Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne
2017-01-01
Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.
Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne
2017-01-01
Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity. PMID:28060865
What’s the Damage? The Impact of Pathogens on Pathways that Maintain Host Genome Integrity
Weitzman, Matthew D.; Weitzman, Jonathan B.
2014-01-01
Maintaining genome integrity and transmission of intact genomes is critical for cellular, organismal, and species survival. Cells can detect damaged DNA, activate checkpoints, and either enable DNA repair or trigger apoptosis to eliminate the damaged cell. Aberrations in these mechanisms lead to somatic mutations and genetic instability, which are hallmarks of cancer. Considering the long history of host-microbe coevolution, an impact of microbial infection on host genome integrity is not unexpected, and emerging links between microbial infections and oncogenesis further reinforce this idea. In this review, we compare strategies employed by viruses, bacteria, and parasites to alter, subvert, or otherwise manipulate host DNA damage and repair pathways. We highlight how microbes contribute to tumorigenesis by directly inducing DNA damage, inactivating checkpoint controls, or manipulating repair processes. We also discuss indirect effects resulting from inflammatory responses, changes in cellular metabolism, nuclear architecture, and epigenome integrity, and the associated evolutionary tradeoffs. PMID:24629335
The nucleolus—guardian of cellular homeostasis and genome integrity.
Grummt, Ingrid
2013-12-01
All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.
The lysosomal membrane protein SCAV-3 maintains lysosome integrity and adult longevity
Li, Yuan; Chen, Baohui; Zou, Wei; Wang, Xin; Wu, Yanwei; Zhao, Dongfeng; Sun, Yanan; Liu, Yubing
2016-01-01
Lysosomes degrade macromolecules and recycle metabolites as well as being involved in diverse processes that regulate cellular homeostasis. The lysosome is limited by a single phospholipid bilayer that forms a barrier to separate the potent luminal hydrolases from other cellular constituents, thus protecting the latter from unwanted degradation. The mechanisms that maintain lysosomal membrane integrity remain unknown. Here, we identified SCAV-3, the Caenorhabditis elegans homologue of human LIMP-2, as a key regulator of lysosome integrity, motility, and dynamics. Loss of scav-3 caused rupture of lysosome membranes and significantly shortened lifespan. Both of these phenotypes were suppressed by reinforced expression of LMP-1 or LMP-2, the C. elegans LAMPs, indicating that longevity requires maintenance of lysosome integrity. Remarkably, reduction in insulin/insulin-like growth factor 1 (IGF-1) signaling suppressed lysosomal damage and extended the lifespan in scav-3(lf) animals in a DAF-16–dependent manner. Our data reveal that SCAV-3 is essential for preserving lysosomal membrane stability and that modulation of lysosome integrity by the insulin/IGF-1 signaling pathway affects longevity. PMID:27810910
Fisher-Wellman, Kelsey H.; Lin, Chien-Te; Ryan, Terence E.; Reese, Lauren R.; Gilliam, Laura A. A.; Cathey, Brook L.; Lark, Daniel S.; Smith, Cody D.; Muoio, Deborah M.; Neufer, P. Darrell
2015-01-01
SUMMARY Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+:NADH) and anabolic (NADP+:NADPH) processes integrate during metabolism to maintain cellular redox homeostasis however is unknown. The present work identifies a continuously cycling, mitochondrial membrane potential-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced however is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyzes the regeneration of NADPH from NADH at the expense of the mitochondrial membrane potential. The net effect is an automatic fine tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy expenditure rates, consistent with their well known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homeostasis is maintained and body weight is defended during periods of positive and negative energy balance. PMID:25643703
Fisher-Wellman, Kelsey H; Lin, Chien-Te; Ryan, Terence E; Reese, Lauren R; Gilliam, Laura A A; Cathey, Brook L; Lark, Daniel S; Smith, Cody D; Muoio, Deborah M; Neufer, P Darrell
2015-04-15
Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+/NADH) and anabolic (NADP+/NADPH) processes integrate during metabolism to maintain cellular redox homoeostasis, however, is unknown. The present work identifies a continuously cycling mitochondrial membrane potential (ΔΨm)-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced, however, is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyses the regeneration of NADPH from NADH at the expense of ΔΨm. The net effect is an automatic fine-tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy-expenditure rates, consistent with their well-known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homoeostasis is maintained and body weight is defended during periods of positive and negative energy balance.
Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response.
Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E; Harper, J Wade; Elledge, Stephen J
2014-12-30
The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage.
Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response
Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E.; Harper, J. Wade; Elledge, Stephen J.
2014-01-01
The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage. PMID:25512513
Rault, Aline; Bouix, Marielle; Béal, Catherine
2008-12-01
This study aimed at examining and comparing the relevance of various methods in order to discriminate different cellular states of Lactobacillus bulgaricus CFL1 and to improve knowledge on the dynamics of the cellular physiological state during growth and acidification. By using four fluorescent probes combined with multiparametric flow cytometry, membrane integrity, intracellular esterase activity, cellular vitality, membrane depolarization, and intracellular pH were quantified throughout fermentations. Results were compared and correlated with measurements of cultivability, acidification activity (Cinac system), and cellular ability to recover growth in fresh medium (Bioscreen system). The Cinac system and flow cytometry were relevant to distinguish different physiological states throughout growth. Lb. bulgaricus cells maintained their high viability, energetic state, membrane potential, and pH gradient in the late stationary phase, despite the gradual decrease of both cultivability and acidification activity. Viability and membrane integrity were maintained during acidification, at the expense of their cultivability and acidification activity. Finally, this study demonstrated that the physiological state during fermentation was strongly affected by intracellular pH and the pH gradient. The critical pHi of Lb. bulgaricus CFL1 was found to be equal to pH 5.8. Through linear relationships between dpH and cultivability and pHi and acidification activity, pHi and dpH well described the time course of metabolic activity, cultivability, and viability in a single analysis.
Cellular Strategies of Protein Quality Control
Chen, Bryan; Retzlaff, Marco; Roos, Thomas; Frydman, Judith
2011-01-01
Eukaryotic cells must contend with a continuous stream of misfolded proteins that compromise the cellular protein homeostasis balance and jeopardize cell viability. An elaborate network of molecular chaperones and protein degradation factors continually monitor and maintain the integrity of the proteome. Cellular protein quality control relies on three distinct yet interconnected strategies whereby misfolded proteins can either be refolded, degraded, or delivered to distinct quality control compartments that sequester potentially harmful misfolded species. Molecular chaperones play a critical role in determining the fate of misfolded proteins in the cell. Here, we discuss the spatial and temporal organization of cellular quality control strategies and their implications for human diseases linked to protein misfolding and aggregation. PMID:21746797
Nordberg, Rachel C; Charoenpanich, Adisri; Vaughn, Christopher E; Griffith, Emily H; Fisher, Matthew B; Cole, Jacqueline H; Spang, Jeffrey T; Loboa, Elizabeth G
2016-10-28
The meniscus plays a crucial role in knee joint stability, load transmission, and stress distribution. Meniscal tears are the most common reported knee injuries, and the current standard treatment for meniscal deficiency is meniscal allograft transplantation. A major limitation of this approach is that meniscal allografts do not have the capacity to remodel and maintain tissue homeostasis due to a lack of cellular infiltration. The purpose of this study was to provide a new method for enhanced cellular infiltration in meniscal allografts. Twenty medial menisci were collected from cadaveric human sources and split into five experimental groups: (1) control native menisci, (2) decellularized menisci, (3) decellularized menisci seeded with human adipose-derived stem cells (hASC), (4) decellularized needle-punched menisci, and (5) decellularized needle-punched menisci seeded with hASC. All experimental allografts were decellularized using a combined method with trypsin EDTA and peracetic acid. Needle punching (1-mm spacing, 28 G microneedle) was utilized to improve porosity of the allograft. Samples were recellularized with hASC at a density of 250 k/g of tissue. After 28 days of in vitro culture, menisci were analyzed for mechanical, biochemical, and histological characteristics. Menisci maintained structural integrity and material properties (compressive equilibrium and dynamic moduli) throughout preparations. Increased DNA content was observed in the needle-punched menisci but not in the samples without needle punching. Histology confirmed these results, showing enhanced cellular infiltration in needle-punched samples. The enhanced infiltration achieved in this study could help meniscal allografts better remodel post-surgery. The integration of autologous adipose-derived stem cells could improve long-term efficacy of meniscal transplantation procedures by helping to maintain the meniscus in vivo.
Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor.
Granovsky, Alexey E; Rosner, Marsha Rich
2008-04-01
Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkappaB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.
Mah, Li Yen; Ryan, Kevin M.
2012-01-01
(Macro)autophagy is a cellular membrane trafficking process that serves to deliver cytoplasmic constituents to lysosomes for degradation. At basal levels, it is critical for maintaining cytoplasmic as well as genomic integrity and is therefore key to maintaining cellular homeostasis. Autophagy is also highly adaptable and can be modified to digest specific cargoes to bring about selective effects in response to numerous forms of intracellular and extracellular stress. It is not a surprise, therefore, that autophagy has a fundamental role in cancer and that perturbations in autophagy can contribute to malignant disease. We review here the roles of autophagy in various aspects of tumor suppression including the response of cells to nutrient and hypoxic stress, the control of programmed cell death, and the connection to tumor-associated immune responses. PMID:22166310
Coakley, Daniel N; Shaikh, Faisal M; O'Sullivan, Kathleen; Kavanagh, Eamon G; Grace, Pierce A; McGloughlin, Tim M
2016-02-01
The pre-conditioning of tissue-engineered vascular scaffolds with mechanical stimuli is being recognised as an essential step in producing a functional vascular construct. In this study we design and evaluate a novel bioreactor, which exerts a mechanical strain on developing vascular scaffolds via subatmospheric pressure. We design and construct a bioreactor, which exerts subatmospheric pressure via a vacuum assisted closure unit. Vascular scaffolds seeded with human umbilical endothelial cells were evaluated for structural integrity, microbial contamination, cellular viability, von Willebrand factor (VWF) production, cell proliferation and morphology under a range of subatmospheric pressures (75-200mmHg). The bioreactor produced sustained subatmospheric pressures, which exerted a mechanical strain on the vascular scaffold. No microbial contamination was found during the study. The structural integrity of the vascular construct was maintained. There was no difference in cellular viability between control or subatmospheric pressure groups (p = 0.817). Cells continued to produce VWF under a range of subatmospheric pressures. Cells subjected to subatmospheric pressures of 125mmHg and 200mmHg exhibited higher levels of growth than cells in atmospheric pressure at 24 (p≤0.016) and 48 hour (p≤0.001). Negative pressure affected cellular morphology, which were more organised, elongated and expanded when exposed to subatmospheric pressure. We have constructed and validated a novel subatmospheric bioreactor. The bioreactor maintained a continuous subatmospheric pressure to the vascular scaffolds in a stable, sterile and constant environment. The bioreactor exerted a strain on the vascular sheets, which was shown to alter cellular morphology and enhance cellular proliferation.
Mitotic trafficking of silicon microparticles†
Serda, Rita E.; Ferrati, Silvia; Godin, Biana; Tasciotti, Ennio; Liu, XueWu
2010-01-01
Multistage carriers were recently introduced by our laboratory, with the concurrent objectives of co-localized delivery of multiple therapeutic agents, the “theranostic” integration of bioactive moieties with imaging contrast, and the selective, potentially personalized bypassing of the multiplicity of biological barriers that adversely impact biodistribution of vascularly injected particulates. Mesoporous (“nanoporous”) silicon microparticles were selected as primary carriers in multi-stage devices, with targets including vascular endothelia at pathological lesions. The objective of this study was to evaluate biocompatibility of mesoporous silicon microparticles with endothelial cells using in vitro assays with an emphasis on microparticle compatibility with mitotic events. We observed that vascular endothelial cells, following internalization of silicon microparticles, maintain cellular integrity, as demonstrated by cellular morphology, viability and intact mitotic trafficking of vesicles bearing silicon microparticles. The presence of gold or iron oxide nanoparticles within the porous matrix did not alter the cellular uptake of particles or the viability of endothelial cells subsequent to engulfment of microparticles. Endothelial cells maintained basal levels of IL-6 and IL-8 release in the presence of silicon microparticles. This is the first study that demonstrates polarized, ordered partitioning of endosomes based on tracking microparticles. The finding that mitotic sorting of endosomes is unencumbered by the presence of nanoporous silicon microparticles advocates the use of silicon microparticles for biomedical applications. PMID:20644846
Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework
NASA Technical Reports Server (NTRS)
Hu, Shaowen; Cucinotta, Francis A.
2013-01-01
The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.
Taniguchi, Mitsutaka; Miyake, Hiroshi
2012-06-01
Reducing equivalents produced in the chloroplast are essential for many key cellular metabolic enzyme reactions. Two redox shuttle systems transfer reductant out of the chloroplast; these systems consist of metabolite transporters, coupled with stromal and cytosolic dehydrogenase isozymes. The transporters function in the redox shuttle and also operate as key enzymes in carbon/nitrogen metabolism. To maintain adequate levels of reductant and proper metabolic balance, the shuttle systems are finely controlled. Also, in the leaves of C(4) plants, cell-specific division of carbon and nitrogen assimilation includes cell-specific localization of the redox shuttle systems. The redox shuttle systems are tightly linked to cellular metabolic pathways and are essential for maintaining metabolic balance between energy and reducing equivalents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pearce, Thomas M; Wilson, J Adam; Oakes, S George; Chiu, Shing-Yan; Williams, Justin C
2005-01-01
A device for cell culture is presented that combines MEMS technology and liquid-phase photolithography to create a microfluidic chip that influences and records electrical cellular activity. A photopolymer channel network is formed on top of a multichannel microelectrode array. Preliminary results indicated successful local thermal control within microfluidic channels and control of lamina position over the electrode array. To demonstrate the biological application of such a device, adult dissociated dorsal root ganglion neurons with a subpopulation of thermally-sensitive cells are attached onto the electrode array. Using laminar flow, dynamic control of local temperature of the neural cells was achieved while maintaining a constant chemical culture medium. Recording the expected altered cellular activity confirms the success of the integrated device.
Wang, Siwen; Xing, Zheng; Pascuzzi, Pete E; Tran, Elizabeth J
2017-07-05
Cells fine-tune their metabolic programs according to nutrient availability in order to maintain homeostasis. This is achieved largely through integrating signaling pathways and the gene expression program, allowing cells to adapt to nutritional change. Dbp2, a member of the DEAD-box RNA helicase family in Saccharomyces cerevisiae , has been proposed to integrate gene expression with cellular metabolism. Prior work from our laboratory has reported the necessity of DBP2 in proper gene expression, particularly for genes involved in glucose-dependent regulation. Here, by comparing differentially expressed genes in dbp2 ∆ to those of 700 other deletion strains from other studies, we find that CYC8 and TUP1 , which form a complex and inhibit transcription of numerous genes, corepress a common set of genes with DBP2 Gene ontology (GO) annotations reveal that these corepressed genes are related to cellular metabolism, including respiration, gluconeogenesis, and alternative carbon-source utilization genes. Consistent with a direct role in metabolic gene regulation, loss of either DBP2 or CYC8 results in increased cellular respiration rates. Furthermore, we find that corepressed genes have a propensity to be associated with overlapping long noncoding RNAs and that upregulation of these genes in the absence of DBP2 correlates with decreased binding of Cyc8 to these gene promoters. Taken together, this suggests that Dbp2 integrates nutrient availability with energy homeostasis by maintaining repression of glucose-repressed, Cyc8-targeted genes across the genome. Copyright © 2017 Wang et al.
Integrated light and scanning electron microscopy of GFP-expressing cells.
Peddie, Christopher J; Liv, Nalan; Hoogenboom, Jacob P; Collinson, Lucy M
2014-01-01
Integration of light and electron microscopes provides imaging tools in which fluorescent proteins can be localized to cellular structures with a high level of precision. However, until recently, there were few methods that could deliver specimens with sufficient fluorescent signal and electron contrast for dual imaging without intermediate staining steps. Here, we report protocols that preserve green fluorescent protein (GFP) in whole cells and in ultrathin sections of resin-embedded cells, with membrane contrast for integrated imaging. Critically, GFP is maintained in a stable and active state within the vacuum of an integrated light and scanning electron microscope. For light microscopists, additional structural information gives context to fluorescent protein expression in whole cells, illustrated here by analysis of filopodia and focal adhesions in Madin Darby canine kidney cells expressing GFP-Paxillin. For electron microscopists, GFP highlights the proteins of interest within the architectural space of the cell, illustrated here by localization of the conical lipid diacylglycerol to cellular membranes. © 2014 Elsevier Inc. All rights reserved.
Understanding D-Ribose and Mitochondrial Function.
Mahoney, Diane E; Hiebert, John B; Thimmesch, Amanda; Pierce, John T; Vacek, James L; Clancy, Richard L; Sauer, Andrew J; Pierce, Janet D
2018-01-01
Mitochondria are important organelles referred to as cellular powerhouses for their unique properties of cellular energy production. With many pathologic conditions and aging, mitochondrial function declines, and there is a reduction in the production of adenosine triphosphate. The energy carrying molecule generated by cellular respiration and by pentose phosphate pathway, an alternative pathway of glucose metabolism. D-ribose is a naturally occurring monosaccharide found in the cells and particularly in the mitochondria is essential in energy production. Without sufficient energy, cells cannot maintain integrity and function. Supplemental D-ribose has been shown to improve cellular processes when there is mitochondrial dysfunction. When individuals take supplemental D-ribose, it can bypass part of the pentose pathway to produce D-ribose-5-phosphate for the production of energy. In this article, we review how energy is produced by cellular respiration, the pentose pathway, and the use of supplemental D-ribose.
Nondestructive cryomicro-CT imaging enables structural and molecular analysis of human lung tissue.
Vasilescu, Dragoş M; Phillion, André B; Tanabe, Naoya; Kinose, Daisuke; Paige, David F; Kantrowitz, Jacob J; Liu, Gang; Liu, Hanqiao; Fishbane, Nick; Verleden, Stijn E; Vanaudenaerde, Bart M; Lenburg, Marc; Stevenson, Christopher S; Spira, Avrum; Cooper, Joel D; Hackett, Tillie-Louise; Hogg, James C
2017-01-01
Micro-computed tomography (CT) enables three-dimensional (3D) imaging of complex soft tissue structures, but current protocols used to achieve this goal preclude cellular and molecular phenotyping of the tissue. Here we describe a radiolucent cryostage that permits micro-CT imaging of unfixed frozen human lung samples at an isotropic voxel size of (11 µm) 3 under conditions where the sample is maintained frozen at -30°C during imaging. The cryostage was tested for thermal stability to maintain samples frozen up to 8 h. This report describes the methods used to choose the materials required for cryostage construction and demonstrates that whole genome mRNA integrity and expression are not compromised by exposure to micro-CT radiation and that the tissue can be used for immunohistochemistry. The new cryostage provides a novel method enabling integration of 3D tissue structure with cellular and molecular analysis to facilitate the identification of molecular determinants of disease. The described micro-CT cryostage provides a novel way to study the three-dimensional lung structure preserved without the effects of fixatives while enabling subsequent studies of the cellular matrix composition and gene expression. This approach will, for the first time, enable researchers to study structural changes of lung tissues that occur with disease and correlate them with changes in gene or protein signatures. Copyright © 2017 the American Physiological Society.
Plakins: a family of versatile cytolinker proteins.
Leung, Conrad L; Green, Kathleen J; Liem, Ronald K H
2002-01-01
By connecting cytoskeletal elements to each other and to junctional complexes, the plakin family of cytolinkers plays a crucial role in orchestrating cellular development and maintaining tissue integrity. Plakins are built from combinations of interacting domains that bind to microfilaments, microtubules, intermediate filaments, cell-adhesion molecules and members of the armadillo family. Plakins are involved in both inherited and autoimmune diseases that affect the skin, neuronal tissue, and cardiac and skeletal muscle. Here, we describe the members of the plakin family and their interaction partners, and give examples of the cellular defects that result from their dysfunction.
Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.
2013-01-01
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735
MicroRNAs meet calcium: joint venture in ER proteostasis.
Finger, Fabian; Hoppe, Thorsten
2014-11-04
The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis. Copyright © 2014, American Association for the Advancement of Science.
Adaptation of the membrane in Archaea.
Oger, Philippe M; Cario, Anaïs
2013-12-15
Microbes often face contrasted and fluctuating environmental conditions, to which they need to adapt or die. Because membranes play a central role in regulating fluxes inward and outward from the cells, maintaining the appropriate structure of the membrane is crucial to maintain cellular integrity and functions. This is achieved in bacteria and eucarya by a modification of the membrane lipid compositions, a strategy termed homeoviscous adaptation. We review here evidence for homeoviscous adaptation in Archaea, and discuss the limits of this strategy and our knowledge in this very peculiar domain of life. © 2013 Elsevier B.V. All rights reserved.
Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery
NASA Astrophysics Data System (ADS)
Nag, Okhil K.; Naciri, Jawad; Spillmann, Christopher M.; Delehanty, James B.
2016-03-01
In addition to maintaining the structural integrity of the cell, the plasma membrane regulates multiple important cellular processes, such as endocytosis and trafficking, apoptotic pathways and drug transport. The modulation or tracking of such cellular processes by means of controlled delivery of drugs or imaging agents via nanoscale delivery systems is very attractive. Nanoparticle-mediated delivery systems that mediate long-term residence (e.g., days) and controlled release of the cargoes in the plasma membrane while simultaneously not interfering with regular cellular physiology would be ideal for this purpose. Our laboratory has developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs which can be slowly released from the particle over time. Here we highlight the utility of these nanopreparations for membrane delivery and imaging.
Mold with improved core for metal casting operation
Gritzner, Verne B.; Hackett, Donald W.
1977-01-01
The present invention is directed to a mold containing an improved core for use in casting hollow, metallic articles. The core is formed of, or covered with, a layer of cellular material which possesses sufficient strength to maintain its structural integrity during casting, but will crush to alleviate the internal stresses that build up if the normal contraction during solidification and cooling is restricted.
[Fanconi anemia: cellular and molecular features].
Macé, G; Briot, D; Guervilly, J-H; Rosselli, F
2007-02-01
Fanconi anemia (FA) is a recessive human cancer prone syndrome featuring bone marrow failure, developmental abnormalities and hypersensitivity to DNA crosslinking agents exposure. 11 among 12 FA gene have been isolated. The biochemical functions of the FANC proteins remain poorly understood. Anyhow, to cope with DNA crosslinks a cell needs a functional FANC pathway. Moreover, the FANC proteins appear to be involved in cell protection against oxidative damage and in the control of TNF-alpha activity. In this review, we describe the current understanding of the FANC pathway and we present how it may be integrated in the complex networks of proteins involved in maintaining the cellular homeostasis.
Autophagy in alcohol-induced liver diseases
Dolganiuc, Angela; Thomes, Paul G.; Ding, Wen-Xing; Lemasters, John J.; Donohue, Terrence M.
2013-01-01
Alcohol is the most abused substance worldwide and a significant source of liver injury; the mechanisms of alcohol-induced liver disease are not fully understood. Significant cellular toxicity and impairment of protein synthesis and degradation occur in alcohol-exposed liver cells, along with changes in energy balance and modified responses to pathogens. Autophagy is the process of cellular catabolism through the lysosomal-dependent machinery, which maintains a balance among protein synthesis, degradation, and recycling of self. Autophagy is part of normal homeostasis and it can be triggered by multiple factors that threaten cell integrity including starvation, toxins, or pathogens. Multiple factors regulate autophagy; survival and preservation of cellular integrity at the expense of inadequately-folded proteins and damaged high energy-generating intracellular organelles are prominent targets of autophagy in pathologic conditions. Coincidentally, inadequately-folded proteins accumulate and high energy-generating intracellular organelles, such as mitochondria, are damaged by alcohol abuse; these alcohol-induced pathological findings prompted investigation of the role of autophagy in the pathogenesis of alcohol-induced liver damage. Our review summarizes the current knowledge about the role and implications of autophagy in alcohol-induced liver disease. PMID:22551004
Energy metabolism of intervertebral disc under mechanical loading.
Wang, Chong; Gonzales, Silvia; Levene, Howard; Gu, Weiyong; Huang, Chun-Yuh Charles
2013-11-01
Intervertebral disc (IVD) degeneration is closely associated with low back pain (LBP), which is a major health concern in the U.S. Cellular biosynthesis of extracellular matrix (ECM), which is important for maintaining tissue integrity and preventing tissue degeneration, is an energy demanding process. Due to impaired nutrient support in avascular IVD, adenosine triphosphate (ATP) supply could be a limiting factor for maintaining normal ECM synthesis. Therefore, the objective of this study was to investigate the energy metabolism in the annulus fibrosus (AF) and nucleus pulposus (NP) of porcine IVD under static and dynamic compressions. Under compression, pH decreased and the contents of lactate and ATP increased significantly in both AF and NP regions, suggesting that compression can promote ATP production via glycolysis and reduce pH by increasing lactate accumulation. A high level of extracellular ATP content was detected in the NP region and regulated by compressive loading. Since ATP can serve not only as an intra-cellular energy currency, but also as a regulator of a variety of cellular activities extracellularly through the purinergic signaling pathway, our findings suggest that compression-mediated ATP metabolism could be a novel mechanobiological pathway for regulating IVD metabolism. © 2013 Orthopaedic Research Society.
Zebrowski, David C; Vergarajauregui, Silvia; Wu, Chi-Chung; Piatkowski, Tanja; Becker, Robert; Leone, Marina; Hirth, Sofia; Ricciardi, Filomena; Falk, Nathalie; Giessl, Andreas; Just, Steffen; Braun, Thomas; Weidinger, Gilbert; Engel, Felix B
2015-01-01
Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart. DOI: http://dx.doi.org/10.7554/eLife.05563.001 PMID:26247711
Biological (Molecular and Cellular) Markers of Toxicity.
1991-12-15
capability to maintain the integrity of it’s DNA (repair and chromosomal structure -function), will provide the basis for determining bioavailability...examined in this research. In Phase I metabolism, catalyzed by the mixed function oxidase (MFO) enzyme system, a reactive functional group (such as -OH...the incorporation of many organic chemicals in tissues, organisms will induce a family of enzymes better known as the Mixed-Function Oxidase (MFO
All tangled up: how cells direct, manage and exploit topoisomerase function
Vos, Seychelle M.; Tretter, Elsa M.; Schmidt, Bryan H.; Berger, James M.
2015-01-01
Preface Topoisomerases are complex molecular machines that modulate DNA topology to maintain chromosome superstructure and integrity. Although capable of stand-alone activity in vitro, topoisomerases frequently are linked to larger pathways and systems that resolve specific DNA superstructures and intermediates arising from cellular processes such as DNA repair, transcription, replication, and chromosome compaction. Topoisomerase activity is indispensible to cells, but requires the transient breakage of DNA strands. This property has been exploited, often for significant clinical benefit, by various exogenous agents that interfere with cell proliferation. Despite decades of study, surprising findings involving topoisomerases continue to emerge with respect to their cellular function, regulation, and utility as therapeutic targets. PMID:22108601
Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation
Chen, Ke; Gao, Ye; Mih, Nathan; O’Brien, Edward J.; Yang, Laurence; Palsson, Bernhard O.
2017-01-01
Maintenance of a properly folded proteome is critical for bacterial survival at notably different growth temperatures. Understanding the molecular basis of thermoadaptation has progressed in two main directions, the sequence and structural basis of protein thermostability and the mechanistic principles of protein quality control assisted by chaperones. Yet we do not fully understand how structural integrity of the entire proteome is maintained under stress and how it affects cellular fitness. To address this challenge, we reconstruct a genome-scale protein-folding network for Escherichia coli and formulate a computational model, FoldME, that provides statistical descriptions of multiscale cellular response consistent with many datasets. FoldME simulations show (i) that the chaperones act as a system when they respond to unfolding stress rather than achieving efficient folding of any single component of the proteome, (ii) how the proteome is globally balanced between chaperones for folding and the complex machinery synthesizing the proteins in response to perturbation, (iii) how this balancing determines growth rate dependence on temperature and is achieved through nonspecific regulation, and (iv) how thermal instability of the individual protein affects the overall functional state of the proteome. Overall, these results expand our view of cellular regulation, from targeted specific control mechanisms to global regulation through a web of nonspecific competing interactions that modulate the optimal reallocation of cellular resources. The methodology developed in this study enables genome-scale integration of environment-dependent protein properties and a proteome-wide study of cellular stress responses. PMID:29073085
Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche
2018-01-01
ABSTRACT Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. PMID:29361569
Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.
Wang, Xiaoxi; Page-McCaw, Andrea
2018-02-07
Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. © 2018. Published by The Company of Biologists Ltd.
Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway
Watt, Kevin I.; Harvey, Kieran F.; Gregorevic, Paul
2017-01-01
The integrative control of diverse biological processes such as proliferation, differentiation, apoptosis and metabolism is essential to maintain cellular and tissue homeostasis. Disruption of these underlie the development of many disease states including cancer and diabetes, as well as many of the complications that arise as a consequence of aging. These biological outputs are governed by many cellular signaling networks that function independently, and in concert, to convert changes in hormonal, mechanical and metabolic stimuli into alterations in gene expression. First identified in Drosophila melanogaster as a powerful mediator of cell division and apoptosis, the Hippo signaling pathway is a highly conserved regulator of mammalian organ size and functional capacity in both healthy and diseased tissues. Recent studies have implicated the pathway as an effector of diverse physiological cues demonstrating an essential role for the Hippo pathway as an integrative component of cellular homeostasis. In this review, we will: (a) outline the critical signaling elements that constitute the mammalian Hippo pathway, and how they function to regulate Hippo pathway-dependent gene expression and tissue growth, (b) discuss evidence that shows this pathway functions as an effector of diverse physiological stimuli and (c) highlight key questions in this developing field. PMID:29225579
Endoplasmic reticulum stress in the pathogenesis of hypertension.
Young, Colin N
2017-08-01
What is the topic of this review? This review highlights the emerging role of disruptions in endoplasmic reticulum (ER) function, namely ER stress, as a contributor to hypertension. What advances does it highlight? This review presents an integrative view of ER stress in cardiovascular control systems, including systems within the brain, kidney and peripheral vasculature, as related to development of hypertension. The endoplasmic reticulum (ER) is a cellular organelle specialized in the synthesis, folding, assembly and modification of proteins. In situations of increased protein demand, complex signalling pathways, termed the unfolded protein response, influence a series of cellular feedback loops to control ER function strictly. Although this is initially a compensatory attempt to maintain cellular homeostasis, chronic activation of the unfolded protein response, known as ER stress, leads to sustained changes in cellular function. A growing body of literature points to ER stress in diverse cardioregulatory systems, including the brain, kidney and vasculature, as central to the development of hypertension. Here, these recent findings from essential and obesity-related forms of hypertension are highlighted in an integrative manner, with discussion of the potential upstream causes and downstream consequences of ER stress. Given that hypertension is a leading medical and socio-economic global challenge, emerging findings suggest that targeting ER stress might represent a viable strategy for the treatment of hypertensive disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Preservation of Fine-Needle Aspiration Specimens for Future Use in RNA-Based Molecular Testing
Ladd, Amy C.; O'Sullivan-Mejia, Emerald; Lea, Tasha; Perry, Jessica; Dumur, Catherine I.; Dragoescu, Ema; Garrett, Carleton T.; Powers, Celeste N.
2015-01-01
Background The application of ancillary molecular testing is becoming more important for the diagnosis and classification of disease. The use of fine-needle aspiration (FNA) biopsy as the means of sampling tumors in conjunction with molecular testing could be a powerful combination. FNA is minimally invasive, cost effective, and usually demonstrates accuracy comparable to diagnoses based on excisional biopsies. Quality control (QC) and test validation requirements for development of molecular tests impose a need for access to pre-existing clinical samples. Tissue banking of excisional biopsy specimens is frequently performed at large research institutions, but few have developed protocols for preservation of cytologic specimens. This study aimed to evaluate cryopreservation of FNA specimens as a method of maintaining cellular morphology and ribonucleic acid (RNA) integrity in banked tissues. Methods FNA specimens were obtained from fresh tumor resections, processed by using a cryopreservation protocol, and stored for up to 27 weeks. Upon retrieval, samples were made into slides for morphological evaluation, and RNA was extracted and assessed for integrity by using the Agilent Bioanalyzer (Agilent Technologies, Santa Clara, Calif). Results Cryopreserved specimens showed good cell morphology and, in many cases, yielded intact RNA. Cases showing moderate or severe RNA degradation could generally be associated with prolonged specimen handling or sampling of necrotic areas. Conclusions FNA specimens can be stored in a manner that maintains cellular morphology and RNA integrity necessary for studies of gene expression. In addition to addressing quality control (QC) and test validation needs, cytology banks will be an invaluable resource for future molecular morphologic and diagnostic research studies. PMID:21287691
Mec1/ATR, the Program Manager of Nucleic Acids Inc.
Feng, Wenyi
2016-12-28
Eukaryotic cells are equipped with surveillance mechanisms called checkpoints to ensure proper execution of cell cycle events. Among these are the checkpoints that detect DNA damage or replication perturbations and coordinate cellular activities to maintain genome stability. At the forefront of damage sensing is an evolutionarily conserved molecule, known respectively in budding yeast and humans as Mec1 (Mitosis entry checkpoint 1) and ATR (Ataxia telangiectasia and Rad3-related protein). Through phosphorylation, Mec1/ATR activates downstream components of a signaling cascade to maintain nucleotide pool balance, protect replication fork integrity, regulate activation of origins of replication, coordinate DNA repair, and implement cell cycle delay. This list of functions continues to expand as studies have revealed that Mec1/ATR modularly interacts with various protein molecules in response to different cellular cues. Among these newly assigned functions is the regulation of RNA metabolism during checkpoint activation and the coordination of replication-transcription conflicts. In this review, I will highlight some of these new functions of Mec1/ATR with a focus on the yeast model organism.
Hart, Jonathan R.; Glebov, Oleg; Ernst, Russell J.; Kirsch, Ilan R.; Barton, Jacqueline K.
2006-01-01
Mismatch repair (MMR) is critical to maintaining the integrity of the genome, and deficiencies in MMR are correlated with cancerous transformations. Bulky rhodium intercalators target DNA base mismatches with high specificity. Here we describe the application of bulky rhodium intercalators to inhibit cellular proliferation differentially in MMR-deficient cells compared with cells that are MMR-proficient. Preferential inhibition by the rhodium complexes associated with MMR deficiency is seen both in a human colon cancer cell line and in normal mouse fibroblast cells; the inhibition of cellular proliferation depends strictly on the MMR deficiency of the cell. Furthermore, our assay of cellular proliferation is found to correlate with DNA mismatch targeting by the bulky metallointercalators. It is the Δ-isomer that is active both in targeting base mismatches and in inhibiting DNA synthesis. Additionally, the rhodium intercalators promote strand cleavage at the mismatch site with photoactivation, and we observe that the cellular response is enhanced with photoactivation. Targeting DNA mismatches may therefore provide a cell-selective strategy for chemotherapeutic design. PMID:17030786
Dunn, Simon R.; Pernice, Mathieu; Green, Kathryn; Hoegh-Guldberg, Ove; Dove, Sophie G.
