or upgrade existing BLCs or to feed into higher-scale models, for example within a multiscale framework.

  10. Ecotoxicological effects evoked in hydrophytes by leachates of invasive Acer negundo and autochthonous Alnus glutinosa fallen off leaves during their microbial decomposition.

    PubMed

    Krevš, Alina; Darginavičienė, Jūratė; Gylytė, Brigita; Grigutytė, Reda; Jurkonienė, Sigita; Karitonas, Rolandas; Kučinskienė, Alė; Pakalnis, Romas; Sadauskas, Kazys; Vitkus, Rimantas; Manusadžianas, Levonas

    2013-02-01

    Throughout 90-day biodegradation under microaerobic conditions, invasive to Lithuania species boxelder maple (Acer negundo) leaves lost 1.5-fold more biomass than that of autochthonous black alder (Alnus glutinosa), releasing higher contents of N(tot), ammonium and generating higher BOD(7). Boxelder maple leaf leachates were characterized by higher total bacterial numbers and colony numbers of heterotrophic and cellulose-decomposing bacteria than those of black alder. The higher toxicity of A. negundo aqueous extracts and leachates to charophyte cell (Nitellopsis obtusa), the inhabitant of clean lakes, were manifested at mortality and membrane depolarization levels, while the effect on H(+)-ATPase activity in membrane preparations from the same algae was stronger in case of A. glutinosa. Duckweed (Lemna minor), a bioindicator of eutrophic waters, was more sensitive to leaf leachates of A. glutinosa. Fallen leaves and leaf litter leachates from invasive and native species of trees, which enter water body, affect differently microbial biodestruction and aquatic vegetation in freshwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Hydraulic properties of fronds from palms of varying height and habitat.

    PubMed

    Renninger, Heidi J; Phillips, Nathan

    2011-12-01

    Because palms grow in highly varying climates and reach considerable heights, they present a unique opportunity to evaluate how environment and plant size impact hydraulic function. We studied hydraulic properties of petioles from palms of varying height from three species: Iriartea deltoidea, a tropical rainforest species; Mauritia flexuosa, a tropical rainforest, swamp species; and Washingtonia robusta, a subtropical species. We measured leaf areas, petiole cross-sectional areas, specific conductivity (K(S)), petiole anatomical properties, vulnerability to embolism and leaf water potentials and calculated petiole Huber values and leaf-specific conductivities (K(L)). Leaf and petiole cross-sectional areas varied widely with height. However, hydraulic properties including Huber values, K(S) and K(L), remained constant. The two palmate species, M. flexuosa and W. robusta, had larger Huber values than I. deltoidea, a pinnately-compound species which exhibited the highest K(S). Metaxylem vessel diameters and vascular bundle densities varied with height in opposing patterns to maintain petiole conductivities. I. deltoidea and W. robusta petioles had similar P(50) values (the point at which 50% of hydraulic conductivity is lost) averaged over all crown heights, but W. robusta exhibited more negative P(50) values in taller palms. Comparison of P (50) values with transpiring midday leaf water potentials, as well as a double-dye staining experiment in a 1-m-tall palm, suggested that a fairly significant amount of embolisms were occurring and refilled on a diurnal basis. Therefore, across palms differing widely in height and growing environments, we found convergence in water transport per unit leaf area (K(L)) with individuals exhibiting differing strategies for achieving this.

  12. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species.

    PubMed

    Meng, Fengqun; Zhang, Guangfu; Li, Xincheng; Niklas, Karl J; Sun, Shucun

    2015-06-01

    During the development of woody twigs, the growth in leaf may or may not be proportional to the growth in stem. The presence or absence of a synchronicity between these two phenologies may reflect differences in life history adaptive strategies concerning carbon gain. We hypothesized that sun-adapted species are more likely to be less synchronous between growths in total leaf area (TLA) and stem length compared with shade-adapted species, with a bias in growth in stem length, and that shade-adapted species are more likely to be more synchronous between increases in individual leaf area (ILA) (leaf size) and leaf number (LN) during twig development compared with sun-adapted species, giving priority to growth of leaf size. We tested these two hypotheses by recording the phenologies of leaf emergence, leaf expansion and stem elongation during twig development for 19 evergreen woody species (including five shade-adapted understory species, six sun-adapted understory species and eight sun-adapted canopy species) in a subtropical evergreen broad-leaved forest in eastern China. We constructed indices to characterize the synchronicity between TLA and stem length (αLS) and between leaf size and leaf number (αSN) and we derived the α values from logistic functions taking the general form of A = A(max)/[1 + exp(β - αB)] (where A is the TLA or average ILA, B is the corresponding stem length or LN at a specific time, and A(max) is the maximum TLA or the maximum ILA of a twig; the higher the numerical value of α, the less synchronous the corresponding phenologies). Consistent with our hypotheses, sun-adapted species were higher both in α(LS) and α(SN), showing less synchronous patterns in the growths of TLA vs stem length and leaf size vs LN during twig development. Moreover, α(LS) and α(SN) were significantly positively correlated with relative growth rates of LN and leaf size across species, as indicated by both analyses of ordinary regression and phylogenetic generalized least squares. The across-species synchronies during twig development show that the temporal dynamics of the leaf size-twig size spectrum is of adaptive significance in plants. We suggest that temporal dynamics of plant functional traits should be extensively studied to characterize plant life history. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Photosynthesis, growth and survival of the Mediterranean seagrass Posidonia oceanica in response to simulated salinity increases in a laboratory mesocosm system

    NASA Astrophysics Data System (ADS)

    Marín-Guirao, Lázaro; Sandoval-Gil, José M.; Ruíz, Juan M.; Sánchez-Lizaso, José L.

    2011-04-01

    This study aims to examine the effect of increased salinity on the photosynthetic activity of the Mediterranean seagrass Posidonia oceanica in a laboratory mesocosm system. To do this, large rhizome fragments were transplanted in a mesocosm laboratory system and maintained at 37 (ambient salinity, control treatment), 39, 41 and 43 (hypersaline treatments) for 47 days. Pigment content, light absorption, photosynthetic characteristics (derived from P vs. E curves and fluorescence parameters), and shoot size, growth rates and net shoot change were determined at the end of the experimental period. Both net and gross photosynthetic rates of plants under hypersaline conditions were significantly reduced, with rates some 25-33% and 13-20% lower than in control plants. The pigment content (Chl a, Chl b, Chl b:Chl a molar ratio, total carotenoids and carotenoids:Chl a ratio), leaf absorptance and maximum quantum yield of PSII ( F v/ F m) of control plants showed little or no changes under hypersaline conditions, which suggests that alterations to the capacity of the photosynthetic apparatus to capture and process light were not responsible for the reduced photosynthetic rates. In contrast, dark respiration rates increased substantially, with mean values up to 98% higher than in control leaves. These results suggest that the respiratory demands of the osmoregulatory process are likely to be responsible for the observed decrease in photosynthetic rates, although alterations to photosynthetic carbon assimilation and reduction could also be involved. As a consequence, leaf carbon balance was considerably impaired and leaf growth rates decreased as salinity increased above the ambient (control) salinity. No significant differences were found in the percentage of net shoot change, but mean values were clearly negative at salinity levels of 41 and 43. Results presented here indicate that photosynthesis of P. oceanica is highly sensitive to hypersaline stress and that it likely account for the decline in leaf growth and shoot survival reported in this and previous studies in response to even small increments of the ambient salinity.

  14. Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation

    PubMed Central

    Zhang, Hongzhi; Khan, Aziz; Tan, Daniel K. Y.; Luo, Honghai

    2017-01-01

    There is a need to optimize water-nitrogen (N) applications to increase seed cotton yield and water use efficiency (WUE) under a mulch drip irrigation system. This study evaluated the effects of four water regimes [moderate drip irrigation from the third-leaf to the boll-opening stage (W1), deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W2), pre-sowing and moderate drip irrigation from the third-leaf to the boll-opening stage (W3), pre-sowing and deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W4)] and N fertilizer at a rate of 520 kg ha-1 in two dressing ratios [7:3 (N1), 2:8 (N2)] on cotton root morpho-physiological attributes, yield, WUE and the relationship between root distribution and dry matter production. Previous investigations have shown a strong correlation between root activity and water consumption in the 40–120 cm soil layer. The W3 and especially W4 treatments significantly increased root length density (RLD), root volume density (RVD), root mass density (RMD), and root activity in the 40–120 cm soil layer. Cotton RLD, RVD, RMD was decreased by 13.1, 13.3, and 20.8%, respectively, in N2 compared with N1 at 70 days after planting (DAP) in the 0–40 cm soil layer. However, root activity in the 40–120 cm soil layer at 140 DAP was 31.6% higher in N2 than that in N1. Total RMD, RLD and root activity in the 40–120 cm soil were significantly and positively correlated with shoot dry weight. RLD and root activity in the 40–120 cm soil layer was highest in the W4N2 treatments. Therefore increased water consumption in the deep soil layers resulted in increased shoot dry weight, seed cotton yield and WUE. Our data can be used to develop a water-N management strategy for optimal cotton yield and high WUE. PMID:28611817

  15. Water Status Related Root-to-Shoot Communication Regulates the Chilling Tolerance of Shoot in Cucumber (Cucumis sativus L.) Plants.

    PubMed

    Zhang, Zi-Shan; Liu, Mei-Jun; Gao, Hui-Yuan; Jin, Li-Qiao; Li, Yu-Ting; Li, Qing-Ming; Ai, Xi-Zhen

    2015-10-16

    Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4). When the whole plants, including roots, were chilled under light, the photosynthetic performances in JC-4 leaves decreased more seriously than that in JY-3 leaves. However, when the water status of leaves was maintained by warming roots or floating the attached leaves on water, the PSII activity and amount of PSI in the leaves of the two varieties were similar after chilling-light treatment. In addition, the differences of PSII activities and amount of PSI between the two varieties under whole plant chilling-light treatment were independent of ABA pretreatment. Above results indicate that (1) the better water status in leaves under chilling contributes to the higher chilling tolerance of JY-3; (2) the water status, rather than an ABA signal, dominates root-to-shoot communication under chilling and the chilling tolerance of cucumber shoot.

  16. S-nitrosoglutathione spraying improves stomatal conductance, Rubisco activity and antioxidant defense in both leaves and roots of sugarcane plants under water deficit.

    PubMed

    Silveira, Neidiquele M; Marcos, Fernanda C C; Frungillo, Lucas; Moura, Bárbara B; Seabra, Amedea B; Salgado, Ione; Machado, Eduardo C; Hancock, John T; Ribeiro, Rafael V

    2017-08-01

    Water deficit is a major environmental constraint on crop productivity and performance and nitric oxide (NO) is an important signaling molecule associated with many biochemical and physiological processes in plants under stressful conditions. This study aims to test the hypothesis that leaf spraying of S-nitrosoglutathione (GSNO), an NO donor, improves the antioxidant defense in both roots and leaves of sugarcane plants under water deficit, with positive consequences for photosynthesis. In addition, the roles of key photosynthetic enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) in maintaining CO 2 assimilation of GSNO-sprayed plants under water deficit were evaluated. Sugarcane plants were sprayed with water or GSNO 100 μM and subjected to water deficit, by adding polyethylene glycol (PEG-8000) to the nutrient solution. Sugarcane plants supplied with GSNO presented increases in the activity of antioxidant enzymes such as superoxide dismutase in leaves and catalase in roots, indicating higher antioxidant capacity under water deficit. Such adjustments induced by GSNO were sufficient to prevent oxidative damage in both organs and were associated with better leaf water status. As a consequence, GSNO spraying alleviated the negative impact of water deficit on stomatal conductance and photosynthetic rates, with plants also showing increases in Rubisco activity under water deficit. © 2017 Scandinavian Plant Physiology Society.