2012-01-01
The symbiotic relationship between cnidarians and their dinoflagellate symbionts, Symbiodinium spp, which underpins the formation of tropical coral reefs, can be destabilized by rapid changes to environmental conditions. Although some studies have concluded that a breakdown in the symbiosis begins with increased reactive oxygen species (ROS) generation within the symbiont due to a decoupling of photosynthesis, others have reported the release of viable symbionts via a variety of host cell derived mechanisms. We explored an alternative model focused upon changes in host cnidarian mitochondrial integrity in response to thermal stress. Mitochondria are often likened to being batteries of the cell, providing energy in the form of ATP, and controlling cellular pathway activation and ROS generation. The overall morphology of host mitochondria was compared to that of associated symbionts under an experimental thermal stress using confocal and electron microscopy. The results demonstrate that hyperthermic stress induces the degradation of cnidarian host mitochondria that is independent of symbiont cellular deterioration. The potential sites of host mitochondrial disruption were also assessed by measuring changes in the expression of genes associated with electron transport and ATP synthesis using quantitative RT-PCR. The primary site of degradation appeared to be downstream of complex III of the electron transport chain with a significant reduction in host cytochrome c and ATP synthase expression. The consequences of reduced expression could limit the capacity of the host to mitigate ROS generation and maintain both organelle integrity and cellular energy supplies. The disruption of host mitochondria, cellular homeostasis, and subsequent cell death irrespective of symbiont integrity highlights the importance of the host response to thermal stress and in symbiosis dysfunction that has substantial implications for understanding how coral reefs will survive in the face of climate change. PMID:22815696
A drug-compatible and temperature-controlled microfluidic device for live-cell imaging.
Chen, Tong; Gomez-Escoda, Blanca; Munoz-Garcia, Javier; Babic, Julien; Griscom, Laurent; Wu, Pei-Yun Jenny; Coudreuse, Damien
2016-08-01
Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging. © 2016 The Authors.
A drug-compatible and temperature-controlled microfluidic device for live-cell imaging
Chen, Tong; Gomez-Escoda, Blanca; Munoz-Garcia, Javier; Babic, Julien; Griscom, Laurent; Wu, Pei-Yun Jenny
2016-01-01
Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging. PMID:27512142
Maintenance of the adult Drosophila intestine: all roads lead to homeostasis.
Guo, Zheng; Lucchetta, Elena; Rafel, Neus; Ohlstein, Benjamin
2016-10-01
Maintenance of tissue homeostasis is critical in tissues with high turnover such as the intestinal epithelium. The intestinal epithelium is under constant cellular assault due to its digestive functions and its function as a barrier to chemical and bacterial insults. The resulting high rate of cellular turnover necessitates highly controlled mechanisms of regeneration to maintain the integrity of the tissue over the lifetime of the organism. Transient increase in stem cell proliferation is a commonly used and elaborate mechanism to ensure fast and efficient repair of the gut. However, tissue repair is not limited to regulating ISC proliferation, as emerging evidence demonstrates that the Drosophila intestine uses multiple strategies to ensure proper tissue homeostasis that may also extend to other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adaptable Hydrogel Networks with Reversible Linkages for Tissue Engineering
Wang, Huiyuan
2015-01-01
Adaptable hydrogels have recently emerged as a promising platform for three-dimensional (3D) cell encapsulation and culture. In conventional, covalently crosslinked hydrogels, degradation is typically required to allow complex cellular functions to occur, leading to bulk material degradation. In contrast, adaptable hydrogels are formed by reversible crosslinks. Through breaking and re-forming of the reversible linkages, adaptable hydrogels can be locally modified to permit complex cellular functions while maintaining their long-term integrity. In addition, these adaptable materials can have biomimetic viscoelastic properties that make them well suited for several biotechnology and medical applications. In this review, adaptable hydrogel design considerations and linkage selections are overviewed, with a focus on various cell compatible crosslinking mechanisms that can be exploited to form adaptable hydrogels for tissue engineering. PMID:25989348
Calcium distribution in Amoeba proteus
1979-01-01
A preliminary investigation of the distribution of cellular calcium in Amoeba proteus was undertaken. Total cellular calcium under control conditions was found to be 4.59 mmol/kg of cells. When the external Ca++ concentration is increased from the control level of 0.03 to 20 mM, a net Ca++ influx results with a new steady-state cellular calcium level being achieved in integral of 3 h. At steady state the amount of calcium per unit weight of cells is higher than the amount of calcium per unit weight of external solution when the external concentration of Ca++ is below 10 mM. At external Ca++ concentrations above this level, total cellular calcium approaches the medium level of Ca++. Steady- state calcium exchange in Amoeba proteus was determined with 45Ca. There is an immediate and rapid exchange of integral of 0.84 mmol/kg of cells or 18% of the total cellular calcium with the labelled Ca++. Following this initial exchange, there was very little if any further exchange observed. Most of this exchanged calcium could be eliminated from the cell with 1 mM La+++, suggesting that the exchanged calcium is associated with the surface of the cell. Increase in either the external Ca++ concentration of pH raise the amount of exchangeable calcium associated with the cell. Calcium may be associated with the cell surface as a co-ion in the diffuse double layer or bound to fixed negative sites on the surface of the cell. If Ca++-binding sites do exist on the cell surface, there may be more than one type and they may have different dissociation constants. The cytoplasmic Ca++ ion activity is probably maintained at very low levels. PMID:512628
NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph
2018-01-20
The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.
Jenkins, Jill A.
2011-01-01
Investigations into cellular and molecular characteristics of male gametes obtained from fish in natural ecosystems require careful sample handling and shipping in order to minimize artifacts. Maintaining sample integrity engenders confident assessments of ecosystem health, whereby animal condition is often reflected by gamete biomarkers - indicators that respond in measurable ways to changes. A number of our investigations have addressed the hypothesis that biomarkers from fish along a pollution gradient are reflective of site location. Species biology and the selected biological endpoints direct choice of parameters such as: temperature, buffer osmolality, time in transit, fixation, cryoprotectants, protease inhibition, and antibiotic inclusion in extender. This paper will highlight case studies, and outline parameters and thoughts on approaches for use by field and laboratory researchers.
IFN-γ signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation
Natarajan, Vivek T.; Ganju, Parul; Singh, Archana; Vijayan, Vinaya; Kirty, Kritika; Yadav, Shalini; Puntambekar, Shraddha; Bajaj, Sonali; Dani, Prachi P.; Kar, Hemanta K.; Gadgil, Chetan J.; Natarajan, Krishnamurthy; Rani, Rajni; Gokhale, Rajesh S.
2014-01-01
Cellular homeostasis is an outcome of complex interacting processes with nonlinear feedbacks that can span distinct spatial and temporal dimensions. Skin tanning is one such dynamic response that maintains genome integrity of epidermal cells. Although pathways underlying hyperpigmentation cascade are recognized, negative feedback regulatory loops that can dampen the activated melanogenesis process are not completely understood. In this study, we delineate a regulatory role of IFN-γ in skin pigmentation biology. We show that IFN-γ signaling impedes maturation of the key organelle melanosome by concerted regulation of several pigmentation genes. Withdrawal of IFN-γ signal spontaneously restores normal cellular programming. This effect in melanocytes is mediated by IFN regulatory factor-1 and is not dependent on the central regulator microphthalmia-associated transcription factor. Chronic IFN-γ signaling shows a clear hypopigmentation phenotype in both mouse and human skin. Interestingly, IFN-γ KO mice display a delayed recovery response to restore basal state of epidermal pigmentation after UV-induced tanning. Together, our studies delineate a new spatiotemporal role of the IFN-γ signaling network in skin pigmentation homeostasis, which could have implications in various cutaneous depigmentary and malignant disorders. PMID:24474804
Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture.
Turner, Robert D; Hurd, Alexander F; Cadby, Ashley; Hobbs, Jamie K; Foster, Simon J
2013-01-01
Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and insertion pattern of peptidoglycan have remained elusive. Here we determine the peptidoglycan architecture and dynamics during growth in rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented bands of material interspersed with a more porous network. Super-resolution fluorescence microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present a consolidated model of growth via architecture-regulated insertion, where we propose only the more porous regions of the peptidoglycan network that are permissive for synthesis.
NASA Technical Reports Server (NTRS)
Fischer, G. L.; Daniels, J. C.; Levin, W. C.; Kimzey, S. L.; Cobb, E. K.; Ritzmann, S. E.
1972-01-01
The present studies were undertaken to assess the effects of the environment of space flights on the cellular division of the human immune system. Peripheral blood absolute lymphocyte counts were determined at various preflight and postflight intervals for the 21 crewmen of Apollo Missions 7-13. Mean lymphocyte numbers tended to exhibit a delayed significant but fluctuating increase shortly after recovery, although a variety of responses was seen in individual astronauts. The in vitro reactivity of lymphocytes, reflected by RNA and DNA synthesis rates by unstimulated and PHA-stimulated lymphocytes tissue-cultured preflight and postflight from the same participants, was found to remain within previously established normal ranges. These results indicate that functional integrity of cellular immune potential as reflected by in vitro techniques is maintained during this spaceflight experience.
Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender
2016-05-01
In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens.
Ciaccio, Mark F; Finkle, Justin D; Xue, Albert Y; Bagheri, Neda
2014-07-01
An organism's ability to maintain a desired physiological response relies extensively on how cellular and molecular signaling networks interpret and react to environmental cues. The capacity to quantitatively predict how networks respond to a changing environment by modifying signaling regulation and phenotypic responses will help inform and predict the impact of a changing global enivronment on organisms and ecosystems. Many computational strategies have been developed to resolve cue-signal-response networks. However, selecting a strategy that answers a specific biological question requires knowledge both of the type of data being collected, and of the strengths and weaknesses of different computational regimes. We broadly explore several computational approaches, and we evaluate their accuracy in predicting a given response. Specifically, we describe how statistical algorithms can be used in the context of integrative and comparative biology to elucidate the genomic, proteomic, and/or cellular networks responsible for robust physiological response. As a case study, we apply this strategy to a dataset of quantitative levels of protein abundance from the mussel, Mytilus galloprovincialis, to uncover the temperature-dependent signaling network. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Cellular degradation activity is maintained during aging in long-living queen bees.
Hsu, Chin-Yuan; Qiu, Jiantai Timothy; Chan, Yu-Pei
2016-11-01
Queen honeybees (Apis mellifera) have a much longer lifespan than worker bees. Whether cellular degradation activity is involved in the longevity of queen bees is unknown. In the present study, cellular degradation activity was evaluated in the trophocytes and oenocytes of young and old queen bees. The results indicated that (i) 20S proteasome activity and the size of autophagic vacuoles decreased with aging, and (ii) there were no significant differences between young and old queen bees with regard to 20S proteasome expression or efficiency, polyubiquitin aggregate expression, microtubule-associated protein 1 light chain 3-II (LC3-II) expression, 70 kDa heat shock cognate protein (Hsc70) expression, the density of autophagic vacuoles, p62/SQSTM1 expression, the activity or density of lysosomes, or molecular target of rapamycin expression. These results indicate that cellular degradation activity maintains a youthful status in the trophocytes and oenocytes of queen bees during aging and that cellular degradation activity is involved in maintaining the longevity of queen bees.
Transcriptional profiling reveals elevated Sox2 in DNA polymerase ß null mouse embryonic fibroblasts
Li, Jianfeng; Luthra, Soumya; Wang, Xiao-Hong; Chandran, Uma R; Sobol, Robert W
2012-01-01
There are over 150 human proteins that have been categorized as bona fide DNA repair proteins. These DNA repair proteins maintain the integrity of the genome, reducing the onset of cancer, disease and aging phenotypes. Variations in expression and/or function would therefore impact genome integrity as well as the cellular response to genotoxins. Global gene expression analysis is an effective approach to uncover defects in DNA repair gene expression and to discover cellular and/or organismal effects brought about by external stimuli such as environmental genotoxicants, chemotherapeutic regimens, viral infections as well as developmental and age-related stimuli. Given the significance of genome stability in cell survival and response to stimuli, we have hypothesized that cells may undergo transcriptional re-programming to accommodate defects in basal DNA repair capacity to promote survival. As a test of this hypothesis, we have compared the transcriptome in three DNA polymerase ß knockout (Polß-KO) mouse embryonic fibroblasts (MEFs) and the corresponding wild-type (WT) littermate control cell lines. Each Polß-KO cell line was found to have a range of genes up-regulated, when compared to its WT littermate control cell line. Interestingly, six (6) genes were commonly up regulated in all three Polß-KO cell lines, including Sox2, one of several genes associated with the induction of pluripotent stem cells. Herein, we present these findings and suggest that loss of DNA repair and the induction of cellular transcriptional re-programming may, in part, contribute to tumor formation and the cellular response to external stimuli. PMID:23226616
Pallante, Andrea L.; Görtz, Simon; Chen, Albert C.; Healey, Robert M.; Chase, Derek C.; Ball, Scott T.; Amiel, David; Sah, Robert L.; Bugbee, William D.
2012-01-01
Background: Understanding the effectiveness of frozen as compared with fresh osteochondral allografts at six months after surgery and the resultant consequences of traditional freezing may facilitate in vivo maintenance of cartilage integrity. Our hypothesis was that the state of the allograft at implantation affects its performance after six months in vivo. Methods: The effect of frozen as compared with fresh storage on in vivo allograft performance was determined for osteochondral allografts that were transplanted into seven recipient goats and analyzed at six months. Allograft performance was assessed by examining osteochondral structure (cartilage thickness, fill, surface location, surface degeneration, and bone-cartilage interface location), zonal cartilage composition (cellularity, matrix content), and cartilage biomechanical function (stiffness). Relationships between cartilage stiffness or cartilage composition and surface degeneration were assessed with use of linear regression. Results: Fresh allografts maintained cartilage load-bearing function, while also maintaining zonal organization of cartilage cellularity and matrix content, compared with frozen allografts. Overall, allograft performance was similar between fresh allografts and nonoperative controls. However, cartilage stiffness was approximately 80% lower (95% confidence interval [CI], 73% to 87%) in the frozen allografts than in the nonoperative controls or fresh allografts. Concomitantly, in frozen allografts, matrix content and cellularity were approximately 55% (95% CI, 22% to 92%) and approximately 96% (95% CI, 94% to 99%) lower, respectively, than those in the nonoperative controls and fresh allografts. Cartilage stiffness correlated positively with cartilage cellularity and matrix content, and negatively with surface degeneration. Conclusions: Maintenance of cartilage load-bearing function in allografts is associated with zonal maintenance of cartilage cellularity and matrix content. In this animal model, frozen allografts displayed signs of failure at six months, with cartilage softening, loss of cells and matrix, and/or graft subsidence, supporting the importance of maintaining cell viability during allograft storage and suggesting that outcomes at six months may be indicative of long-term (dys)function. Clinical Relevance: Fresh versus frozen allografts represent the “best versus worst” conditions with respect to chondrocyte viability, but “difficult versus simple” with respect to acquisition and distribution. The outcomes described from these two conditions expand the current understanding of in vivo cartilage remodeling and describe structural properties (initial graft subsidence), which may have implications for impending graft failure. PMID:23138239
Romero, Juan Ignacio; Hanschmann, Eva-Maria; Gellert, Manuela; Eitner, Susanne; Holubiec, Mariana Inés; Blanco-Calvo, Eduardo; Lillig, Christopher Horst; Capani, Francisco
2015-06-01
Thioredoxin (Trx) family proteins are crucial mediators of cell functions via regulation of the thiol redox state of various key proteins and the levels of the intracellular second messenger hydrogen peroxide. Their expression, localization and functions are altered in various pathologies. Here, we have analyzed the impact of Trx family proteins in neuronal development and recovery, following hypoxia/ischemia and reperfusion. We have analyzed the regulation and potential functions of Trx family proteins during hypoxia/ischemia and reoxygenation of the developing brain in both an animal and a cellular model of perinatal asphyxia. We have analyzed the distribution of 14 Trx family and related proteins in the cerebellum, striatum, and hippocampus, three areas of the rat brain that are especially susceptible to hypoxia. Using SH-SY5Y cells subjected to hypoxia and reoxygenation, we have analyzed the functions of some redoxins suggested by the animal experiment. We have described/discovered a complex, cell-type and tissue-specific expression pattern following the hypoxia/ischemia and reoxygenation. Particularly, Grx2 and Trx1 showed distinct changes during tissue recovery following hypoxia/ischemia and reoxygenation. Silencing of these proteins in SH-SY5Y cells subjected to hypoxia-reoxygenation confirmed that these proteins are required to maintain the normal neuronal phenotype. These findings demonstrate the significance of redox signaling in cellular pathways. Grx2 and Trx1 contribute significantly to neuronal integrity and could be clinically relevant in neuronal damage following perinatal asphyxia and other neuronal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
de Souza, Amancio; Wang, Jin-Zheng; Dehesh, Katayoon
2017-04-28
Interorganellar cooperation maintained via exquisitely controlled retrograde-signaling pathways is an evolutionary necessity for maintenance of cellular homeostasis. This signaling feature has therefore attracted much research attention aimed at improving understanding of the nature of these communication signals, how the signals are sensed, and ultimately the mechanism by which they integrate targeted processes that collectively culminate in organellar cooperativity. The answers to these questions will provide insight into how retrograde-signal-mediated regulatory mechanisms are recruited and which biological processes are targeted, and will advance our understanding of how organisms balance metabolic investments in growth against adaptation to environmental stress. This review summarizes the present understanding of the nature and the functional complexity of retrograde signals as integrators of interorganellar communication and orchestrators of plant development, and offers a perspective on the future of this critical and dynamic area of research.
Cellular energy metabolism maintains young status in old queen honey bees (Apis mellifera).
Lu, Cheng-Yen; Qiu, Jiantai Timothy; Hsu, Chin-Yuan
2018-05-02
Trophocytes and oenocytes of queen honey bees are used in studies of cellular longevity, but their cellular energy metabolism with age is poorly understood. In this study, the molecules involved in cellular energy metabolism were evaluated in the trophocytes and oenocytes of young and old queen bees. The findings indicated that there were no significant differences between young and old queen bees in β-oxidation, glycolysis, and protein synthesis. These results indicate that the cellular energy metabolism of trophocytes and oenocytes in old queen bees is similar to young queen bees and suggests that maintaining cellular energy metabolism in a young status may be associated with the longevity of queen bees. Fat and glycogen accumulation increased with age indicating that old queen bees are older than young queen bees. © 2018 Wiley Periodicals, Inc.
Yeast prions are useful for studying protein chaperones and protein quality control.
Masison, Daniel C; Reidy, Michael
2015-01-01
Protein chaperones help proteins adopt and maintain native conformations and play vital roles in cellular processes where proteins are partially folded. They comprise a major part of the cellular protein quality control system that protects the integrity of the proteome. Many disorders are caused when proteins misfold despite this protection. Yeast prions are fibrous amyloid aggregates of misfolded proteins. The normal action of chaperones on yeast prions breaks the fibers into pieces, which results in prion replication. Because this process is necessary for propagation of yeast prions, even small differences in activity of many chaperones noticeably affect prion phenotypes. Several other factors involved in protein processing also influence formation, propagation or elimination of prions in yeast. Thus, in much the same way that the dependency of viruses on cellular functions has allowed us to learn much about cell biology, the dependency of yeast prions on chaperones presents a unique and sensitive way to monitor the functions and interactions of many components of the cell's protein quality control system. Our recent work illustrates the utility of this system for identifying and defining chaperone machinery interactions.
Redmond, Catherine J.; Dooley, Katharine E.; Fu, Haiqing; Gillison, Maura L.; Akagi, Keiko; Symer, David E.; Aladjem, Mirit I.
2018-01-01
Integration of human papillomavirus (HPV) genomes into cellular chromatin is common in HPV-associated cancers. Integration is random, and each site is unique depending on how and where the virus integrates. We recently showed that tandemly integrated HPV16 could result in the formation of a super-enhancer-like element that drives transcription of the viral oncogenes. Here, we characterize the chromatin landscape and genomic architecture of this integration locus to elucidate the mechanisms that promoted de novo super-enhancer formation. Using next-generation sequencing and molecular combing/fiber-FISH, we show that ~26 copies of HPV16 are integrated into an intergenic region of chromosome 2p23.2, interspersed with 25 kb of amplified, flanking cellular DNA. This interspersed, co-amplified viral-host pattern is frequent in HPV-associated cancers and here we designate it as Type III integration. An abundant viral-cellular fusion transcript encoding the viral E6/E7 oncogenes is expressed from the integration locus and the chromatin encompassing both the viral enhancer and a region in the adjacent amplified cellular sequences is strongly enriched in the super-enhancer markers H3K27ac and Brd4. Notably, the peak in the amplified cellular sequence corresponds to an epithelial-cell-type specific enhancer. Thus, HPV16 integration generated a super-enhancer-like element composed of tandem interspersed copies of the viral upstream regulatory region and a cellular enhancer, to drive high levels of oncogene expression. PMID:29364907
The cyclin-dependent kinase PITSLRE/CDK11 is required for successful autophagy.
Wilkinson, Simon; Croft, Daniel R; O'Prey, Jim; Meedendorp, Arenda; O'Prey, Margaret; Dufès, Christine; Ryan, Kevin M
2011-11-01
(Macro)autophagy is a membrane-trafficking process that serves to sequester cellular constituents in organelles termed autophagosomes, which target their degradation in the lysosome. Autophagy operates at basal levels in all cells where it serves as a homeostatic mechanism to maintain cellular integrity. The levels and cargoes of autophagy can, however, change in response to a variety of stimuli, and perturbations in autophagy are known to be involved in the aetiology of various human diseases. Autophagy must therefore be tightly controlled. We report here that the Drosophila cyclin-dependent kinase PITSLRE is a modulator of autophagy. Loss of the human PITSLRE orthologue, CDK11, initially appears to induce autophagy, but at later time points CDK11 is critically required for autophagic flux and cargo digestion. Since PITSLRE/CDK11 regulates autophagy in both Drosophila and human cells, this kinase represents a novel phylogenetically conserved component of the autophagy machinery.
77 FR 55852 - Center for Scientific Review Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... unwarranted invasion of personal privacy. Name of Committee: Molecular, Cellular and Developmental...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Synapses, Cytoskeleton and... . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular...
Hernández-Gómez, Mariana
2017-01-01
DNA is constantly exposed to endogenous and exogenous mutagenic stimuli that are capable of producing diverse lesions. In order to protect the integrity of the genetic material, a wide array of DNA repair systems that can target each specific lesion has evolved. Despite the availability of several repair pathways, a common general program known as the DNA damage response (DDR) is stimulated to promote lesion detection, signaling, and repair in order to maintain genetic integrity. The genes that participate in these pathways are subject to mutation; a loss in their function would result in impaired DNA repair and genomic instability. When the DDR is constitutionally altered, every cell of the organism, starting from development, will show DNA damage and subsequent genomic instability. The cellular response to this is either uncontrolled proliferation and cell cycle deregulation that ensues overgrowth, or apoptosis and senescence that result in tissue hypoplasia. These diverging growth abnormalities can clinically translate as cancer or growth retardation; both features can be found in chromosome instability syndromes (CIS). The analysis of the clinical, cellular, and molecular phenotypes of CIS with intrauterine growth retardation allows inferring that replication alteration is their unifying feature. PMID:29238724
Integration of mobile satellite and cellular systems
NASA Technical Reports Server (NTRS)
Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura
1993-01-01
By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.
Integration of mobile satellite and cellular systems
NASA Astrophysics Data System (ADS)
Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura
By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.
Epithelial junctions, cytoskeleton, and polarity.
Pásti, Gabriella; Labouesse, Michel
2014-11-04
A distinctive feature of polarized epithelial cells is their specialized junctions, which contribute to cell integrity and provide platforms to orchestrate cell shape changes. This chapter discusses the composition, assembly and remodeling of C. elegans cell-cell (CeAJ) and hemidesmosome-like cell-extracellular matrix junctions (CeHD), proteins that anchor the cytoskeleton, and mechanisms involved in establishing epithelial polarity. Major recent progress in this area has come from the analysis of mechanisms that maintain cell polarity, which involve lipids and trafficking, and on the impact of mechanical forces on junction remodeling. This chapter focuses on cellular, rather than developmental, aspects of epithelial cells.
Synthesis of collagenase-sensitive polyureas for ligament tissue engineering.
Benhardt, Hugh; Sears, Nick; Touchet, Tyler; Cosgriff-Hernandez, Elizabeth
2011-08-11
Recently, poly(ester urethanes) were investigated for use as ligament grafts due to their exceptional mechanical properties and highly tunable structure; however, these grafts are susceptible to hydrolytic degradation that occurs independent of tissue regeneration. To address this limitation, polyureas containing collagen-derived peptides were synthesized which enable cellular release of proteases to dictate degradation rate. It is hypothesized that this cell-responsive design will facilitate load transfer from the biodegradable scaffold to neotissue at a rate that promotes proper tissue orientation and function while maintaining construct integrity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrated cellular network of transcription regulations and protein-protein interactions
2010-01-01
Background With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. Results In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. Conclusions We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology. PMID:20211003
Integrated cellular network of transcription regulations and protein-protein interactions.
Wang, Yu-Chao; Chen, Bor-Sen
2010-03-08
With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology.
Kirchner, Jasmin; Vissi, Emese; Gross, Sascha; Szoor, Balazs; Rudenko, Andrey; Alphey, Luke; White-Cooper, Helen
2008-01-01
Background Protein phosphatase 1 (PP1) is involved in diverse cellular processes, and is targeted to substrates via interaction with many different protein binding partners. PP1 catalytic subunits (PP1c) fall into PP1α and PP1β subfamilies based on sequence analysis, however very few PP1c binding proteins have been demonstrated to discriminate between PP1α and PP1β. Results URI (unconventional prefoldin RPB5 interactor) is a conserved molecular chaperone implicated in a variety of cellular processes, including the transcriptional response to nutrient signalling and maintenance of DNA integrity. We show that Drosophila Uri binds PP1α with much higher affinity than PP1β, and that this ability to discriminate between PP1c forms is conserved to humans. Most Uri is cytoplasmic, however we found some protein associated with active RNAPII on chromatin. We generated a uri loss of function allele, and show that uri is essential for viability in Drosophila. uri mutants have transcriptional defects, reduced cell viability and differentiation in the germline, and accumulate DNA damage in their nuclei. Conclusion Uri is the first PP1α specific binding protein to be described in Drosophila. Uri protein plays a role in transcriptional regulation. Activity of uri is required to maintain DNA integrity and cell survival in normal development. PMID:18412953
Barna, János; Princz, Andrea; Kosztelnik, Mónika; Hargitai, Balázs; Takács-Vellai, Krisztina; Vellai, Tibor
2012-11-01
Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1) functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins) that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-β (transforming growth factor-beta) ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate) and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1) signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-β and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-β pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.
Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A
2013-03-07
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na(+)/Ca(2+) exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na(+)/K(+) pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.
Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A
2013-01-01
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis. PMID:23470534
NASA Technical Reports Server (NTRS)
Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.
1988-01-01
The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.
Rault, Aline; Bouix, Marielle; Béal, Catherine
2009-07-01
This study aims at better understanding the effects of fermentation pH and harvesting time on Lactobacillus bulgaricus CFL1 cellular state in order to improve knowledge of the dynamics of the physiological state and to better manage starter production. The Cinac system and multiparametric flow cytometry were used to characterize and compare the progress of the physiological events that occurred during pH 6 and pH 5 controlled cultures. Acidification activity, membrane damage, enzymatic activity, cellular depolarization, intracellular pH, and pH gradient were determined and compared during growing conditions. Strong differences in the time course of viability, membrane integrity, and acidification activity were displayed between pH 6 and pH 5 cultures. As a main result, the pH 5 control during fermentation allowed the cells to maintain a more robust physiological state, with high viability and stable acidification activity throughout growth, in opposition to a viability decrease and fluctuation of activity at pH 6. This result was mainly explained by differences in lactate concentration in the culture medium and in pH gradient value. The elevated content of the ionic lactate form at high pH values damaged membrane integrity that led to a viability decrease. In contrast, the high pH gradient observed throughout pH 5 cultures was associated with an increased energetic level that helped the cells maintain their physiological state. Such results may benefit industrial starter producers and fermented-product manufacturers by allowing them to better control the quality of their starters, before freezing or before using them for food fermentation.
Carvalho, Helena; Alguero, Carmen; Santos, Matilde; de Sousa, Gracinda; Trindade, Helder; Seghatchian, Jerard
2006-04-01
Platelets are known to undergo shape change, activation, a release reaction and apoptosis/necrosis during processing and storage, all of which are collectively known as the platelet storage lesion. Any additional processing may have some deleterious impact on platelet activability and functional integrity, which need to be investigated. This preliminary investigation was undertaken to establish the combined effects of standard platelet storage media and the intercept pathogen reduction technology on platelet activation and activability during 7 day storage, using buffy-coat derived platelets in standard storage media containing 35% plasma (N=24). P-selectin (CD62p) expression, a classical marker of platelet activation, and phosphatidylserine (PS) exposure on the platelet surface membrane, a hallmark of cellular necrosis/apoptosis, were both measured by flow cytometry. The results reveal significant increases in activation, from an average of 22.7% on day 1 before treatment to 31.6% on day 2 after treatment and 58.7% at the end of storage. Concomitantly, the basal expression of PS was slightly increased from 1.9% to 2.8% at day 2 after treatment and 7.3% at the end of storage. However, the functional reserve of platelets during storage, which reflects their capability to undergo activation and the release reaction when platelets were challenged with either calcium ionophore or thrombin, was relatively well maintained. These preliminary data confirm the earlier data on the use of intercept, and for the first time, based on the assessment of platelet functional integrity, suggest that platelet functional reserve is relatively well maintained, with little change in the formation of apoptotic cells.
Dehydration-Anorexia Derives From A Reduction In Meal Size, But Not Meal Number
Boyle, Christina N.; Lorenzen, Sarah M.; Compton, Douglas; Watts, Alan G.
2011-01-01
The anorexia that results from extended periods of cellular dehydration is an important physiological adaptation that limits the intake of osmolytes from food and helps maintain the integrity of fluid compartments. The ability to experimentally control both the development and reversal of anorexia, together with the understanding of underlying hormonal and neuropeptidergic signals, make dehydration (DE)-anorexia a powerful model for exploring the interactions of neural networks that stimulate and inhibit food intake. However, it is not known which meal parameters are affected by cellular dehydration to generate anorexia. Here we use continuous and high temporal resolution recording of food and fluid intake, together with a drinking-explicit method of meal pattern analysis to explore which meal parameters are modified during DE-anorexia. We find that the most important factor responsible for DE-anorexia is the failure to maintain feeding behavior once a meal has started, rather than the ability to initiate a meal, which remains virtually intact. This outcome is consistent with increased sensitivity to satiation signals and post-prandial satiety mechanisms. We also find that DE-anorexia significantly disrupts the temporal distribution of meals across the day so that the number of nocturnal meals gradually decreases while diurnal meal number increases. Surprisingly, once DE-anorexia is reversed this temporal redistribution is maintained for at least 4 days after normal food intake has resumed, which may allow increased daily food intake even after normal satiety mechanisms are reinstated. Therefore, DE-anorexia apparently develops from a selective targeting of those neural networks that control meal termination, whereas meal initiation mechanisms remain viable. PMID:21854794
DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds
Waterworth, Wanda M.; Footitt, Steven; Bray, Clifford M.; Finch-Savage, William E.; West, Christopher E.
2016-01-01
Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production. PMID:27503884
Holism and life manifestations: molecular and space-time biology.
Krecek, J
2010-01-01
Appeals of philosophers to look for new concepts in sciences are being met with a weak response. Limited attention is paid to the relation between synthetic and analytic approach in solving problems of biology. An attempt is presented to open a discussion on a possible role of holism. The term "life manifestations" is used in accordance with phenomenology. Multicellular creatures maintain milieu intérieur to keep an aqueous milieu intracellulair in order to transform the energy of nutrients into the form utilizable for driving cellular life manifestations. Milieu intérieur enables to integrate this kind of manifestations into life manifestations of the whole multicellular creatures. The integration depends on a uniqueness and uniformity of the genome of cells, on their mutual recognition and adherence. The processes of ontogenetic development represent the natural mode of integration of cellular life manifestations. Functional systems of multicellular creatures are being established by organization of integrable cells using a wide range of developmental processes. Starting from the zygote division the new being displays all properties of a whole creature, although its life manifestations vary. Therefore, the whole organism is not only more than its parts, as supposed by holism, but also more than developmental stages of its life manifestations. Implicitly, the units of whole multicellular creature are rather molecular and developmental events than the cells per se. Holism, taking in mind the existence of molecular and space-time biology, could become a guide in looking for a new mode of the combination of analytical and synthetic reasoning in biology.
DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.
Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E
2016-08-23
Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production.
Prohibitin (PHB) roles in granulosa cell physiology
Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E.
2015-01-01
Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on the recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/prohibitin/flotillin/HflK/C (SPFH) domain [also known as the PHB domain] found in divergent species from prokaryotes to eukaryotes. PHB is ubiquitously expressed either in circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane (IMM), and form complexes with the ATPases Associated with diverse cellular Activities (m-AAA) proteases. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulate transcriptional activity directly or through interactions with chromatin remodeling proteins. Multiple functions have been attributed to the mitochondrial and nuclear prohibitin complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintaining the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood. PMID:26496733
Autophagy in Measles Virus Infection.
Rozières, Aurore; Viret, Christophe; Faure, Mathias
2017-11-24
Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1) or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2), which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy-measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.
77 FR 57571 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
...: Genes, Genomes, and Genetics Integrated Review Group; Genomics, Computational Biology and Technology... Reproductive Sciences Integrated Review Group; Cellular, Molecular and Integrative Reproduction Study Section...: Immunology Integrated Review Group; Cellular and Molecular Immunology--B Study Section. [[Page 57572
75 FR 3241 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
... Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neurodifferentiation..., (301) 435- 1178, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date...
Altered expression of prohibitin in psoriatic lesions and its cellular implication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Soon Young; Kim, Younghwa; Hwang, Ha Young
2007-08-31
Psoriasis is characterized by excessive proliferation of keratinocytes accompanying acanthosis and incomplete differentiation. Prohibitin was investigated by examining its function of HaCaT as well as psoriasis. Psoriatic involved skin revealed high level of prohibitin in the basal layer. Prohibitin was analyzed by applying RNAi (PHBi) with HaCaT, which demonstrated increased S-phase. PHBi showed enhanced sensitivity to anthralin-mediated cell death due to enhanced loss of mitochondrial membrane potential, suggesting a protective role of prohibitin against apoptosis. Collectively, prohibitin plays a role both in cell cycle regulation and in maintaining mitochondrial integrity, implying its association with pathogenesis of psoriasis.