  17. Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L.)

    PubMed Central

    Meng, Fanjuan; Luo, Qiuxiang; Wang, Qiuyu; Zhang, Xiuli; Qi, Zhenhua; Xu, Fuling; Lei, Xue; Cao, Yuan; Chow, Wah Soon; Sun, Guangyu

    2016-01-01

    Salinity is an important abiotic stressor that negatively affects plant growth. In this study, we investigated the physiological and molecular mechanisms underlying moderate and high salt tolerance in diploid (2×) and tetraploid (4×) Robinia pseudoacacia L. Our results showed greater H2O2 accumulation and higher levels of important antioxidative enzymes and non-enzymatic antioxidants in 4× plants compared with 2× plants under salt stress. In addition, 4× leaves maintained a relatively intact structure compared to 2× leaves under a corresponding condition. NaCl treatment didn’t significantly affect the photosynthetic rate, stomatal conductance or leaf intercellular CO2 concentrations in 4× leaves. Moreover, proteins from control and salt treated 2× and 4× leaf chloroplast samples were extracted and separated by two-dimensional gel electrophoresis. A total of 61 spots in 2× (24) and 4× (27) leaves exhibited reproducible and significant changes under salt stress. In addition, 10 proteins overlapped between 2× and 4× plants under salt stress. These identified proteins were grouped into the following 7 functional categories: photosynthetic Calvin-Benson Cycle (26), photosynthetic electron transfer (7), regulation/defense (5), chaperone (3), energy and metabolism (12), redox homeostasis (1) and unknown function (8). This study provides important information of use in the improvement of salt tolerance in plants. PMID:26975701

  18. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought.

    PubMed

    Ouyang, Wenjing; Struik, Paul C; Yin, Xinyou; Yang, Jianchang

    2017-11-02

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (gs) and mesophyll conductance (gm) and their anatomical determinants were evaluated in two cultivars from each of lowland, aerobic, and upland groups of Oryza sativa, one cultivar of O. glaberrima, and two cultivars of T. aestivum, under three water regimes. The TE of upland rice, O. glaberrima, and wheat was more responsive to the gm/gs ratio than that of lowland and aerobic rice. Overall, the explanatory power of the particular anatomical trait varied among species. Low stomatal density mostly explained the low gs in drought-tolerant rice, whereas rice genotypes with smaller stomata generally responded more strongly to drought. Compared with rice, wheat had a higher gm, which was associated with thicker mesophyll tissue, mesophyll and chloroplasts more exposed to intercellular spaces, and thinner cell walls. Upland rice, O. glaberrima, and wheat cultivars minimized the decrease in gm under drought by maintaining high ratios of chloroplasts to exposed mesophyll cell walls. Rice TE could be improved by increasing the gm/gs ratio via modifying anatomical traits. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Testing the adaptive plasticity of Iris pumila leaf traits to natural light conditions using phenotypic selection analysis

    NASA Astrophysics Data System (ADS)

    Tucić, Branka; Tomić, Vladimir; Avramov, Stevan; Pemac, Danijela

    1998-12-01

    A multivariate selection analysis has been used to test the adaptiveness of several Iris pumila leaf traits that display plasticity to natural light conditions. Siblings of a synthetic population comprising 31 families of two populations from contrasting light habitats were grown at an open dune site and in the understory of a Pinus nigra stand in order to score variation in phenotypic expression of six leaf traits: number of senescent leaves, number of live leaves, leaf length, leaf width, leaf angle, and specific leaf area. The ambient light conditions affected the values of all traits studied except for specific leaf area. In accordance to ecophysiological expectations for an adaptive response to light, both leaf length and width were significantly greater while the angle between sequential leaves was significantly smaller in the woodland understory than at the exposed dune site. The relationship between leaf traits and vegetative fitness (total leaf area) differed across light habitats as predicted by functional hypotheses. The standardized linear selection gradient ( β') for leaf length and width were positive in sign in both environments, but their magnitude for leaf length was higher in the shade than under full sunlight. Since plasticity of leaf length in the woodland shade has been recognized as adaptive, fitness cost of producing plastic change in leaf length was assessed. In both of the available methods used, the two-step and the multivariate regression procedures, a rather high negative association between the fitness value and the plasticity of leaf length was obtained, indicating a cost of plasticity. The selection gradient for leaf angle was weak and significant only in the woodland understory. Genetic correlations between trait expressions in contrasting light environments were negative in sign and low in magnitude, implying a significant genetic variation for plasticity in these leaf traits. Furthermore, leaf length and leaf width were found to be genetically positively coupled, which indicates that there is a potential for these two traits to evolve toward their optimal phenotypic values even faster than would be expected if they were genetically independent.

  20. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content

    PubMed Central

    Anderson, Rachel; Ryser, Peter

    2015-01-01

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season. PMID:27135339

  1. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content.

    PubMed

    Anderson, Rachel; Ryser, Peter

    2015-08-05

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season.

  2. Response of the Morus bombycis growing season to temperature and its latitudinal pattern in Japan.

    PubMed

    Doi, Hideyuki

    2012-09-01

    Changes in leaf phenology lengthen the growing season length (GSL, the days between leaf budburst and leaf fall) under the global warming. GSL and the leaf phenology response to climate change is one of the most important predictors of climate change effect on plants. Empirical evidence of climatic effects on GSL remains scarce, especially at a regional scale and the latitudinal pattern. This study analyzed the datasets of leaf budburst and fall phenology in Morus bombycis (Urticales), which were observed by the agency of the Japan Meteorological Agency (JMA) from 1953 to 2005 over a wide range of latitudes in Japan (31 to 44° N). In the present study, single regression slopes of leaf phenological timing and air temperature across Japan were calculated and their spatial patterns using general linear models were tested. The results showed that the GSL extension was caused mainly by a delay in leaf fall phenology. Relationships between latitude and leaf phenological and GSL responses against air temperature were significantly negative. The response of leaf phenology and GSL to air temperature at lower latitudes was larger than that at higher latitudes. The findings indicate that GSL extension should be considered with regards to latitude and climate change.

  3. Effects of root medium pH on root water transport and apoplastic pH in red-osier dogwood (Cornus sericea) and paper birch (Betula papyrifera) seedlings.

    PubMed

    Zhang, W; Zwiazek, J J

    2016-11-01

    Soil pH is a major factor affecting plant growth. Plant responses to pH conditions widely vary between different species of plants. However, the exact mechanisms of high pH tolerance of plants are largely unknown. In the present study, we compared the pH responses of paper birch (Betula papyrifera) seedlings, a relatively sensitive species to high soil pH, with red-osier dogwood (Cornus sericea), reported to be relatively tolerant of high pH conditions. We examined the hypotheses that tolerance of plants to high root zone pH is linked to effective control of root apoplastic pH to facilitate nutrient and water transport processes In the study, we exposed paper birch and red-osier dogwood seedlings for six weeks to pH 5, 7 and 9 under controlled-environment conditions in hydroponic culture. Then, we measured biomass, gas exchange, root hydraulic conductivity, ferric chelate reductase (FCR) activity, xylem sap pH and the relative abundance of major elements in leaf protoplasts and apoplasts. The study sheds new light on the rarely studied high pH tolerance mechanisms in plants. We found that compared with paper birch, red-osier dogwood showed greater growth, higher gas exchange, and maintained higher root hydraulic conductivity as well as lower xylem sap pH under high pH conditions. The results suggest that the relatively high pH tolerance of dogwood is associated with greater water uptake ability and maintenance of low apoplastic pH. These traits may have a significant impact on the uptake of Fe and Mn by leaf cells. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    NASA Astrophysics Data System (ADS)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  5. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession

    PubMed Central

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content (NA), maximum CO2 assimilation rate (Pmax), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation (NC), and to bioenergetics (NB). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, NA, but higher Pmax, SLA, PNUE, NC, and NB, in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between Pmax and leaf CC strengthened, whereas the relationships between NB, NC, PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization. PMID:29472939

  6. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession.

    PubMed

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content ( N A ), maximum CO 2 assimilation rate ( P max ), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation ( N C ), and to bioenergetics ( N B ). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, N A , but higher P max , SLA, PNUE, N C , and N B , in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between P max and leaf CC strengthened, whereas the relationships between N B , N C , PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization.

  7. Photosynthesis and leaf water relations in four American sycamore clones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Z.; Land, S.B. Jr.

    1995-11-01

    Photosynthesis, transpiration, stomatal conductance, and xylem pressure potential were studied to examine clonal variation and clone-by-season interactions in rooted cuttings of four sycamore clones (Platanus occidentalis L.). These physiological parameters were measured during June through November of the second and third growing seasons in the field. Stomatal conductance, xylem pressure potential, and photosynthesis were higher in June-July than in August-November. The four clones did not differ significantly in yearly average photosynthetic rates, but clone 11 tended to have higher rates early in each growing season (June-July) than did the other three clones. Dry periods during August-September of the second seasonmore » and during October of the third season apparently caused clone 11 to close its stomata more than clone 17, as indicated by significant clone-by-season interactions for reductions in stomatal conductance and transpiration late in the morning. Clone 17 was generally able to maintain high xylem pressure potential, stomatal conductance, and transpiration throughout the growing season, probably because of its large root system. 36 refs., 2 figs., 5 tabs.« less

  8. A comparative pharmacognostical and preliminary physico-chemical analysis of stem and leaf of Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.BR.) Wettst.

    PubMed

    Gubbannavar, Jyoti S; Chandola, H M; Harisha, C R; Khanpara, Komal; Shukla, V J

    2013-01-01

    Brahmi is a well-known herbal drug having an effect on brain as a memory enhancer. Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.Br.) Wettst are both marketed in the name of Brahmi. The present study differentiates Bacopa monnieri and Bacopa floribunda in morphology, transverse section (T.S.) of root and leaf, powder microscopy, and chemical constituents. Morphological characters show color difference in flower, stem and leaf and differences in microscopic study, organoleptic study, and powder characteristics. Morphologically, Bacopa monnieri leaf is fleshy and more succulent than Bacopa floribunda leaf. There is also a difference in the interval of the stem internodes of the two. Physico-chemical analysis revealed presence of 26% bacoside A in Bacopa floribunda leaf and 27% in Bacopa floribunda stem, which is higher than the bacoside A content in leaf (22%) and stem (18%) of Bacopa monnieri. However due to the hemolytic action of bacoside A, which is the toxic effect of the chemical constituent, it seems likely that Bacopa monnieri is more popular in regular use than Bacopa floribunda.