Jo, Tatsuro; Noguchi, Kazuhiro; Hayashi, Shizuka; Irie, Sadaharu; Hayase, Risa; Shioya, Haruna; Kaneko, Youhei; Horio, Kensuke; Taguchi, Jun
2018-01-01
Tyrosine kinase inhibitors (TKIs), including imatinib, dasatinib and nilotinib are primarily used in the initial treatment of chronic phase (CP)-chronic myeloid leukemia (CML), as CMLs harbor the BCR-ABL fusion product. An increased number of lymphocytes and large granular lymphocytes (LGLs) have been observed in patients treated with dasatinib, but not other TKIs. The LGLs have been reported to be primarily natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). In the present study, a CP-CML patient who has maintained molecular response 5 for >2.4 years after stopping dasatinib was reported. Memory and effector CTLs and NK cells, were observed after 2.4 years of treatment-free remission, despite the fact that lymphocyte counts are not elevated in the patient. These results suggest that dasatinib may induce cellular immunity, including NK cells and CTLs and this cellular immunity may be maintained for a long period following cessation of dasatinib. The results suggest that this cellular immunity may provide a long-term cure without the need for continued TKI treatment. PMID:29435021
Hülsmann, Jörn; Aubin, Hug; Wehrmann, Alexander; Lichtenberg, Artur; Akhyari, Payam
2017-05-01
Here, we investigate the impact of integrated three-dimensional (3D) left ventricular (LV) stretching on myocardial maturation in a whole-heart bioreactor setting. Therefore, decellularized rat hearts were selectively repopulated with rodent neonatal cardiomyocytes (5 · 10 6 cells per heart) and cultured over 5 days. Continuous medium perfusion was maintained through the coronary artery system in a customized whole-heart bioreactor system with or without integrated biomechanical stimulation of LV. 3D repopulation effectiveness and cellular vitality were evaluated by repetitive metabolic WST-1 assays and 3D confocal microscopy analysis through fluorescent staining, also assessing cellular organization. Moreover, specific myocardial vitality was verified by detecting spontaneous electrophysiological activity using a multielectrode assay. Western blot analysis of cardiac myosin heavychain (MHC) and quantitative RT-PCR for Connexin 43 was used to analyze cardiomyocyte maturation. Decellularized whole-heart constructs repopulated with neonatal cardiomyocytes (repopWHC) showed vital 3D cell populations throughout the repopulation sites within the LV with a significant increase in metabolic activity (326 ± 113% for stimulated constructs vs. 162 ± 32% for non-stimulated controls after 96 h of continuous cultivation as compared to their state 24 h after injection, directly prior to bioreactor cultivation). Further, bioreactor cultivation under integrated mechanical LV stimulation not only led to a higher degree of cellular organization and an increased MHC content, but also to a significant increase of Cx43 gene expression resulting in a regain of 60 ± 19% of native neonatal hearts expression level in contrast to 20 ± 9% for non-stimulated controls (P = 0.03). Therefore, our study suggests that the integration of LV stretching into whole-heart bioreactor cultivation may enhance cardiac maturation not only by promoting cellular organization but also through adaptive protein and gene expression with particular implications for the formation of the conductive apparatus. Further, this study emphasizes the importance of suitable bioprocessing strategies within sophisticated bioreactor systems as tools for customized stimulation and cultivation of tissue engineered tissues and organs. Biotechnol. Bioeng. 2017;114: 1107-1117. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A Wireless Communications Laboratory on Cellular Network Planning
ERIC Educational Resources Information Center
Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.
2010-01-01
The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…
Dato, Serena; Crocco, Paolina; D'Aquila, Patrizia; de Rango, Francesco; Bellizzi, Dina; Rose, Giuseppina; Passarino, Giuseppe
2013-08-08
Oxidative stress is both the cause and consequence of impaired functional homeostasis characterizing human aging. The worsening efficiency of stress response with age represents a health risk and leads to the onset and accrual of major age-related diseases. In contrast, centenarians seem to have evolved conservative stress response mechanisms, probably derived from a combination of a diet rich in natural antioxidants, an active lifestyle and a favorable genetic background, particularly rich in genetic variants able to counteract the stress overload at the level of both nuclear and mitochondrial DNA. The integration of these factors could allow centenarians to maintain moderate levels of free radicals that exert beneficial signaling and modulator effects on cellular metabolism. Considering the hot debate on the efficacy of antioxidant supplementation in promoting healthy aging, in this review we gathered the existing information regarding genetic variability and lifestyle factors which potentially modulate the stress response at old age. Evidence reported here suggests that the integration of lifestyle factors (moderate physical activity and healthy nutrition) and genetic background could shift the balance in favor of the antioxidant cellular machinery by activating appropriate defense mechanisms in response to exceeding external and internal stress levels, and thus possibly achieving the prospect of living a longer life.
Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon
2014-01-01
Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.
Guo, Xiao; Niemi, Natalie M; Coon, Joshua J; Pagliarini, David J
2017-07-14
The pyruvate dehydrogenase complex (PDC) is the primary metabolic checkpoint connecting glycolysis and mitochondrial oxidative phosphorylation and is important for maintaining cellular and organismal glucose homeostasis. Phosphorylation of the PDC E1 subunit was identified as a key inhibitory modification in bovine tissue ∼50 years ago, and this regulatory process is now known to be conserved throughout evolution. Although Saccharomyces cerevisiae is a pervasive model organism for investigating cellular metabolism and its regulation by signaling processes, the phosphatase(s) responsible for activating the PDC in S. cerevisiae has not been conclusively defined. Here, using comparative mitochondrial phosphoproteomics, analyses of protein-protein interactions by affinity enrichment-mass spectrometry, and in vitro biochemistry, we define Ptc6p as the primary PDC phosphatase in S. cerevisiae Our analyses further suggest additional substrates for related S. cerevisiae phosphatases and describe the overall phosphoproteomic changes that accompany mitochondrial respiratory dysfunction. In summary, our quantitative proteomics and biochemical analyses have identified Ptc6p as the primary-and likely sole- S. cerevisiae PDC phosphatase, closing a key knowledge gap about the regulation of yeast mitochondrial metabolism. Our findings highlight the power of integrative omics and biochemical analyses for annotating the functions of poorly characterized signaling proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Stacpoole, Peter W
2017-11-01
The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Robust imaging and gene delivery to study human lymphoblastoid cell lines.
Jolly, Lachlan A; Sun, Ying; Carroll, Renée; Homan, Claire C; Gecz, Jozef
2018-06-20
Lymphoblastoid cell lines (LCLs) have been by far the most prevalent cell type used to study the genetics underlying normal and disease-relevant human phenotypic variation, across personal to epidemiological scales. In contrast, only few studies have explored the use of LCLs in functional genomics and mechanistic studies. Two major reasons are technical, as (1) interrogating the sub-cellular spatial information of LCLs is challenged by their non-adherent nature, and (2) LCLs are refractory to gene transfection. Methodological details relating to techniques that overcome these limitations are scarce, largely inadequate (without additional knowledge and expertise), and optimisation has never been described. Here we compare, optimise, and convey such methods in-depth. We provide a robust method to adhere LCLs to coverslips, which maintained cellular integrity, morphology, and permitted visualisation of sub-cellular structures and protein localisation. Next, we developed the use of lentiviral-based gene delivery to LCLs. Through empirical and combinatorial testing of multiple transduction conditions, we improved transduction efficiency from 3% up to 48%. Furthermore, we established strategies to purify transduced cells, to achieve sustainable cultures containing >85% transduced cells. Collectively, our methodologies provide a vital resource that enables the use of LCLs in functional cell and molecular biology experiments. Potential applications include the characterisation of genetic variants of unknown significance, the interrogation of cellular disease pathways and mechanisms, and high-throughput discovery of genetic modifiers of disease states among others.
Xie, Fang; Li, Gang; Zhang, Wanjiang; Zhang, Yanhe; Zhou, Long; Liu, Shuanghong; Liu, Siguo; Wang, Chunlai
2016-02-01
The outer membrane proteins of Actinobacillus pleuropneumoniae are mediators of infection, acting as targets for the host's defense system. The outer membrane lipoprotein VacJ is involved in serum resistance and intercellular spreading in several pathogenic bacteria. To investigate the role of VacJ in the pathogenicity of Actinobacillus pleuropneumoniae, the vacJ gene-deletion mutant MD12 ΔvacJ was constructed. The increased susceptibility to KCl, SDS plus EDTA, and several antibiotics in the MD12ΔvacJ mutant suggested that the stability of the outer membrane was impaired as a result of the mutation in the vacJ gene. The increased NPN fluorescence and significant cellular morphological variation in the MD12ΔvacJ mutant further demonstrated the crucial role of the VacJ lipoprotein in maintaining the outer membrane integrity of A. pleuropneumoniae. In addition, the MD12ΔvacJ mutant exhibited decreased survival from the serum and complement killing compared to the wild-type strain. Interestingly, the MD12ΔvacJ mutant showed reduced biofilm formation compared to the wild-type strain. To our knowledge, this is the first description of the VacJ lipoprotein contributing to bacterial biofilm formation. The data presented in this study illustrate the important role of the VacJ lipoprotein in the maintenance of cellular integrity, serum resistance, and biofilm formation in A. pleuropneumoniae. Copyright © 2015 Elsevier B.V. All rights reserved.
Controlling tissue microenvironments: biomimetics, transport phenomena, and reacting systems.
Fisher, Robert J; Peattie, Robert A
2007-01-01
The reconstruction of tissues ex vivo and production of cells capable of maintaining a stable performance for extended time periods in sufficient quantity for synthetic or therapeutic purposes are primary objectives of tissue engineering. The ability to characterize and manipulate the cellular microenvironment is critical for successful implementation of such cell-based bioengineered systems. As a result, knowledge of fundamental biomimetics, transport phenomena, and reaction engineering concepts is essential to system design and development. Once the requirements of a specific tissue microenvironment are understood, the biomimetic system specifications can be identified and a design implemented. Utilization of novel membrane systems that are engineered to possess unique transport and reactive features is one successful approach presented here. The limited availability of tissue or cells for these systems dictates the need for microscale reactors. A capstone illustration based on cellular therapy for type 1 diabetes mellitus via encapsulation techniques is presented as a representative example of this approach, to stress the importance of integrated systems.
Herpes simplex virus 1 induces de novo phospholipid synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter, Esther; Oliveira, Anna Paula de; Tobler, Kurt
2012-08-01
Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and thatmore » de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.« less
Wilms, Tobias; Swinnen, Erwin; Eskes, Elja; Dolz-Edo, Laura; Uwineza, Alice; Van Essche, Ruben; Rosseels, Joëlle; Zabrocki, Piotr; Cameroni, Elisabetta; Franssens, Vanessa; De Virgilio, Claudio; Smits, Gertien J; Winderickx, Joris
2017-06-01
The conserved protein kinase Sch9 is a central player in the nutrient-induced signaling network in yeast, although only few of its direct substrates are known. We now provide evidence that Sch9 controls the vacuolar proton pump (V-ATPase) to maintain cellular pH homeostasis and ageing. A synthetic sick phenotype arises when deletion of SCH9 is combined with a dysfunctional V-ATPase, and the lack of Sch9 has a significant impact on cytosolic pH (pHc) homeostasis. Sch9 physically interacts with, and influences glucose-dependent assembly/disassembly of the V-ATPase, thereby integrating input from TORC1. Moreover, we show that the role of Sch9 in regulating ageing is tightly connected with V-ATPase activity and vacuolar acidity. As both Sch9 and the V-ATPase are highly conserved in higher eukaryotes, it will be interesting to further clarify their cooperative action on the cellular processes that influence growth and ageing.
Extracellular Adenosine: A Safety Signal That Dampens Hypoxia-Induced Inflammation During Ischemia
Grenz, Almut; Homann, Dirk
2011-01-01
Abstract Traditionally, the single most unique feature of the immune system has been attributed to its capability to discriminate between self (e.g., host proteins) and nonself (e.g., pathogens). More recently, an emerging immunologic concept involves the notion that the immune system responds via a complex system for sensing signals of danger, such as pathogens or host-derived signals of cellular distress (e.g., ischemia), while remaining unresponsive to nondangerous motifs. Experimental studies have provided strong evidence that the production and signaling effects of extracellular adenosine are dramatically enhanced during conditions of limited oxygen availability as occurs during ischemia. As such, adenosine would fit the bill of signaling molecules that are enhanced during situations of cellular distress. In contrast to a danger signal, we propose here that extracellular adenosine operates as a countermeasure, in fact as a safety signal, to both restrain potentially harmful immune responses and to maintain and promote general tissue integrity during conditions of limited oxygen availability. Antioxid. Redox Signal. 15, 2221–2234. PMID:21126189
Mechanics of composite actin networks: in vitro and cellular perspectives
NASA Astrophysics Data System (ADS)
Upadhyaya, Arpita
2014-03-01
Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not well understood. The ABP, palladin, is essential for the integrity of cell morphology and movement during development. Palladin coexists with alpha-actinin in stress fibers and focal adhesions and binds to both actin and alpha-actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we have characterized the micro-structure and mechanics of actin networks crosslinked with palladin and alpha-actinin. Our studies on composite networks of alpha-actinin/palladin/actin show that palladin and alpha-actinin synergistically determine network viscoelasticity. We have further examined the role of palladin in cellular force generation and mechanosensing. Traction force microscopy revealed that TAFs are sensitive to substrate stiffness as they generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells, and also inhibited the ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in the actin organization and adhesion dynamics of palladin knock down cells. Perturbation experiments also suggest altered myosin activity in palladin KD cells. Our results suggest that the actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.
Pretreatment of high solid microbial sludges
Rivard, Christopher J.; Nagle, Nicholas J.
1998-01-01
A process and apparatus for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion.
Electromagnetic Basis of Metabolism and Heredity
NASA Technical Reports Server (NTRS)
Freund, Friedemann; Stolc, Viktor
2016-01-01
Living organisms control their cellular biological clocks to maintain functional oscillation of the redox cycle, also called the "metabolic cycle" or "respiratory cycle". Organization of cellular processes requires parallel processing on a synchronized time-base. These clocks coordinate the timing of all biochemical processes in the cell, including energy production, DNA replication, and RNA transcription. When this universal time keeping function is perturbed by exogenous induction of reactive oxygen species (ROS), the rate of metabolism changes. This causes oxidative stress, aging and mutations. Therefore, good temporal coordination of the redox cycle not only actively prevents chemical conflict between the reductive and oxidative partial reactions; it also maintains genome integrity and lifespan. Moreover, this universal biochemical rhythm can be disrupted by ROS induction in vivo. This in turn can be achieved by blocking the electron transport chain either endogenously or exogenously by various metabolites, e.g. hydrogen sulfide (H2S), highly diffusible drugs, and carbon monoxide (CO). Alternatively, the electron transport in vivo can be attenuated via a coherent or interfering transfer of energy from exogenous ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) fields, suggesting that-on Earth-such ambient fields are an omnipresent (and probably crucially important) factor for the time-setting basis of universal biochemical reactions in living cells. Our work demonstrated previously un-described evidence for quantum effects in biology by electromagnetic coupling below thermal noise at the universal electron transport chain (ETC) in vivo.
77 FR 31030 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-24
... Review Group; Cellular, Molecular and Integrative Reproduction Study Section. Date: June 21, 2012. Time...: Endocrinology, Metabolism, Nutrition and Reproductive Sciences Integrated Review Group; Molecular and Cellular..., Bethesda, MD 20892, 301-827- 7915, [email protected] . Name of Committee: Molecular, Cellular and...
Liu, Yishi; LeBeouf, Brigitte; Guo, Xiaoyan; Correa, Paola A.; Gualberto, Daisy G.; Lints, Robyn; Garcia, L. Rene
2011-01-01
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components. PMID:21423722
Integrating physiological regulation with stem cell and tissue homeostasis
Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.
2015-01-01
Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826
Creating single-copy genetic circuits
Lee, Jeong Wook; Gyorgy, Andras; Cameron, D. Ewen; Pyenson, Nora; Choi, Kyeong Rok; Way, Jeffrey C.; Silver, Pamela A.; Del Vecchio, Domitilla; Collins, James J.
2017-01-01
SUMMARY Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use. PMID:27425413
Role of the Nucleus as a Sensor of Cell Environment Topography.
Anselme, Karine; Wakhloo, Nayana Tusamda; Rougerie, Pablo; Pieuchot, Laurent
2018-04-01
The proper integration of biophysical cues from the cell vicinity is crucial for cells to maintain homeostasis, cooperate with other cells within the tissues, and properly fulfill their biological function. It is therefore crucial to fully understand how cells integrate these extracellular signals for tissue engineering and regenerative medicine. Topography has emerged as a prominent component of the cellular microenvironment that has pleiotropic effects on cell behavior. This progress report focuses on the recent advances in the understanding of the topography sensing mechanism with a special emphasis on the role of the nucleus. Here, recent techniques developed for monitoring the nuclear mechanics are reviewed and the impact of various topographies and their consequences on nuclear organization, gene regulation, and stem cell fate is summarized. The role of the cell nucleus as a sensor of cell-scale topography is further discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pretreatment of high solid microbial sludges
Rivard, C.J.; Nagle, N.J.
1998-07-28
A process and apparatus are disclosed for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion. 1 fig.
Increased sensitivity of thyroid hormone-mediated signaling despite prolonged fasting.
Martinez, Bridget; Scheibner, Michael; Soñanez-Organis, José G; Jaques, John T; Crocker, Daniel E; Ortiz, Rudy M
2017-10-01
Thyroid hormones (TH) can increase cellular metabolism. Food deprivation in mammals is typically associated with reduced thyroid gland responsiveness, in an effort to suppress cellular metabolism and abate starvation. However, in prolonged-fasted, elephant seal pups, cellular TH-mediated proteins are up-regulated and TH levels are maintained with fasting duration. The function and contribution of the thyroid gland to this apparent paradox is unknown and physiologically perplexing. Here we show that the thyroid gland remains responsive during prolonged food deprivation, and that its function and production of TH increase with fasting duration in elephant seals. We discovered that our modeled plasma TH data in response to exogenous thyroid stimulating hormone predicted cellular signaling, which was corroborated independently by the enzyme expression data. The data suggest that the regulation and function of the thyroid gland in the northern elephant seal is atypical for a fasted animal, and can be better described as, "adaptive fasting". Furthermore, the modeling data help substantiate the in vivo responses measured, providing unique insight on hormone clearance, production rates, and thyroid gland responsiveness. Because these unique endocrine responses occur simultaneously with a nearly strict reliance on the oxidation of lipid, these findings provide an intriguing model to better understand the TH-mediated reliance on lipid metabolism that is not otherwise present in morbidly obese humans. When coupled with cellular, tissue-specific responses, these data provide a more integrated assessment of thyroidal status that can be extrapolated for many fasting/food deprived mammals. Copyright © 2017 Elsevier Inc. All rights reserved.
75 FR 994 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-07
..., Genomes, and Genetics Integrated Review Group; Molecular Genetics C Study Section. Date: February 4-5...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neural Oxidative Metabolism [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review...
Liquid crystal nanoparticles for delivery of photosensitizers for photodynamic therapy
NASA Astrophysics Data System (ADS)
Nag, Okhil K.; Naciri, Jawad; Delehanty, James B.
2018-02-01
The main principle of photodynamic therapy (PDT) is to kill malignant cells by generation of reactive oxygen species (ROS). PDT appeared highly effective when ROS can be produced in subcellular location such as plasma membrane. The plasma membrane maintains the structural integrity of the cell and regulates multiple important cellular processes, such as endocytosis, trafficking, and apoptotic pathways, could be one of the best points to kill the cancer cells. Previously, we have developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs. Here we highlight the utility of this LCNP for membrane targeted delivery and imaging for a photosensitizer (PS) for PDT applications.
Small things considered: the small accessory subunits of RNA polymerase in Gram-positive bacteria
Weiss, Andy; Shaw, Lindsey N.
2015-01-01
The DNA-dependent RNA polymerase core enzyme in Gram-positive bacteria consists of seven subunits. Whilst four of them (α2ββ′) are essential, three smaller subunits, δ, ε and ω (∼9–21.5 kDa), are considered accessory. Both δ and ω have been viewed as integral components of RNAP for several decades; however, ε has only recently been described. Functionally these three small subunits carry out a variety of tasks, imparting important, supportive effects on the transcriptional process of Gram-positive bacteria. While ω is thought to have a wide range of roles, reaching from maintaining structural integrity of RNAP to σ factor recruitment, the only suggested function for ε thus far is in protecting cells from phage infection. The third subunit, δ, has been shown to have distinct influences in maintaining transcriptional specificity, and thus has a key role in cellular fitness. Collectively, all three accessory subunits, although dispensable under laboratory conditions, are often thought to be crucial for proper RNAP function. Herein we provide an overview of the available literature on each subunit, summarizing landmark findings that have deepened our understanding of these proteins and their function, and outline future challenges in understanding the role of these small subunits in the transcriptional process. PMID:25878038
Histone H3.3 maintains genome integrity during mammalian development
Jang, Chuan-Wei; Shibata, Yoichiro; Starmer, Joshua; Yee, Della; Magnuson, Terry
2015-01-01
Histone H3.3 is a highly conserved histone H3 replacement variant in metazoans and has been implicated in many important biological processes, including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components or in H3.3 encoding genes have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains unclear. To address this question, we generated H3.3-null mouse models through classical genetic approaches. We found that H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres, and pericentromeric regions of chromosomes, leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chromosomal heterochromatic structures, thus maintaining genome integrity during mammalian development. PMID:26159997
Evidence for a Role of FEN1 in Maintaining Mitochondrial DNA Integrity
Kalifa, Lidza; Beutner, Gisela; Phadnis, Naina; Sheu, Shey-Shing; Sia, Elaine A.
2009-01-01
Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle’s high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5′ flap structures generated during DNA synthesis. Furthermore, removal of 5′ flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity. PMID:19699691
75 FR 25273 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... Genetics Integrated Review Group, Molecular Genetics C Study Section. Date: June 3-4, 2010. Time: 8 a.m. to... Committee: Oncology 1-Basic Translational Integrated Review Group, Cancer Molecular Pathobiology Study... Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Cellular and...
NASA Astrophysics Data System (ADS)
Xia, Weiwei; Shen, Lianfeng
We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.
Tulina, Natalia M; Chen, Wen-Feng; Chen, Jung Hsuan; Sowcik, Mallory; Sehgal, Amita
2014-02-25
Adult stem cells maintain tissue integrity and function by renewing cellular content of the organism through regulated mitotic divisions. Previous studies showed that stem cell activity is affected by local, systemic, and environmental cues. Here, we explore a role of environmental day-night cycles in modulating cell cycle progression in populations of adult stem cells. Using a classic stem cell system, the Drosophila spermatogonial stem cell niche, we reveal daily rhythms in division frequencies of germ-line and somatic stem cells that act cooperatively to produce male gametes. We also examine whether behavioral sleep-wake cycles, which are driven by the environmental day-night cycles, regulate stem cell function. We find that flies lacking the sleep-promoting factor Sleepless, which maintains normal sleep in Drosophila, have increased germ-line stem cell (GSC) division rates, and this effect is mediated, in part, through a GABAergic signaling pathway. We suggest that alterations in sleep can influence the daily dynamics of GSC divisions.
Müller, Miriam J; Bruns, Heiko; Volmer, Dietrich A
2017-04-01
Vitamin D measurements in biological fluids by mass spectrometry are challenging at very low concentration levels. As a result, chemical derivatization is often employed to enhance the ionization properties of low abundant vitamin D compounds. Cookson-type reagents such as 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) or similar derivatives work well but require careful, water-free experimental conditions, as traces of water inactivate the reagent and inhibit or stop the derivatization reactions, thus making quantitative measurements in aqueous samples impossible. We describe a novel electrospray liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining 25-hydroxyvitamin D 3 (25(OH)D 3 ) directly in aqueous cellular systems using a new derivatization reagent, the ionic liquid 12-(maleimidyl)dodecyl-tri-n-butylphosphonium bromide (MDBP). The proof-of-concept for the MDBP assay was demonstrated by measuring the levels of 25(OH)D 3 in four different human cell types, namely T cells, helper T cells, B cells, and macrophages. In addition to the ability to determine the levels of 25(OH)D 3 directly in aqueous samples, the cellular integrity was maintained in our application. We show the time-dependent uptake of 25(OH)D 3 into the investigated cells to demonstrate the applicability of the new label. Furthermore, the MDBP derivatization technique may be equally useful in imaging mass spectrometry, where it could be used for response enhancements of spatially localized vitamin D metabolites on wet tissue surfaces, without destroying the integrity of the tissue surface. Graphical Abstract MDBP labelling of 25-hydroxyvitamin D in the extracellular space.
Notch3 protein expression in skin fibroblasts from CADASIL patients.
Qualtieri, Antonio; Ungaro, Carmine; Bagalà, Angelo; Bianchi, Silvia; Pantoni, Leonardo; Moccia, Marcello; Mazzei, Rosalucia
2018-07-15
CADASIL is an inherited cerebrovascular disease caused by mutations in the NOTCH3 gene. Notch signaling is involved in a broad spectrum of function, from the cell proliferation to apoptosis. Thus far, because the molecular mechanism underlying the pathological alterations remains unclear and taking into account that fibroblasts contribute to the integrity of the vasculature, our aims was to establish whether fibroblasts, in subjects carrying different NOTCH3 mutations, show abnormalities in the protein expression. We performed the investigation on skin fibroblasts in culture obtained from three CADASIL patients and normal subjects. The patients were genetically characterized, and carried a p.R61W, a p.C174T, and p.R103X, mutation respectively. Notch3 expression was first evaluated on fibroblasts by immunofluorescence analysis, then western blot on cellular extract was utilized to validate the immunofluorescence results. The Notch3 immunoreactivity was clearly detected along the cellular body and in the cellular nuclei of the control fibroblasts. We observed a marked, statistically significant, reduction of the fluorescence immunoreactivity in the fibroblasts from patient with the classical C174T cysteine mutation and a less pronounced reduction in the other two subject's samples with respect to the normal controls. These data were confirmed by the immunoblot analysis. Our results show that the investigated three NOTCH3 mutations are associated with a reduction of the levels of Notch3 expression in vitro. Because the smooth muscle cells appear to be predominantly involved in this cerebrovascular disease, our result, despite the limitation of the sample size examinated, clearly suggest that also fibroblasts, directly involved in making the vascular basal lamina and in maintaining the vascular integrity, may play an important role in the mechanism responsible for the disease. Copyright © 2018 Elsevier B.V. All rights reserved.
78 FR 57169 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-17
..., Molecular and Integrative Reproduction Study Section. Date: October 9, 2013. Time: 8:00 a.m. to 5:00 p.m...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neurogenesis and Cell Fate [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review...
Integration of Mobil Satellite and Cellular Systems
NASA Technical Reports Server (NTRS)
Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.
1993-01-01
By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.
NASA Astrophysics Data System (ADS)
Billi, Daniela; Viaggiu, Emanuela; Cockell, Charles S.; Rabbow, Elke; Horneck, Gerda; Onofri, Silvano
2011-01-01
The cyanobacterium Chroococcidiopsis, overlain by 3mm of Antarctic sandstone, was exposed as dried multilayers to simulated space and martian conditions. Ground-based experiments were conducted in the context of Lichens and Fungi Experiments (EXPOSE-E mission, European Space Agency), which were performed to evaluate, after 1.5 years on the International Space Station, the survival of cyanobacteria (Chroococcidiopsis), lichens, and fungi colonized on Antarctic rock. The survival potential and the role played by protection and repair mechanisms in the response of dried Chroococcidiopsis cells to ground-based experiments were both investigated. Different methods were employed, including evaluation of the colony-forming ability, single-cell analysis of subcellular integrities based on membrane integrity molecular and redox probes, evaluation of the photosynthetic pigment autofluorescence, and assessment of the genomic DNA integrity with a PCR-based assay. Desiccation survivors of strain CCMEE 123 (coastal desert, Chile) were better suited than CCMEE 134 (Beacon Valley, Antarctica) to withstand cellular damage imposed by simulated space and martian conditions. Exposed dried cells of strain CCMEE 123 formed colonies, maintained subcellular integrities, and, depending on the exposure conditions, also escaped DNA damage or repaired the induced damage upon rewetting.
Zündorf, Gregor
2011-01-01
Abstract The intracellular free calcium concentration subserves complex signaling roles in brain. Calcium cations (Ca2+) regulate neuronal plasticity underlying learning and memory and neuronal survival. Homo- and heterocellular control of Ca2+ homeostasis supports brain physiology maintaining neural integrity. Ca2+ fluxes across the plasma membrane and between intracellular organelles and compartments integrate diverse cellular functions. A vast array of checkpoints controls Ca2+, like G protein-coupled receptors, ion channels, Ca2+ binding proteins, transcriptional networks, and ion exchangers, in both the plasma membrane and the membranes of mitochondria and endoplasmic reticulum. Interactions between Ca2+ and reactive oxygen species signaling coordinate signaling, which can be either beneficial or detrimental. In neurodegenerative disorders, cellular Ca2+-regulating systems are compromised. Oxidative stress, perturbed energy metabolism, and alterations of disease-related proteins result in Ca2+-dependent synaptic dysfunction, impaired plasticity, and neuronal demise. We review Ca2+ control processes relevant for physiological and pathophysiological conditions in brain tissue. Dysregulation of Ca2+ is decisive for brain cell death and degeneration after ischemic stroke, long-term neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, inflammatory processes, such as in multiple sclerosis, epileptic sclerosis, and leucodystrophies. Understanding the underlying molecular processes is of critical importance for the development of novel therapeutic strategies to prevent neurodegeneration and confer neuroprotection. Antioxid. Redox Signal. 14, 1275–1288. PMID:20615073
Luo, Ziming; Li, Kang; Li, Kaijing; Xian, Bikun; Liu, Ying; Yang, Sijing; Xu, Chaochao; Lu, Shoutao; Zhang, Haijun
2018-01-01
Background To develop an effective surgical procedure for cellular scaffold epiretinal implantation in rhesus, facilitating subsequent epiretinal stem cell transplantation. Methods Retinal progenitors were seeded onto a poly(lactic-co-glycolic) acid (PLGA) scaffold. First, the cellular scaffolds were delivered by 18G catheter or retinal forceps into rabbit epiretinal space (n = 50). Then, the cell survival rate was evaluated by Cell Counting Kit-8 (CCK-8). Second, three methods of scaffold fixation, including adhesion after gas-liquid exchange (n = 1), tamponade by hydrogel (n = 1), and fixation by retinal tacks (n = 4), were performed in rhesus monkeys. After one month, fundus photography and SD-OCT were performed to assess the outcomes, and histological examination was performed to evaluate proliferation. Results The cell survival rate was significantly higher in the catheter group. Follow-up examination showed that retinal tack fixation was the only method to maintain the scaffolds attached to host retina for at least 3 weeks, which is the minimal time required for cell integration. Histological staining demonstrated slight glial fibrillary acidic protein (GFAP) accumulation in the retinal tack insertion area. Conclusions The established surgical procedure offers a new insight into research of epiretinal cell replacement therapy in rhesus eyes. The successful delivery and long-term fixation provide a prerequisite for cell migration and integration. PMID:29760741
Zhang, Yiguo; Hayes, John D
2013-01-01
The integral membrane-bound Nrf1 transcription factor fulfils important functions in maintaining cellular homeostasis and organ integrity, but how it is controlled vectorially is unknown. Herein, creative use of Gal4-based reporter assays with protease protection assays (GRAPPA), and double fluorescence protease protection (dFPP), reveals that the membrane-topogenic vectorial behaviour of Nrf1 dictates its post-translational modification and transactivation activity. Nrf1 is integrated within endoplasmic reticulum (ER) membranes through its NHB1-associated TM1 in cooperation with other semihydrophobic amphipathic regions. The transactivation domains (TADs) of Nrf1, including its Asn/Ser/Thr-rich (NST) glycodomain, are transiently translocated into the ER lumen, where it is glycosylated in the presence of glucose to become a 120-kDa isoform. Thereafter, the NST-adjoining TADs are partially repartitioned out of membranes into the cyto/nucleoplasmic side, where Nrf1 is subject to deglycosylation and/or proteolysis to generate 95-kDa and 85-kDa isoforms. Therefore, the vectorial process of Nrf1 controls its target gene expression.
Perspective: neuroregenerative nutrition
USDA-ARS?s Scientific Manuscript database
Living healthy during aging is dependent upon optimal cellular and organ functioning that contribute to the regenerative ability of the body during the lifespan and especially during injury and disease. While diet may help to maintain cellular fitness during periods of stability or modest decline in...
Cell cycle control, checkpoint mechanisms, and genotoxic stress.
Shackelford, R E; Kaufmann, W K; Paules, R S
1999-01-01
The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cycle checkpoint functions, their role in maintaining DNA stability during the cell cycle following exposure to genotoxic agents, and the gene products that act in checkpoint function signal transduction cascades. Key transitions in the cell cycle are regulated by the activities of various protein kinase complexes composed of cyclin and cyclin-dependent kinase (Cdk) molecules. Surveillance control mechanisms that check to ensure proper completion of early events and cellular integrity before initiation of subsequent events in cell cycle progression are referred to as cell cycle checkpoints and can generate a transient delay that provides the cell more time to repair damage before progressing to the next phase of the cycle. A variety of cellular responses are elicited that function in checkpoint signaling to inhibit cyclin/Cdk activities. These responses include the p53-dependent and p53-independent induction of Cdk inhibitors and the p53-independent inhibitory phosphorylation of Cdk molecules themselves. Eliciting proper G1, S, and G2 checkpoint responses to double-strand DNA breaks requires the function of the Ataxia telangiectasia mutated gene product. Several human heritable cancer-prone syndromes known to alter DNA stability have been found to have defects in checkpoint surveillance pathways. Exposures to several common sources of genotoxic stress, including oxidative stress, ionizing radiation, UV radiation, and the genotoxic compound benzo[a]pyrene, elicit cell cycle checkpoint responses that show both similarities and differences in their molecular signaling. Images Figure 3 PMID:10229703
Wójtowicz, Inga; Jabłońska, Jadwiga; Zmojdzian, Monika; Taghli-Lamallem, Ouarda; Renaud, Yoan; Junion, Guillaume; Daczewska, Malgorzata; Huelsmann, Sven; Jagla, Krzysztof; Jagla, Teresa
2015-03-01
Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture. © 2015. Published by The Company of Biologists Ltd.
Kalantari, Mina; Lee, Denis; Calleja-Macias, Itzel E; Lambert, Paul F; Bernard, Hans-Ulrich
2008-05-10
Human papillomavirus-16 (HPV-16) genomes in cell culture and in situ are affected by polymorphic methylation patterns, which can repress the viral transcription. In order to understand some of the underlying mechanisms, we investigated changes of the methylation of HPV-16 DNA in cell cultures in response to cellular differentiation, to recombination with cellular DNA, and to an inhibitor of methylation. Undifferentiated W12E cells, derived from a precancerous lesion, contained extrachromosomal HPV-16 DNA with a sporadically methylated enhancer-promoter segment. Upon W12E cell differentiation, the viral DNA was demethylated, suggesting a link between differentiation and the epigenetic state of HPV-16 DNA. The viral genomes present in two W12I clones, in which individual copies of the HPV-16 genome have integrated into cellular DNA (type 1 integrants), were unmethylated, akin to that seen in the cervical carcinoma cell line SiHa (also a type 1 integrant). This finding is consistent with hypomethylation being necessary for continued viral gene expression. In contrast, two of three type 2 integrant W12I clones, containing concatemers of HPV-16 genomes integrated into the cellular DNA contained hypermethylated viral DNA, as observed in the cervical carcinoma cell line CaSki (also a type 2 integrant). A third, type 2, W12I clone, interestingly with fewer copies of the viral genome, contained unmethylated HPV-16 genomes. Epithelial differentiation of W12I clones did not lead to demethylation of chromosomally integrated viral genomes as was seen for extrachromosomal HPV-16 DNA in W12E clones. Hypomethylation of CaSki cells in the presence of the DNA methylation inhibitor 5-aza-2'-deoxycytidine reduced the cellular viability, possibly as a consequence of toxic effects of an excess of HPV-16 gene products. Our data support a model wherein (i) the DNA methylation state of extrachromosomal HPV16 replicons and epithelial differentiation are inversely coupled during the viral life cycle, (ii) integration of the viral genome into the host chromosome events leads to an alteration in methylation patterns on the viral genome that is dependent upon the type of integration event and possibly copy number, and (iii) integration universally results in the viral DNA becoming refractory to changes in methylation state upon cellular differentiation that are observed with extrachromosomal HPV-16 genomes.