  9. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth.

    PubMed

    Dellero, Younès; Lamothe-Sibold, Marlène; Jossier, Mathieu; Hodges, Michael

    2015-09-01

    Metabolic and physiological analyses of glutamate:glyoxylate aminotransferase 1 (GGT1) mutants were performed at the global leaf scale to elucidate the mechanisms involved in their photorespiratory growth phenotype. Air-grown ggt1 mutants showed retarded growth and development, that was not observed at high CO2 (3000 μL L(-1) ). When compared to wild-type (WT) plants, air-grown ggt1 plants exhibited glyoxylate accumulation, global changes in amino acid amounts including a decrease in serine content, lower organic acid levels, and modified ATP/ADP and NADP(+) /NADPH ratios. When compared to WT plants, their net CO2 assimilation rates (An ) were 50% lower and this mirrored decreases in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents. High CO2 -grown ggt1 plants transferred to air revealed a rapid decrease of An and photosynthetic electron transfer rate while maintaining a high energetic state. Short-term (a night period and 4 h of light) transferred ggt1 leaves accumulated glyoxylate and exhibited low serine contents, while other amino acid levels were not modified. RuBisCO content, activity and activation state were not altered after a short-term transfer while the ATP/ADP ratio was lowered in ggt1 rosettes. However, plant growth and RuBisCO levels were both reduced in ggt1 leaves after a long-term (12 days) acclimation to air from high CO2 when compared to WT plants. The data are discussed with respect to a reduced photorespiratory carbon recycling in the mutants. It is proposed that the low An limits nitrogen-assimilation, this decreases leaf RuBisCO content until plants attain a new homeostatic state that maintains a constant C/N balance and leads to smaller, slower growing plants. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  10. Extraordinarily High Leaf Selenium to Sulfur Ratios Define ‘Se-accumulator’ Plants

    PubMed Central

    White, Philip J.; Bowen, Helen C.; Marshall, Bruce; Broadley, Martin R.

    2007-01-01

    Background and Aims Selenium (Se) and sulfur (S) exhibit similar chemical properties. In flowering plants (angiosperms) selenate and sulfate are acquired and assimilated by common transport and metabolic pathways. It is hypothesized that most angiosperm species show little or no discrimination in the accumulation of Se and S in leaves when their roots are supplied a mixture of selenate and sulfate, but some, termed Se-accumulator plants, selectively accumulate Se in preference to S under these conditions. Methods This paper surveys Se and S accumulation in leaves of 39 angiosperm species, chosen to represent the range of plant Se accumulation phenotypes, grown hydroponically under identical conditions. Results The data show that, when supplied a mixture of selenate and sulfate: (1) plant species differ in both their leaf Se ([Se]leaf) and leaf S ([S]leaf) concentrations; (2) most angiosperms show little discrimination for the accumulation of Se and S in their leaves and, in non-accumulator plants, [Se]leaf and [S]leaf are highly correlated; (3) [Se]leaf in Se-accumulator plants is significantly greater than in other angiosperms, but [S]leaf, although high, is within the range expected for angiosperms in general; and (4) the Se/S quotient in leaves of Se-accumulator plants is significantly higher than in leaves of other angiosperms. Conclusion The traits of extraordinarily high [Se]leaf and leaf Se/S quotients define the distinct elemental composition of Se-accumulator plants. PMID:17525099

  11. Effects of growth temperature and winter duration on leaf phenology of a spring ephemeral (Gagea lutea) and a summergreen forb (Maianthemum dilatatum).

    PubMed

    Yoshie, Fumio

    2008-09-01

    Effects of growth temperature and winter duration on leaf longevity were compared between a spring ephemeral, Gagea lutea, and a forest summergreen forb, Maianthemum dilatatum. The plants were grown at day/night temperatures of 25/20 degrees C and 15/10 degrees C after a chilling treatment for variable periods at 2 degrees C. The temperature regime of 25/20 degrees C was much higher than the mean air temperatures for both species in their native habitats. Warm temperature of 25/20 degrees C and/or long chilling treatment shortened leaf longevity in G. lutea, but not in M. dilatatum. The response of G. lutea was consistent with that reported for other spring ephemerals. Air temperature increases as the vegetative season progresses. The decrease in leaf longevity in G. lutea under warm temperature condition ensures leaf senescence in summer, an unfavorable season for its growth. This also implies that early leaf senescence could occur in years with early summers. Warm spring temperatures have been shown to accelerate the leafing-out of forest trees. The decrease in leaf longevity due to warm temperature helps synchronize the period of leaf senescence roughly with the time of the forest canopy leaf-out. Prolonged winter due to late snowmelt has been shown to shorten the vegetative period for spring ephemerals. The decrease in leaf longevity due to long chilling treatment would correspond with this shortened vegetative period.

  12. Multileaf collimator characteristics and reliability requirements for IMRT Elekta system.

    PubMed

    Liu, Chihray; Simon, Thomas A; Fox, Christopher; Li, Jonathan; Palta, Jatinder R

    2008-01-01

    Understanding the characteristics of a multileaf collimator (MLC) system, modeling MLC in a treatment planning system, and maintaining the mechanical accuracy of the linear accelerator gantry head system are important factors in the safe implementation of an intensity-modulated radiotherapy program. We review the characteristics of an Elekta MLC system, discuss the necessary MLC modeling parameters for a treatment planning system, and provide a novel method to establish an MLC leaf position quality assurance program. To perform quality assurance on 40 pairs of individual MLC leaves is a time-consuming and difficult task. In this report, an effective routine MLC quality assurance method based on the field edge of a backup jaw as referenced in conjunction with a diode array as a radiation detector system is discussed. The sensitivity of this test for determining the relative leaf positions was observed to be better than 0.1 mm. The Elekta MLC leaf position accuracy measured with this system has been better than 0.3 mm.

  13. Leaf colleters in Tontelea micrantha (Celastraceae, Salacioideae): ecological, morphological and structural aspects.

    PubMed

    Mercadante-Simões, Maria Olívia; Paiva, Elder Antônio Sousa

    2013-08-01

    The colleter secretion can be useful to protect plants of Cerrado (Brazilian savanna) biome during the long and pronounced dry season. This study describes the presence of colleters in Tontelea micrantha and represents the first record of these structures in Celastraceae. To investigate colleter structure and their secretory processes, young leaves were collected, fixed, and processed according to conventional techniques for light, and electron microscopy. Colleters were observed at the marginal teeth on the leaf. They produce mucilaginous secretions that spread over the leaf surface. After secretory phase, colleters abscise. The secretory epithelium is uniseriate and composed of elongated cells whose dense cytoplasm is rich in organelles. The ultrastructure of the secretory cells is compatible with the pectin-rich secretion. Observations of the young leaves surface revealed the presence of superficial hydrophilic secretion films that appeared to have the function of maintaining the water status of those organs. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. Mitigating the impact of oil-palm monoculture on freshwater fishes in Southeast Asia.

    PubMed

    Giam, Xingli; Hadiaty, Renny K; Tan, Heok Hui; Parenti, Lynne R; Wowor, Daisy; Sauri, Sopian; Chong, Kwek Yan; Yeo, Darren C J; Wilcove, David S

    2015-10-01

    Anthropogenic land-cover change is driving biodiversity loss worldwide. At the epicenter of this crisis lies Southeast Asia, where biodiversity-rich forests are being converted to oil-palm monocultures. As demand for palm oil increases, there is an urgent need to find strategies that maintain biodiversity in plantations. Previous studies found that retaining forest patches within plantations benefited some terrestrial taxa but not others. However, no study has focused on aquatic taxa such as fishes, despite their importance to human well-being. We assessed the efficacy of forested riparian reserves in conserving freshwater fish biodiversity in oil-palm monoculture by sampling stream fish communities in an oil-palm plantation in Central Kalimantan, Indonesia. Forested riparian reserves maintained preconversion local fish species richness and functional diversity. In contrast, local and total species richness, biomass, and functional diversity declined markedly in streams without riparian reserves. Mechanistically, riparian reserves appeared to increase local species richness by increasing leaf litter cover and maintaining coarse substrate. The loss of fishes specializing in leaf litter and coarse substrate decreased functional diversity and altered community composition in oil-palm plantation streams that lacked riparian reserves. Thus, a land-sharing strategy that incorporates the retention of forested riparian reserves may maintain the ecological integrity of fish communities in oil-palm plantations. We urge policy makers and growers to make retention of riparian reserves in oil-palm plantations standard practice, and we encourage palm-oil purchasers to source only palm oil from plantations that employ this practice. © 2015 Society for Conservation Biology.

  15. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit.

    PubMed

    Paudel, Indira; Naor, Amos; Gal, Yoni; Cohen, Shabtai

    2015-04-01

    For isohydric trees mid-day water uptake is stable and depends on soil water status, reflected in pre-dawn leaf water potential (Ψpd) and mid-day stem water potential (Ψmd), tree hydraulic conductance and a more-or-less constant leaf water potential (Ψl) for much of the day, maintained by the stomata. Stabilization of Ψl can be represented by a linear relationship between canopy resistance (Rc) and vapor pressure deficit (D), and the slope (BD) is proportional to the steady-state water uptake. By analyzing sap flow (SF), meteorological and Ψmd measurements during a series of wetting and drying (D/W) cycles in a nectarine orchard, we found that for the range of Ψmd relevant for irrigated orchards the slope of the relationship of Rc to D, BD is a linear function of Ψmd. Rc was simulated using the above relationships, and its changes in the morning and evening were simulated using a rectangular hyperbolic relationship between leaf conductance and photosynthetic irradiance, fitted to leaf-level measurements. The latter was integrated with one-leaf, two-leaf and integrative radiation models, and the latter gave the best results. Simulated Rc was used in the Penman-Monteith equation to simulate tree transpiration, which was validated by comparing with SF from a separate data set. The model gave accurate estimates of diurnal and daily total tree transpiration for the range of Ψmds used in regular and deficit irrigation. Diurnal changes in tree water content were determined from the difference between simulated transpiration and measured SF. Changes in water content caused a time lag of 90-105 min between transpiration and SF for Ψmd between -0.8 and -1.55 MPa, and water depletion reached 3 l h(-1) before noon. Estimated mean diurnal changes in water content were 5.5 l day(-1) tree(-1) at Ψmd of -0.9 MPa and increased to 12.5 l day(-1) tree(-1) at -1.45 MPa, equivalent to 6.5 and 16.5% of daily tree water use, respectively. Sixteen percent of the dynamic water volume was in the leaves. Inversion of the model shows that Ψmd can be predicted from D and Rc, which may have some importance for irrigation management to maintain target values of Ψmd. That relationship will be explored in future research. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Salivary ascorbic acid levels in betel quid chewers: A biochemical study.

    PubMed

    Shetty, Shishir R; Babu, Subhas; Kumari, Suchetha; Prasad, Rajendra; Bhat, Supriya; Fazil, K A

    2013-07-01

    Quid chewing practice has been a part of our tradition since centuries with little known evidence of oral cancer. However, recent trends show a rise in occurrence of oral cancer often associated with tobacco and arecanut usage. Ascorbic acid is an important salivary antioxidant. Betel leaf which is used in quid is known to contain ascorbic acid. The aim of our study was to assess the salivary levels of ascorbic acid in traditional quid chewers so as to determine whether the betel leaf has protective antioxidant action. Salivary ascorbic acid levels of 60 subjects were estimated using the Dinitrophenyl hydrazine method. The results revealed that quid chewers who used betel leaf had higher salivary ascorbic acid content compared to nonbetel leaf quid chewers. This could possibly be due to the protective antioxidants in the betel leaf.

  17. Leaf traits in parental and hybrid species of Sorbus (Rosaceae).

    PubMed

    Durkovic, Jaroslav; Kardosová, Monika; Canová, Ingrid; Lagana, Rastislav; Priwitzer, Tibor; Chorvát, Dusan; Cicák, Alojz; Pichler, Viliam

    2012-09-01

    Knowledge of functional leaf traits can provide important insights into the processes structuring plant communities. In the genus Sorbus, the generation of taxonomic novelty through reticulate evolution that gives rise to new microspecies is believed to be driven primarily by a series of interspecific hybridizations among closely related taxa. We tested hypotheses for dispersion of intermediacy across the leaf traits in Sorbus hybrids and for trait linkages with leaf area and specific leaf area. Here, we measured and compared the whole complex of growth, vascular, and ecophysiological leaf traits among parental (Sorbus aria, Sorbus aucuparia, Sorbus chamaemespilus) and natural hybrid (Sorbus montisalpae, Sorbus zuzanae) species growing under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to characterize the topography of cell wall surfaces of tracheary elements and to map the reduced Young's modulus of elasticity. Intermediacy was associated predominantly with leaf growth traits, whereas vascular and ecophysiological traits were mainly parental-like and transgressive phenotypes. Larger-leaf species tended to have lower modulus of elasticity values for midrib tracheary element cell walls. Leaves with a biomass investment related to a higher specific leaf area had a lower density. Leaf area- and length-normalized theoretical hydraulic conductivity was related to leaf thickness. For the whole complex of examined leaf traits, hybrid microspecies were mosaics of parental-like, intermediate, and transgressive phenotypes. The high proportion of transgressive character expressions found in Sorbus hybrids implies that generation of extreme traits through transgressive segregation played a key role in the speciation process.

  18. Juvenile Rhus glabra leaves have higher temperatures and lower gas exchange rates than mature leaves when compared in the field during periods of high irradiance.

    PubMed

    Snider, John L; Choinski, John S; Wise, Robert R

    2009-05-01

    We sought to test the hypothesis that stomatal development determines the timing of gas exchange competency, which then influences leaf temperature through transpirationally driven leaf cooling. To test this idea, daily patterns of gas exchange and leaflet temperature were obtained from leaves of two distinctively different developmental stages of smooth sumac (Rhus glabra) grown in its native habitat. Juvenile and mature leaves were also sampled for ultrastructural studies of stomatal development. When plants were sampled in May-June, the hypothesis was supported: juvenile leaflets were (for part of the day) from 1.4 to 6.0 degrees C warmer than mature leaflets and as much as 2.0 degrees C above ambient air temperature with lower stomatal conductance and photosynthetic rates than mature leaflets. When measurements were taken from July to October, no significant differences were observed, although mature leaflet gas exchange rates declined to the levels of the juvenile leaves. The gas exchange data were supported by the observations that juvenile leaves had approximately half the number of functional stomata on a leaf surface area basis as did mature leaves. It was concluded that leaf temperature and stage of leaf development in sumac are strongly linked with the higher surface temperatures observed in juvenile leaflets in the early spring possibly being involved in promoting photosynthesis and leaf expansion when air temperatures are cooler.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ziyu; Hooker, Brian S.; Anderson, Daniel B.

    Optimization of Acidothermus cellulolyticus endoglucanase (E1) gene expression in transgenic potato (Solanum tuberosum L.) was examined in this study, where the E1 coding sequence was transcribed under control of a leaf specific promoter (tomato RbcS-3C) or the Mac promoter (a hybrid promoter of mannopine synthase promoter and cauliflower mosaic virus 35S promoter enhancer region). Average E1 activity in leaf extracts of potato transformants, in which E1 protein was targeted by a chloroplast signal peptide and an apoplast signal peptide were much higher than those by an E1 native signal peptide and a vacuole signal peptide. E1 protein accumulated up tomore » 2.6% of total leaf soluble protein, where E1 gene was under control of the RbcS-3C promoter, alfalfa mosaic virus 5-untranslated leader, and RbcS-2A signal peptide. E1 protein production, based on average E1 activity and E1 protein accumulation in leaf extracts, is higher in potato than those measured previously in transgenic tobacco bearing the same transgene constructs. Comparisons of E1 activity, protein accumulation, and relative mRNA levels showed that E1 expression under control of tomato RbcS-3C promoter was specifically localized in leaf tissues, while E1 gene was expressed in both leaf and tuber tissues under control of Mac promoter. This suggests dual-crop applications in which potato vines serve as enzyme production `bioreactors' while tubers are preserved for culinary applications.« less

  20. Peach leaf curl disease shifts sugar metabolism in severely infected leaves from source to sink.

    PubMed

    Moscatello, Stefano; Proietti, Simona; Buonaurio, Roberto; Famiani, Franco; Raggi, Vittorio; Walker, Robert P; Battistelli, Alberto

    2017-03-01

    Peach leaf curl is a disease that affects the leaves of peach trees, and in severe cases all of the leaf can be similarly affected. This study investigated some effects of this disease on the metabolism of peach leaves in which all parts of the leaf were infected. These diseased leaves contained very little chlorophyll and performed little or no photosynthesis. Compared to uninfected leaves, diseased leaves possessed higher contents of fructose and especially glucose, but lowered contents of sucrose, sorbitol and especially starch. The activities of soluble acid invertase, neutral invertase, sorbitol dehydrogenase and sucrose synthase were all higher in diseased leaves, whereas, those of aldose-6-phosphate reductase and sucrose phosphate synthase were lower. The activities of hexokinase and fructokinase were little changed. In addition, immunblots showed that the contents of Rubisco and ADP-glucose phosphorylase were reduced in diseased leaves, whereas, the content of phosphoenolpyruvate carboxylase was increased. The results show that certain aspects of the metabolism of diseased leaves are similar to immature sink leaves. That is photosynthetic function is reduced, the leaf imports rather than exports sugars, and the contents of non-structural carbohydrates and enzymes involved in their metabolism are similar to sink leaves. Further, the effects of peach leaf curl on the metabolism of peach leaves are comparable to the effects of some other diseases on the metabolism of photosynthetic organs of other plant species. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Intra-plant variation in cyanogenesis and the continuum of foliar plant defense traits in the rainforest tree Ryparosa kurrangii (Achariaceae).

    PubMed

    Webber, Bruce L; Woodrow, Ian E

    2008-06-01

    At the intra-plant level, temporal and spatial variations in plant defense traits can be influenced by resource requirements, defensive priorities and storage opportunities. Across a leaf age gradient, cyanogenic glycoside concentrations in the rainforest understory tree Ryparosa kurrangii B.L. Webber were higher in young expanding leaves than in mature leaves (2.58 and 1.38 mg g(-1), respectively). Moreover, cyanogens, as an effective chemical defense against generalist herbivores, contributed to a defense continuum protecting foliar tissue during leaf development. Chemical (cyanogens and phenolic compounds) and phenological (delayed greening) defense traits protected young leaves, whereas mature leaves were largely protected by physical defense mechanisms (lamina toughness; explained primarily by leaf mass per area). Cyanogen concentration was considerably higher in floral tissue than in foliar tissue and decreased in floral tissue during development. Across contrasting tropical seasons, foliar cyanogenic concentration varied significantly, being highest in the late wet season and lowest during the pre-wet season, the latter coinciding with fruiting and leaf flushing. Cyanogens in R. kurrangii appear to be differentially allocated in a way that maximizes plant fitness but may also act as a store of reduced nitrogen that is remobilized during flowering and leaf flushing.

  2. Effects of increasing air temperature on leaf phenology and photosynthetic characteristics in cool-temperate deciduous canopy trees.

    NASA Astrophysics Data System (ADS)

    Muraoka, H.; Nagao, A.; Saitoh, T. M.

    2016-12-01

    Influences of global warming have been observed or predicted in deciduous forest ecosystems in temperate regions. One of the remarkable changes can be hound in phenology, i.e., seasonality of canopy. Timing and growth rate of leaf expansion (morphological and physiological development), timing and rate of leaf senescence, and timing of leaf fall, and resulting length of photosynthetically active period, are the phenological events that have been focused over wide range of research from single leaf measurements at long-term research sites to satellite remote sensing at continental scales. These phenological changes under global warming have been predicted to influence carbon sequestration as a balance of photosynthesis and respiration. However, we still lack ecophysiological evidence and understandings on such phenological changes, to ask (1) do the phenological changes occur in both leaf morphology and physiology?, (2) does the leaf photosynthetic capacity change by warming?, and (3) do different tree species inhabiting in the same forest respond in a same way?In order to examine these questions, we conducted an open-warming experiments on foliage of matured canopy trees in a cool-temperate deciduous broadleaf forest in central Japan. Warming treatment was made by open-top canopy chambers with 1.5m W x 2m L x 1.8m H. The chamber was made of transparent acrylic boards and vinyl sheet. Three sunlit branches (1-2m) of Quercus crispula (16m height) and one sunlit branch (1m) of Betula ermanii (18m height) were examined at 15m above ground, since 2011 for Quercus and 2013 for Betula. The chambers increased mean daytime air temperature by about 1.5 degreeC.Artificial warming led earlier leaf expansion by about 3 days in Quercus during 2013-2015 and 2 days in Betula, and delayed leaf fall by 2-7 days and 2-3 days in Quercus and Betula, respectively. Quercus leaves showed clear influence of warming: higher seasonal growth, higher capacity and slower senescence of leaf photosynthetic capacity. Although the leaf expansion was stimulated by warming, its relationship with cumulative temperature from spring was consistent with leaves under ambient conditions. Our simple estimation showed that the warming treatment would might increase photosynthetic productivity by 14-21% in Quercus, but not in Betula.

  3. Cloning and characterization of Sdga gene encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex in Scoparia dulcis.

    PubMed

    Shite, Masato; Yamamura, Yoshimi; Hayashi, Toshimitsu; Kurosaki, Fumiya

    2008-11-01

    A homology-based cloning strategy yielded Sdga, a cDNA clone presumably encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex, from leaf tissues of Scoparia dulcis. Phylogenetic tree analysis of G-protein alpha-subunits from various biological sources suggested that, unlike in animal cells, classification of Galpha-proteins into specific subfamilies could not be applicable to the proteins from higher plants. Restriction digests of genomic DNA of S. dulcis showed a single hybridized signal in Southern blot analysis, suggesting that Sdga is a sole gene encoding Galpha-subunit in this plant. The expression level of Sdga appeared to be maintained at almost constant level after exposure of the leaves to methyl jasmonate as analyzed by reverse-transcription polymerase chain reaction. These results suggest that Sdga plays roles in methyl jasmonate-induced responses of S. dulcis without a notable change in the transcriptional level.