Maekawa, Masashi; Fairn, Gregory D
2015-04-01
Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles. © 2015. Published by The Company of Biologists Ltd.
UMA/GAN network architecture analysis
NASA Astrophysics Data System (ADS)
Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi
2009-07-01
This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.
Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase
Pandey, Saurabh; Fartyal, Dhirendra; Agarwal, Aakrati; Shukla, Tushita; James, Donald; Kaul, Tanushri; Negi, Yogesh K.; Arora, Sandeep; Reddy, Malireddy K.
2017-01-01
One of the most significant manifestations of environmental stress in plants is the increased production of Reactive Oxygen Species (ROS). These ROS, if allowed to accumulate unchecked, can lead to cellular toxicity. A battery of antioxidant molecules is present in plants for keeping ROS levels under check and to maintain the cellular homeostasis under stress. Ascorbate peroxidase (APX) is a key antioxidant enzyme of such scavenging systems. It catalyses the conversion of H2O2 into H2O, employing ascorbate as an electron donor. The expression of APX is differentially regulated in response to environmental stresses and during normal plant growth and development as well. Different isoforms of APX show differential response to environmental stresses, depending upon their sub-cellular localization, and the presence of specific regulatory elements in the upstream regions of the respective genes. The present review delineates role of APX isoforms with respect to different types of abiotic stresses and its importance as a key antioxidant enzyme in maintaining cellular homeostasis. PMID:28473838
C. elegans model of neuronal aging
Peng, Chiu-Ying; Chen, Chun-Hao; Hsu, Jiun-Min
2011-01-01
Aging of the nervous system underlies the behavioral and cognitive decline associated with senescence. Understanding the molecular and cellular basis of neuronal aging will therefore contribute to the development of effective treatments for aging and age-associated neurodegenerative disorders. Despite this pressing need, there are surprisingly few animal models that aim at recapitulating neuronal aging in a physiological context. We recently developed a C. elegans model of neuronal aging, and showed that age-dependent neuronal defects are regulated by insulin signaling. We identified electrical activity and epithelial attachment as two critical factors in the maintenance of structural integrity of C. elegans touch receptor neurons. These findings open a new avenue for elucidating the molecular mechanisms that maintain neuronal structures during the course of aging. PMID:22446530
Antioxidants and the Integrity of Ocular Tissues
Cabrera, Marcela P.; Chihuailaf, Ricardo H.
2011-01-01
Oxygen-derived free radicals are normally generated in many pathways. These radicals can interact with various cellular components and induce cell injury. When free radicals exceed the antioxidant capacity, cell injury causes diverse pathologic changes in the organs. The imbalance between the generation of free radicals and antioxidant defence is known as oxidative stress. The eye can suffer the effect of oxidative damage due to the etiopathogenesis of some pathological changes related to oxidative stress. This paper reviews the role of oxidative stress in the onset and progression of damage in different eye structures, the involvement of the antioxidant network in protecting and maintaining the homeostasis of this organ, and the potential assessment methodologies used in research and in some cases in clinical practice. PMID:21789267
Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche
Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting
2015-01-01
Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche. DOI: http://dx.doi.org/10.7554/eLife.08174.001 PMID:26452202
Analysis And Augmentation Of Timing Advance Based Geolocation In Lte Cellular Networks
2016-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA DISSERTATION ANALYSIS AND AUGMENTATION OF TIMING ADVANCE-BASED GEOLOCATION IN LTE CELLULAR NETWORKS by...estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the...AND SUBTITLE ANALYSIS AND AUGMENTATION OF TIMING ADVANCE-BASED GEOLOCA- TION IN LTE CELLULAR NETWORKS 5. FUNDING NUMBERS 6. AUTHOR(S) John D. Roth 7
Cell signaling is a complex process which controls basic cellular activities and coordinates actions to maintain normal cellular homeostasis. Alterations in signaling processes have been associated with neurological diseases such as Alzheimer's and cerebellar ataxia, as well as, ...
ACF7: an essential integrator of microtubule dynamics.
Kodama, Atsuko; Karakesisoglou, Iakowos; Wong, Ellen; Vaezi, Alec; Fuchs, Elaine
2003-10-31
ACF7 is a member of the spectraplakin family of cytoskeletal crosslinking proteins possessing actin and microtubule binding domains. Here, we show that ACF7 is an essential integrator of MT-actin dynamics. In endodermal cells, ACF7 binds along microtubules but concentrates at their distal ends and at cell borders when polarized. In ACF7's absence, microtubules still bind EB1 and CLIP170, but they no longer grow along polarized actin bundles, nor do they pause and tether to actin-rich cortical sites. The consequences are less stable, long microtubules with skewed cytoplasmic trajectories and altered dynamic instability. In response to wounding, ACF7 null cultures activate polarizing signals, but fail to maintain them and coordinate migration. Rescue of these defects requires ACF7's actin and microtubule binding domains. Thus, spectraplakins are important for controlling microtubule dynamics and reinforcing links between microtubules and polarized F-actin, so that cellular polarization and coordinated cell movements can be sustained.
76 FR 2399 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Neurotransporters, Receptors...- 1198. [email protected] . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group.... (301) 435-1045. [email protected] . Name of Committee: Molecular, Cellular and Developmental...
Gautam, Mukesh; Jara, Javier H; Sekerkova, Gabriella; Yasvoina, Marina V; Martina, Marco; Özdinler, P Hande
2016-03-15
Mutations in the ALS2 gene result in early-onset amyotrophic lateral sclerosis, infantile-onset ascending hereditary spastic paraplegia and juvenile primary lateral sclerosis, suggesting prominent upper motor neuron involvement. However, the importance of alsin function for corticospinal motor neuron (CSMN) health and stability remains unknown. To date, four separate alsin knockout (Alsin(KO)) mouse models have been generated, and despite hopes of mimicking human pathology, none displayed profound motor function defects. This, however, does not rule out the possibility of neuronal defects within CSMN, which is not easy to detect in these mice. Detailed cellular analysis of CSMN has been hampered due to their limited numbers and the complex and heterogeneous structure of the cerebral cortex. In an effort to visualize CSMN in vivo and to investigate precise aspects of neuronal abnormalities in the absence of alsin function, we generated Alsin(KO)-UeGFP mice, by crossing Alsin(KO) and UCHL1-eGFP mice, a CSMN reporter line. We find that CSMN display vacuolated apical dendrites with increased autophagy, shrinkage of soma size and axonal pathology even in the pons region. Immunocytochemistry coupled with electron microscopy reveal that alsin is important for maintaining cellular cytoarchitecture and integrity of cellular organelles. In its absence, CSMN displays selective defects both in mitochondria and Golgi apparatus. UCHL1-eGFP mice help understand the underlying cellular factors that lead to CSMN vulnerability in diseases, and our findings reveal unique importance of alsin function for CSMN health and stability. © The Author 2016. Published by Oxford University Press.
2013-01-01
Reversible protein ubiquitination is emerging as a key process for maintaining cell homeostasis, and the enzymes that participate in this process, in particular E3 ubiquitin ligases and deubiquitinases (DUBs), are increasingly being regarded as candidates for drug discovery. Human DUBs are a group of approximately 100 proteins, whose cellular functions and regulatory mechanisms remain, with some exceptions, poorly characterized. One of the best-characterized human DUBs is ubiquitin-specific protease 1 (USP1), which plays an important role in the cellular response to DNA damage. USP1 levels, localization and activity are modulated through several mechanisms, including protein-protein interactions, autocleavage/degradation and phosphorylation, ensuring that USP1 function is carried out in a properly regulated spatio-temporal manner. Importantly, USP1 expression is deregulated in certain types of human cancer, suggesting that USP1 could represent a valid target in cancer therapy. This view has gained recent support with the finding that USP1 inhibition may contribute to revert cisplatin resistance in an in vitro model of non-small cell lung cancer (NSCLC). Here, we describe the current knowledge on the cellular functions and regulatory mechanisms of USP1. We also summarize USP1 alterations found in cancer, combining data from the literature and public databases with our own data. Finally, we discuss the emerging potential of USP1 as a target, integrating published data with our novel findings on the effects of the USP1 inhibitor pimozide in combination with cisplatin in NSCLC cells. PMID:23937906
Elixir of Life: Thwarting Aging With Regenerative Reprogramming.
Beyret, Ergin; Martinez Redondo, Paloma; Platero Luengo, Aida; Izpisua Belmonte, Juan Carlos
2018-01-05
All living beings undergo systemic physiological decline after ontogeny, characterized as aging. Modern medicine has increased the life expectancy, yet this has created an aged society that has more predisposition to degenerative disorders. Therefore, novel interventions that aim to extend the healthspan in parallel to the life span are needed. Regeneration ability of living beings maintains their biological integrity and thus is the major leverage against aging. However, mammalian regeneration capacity is low and further declines during aging. Therefore, modalities that reinforce regeneration can antagonize aging. Recent advances in the field of regenerative medicine have shown that aging is not an irreversible process. Conversion of somatic cells to embryonic-like pluripotent cells demonstrated that the differentiated state and age of a cell is not fixed. Identification of the pluripotency-inducing factors subsequently ignited the idea that cellular features can be reprogrammed by defined factors that specify the desired outcome. The last decade consequently has witnessed a plethora of studies that modify cellular features including the hallmarks of aging in addition to cellular function and identity in a variety of cell types in vitro. Recently, some of these reprogramming strategies have been directly used in animal models in pursuit of rejuvenation and cell replacement. Here, we review these in vivo reprogramming efforts and discuss their potential use to extend the longevity by complementing or augmenting the regenerative capacity. © 2017 American Heart Association, Inc.
Mbye, Lamin H; Keles, Eyup; Tao, Luyang; Zhang, Jimmy; Chung, Joonyong; Larvie, Mykol; Koppula, Rajani; Lo, Eng H; Whalen, Michael J
2012-03-01
Loss of plasma membrane integrity is a feature of acute cellular injury/death in vitro and in vivo. Plasmalemma-resealing agents are protective in acute central nervous system injury models, but their ability to reseal cell membranes in vivo has not been reported. Using a mouse controlled cortical impact (CCI) model, we found that propidium iodide-positive (PI+) cells pulse labeled at 6, 24, or 48 hours maintained a degenerative phenotype and disappeared from the injured brain by 7 days, suggesting that plasmalemma permeability is a biomarker of fatal cellular injury after CCI. Intravenous or intracerebroventricular administration of Kollidon VA64, poloxamer P188, or polyethylene glycol 8000 resealed injured cell membranes in vivo (P<0.05 versus vehicle or poloxamer P407). Kollidon VA64 (1 mmol/L, 500 μL) administered intravenously to mice 1 hour after CCI significantly reduced acute cellular degeneration, chronic brain tissue damage, brain edema, blood-brain barrier damage, and postinjury motor deficits (all P<0.05 versus vehicle). However, VA64 did not rescue pulse-labeled PI+ cells from eventual demise. We conclude that PI permeability within 48 hours of CCI is a biomarker of eventual cell death/loss. Kollidon VA64 reduces secondary damage after CCI by mechanisms other than or in addition to resealing permeable cells.
76 FR 27070 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
[email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date: June 13-14, 2011. Time... Committee: Population Sciences and Epidemiology Integrated Review Group; Epidemiology of Cancer Study...
Chronically stressed or stress-preconditioned neurons fail to maintain stress granule assembly.
Shelkovnikova, Tatyana A; Dimasi, Pasquale; Kukharsky, Michail S; An, Haiyan; Quintiero, Annamaria; Schirmer, Claire; Buée, Luc; Galas, Marie-Christine; Buchman, Vladimir L
2017-05-11
Dysregulation of stress granules (SGs) and their resident proteins contributes to pathogenesis of a number of (neuro)degenerative diseases. Phosphorylation of eIF2α is an event integrating different types of cellular stress and it is required for SG assembly. Phosphorylated eIF2α (p-eIF2α) is upregulated in the nervous system in some neurodegenerative conditions. We found that increasing p-eIF2α level by proteasomal inhibition in cultured cells, including mouse and human neurons, before a SG-inducing stress ('stress preconditioning'), limits their ability to maintain SG assembly. This is due to upregulation of PP1 phosphatase regulatory subunits GADD34 and/or CReP in preconditioned cells and early decline of p-eIF2α levels during subsequent acute stress. In two model systems with constitutively upregulated p-eIF2α, mouse embryonic fibroblasts lacking CReP and brain neurons of tau transgenic mice, SG formation was also impaired. Thus, neurons enduring chronic stress or primed by a transient mild stress fail to maintain p-eIF2α levels following subsequent acute stress, which would compromise protective function of SGs. Our findings provide experimental evidence on possible loss of function for SGs in certain neurodegenerative diseases.
Modeling integrated cellular machinery using hybrid Petri-Boolean networks.
Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay
2013-01-01
The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models.
Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks
Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay
2013-01-01
The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models. PMID:24244124
77 FR 33474 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... Translational Integrated Review Group; Cancer Molecular Pathobiology Study Section. Date: June 25-26, 2012. Time... 7818, Bethesda, MD 20892, 301-435- 1198, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of...
The genetic network controlling plasma cell differentiation.
Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D
2011-10-01
Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.
Im, Michelle; Dagnino, Lina
2018-01-01
The balance between the production of reactive oxygen species and activation of antioxidant pathways is essential to maintain a normal redox state in all tissues. Oxidative stress caused by excessive oxidant species generation can cause damage to DNA and other macromolecules, affecting cell function and viability. Here we show that integrin-linked kinase (ILK) plays a key role in eliciting a protective response to oxidative damage in epidermal cells. Inactivation of the Ilk gene causes elevated levels of intracellular oxidant species (IOS) and DNA damage in the absence of exogenous oxidative insults. In ILK-deficient cells, excessive IOS production can be prevented through inhibition of NADPH oxidase activity, with a concomitant reduction in DNA damage. Additionally, ILK is necessary for DNA repair processes following UVB-induced damage, as ILK-deficient cells show a significantly impaired ability to remove cyclobutane pyrimidine dimers following irradiation. Thus, ILK is essential to maintain cellular redox balance and, in its absence, epidermal cells become more susceptible to oxidative damage through mechanisms that involve IOS production by NADPH oxidase activity. PMID:29568383
Im, Michelle; Dagnino, Lina
2018-03-02
The balance between the production of reactive oxygen species and activation of antioxidant pathways is essential to maintain a normal redox state in all tissues. Oxidative stress caused by excessive oxidant species generation can cause damage to DNA and other macromolecules, affecting cell function and viability. Here we show that integrin-linked kinase (ILK) plays a key role in eliciting a protective response to oxidative damage in epidermal cells. Inactivation of the Ilk gene causes elevated levels of intracellular oxidant species (IOS) and DNA damage in the absence of exogenous oxidative insults. In ILK-deficient cells, excessive IOS production can be prevented through inhibition of NADPH oxidase activity, with a concomitant reduction in DNA damage. Additionally, ILK is necessary for DNA repair processes following UVB-induced damage, as ILK-deficient cells show a significantly impaired ability to remove cyclobutane pyrimidine dimers following irradiation. Thus, ILK is essential to maintain cellular redox balance and, in its absence, epidermal cells become more susceptible to oxidative damage through mechanisms that involve IOS production by NADPH oxidase activity.
Safe use of cellular telephones in hospitals: fundamental principles and case studies.
Cohen, Ted; Ellis, Willard S; Morrissey, Joseph J; Bakuzonis, Craig; David, Yadin; Paperman, W David
2005-01-01
Many industries and individuals have embraced cellular telephones. They provide mobile, synchronous communication, which could hypothetically increase the efficiency and safety of inpatient healthcare. However, reports of early analog cellular telephones interfering with critical life-support machines had led many hospitals to strictly prohibit cellular telephones. A literature search revealed that individual hospitals now are allowing cellular telephone use with various policies to prevent electromagnetic interference with medical devices. The fundamental principles underlying electromagnetic interference are immunity, frequency, modulation technology, distance, and power Electromagnetic interference risk mitigation methods based on these principles have been successfully implemented. In one case study, a minimum distance between cellular telephones and medical devices is maintained, with restrictions in critical areas. In another case study, cellular telephone coverage is augmented to automatically control the power of the cellular telephone. While no uniform safety standard yet exists, cellular telephones can be safely used in hospitals when their use is managed carefully.
Ong, Edison; Xie, Jiangan; Ni, Zhaohui; Liu, Qingping; Sarntivijai, Sirarat; Lin, Yu; Cooper, Daniel; Terryn, Raymond; Stathias, Vasileios; Chung, Caty; Schürer, Stephan; He, Yongqun
2017-12-21
Aiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration. CLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts. CLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.
Future Targets for Female Sexual Dysfunction.
Farmer, Melissa; Yoon, Hana; Goldstein, Irwin
2016-08-01
Female sexual function reflects a dynamic interplay of central and peripheral nervous, vascular, and endocrine systems. The primary challenge in the development of novel treatments for female sexual dysfunction is the identification and targeted modulation of excitatory sexual circuits using pharmacologic treatments that facilitate the synthesis, release, and/or receptor binding of neurochemicals, peptides, and hormones that promote female sexual function. To develop an evidence-based state-of-the-art consensus report that critically integrates current knowledge of the therapeutic potential for known molecular and cellular targets to facilitate the physiologic processes underlying female sexual function. State-of-the-art review representing the opinions of international experts developed in a consensus process during a 1-year period. Expert opinion was established by grading the evidence-based medical literature, intensive internal committee discussion, public presentation, and debate. Scientific investigation is urgently needed to expand knowledge and foster development of future treatments that maintain genital tissue integrity, enhance genital physiologic responsiveness, and optimize positive subjective appraisal of internal and external sexual cues. This article critically condenses the current knowledge of therapeutic manipulation of molecular and cellular targets within biological systems responsible for female sexual physiologic function. Future treatment targets include pharmacologic modulation of emotional learning circuits, restoration of normal tactile sensation, growth factor therapy, gene therapy, stem cell-based therapies, and regenerative medicine. Concurrent use of centrally and peripherally acting therapies could optimize treatment response. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Bhattacharya, Semantee; Gachhui, Ratan; Sil, Parames C
2011-06-01
Kombucha, a fermented tea (KT) is claimed to possess many beneficial properties. Recent studies have suggested that KT prevents paracetamol and carbon tetrachloride-induced hepatotoxicity. We investigated the beneficial role of KT was against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity and cell death in murine hepatocytes. TBHP is a well known reactive oxygen species (ROS) inducer, and it induces oxidative stress in organ pathophysiology. In our experiments, TBHP caused a reduction in cell viability, enhanced the membrane leakage and disturbed the intra-cellular antioxidant machineries while simultaneous treatment of the cells with KT and this ROS inducer maintained membrane integrity and prevented the alterations in the cellular antioxidant status. These findings led us to explore the detailed molecular mechanisms involved in the protective effect of KT. TBHP introduced apoptosis as the primary phenomena of cell death as evidenced by flow cytometric analyses. In addition, ROS generation, changes in the mitochondrial membrane potential, cytochrome c release, activation of caspases (3 and 9) and Apaf-1 were detected confirming involvement of mitochondrial pathway in this pathophysiology. Simultaneous treatment of KT with TBHP, on the other hand, protected the cells against oxidative injury and maintained their normal physiology. In conclusion, KT was found to modulate the oxidative stress induced apoptosis in murine hepatocytes probably due to its antioxidant activity and functioning via mitochondria dependent pathways and could be beneficial against liver diseases, where oxidative stress is known to play a crucial role. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
D-ribose--an additive with caffeine.
Herrick, Jim; Shecterle, L M; St Cyr, J A
2009-05-01
Caffeine acts as a stimulant, in which approximately 90% of people in the United States consume daily. Besides its beneficial effects, many individuals have experienced unpleasant reactions following the consumption of caffeine: such as insomnia, an increase in heart rate, feelings of nervousness, headaches, occasional lightheadedness, a state of "jitters," and a potential "crash" state following its metabolism. Researchers have proposed mechanisms responsible for caffeine's interactions, which include its blocking capacity of adenosine receptors, its role with the pituitary gland, increasing levels of dopamine, and its role with the intracellular release of calcium from the sarcoplasmic reticulum, which is dependent on intracellular adenosine triphosphate levels. Specific substrates have been investigated to lessen the undesirable effects of caffeine and still preserve its stimulatory benefits. The results of these investigations have produced no positive consensus. However, D-ribose, an important pentose carbohydrate in the energy molecule of adenosine triphosphate, as well as our genetic code and other cellular processes, could offer such a solution to this problem. D-ribose could potentially aid in maintaining or potentially lowering extra-cellular adenosine concentrations, aid in the flux of intracellular calcium, aid in intracellular energy production, and potentially lessen the perceived "crash" state felt by many. Every cell requires adequate levels of energy to maintain its integrity and function. Caffeine has the potential to task this energy equilibrium. D-ribose with caffeine may be the substrate to aid in the potential intracellular energy demand, aid in lessening the perceived unpleasant side effects of caffeine, and still preserving the desired benefits of this stimulant consumed by all of us daily.
Perspective: Neuroregenerative Nutrition.
Steindler, Dennis A; Reynolds, Brent A
2017-07-01
Good health while aging depends upon optimal cellular and organ functioning that contribute to the regenerative ability of the body during the lifespan, especially when injuries and diseases occur. Although diet may help in the maintenance of cellular fitness during periods of stability or modest decline in the regenerative function of an organ, this approach is inadequate in an aged system, in which the ability to maintain homeostasis is further challenged by aging and the ensuing suboptimal functioning of the regenerative unit, tissue-specific stem cells. Focused nutritional approaches can be used as an intervention to reduce decline in the body's regenerative capacity. This article brings together nutrition-associated therapeutic approaches with the fields of aging, immunology, neurodegenerative disease, and cancer to propose ways in which diet and nutrition can work with standard-of-care and integrated medicine to help improve the brain's function as it ages. The field of regenerative medicine has exploded during the past 2 decades as a result of the discovery of stem cells in nearly every organ system of the body, including the brain, where neural stem cells persist in discrete areas throughout life. This fact, and the uncovering of the genetic basis of plasticity in somatic cells and cancer stem cells, open a door to a world where maintenance and regeneration of organ systems maintain health and extend life expectancy beyond its present limits. An area that has received little attention in regenerative medicine is the influence on regulatory mechanisms and therapeutic potential of nutrition. We propose that a strong relation exists between brain regenerative medicine and nutrition and that nutritional intervention at key times of life could be used to not only maintain optimal functioning of regenerative units as humans age but also play a primary role in therapeutic treatments to combat injury and diseases (in particular, those that occur in the latter one-third of the lifespan). © 2017 American Society for Nutrition.
Hippo pathway and protection of genome stability in response to DNA damage.
Pefani, Dafni E; O'Neill, Eric
2016-04-01
The integrity of DNA is constantly challenged by exposure to the damaging effects of chemical and physical agents. Elucidating the cellular mechanisms that maintain genomic integrity via DNA repair and cell growth control is vital because errors in these processes lead to genomic damage and the development of cancer. By gaining a deep molecular understanding of the signaling pathways regulating genome integrity it is hoped to uncover new therapeutics and treatment designs to combat cancer. Components of the Hippo pathway, a tumor-suppressor cascade, have recently been defined to limit cancer transformation in response to DNA damage. In this review, we briefly introduce the Hippo signaling cascade in mammals and discuss in detail how the Hippo pathway has been established as part of the DNA damage response, activated by apical signaling kinases that recognize breaks in DNA. We also highlight the significance of the Hippo pathway activator RASSF1A tumor suppressor, a direct target of ataxia telangiectasia mutated and ataxia telangiectasia and Rad3 related ATR. Furthermore we discuss how Hippo pathway in response DNA lesions can induce cell death via Yes-associated protein (YAP) (the canonical Hippo pathway effector) or promote maintenance of genome integrity in a YAP-independent manner. © 2015 FEBS.
The European Bioinformatics Institute in 2017: data coordination and integration
Cochrane, Guy; Apweiler, Rolf; Birney, Ewan
2018-01-01
Abstract The European Bioinformatics Institute (EMBL-EBI) supports life-science research throughout the world by providing open data, open-source software and analytical tools, and technical infrastructure (https://www.ebi.ac.uk). We accommodate an increasingly diverse range of data types and integrate them, so that biologists in all disciplines can explore life in ever-increasing detail. We maintain over 40 data resources, many of which are run collaboratively with partners in 16 countries (https://www.ebi.ac.uk/services). Submissions continue to increase exponentially: our data storage has doubled in less than two years to 120 petabytes. Recent advances in cellular imaging and single-cell sequencing techniques are generating a vast amount of high-dimensional data, bringing to light new cell types and new perspectives on anatomy. Accordingly, one of our main focus areas is integrating high-quality information from bioimaging, biobanking and other types of molecular data. This is reflected in our deep involvement in Open Targets, stewarding of plant phenotyping standards (MIAPPE) and partnership in the Human Cell Atlas data coordination platform, as well as the 2017 launch of the Omics Discovery Index. This update gives a birds-eye view of EMBL-EBI’s approach to data integration and service development as genomics begins to enter the clinic. PMID:29186510
Karan, Anik; Darder, Margarita; Kansakar, Urna; Norcross, Zach
2018-01-01
We previously described the novel synthesis of a copper high-aspect ratio structure (CuHARS) biohybrid material using cystine. While extremely stable in water, CuHARS is completely (but slowly) degradable in cellular media. Here, integration of the CuHARS into cellulose matrices was carried out to provide added control for CuHARS degradation. Synthesized CuHARS was concentrated by centrifugation and then dried. The weighed mass was re-suspended in water. CuHARS was stable in water for months without degradation. In contrast, 25 μg/mL of the CuHARS in complete cell culture media was completely degraded (slowly) in 18 days under physiological conditions. Stable integration of CuHARS into cellulose matrices was achieved through assembly by mixing cellulose micro- and nano-fibers and CuHARS in an aqueous (pulp mixture) phase, followed by drying. Additional materials were integrated to make the hybrids magnetically susceptible. The cellulose-CuHARS composite films could be transferred, weighed, and cut into usable pieces; they maintained their form after rehydration in water for at least 7 days and were compatible with cell culture studies using brain tumor (glioma) cells. These studies demonstrate utility of a CuHARS-cellulose biohybrid for applied applications including: (1) a platform for biomedical tracking and (2) integration into a 2D/3D matrix using natural products (cellulose). PMID:29693569
Inhibition and Avoidance of mRNA Degradation by RNA Viruses
Moon, Stephanie L.; Barnhart, Michael D.; Wilusz, Jeffrey
2012-01-01
The cellular mRNA decay machinery plays a major role in regulating the quality and quantity of gene expression in cells. This machinery involves multiple enzymes and pathways that converge to promote the exonucleolytic decay of mRNAs. The transcripts made by RNA viruses are susceptible to degradation by this machinery and, in fact, can be actively targeted. Thus, to maintain gene expression and replication, RNA viruses have evolved a number of strategies to avoid and/or inactivate aspects of the cellular mRNA decay machinery. Recent work uncovering the mechanisms used by RNA viruses to maintain the stability of their transcripts is described below. PMID:22626865
Demir, E; Babur, O; Dogrusoz, U; Gursoy, A; Nisanci, G; Cetin-Atalay, R; Ozturk, M
2002-07-01
Availability of the sequences of entire genomes shifts the scientific curiosity towards the identification of function of the genomes in large scale as in genome studies. In the near future, data produced about cellular processes at molecular level will accumulate with an accelerating rate as a result of proteomics studies. In this regard, it is essential to develop tools for storing, integrating, accessing, and analyzing this data effectively. We define an ontology for a comprehensive representation of cellular events. The ontology presented here enables integration of fragmented or incomplete pathway information and supports manipulation and incorporation of the stored data, as well as multiple levels of abstraction. Based on this ontology, we present the architecture of an integrated environment named Patika (Pathway Analysis Tool for Integration and Knowledge Acquisition). Patika is composed of a server-side, scalable, object-oriented database and client-side editors to provide an integrated, multi-user environment for visualizing and manipulating network of cellular events. This tool features automated pathway layout, functional computation support, advanced querying and a user-friendly graphical interface. We expect that Patika will be a valuable tool for rapid knowledge acquisition, microarray generated large-scale data interpretation, disease gene identification, and drug development. A prototype of Patika is available upon request from the authors.
Single cell transcriptomics to explore the immune system in health and disease†
Regev, Aviv; Teichmann, Sarah A.
2017-01-01
The immune system varies in cell types, states, and locations. The complex networks, interactions and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as, massively-parallel single cell RNA-Seq and sophisticated computational methods are catalysing a revolution in our understanding of immunology. Here, we provide an overview of the state of single cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity. PMID:28983043
Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against Alzheimer's Disease.
Bernardo, T C; Marques-Aleixo, I; Beleza, J; Oliveira, P J; Ascensão, A; Magalhães, J
2016-09-01
Exercise is one of the most effective strategies to maintain a healthy body and mind, with particular beneficial effects of exercise on promoting brain plasticity, increasing cognition and reducing the risk of cognitive decline and dementia in later life. Moreover, the beneficial effects resulting from increased physical activity occur at different levels of cellular organization, mitochondria being preferential target organelles. The relevance of this review article relies on the need to integrate the current knowledge of proposed mechanisms, focus mitochondria, to explain the protective effects of exercise that might underlie neuroplasticity and seeks to synthesize these data in the context of exploring exercise as a feasible intervention to delay cognitive impairment associated with neurodegenerative conditions, particularly Alzheimer disease. © 2016 International Society of Neuropathology.
Smurf2 Regulates DNA Repair and Packaging to Prevent Tumors | Center for Cancer Research
The blueprint for all of a cell’s functions is written in the genetic code of DNA sequences as well as in the landscape of DNA and histone modifications. DNA is wrapped around histones to package it into chromatin, which is stored in the nucleus. It is important to maintain the integrity of the chromatin structure to ensure that the cell continues to behave appropriately. Recently, Ying Zhang, Ph.D., Senior Investigator in CCR’s Laboratory of Cellular and Molecular Biology, and her colleagues showed that alterations in the organization of the DNA can lead to tumor growth in a variety of tissues. This study appeared in the February 2012 issue of Nature Medicine and was featured as a cover story of that issue.
The AMP-activated protein kinase beta 1 subunit modulates erythrocyte integrity.
Cambridge, Emma L; McIntyre, Zoe; Clare, Simon; Arends, Mark J; Goulding, David; Isherwood, Christopher; Caetano, Susana S; Reviriego, Carmen Ballesteros; Swiatkowska, Agnieszka; Kane, Leanne; Harcourt, Katherine; Adams, David J; White, Jacqueline K; Speak, Anneliese O
2017-01-01
Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that acts as a critical regulator of cellular energy balance. Previous roles for the alpha 1 and gamma 1 subunits in the control of erythrocyte survival have been reported. In the work described here, we studied the role of the beta 1 subunit in erythrocytes and observed microcytic anemia with compensatory extramedullary hematopoiesis together with splenomegaly and increased osmotic resistance. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Refined views of multi-protein complexes in the erythrocyte membrane
Mankelow, TJ; Satchwell, TJ; Burton, NM
2015-01-01
The erythrocyte membrane has been extensively studied, both as a model membrane system and to investigate its role in gas exchange and transport. Much is now known about the protein components of the membrane, how they are organised into large multi-protein complexes and how they interact with each other within these complexes. Many links between the membrane and the cytoskeleton have also been delineated and have been demonstrated to be crucial for maintaining the deformability and integrity of the erythrocyte. In this study we have refined previous, highly speculative molecular models of these complexes by including the available data pertaining to known protein-protein interactions. While the refined models remain highly speculative, they provide an evolving framework for visualisation of these important cellular structures at the atomic level. PMID:22465511
HIV promoter integration site primarily modulates transcriptional burst size rather than frequency.
Skupsky, Ron; Burnett, John C; Foley, Jonathan E; Schaffer, David V; Arkin, Adam P
2010-09-30
Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian genomes, as well as be exploited for survival by integrating viruses.
AGCVIII Kinases: at the crossroads of cellular signaling
USDA-ARS?s Scientific Manuscript database
AGCVIII kinases regulate diverse developmental and cellular processes in plants. As putative mediators of secondary messengers, AGCVIII kinases potentially integrate developmental and environmental cues into specific cellular responses through substrate phosphorylation. Here we discuss the functiona...
Kim, Moon-Soo; Yun, Jeong-Won; Park, Jin-Ho; Park, Bong-Wook; Kang, Young-Hoon; Hah, Young-Sool; Hwang, Sun-Chul; Woo, Dong Kyun; Byun, June-Ho
2016-01-01
The deleterious role of cigarette smoke has long been documented in various human diseases including periodontal complications. In this report, we examined this adverse effect of cigarette smoke on human gingival fibroblasts (HGFs) which are critical not only in maintaining gingival tissue architecture but also in mediating immune responses. As well documented in other cell types, we also observed that cigarette smoke promoted cellular reactive oxygen species in HGFs. And we found that this cigarette smoke-induced oxidative stress reduced HGF viability through inducing apoptosis. Our results indicated that an increased Bax/Bcl-xL ratio and resulting caspase activation underlie the apoptotic death in HGFs exposed to cigarette smoke. Furthermore, we detected that cigarette smoke also triggered autophagy, an integrated cellular stress response. Interesting, a pharmacological suppression of the cigarette smoke-induced autophagy led to a further reduction in HGF viability while a pharmacological promotion of autophagy increased the viability of HGFs with cigarette smoke exposures. These findings suggest a protective role for autophagy in HGFs stressed with cigarette smoke, highlighting that modulation of autophagy can be a novel therapeutic target in periodontal complications with cigarette smoke.
BAG3: a new player in the heart failure paradigm.
Knezevic, Tijana; Myers, Valerie D; Gordon, Jennifer; Tilley, Douglas G; Sharp, Thomas E; Wang, JuFang; Khalili, Kamel; Cheung, Joseph Y; Feldman, Arthur M
2015-07-01
BAG3 is a cellular protein that is expressed predominantly in skeletal and cardiac muscle but can also be found in the brain and in the peripheral nervous system. BAG3 functions in the cell include: serving as a co-chaperone with members of the heat-shock protein family of proteins to facilitate the removal of misfolded and degraded proteins, inhibiting apoptosis by interacting with Bcl2 and maintaining the structural integrity of the Z-disk in muscle by binding with CapZ. The importance of BAG3 in the homeostasis of myocytes and its role in the development of heart failure was evidenced by the finding that single allelic mutations in BAG3 were associated with familial dilated cardiomyopathy. Furthermore, significant decreases in the level of BAG3 have been found in end-stage failing human heart and in animal models of heart failure including mice with heart failure secondary to trans-aortic banding and in pigs after myocardial infarction. Thus, it becomes relevant to understand the cellular biology and molecular regulation of BAG3 expression in order to design new therapies for the treatment of patients with both hereditary and non-hereditary forms of dilated cardiomyopathy.
Mitochondria and heart failure.
Murray, Andrew J; Edwards, Lindsay M; Clarke, Kieran
2007-11-01
Energetic abnormalities in cardiac and skeletal muscle occur in heart failure and correlate with clinical symptoms and mortality. It is likely that the cellular mechanism leading to energetic failure involves mitochondrial dysfunction. Therefore, it is crucial to elucidate the causes of mitochondrial myopathy, in order to improve cardiac and skeletal muscle function, and hence quality of life, in heart failure patients. Recent studies identified several potential stresses that lead to mitochondrial dysfunction in heart failure. Chronically elevated plasma free fatty acid levels in heart failure are associated with decreased metabolic efficiency and cellular insulin resistance. Tissue hypoxia, resulting from low cardiac output and endothelial impairment, can lead to oxidative stress and mitochondrial DNA damage, which in turn causes dysfunction and loss of mitochondrial mass. Therapies aimed at protecting mitochondrial function have shown promise in patients and animal models with heart failure. Despite current therapies, which provide substantial benefit to patients, heart failure remains a relentlessly progressive disease, and new approaches to treatment are necessary. Novel pharmacological agents are needed that optimize substrate metabolism and maintain mitochondrial integrity, improve oxidative capacity in heart and skeletal muscle, and alleviate many of the clinical symptoms associated with heart failure.
Lanni, C; Stanga, S; Racchi, M; Govoni, S
2010-01-01
Multiple molecular, cellular, structural and functional changes occur in the brain during aging. Neural cells may respond to these changes adaptively by employing multiple mechanisms in order to maintain the integrity of nerve cell circuits and to facilitate responses to environmental demands. Otherwise, they may succumb to neurodegenerative cascades that result in disorders such as Alzheimer's and Parkinson's diseases. An important role in this balancement is played by neurotrophic factors, which are central to many aspects of nervous system function since they regulate the development, maintenance and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. A vast amount of evidence indicates that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to aging as well as to the pathogenesis of diseases of abnormal trophic support (such as neurodegenerative diseases and depression) and diseases of abnormal excitability (such as epilepsy and central pain sensitization). Cellular and molecular mechanisms by which neurotrophic factors may influence cell survival and excitability are also critically examined to provide novel concepts and targets for the treatment of physiological changes bearing detrimental functional alterations and of different diseases affecting the central nervous system during aging.
Loke, P'ng; Favre, David; Hunt, Peter W; Leung, Jacqueline M; Kanwar, Bittoo; Martin, Jeffrey N; Deeks, Steven G; McCune, Joseph M
2010-04-15
HIV "controllers" are persons infected with human immunodeficiency virus, type I (HIV) who maintain long-term control of viremia without antiviral therapy and who usually do not develop the acquired immune deficiency syndrome (AIDS). In this study, we have correlated results from polychromatic flow cytometry and oligonucleotide expression arrays to characterize the mucosal immune responses of these subjects in relation to untreated HIV(+) persons with high viral loads and progressive disease ("noncontrollers"). Paired peripheral blood and rectosigmoid biopsies were analyzed from 9 controllers and 11 noncontrollers. Several cellular immune parameters were found to be concordant between the 2 compartments. Compared with noncontrollers, the mucosal tissues of controllers had similar levels of effector T cells and fewer regulatory T cells (Tregs). Using principal component analysis to correlate immunologic parameters with gene expression profiles, transcripts were identified that accurately distinguished between controllers and noncontrollers. Direct 2-way comparison also revealed genes that are significantly different in their expression between controllers and noncontrollers, all of which had reduced expression in controllers. In addition to providing an approach that integrates flow cytometry datasets with transcriptional profiling analysis, these results underscore the importance of the sustained inflammatory response that attends progressive HIV disease.
Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Catriona, E-mail: catriona.kelly@qub.ac.uk; Flatt, Peter R.; McClenaghan, Neville H.
2010-08-20
Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mMmore » glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.« less
Optimization of industrial microorganisms: recent advances in synthetic dynamic regulators.
Min, Byung Eun; Hwang, Hyun Gyu; Lim, Hyun Gyu; Jung, Gyoo Yeol
2017-01-01
Production of biochemicals by industrial fermentation using microorganisms requires maintaining cellular production capacity, because maximal productivity is economically important. High-productivity microbial strains can be developed using static engineering, but these may not maintain maximal productivity throughout the culture period as culture conditions and cell states change dynamically. Additionally, economic reasons limit heterologous protein expression using inducible promoters to prevent metabolic burden for commodity chemical and biofuel production. Recently, synthetic and systems biology has been used to design genetic circuits, precisely controlling gene expression or influencing genetic behavior toward a desired phenotype. Development of dynamic regulators can maintain cellular phenotype in a maximum production state in response to factors including cell concentration, oxygen, temperature, pH, and metabolites. Herein, we introduce dynamic regulators of industrial microorganism optimization and discuss metabolic flux fine control by dynamic regulators in response to metabolites or extracellular stimuli, robust production systems, and auto-induction systems using quorum sensing.
Chiu, Ya-Fang; Sugden, Arthur U.
2017-01-01
Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi’s sarcoma–associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning and viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected. PMID:28696226
Chiu, Ya-Fang; Sugden, Arthur U.; Fox, Kathryn; ...
2017-07-10
Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi’s sarcoma–associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning andmore » viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Ya-Fang; Sugden, Arthur U.; Fox, Kathryn
Genetic elements that replicate extrachromosomally are rare in mammals; however, several human tumor viruses, including the papillomaviruses and the gammaherpesviruses, maintain their plasmid genomes by tethering them to cellular chromosomes. We have uncovered an unprecedented mechanism of viral replication: Kaposi’s sarcoma–associated herpesvirus (KSHV) stably clusters its genomes across generations to maintain itself extrachromosomally. To identify and characterize this mechanism, we developed two complementary, independent approaches: live-cell imaging and a predictive computational model. The clustering of KSHV requires the viral protein, LANA1, to bind viral genomes to nucleosomes arrayed on both cellular and viral DNA. Clustering affects both viral partitioning andmore » viral genome numbers of KSHV. The clustering of KSHV plasmids provides it with an effective evolutionary strategy to rapidly increase copy numbers of genomes per cell at the expense of the total numbers of cells infected.« less
Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K
2017-01-01
Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.
Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R
2013-10-01
Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Flather, Dylan; Semler, Bert L.
2015-01-01
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review. PMID:26150805
Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy
Lindblom, Runa; Higgins, Gavin; Coughlan, Melinda; de Haan, Judy B.
2015-01-01
Diabetic kidney disease is one of the major microvascular complications of both type 1 and type 2 diabetes mellitus. Approximately 30% of patients with diabetes experience renal complications. Current clinical therapies can only mitigate the symptoms and delay the progression to end-stage renal disease, but not prevent or reverse it. Oxidative stress is an important player in the pathogenesis of diabetic nephropathy. The activity of reactive oxygen and nitrogen species (ROS/NS), which are by-products of the diabetic milieu, has been found to correlate with pathological changes observed in the diabetic kidney. However, many clinical studies have failed to establish that antioxidant therapy is renoprotective. The discovery that increased ROS/NS activity is linked to mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, cellular senescence, and cell death calls for a refined approach to antioxidant therapy. It is becoming clear that mitochondria play a key role in the generation of ROS/NS and their consequences on the cellular pathways involved in apoptotic cell death in the diabetic kidney. Oxidative stress has also been associated with necrosis via induction of mitochondrial permeability transition. This review highlights the importance of mitochondria in regulating redox balance, modulating cellular responses to oxidative stress, and influencing cell death pathways in diabetic kidney disease. ROS/NS-mediated cellular dysfunction corresponds with progressive disease in the diabetic kidney, and consequently represents an important clinical target. Based on this consideration, this review also examines current therapeutic interventions to prevent ROS/NS-derived injury in the diabetic kidney. These interventions, mainly aimed at reducing or preventing mitochondrial-generated oxidative stress, improving mitochondrial antioxidant defense, and maintaining mitochondrial integrity, may deliver alternative approaches to halt or prevent diabetic kidney disease. PMID:26676666
Lubanda, Jean-Claude; Anijalg, Ene; Bzdúch, Vladimír; Thurberg, Beth L; Bénichou, Bernard; Tylki-Szymanska, Anna
2009-04-01
Fabry disease, a genetic deficiency of alpha-galactosidase A, is characterized by pathogenic cellular accumulation of globotriaosylceramide. During clinical trials, recombinant human alpha-galactosidase A (agalsidase beta; Fabrazyme, Genzyme Corporation, Cambridge, MA), infused intravenously at 1.0 mg/kg every 2 weeks for 6 months, cleared or reduced globotriaosylceramide in renal, cardiac, and dermal microvascular endothelia and other cells, with results sustained for up to 5 years in most patients evaluated. This study explored whether a lower dose could maintain globotriaosylceramide clearance achieved with 1.0 mg/kg. Cellular globotriaosylceramide levels were assessed histologically in kidney and skin biopsies from 21 adult Fabry males treated for 6 months at 1.0 mg/kg/2 weeks followed by 18 months at 0.3 mg/kg/2 weeks. In kidney interstitial capillary endothelium, the primary endpoint, globotriaosylceramide clearance was achieved in 100% of patients with 1.0 mg/kg and maintained in 90% with 0.3 mg/kg. In seven other renal cell types and superficial dermal capillary endothelium, globotriaosylceramide reduction or clearance was maintained with 0.3 mg/kg in approximately 70% of patients. A lower dose of agalsidase beta may be sufficient in some, but not all, patients with Fabry disease to maintain the cellular globotriaosylceramide clearance achieved with 1.0 mg/kg/2 weeks. Long-term clinical effects of transitioning to the lower dose have not been evaluated.
Beauregard, Arthur; Chalamcharla, Venkata R; Piazza, Carol Lyn; Belfort, Marlene; Coros, Colin J
2006-11-01
Group II introns are mobile genetic elements that invade their cognate intron-minus alleles via an RNA intermediate, in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. In Escherichia coli, retrotransposition of the lactococcal group II intron, Ll.LtrB, occurs preferentially within the Ori and Ter macrodomains of the E. coli chromosome. These macrodomains migrate towards the poles of the cell, where the intron-encoded protein, LtrA, localizes. Here we investigate whether alteration of nucleoid condensation, chromosome partitioning and replication affect retrotransposition frequencies, as well as bipolar localization of the Ll.LtrB intron integration and LtrA distribution in E. coli. We thus examined these properties in the absence of the nucleoid-associated proteins H-NS, StpA and MukB, in variants of partitioning functions including the centromere-like sequence migS and the actin homologue MreB, as well as in the replication mutants DeltaoriC, seqA, tus and topoIV (ts). Although there were some dramatic fluctuations in retrotransposition levels in these hosts, bipolar localization of integration events was maintained. LtrA was consistently found in nucleoid-free regions, with its localization to the cellular poles being largely preserved in these hosts. Together, these results suggest that bipolar localization of group II intron retrotransposition results from the residence of the intron-encoded protein at the poles of the cell.
Autophagy and ageing: implications for age-related neurodegenerative diseases.
Carroll, Bernadette; Hewitt, Graeme; Korolchuk, Viktor I
2013-01-01
Autophagy is a process of lysosome-dependent intracellular degradation that participates in the liberation of resources including amino acids and energy to maintain homoeostasis. Autophagy is particularly important in stress conditions such as nutrient starvation and any perturbation in the ability of the cell to activate or regulate autophagy can lead to cellular dysfunction and disease. An area of intense research interest is the role and indeed the fate of autophagy during cellular and organismal ageing. Age-related disorders are associated with increased cellular stress and assault including DNA damage, reduced energy availability, protein aggregation and accumulation of damaged organelles. A reduction in autophagy activity has been observed in a number of ageing models and its up-regulation via pharmacological and genetic methods can alleviate age-related pathologies. In particular, autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing. Indeed, in certain situations, reduced autophagosome induction may actually provide benefits to ageing cells. Future studies will undoubtedly improve our understanding of exactly how the multiple signals that are integrated to control appropriate autophagy activity change during ageing, what affect this has on autophagy and to what extent autophagy contributes to age-associated pathologies. Identification of mechanisms that influence a healthy lifespan is of economic, medical and social importance in our 'ageing' world.
A Time to Reap, a Time to Sow: Mitophagy and Biogenesis in Cardiac Pathophysiology
Andres, Allen M.; Stotland, Aleksandr; Queliconi, Bruno B.; Gottlieb, Roberta A.
2014-01-01
Balancing mitophagy and mitochondrial biogenesis is essential for maintaining a healthy population of mitochondria and cellular homeostasis. Coordinated interplay between these two forces that govern mitochondrial turnover plays an important role as an adaptive response against various cellular stresses that can compromise cell survival. Failure to maintain the critical balance between mitophagy and mitochondrial biogenesis or homeostatic turnover of mitochondria results in a population of dysfunctional mitochondria that contribute to various disease processes. In this review we outline the mechanics and relationships between mitophagy and mitochondrial biogenesis, and discuss the implications of a disrupted balance between these two forces, with an emphasis on cardiac physiology. PMID:25444712
Shao, Yue
2014-01-01
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, we present an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions and highlight them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. We also discuss the recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. PMID:24339188
Koleti, Amar; Terryn, Raymond; Stathias, Vasileios; Chung, Caty; Cooper, Daniel J; Turner, John P; Vidović, Dušica; Forlin, Michele; Kelley, Tanya T; D’Urso, Alessandro; Allen, Bryce K; Torre, Denis; Jagodnik, Kathleen M; Wang, Lily; Jenkins, Sherry L; Mader, Christopher; Niu, Wen; Fazel, Mehdi; Mahi, Naim; Pilarczyk, Marcin; Clark, Nicholas; Shamsaei, Behrouz; Meller, Jarek; Vasiliauskas, Juozas; Reichard, John; Medvedovic, Mario; Ma’ayan, Avi; Pillai, Ajay
2018-01-01
Abstract The Library of Integrated Network-based Cellular Signatures (LINCS) program is a national consortium funded by the NIH to generate a diverse and extensive reference library of cell-based perturbation-response signatures, along with novel data analytics tools to improve our understanding of human diseases at the systems level. In contrast to other large-scale data generation efforts, LINCS Data and Signature Generation Centers (DSGCs) employ a wide range of assay technologies cataloging diverse cellular responses. Integration of, and unified access to LINCS data has therefore been particularly challenging. The Big Data to Knowledge (BD2K) LINCS Data Coordination and Integration Center (DCIC) has developed data standards specifications, data processing pipelines, and a suite of end-user software tools to integrate and annotate LINCS-generated data, to make LINCS signatures searchable and usable for different types of users. Here, we describe the LINCS Data Portal (LDP) (http://lincsportal.ccs.miami.edu/), a unified web interface to access datasets generated by the LINCS DSGCs, and its underlying database, LINCS Data Registry (LDR). LINCS data served on the LDP contains extensive metadata and curated annotations. We highlight the features of the LDP user interface that is designed to enable search, browsing, exploration, download and analysis of LINCS data and related curated content. PMID:29140462
Outside-in control -Does plant cell wall integrity regulate cell cycle progression?
Gigli-Bisceglia, Nora; Hamann, Thorsten
2018-04-13
During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.
Adenovirus Core Protein VII Downregulates the DNA Damage Response on the Host Genome
Avgousti, Daphne C.; Della Fera, Ashley N.; Otter, Clayton J.; Herrmann, Christin; Pancholi, Neha J.
2017-01-01
ABSTRACT Viral manipulation of cellular proteins allows viruses to suppress host defenses and generate infectious progeny. Due to the linear double-stranded DNA nature of the adenovirus genome, the cellular DNA damage response (DDR) is considered a barrier to successful infection. The adenovirus genome is packaged with protein VII, a virally encoded histone-like core protein that is suggested to protect incoming viral genomes from detection by the cellular DNA damage machinery. We showed that protein VII localizes to host chromatin during infection, leading us to hypothesize that protein VII may affect DNA damage responses on the cellular genome. Here we show that protein VII at cellular chromatin results in a significant decrease in accumulation of phosphorylated H2AX (γH2AX) following irradiation, indicating that protein VII inhibits DDR signaling. The oncoprotein SET was recently suggested to modulate the DDR by affecting access of repair proteins to chromatin. Since protein VII binds SET, we investigated a role for SET in DDR inhibition by protein VII. We show that knockdown of SET partially rescues the protein VII-induced decrease in γH2AX accumulation on the host genome, suggesting that SET is required for inhibition. Finally, we show that knockdown of SET also allows ATM to localize to incoming viral genomes bound by protein VII during infection with a mutant lacking early region E4. Together, our data suggest that the protein VII-SET interaction contributes to DDR evasion by adenovirus. Our results provide an additional example of a strategy used by adenovirus to abrogate the host DDR and show how viruses can modify cellular processes through manipulation of host chromatin. IMPORTANCE The DNA damage response (DDR) is a cellular network that is crucial for maintaining genome integrity. DNA viruses replicating in the nucleus challenge the resident genome and must overcome cellular responses, including the DDR. Adenoviruses are prevalent human pathogens that can cause a multitude of diseases, such as respiratory infections and conjunctivitis. Here we describe how a small adenovirus core protein that localizes to host chromatin during infection can globally downregulate the DDR. Our study focuses on key players in the damage signaling pathway and highlights how viral manipulation of chromatin may influence access of DDR proteins to the host genome. PMID:28794020
Luft, F; Klaes, R; Nees, M; Dürst, M; Heilmann, V; Melsheimer, P; von Knebel Doeberitz, M
2001-04-01
Human papillomavirus (HPV) genomes usually persist as episomal molecules in HPV associated preneoplastic lesions whereas they are frequently integrated into the host cell genome in HPV-related cancers cells. This suggests that malignant conversion of HPV-infected epithelia is linked to recombination of cellular and viral sequences. Due to technical limitations, precise sequence information on viral-cellular junctions were obtained only for few cell lines and primary lesions. In order to facilitate the molecular analysis of genomic HPV integration, we established a ligation-mediated PCR assay for the detection of integrated papillomavirus sequences (DIPS-PCR). DIPS-PCR was initially used to amplify genomic viral-cellular junctions from HPV-associated cervical cancer cell lines (C4-I, C4-II, SW756, and HeLa) and HPV-immortalized keratinocyte lines (HPKIA, HPKII). In addition to junctions already reported in public data bases, various new fusion fragments were identified. Subsequently, 22 different viral-cellular junctions were amplified from 17 cervical carcinomas and 1 vulval intraepithelial neoplasia (VIN III). Sequence analysis of each junction revealed that the viral E1 open reading frame (ORF) was fused to cellular sequences in 20 of 22 (91%) cases. Chromosomal integration loci mapped to chromosomes 1 (2n), 2 (3n), 7 (2n), 8 (3n), 10 (1n), 14 (5n), 16 (1n), 17 (2n), and mitochondrial DNA (1n), suggesting random distribution of chromosomal integration sites. Precise sequence information obtained by DIPS-PCR was further used to monitor the monoclonal origin of 4 cervical cancers, 1 case of recurrent premalignant lesions and 1 lymph node metastasis. Therefore, DIPS-PCR might allow efficient therapy control and prediction of relapse in patients with HPV-associated anogenital cancers. Copyright 2001 Wiley-Liss, Inc.
Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity.
Meshulam, Tova; Breen, Michael R; Liu, Libin; Parton, Robert G; Pilch, Paul F
2011-08-01
Mice and humans lacking functional caveolae are dyslipidemic and have reduced fat stores and smaller fat cells. To test the role of caveolins/caveolae in maintaining lipid stores and adipocyte integrity, we compared lipolysis in caveolin-1 (Cav1)-null fat cells to that in cells reconstituted for caveolae by caveolin-1 re-expression. We find that the Cav1-null cells have a modestly enhanced rate of lipolysis and reduced cellular integrity compared with reconstituted cells as determined by the release of lipid metabolites and lactic dehydrogenase, respectively, into the media. There are no apparent differences in the levels of lipolytic enzymes or hormonally stimulated phosphorylation events in the two cell lines. In addition, acute fasting, which dramatically raises circulating fatty acid levels in vivo, causes a significant upregulation of caveolar protein constituents. These results are consistent with the hypothesis that caveolae protect fat cells from the lipotoxic effects of elevated levels fatty acids, which are weak detergents at physiological pH, by virtue of the property of caveolae to form detergent-resistant membrane domains.
Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity
Meshulam, Tova; Breen, Michael R.; Liu, Libin; Parton, Robert G.; Pilch, Paul F.
2011-01-01
Mice and humans lacking functional caveolae are dyslipidemic and have reduced fat stores and smaller fat cells. To test the role of caveolins/caveolae in maintaining lipid stores and adipocyte integrity, we compared lipolysis in caveolin-1 (Cav1)-null fat cells to that in cells reconstituted for caveolae by caveolin-1 re-expression. We find that the Cav1-null cells have a modestly enhanced rate of lipolysis and reduced cellular integrity compared with reconstituted cells as determined by the release of lipid metabolites and lactic dehydrogenase, respectively, into the media. There are no apparent differences in the levels of lipolytic enzymes or hormonally stimulated phosphorylation events in the two cell lines. In addition, acute fasting, which dramatically raises circulating fatty acid levels in vivo, causes a significant upregulation of caveolar protein constituents. These results are consistent with the hypothesis that caveolae protect fat cells from the lipotoxic effects of elevated levels fatty acids, which are weak detergents at physiological pH, by virtue of the property of caveolae to form detergent-resistant membrane domains. PMID:21652731
Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity.
Sojka, Stephen; Amin, Nirav M; Gibbs, Devin; Christine, Kathleen S; Charpentier, Marta S; Conlon, Frank L
2014-08-01
The identification and characterization of the cellular and molecular pathways involved in the differentiation and morphogenesis of specific cell types of the developing heart are crucial to understanding the process of cardiac development and the pathology associated with human congenital heart disease. Here, we show that the cardiac transcription factor CASTOR (CASZ1) directly interacts with congenital heart disease 5 protein (CHD5), which is also known as tryptophan-rich basic protein (WRB), a gene located on chromosome 21 in the proposed region responsible for congenital heart disease in individuals with Down's syndrome. We demonstrate that loss of CHD5 in Xenopus leads to compromised myocardial integrity, improper deposition of basement membrane, and a resultant failure of hearts to undergo cell movements associated with cardiac formation. We further report that CHD5 is essential for CASZ1 function and that the CHD5-CASZ1 interaction is necessary for cardiac morphogenesis. Collectively, these results establish a role for CHD5 and CASZ1 in the early stages of vertebrate cardiac development. © 2014. Published by The Company of Biologists Ltd.
Gray, Andrew N; Egan, Alexander JF; van't Veer, Inge L; Verheul, Jolanda; Colavin, Alexandre; Koumoutsi, Alexandra; Biboy, Jacob; Altelaar, A F Maarten; Damen, Mirjam J; Huang, Kerwyn Casey; Simorre, Jean-Pierre; Breukink, Eefjan; den Blaauwen, Tanneke; Typas, Athanasios; Gross, Carol A; Vollmer, Waldemar
2015-01-01
To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane, peptidoglycan (PG), and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (Coordinator of PG synthesis and OM constriction, associated with PBP1B). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division. DOI: http://dx.doi.org/10.7554/eLife.07118.001 PMID:25951518
Riding the Waves: How Our Cells Send Signals | Center for Cancer Research
The ability of cells to perceive and respond to their environment is critical in order to maintain basic cellular functions such as development, tissue repair, and response to stress. This process happens through a complex system of communication, called cell signaling, which governs basic cellular activities and coordinates cell actions. Errors in cell signaling have been
A Quantitative Study of Oxygen as a Metabolic Regulator
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabera, Marco E.
2000-01-01
An acute reduction in oxygen delivery to a tissue is associated with metabolic changes aimed at maintaining ATP homeostasis. However, given the complexity of the human bio-energetic system, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). In particular, we are interested in determining mechanisms relating cellular oxygen concentration to observed metabolic responses at the cellular, tissue, organ, and whole body levels and in quantifying how changes in tissue oxygen availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study; we extend a previously developed mathematical model of human bioenergetics, to provide a physicochemical framework that permits quantitative understanding of oxygen as a metabolic regulator. Specifically, the enhancement - sensitivity analysis - permits studying the effects of variations in tissue oxygenation and parameters controlling cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The analysis can distinguish between parameters that must be determined accurately and those that require less precision, based on their effects on model predictions. This capability may prove to be important in optimizing experimental design, thus reducing use of animals.
Burstein, Michelle T.; Koupaki, Olivia; Gomez-Perez, Alejandra; Levy, Sean; Pluska, Lukas; Mattie, Sevan; Rafeh, Rami; Iouk, Tatiana; Sheibani, Sara; Greenwood, Michael; Vali, Hojatollah; Titorenko, Vladimir I.
2013-01-01
Macromitophagy controls mitochondrial quality and quantity. It involves the sequestration of dysfunctional or excessive mitochondria within double-membrane autophagosomes, which then fuse with the vacuole/lysosome to deliver these mitochondria for degradation. To investigate a physiological role of macromitophagy in yeast, we examined how the atg32Δ-dependent mutational block of this process influences the chronological lifespan of cells grown in a nutrient-rich medium containing low (0.2%) concentration of glucose. Under these longevity-extending conditions of caloric restriction (CR) yeast cells are not starving. We also assessed a role of macromitophagy in lifespan extension by lithocholic acid (LCA), a bile acid that prolongs yeast longevity under CR conditions. Our findings imply that macromitophagy is a longevity assurance process underlying the synergistic beneficial effects of CR and LCA on yeast lifespan. Our analysis of how the atg32Δ mutation influences mitochondrial morphology, composition and function revealed that macromitophagy is required to maintain a network of healthy mitochondria. Our comparative analysis of the membrane lipidomes of organelles purified from wild-type and atg32Δ cells revealed that macromitophagy is required for maintaining cellular lipid homeostasis. We concluded that macromitophagy defines yeast longevity by modulating vital cellular processes inside and outside of mitochondria. PMID:23553280
9 CFR 312.10 - Official mark for maintaining the identity and integrity of samples.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Official mark for maintaining the identity and integrity of samples. 312.10 Section 312.10 Animals and Animal Products FOOD SAFETY AND... § 312.10 Official mark for maintaining the identity and integrity of samples. The official mark for use...
9 CFR 381.112 - Official mark for maintaining the identity and integrity of samples.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Official mark for maintaining the identity and integrity of samples. 381.112 Section 381.112 Animals and Animal Products FOOD SAFETY AND... mark for maintaining the identity and integrity of samples. The official mark for use in sealing...
9 CFR 312.10 - Official mark for maintaining the identity and integrity of samples.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Official mark for maintaining the identity and integrity of samples. 312.10 Section 312.10 Animals and Animal Products FOOD SAFETY AND... § 312.10 Official mark for maintaining the identity and integrity of samples. The official mark for use...
9 CFR 381.112 - Official mark for maintaining the identity and integrity of samples.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Official mark for maintaining the identity and integrity of samples. 381.112 Section 381.112 Animals and Animal Products FOOD SAFETY AND... mark for maintaining the identity and integrity of samples. The official mark for use in sealing...
9 CFR 381.112 - Official mark for maintaining the identity and integrity of samples.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Official mark for maintaining the identity and integrity of samples. 381.112 Section 381.112 Animals and Animal Products FOOD SAFETY AND... mark for maintaining the identity and integrity of samples. The official mark for use in sealing...
9 CFR 312.10 - Official mark for maintaining the identity and integrity of samples.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Official mark for maintaining the identity and integrity of samples. 312.10 Section 312.10 Animals and Animal Products FOOD SAFETY AND... § 312.10 Official mark for maintaining the identity and integrity of samples. The official mark for use...
9 CFR 312.10 - Official mark for maintaining the identity and integrity of samples.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Official mark for maintaining the identity and integrity of samples. 312.10 Section 312.10 Animals and Animal Products FOOD SAFETY AND... § 312.10 Official mark for maintaining the identity and integrity of samples. The official mark for use...
9 CFR 381.112 - Official mark for maintaining the identity and integrity of samples.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Official mark for maintaining the identity and integrity of samples. 381.112 Section 381.112 Animals and Animal Products FOOD SAFETY AND... mark for maintaining the identity and integrity of samples. The official mark for use in sealing...
Cipriani, G; Serboiu, Crenguta S; Gherghiceanu, Mihaela; Faussone-Pellegrini, Maria Simonetta; Vannucchi, Maria Giuliana
2011-11-01
Caveolin (Cav)-1 is an integral membrane protein of caveolae playing a crucial role in various signal transduction pathways. Caveolae represent the sites for calcium entry and storage especially in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Cav-1(-/-) mice lack caveolae and show abnormalities in pacing and contractile activity of the small intestine. Presently, we investigated, by transmission electron microscopy (TEM) and immunohistochemistry, whether the absence of Cav-1 in Cav-1(-/-) mouse small intestine affects ICC, SMC and neuronal morphology, the expression of NK1 and NK2 receptors, and of Ano1 (also called Dog1 or TMEM16A), an essential molecule for slow wave activity in gastrointestinal muscles. ICC were also labelled with c-Kit and tachykinergic neurons with Substance P (SP). In Cav-1(-/-) mice: (i) ICC were Ano1-negative but maintained c-Kit expression, (ii) NK1 and NK2 receptor immunoreactivity was more intense and, in the SMC, mainly intracytoplasmatic, (iii) SP-immunoreactivity was significantly reduced. Under TEM: (i) ICC, SMC and telocytes lacked typical caveolae but had few and large flask-shaped vesicles we called large-sized caveolae; (ii) SMC and ICC contained an extraordinary high number of mitochondria, (iii) neurons were unchanged. To maintain intestinal motility, loss of caveolae and reduced calcium availability in Cav-1-knockout mice seem to be balanced by a highly increased number of mitochondria in ICC and SMC. Loss of Ano-1 expression, decrease of SP content and consequently overexpression of NK receptors suggest that all these molecules are Cav-1-associated proteins. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Zhu, Wei; Kuo, Dwight; Nathanson, Jason; Satoh, Akira; Pao, Gerald M.; Yeo, Gene W.; Bryant, Susan V.; Voss, S. Randal; Gardiner, David M.; Hunter, Tony
2012-01-01
Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mammals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of salamander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. In addition, higher genomic LINE-1 content was also detected in the limb regenerate when compared to that before amputation indicating that LINE-1 retrotransposition is indeed active during regeneration. Active LINE-1 retrotransposition has been suggested to have a potentially deleterious impact on genomic integrity. Silencing of activated LINE-1 by small RNAs has been reported to be part of the machinery aiming to maintain genomic integrity. Indeed, we were able to identify putative LINE-1-related piRNAs in the limb blastema. Transposable element-related piRNAs have been identified frequently in the germline in other organisms. Thus, we present here a scenario in which a unique germline-like state is established during axolotl limb regeneration, and the re-activation of LINE-1 may serve as a marker for cellular dedifferentiation in the early-stage of limb regeneration. PMID:22913491
Harari, Yaniv; Romano, Gal-Hagit; Ungar, Lior; Kupiec, Martin
2013-11-15
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes, thus protecting their stability and integrity. They play important roles in DNA replication and repair and are central to our understanding of aging and cancer development. In rapidly dividing cells, telomere length is maintained by the activity of telomerase. About 400 TLM (telomere length maintenance) genes have been identified in yeast, as participants of an intricate homeostasis network that keeps telomere length constant. Two papers have recently shown that despite this extremely complex control, telomere length can be manipulated by external stimuli. These results have profound implications for our understanding of cellular homeostatic systems in general and of telomere length maintenance in particular. In addition, they point to the possibility of developing aging and cancer therapies based on telomere length manipulation.
Increasing cellular coverage within integrated terrestrial/satellite mobile networks
NASA Technical Reports Server (NTRS)
Castro, Jonathan P.
1995-01-01
When applying the hierarchical cellular concept, the satellite acts as giant umbrella cell covering a region with some terrestrial cells. If a mobile terminal traversing the region arrives to the border-line or limits of a regular cellular ground service, network transition occurs and the satellite system continues the mobile coverage. To adequately assess the boundaries of service of a mobile satellite system an a cellular network within an integrated environment, this paper provides an optimized scheme to predict when a network transition may be necessary. Under the assumption of a classified propagation phenomenon and Lognormal shadowing, the study applies an analytical approach to estimate the location of a mobile terminal based on a reception of the signal strength emitted by a base station.
75 FR 54641 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
...-435-2309, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Glia Study Section. Date: October 4-5, 2010. Time... 20892, (301) 435- 4433, [email protected] . Name of Committee: Molecular, Cellular and Developmental...
Shao, Yue; Fu, Jianping
2014-03-12
The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrated Circuit-Based Biofabrication with Common Biomaterials for Probing Cellular Biomechanics.
Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Cheng, Chao-Min
2016-02-01
Recent advances in bioengineering have enabled the development of biomedical tools with modifiable surface features (small-scale architecture) to mimic extracellular matrices and aid in the development of well-controlled platforms that allow for the application of mechanical stimulation for studying cellular biomechanics. An overview of recent developments in common biomaterials that can be manufactured using integrated circuit-based biofabrication is presented. Integrated circuit-based biofabrication possesses advantages including mass and diverse production capacities for fabricating in vitro biomedical devices. This review highlights the use of common biomaterials that have been most frequently used to study cellular biomechanics. In addition, the influence of various small-scale characteristics on common biomaterial surfaces for a range of different cell types is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Taming the Sphinx: Mechanisms of Cellular Sphingolipid Homeostasis
Olson, D. K.; Fröhlich, F.; Farese, R; Walther, T. C.
2016-01-01
Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. PMID:26747648
Cellular Homeostasis and Aging.
Hartl, F Ulrich
2016-06-02
Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans.
Rab GTPases in Immunity and Inflammation.
Prashar, Akriti; Schnettger, Laura; Bernard, Elliott M; Gutierrez, Maximiliano G
2017-01-01
Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.
SINEs as driving forces in genome evolution.
Schmitz, J
2012-01-01
SINEs are short interspersed elements derived from cellular RNAs that repetitively retropose via RNA intermediates and integrate more or less randomly back into the genome. SINEs propagate almost entirely vertically within their host cells and, once established in the germline, are passed on from generation to generation. As non-autonomous elements, their reverse transcription (from RNA to cDNA) and genomic integration depends on the activity of the enzymatic machinery of autonomous retrotransposons, such as long interspersed elements (LINEs). SINEs are widely distributed in eukaryotes, but are especially effectively propagated in mammalian species. For example, more than a million Alu-SINE copies populate the human genome (approximately 13% of genomic space), and few master copies of them are still active. In the organisms where they occur, SINEs are a challenge to genomic integrity, but in the long term also can serve as beneficial building blocks for evolution, contributing to phenotypic heterogeneity and modifying gene regulatory networks. They substantially expand the genomic space and introduce structural variation to the genome. SINEs have the potential to mutate genes, to alter gene expression, and to generate new parts of genes. A balanced distribution and controlled activity of such properties is crucial to maintaining the organism's dynamic and thriving evolution. Copyright © 2012 S. Karger AG, Basel.