  4. Winter protein requirements of bobwhite quail

    USGS Publications Warehouse

    Nestler, R.B.; Bailey, W.W.; Llewellyn, L.M.; Rensberger, M.J.

    1944-01-01

    Three experiments involving 714 bobwhite quail were conducted at the Patuxent Research Refuge, Bowie, Maryland, during the winters of 1939-1941 to determine the protein requirement of quail maintained throug'h the winter.....Considering survival, live weights, feed consumption, and subsequent reproduction by the birds, the-9 to 13 per cent levels of crude dietary protein gave as good results as higher levels eggs, which in all cases was over 90 per and in some respects were better.....On the basis of these studies, it is recommended that the winter maintenance diet for bobwhite quail contain . about 11 to 12 per cent of crude protein. The following diet (parts by weight) conforms to these specifications and should be satisfactory:...Ground yellow corn 85.6....Dehvdrated alfalfa leaf meal 5 .O.....Soybean oil meal 7.0.....Special steamed bonemeal 1.2....Salt (or Salt Mixture II,see text) 1.0...Vitamin A and D feeding oil, fortified 0.2.

  5. Titan LEAF: A Sky Rover Granting Targeted Access to Titan's Lakes and Plains

    NASA Astrophysics Data System (ADS)

    Ross, Floyd; Lee, Greg; Sokol, Daniel; Goldman, Benjamin; Bolisay, Linden

    2016-10-01

    Northrop Grumman, in collaboration with L'Garde Inc. and Global Aerospace Corporation (GAC), has been developing the Titan Lifting Entry Atmospheric Flight (T-LEAF) sky rover to roam the atmosphere and observe at close quarters the lakes and plains of Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in situ instruments to the surface.T-LEAF is a maneuverable, buoyant air vehicle. Its aerodynamic shape provides its maneuverability, and its internal helium envelope reduces propulsion power requirements and also the risk of crashing. Because of these features, T-LEAF is not restricted to following prevailing wind patterns. This freedom of mobility allows it be commanded to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations.T-LEAF utilizes a variable power propulsion system, from high power at ~200W to low power at ~50W. High power mode uses the propellers and control surfaces for additional mobility and maneuverability. It also allows the vehicle to hover over specific locations for long duration surface observations. Low power mode utilizes GAC's Titan Winged Aerobot (TWA) concept, currently being developed with NASA funding, which achieves guided flight without the use of propellers or control surfaces. Although slower than high powered flight, this mode grants increased power to science instruments while still maintaining control over direction of travel.Additionally, T-LEAF is its own entry vehicle, with its leading edges protected by flexible thermal protection system (f-TPS) materials already being tested by NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) group. This f-TPS technology allows T-LEAF to inflate in space, like HIAD, and then enter the atmosphere fully deployed. This approach accommodates entry velocities from as low as ~1.8 km/s if entering from Titan orbit, up to ~6 km/s if entering directly from Saturn orbit, like the Huygens probe.This presentation will discuss each of these topic areas, showing that a sky rover like T-LEAF is an ideal option for exploration of both the surface and atmosphere of Titan.

  6. Estimating Leaf Water Potential of Giant Sequoia Trees from Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Francis, E. J.; Asner, G. P.

    2015-12-01

    Recent drought-induced forest dieback events have motivated research on the mechanisms of tree survival and mortality during drought. Leaf water potential, a measure of the force exerted by the evaporation of water from the leaf surface, is an indicator of plant water stress and can help predict tree mortality in response to drought. Scientists have traditionally measured water potentials on a tree-by-tree basis, but have not been able to produce maps of tree water potential at the scale of a whole forest, leaving forest managers unaware of forest drought stress patterns and their ecosystem-level consequences. Imaging spectroscopy, a technique for remote measurement of chemical properties, has been used to successfully estimate leaf water potentials in wheat and maize crops and pinyon-pine and juniper trees, but these estimates have never been scaled to the canopy level. We used hyperspectral reflectance data collected by the Carnegie Airborne Observatory (CAO) to map leaf water potentials of giant sequoia trees (Sequoiadendron giganteum) in an 800-hectare grove in Sequoia National Park. During the current severe drought in California, we measured predawn and midday leaf water potentials of 48 giant sequoia trees, using the pressure bomb method on treetop foliage samples collected with tree-climbing techniques. The CAO collected hyperspectral reflectance data at 1-meter resolution from the same grove within 1-2 weeks of the tree-level measurements. A partial least squares regression was used to correlate reflectance data extracted from the 48 focal trees with their water potentials, producing a model that predicts water potential of giant sequoia trees. Results show that giant sequoia trees can be mapped in the imagery with a classification accuracy of 0.94, and we predicted the water potential of the mapped trees to assess 1) similarities and differences between a leaf water potential map and a canopy water content map produced from airborne hyperspectral data, 2) spatial variability in leaf water potentials and, 3) relationships between water potential and tree leaf area, topography, and surrounding tree density. These results will help forest managers plan prescribed burns to maintain the health of giant sequoia trees during drought.

  7. Biophysical control of leaf temperature

    NASA Astrophysics Data System (ADS)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf and air temperature is generally neglected in terrestrial ecosystem and carbon cycle models. This is a significant omission that could lead to an over-estimation of the heat-stress vulnerability of carbon uptake in the wet tropics. Leaf energy balance theory is well established, and should be included in the next generation of models.

  8. Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens.

    PubMed

    Buerstmayr, Maria; Matiasch, Lydia; Mascher, Fabio; Vida, Gyula; Ittu, Marianna; Robert, Olivier; Holdgate, Sarah; Flath, Kerstin; Neumayer, Anton; Buerstmayr, Hermann

    2014-09-01

    We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL. The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.

  9. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest.

    PubMed

    Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard; Niklaus, Pascal A

    2016-01-01

    Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity-productivity relationship and that this translates into increased carbon storage in long-lived woody structures. Given the high growth rates of these forests during secondary succession, our results further indicate that a forest management promoting tree diversity after disturbance may accelerate CO2 sequestration from the atmosphere and thus be relevant in a climate-change context.

  10. Climate drivers of the Amazon forest greening.

    PubMed

    Wagner, Fabien Hubert; Hérault, Bruno; Rossi, Vivien; Hilker, Thomas; Maeda, Eduardo Eiji; Sanchez, Alber; Lyapustin, Alexei I; Galvão, Lênio Soares; Wang, Yujie; Aragão, Luiz E O C

    2017-01-01

    Our limited understanding of the climate controls on tropical forest seasonality is one of the biggest sources of uncertainty in modeling climate change impacts on terrestrial ecosystems. Combining leaf production, litterfall and climate observations from satellite and ground data in the Amazon forest, we show that seasonal variation in leaf production is largely triggered by climate signals, specifically, insolation increase (70.4% of the total area) and precipitation increase (29.6%). Increase of insolation drives leaf growth in the absence of water limitation. For these non-water-limited forests, the simultaneous leaf flush occurs in a sufficient proportion of the trees to be observed from space. While tropical cycles are generally defined in terms of dry or wet season, we show that for a large part of Amazonia the increase in insolation triggers the visible progress of leaf growth, just like during spring in temperate forests. The dependence of leaf growth initiation on climate seasonality may result in a higher sensitivity of these ecosystems to changes in climate than previously thought.

  11. High atmospheric carbon dioxide-dependent alleviation of salt stress is linked to RESPIRATORY BURST OXIDASE 1 (RBOH1)-dependent H2O2 production in tomato (Solanum lycopersicum).

    PubMed

    Yi, Changyu; Yao, Kaiqian; Cai, Shuyu; Li, Huizi; Zhou, Jie; Xia, Xiaojian; Shi, Kai; Yu, Jingquan; Foyer, Christine Helen; Zhou, Yanhong

    2015-12-01

    Plants acclimate rapidly to stressful environmental conditions. Increasing atmospheric CO2 levels are predicted to influence tolerance to stresses such as soil salinity but the mechanisms are poorly understood. To resolve this issue, tomato (Solanum lycopersicum) plants were grown under ambient (380 μmol mol(-1)) or high (760 μmol mol(-1)) CO2 in the absence or presence of sodium chloride (100mM). The higher atmospheric CO2 level induced the expression of RESPIRATORY BURST OXIDASE 1 (SlRBOH1) and enhanced H2O2 accumulation in the vascular cells of roots, stems, leaf petioles, and the leaf apoplast. Plants grown with higher CO2 levels showed improved salt tolerance, together with decreased leaf transpiration rates and lower sodium concentrations in the xylem sap, vascular tissues, and leaves. Silencing SlRBOH1 abolished high CO2 -induced salt tolerance and increased leaf transpiration rates, as well as enhancing Na(+) accumulation in the plants. The higher atmospheric CO2 level increased the abundance of a subset of transcripts involved in Na(+) homeostasis in the controls but not in the SlRBOH1-silenced plants. It is concluded that high atmospheric CO2 concentrations increase salt stress tolerance in an apoplastic H2O2 dependent manner, by suppressing transpiration and hence Na(+) delivery from the roots to the shoots, leading to decreased leaf Na(+) accumulation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Biotic and abiotic factors associated with altitudinal variation in plant traits and herbivory in a dominant oak species.

    PubMed

    Abdala-Roberts, Luis; Rasmann, Sergio; Berny-Mier Y Terán, Jorge C; Covelo, Felisa; Glauser, Gaétan; Moreira, Xoaquín

    2016-12-01

    It is generally thought that herbivore pressure is higher at lower elevations where climate is warmer and less seasonal, and that this has led to higher levels of plant defense investment at low elevations. However, the generality of this expectation has been called into question by recent studies. We tested for altitudinal gradients in insect leaf damage, plant defenses (phenolic compounds), and nutritional traits (phosphorus and nitrogen) in leaves of the long-lived tree Quercus robur, and further investigated the abiotic factors associated with such gradients. We sampled 20 populations of Q. robur distributed along an altitudinal gradient spanning 35-869 m above sea level, which covered most of the altitudinal range of this species and varied substantially in abiotic conditions, plant traits, and herbivory. Univariate regressions showed that leaf herbivory, phenolics, and phosphorus increased toward higher elevations, whereas leaf nitrogen did not vary with altitude. Multiple regression analyses indicated that temperature was the single most important factor associated with herbivory and appears to be strongly associated with altitudinal variation in damage. Leaf phenolics were also correlated with herbivory, but in a manner that suggests these chemical defenses do not underlie altitudinal variation in damage. In addition, we found that variation in leaf traits (phenolics and nutrients) was in turn associated with both climatic and soil variables. Overall, these findings suggest that altitudinal gradients in herbivory and defenses in Q. robur are uncoupled and that elevational variation in herbivory and plant traits responds mainly to abiotic factors. © 2016 Botanical Society of America.