Sánchez-Alcázar, José A; Rodríguez-Hernández, Angeles; Cordero, Mario D; Fernández-Ayala, Daniel J M; Brea-Calvo, Gloria; Garcia, Katherina; Navas, Plácido
2007-07-01
It has recently been shown that the microtubule cytoskeleton is reformed during the execution phase of apoptosis. We demonstrate that this microtubule reformation occurs in many cell types and under different apoptotic stimuli. We confirm that the apoptotic microtubule network possesses a novel organization, whose nucleation appears independent of conventional gamma-tubulin ring complex containing structures. Our analysis suggests that microtubules are closely associated with the plasma membrane, forming a cortical ring or cellular "cocoon". Concomitantly other components of the cytoskeleton, such as actin and cytokeratins disassemble. We found that colchicine-mediated disruption of apoptotic microtubule network results in enhanced plasma membrane permeability and secondary necrosis, suggesting that the reformation of a microtubule cytoskeleton plays an important role in preserving plasma membrane integrity during apoptosis. Significantly, cells induced to enter apoptosis in the presence of the pan-caspase inhibitor z-VAD, nevertheless form microtubule-like structures suggesting that microtubule formation is not dependent on caspase activation. In contrast we found that treatment with EGTA-AM, an intracellular calcium chelator, prevents apoptotic microtubule network formation, suggesting that intracellular calcium may play an essential role in the microtubule reformation. We propose that apoptotic microtubule network is required to maintain plasma membrane integrity during the execution phase of apoptosis.
Necrotic and apoptotic cell death induced by Captan on Saccharomyces cerevisiae.
Scariot, Fernando J; Jahn, Luciane; Delamare, Ana Paula L; Echeverrigaray, Sergio
2017-08-01
Captan is one of the most widely used broad-spectrum fungicide applied to control several early and late diseases of grapes, apples, and other fruits and vegetables, and as other phthalimide fungicides is defined as a multisite compound with thiol-reactivity. Captan can affect non-target organisms as yeasts, modifying microbial populations and fermentation processes. In this study, we asked whether Captan thiol-reactivity and other mechanisms are involved in acute Captan-induced cell death on aerobic growing Saccharomyces cerevisiae. Thus for, we analyze cellular protein and non-protein thiols, cell membrane integrity, reactive oxygen species accumulation, phosphatidylserine externalization, and apoptotic mutants behavior. The results showed that when submitted to acute Captan treatment most cells lost their membrane integrity and died by necrosis due to Captan reaction with thiols. However, part of the cells, even maintaining their membrane integrity, lost their culture ability. These cells showed an apoptotic behavior that may be the result of non-protein thiol depletion and consequent increase of reactive oxygen species (ROS). ROS accumulation triggers a metacaspase-dependent apoptotic cascade, as shown by the higher viability of the yca1-deleted mutant. Together, necrosis and apoptosis are responsible for the high mortality detected after acute Captan treatment of aerobically growing cells of S. cerevisiae.
Engineering the robustness of industrial microbes through synthetic biology.
Zhu, Linjiang; Zhu, Yan; Zhang, Yanping; Li, Yin
2012-02-01
Microbial fermentations and bioconversions play a central role in the production of pharmaceuticals, enzymes and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximized carbon flux towards target metabolites regardless of fluctuations in intracellular or extracellular environments. This requires cellular systems that maintain functional stability and dynamic homeostasis in a given physiological state, or manipulate transitions between different physiological states. Stable maintenance or smooth transition can be achieved through engineering of dynamic controllability, modular and hierarchical organization, or functional redundancy, three key features of biological robustness in a cellular system. This review summarizes how synthetic biology can be used to improve the robustness of industrial microbes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pal, Lubna; Chu, Hsiao-Pai; Shu, Jun; Topalli, Ilir; Santoro, Nanette; Karkanias, George
2007-10-01
To evaluate for direct toxic effects of high glucose concentrations on cellular physiology in GnRH secreting immortalized GT1-1 neurons. Prospective experimental design. In vitro experimental model using a cell culture system. GT1-1 cells were cultured in replicates in media with two different glucose concentrations (450 mg/dL and 100 mg/dL, respectively) for varying time intervals (24, 48, and 72 hours). Effects of glucose concentrations on GnRH secretion by the GT1-1 neurons were evaluated using a static culture model. Cell viability, cellular apoptosis, and cell cycle events in GT1-1 neurons maintained in two different glucose concentrations were assessed by flow cytometry (fluorescence-activated cell sorter) using Annexin V-PI staining. Adverse influences of high glucose concentrations on GnRH secretion and cell viability were noted in cultures maintained in high glucose concentration (450 mg/dL) culture medium for varying time intervals. A significantly higher percentage of cells maintained in high glucose concentration medium demonstrated evidence of apoptosis by a fluorescence-activated cell sorter. We provide in vitro evidence of glucose-induced cellular toxicity in GnRH secreting GT1-1 neurons. Significant alterations in GnRH secretion, reduced cell viability, and a higher percentage of apoptotic cells were observed in GT1-1 cells maintained in high (450 mg/dL) compared with low (100 mg/dL) glucose concentration culture medium.
ERIC Educational Resources Information Center
Ghazali, Achmad; Vivaldi, Harly; Putranto, Nur Arief Rahmatsyah
2017-01-01
Managing knowledge integrally as one of the company's asset is now a necessity to be part of the knowledge-based economy in the global industry. PT Cellular Tbk. (Cellular) has been a player of mobile communication service for more than 20 years. Cellular shows business transformation through increased gross revenue from Data services while…
77 FR 2738 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
..., Review Group; Clinical Molecular Imaging and Probe Development. Date: February 2-3, 2012. Time: 7 p.m. to..., Bethesda, MD 20892, (301) 435-1777, [email protected] . Name of Committee: Molecular, Cellular and...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology...
77 FR 30021 - Center for Scientific Review Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Glia Study Section. Date: June 14, 2012. Time: 8:00 a.m. to 7..., Bethesda, MD 20892, (301) 435- 4433, [email protected] . Name of Committee: Molecular, Cellular and...
Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R
2014-09-10
Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state.
Sites of Retroviral DNA Integration: From Basic Research to Clinical Applications
Serrao, Erik; Engelman, Alan N.
2016-01-01
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of the viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with HIV-1 can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or AIDS patients on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency. PMID:26508664
77 FR 28886 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
..., Functional and Cognitive Neuroscience Integrated Review Group; Sensorimotor Integration Study Section. Date... and Developmental Neuroscience Integrated Review Group; Neural Oxidative Metabolism and Death Study...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neurodifferentiation, Plasticity...
The calcium paradox - What should we have to fear?
de Oliveira, Marcos Aurélio Barboza; Brandi, Antônio Carlos; dos Santos, Carlos Alberto; Botelho, Paulo Henrique Husseni; Cortez, José Luís Lasso; Goissis, Gilberto; Braile, Domingo Marcolino
2014-01-01
The calcium paradox was first mentioned in 1966 by Zimmerman et al. Thereafter gained great interest from the scientific community due to the fact of the absence of calcium ions in heart muscle cells produce damage similar to ischemia-reperfusion. Although not all known mechanisms involved in cellular injury in the calcium paradox intercellular connection maintained only by nexus seems to have a key role in cellular fragmentation. The addition of small concentrations of calcium, calcium channel blockers, and hyponatraemia hypothermia are important to prevent any cellular damage during reperfusion solutions with physiological concentration of calcium. PMID:25140476
[Stem Cells in the Brain of Mammals and Human: Fundamental and Applied Aspects].
Aleksandrova, M A; Marey, M V
2015-01-01
Brain stem cells represent an extremely intriguing phenomenon. The aim of our review is to present an integrity vision of their role in the brain of mammals and humans, and their clinical perspectives. Over last two decades, investigations of biology of the neural stem cells produced significant changes in general knowledge about the processes of development and functioning of the brain. Researches on the cellular and molecular mechanisms of NSC differentiation and behavior led to new understanding of their involvement in learning and memory. In the regenerative medicine, original therapeutic approaches to neurodegenerative brain diseases have been elaborated due to fundamental achievements in this field. They are based on specific regenerative potential of neural stem cells and progenitor cells, which possess the ability to replace dead cells and express crucially significant biologically active factors that are missing in the pathological brain. For the needs of cell substitution therapy in the neural diseases, adequate methods of maintaining stem cells in culture and their differentiation into different types of neurons and glial cells, have been developed currently. The success of modern cellular technologies has significantly expanded the range of cells used for cell therapy. The near future may bring new perspective and distinct progress in brain cell therapy due to optimizing the cells types most promising for medical needs.
Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J
2013-05-01
Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia-ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategies. The latest findings indicate that stem cells represent a novel therapeutic possibility to improve outcome in models of neonatal encephalopathy. Transplanted stem cells secrete factors that stimulate and maintain neurogenesis, thereby increasing cell proliferation, neuronal differentiation, and functional integration. Understanding the molecular and cellular mechanisms underlying neurogenesis after an insult is crucial for developing tools to enhance the neurogenic capacity of the brain. The aim of this review is to discuss the endogenous capacity of the neonatal brain to regenerate after a cerebral ischemic insult. We present an overview of the molecular and cellular mechanisms underlying endogenous regenerative processes during development as well as after a cerebral ischemic insult. Furthermore, we will consider the potential to use stem cell transplantation as a means to boost endogenous neurogenesis and restore brain function.
Perucca, Paola; Mocchi, Roberto; Guardamagna, Isabella; Bassi, Elisabetta; Sommatis, Sabrina; Nardo, Tiziana; Prosperi, Ennio; Stivala, Lucia Anna; Cazzalini, Ornella
2018-06-01
In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2 Wt and DDB2 PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2 PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity. Copyright © 2018 Elsevier B.V. All rights reserved.
Here, there be dragons: charting autophagy-related alterations in human tumors.
Lebovitz, Chandra B; Bortnik, Svetlana B; Gorski, Sharon M
2012-03-01
Macroautophagy (or autophagy) is a catabolic cellular process that is both homeostatic and stress adaptive. Normal cells rely on basal levels of autophagy to maintain cellular integrity (via turnover of long-lived proteins and damaged organelles) and increased levels of autophagy to buoy cell survival during various metabolic stresses (via nutrient and energy provision through lysosomal degradation of cytoplasmic components). Autophagy can function in both tumor suppression and tumor progression, and is under investigation in clinical trials as a novel target for anticancer therapy. However, its role in cancer pathogenesis has yet to be fully explored. In particular, it remains unknown whether in vitro observations will be applicable to human cancer patients. Another outstanding question is whether there exists tumor-specific selection for alterations in autophagy function. In this review, we survey reported mutations in autophagy genes and key autophagy regulators identified in human tumor samples and summarize the literature regarding expression levels of autophagy genes and proteins in various cancer tissues. Although it is too early to draw inferences from this collection of in vivo studies of autophagy-related alterations in human cancers, their results highlight the challenges that must be overcome before we can accurately assess the scope of autophagy's predicted role in tumorigenesis.
Lee, Eun-Ju; Park, Kwan-Sik; Jeon, In-Sook; Choi, Jae-Woon; Lee, Sang-Jeon; Choy, Hyun E; Song, Ki-Duk; Lee, Hak-Kyo; Choi, Joong-Kook
2016-07-01
Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.
Lee, Eun-Ju; Park, Kwan-Sik; Jeon, In-Sook; Choi, Jae-Woon; Lee, Sang-Jeon; Choy, Hyun E.; Song, Ki-Duk; Lee, Hak-Kyo; Choi, Joong-Kook
2016-01-01
Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation. PMID:27329040
Bartocci, Cristina; Denchi, Eros Lazzerini
2013-01-01
RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligases comprise a large family of enzymes that in combination with an E2 ubiquitin-conjugating enzyme, modify target proteins by attaching ubiquitin moieties. A number of RING E3s play an essential role in the cellular response to DNA damage highlighting a crucial contribution for ubiquitin-mediated signaling to the genome surveillance pathway. Among the RING E3s, RNF8 and RNF168 play a critical role in the response to double stranded breaks, one of the most deleterious types of DNA damage. These proteins act as positive regulators of the signaling cascade that initiates at DNA lesions. Inactivation of these enzymes is sufficient to severely impair the ability of cells to respond to DNA damage. Given their central role in the pathway, several layers of regulation act at this nodal signaling point. Here we will summarize current knowledge on the roles of RNF8 and RNF168 in maintaining genome integrity with particular emphasis on recent insights into the multiple layers of regulation that act on these enzymes to fine-tune the cellular response to DNA lesions. PMID:23847653
Takahashi, Megumi; Wolf, Alexander M; Watari, Eiji; Norose, Yoshihiko; Ohta, Shigeo; Takahashi, Hidemi
2013-09-01
Measles virus (MV) is known for its ability to cause an acute infection with a potential of development of persistent infection. However, knowledge of how viral genes and cellular factors interact to cause or maintain the persistent infection has remained unclear. We have previously reported the possible involvement of mitochondrial short chain enoyl-CoA hydratase (ECHS), which is localized at mitochondria, in the regulation of MV replication. In this study we found increased functions of mitochondria in MV-persistently infected cells compared with uninfected or acutely infected cells. Furthermore, impairment of mitochondrial functions by treatment with mitochondrial inhibitors such as ethidium bromide (EtBr) or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) induced the cytopathic effects of extensive syncytial formation in persistently infected cells. These findings suggest that mitochondria are one of the subcellular organelles contributing to regulate persistent infection of MV. Recent studies showed mitochondria provide an integral platform for retinoic acid-inducible protein (RIG-I)-like cytosolic receptors (RLRs) signaling and participate in cellular innate antiviral immunity. Our findings not only reveal a role of mitochondria in RLR mediated antiviral signaling but also suggest that mitochondria contribute to the regulation of persistent viral infection. Copyright © 2013 Elsevier B.V. All rights reserved.
Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.
Olson, D K; Fröhlich, F; Farese, R V; Walther, T C
2016-08-01
Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2015. Published by Elsevier B.V.
Crespilho, A M; Nichi, M; Guasti, P N; Freitas-Dell'Aqua, C P; Sá Filho, M F; Maziero, R R; Dell'aqua, J A; Papa, F O
2014-05-01
Two experiments were conducted to compare the effectiveness of different extenders conventionally used for semen cryopreservation to maintain the viability and fertility of cooled bull semen. In Experiment 1, sperm samples obtained from 20 Nellore bulls were preserved at 5°C for 48h using two extenders containing 20% of egg yolk [Tris (TRIS-R) and Botu-Bov(®) (BB)] and another composed of 1% soy lecithin [Botu-Bov(®)-Lecithin (BB-L)] as substitutes for animal origin products. The samples were evaluated at 6, 24 and 48h for plasma and acrosomal membrane integrity, quantification of thiobarbituric acid reactive substances (ng of TBARS/10(8) cells) and sperm motility parameters by computer-assisted semen analysis (CASA). In Experiment 2, pregnancy rate (P/AI) of 973 fixed-time artificially inseminated Nellore cows were compared when cows were inseminated with conventionally cryopreserved semen in TRIS-egg yolk glycerol (TRIS-C Control, n=253) or semen cooled for 48h in TRIS-R (n=233), BB (n=247) or BB-L (n=240). Although none of the extenders used was effective on maintaining total progressive motility and cellular integrity throughout the 48-h of the refrigeration period (P<0.01), BB-L conferred greater protection against oxidative stress (P<0.05) than egg yolk-based medias. The P/AI for semen samples preserved in TRIS-C, TRIS-R, BB and BB-L were 39.92(a), 25.32(b), 26.32(b) and 33.33(ab), respectively. These results demonstrate that the three conventional extenders used for semen cryopreservation do not provide the protection required to maintain bull semen fertility under refrigeration for a 48-h period, resulting in reduced pregnancy rates. However, the use of lecithin-based medium instead of egg yolk results in greater protection against lipid peroxidation, producing P/AI results comparable to those obtained using frozen semen. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Jaehyun; Andersson, Karl-Erik; Jackson, John D.; Lee, Sang Jin; Atala, Anthony
2014-01-01
A major challenge to the success of cell-based implants for tissue regeneration is an insufficient supply of oxygen before host vasculature is integrated into the implants, resulting in premature cell death and dysfunction. Whereas increasing oxygenation to the implants has been a major focus in the field, our strategy is aimed at lowering oxygen consumption by downregulating cellular metabolism of cell-based implants. Adenosine, which is a purine nucleoside that functions as an energy transferring molecule, has been reported to increase under hypoxia, resulting in reducing the adenosine triphosphate (ATP) demands of the Na+/K+ ATPase. In the present study, we investigated whether adenosine could be used to downregulate cellular metabolism to achieve prolonged survival under hypoxic conditions. Murine myoblasts (C2C12) lacking a self-survival mechanism were treated with adenosine under 0.1% hypoxic stress. The cells, cultured in the presence of 5 mM adenosine, maintained their viability under hypoxia, and regained their normal growth and function of forming myotubes when transferred to normoxic conditions at day 11 without further supply of adenosine, whereas nontreated cells failed to survive. An increase in adenosine concentrations shortened the onset of reproliferation after transfer to normoxic conditions. This increase correlated with an increase in metabolic downregulation during the early phase of hypoxia. A higher intracellular ATP level was observed in adenosine-treated cells throughout the duration of hypoxia. This strategy of increasing cell survival under hypoxic conditions through downregulating cellular metabolism may be utilized for cell-based tissue regeneration applications as well as protecting tissues against hypoxic injuries. PMID:24524875
Helm, Katharina; Beyreis, Marlena; Mayr, Christian; Ritter, Markus; Jakab, Martin; Kiesslich, Tobias; Plaetzer, Kristjan
2017-01-01
For in vitro cytotoxicity testing, discrimination of apoptosis and necrosis represents valuable information. Viability analysis performed at two different time points post treatment could serve such a purpose because the dynamics of metabolic activity of apoptotic and necrotic cells is different, i.e. a more rapid decline of cellular metabolism during necrosis whereas cellular metabolism is maintained during the entire execution phase of apoptosis. This study describes a straightforward approach to distinguish apoptosis and necrosis. A431 human epidermoid carcinoma cells were treated with different concentrations/doses of actinomycin D (Act-D), 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), Ro 31-8220, H2O2 and photodynamic treatment (PDT). The resazurin viability signal was recorded at 2 and 24 hrs post treatment. Apoptosis and necrosis were verified by measuring caspase 3/7 and membrane integrity. Calculation of the difference curve between the 2 and 24 hrs resazurin signals yields the following information: a positive difference signal indicates apoptosis (i.e. high metabolic activity at early time points and low signal at 24 hrs post treatment) while an early reduction of the viability signal indicates necrosis. For all treatments, this dose-dependent sequence of cellular responses could be confirmed by independent assays. Simple and cost-effective viability analysis provides reliable information about the dose ranges of a cytotoxic agent where apoptosis or necrosis occurs. This may serve as a starting point for further in-depth characterisation of cytotoxic treatments. © 2017 The Author(s)Published by S. Karger AG, Basel.
Zhang, Jinfang; Wan, Lixin; Dai, Xiangpeng; Sun, Yi; Wei, Wenyi
2014-01-01
The Anaphase Promoting Complex/Cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that primarily governs cell cycle progression. APC/C is composed of at least 14 core subunits and recruits its substrates for ubiquitination via one of the two adaptor proteins, Cdc20 or Cdh1, in M or M/early G1 phase, respectively. Furthermore, recent studies have shed light on crucial functions for APC/C in maintaining genomic integrity, neuronal differentiation, cellular metabolism and tumorigenesis. To gain better insight into the in vivo physiological functions of APC/C in regulating various cellular processes, particularly development and tumorigenesis, a number of mouse models of APC/C core subunits, coactivators or inhibitors have been established and characterized. However, due to their essential role in cell cycle regulation, most of the germline knockout mice targeting the APC/C pathway are embryonic lethal, indicating the need for generating conditional knockout mouse models to assess the role in tumorigenesis for each APC/C signaling component in specific tissues. In this review, we will first provide a brief introduction of the ubiquitin-proteasome system (UPS) and the biochemical activities and cellular functions of the APC/C E3 ligase. We will then focus primarily on characterizing genetic mouse models used to understand the physiological roles of each APC/C signaling component in embryogenesis, cell proliferation, development and carcinogenesis. Finally, we discuss future research directions to further elucidate the physiological contributions of APC/C components during tumorigenesis and validate their potentials as a novel class of anti-cancer targets. PMID:24569229
Neuroimmune interactions: potential target for mitigating or treating intestinal radiation injury.
Wang, J; Hauer-Jensen, M
2007-09-01
Intestinal radiation injury is characterized by breakdown of the epithelial barrier and mucosal inflammation. In addition to replicative and apoptotic cell death, radiation also induces changes in cellular function, as well as alterations secondary to tissue injury. The recognition of these "non-cytocidal" radiation effects has enhanced the understanding of normal tissue radiation toxicity, thus allowing an integrated systems biology-based approach to modulating radiation responses and providing a mechanistic rationale for interventions to mitigate or treat radiation injuries. The enteric nervous system regulates intestinal motility, blood flow and enterocyte function. The enteric nervous system also plays a central role in maintaining the physiological state of the intestinal mucosa and in coordinating inflammatory and fibroproliferative processes. The afferent component of the enteric nervous system, in addition to relaying sensory information, also exerts important effector functions and contributes critically to preserving mucosal integrity. Interactions between afferent nerves, mast cells as well as other cells of the resident mucosal immune system serve to maintain mucosal homeostasis and to ensure an appropriate response to injury. Notably, enteric sensory neurons regulate the activation threshold of mast cells by secreting substance P, calcitonin gene-related peptide and other neuropeptides, whereas mast cells signal to enteric nerves by the release of histamine, nerve growth factor and other mediators. This article reviews how enteric neurons interact with mast cells and other immune cells to regulate the intestinal radiation response and how these interactions may be modified to mitigate intestinal radiation toxicity. These data are not only applicable to radiation therapy, but also to intestinal injury in a radiological terrorism scenario.
Hepatitis B virus and hepatocellular carcinoma
Arbuthnot, Patrick; Kew, Michael
2001-01-01
Chronic hepatitis B virus (HBV) infection is a major global cause of hepatocellular carcinoma (HCC). Individuals who are chronic carriers have a greater than 100-fold increased relative risk of developing the tumour. Several mechanisms of HBV-induced HCC have been proposed. Integration of HBV DNA into the genome of hepatocytes occurs commonly, although integration at cellular sites that are important for regulation of hepatocyte proliferation appears to be a rare event. Functions of the HBx protein are also potentially oncogenic. These include transcriptional activation of cellular growth regulatory genes, modulation of apoptosis and inhibition of nucleotide excision repair of damaged cellular DNA. The effects of HBx are mediated by interaction with cellular proteins and activation of cell signalling pathways. Variations in HBV genome sequences may be important in hepatocarcinogenesis, although their significance has not yet been completely elucidated. Necroinflammatory hepatic disease, which often accompanies chronic HBV infection, may contribute indirectly to hepatocyte transformation in a number of ways, including by facilitating HBV DNA integration, predisposing to the acquisition of cellular mutations and generating mutagenic oxygen reactive species. Although HCC is a malignancy with a poor prognosis, the availability of an effective vaccine against HBV infection, and its inclusion in the Expanded Programme of Immunization of many countries, augurs well for the eventual elimination of HBV-associated HCC. PMID:11454100
Cellular senescence in the Penna model of aging
NASA Astrophysics Data System (ADS)
Periwal, Avikar
2013-11-01
Cellular senescence is thought to play a major role in age-related diseases, which cause nearly 67% of all human deaths worldwide. Recent research in mice showed that exercising mice had higher levels of telomerase, an enzyme that helps maintain telomere length, than nonexercising mice. A commonly used model for biological aging was proposed by Penna. I propose a modification of the Penna model that incorporates cellular senescence and find an analytical steady-state solution following Coe, Mao, and Cates [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.89.288103 89, 288103 (2002)]. I find that models corresponding to delayed cellular senescence have younger populations that live longer. I fit the model to the United Kingdom's death distribution, which the original Penna model cannot do.
Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network.
Novkovic, Mario; Onder, Lucas; Bocharov, Gennady; Ludewig, Burkhard
2017-01-01
Secondary lymphoid organs have developed segregated niches that are able to initiate and maintain effective immune responses. Such global organization requires tight control of diverse cellular components, specifically those that regulate lymphocyte trafficking. Fibroblastic reticular cells (FRCs) form a densely interconnected network in lymph nodes and provide key factors necessary for T cell migration and retention, and foster subsequent interactions between T cells and dendritic cells. Development of integrative systems biology approaches has made it possible to elucidate this multilevel complexity of the immune system. Here, we present a graph theory-based analysis of the FRC network in murine lymph nodes, where generation of the network topology is performed using high-resolution confocal microscopy and 3D reconstruction. This approach facilitates the analysis of physical cell-to-cell connectivity, and estimation of topological robustness and global behavior of the network when it is subjected to perturbation in silico.
Lactate rescues neuronal sodium homeostasis during impaired energy metabolism.
Karus, Claudia; Ziemens, Daniel; Rose, Christine R
2015-01-01
Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.
Pathophysiology of keratinization
Deo, Priya Nimish; Deshmukh, Revati
2018-01-01
Cytoskeleton of a cell is made up of microfilaments, microtubules and intermediate filaments. Keratins are diverse proteins. These intermediate filaments maintain the structural integrity of the keratinocytes. The word keratin covers these intermediate filament-forming proteins within the keratinocytes. They are expressed in a specific pattern and according to the stage of cellular differentiation. They always occur in pairs. Mutations in the genes which regulate the expression of keratin proteins are associated with a number of disorders which show defects in both skin and mucosa. In addition, there are a number of disorders which are seen because of abnormal keratinization. These keratins and keratin-associated proteins have become important markers in diagnostic pathology. This review article discusses the classification, structure, functions, the stains used for the demonstration of keratin and associated pathology. The review describes the physiology of keratinization, pathology behind abnormal keratin formation and various keratin disorders. PMID:29731562
The endomembrane sheath: a key structure for understanding the plant cell?
NASA Technical Reports Server (NTRS)
Reuzeau, C.; McNally, J. G.; Pickard, B. G.
1997-01-01
Recent evidence suggests that integrin is abundant in endomembranes of plant cells, and the endomembranes are clad by a sheath of cytoskeleton including F-actin. A role for endomembrane integrin and the endomembrane sheath is proposed: this system might orchestrate metabolic regulation by providing and modulating loci for channelling, and might accelerate channeling as needed by dragging the endoplasmic reticulum (ER) and organelles through the cytoplasm. To accomplish this "streaming", F-actin might lever against the rest of the endomembrane sheath and the ER might also lever against adhesion sites (i.e., plasmodesmata and plasmalemmal control centers). As an important agent in the control of cellular activities, according to this model, the endomembrane sheath would play a major part in responses to diverse signals and stresses, and under extreme stress cell survival would depend on the ability of the system to maintain enough integrity to direct critical syntheses and degradations.
Newman, Rebecca; Ahlfors, Helena; Saveliev, Alexander; Galloway, Alison; Hodson, Daniel J; Williams, Robert; Besra, Gurdyal S; Cook, Charlotte N; Cunningham, Adam F; Bell, Sarah E; Turner, Martin
2017-06-01
RNA-binding proteins of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU-rich elements in the 3' untranslated region and promoting mRNA decay. Here we identified an indispensable role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal-zone B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene-expression program related to signaling, cell adhesion and locomotion; it achieved this in part by limiting expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RNA-binding proteins for maintaining cellular identity among closely related cell types.
Newman, Rebecca; Ahlfors, Helena; Saveliev, Alexander; Galloway, Alison; Hodson, Daniel J; Williams, Robert; Besra, Gurdyal S.; Cook, Charlotte N; Cunningham, Adam F; Bell, Sarah E; Turner, Martin
2017-01-01
RNA binding proteins (RBP) of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU rich elements in the 3’UTR and promoting mRNA decay. Here we show an indispensible role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal zone (MZ) B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene expression program related to signaling, cell-adhesion and locomotion, in part by limiting the expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RBP for maintaining cellular identity between closely related cell types. PMID:28394372
Multi-functionality and plasticity characterize epithelial cells in Hydra
Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B
2015-01-01
Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072
Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.
Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao
2016-01-01
Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.
The modeling and simulation of visuospatial working memory
Liang, Lina; Zhang, Zhikang
2010-01-01
Camperi and Wang (Comput Neurosci 5:383–405, 1998) presented a network model for working memory that combines intrinsic cellular bistability with the recurrent network architecture of the neocortex. While Fall and Rinzel (Comput Neurosci 20:97–107, 2006) replaced this intrinsic bistability with a biological mechanism-Ca2+ release subsystem. In this study, we aim to further expand the above work. We integrate the traditional firing-rate network with Ca2+ subsystem-induced bistability, amend the synaptic weights and suggest that Ca2+ concentration only increase the efficacy of synaptic input but has nothing to do with the external input for the transient cue. We found that our network model maintained the persistent activity in response to a brief transient stimulus like that of the previous two models and the working memory performance was resistant to noise and distraction stimulus if Ca2+ subsystem was tuned to be bistable. PMID:22132045
Lactate rescues neuronal sodium homeostasis during impaired energy metabolism
Karus, Claudia; Ziemens, Daniel; Rose, Christine R
2015-01-01
Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160
The FACT Complex Promotes Avian Leukosis Virus DNA Integration.
Winans, Shelby; Larue, Ross C; Abraham, Carly M; Shkriabai, Nikolozi; Skopp, Amelie; Winkler, Duane; Kvaratskhelia, Mamuka; Beemon, Karen L
2017-04-01
All retroviruses need to integrate a DNA copy of their genome into the host chromatin. Cellular proteins regulating and targeting lentiviral and gammaretroviral integration in infected cells have been discovered, but the factors that mediate alpharetroviral avian leukosis virus (ALV) integration are unknown. In this study, we have identified the FACT protein complex, which consists of SSRP1 and Spt16, as a principal cellular binding partner of ALV integrase (IN). Biochemical experiments with purified recombinant proteins show that SSRP1 and Spt16 are able to individually bind ALV IN, but only the FACT complex effectively stimulates ALV integration activity in vitro Likewise, in infected cells, the FACT complex promotes ALV integration activity, with proviral integration frequency varying directly with cellular expression levels of the FACT complex. An increase in 2-long-terminal-repeat (2-LTR) circles in the depleted FACT complex cell line indicates that this complex regulates the ALV life cycle at the level of integration. This regulation is shown to be specific to ALV, as disruption of the FACT complex did not inhibit either lentiviral or gammaretroviral integration in infected cells. IMPORTANCE The majority of human gene therapy approaches utilize HIV-1- or murine leukemia virus (MLV)-based vectors, which preferentially integrate near genes and regulatory regions; thus, insertional mutagenesis is a substantial risk. In contrast, ALV integrates more randomly throughout the genome, which decreases the risks of deleterious integration. Understanding how ALV integration is regulated could facilitate the development of ALV-based vectors for use in human gene therapy. Here we show that the FACT complex directly binds and regulates ALV integration efficiency in vitro and in infected cells. Copyright © 2017 American Society for Microbiology.
Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis.
Valero, Jorge; Paris, Iñaki; Sierra, Amanda
2016-04-20
Lifestyle modulates brain function. Diet, stress levels, and physical exercise among other factors influence the "brain cognitive reserve", that is, the capacity of the brain to maintain a normal function when confronting neurodegenerative diseases, injury, and/or aging. This cognitive reserve relays on several cellular and molecular elements that contribute to brain plasticity allowing adaptive responses to cognitive demands, and one of its key components is the hippocampal neurogenic reserve. Hippocampal neural stem cells give rise to new neurons that integrate into the local circuitry and contribute to hippocampal functions such as memory and learning. Importantly, adult hippocampal neurogenesis is well-known to be modulated by the demands of the environment and lifestyle factors. Diet, stress, and physical exercise directly act on neural stem cells and/or their progeny, but, in addition, they may also indirectly affect neurogenesis by acting on microglia. Microglia, the guardians of the brain, rapidly sense changes in the brain milieu, and it has been recently shown that their function is affected by lifestyle factors. However, few studies have analyzed the modulatory effect of microglia on adult neurogenesis in these conditions. Here, we review the current knowledge about the dialogue maintained between microglia and the hippocampal neurogenic cascade. Understanding how the communication between microglia and hippocampal neurogenesis is affected by lifestyle choices is crucial to maintain the brain cognitive reserve and prevent the maladaptive responses that emerge during disease or injury through adulthood and aging.
Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor
NASA Technical Reports Server (NTRS)
Margolis, L.; Hatfill, S.; Chuaqui, R.; Vocke, C.; Emmert-Buck, M.; Linehan, W. M.; Duray, P. H.
1999-01-01
PURPOSE: To maintain ex vivo integral prostatic tissue including intact stromal and ductal elements using the NASA-designed Rotating Wall Vessel (RWV) which maintains colocalized cells in an environment that promotes both three-dimensional cellular interactions together with the uniform mass transfer of nutrients and metabolic wastes. MATERIALS AND METHODS: Samples of normal prostate were obtained as a byproduct of transurethral prostatectomy or needle biopsy. Prostatic tissue dissected into small 1 x 1 mm. blocks was cultured in the Rotating Wall Vessel (RWV) Bioreactor for various time periods and analyzed using histological, immunochemical, and total cell RNA assays. RESULTS: We report the long term maintenance of benign explanted human prostate tissue grown in simple culture medium, under the simulated microgravity conditions afforded by the RWV bioreactor. Mesenchymal stromal elements including blood vessels and architecturally preserved tubuloglandular acini were maintained for a minimum of 28 days. Cytokeratins, vimentin and TGF-beta2 receptor and ligand were preserved through the entire culture period as revealed by immunocytochemistry. Prostatic acid phosphatase (PAP) was continuously expressed during the culture period, although somewhat decreased. Prostatic specific antigen (PSA) and its transcript were down regulated over time of culture. Prostatic carcinoma cells from the TSU cell line were able to invade RWV-cultured benign prostate tissue explants. CONCLUSIONS: The RWV bioreactor represents an additional new technology for culturing prostate tissue for further investigations concerning the basic physiology and pathobiology of this clinically important tissue.
Barteneva, Natasha S; Vorobjev, Ivan A
2018-01-01
In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.
Cellular and molecular mechanisms of HIV-1 integration targeting.
Engelman, Alan N; Singh, Parmit K
2018-07-01
Integration is central to HIV-1 replication and helps mold the reservoir of cells that persists in AIDS patients. HIV-1 interacts with specific cellular factors to target integration to interior regions of transcriptionally active genes within gene-dense regions of chromatin. The viral capsid interacts with several proteins that are additionally implicated in virus nuclear import, including cleavage and polyadenylation specificity factor 6, to suppress integration into heterochromatin. The viral integrase protein interacts with transcriptional co-activator lens epithelium-derived growth factor p75 to principally position integration within gene bodies. The integrase additionally senses target DNA distortion and nucleotide sequence to help fine-tune the specific phosphodiester bonds that are cleaved at integration sites. Research into virus-host interactions that underlie HIV-1 integration targeting has aided the development of a novel class of integrase inhibitors and may help to improve the safety of viral-based gene therapy vectors.