  13. Light interception in species with different functional groups coexisting in moorland plant communities.

    PubMed

    Kamiyama, Chiho; Oikawa, Shimpei; Kubo, Takuya; Hikosaka, Kouki

    2010-11-01

    Competition for light is one of the most essential mechanisms affecting species composition. It has been suggested that similar light acquisition efficiency (Φ(mass), absorbed photon flux per unit aboveground mass) may contribute to species coexistence in multi-species communities. On the other hand, it is known that traits related with light acquisition vary among functional groups. We studied whether Φ(mass) was similar among species with different functional groups coexisting in moorland communities. We conducted stratified clipping in midsummer when the stand biomass reached a maximum. Light partitioning among species was estimated using a model accounting for both direct and diffuse light. Evergreen species were found to have a significantly lower Φ(mass) than deciduous species, which resulted from their lower absorbed photon flux per unit leaf area and lower specific leaf area. Shrubs had a smaller leaf mass fraction, but their Φ(mass) was not lower than that of herbs because they had a higher leaf position due to the presence of wintering stems. Species with vertical leaves had a higher Φ(mass) than those with horizontal leaves despite vertical leaves being a decided disadvantage in terms of light absorption. This higher Φ(mass) was achieved by a greater leaf height in species with vertical leaves. Our results clearly demonstrate that light acquisition efficiency was different among the functional groups. However, the trend observed is not necessarily the same as that expected based on prior knowledge, suggesting that disadvantages in some traits for light acquisition efficiency are partly compensated for by other traits.

  14. Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span

    PubMed Central

    Zhang, Jiao-Lin; Poorter, L.; Hao, Guang-You; Cao, Kun-Fang

    2012-01-01

    Background and Aims Photosynthetic thermotolerance (PT) is important for plant survival in tropical and sub-tropical savannas. However, little is known about thermotolerance of tropical and sub-tropical wild plants and its association with leaf phenology and persistence. Longer-lived leaves of savanna plants may experience a higher risk of heat stress. Foliar Ca is related to cell integrity of leaves under stresses. In this study it is hypothesized that (1) species with leaf flushing in the hot-dry season have greater PT than those with leaf flushing in the rainy season; and (2) PT correlates positively with leaf life span, leaf mass per unit area (LMA) and foliar Ca concentration ([Ca]) across woody savanna species. Methods The temperature-dependent increase in minimum fluorescence was measured to assess PT, together with leaf dynamics, LMA and [Ca] for a total of 24 woody species differing in leaf flushing time in a valley-type savanna in south-west China. Key Results The PT of the woody savanna species with leaf flushing in the hot-dry season was greater than that of those with leaf flushing in the rainy season. Thermotolerance was positively associated with leaf life span and [Ca] for all species irrespective of the time of flushing. The associations of PT with leaf life span and [Ca] were evolutionarily correlated. Thermotolerance was, however, independent of LMA. Conclusions Chinese savanna woody species are adapted to hot-dry habitats. However, the current maximum leaf temperature during extreme heat stress (44·3 °C) is close to the critical temperature of photosystem II (45·2 °C); future global warming may increase the risk of heat damage to the photosynthetic apparatus of Chinese savanna species. PMID:22875810

  15. SU-E-T-306: Dosimetric Comparison of Leaf with Or Without Interdigitation in Multiple Brain Metastasis VMAT Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Purpose: To evaluate the effects of leaf with or without interdigitation in multiple brain metastasis volumetric modulated arc therapy (VMAT) plans. Methods: Twenty patients with 2 to 6 brain metastases of our hospital were retrospectively studied to be planned with dual arc VMAT using Monaco 3.3 TPS on the Elekta Synergy linear accelerator. The prescription dose of PTV was 60Gy/30 fractions. Two plans with or without leaf interdigitation were designed. The homogeneity index (HI), conformity index (CI), dose volume histograms (DVHs), monitor unit (MU), treatment time (T), the segments, the dose coverage of the target, were all evaluated. Results: Themore » plans with leaf interdigitation could achieve better CI (p<0.05) than without leaf interdigitation, while no significant difference were found in HI (p> 0.05) and the dose coverage of the target (p> 0.05).The MU,T, and the segments of the plan with leaf interdigitation were more than the plan without leaf interdigitation (p<0.05). There was no significant difference found in radiation dose of spinal cord, lenses and parotids, while the maximum dose of brain stem of leaf without interdigitation was higher than leaf with interdigitation (p< 0.05). It was worth noting that the areas of low dose regions with leaf interdigitation plan were much less than the without leaf interdigitation plan in the doublication planes (p< 0.05). Conclusion: This study shows that leaf with interdigitation has some advantages than leaf without interdigitation in multiple brain metastasis VMAT plans although the clinical relevance remains to be proven.« less

  16. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress

    PubMed Central

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-01-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na+ efflux and H+ influx, but decreased net K+ efflux, which maintained a high cytosolic K+/Na+ ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K+ effluxes and decrease Na+ efflux and H+ influx in salt-treated transgenic roots, but the K+ effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na+/H+ antiport and K+ channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K+ and Na+ homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  17. Chloride regulates leaf cell size and water relations in tobacco plants

    PubMed Central

    Franco-Navarro, Juan D.; Brumós, Javier; Rosales, Miguel A.; Cubero-Font, Paloma; Talón, Manuel; Colmenero-Flores, José M.

    2016-01-01

    Chloride (Cl–) is a micronutrient that accumulates to macronutrient levels since it is normally available in nature and actively taken up by higher plants. Besides a role as an unspecific cell osmoticum, no clear biological roles have been explicitly associated with Cl– when accumulated to macronutrient concentrations. To address this question, the glycophyte tobacco (Nicotiana tabacum L. var. Habana) has been treated with a basal nutrient solution supplemented with one of three salt combinations containing the same cationic balance: Cl–-based (CL), nitrate-based (N), and sulphate+phosphate-based (SP) treatments. Under non-saline conditions (up to 5mM Cl–) and no water limitation, Cl– specifically stimulated higher leaf cell size and led to a moderate increase of plant fresh and dry biomass mainly due to higher shoot expansion. When applied in the 1–5mM range, Cl– played specific roles in regulating leaf osmotic potential and turgor, allowing plants to improve leaf water balance parameters. In addition, Cl– also altered water relations at the whole-plant level through reduction of plant transpiration. This was a consequence of a lower stomatal conductance, which resulted in lower water loss and greater photosynthetic and integrated water-use efficiency. In contrast to Cl–, these effects were not observed for essential anionic macronutrients such as nitrate, sulphate, and phosphate. We propose that the abundant uptake and accumulation of Cl– responds to adaptive functions improving water homeostasis in higher plants. PMID:26602947

  18. Impact assessment of leaf pigments in selected landscape plants exposed to roadside dust.

    PubMed

    Shah, Kamran; Amin, Noor Ul; Ahmad, Imran; Ara, Gulshan

    2018-06-02

    Continuous addition of undesired effluents to the environment affects foliar surface of leaf, changes their morphology, stomata, photosynthetic pigments, and biochemical constituents which result in massive damage due to persistent nature of the pollutant. In persistent hostile environment, plants fail to grow and develop, and the effects are often extensive. In current study, landscape plants were exposed to different levels of road dust to analyze the effect on various photosynthetic pigments. Dry roadside sediments were collected through a vacuum pump and passed through filters to get fine particles less than 100 μm and sprinkled on Euphorbia milii (EM), Gardenia jasminoides (GJ), and Hibiscus rosa-sinensis (HRs) by using a hand pump, twice daily at T 1 (control), T 2 , T 3 , and T 4 (0, 2, 4, and 6 g/plant, respectively) for a period of 3 months in green house. Road sediment significantly reduces leaf pigments in landscape plants population and the effects were more severe in high level of dust deposition. Individual response of EM, GJ, and HRs to different levels of road dust was variable; however, road sediment significantly reduces leaf pigments at high dose of roadside dust deposition. EM plants exposed to 2 g/plant roadside dust showed higher chlorophyll-a, chlorophyll-b, total chlorophyll, chlorophyllide-b, and polar carotenoid contents as compared to GJ and HRs. Leaf chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and polar carotenoid contents of EM were higher than GJ and HRs in T 3 and T 4 treatments. However HRs showed significantly higher protochlorophyllide, chlorophyllide-a, and pheophytin-b contents of leaf in T 4 group. EM was found as tolerant landscape plant followed by HRs. GJ was most vulnerable to road dust stress. Present study concludes that the entire biosynthesis of leaf pigments is in chain and interlinked together where effect of road dust on one pigment influences other pigments and their derivatives. Salient features of the present study provide useful evidence to estimate roadside dust as a major risk factor for plant pigments, and plants in green belt along roadside suffer retarded growth and fail to establish and develop.

  19. Fine mapping of virescent leaf gene v-1 in cucumber (Cucumis sativus L.)

    USDA-ARS?s Scientific Manuscript database

    The chloroplhyll gives the green color in plants. Any mutations in chloroplhyll biosynthesis or regulation may result in color changes. Leaf color mutants are common in higher plants, which can be used as markers in crop breeding or as a tool in understanding regulatory mechanisms in chlorophyll bio...

  20. Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species

    PubMed Central

    Grassein, Fabrice; Lemauviel-Lavenant, Servane; Lavorel, Sandra; Bahn, Michael; Bardgett, Richard D.; Desclos-Theveniau, Marie; Laîné, Philippe

    2015-01-01

    Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species’ coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies. Methods Root uptake of NH4+ and NO3–, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions. Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+. Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits. PMID:25471096

  1. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance.

    PubMed

    Yang, Xiaoe; Li, Tingqiang; Yang, Juncheng; He, Zhenli; Lu, Lingli; Meng, Fanhua

    2006-06-01

    Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 microM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 microM for 48 h. At 1,000 microM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.

  2. Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees

    PubMed Central

    Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio

    2016-01-01

    Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm3 cm−2, control: 1.77 ± 0.30 mm3 cm−2). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability. PMID:27614360

  3. Effects of water stress on irradiance acclimation of leaf traits in almond trees.

    PubMed

    Egea, Gregorio; González-Real, María M; Baille, Alain; Nortes, Pedro A; Conesa, María R; Ruiz-Salleres, Isabel

    2012-04-01

    Photosynthetic acclimation to highly variable local irradiance within the tree crown plays a primary role in determining tree carbon uptake. This study explores the plasticity of leaf structural and physiological traits in response to the interactive effects of ontogeny, water stress and irradiance in adult almond trees that have been subjected to three water regimes (full irrigation, deficit irrigation and rain-fed) for a 3-year period (2006-08) in a semiarid climate. Leaf structural (dry mass per unit area, N and chlorophyll content) and photosynthetic (maximum net CO(2) assimilation, A(max), maximum stomatal conductance, g(s,max), and mesophyll conductance, g(m)) traits and stem-to-leaf hydraulic conductance (K(s-l)) were determined throughout the 2008 growing season in leaves of outer south-facing (S-leaves) and inner northwest-facing (NW-leaves) shoots. Leaf plasticity was quantified by means of an exposure adjustment coefficient (ε=1-X(NW)/X(S)) for each trait (X) of S- and NW-leaves. Photosynthetic traits and K(s-l) exhibited higher irradiance-elicited plasticity (higher ε) than structural traits in all treatments, with the highest and lowest plasticity being observed in the fully irrigated and rain-fed trees, respectively. Our results suggest that water stress modulates the irradiance-elicited plasticity of almond leaves through changes in crown architecture. Such changes lead to a more even distribution of within-crown irradiance, and hence of the photosynthetic capacity, as water stress intensifies. Ontogeny drove seasonal changes only in the ε of area- and mass-based N content and mass-based chlorophyll content, while no leaf age-dependent effect was observed on ε as regards the physiological traits. Our results also indicate that the irradiance-elicited plasticity of A(max) is mainly driven by changes in leaf dry mass per unit area, in g(m) and, most likely, in the partitioning of the leaf N content.