Vempati, Uma D; Chung, Caty; Mader, Chris; Koleti, Amar; Datar, Nakul; Vidović, Dušica; Wrobel, David; Erickson, Sean; Muhlich, Jeremy L; Berriz, Gabriel; Benes, Cyril H; Subramanian, Aravind; Pillai, Ajay; Shamu, Caroline E; Schürer, Stephan C
2014-06-01
The National Institutes of Health Library of Integrated Network-based Cellular Signatures (LINCS) program is generating extensive multidimensional data sets, including biochemical, genome-wide transcriptional, and phenotypic cellular response signatures to a variety of small-molecule and genetic perturbations with the goal of creating a sustainable, widely applicable, and readily accessible systems biology knowledge resource. Integration and analysis of diverse LINCS data sets depend on the availability of sufficient metadata to describe the assays and screening results and on their syntactic, structural, and semantic consistency. Here we report metadata specifications for the most important molecular and cellular components and recommend them for adoption beyond the LINCS project. We focus on the minimum required information to model LINCS assays and results based on a number of use cases, and we recommend controlled terminologies and ontologies to annotate assays with syntactic consistency and semantic integrity. We also report specifications for a simple annotation format (SAF) to describe assays and screening results based on our metadata specifications with explicit controlled vocabularies. SAF specifically serves to programmatically access and exchange LINCS data as a prerequisite for a distributed information management infrastructure. We applied the metadata specifications to annotate large numbers of LINCS cell lines, proteins, and small molecules. The resources generated and presented here are freely available. © 2014 Society for Laboratory Automation and Screening.
78 FR 26378 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
..., Genomes, and Genetics Integrated Review Group; Prokaryotic Cell and Molecular Biology Study Section. Date..., Kidney and Urological Systems Integrated Review Group; Clinical, Integrative and Molecular... Respiratory Sciences Integrated Review Group; Lung Cellular, Molecular, and Immunobiology Study Section. Date...
Nursing Faculty and Academic Integrity
ERIC Educational Resources Information Center
Wilson, Cecilia E.
2013-01-01
Insufficient information exists regarding the process influencing faculty decisions, specifically in the area of maintaining academic integrity in an online environment. The purpose of the study was to explore the experiences and decision-making process of nursing faculty related to maintaining academic integrity in an online environment. The…
2016-03-28
Synthesis of GNRs ..............................................................................................................3 3.2 PEG...chemistry we can enhance their biocompatibility while maintaining their cellular uptake. 3 3.0 METHODS 3.1 Synthesis of GNRs MTAB GNRs (MTAB-1...chlorauric acid (0.1 M) was combined at room temperature with a growth solution of CTAB (0.1 M), chlorauric acid (0.1 M) silver nitrate (0.1 M) ascorbic
Architectures and protocols for an integrated satellite-terrestrial mobile system
NASA Technical Reports Server (NTRS)
Delre, E.; Dellipriscoli, F.; Iannucci, P.; Menolascino, R.; Settimo, F.
1993-01-01
This paper aims to depict some basic concepts related to the definition of an integrated system for mobile communications, consisting of a satellite network and a terrestrial cellular network. In particular three aspects are discussed: (1) architecture definition for the satellite network; (2) assignment strategy of the satellite channels; and (3) definition of 'internetworking procedures' between cellular and satellite network, according to the selected architecture and the satellite channel assignment strategy.
Dual Coordination of Post Translational Modifications in Human Protein Networks
Woodsmith, Jonathan; Kamburov, Atanas; Stelzl, Ulrich
2013-01-01
Post-translational modifications (PTMs) regulate protein activity, stability and interaction profiles and are critical for cellular functioning. Further regulation is gained through PTM interplay whereby modifications modulate the occurrence of other PTMs or act in combination. Integration of global acetylation, ubiquitination and tyrosine or serine/threonine phosphorylation datasets with protein interaction data identified hundreds of protein complexes that selectively accumulate each PTM, indicating coordinated targeting of specific molecular functions. A second layer of PTM coordination exists in these complexes, mediated by PTM integration (PTMi) spots. PTMi spots represent very dense modification patterns in disordered protein regions and showed an equally high mutation rate as functional protein domains in cancer, inferring equivocal importance for cellular functioning. Systematic PTMi spot identification highlighted more than 300 candidate proteins for combinatorial PTM regulation. This study reveals two global PTM coordination mechanisms and emphasizes dataset integration as requisite in proteomic PTM studies to better predict modification impact on cellular signaling. PMID:23505349
Eggleston, Paul; Zhao, Yuguang
2001-01-01
Background Gene targeting would offer a number of advantages over current transposon-based strategies for insect transformation. These include freedom from both position effects associated with quasi-random integration and concerns over transgene instability mediated by endogenous transposases, independence from phylogenetic restrictions on transposon mobility and the ability to generate gene knockouts. Results We describe here our initial investigations of gene targeting in the mosquito. The target site was a hygromycin resistance gene, stably maintained as part of an extrachromosomal array. Using a promoter-trap strategy to enrich for targeted events, a neomycin resistance gene was integrated into the target site. This resulted in knockout of hygromycin resistance concurrent with the expression of high levels of neomycin resistance from the resident promoter. PCR amplification of the targeted site generated a product that was specific to the targeted cell line and consistent with precise integration of the neomycin resistance gene into the 5' end of the hygromycin resistance gene. Sequencing of the PCR product and Southern analysis of cellular DNA subsequently confirmed this molecular structure. Conclusions These experiments provide the first demonstration of gene targeting in mosquito tissue and show that mosquito cells possess the necessary machinery to bring about precise integration of exogenous sequences through homologous recombination. Further development of these procedures and their extension to chromosomally located targets hold much promise for the exploitation of gene targeting in a wide range of medically and economically important insect species. PMID:11513755
Accelerated DNA Methylation Age: Associations with PTSD and Neural Integrity
Wolf, Erika J.; Logue, Mark W.; Hayes, Jasmeet P.; Sadeh, Naomi; Schichman, Steven A.; Stone, Annjanette; Salat, David H.; Milberg, William; McGlinchey, Regina; Miller, Mark W.
2015-01-01
Background Accumulating evidence suggests that post traumatic stress disorder (PTSD) may accelerate cellular aging and lead to premature morbidity and neurocognitive decline. Methods This study evaluated associations between PTSD and DNA methylation (DNAm) age using recently developed algorithms of cellular age by Horvath (2013) and Hannum et al. (2013). These estimates reflect accelerated aging when they exceed chronological age. We also examined if accelerated cellular age manifested in degraded neural integrity, indexed via diffusion tensor imaging. Results Among 281 male and female veterans of the conflicts in Iraq and Afghanistan, DNAm age was strongly related to chronological age (rs ~.88). Lifetime PTSD severity was associated with Hannum DNAm age estimates residualized for chronological age (β = .13, p= .032). Advanced DNAm age was associated with reduced integrity in the genu of the corpus callosum (β = −.17, p= .009) and indirectly linked to poorer working memory performance via this region (indirect β = − .05, p= .029). Horvath DNAm age estimates were not associated with PTSD or neural integrity. Conclusions Results provide novel support for PTSD-related accelerated aging in DNAm and extend the evidence base of known DNAm age correlates to the domains of neural integrity and cognition. PMID:26447678
Aquatide Activation of SIRT1 Reduces Cellular Senescence through a SIRT1-FOXO1-Autophagy Axis.
Lim, Chae Jin; Lee, Yong-Moon; Kang, Seung Goo; Lim, Hyung W; Shin, Kyong-Oh; Jeong, Se Kyoo; Huh, Yang Hoon; Choi, Suin; Kor, Myungho; Seo, Ho Seong; Park, Byeong Deog; Park, Keedon; Ahn, Jeong Keun; Uchida, Yoshikazu; Park, Kyungho
2017-09-01
Ultraviolet (UV) irradiation is a relevant environment factor to induce cellular senescence and photoaging. Both autophagy- and silent information regulator T1 (SIRT1)-dependent pathways are critical cellular processes of not only maintaining normal cellular functions, but also protecting cellular senescence in skin exposed to UV irradiation. In the present studies, we investigated whether modulation of autophagy induction using a novel synthetic SIRT1 activator, heptasodium hexacarboxymethyl dipeptide-12 (named as Aquatide), suppresses the UVB irradiation-induced skin aging. Treatment with Aquatide directly activates SIRT1 and stimulates autophagy induction in cultured human dermal fibroblasts. Next, we found that Aquatide-mediated activation of SIRT1 increases autophagy induction via deacetylation of forkhead box class O (FOXO) 1. Finally, UVB irradiation-induced cellular senescence measured by SA-β-gal staining was significantly decreased in cells treated with Aquatide in parallel to occurring SIRT1 activation-dependent autophagy. Together, Aquatide modulates autophagy through SIRT1 activation, contributing to suppression of skin aging caused by UV irradiation.
Hong, Feifei; Yan, Chengcheng; Si, Yang; He, Jianxin; Yu, Jianyong; Ding, Bin
2015-09-16
Many applications proposed for magnetic silica nanofibers require their assembly into a cellular membrane structure. The feature to keep structure stable upon large deformation is crucial for a macroscopic porous material which functions reliably. However, it remains a key issue to realize robust flexibility in two-dimensional (2D) magnetic silica nanofibrous networks. Here, we report that the combination of electrospun silica nanofibers with zein dip-coating can lead to the formation of flexible, magnetic, and hierarchical porous silica nanofibrous membranes (SNM). The 290 nm diameter silica nanofibers act as templates for the uniform anchoring of nickel ferrite nanoparticles (size of 50 nm). Benefiting from the homogeneous and stable nanofiber-nanoparticle composite structure, the resulting magnetic SNM can maintain their structure integrity under repeated bending as high as 180° and can facilely recover. The unique hierarchical structure also provides this new class of silica membrane with integrated properties of ultralow density, high porosity, large surface area, good magnetic responsiveness, robust dye adsorption capacity, and effective emulsion separation performance. Significantly, the synthesis of such fascinating membranes may provide new insight for further application of silica in a self-supporting, structurally adaptive, and 2D membrane form.
... is also important to address difficulties with social integration, participation in leisure activities, and maintaining stamina. The ... is also important to address difficulties with social integration, participation in leisure activities, and maintaining stamina. The ...
MAINTAINING DATA QUALITY IN THE PERFORMANCE OF A LARGE SCALE INTEGRATED MONITORING EFFORT
Macauley, John M. and Linda C. Harwell. In press. Maintaining Data Quality in the Performance of a Large Scale Integrated Monitoring Effort (Abstract). To be presented at EMAP Symposium 2004: Integrated Monitoring and Assessment for Effective Water Quality Management, 3-7 May 200...
Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors.
Stevens, Kathleen E; Chang, Diana; Zwack, Erin E; Sebert, Michael E
2011-01-01
Competence for genetic transformation in Streptococcus pneumoniae develops in response to accumulation of a secreted peptide pheromone and was one of the initial examples of bacterial quorum sensing. Activation of this signaling system induces not only expression of the proteins required for transformation but also the production of cellular chaperones and proteases. We have shown here that activity of this pathway is sensitively responsive to changes in the accuracy of protein synthesis that are triggered by either mutations in ribosomal proteins or exposure to antibiotics. Increasing the error rate during ribosomal decoding promoted competence, while reducing the error rate below the baseline level repressed the development of both spontaneous and antibiotic-induced competence. This pattern of regulation was promoted by the bacterial HtrA serine protease. Analysis of strains with the htrA (S234A) catalytic site mutation showed that the proteolytic activity of HtrA selectively repressed competence when translational fidelity was high but not when accuracy was low. These findings redefine the pneumococcal competence pathway as a response to errors during protein synthesis. This response has the capacity to address the immediate challenge of misfolded proteins through production of chaperones and proteases and may also be able to address, through genetic exchange, upstream coding errors that cause intrinsic protein folding defects. The competence pathway may thereby represent a strategy for dealing with lesions that impair proper protein coding and for maintaining the coding integrity of the genome. The signaling pathway that governs competence in the human respiratory tract pathogen Streptococcus pneumoniae regulates both genetic transformation and the production of cellular chaperones and proteases. The current study shows that this pathway is sensitively controlled in response to changes in the accuracy of protein synthesis. Increasing the error rate during ribosomal decoding induced competence, while decreasing the error rate repressed competence. This pattern of regulation was promoted by the HtrA protease, which selectively repressed competence when translational fidelity was high but not when accuracy was low. Our findings demonstrate that this organism is able to monitor the accuracy of information used for protein biosynthesis and suggest that errors trigger a response addressing both the immediate challenge of misfolded proteins and, through genetic exchange, upstream coding errors that may underlie protein folding defects. This pathway may represent an evolutionary strategy for maintaining the coding integrity of the genome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com
2015-02-01
Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose ofmore » doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT7 attenuated p38/JNK activation and also p53 response. • Overall, SIRT7 promoted cellular survival in conditions of genomic stress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ya Wang
2010-05-31
The major goal of this study is to determine the effects of the Fhit pathway on low dose ({le} 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repairmore » genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.« less
Organ reconstruction: Dream or reality for the future.
Stoltz, J-F; Zhang, L; Ye, J S; De Isla, N
2017-01-01
The relevance of research on reconstructed organs is justified by the lack of organs available for transplant and the growing needs for the ageing population. The development of a reconstructed organ involves two parallel complementary steps: de-cellularization of the organ with the need to maintain the structural integrity of the extracellular matrix and vascular network and re-cellularization of the scaffold with stem cells or resident cells.Whole organ engineering for liver, heart, lung or kidneys, is particularly difficult because of the structural complexity of organs and heterogeneity of cells. Rodent, porcine and rhesus monkey organs have been de-cellularized to obtain a scaffold with preserved extracellular matrix and vascular network. As concern the cells for re-cellularization, embryonic, foetal, adult, progenitor stem cells and also iPS have been proposed.Heart construction could be an alternative option for the treatment of cardiac insufficiency. It is based on the use of an extra-cellular matrix coming from an animal's heart and seeded with cells likely to reconstruct a normal cardiac function. Though de-cellularization techniques now seem controlled, the issues posed by the selection of cells capable of generating the various components of cardiac tissue are not settled yet. In addition, the recolonisation of the matrix does not only depend on the phenotype of cells that are used, but it is also impacted by the nature of biochemical signals emitted.Recent researches have shown that it is possible to use decellularized whole liver treated by detergents as scaffold, which keeps the entire network of blood vessels and the integrated extracellular matrix (ECM). Beside of decellularized whole organ scaffold seeding cells selected to repopulate a decellularized liver scaffold are critical for the function of the bioengineered liver. At present, potential cell sources are hepatocyte, and mesenchymal stem cells.Pulmonary regeneration using engineering approaches is complex. In fact, several types of local progenitor cells that contribute to cell repair have been described at different levels of the respiratory tract. Moving towards the alveoles, one finds bronchioalveolar stem cells as well as epithelial cells and pneumocytes. A promising option to increase the donor organ pool is to use allogeneic or xenogeneic decellularized lungs as a scaffold to engineer functional lung tissue ex vivo.The kidney is certainly one of the most difficult organs to reconstruct due to its complex nature and the heterogeneous nature of the cells. There is relatively little research on auto-construction, and experiments have been performed on rats, pigs and monkeys.Nevertheless, before these therapeutic approaches can be applied in clinical practice, many researches are necessary to understand and in particular the behaviour of cells on the decellularized organs as well as the mechanisms of their interaction with the microenvironment. Current knowledges allow optimism for the future but definitive answers can only be given after long term animal studies and controlled clinical studies.
Targeting mitochondrial function and proteostasis to mitigate dynapenia.
Musci, Robert V; Hamilton, Karyn L; Miller, Benjamin F
2018-01-01
Traditionally, interventions to treat skeletal muscle aging have largely targeted sarcopenia-the age-related loss of skeletal muscle mass. Dynapenia refers to the age-related loss in skeletal muscle function due to factors outside of muscle mass, which helps to inform treatment strategies for aging skeletal muscle. There is evidence that mechanisms to maintain protein homeostasis and proteostasis, deteriorate with age. One key mechanism to maintain proteostasis is protein turnover, which is an energetically costly process. When there is a mismatch between cellular energy demands and energy provision, inelastic processes related to metabolism are maintained, but there is competition for the remaining energy between the elastic processes of somatic maintenance and growth. With aging, mitochondrial dysfunction reduces ATP generation capacity, constraining the instantaneous supply of energy, thus compromising growth and somatic maintenance processes. Further, with age the need for somatic maintenance increases because of the accumulation of protein damage. In this review, we highlight the significant role mitochondria have in maintaining skeletal muscle proteostasis through increased energy provision, protein turnover, and substrate flux. In addition, we provide evidence that improving mitochondrial function could promote a cellular environment that is conducive to somatic maintenance, and consequently for mitigating dynapenia. Finally, we highlight interventions, such as aerobic exercise, that could be used to improve mitochondrial function and improve outcomes related to dynapenia.
Integrating Cellular Metabolism into a Multiscale Whole-Body Model
Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars
2012-01-01
Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351
The Effects of Storage on Irradiated Red Blood Cells: An In Vitro and In Vivo Study
1991-08-01
nerve impulses, and is involved with cellular menbrane potential. It also influences and is influenced by the acid base balance. 19 Normal serum...maintained by active transport of scdium and potassium across the cell menbrane . Sodium is punped out and potassium pumped into the cell. The body’s...insufficiency or failure; renal dialysis is often required to remove 4 accumulated plasma potassium. Increased extr.cellular potassium causes changes in muscle
Mooren, Olivia L.; Li, Jinmei; Nawas, Julie; Cooper, John A.
2014-01-01
The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells. PMID:25355948
Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells
Mortha, Arthur; Burrows, Kyle
2018-01-01
Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ. PMID:29467768
Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells.
Mortha, Arthur; Burrows, Kyle
2018-01-01
Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.
Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins.
Cox, Dezerae; Carver, John A; Ecroyd, Heath
2014-09-01
Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
37 CFR 10.22 - Maintaining integrity and competence of the legal profession.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Maintaining integrity and competence of the legal profession. 10.22 Section 10.22 Patents, Trademarks, and Copyrights UNITED STATES... integrity and competence of the legal profession. (a) A practitioner is subject to discipline if the...
21 CFR 1271.47 - What procedures must I establish and maintain?
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Donor Eligibility § 1271.47 What procedures... technical manual prepared by another organization, provided that you have verified that the procedures are...
ABCA1 agonist peptides for the treatment of disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bielicki, John K.
Purpose of review The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. Recent findings Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potentialmore » for clinical use. Structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia have been identified. These may have implications for the design of other HDL mimetic peptides. Summary ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.« less
ABCA1 agonist peptides for the treatment of disease
Bielicki, John K.
2016-02-01
Purpose of review The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. Recent findings Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potentialmore » for clinical use. Structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia have been identified. These may have implications for the design of other HDL mimetic peptides. Summary ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.« less
Martins, C F; Silva, A E D Feliciano; Dode, M N; Rumpf, R; Cumpa, H C B; Silva, C G; Pivato, I
2015-08-01
The objectives of this study were study a practical method to characterize bovine spermatogenic cells and test the efficiency cells conservation by refrigeration at 4°C and cryopreservation in different solutions using two cooling curves. Cellular identification was performing by analysis of shape, size and morphology, associated with nucleus positioning and nuclear-cytoplasm ratio (NCR). Cellular samples were kept at 4°C for a period of 96 h in refrigeration solution and every 24h plasma membrane and DNA integrity were evaluated. Cryopreservation of cells was carried out using solutions containing 10% Dimethyl sulfoxide, 5% Dimethylformamide, 7% Glycerol and 7% Ethylene glycol, using a controlled and non-controlled cooling curve. Results of cellular characterization demonstrated that spermatocytes II presented a cylindrical shape, NCR of 1:1.5 and diameter ranging from 14.5 to 17.5 μm. Round spermatids presented diameter ranging from 7.6 to 13.4 μm, acrosomal cap and NCR of 1:2. Elongation and elongated spermatids showed to marked divergence in shape. There was a daily significant loss of viability of cooled cells until third day of storage, however they presented 72.77±5.16% viability after 4 days of storage at 4°C. There was no difference among the cryoprotectant solutions and cooling curves. In conclusion we demonstrated that association of microscopes and staining was a practical method to identify bovine spermatogenic cells. Furthermore, refrigeration at 4°C is an important strategy to preserve over 70% of viable cells after 4 days and cryopreservation, regardless of cryoprotectant solution or cooling curve used, can maintain over 50% of cells viable. Copyright © 2015 Elsevier Inc. All rights reserved.
Savic, Daniel; Ramaker, Ryne C; Roberts, Brian S; Dean, Emma C; Burwell, Todd C; Meadows, Sarah K; Cooper, Sara J; Garabedian, Michael J; Gertz, Jason; Myers, Richard M
2016-07-11
The liver X receptors (LXRs, NR1H2 and NR1H3) and peroxisome proliferator-activated receptor gamma (PPARG, NR1C3) nuclear receptor transcription factors (TFs) are master regulators of energy homeostasis. Intriguingly, recent studies suggest that these metabolic regulators also impact tumor cell proliferation. However, a comprehensive temporal molecular characterization of the LXR and PPARG gene regulatory responses in tumor cells is still lacking. To better define the underlying molecular processes governing the genetic control of cellular growth in response to extracellular metabolic signals, we performed a comprehensive, genome-wide characterization of the temporal regulatory cascades mediated by LXR and PPARG signaling in HT29 colorectal cancer cells. For this analysis, we applied a multi-tiered approach that incorporated cellular phenotypic assays, gene expression profiles, chromatin state dynamics, and nuclear receptor binding patterns. Our results illustrate that the activation of both nuclear receptors inhibited cell proliferation and further decreased glutathione levels, consistent with increased cellular oxidative stress. Despite a common metabolic reprogramming, the gene regulatory network programs initiated by these nuclear receptors were widely distinct. PPARG generated a rapid and short-term response while maintaining a gene activator role. By contrast, LXR signaling was prolonged, with initial, predominantly activating functions that transitioned to repressive gene regulatory activities at late time points. Through the use of a multi-tiered strategy that integrated various genomic datasets, our data illustrate that distinct gene regulatory programs elicit common phenotypic effects, highlighting the complexity of the genome. These results further provide a detailed molecular map of metabolic reprogramming in cancer cells through LXR and PPARG activation. As ligand-inducible TFs, these nuclear receptors can potentially serve as attractive therapeutic targets for the treatment of various cancers.
Cortical DNA methylation maintains remote memory.
Miller, Courtney A; Gavin, Cristin F; White, Jason A; Parrish, R Ryley; Honasoge, Avinash; Yancey, Christopher R; Rivera, Ivonne M; Rubio, María D; Rumbaugh, Gavin; Sweatt, J David
2010-06-01
A behavioral memory's lifetime represents multiple molecular lifetimes, suggesting the necessity for a self-perpetuating signal. One candidate is DNA methylation, a transcriptional repression mechanism that maintains cellular memory throughout development. We found that persistent, gene-specific cortical hypermethylation was induced in rats by a single, hippocampus-dependent associative learning experience and pharmacologic inhibition of methylation 1 month after learning disrupted remote memory. We propose that the adult brain utilizes DNA methylation to preserve long-lasting memories.
Neural circuit mechanisms of short-term memory
NASA Astrophysics Data System (ADS)
Goldman, Mark
Memory over time scales of seconds to tens of seconds is thought to be maintained by neural activity that is triggered by a memorized stimulus and persists long after the stimulus is turned off. This presents a challenge to current models of memory-storing mechanisms, because the typical time scales associated with cellular and synaptic dynamics are two orders of magnitude smaller than this. While such long time scales can easily be achieved by bistable processes that toggle like a flip-flop between a baseline and elevated-activity state, many neuronal systems have been observed experimentally to be capable of maintaining a continuum of stable states. For example, in neural integrator networks involved in the accumulation of evidence for decision making and in motor control, individual neurons have been recorded whose activity reflects the mathematical integral of their inputs; in the absence of input, these neurons sustain activity at a level proportional to the running total of their inputs. This represents an analog form of memory whose dynamics can be conceptualized through an energy landscape with a continuum of lowest-energy states. Such continuous attractor landscapes are structurally non-robust, in seeming violation of the relative robustness of biological memory systems. In this talk, I will present and compare different biologically motivated circuit motifs for the accumulation and storage of signals in short-term memory. Challenges to generating robust memory maintenance will be highlighted and potential mechanisms for ameliorating the sensitivity of memory networks to perturbations will be discussed. Funding for this work was provided by NIH R01 MH065034, NSF IIS-1208218, Simons Foundation 324260, and a UC Davis Ophthalmology Research to Prevent Blindness Grant.
Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan
2014-01-01
Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system. PMID:24523558
Feng, Pu; Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan; Wang, Hong
2014-02-12
Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.
An Autonomous, Low Cost Platform for Seafloor Geodetic Observations
NASA Astrophysics Data System (ADS)
Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.
2014-12-01
The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce costs below ship based methods of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for one of the University of Hawaii Wave Gliders which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of pressure and temperature data. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the design of the Wave Glider payload and seafloor geodetic monument, as well as a discussion of nearshore and offshore field tests and operational procedures. An assessment of our ability to determine cm-scale vertical seafloor motions will be made by integrating the seafloor pressure measurements recovered during field testing with independent measurements of sea surface pressure and sea surface height made by the sea surface payload.
Mishiro, Tsuyoshi; Kusunoki, Ryusaku; Otani, Aya; Ansary, Md Mesbah Uddin; Tongu, Miki; Harashima, Nanae; Yamada, Takaya; Sato, Shuichi; Amano, Yuji; Itoh, Kazuhito; Ishihara, Shunji; Kinoshita, Yoshikazu
2013-07-01
Butyric acid, a short-chain fatty acid and one of the main metabolites of intestinal microbial fermentation of dietary fiber, has been shown to have an important role in maintaining the integrity of the intestinal mucosa, while it also has been shown to exert potent anti-inflammatory effects both in vitro and in vivo. However, the precise mechanisms underlying those effects have not been fully identified. We exposed colonic epithelial cells to butyric acid, then extracted total RNA samples, and subsequently hybridized them to microarray chips. Among the upregulated genes, milk fat globule-epidermal growth factor 8 (MFG-E8) was elevated by approximately fivefold. We previously reported that the potential therapeutic benefits of MFG-E8 in intestinal tissue injury were dependent not only on enhanced clearance of apoptotic cells but also required diverse cellular events for maintaining epithelial integrity. The influence of butyric acid on cell function is often attributed to its inhibition of histone deacetylases (HDACs). We found that acetylation on histone 3 lysine 9 (acetyl-H3K9) around the MFG-E8 promoter was significantly increased with butyric acid exposure. Experimental colitis was induced by administration of dextran sodium sulfate (DSS) in C57BL/6N (MFG-E8+/+) and MFG-E8-/- mice. Although the colonic bacterial compositions in wild-type (WT) and MFG-E8-/- mice were not significantly different, intrarectal administration of butyric acid during an acute phase of colitis attenuated intestinal inflammatory parameters and inhibited body weight loss in the WT mice. Our novel findings suggest that butyric acid has significant anti-inflammatory effects partly via MFG-E8 on DSS-induced murine experimental colitis.
Nicolson, Garth L
2014-06-01
In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. © 2013.
76 FR 370 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group; Molecular Genetics B Study... Committee: Cardiovascular and Respiratory Sciences Integrated Review Group; Lung Cellular, Molecular, and... Committee: Population Sciences and Epidemiology Integrated Review Group; Behavioral Genetics and...
Newton, Irene L. G.; Hardy, Richard W.
2018-01-01
At the forefront of vector control efforts are strategies that leverage host-microbe associations to reduce vectorial capacity. The most promising of these efforts employs Wolbachia, a maternally transmitted endosymbiotic bacterium naturally found in 40% of insects. Wolbachia can spread through a population of insects while simultaneously inhibiting the replication of viruses within its host. Despite successes in using Wolbachia-transfected mosquitoes to limit dengue, Zika, and chikungunya transmission, the mechanisms behind pathogen-blocking have not been fully characterized. Firstly, we discuss how Wolbachia and viruses both require specific host-derived structures, compounds, and processes to initiate and maintain infection. There is significant overlap in these requirements, and infection with either microbe often manifests as cellular stress, which may be a key component of Wolbachia’s anti-viral effect. Secondly, we discuss the current understanding of pathogen-blocking through this lens of cellular stress and develop a comprehensive view of how the lives of Wolbachia and viruses are fundamentally in conflict with each other. A thorough understanding of the genetic and cellular determinants of pathogen-blocking will significantly enhance the ability of vector control programs to deploy and maintain effective Wolbachia-mediated control measures. PMID:29561780
Phosphate toxicity: new insights into an old problem
RAZZAQUE, M. Shawkat
2011-01-01
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23–klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review. PMID:20958267
Phosphate toxicity: new insights into an old problem.
Razzaque, M Shawkat
2011-02-01
Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23-klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review.
Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae.
Pollo, Stephen M J; Zhaxybayeva, Olga; Nesbø, Camilla L
2015-09-01
Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.
Waters, Katrina M.; Liu, Tao; Quesenberry, Ryan D.; Willse, Alan R.; Bandyopadhyay, Somnath; Kathmann, Loel E.; Weber, Thomas J.; Smith, Richard D.; Wiley, H. Steven; Thrall, Brian D.
2012-01-01
To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response. PMID:22479638
Riento, Kirsi; Zhang, Qifeng; Clark, Jonathan; Begum, Farida; Stephens, Elaine; Wakelam, Michael J.
2018-01-01
Sphingosine-1-phosphate (S1P) is an important lipid signalling molecule. S1P is produced via intracellular phosphorylation of sphingosine (Sph). As a lipid with a single fatty alkyl chain, Sph may diffuse rapidly between cellular membranes and through the aqueous phase. Here, we show that the absence of microdomains generated by multimeric assemblies of flotillin proteins results in reduced S1P levels. Cellular phenotypes of flotillin knockout mice, including changes in histone acetylation and expression of Isg15, are recapitulated when S1P synthesis is perturbed. Flotillins bind to Sph in vitro and increase recruitment of Sph to membranes in cells. Ectopic re-localisation of flotillins within the cell causes concomitant redistribution of Sph. The data suggest that flotillins may directly or indirectly regulate cellular sphingolipid distribution and signalling. PMID:29787576
ERIC Educational Resources Information Center
Thomason, Robert Riner, Jr.
2013-01-01
This qualitative study, utilizing a grounded theory methodological approach, focused on how former Christian college and university presidents maintain their integrity over the course of their lives and their time in office. Eight participants from a variety of theological backgrounds were identified by using purposeful sampling methods; the…
Garbow, Joel R.; Doherty, Jason M.; Schugar, Rebecca C.; Travers, Sarah; Weber, Mary L.; Wentz, Anna E.; Ezenwajiaku, Nkiruka; Cotter, David G.; Brunt, Elizabeth M.
2011-01-01
Low-carbohydrate diets are used to manage obesity, seizure disorders, and malignancies of the central nervous system. These diets create a distinctive, but incompletely defined, cellular, molecular, and integrated metabolic state. Here, we determine the systemic and hepatic effects of long-term administration of a very low-carbohydrate, low-protein, and high-fat ketogenic diet, serially comparing these effects to a high-simple-carbohydrate, high-fat Western diet and a low-fat, polysaccharide-rich control chow diet in C57BL/6J mice. Longitudinal measurement of body composition, serum metabolites, and intrahepatic fat content, using in vivo magnetic resonance spectroscopy, reveals that mice fed the ketogenic diet over 12 wk remain lean, euglycemic, and hypoinsulinemic but accumulate hepatic lipid in a temporal pattern very distinct from animals fed the Western diet. Ketogenic diet-fed mice ultimately develop systemic glucose intolerance, hepatic endoplasmic reticulum stress, steatosis, cellular injury, and macrophage accumulation, but surprisingly insulin-induced hepatic Akt phosphorylation and whole-body insulin responsiveness are not impaired. Moreover, whereas hepatic Pparg mRNA abundance is augmented by both high-fat diets, each diet confers splice variant specificity. The distinctive nutrient milieu created by long-term administration of this low-carbohydrate, low-protein ketogenic diet in mice evokes unique signatures of nonalcoholic fatty liver disease and whole-body glucose homeostasis. PMID:21454445
The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation.
Rogel, Micah R; Jaitovich, Ariel; Ridge, Karen M
2010-02-01
Lung injury, whether caused by hypoxic or mechanical stresses, elicits a variety of responses at the cellular level. Alveolar epithelial cells respond and adapt to such injurious stimuli by reorganizing the cellular cytoskeleton, mainly accomplished through modification of the intermediate filament (IF) network. The structural and mechanical integrity in epithelial cells is maintained through this adaptive reorganization response. Keratin, the predominant IF expressed in epithelial cells, displays highly dynamic properties in response to injury, sometimes in the form of degradation of the keratin IF network. Post-translational modification, such as phosphorylation, targets keratin proteins for degradation in these circumstances. As with other structural and regulatory proteins, turnover of keratin is regulated by the ubiquitin (Ub)-proteasome pathway. The degradation process begins with activation of Ub by the Ub-activating enzyme (E1), followed by the exchange of Ub to the Ub-conjugating enzyme (E2). E2 shuttles the Ub molecule to the substrate-specific Ub ligase (E3), which then delivers the Ub to the substrate protein, thereby targeting it for degradation. In some cases of injury and IF-related disease, aggresomes form in epithelial cells. The mechanisms that regulate aggresome formation are currently unknown, although proteasome overload may play a role. Therefore, a more complete understanding of keratin degradation--causes, mechanisms, and consequences--will allow for a greater understanding of epithelial cell biology and lung pathology alike.
Human Immunodeficiency Virus (HIV) Latency: The Major Hurdle in HIV Eradication
Tyagi, Mudit; Bukrinsky, Michael
2012-01-01
Failure of highly active antiretroviral therapy to eradicate the human immunodeficiency virus (HIV), even in patients who suppress the virus to undetectable levels for many years, underscores the problems associated with fighting this infection. The existence of persistent infection in certain cellular and anatomical reservoirs appears to be the major hurdle in HIV eradication. The development of therapeutic interventions that eliminate or limit the latent viral pools or prevent the reemergence of the viruses from producing cells will therefore be required to enhance the effectiveness of current antiretroviral strategies. To achieve this goal, there is a pressing need to understand HIV latency at the molecular level to design novel and improved therapies to either eradicate HIV or find a functional cure in which patients could maintain a manageable viral pool without AIDS in the absence of antiretroviral therapy. The integrated proviral genome remains transcriptionally silent for a long period in certain subsets of T cells. This ability to infect cells latently helps HIV to establish a persistent infection despite strong humoral and cellular immune responses against the viral proteins. The main purpose of this report is to provide a general overview of the HIV latency. We will describe the hurdles being faced in eradicating latent HIV proviruses. We will also briefly discuss the ongoing strategies aimed toward curing HIV infection. PMID:22692576
Mason, Jacqueline M; Wei, Xin; Fletcher, Graham C; Kiarash, Reza; Brokx, Richard; Hodgson, Richard; Beletskaya, Irina; Bray, Mark R; Mak, Tak W
2017-03-21
Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets. Monopolar spindle 1 (Mps1; also known as TTK protein kinase) is a core component of the spindle assembly checkpoint (SAC), a genome-surveillance mechanism that is important for cell survival, and has emerged as a candidate target for anticancer therapy. Here, we report the cellular and antitumor effects of CFI-402257, a potent (Mps1 K i = 0.09 ± 0.02 nM; cellular Mps1 EC 50 = 6.5 ± 0.5 nM), highly selective, and orally active small-molecule inhibitor of Mps1 that was identified through a drug-discovery program. Human cancer cells treated with CFI-402257 exhibit effects consistent with Mps1 kinase inhibition, specifically SAC inactivation, leading to chromosome missegregation, aneuploidy, and ultimately cell death. Oral administration of CFI-402257 in monotherapy or in combination with an anti-programmed cell death 1 (PD-1) antibody in mouse models of human cancer results in inhibition of tumor growth at doses that are well-tolerated. Our findings provide a rationale for the clinical evaluation of CFI-402257 in patients with solid tumors.