  4. Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars.

    PubMed

    Kerio, L C; Wachira, F N; Wanyoko, J K; Rotich, M K

    2013-02-15

    Black (aerated) and green (unaerated) tea products, processed from 10 green and 18 purple leaf coloured cultivars of Kenyan origin, and two tea products, from the Japanese cultivars, Yabukita and Yutakamidori, were assayed for total polyphenols (TP) content, individual catechin profiles and in vitro antioxidant capacity (AA). In addition, the phenolic content of the tea products was determined using the Folin-Ciocalteu phenol reagent. Catechin fractions were identified using reverse phase high performance liquid chromatography (HPLC) with a binary gradient elution system. The AA% of the tea products was determined using a 2,2'-diphenyl picrylhydrazyl (DPPH) radical assay method. The results showed that TPs, catechin profiles and antioxidant activities were significantly (p≤0.05) higher in unaerated than in aerated teas. Tea products from the purple leaf coloured tea cultivars had levels of TPs, total catechin (TC) and antioxidant activities similar to those from the green leaf coloured cultivars, except for teas from the Japanese cultivars that were very low in the assayed parameters. Caffeine content was significantly (p≤0.05) lower in products from the purple leaf coloured cultivars than in those from the green leaf coloured tea cultivars. Antioxidant activity (%) was higher in tea products from the Kenyan germplasm than in those from the Japanese cultivars. Antioxidant potency of tea products was significantly (r=0.789(∗∗), p≤0.01) influenced by the total anthocyanin content of the purple leaf coloured cultivars. Cyanidin-3-O-glucoside was the anthocyanin most highly correlated with AA% (r=0.843(∗∗), p≤0.01 in unaerated tea). Total catechins in the unaerated products from the green leaf coloured tea cultivars were also significantly correlated with antioxidant capacity (r=0.818(∗∗), p≤0.01). Results from this study suggest that the antioxidant potency of teas is dependent on the predominant flavonoid compound, the type of tea cultivar and the processing method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Red (anthocyanic) leaf margins do not correspond to increased phenolic content in New Zealand Veronica spp.

    PubMed Central

    Hughes, Nicole M.; Smith, William K.; Gould, Kevin S.

    2010-01-01

    Background and Aims Red or purple coloration of leaf margins is common in angiosperms, and is found in approx. 25 % of New Zealand Veronica species. However, the functional significance of margin coloration is unknown. We hypothesized that anthocyanins in leaf margins correspond with increased phenolic content in leaf margins and/or the leaf entire, signalling low palatability or leaf quality to edge-feeding insects. Methods Five species of Veronica with red leaf margins, and six species without, were examined in a common garden. Phenolic content in leaf margins and interior lamina regions of juvenile and fully expanded leaves was quantified using the Folin–Ciocalteu assay. Proportions of leaf margins eaten and average lengths of continuous bites were used as a proxy for palatability. Key Results Phenolic content was consistently higher in leaf margins compared with leaf interiors in all species; however, neither leaf margins nor more interior tissues differed significantly in phenolic content with respects to margin colour. Mean phenolic content was inversely correlated with the mean length of continuous bites, suggesting effective deterrence of grazing. However, there was no difference in herbivore consumption of red and green margins, and the plant species with the longest continuous grazing patterns were both red-margined. Conclusions Red margin coloration was not an accurate indicator of total phenolic content in leaf margins or interior lamina tissue in New Zealand Veronica. Red coloration was also ineffective in deterring herbivory on the leaf margin, though studies controlling for variations in leaf structure and biochemistry (e.g. intra-specific studies) are needed before more precise conclusions can be drawn. It is also recommended that future studies focus on the relationship between anthocyanin and specific defence compounds (rather than general phenolic pools), and evaluate possible alternative functions of red margins in leaves (e.g. antioxidants, osmotic adjustment). PMID:20145003

  6. Spectroscopic determination of leaf traits using infrared spectra

    NASA Astrophysics Data System (ADS)

    Buitrago, Maria F.; Groen, Thomas A.; Hecker, Christoph A.; Skidmore, Andrew K.

    2018-07-01

    Leaf traits characterise and differentiate single species but can also be used for monitoring vegetation structure and function. Conventional methods to measure leaf traits, especially at the molecular level (e.g. water, lignin and cellulose content), are expensive and time-consuming. Spectroscopic methods to estimate leaf traits can provide an alternative approach. In this study, we investigated high spectral resolution (6612 bands) emissivity measurements from the short to the long wave infrared (1.4-16.0 μm) of leaves from 19 different plant species ranging from herbaceous to woody, and from temperate to tropical types. At the same time, we measured 14 leaf traits to characterise a leaf, including chemical (e.g., leaf water content, nitrogen, cellulose) and physical features (e.g., leaf area and leaf thickness). We fitted partial least squares regression (PLSR) models across the SWIR, MWIR and LWIR for each leaf trait. Then, reduced models (PLSRred) were derived by iteratively reducing the number of bands in the model (using a modified Jackknife resampling method with a Martens and Martens uncertainty test) down to a few bands (4-10 bands) that contribute the most to the variation of the trait. Most leaf traits could be determined from infrared data with a moderate accuracy (65 < Rcv2 < 77% for observed versus predicted plots) based on PLSRred models, while the accuracy using the whole infrared range (6612 bands) presented higher accuracies, 74 < Rcv2 < 90%. Using the full SWIR range (1.4-2.5 μm) shows similarly high accuracies compared to the whole infrared. Leaf thickness, leaf water content, cellulose, lignin and stomata density are the traits that could be estimated most accurately from infrared data (with Rcv2 above 0.80 for the full range models). Leaf thickness, cellulose and lignin were predicted with reasonable accuracy from a combination of single infrared bands. Nevertheless, for all leaf traits, a combination of a few bands yields moderate to accurate estimations.

  7. Analysis of soybean leaf metabolism and seed coat transcriptome reveal sink strength is maintained under abiotic stress conditions

    USDA-ARS?s Scientific Manuscript database

    The seed coat is a vital tissue for directing the flow of photosynthate from source leaves to the embryo and cotyledons during seed development. By forming a sucrose gradient, the seed coat promotes transport of sugars from source leaves to seeds, thereby establishing sink strength. Understanding th...

  8. Cyclic electron flow, NPQ and photorespiration are crucial for the establishment of young plants of Ricinus communis and Jatropha curcas exposed to drought.

    PubMed

    Lima Neto, M C; Cerqueira, J V A; da Cunha, J R; Ribeiro, R V; Silveira, J A G

    2017-07-01

    Although plant physiological responses to drought have been widely studied, the interaction between photoprotection, photorespiration and antioxidant metabolism in water-stressed plants is scarcely addressed. This study aimed to evaluate the physiological adjustments preserving photosynthesis and growth in two plant species with different tolerance to drought: Jatropha curcas and Ricinus communis. We measured stress indicators, gas exchange, photochemistry of PSII and PSI, antioxidant enzymes, cyclic electron flow and photorespiration. Physiological stress indicators associated with reduction in growth confirmed R. communis as sensitive and J. curcas as tolerant to drought. Drought induced loss of photosynthesis in R. communis, whereas J. curcas maintained higher leaf gas exchange and photochemistry under drought. In addition, J. curcas showed higher dissipation of excess energy and presented higher cyclic electron flow when exposed to drought. Although none of these mechanisms have been triggered in R. communis, this species showed increases in photorespiration. R. communis displayed loss of Rubisco content while the Rubisco relative abundance did not change in J. curcas under drought. Accordingly, the in vivo maximum Rubisco carboxylation rate (V cmax ) and the maximum photosynthetic electron transport rate driving RuBP regeneration (J max ) were less affected in J. curcas. Both species displayed an efficient antioxidant mechanism by increasing activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD). Overall, we suggest that the modulation of different photoprotective mechanisms is crucial to mitigate the effects caused by excess energy, maintaining photosynthetic apparatus efficiency and promoting the establishment of young plants of these two species under drought. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Rock Hole Habitats of a Feral Population of Aedes aegypti on the Island of Anguilla, West Indies

    DTIC Science & Technology

    1983-03-01

    htAHCH, 1983 MOSQUITO NEWS $9 tions of medical importance. Annu. Rev. Entomol. 13:427-450. Fish, D. and S. R. Carpenter. 1982. Leaf litter and...Aedes mgspi larvae (ruler length is 0.31 m). it1 bare rock holes or those containing leaf litter arid/or soil. Larval densities are usually higher in...shade cover. At one end there is a la! er of leaf litter, the remainder has ;I thin mud layer over its rock bottom. During this time, the hole filled

  10. Production of Ginkgo leaf-shaped basidiocarps of the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes), containing high levels of α- and β-D-glucan and ganoderic acid A.

    PubMed

    Yajima, Yuka; Miyazaki, Minoru; Okita, Noriyasu; Hoshino, Tamotsu

    2013-01-01

    Ganoderic acid A and α- and β-D-glucan content were compared among morphologically different basidiocarps of the medicinal mushroom Ganoderma lucidum. Ginkgo leaf-shaped basidiocarps gradually hardened from the base to the pileus and accumulated a higher amount of bioactive components than normal (kidney-shaped) and antler/deer horn-shaped basidiocarps. In the normal G. lucidum stipe, the outer context contained the highest amount of α- and β-D-glucan (approximately 55%) and the highest amount of ganoderic acid A (approximately 0.3%). Ginkgo leaf-shaped G. lucidum had a large area of outer layer and stout outer context, which contributed to their high α- and β-D-glucan and ganoderic acid A content.

  11. Carbon redistribution during interrill erosion in subtropical forests: Effects of leaf litter diversity and soil fauna

    NASA Astrophysics Data System (ADS)

    Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas

    2016-04-01

    Soil erosion is crucial for degradation of carbon (C) from their pools in the soil. If C of the eroded sediment and runoff are not only related to soil pools but also resulting additively from decomposition of litter cover, the system gets more complex. The role of these amounts for C cycling in a forest environment is not yet known properly and thus, the aim of this study was to investigate the role of leaf litter diversity, litter cover and soil fauna on C redistribution during interrill erosion. We established 96 runoff plots that were deployed with seven domestic leaf litter species resulting in none species (bare ground), 1-species, 2-species and 4-species mixtures. Every second runoff plot was equipped with a fauna extinction feature to investigate the role of soil meso- and macrofauna. Erosion processes were initiated using a rainfall simulator at two time steps (summer 2012 and autumn 2012) to investigate the role of leaf litter decomposition on C redistribution. C fluxes during 20 min rainfall simulation were 99.13 ± 94.98 g/m². C fluxes and C contents both were affected by soil fauna. C fluxes were higher with presence of soil fauna due to loosening and slackening of the soil surface rather than due to faster decomposition of leaves. In contrast, C contents were higher in the absence of soil fauna possibly resulting from a missing dilution effect in the top soil layer. Leaf litter diversity did not affect C fluxes, but indirectly affected C contents as it increased the soil fauna effect with higher leaf litter diversity due to superior food supply. Initial C contents in the soil mainly determined those of the eroded sediment. For future research, it will be essential to introduce a long-term decomposition experiment to get further insights into the processes of C redistribution.

  12. Is There a Relation between the Microscopic Leaf Morphology and the Association of Salmonella and Escherichia coli O157:H7 with Iceberg Lettuce Leaves?

    PubMed

    VAN der Linden, Inge; Eriksson, Markus; Uyttendaele, Mieke; Devlieghere, Frank

    2016-10-01

    To prevent contamination of fresh produce with enteric pathogens, more insight into mechanisms that may influence the association of these pathogens with fresh produce is needed. In this study, Escherichia coli O157:H7 and Salmonella were chosen as model pathogens, and fresh cut iceberg lettuce was chosen as a model fresh produce type. The morphological structure of iceberg lettuce leaves (stomatal density and length of cell margins per leaf area) was quantified by means of leaf peels and light microscopy of leaves at different stages of development (outer, middle, and inner leaves of the crop) on both leaf sides (abaxial and adxial) and in three leaf regions (top, center, and bottom). The morphology of the top region of the leaves was distinctly different from that of the center and base, with a significantly higher stomatal density (up to five times more stomata), different cell shape, and longer cell margins (two to three times longer). Morphological differences between the same regions of the leaves at different stages of development were smaller or nonsignificant. An attachment assay with two attenuated E. coli O157:H7 strains (84-24h11-GFP and BRMSID 188 GFP) and two Salmonella strains (serovars Thompson and Typhimurium) was performed on different regions of the middle leaves. Our results confirmed earlier reports that these pathogens have a higher affinity for the base of the lettuce leaf than the top. Differences of up to 2.12 log CFU/g were seen ( E. coli O157:H7 86-24h11-GFP). Intermediate attachment occurred in the central region. The higher incidence of preferential bacterial attachment sites such as stomata and cell margins or grooves could not explain the differences observed in the association of the tested pathogens with different regions of iceberg lettuce leaves.

  13. Development of Methodology and Technology for Identifying and Quantifying Emission Products from Open Burning and Open Detonation Thermal Treatment Methods. Field Test Series A, B, and C. Volume 2, Part A. Quality Assurance and Quality Control

    DTIC Science & Technology

    1992-01-01

    instrument logbook was maintained, but all calibration printouts for the SFC/MS were put in a dedicated loose- leaf notebook. The temperature of the...to-date temperature - monitoring sheets were located at the freezer. Each worker maintained a project-specific personal logbook to enter data...driven 10-cm-diameter gate valve into a 1.5-m3 carbon-impregnated polyethylene ( Velostat 7") sampling bag. The bag, constructed of electrically

  14. Psidium guajava and Piper betle leaf extracts prolong vase life of cut carnation (Dianthus caryophyllus) flowers.

    PubMed

    Rahman, M M; Ahmad, S H; Lgu, K S

    2012-01-01

    The effect of leaf extracts of Psidium guajava and Piper betle on prolonging vase life of cut carnation flowers was studied. "Carola" and "Pallas Orange" carnation flowers, at bud stage, were pulsed 24 hours with a floral preservative. Then, flowers were placed in a vase solution containing sprite and a "germicide" (leaf extracts of P. guajava and P. betle, 8-HQC, or a copper coin). Flowers treated with 8-HQC, copper coin, and leaf extracts had longer vase life, larger flower diameter, and higher rate of water uptake compared to control (tap water). The leaf extracts of P. guajava and P. betle showed highest antibacterial and antifungal activities compared to the other treatments. Both showed similar effects on flower quality as the synthetic germicide, 8-HQC. Therefore, these extracts are likely natural germicides to prolong vase life of cut flowers.

  15. Psidium guajava and Piper betle Leaf Extracts Prolong Vase Life of Cut Carnation (Dianthus caryophyllus) Flowers

    PubMed Central

    Rahman, M. M.; Ahmad, S. H.; Lgu, K. S.

    2012-01-01

    The effect of leaf extracts of Psidium guajava and Piper betle on prolonging vase life of cut carnation flowers was studied. “Carola” and “Pallas Orange” carnation flowers, at bud stage, were pulsed 24 hours with a floral preservative. Then, flowers were placed in a vase solution containing sprite and a “germicide” (leaf extracts of P. guajava and P. betle, 8-HQC, or a copper coin). Flowers treated with 8-HQC, copper coin, and leaf extracts had longer vase life, larger flower diameter, and higher rate of water uptake compared to control (tap water). The leaf extracts of P. guajava and P. betle showed highest antibacterial and antifungal activities compared to the other treatments. Both showed similar effects on flower quality as the synthetic germicide, 8-HQC. Therefore, these extracts are likely natural germicides to prolong vase life of cut flowers. PMID:22619568

  16. Effect of Piper betle L. and its extracts on the growth and aflatoxin production by Aspergillus parasiticus.

    PubMed

    Chou, C C; Yu, R C

    1984-01-01

    Ground powder of the leaf and fruit of Piper betle L., a tropical spice plant grown in Southeast Asia, was prepared and extracted by chloroform, ethanol and water with one solvent only or with 3 solvents in sequence. The betel powder and various extracts were added to YES broth to determine their effects on the growth and aflatoxin production by Aspergillus parasiticus. Results showed that betel leaf powder exhibited higher antimycotic activity than fruit. One half percent of ground leaf powder completely inhibited the growth and aflatoxin production by A. parasiticus. Among the solvent extracts, chloroform and ethanol extracts of betel leaf prepared from a single solvent extraction showed more antimycotic activity. The ethanol extract of betel leaf at the level of 450 micrograms/ml would eliminate A. parasiticus growth and aflatoxin production. The antimycotic activity of this ethanol extract was most pronounced at pH 4.

  17. Salivary ascorbic acid levels in betel quid chewers: A biochemical study

    PubMed Central

    Shetty, Shishir R.; Babu, Subhas; Kumari, Suchetha; Prasad, Rajendra; Bhat, Supriya; Fazil, K. A.

    2013-01-01

    Background: Quid chewing practice has been a part of our tradition since centuries with little known evidence of oral cancer. However, recent trends show a rise in occurrence of oral cancer often associated with tobacco and arecanut usage. Ascorbic acid is an important salivary antioxidant. Betel leaf which is used in quid is known to contain ascorbic acid. Aim: The aim of our study was to assess the salivary levels of ascorbic acid in traditional quid chewers so as to determine whether the betel leaf has protective antioxidant action. Materials and Methods: Salivary ascorbic acid levels of 60 subjects were estimated using the Dinitrophenyl hydrazine method. Results: The results revealed that quid chewers who used betel leaf had higher salivary ascorbic acid content compared to nonbetel leaf quid chewers. This could possibly be due to the protective antioxidants in the betel leaf. PMID:24455594

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capone, D.G.; Penhale, P.A.; Oremland, R.S.

    N/sub 2/ (C/sub 2/H/sub 2/) fixation and primary production were measured in communities of Thalassia testudinum at two sites in Bimini Harbor (Bahamas). Production was determined by uptake of (/sup 14/C)NaHCO/sub 3/, by leaf growth measurements, and by applying an empirical formula based on leaf dimensions. The last two methods gave similar results but the /sup 14/C method gave higher values. Anaerobic sediment N/sub 2/ fixation supplied about 1/4 to 1/2 of the nitrogen demand for leaf production (by leaf growth method) and there was a significant correlation between N/sub 2/ fixation and CO/sub 2/ fixation rates when all componentsmore » of the communities were considered (macrophyte, phyllosphere epiphytes, and detrital leaves). N/sub 2/ fixation is important to production in Thalassia communities and the plant and its leaf epiphytes may be distinct entities in terms of nitrogen and carbon metabolism.« less

  19. Association of microRNAs with Types of Leaf Curvature in Brassica rapa.

    PubMed

    Ren, Wenqing; Wang, Han; Bai, Jinjuan; Wu, Feijie; He, Yuke

    2018-01-01

    Many vegetable crops of Brassica rapa are characterized by their typical types of leaf curvature. Leaf curvature in the right direction and to the proper degree is important for the yield and quality of green vegetable products, when cultivated under stress conditions. Recent research has unveiled some of the roles of miRNAs in Brassica crops such as how they regulate the timing of leafy head initiation and shape of the leafy head. However, the molecular mechanism underlying the variability in leaf curvature in B. rapa remains unclear. We tested the hypothesis that the leaf curvature of B. rapa is affected by miRNA levels. On the basis of leaf phenotyping, 56 B. rapa accessions were classified into five leaf curvature types, some of which were comparable to miRNA mutants of Arabidopsis thaliana in phenotype. Higher levels of miR166 and miR319a expression were associated with downward curvature and wavy margins, respectively. Overexpression of the Brp - MIR166g-1 gene caused rosette leaves to change from flat to downward curving and folding leaves to change from upward curving to flat, leading to the decrease in the number of incurved leaves and size of the leafy head. Our results reveal that miRNAs affect the types of leaf curvature in B. rapa . These findings provide insight into the relationship between miRNAs and variation in leaf curvature.

  20. Association of microRNAs with Types of Leaf Curvature in Brassica rapa

    PubMed Central

    Ren, Wenqing; Wang, Han; Bai, Jinjuan; Wu, Feijie; He, Yuke

    2018-01-01

    Many vegetable crops of Brassica rapa are characterized by their typical types of leaf curvature. Leaf curvature in the right direction and to the proper degree is important for the yield and quality of green vegetable products, when cultivated under stress conditions. Recent research has unveiled some of the roles of miRNAs in Brassica crops such as how they regulate the timing of leafy head initiation and shape of the leafy head. However, the molecular mechanism underlying the variability in leaf curvature in B. rapa remains unclear. We tested the hypothesis that the leaf curvature of B. rapa is affected by miRNA levels. On the basis of leaf phenotyping, 56 B. rapa accessions were classified into five leaf curvature types, some of which were comparable to miRNA mutants of Arabidopsis thaliana in phenotype. Higher levels of miR166 and miR319a expression were associated with downward curvature and wavy margins, respectively. Overexpression of the Brp-MIR166g-1 gene caused rosette leaves to change from flat to downward curving and folding leaves to change from upward curving to flat, leading to the decrease in the number of incurved leaves and size of the leafy head. Our results reveal that miRNAs affect the types of leaf curvature in B. rapa. These findings provide insight into the relationship between miRNAs and variation in leaf curvature. PMID:29467771

Top