Mason, Jacqueline M.; Wei, Xin; Fletcher, Graham C.; Kiarash, Reza; Brokx, Richard; Hodgson, Richard; Beletskaya, Irina; Bray, Mark R.; Mak, Tak W.
2017-01-01
Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets. Monopolar spindle 1 (Mps1; also known as TTK protein kinase) is a core component of the spindle assembly checkpoint (SAC), a genome-surveillance mechanism that is important for cell survival, and has emerged as a candidate target for anticancer therapy. Here, we report the cellular and antitumor effects of CFI-402257, a potent (Mps1 Ki = 0.09 ± 0.02 nM; cellular Mps1 EC50 = 6.5 ± 0.5 nM), highly selective, and orally active small-molecule inhibitor of Mps1 that was identified through a drug-discovery program. Human cancer cells treated with CFI-402257 exhibit effects consistent with Mps1 kinase inhibition, specifically SAC inactivation, leading to chromosome missegregation, aneuploidy, and ultimately cell death. Oral administration of CFI-402257 in monotherapy or in combination with an anti-programmed cell death 1 (PD-1) antibody in mouse models of human cancer results in inhibition of tumor growth at doses that are well-tolerated. Our findings provide a rationale for the clinical evaluation of CFI-402257 in patients with solid tumors. PMID:28270606
Antimicrobial role of human meibomian lipids at the ocular surface.
Mudgil, Poonam
2014-10-14
Human meibomian lipids form the outermost lipid layer of the tear film and serve many important functions to maintain its integrity. Although not investigated earlier, these lipids may have antimicrobial properties that help in strengthening the innate host defense of tears at the ocular surface. The aim of this study was to investigate the antimicrobial role of human meibomian lipids. Ocular pathogenic bacteria, Staphylococcus aureus 31, Pseudomonas aeruginosa 19, Pseudomonas aeruginosa 20, and Serratia marcescens 35, were grown in the presence and absence of human meibomian lipids in an artificial tear solution at the physiological temperature. Viable counts were obtained to note the number of bacteria surviving the treatment with meibomian lipids. Bacterial cells were imaged using scanning electron microscopy to observe the damages caused by meibomian lipids. Viable count results showed that in the presence of meibomian lipids, growth of all bacteria was considerably lower. Scanning electron microscopy showed that meibomian lipids caused extensive cellular damage to bacteria as manifested in smaller size, loss of aggregation, abnormal phenotype, cellular distortion, damaged cell wall, and cell lysis. This is the first-ever report of the antimicrobial role of human meibomian lipids. These lipids possess antimicrobial properties against both Gram-positive and Gram-negative bacteria and are involved in the innate host defense of tears in protecting the ocular surface against microbial pathogens. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
LIS1 controls mitosis and mitotic spindle organization via the LIS1–NDEL1–dynein complex
Moon, Hyang Mi; Youn, Yong Ha; Pemble, Hayley; Yingling, Jessica; Wittmann, Torsten; Wynshaw-Boris, Anthony
2014-01-01
Heterozygous LIS1 mutations are responsible for the human neuronal migration disorder lissencephaly. Mitotic functions of LIS1 have been suggested from many organisms throughout evolution. However, the cellular functions of LIS1 at distinct intracellular compartments such as the centrosome and the cell cortex have not been well defined especially during mitotic cell division. Here, we used detailed cellular approaches and time-lapse live cell imaging of mitosis from Lis1 mutant mouse embryonic fibroblasts to reveal critical roles of LIS1 in mitotic spindle regulation. We found that LIS1 is required for the tight control of chromosome congression and segregation to dictate kinetochore–microtubule (MT) interactions and anaphase progression. In addition, LIS1 is essential for the establishment of mitotic spindle pole integrity by maintaining normal centrosome number. Moreover, LIS1 plays crucial roles in mitotic spindle orientation by increasing the density of astral MT plus-end movements toward the cell cortex, which enhances cortical targeting of LIS1–dynein complex. Overexpression of NDEL1–dynein and MT stabilization rescues spindle orientation defects in Lis1 mutants, demonstrating that mouse LIS1 acts via the LIS1–NDEL1–dynein complex to regulate astral MT plus-ends dynamics and establish proper contacts of MTs with the cell cortex to ensure precise cell division. PMID:24030547
Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, A.K.; Hubbard, K.; Kaur, G.P.
1994-06-07
In these studies the authors show that introduction of a normal human chromosome 6 or 6q can suppress the immortal phenotype of simian virus 40-transformed human fibroblasts (SV/HF). Normal human fibroblasts have a limited life span in culture. Immortal clones of SV/HF displayed nonrandom rearrangements in chromosome 6. Single human chromosomes present in mouse/human monochromosomal hybrids were introduced into SV/HF via microcell fusion and maintained by selection for a dominant selectable marker gpt, previously integrated into the human chromosome. Clones of SV/HF cells bearing chromosome 6 displayed limited potential for cell division and morphological characteristics of senescent cells. The lossmore » of chromosome 6 from the suppressed clones correlated with the reappearance of immortal clones. Introduced chromosome 6 in the senescing cells was distinguished from those of parental cells by analysis for DNA sequences specific for the donor chromosome. The results further show that suppression of immortal phenotype in SV/HF is specific to chromosome 6. Introduction of individual human chromosomes 2, 8, or 19 did not impart cellular senescence in SV/HF. In addition, introduction of chromosome 6 into human glioblastoma cells did not lead to senescence. Based upon these results the authors propose that at least one of the genes (SEN6) for cellular senescence in human fibroblasts is present on the long arm of chromosome 6.« less
Ogedegbe, Chinwe; Morchel, Herman; Hazelwood, Vikki; Hassler, Cynthia; Feldman, Joseph
2012-01-01
There is not sufficient access to medical care or medical expertise in many parts of the world. An innovative telemedicine system has been developed to provide expert medical guidance to field caregivers [who have less medical expertise but can reach the patient population in need]. Real-time ultrasound video images have been securely transmitted from the Dominican Republic to Hackensack University Medical Center, Hackensack NJ (HackensackUMC), while the expert physician at HackensackUMC maintained direct voice communication with the field caregiver. Utilizing a portable ultrasound machine (Sonosite) integrated with portable broadcasting device (LiveU), extended Focused Assessment Sonography in Trauma (e-FAST) examinations were performed on healthy volunteers and transmitted via the local cellular network. Additionally, two e-FAST examinations were conducted from a remote location without cellular coverage and transmitted via broad ground area network (BGAN) satellites. The demonstration took the technology "out of the lab" and into a real life, austere environment. The conditions of the Dominican Republic ultrasound mission provided experience on how to manage and utilize this innovative technology in areas where reliable communications and medical coverage are not readily available. The resilient transmission capabilities coupled with the security features deem this portable Telesonography (TS) equipment highly useful in the telemedicine forefront by offering healthcare in underdeveloped areas as well as potentially enhancing throughput in disaster situations.
Studying the loading effect of acidic type antioxidant on amorphous silica nanoparticle carriers
NASA Astrophysics Data System (ADS)
Ravinayagam, Vijaya; Rabindran Jermy, B.
2017-06-01
The study investigates the suitable nanosilica carriers to transport acidic type cargo molecules for potential targeted drug delivery application. Using phenolic acidic type antioxidant gallic acid (GA) as model compound, the present study investigates the loading effect of GA (0.3-15.9 mmol GA g-1 support) on textural characteristics of amorphous silica nanoparticles such as Q10 silica (1D), structured two-dimensional Si-MCM-41 (2D), and three-dimensional Si-SBA-16 (3D). The variation in the nature of textures after GA loading was analyzed using X-ray diffraction, N2 adsorption, FT-IR, scanning electron microscopy with energy dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy. Among the nanocarriers, high adsorption of GA was found in the following order: Si-SBA-16 (3D)˜Si-KIT-6 (3D) > Si-MCM-41 (2D) > ultralarge pore FDU-12 (ULPFDU-12; 3D) > Q10 (1D)˜mesostructured cellular silica foam (MSU-F). 3D-type silicas Si-SBA-16 and KIT-6 were shown to maintain structural integrity at acidic condition (pH ˜3) and accommodate GA in non-crystalline form. In the case of ULPFDU-12 and MSU-F cellular foam, only crystalline deposition of GA occurs with a significant variation in the surface area and pore volume. [Figure not available: see fulltext.
C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins
Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan
2012-01-01
The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133
Yeo, David; Kiparissides, Alexandros; Cha, Jae Min; Aguilar-Gallardo, Cristobal; Polak, Julia M.; Tsiridis, Elefterios; Pistikopoulos, Efstratios N.; Mantalaris, Athanasios
2013-01-01
Background High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement. Methodology/Principal Findings To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality ‘naïve’ mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency (‘stemness’) genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment. Conclusions/Significance The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization. PMID:24339957
Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2
Izumi, Natsuko; Yamashita, Akio; Ohno, Shigeo
2012-01-01
Proteins of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family are activated by various cellular stresses, including DNA damage, premature termination codon and nutritional status, and induce appropriate cellular responses. The importance of PIKK functions in the maintenance of genome integrity, accurate gene expression and the proper control of cell growth/proliferation is established. Recently, ATPase associated diverse cellular activities (AAA+) proteins RUVBL1 and RUVBL2 (RUVBL1/2) have been shown to be common regulators of PIKKs. The RUVBL1/2 complex regulates PIKK-mediated stress responses through physical interactions with PIKKs and by controlling PIKK mRNA levels. In this review, the functions of PIKKs in stress responses are outlined and the physiological significance of the integrated regulation of PIKKs by the RUVBL1/2 complex is presented. We also discuss a putative “PIKK regulatory chaperone complex” including other PIKK regulators, Hsp90 and the Tel2 complex. PMID:22540023
Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay
2018-01-24
The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Qing-Sheng; Qiao, Ji-Gang; Ai, Bin
2013-09-01
Taking the Dongguan City with rapid urbanization as a case, and selecting landscape ecological security level as evaluation criterion, the urbanization cellular number of 1 km x 1 km ecological security cells was obtained, and imbedded into the transition rules of cellular automata (CA) as the restraint term to control urban development, establish ecological security urban CA, and simulate ecological security urban development pattern. The results showed the integrated landscape ecological security index of the City decreased from 0.497 in 1998 to 0.395 in 2005, indicating that the ecological security at landscape scale was decreased. The CA-simulated integrated ecological security index of the City in 2005 was increased from the measured 0.395 to 0.479, showing that the simulated urban landscape ecological pressure from human became lesser, ecological security became better, and integrated landscape ecological security became higher. CA could be used as an effective tool in researching urban ecological security.
Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes
Young, Eric; Alper, Hal
2010-01-01
The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964
Riel, Jonathan M.; Yamauchi, Yasuhiro; Huang, Thomas T.F.; Grove, John; Ward, Monika A.
2011-01-01
Previous attempts to maintain human spermatozoa without freezing were based on short-term storage in component-rich medium and led to fast decline in motility and increased incidence of chromosome breaks. Here we report a new method in which sperm are maintained without freezing in an electrolyte-free medium (EFM) composed of glucose and bovine serum albumin. Human sperm were stored in EFM or human tubal fluid medium (HTFM) or were cryopreserved, and their motility, viability, and DNA integrity were examined at different intervals. Cryopreservation led to significant decline in sperm motility and viability and induced DNA fragmentation. Sperm stored in EFM maintained motility and viability for up to 4 and 7 wk, respectively, much longer than sperm stored in HTFM (<2 and <4 wk, respectively). DNA integrity, assessed with comet assay, was also maintained significantly better in EFM than in HTFM. One-week storage in EFM yielded motility and viability similar to that of cryopreserved sperm, but DNA integrity was significantly higher, resembling that of fresh sperm. After several weeks of storage in EFM, sperm were able to activate oocytes, undergo chromatin remodeling, and form normal zygotic chromosomes after intracytoplasmic sperm injection. This study demonstrated that human spermatozoa can be stored in EFM without freezing for several weeks while maintaining motility, viability, and chromatin integrity and that 1-wk storage in EFM offers better protection of sperm DNA integrity than cryopreservation. Sperm storage in EFM may become a viable option for the physicians working in assisted reproduction technology clinics, which would avoid cryodamage. PMID:21593474
Multiscale Integration of -Omic, Imaging, and Clinical Data in Biomedical Informatics
Phan, John H.; Quo, Chang F.; Cheng, Chihwen; Wang, May Dongmei
2016-01-01
This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data. PMID:23231990
Multiscale integration of -omic, imaging, and clinical data in biomedical informatics.
Phan, John H; Quo, Chang F; Cheng, Chihwen; Wang, May Dongmei
2012-01-01
This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data.
76 FR 3640 - Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
...-1747. [email protected] . Name of Committee: Integrative, Functional and Cognitive Neuroscience...: Integrative Neuroscience. Date: February 17-18, 2011. Time: 7 a.m. to 8 p.m. Agenda: To review and evaluate...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group. Biophysics of Neural Systems...
77 FR 2739 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group; Molecular Genetics A Study... Urological Systems Integrated Review Group; Kidney Molecular Biology and Genitourinary Organ Development... Sciences Integrated Review Group; Molecular and Cellular Endocrinology Study Section. Date: February 13...
2014-01-01
Background Molecular latency allows HIV-1 to persist in resting memory CD4+ T-cells as transcriptionally silent provirus integrated into host chromosomal DNA. Multiple transcriptional regulatory mechanisms for HIV-1 latency have been described in the context of progressive epigenetic silencing and maintenance. However, our understanding of the determinants critical for the establishment of latency in newly infected cells is limited. Results In this study, we used a recently described, doubly fluorescent HIV-1 latency model to dissect the role of proviral integration sites and cellular activation state on direct non-productive infections at the single cell level. Proviral integration site mapping of infected Jurkat T-cells revealed that productively and non-productively infected cells are indistinguishable in terms of genomic landmarks, surrounding epigenetic landscapes, and proviral orientation relative to host genes. However, direct non-productive infections were inversely correlated with both cellular activation state and NFκB activity. Furthermore, modulating NFκB with either small molecules or by conditional overexpression of NFκB subunits was sufficient to alter the propensity of HIV-1 to directly enter a non-productive latent state in newly infected cells. Importantly, this modulatory effect was limited to a short time window post-infection. Conclusions Taken together, our data suggest that cellular activation state and NFκB activity during the time of infection, but not the site of proviral integration, are important regulators of direct HIV-1 non-productive infections. PMID:24502247
Transient inter-cellular polymeric linker.
Ong, Siew-Min; He, Lijuan; Thuy Linh, Nguyen Thi; Tee, Yee-Han; Arooz, Talha; Tang, Guping; Tan, Choon-Hong; Yu, Hanry
2007-09-01
Three-dimensional (3D) tissue-engineered constructs with bio-mimicry cell-cell and cell-matrix interactions are useful in regenerative medicine. In cell-dense and matrix-poor tissues of the internal organs, cells support one another via cell-cell interactions, supplemented by small amount of the extra-cellular matrices (ECM) secreted by the cells. Here we connect HepG2 cells directly but transiently with inter-cellular polymeric linker to facilitate cell-cell interaction and aggregation. The linker consists of a non-toxic low molecular-weight polyethyleneimine (PEI) backbone conjugated with multiple hydrazide groups that can aggregate cells within 30 min by reacting with the aldehyde handles on the chemically modified cell-surface glycoproteins. The cells in the cellular aggregates proliferated; and maintained the cortical actin distribution of the 3D cell morphology while non-aggregated cells died over 7 days of suspension culture. The aggregates lost distinguishable cell-cell boundaries within 3 days; and the ECM fibers became visible around cells from day 3 onwards while the inter-cellular polymeric linker disappeared from the cell surfaces over time. The transient inter-cellular polymeric linker can be useful for forming 3D cellular and tissue constructs without bulk biomaterials or extensive network of engineered ECM for various applications.
Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.
2015-01-01
Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346
Cellular Restriction Factors of Feline Immunodeficiency Virus
Zielonka, Jörg; Münk, Carsten
2011-01-01
Lentiviruses are known for their narrow cell- and species-tropisms, which are determined by cellular proteins whose absence or presence either support viral replication (dependency factors, cofactors) or inhibit viral replication (restriction factors). Similar to Human immunodeficiency virus type 1 (HIV-1), the cat lentivirus Feline immunodeficiency virus (FIV) is sensitive to recently discovered cellular restriction factors from non-host species that are able to stop viruses from replicating. Of particular importance are the cellular proteins APOBEC3, TRIM5α and tetherin/BST-2. In general, lentiviruses counteract or escape their species’ own variant of the restriction factor, but are targeted by the orthologous proteins of distantly related species. Most of the knowledge regarding lentiviral restriction factors has been obtained in the HIV-1 system; however, much less is known about their effects on other lentiviruses. We describe here the molecular mechanisms that explain how FIV maintains its replication in feline cells, but is largely prevented from cross-species infections by cellular restriction factors. PMID:22069525
Yokoyama, S
2000-12-15
Most mammalian somatic cells are unable to catabolize cholesterol and therefore need to export it in order to maintain sterol homeostasis. This mechanism may also function to reduce excessively accumulated cholesterol, which would thereby contribute to prevention or cure of the initial stage of atherosclerotic vascular lesion. High-density lipoprotein (HDL) has been believed to play a main role in this reaction based on epidemiological evidence and in vitro experimental data. At least two independent mechanisms are identified for this reaction. One is non-specific diffusion-mediated cholesterol 'efflux' from cell surface. Cholesterol molecules desorbed from cells can be trapped by various extracellular acceptors including various lipoproteins and albumin, and extracellular cholesterol esterification mainly on HDL may provide a driving force for the net removal of cell cholesterol by maintaining a cholesterol gradient between lipoprotein surface and cell membrane. The other is apolipoprotein-mediated process to generate new HDL by removing cellular phospholipid and cholesterol. The reaction is initiated by the interaction of lipid-free or lipid-poor helical apolipoproteins with cellular surface resulting in assembly of HDL particles with cellular phospholipid and incorporation of cellular cholesterol into the HDL being formed. Thus, HDL has dual functions as an active cholesterol acceptor in the diffusion-mediated pathway and as an apolipoprotein carrier for the HDL assembly reaction. The impairment of the apolipoprotein-mediated reaction was found in Tangier disease and other familial HDL deficiencies to strongly suggest that this is a main mechanism to produce plasma HDL. The causative mutations for this defect was identified in ATP binding cassette transporter protein A1, as a significant step for further understanding of the reaction and cholesterol homeostasis.
In-vitro analysis of Quantum Molecular Resonance effects on human mesenchymal stromal cells
Sella, Sabrina; Adami, Valentina; Amati, Eliana; Bernardi, Martina; Chieregato, Katia; Gatto, Pamela; Menarin, Martina; Pozzato, Alessandro; Pozzato, Gianantonio; Astori, Giuseppe
2018-01-01
Electromagnetic fields play an essential role in cellular functions interfering with cellular pathways and tissue physiology. In this context, Quantum Molecular Resonance (QMR) produces waves with a specific form at high-frequencies (4–64 MHz) and low intensity through electric fields. We evaluated the effects of QMR stimulation on bone marrow derived mesenchymal stromal cells (MSC). MSC were treated with QMR for 10 minutes for 4 consecutive days for 2 weeks at different nominal powers. Cell morphology, phenotype, multilineage differentiation, viability and proliferation were investigated. QMR effects were further investigated by cDNA microarray validated by real-time PCR. After 1 and 2 weeks of QMR treatment morphology, phenotype and multilineage differentiation were maintained and no alteration of cellular viability and proliferation were observed between treated MSC samples and controls. cDNA microarray analysis evidenced more transcriptional changes on cells treated at 40 nominal power than 80 ones. The main enrichment lists belonged to development processes, regulation of phosphorylation, regulation of cellular pathways including metabolism, kinase activity and cellular organization. Real-time PCR confirmed significant increased expression of MMP1, PLAT and ARHGAP22 genes while A2M gene showed decreased expression in treated cells compared to controls. Interestingly, differentially regulated MMP1, PLAT and A2M genes are involved in the extracellular matrix (ECM) remodelling through the fibrinolytic system that is also implicated in embryogenesis, wound healing and angiogenesis. In our model QMR-treated MSC maintained unaltered cell phenotype, viability, proliferation and the ability to differentiate into bone, cartilage and adipose tissue. Microarray analysis may suggest an involvement of QMR treatment in angiogenesis and in tissue regeneration probably through ECM remodelling. PMID:29293552
Walline, Heather M; Komarck, Christine M; McHugh, Jonathan B; Tang, Alice L; Owen, John H; Teh, Bin T; McKean, Erin; Glover, Thomas; Graham, Martin P; Prince, Mark E; Chepeha, Douglas B; Chinn, Steven B; Ferris, Robert L; Gollin, Susanne M; Hoffmann, Thomas K; Bier, Henning; Brakenhoff, Ruud; Bradford, Carol R; Carey, Thomas E
2017-01-01
Background HPV-positive oropharyngeal cancer is generally associated with excellent response to therapy, but some HPV-positive tumors progress despite aggressive therapy. This study evaluates viral oncogene expression and viral integration sites in HPV16 and HPV18-positive squamous carcinoma cell lines. Methods E6-E7 alternate transcripts were assessed by RT-PCR. Detection of integrated papillomavirus sequences (DIPS-PCR) and sequencing identified viral insertion sites and affected host genes. Cellular gene expression was assessed across viral integration sites. Results All HPV-positive cell lines expressed alternate HPVE6/E7 splicing indicative of active viral oncogenesis. HPV integration occurred within cancer-related genes TP63, DCC, JAK1, TERT, ATR, ETV6, PGR, PTPRN2, and TMEM237 in 8 HNSCC lines but UM-SCC-105 and UM-GCC-1 had only intergenic integration. Conclusions HPV integration into cancer-related genes occurred in 7/9 HPV-positive cell lines and of these six were from tumors that progressed. HPV integration into cancer-related genes may be a secondary carcinogenic driver in HPV-driven tumors. PMID:28236344
75 FR 26970 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-13
...-496-8551, [email protected] . Name of Committee: Molecular, Cellular and Developmental...: Oncology 1--Basic Translational Integrated Review Group, Cancer Genetics Study Section. Date: June 3-4... 20892, (301) 435-1154, [email protected] . Name of Committee: Molecular, Cellular and Developmental...
75 FR 57475 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date: October 14-15, 2010...; Collaborative: Behavioral Genetics and Epidemiology Linked Applications. Date: October 20-21, 2010. Time: 8:30 a...
[Molecular aspects of human papillomaviruses and their relation to uterine cervix cancer].
García-Carrancá, A; Gariglio, P V
1993-01-01
Papillomaviruses (wart viruses) are responsible for the development of benign and malignant epithelial lesions in mammals. More than 60 different types of human papillomaviruses (HPVs) have been isolated to date. Some of them are major candidates as etiologic agents in cervical cancer. DNA from HPV types 16, 18 and 33 is usually found integrated in about 90 percent of genital carcinomas. Integration of the viral DNA into the cellular genome may be an important step towards the development of malignancy. Two early genes of HPVs (E6 y E7) are involved in cellular transformation. Another early gene (E2) participates in gene control by directly binding to conserved DNA motifs in the viral genome. Several protein factors of viral and cellular origin interact with the regulatory region of HPVs and participate in the regulation transcription of oncogenes E6 and E7. Cellular factors, such as immune system and oncogene and anti-oncogene alterations, seem to play an important role in papillomavirus-associated cervical carcinogenesis.
78 FR 56239 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-12
... Integrated Review Group; Molecular and Cellular. Endocrinology Study Section Date: October 8, 2013. Time: 8... Molecular Sciences and Training Integrated Review Group; Enabling Bioanalytical and Imaging Technologies...: Genes, Genomes, and Genetics Integrated Review Group; Genetics of Health and Disease Study Section. Date...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
..., derived from the bacterium Bacillus subtilis, appears to help maintain plant cellular functions and is... in any plant or plant product: A protozoan, a nonhuman animal, a parasitic plant, a bacterium, a...
47 CFR 22.917 - Emission limitations for cellular equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P... such contract shall maintain a copy of the contract in their station files and disclose it to...
AtCHX13 is a plasma membrane K(+) transporter
USDA-ARS?s Scientific Manuscript database
Potassium (K+) homeostasis is essential for diverse cellular processes, although how various cation transporters collaborate to maintain a suitable K(+) required for growth and development is poorly understood. The Arabidopsis ("Arabidopsis thaliana") genome contains numerous cation:proton antiporte...
AtCHX13 is a plasma membrane K+ transporter
USDA-ARS?s Scientific Manuscript database
Potassium (K+) homeostasis is essential for diverse cellular processes, although how various cation transporters collaborate to maintain a suitable K+ required for growth and development is poorly understood. The Arabidopsis (Arabidopsis thaliana) genome contains numerous cation:proton antiporters (...
Dihydrolipoyl dioleoylglycerol antioxidant capacity in phospholipid vesicles
USDA-ARS?s Scientific Manuscript database
Antioxidants have critical roles in maintaining cellular homeostasis and disease-state prevention. The multi-functional agent alpha-lipoic acid offers numerous beneficial effects to oxidatively stressed tissues. alpha-Lipoic acid was enzymatically incorporated into a triglyceride in conjunction wi...
Videau, Patrick; Rivers, Orion S.; Ushijima, Blake; Oshiro, Reid T.; Kim, Min Joo; Philmus, Benjamin
2016-01-01
ABSTRACT To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern. While heterocyst development has been shown to require proper peptidoglycan remodeling, the role of peptidoglycan synthesis has remained unclear. Here we report the identification of two peptidoglycan synthesis genes, murC (alr5065) and murB (alr5066), as required for heterocyst development. The murC and murB genes are predicted to encode a UDP-N-acetylmuramate:l-alanine ligase and a UDP-N-acetylenolpyruvoylglucosamine reductase, respectively, and we confirm enzymatic function through complementation of Escherichia coli strains deficient for these enzymes. Cells depleted of either murC or murB expression failed to differentiate heterocysts under normally inducing conditions and displayed decreased filament integrity. To identify the stage(s) of development affected by murC or murB depletion, the spatial distribution of expression of the patterning marker gene, patS, was examined. Whereas murB depletion did not affect the pattern of patS expression, murC depletion led to aberrant expression of patS in all cells of the filament. Finally, expression of gfp controlled by the region of DNA immediately upstream of murC was enriched in differentiating cells and was repressed by the transcription factor NtcA. Collectively, the data in this work provide evidence for a direct link between peptidoglycan synthesis and the maintenance of a biological pattern in a multicellular organism. IMPORTANCE Multicellular organisms that differentiate specialized cells must regulate morphological changes such that both cellular integrity and the dissemination of developmental signals are preserved. Here we show that the multicellular bacterium Anabaena, which differentiates a periodic pattern of specialized heterocyst cells, requires peptidoglycan synthesis by the murine ligase genes murC (alr5065) and murB (alr5066) for maintenance of patterned gene expression, filament integrity, and overall development. This work highlights the significant influence that intracellular structure and intercellular connections can have on the execution of a developmental program. PMID:26811320
Videau, Patrick; Rivers, Orion S; Ushijima, Blake; Oshiro, Reid T; Kim, Min Joo; Philmus, Benjamin; Cozy, Loralyn M
2016-04-01
To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern. While heterocyst development has been shown to require proper peptidoglycan remodeling, the role of peptidoglycan synthesis has remained unclear. Here we report the identification of two peptidoglycan synthesis genes, murC (alr5065) and murB (alr5066), as required for heterocyst development. The murC and murB genes are predicted to encode a UDP-N-acetylmuramate:L-alanine ligase and a UDP-N-acetylenolpyruvoylglucosamine reductase, respectively, and we confirm enzymatic function through complementation of Escherichia coli strains deficient for these enzymes. Cells depleted of either murC or murB expression failed to differentiate heterocysts under normally inducing conditions and displayed decreased filament integrity. To identify the stage(s) of development affected by murC or murB depletion, the spatial distribution of expression of the patterning marker gene, patS, was examined. Whereas murB depletion did not affect the pattern of patS expression, murC depletion led to aberrant expression of patS in all cells of the filament. Finally, expression of gfp controlled by the region of DNA immediately upstream of murC was enriched in differentiating cells and was repressed by the transcription factor NtcA. Collectively, the data in this work provide evidence for a direct link between peptidoglycan synthesis and the maintenance of a biological pattern in a multicellular organism. Multicellular organisms that differentiate specialized cells must regulate morphological changes such that both cellular integrity and the dissemination of developmental signals are preserved. Here we show that the multicellular bacterium Anabaena, which differentiates a periodic pattern of specialized heterocyst cells, requires peptidoglycan synthesis by the murine ligase genes murC (alr5065) and murB (alr5066) for maintenance of patterned gene expression, filament integrity, and overall development. This work highlights the significant influence that intracellular structure and intercellular connections can have on the execution of a developmental program. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
2009-01-01
Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426
Ortega, Gil R; Taksali, Sudeep; Smart, Ryan; Baumgaertner, Michael R
2009-01-01
Cellular phone use within the hospital setting has increased as physicians, nurses, and ancillary staff incorporate wireless technologies in improving efficiencies, cost, and maintaining patient safety and high quality healthcare [11]. Through the use of wireless, cellular communication, an overall improvement in communication accuracy and efficiency between intraoperative orthopaedic surgeons and floor nurses may be achieved. Both communication types occurred while the surgeon was scrubbed in the operating room (OR). Indirect communication occurred when the pager call was answered by the OR circulating nurse with communication between the surgeon, circulating nurse, and floor nurse. Direct communication consisted of cell phone and Jabra Bluetooth BT200 wireless ear piece used by the surgeon. The surgeon answered the floor nurse's cellular call by phone ring-activated automatic answering. The study was conducted during scheduled orthopaedic procedures. An independent observer measured time variables with a stop-watch while orthopaedic nurses randomly called via pager or cell phone. The nurses asked for patient caregiver confirmation and answers to 30 different patient-care questions. Sixty trials were performed with 30 cell and 30 page communications. Direct cellular communication showed a better response rate than indirect page (Cell 100%, Page 73%). Indirect page communication allowed a 27% and 33% error rate with patient problem and surgeon solution communications, respectively. There were no reported communication errors while using direct wireless, cellular communication. When compared to page communications, cellular communications showed statistically significant improvements in mean time intervals in response time (Cell = 11s, Page = 211s), correct patient identification (Cell = 5s, Page = 172s), patient problem and solution time (Cell = 13s, Page = 189s), and total communication time (Cell = 32s, Page = 250s) (s = seconds, all P < 0.001). Floor nurse satisfaction ratings (dependent on communication times and/or difficulties) were improved with direct cellular communication (Cell = 29 excellent, Page = 11 excellent). Intraoperative case interruptions (defined as delaying surgical progress) were more frequent with indirect page communication (10 page v. 0 cell). Our study demonstrates that direct wireless communication may be used to improve intraoperative communication and enhance patient safety. Direct wireless, cellular intraoperative communication improves communication times, communication accuracy, communication satisfaction, and minimizes intraoperative case interruption. As a result of this study, we hope to maintain our transition to direct wireless, cellular intraoperative orthopaedic communication to reduce medical errors, improve patient care, and enhance both orthopaedic surgeon and nursing efficiencies.
Building bridges between cellular and molecular structural biology.
Patwardhan, Ardan; Brandt, Robert; Butcher, Sarah J; Collinson, Lucy; Gault, David; Grünewald, Kay; Hecksel, Corey; Huiskonen, Juha T; Iudin, Andrii; Jones, Martin L; Korir, Paul K; Koster, Abraham J; Lagerstedt, Ingvar; Lawson, Catherine L; Mastronarde, David; McCormick, Matthew; Parkinson, Helen; Rosenthal, Peter B; Saalfeld, Stephan; Saibil, Helen R; Sarntivijai, Sirarat; Solanes Valero, Irene; Subramaniam, Sriram; Swedlow, Jason R; Tudose, Ilinca; Winn, Martyn; Kleywegt, Gerard J
2017-07-06
The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.
Alsina, Laia; Noguera-Julian, Antoni; Fortuny, Clàudia
2013-05-07
Despite of highly active antiretroviral therapy, the response to vaccines in HIV-infected children is poor and short-lived, probably due to a defect in cellular immune responses. We compared the cellular immune response (assessed in terms of IFN-γ production) to tetanus toxoid and to cytomegalovirus in a series of 13 HIV-perinatally-infected children and adolescents with optimal immunovirological response to first line antiretroviral therapy, implemented during chronic infection. A stronger cellular response to cytomegalovirus (11 out of 13 patients) was observed, as compared to tetanus toxoid (1 out of 13; p=0.003). These results suggest that the repeated exposition to CMV, as opposed to the past exposition to TT, is able to maintain an effective antigen-specific immune response in stable HIV-infected pediatric patients and strengthen current recommendations on immunization practices in these children. Copyright © 2013. Published by Elsevier Ltd.
SIRTUIN 1 AND SIRTUIN 3: PHYSIOLOGICAL MODULATORS OF METABOLISM
Nogueiras, Ruben; Habegger, Kirk M.; Chaudhary, Nilika; Finan, Brian; Banks, Alexander S.; Dietrich, Marcelo O.; Horvath, Tamas L.; Sinclair, David A.; Pfluger, Paul T.; Tschöop, Matthias H.
2013-01-01
The sirtuins are a family of highly conserved NAD+-dependent deacetylases that act as cellular sensors to detect energy availability and modulate metabolic processes. Two sirtuins that are central to the control of metabolic processes are mammalian sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), which are localized to the nucleus and mitochondria, respectively. Both are activated by high NAD+ levels, a condition caused by low cellular energy status. By deacetylating a variety of proteins that induce catabolic processes while inhibiting anabolic processes, SIRT1 and SIRT3 coordinately increase cellular energy stores and ultimately maintain cellular energy homeostasis. Defects in the pathways controlled by SIRT1 and SIRT3 are known to result in various metabolic disorders. Consequently, activation of sirtuins by genetic or pharmacological means can elicit multiple metabolic benefits that protect mice from diet-induced obesity, type 2 diabetes, and nonalcoholic fatty liver disease. PMID:22811431
Huai, Jisen; Firat, Elke; Nil, Ahmed; Million, Daniele; Gaedicke, Simone; Kanzler, Benoit; Freudenberg, Marina; van Endert, Peter; Kohler, Gabriele; Pahl, Heike L.; Aichele, Peter; Eichmann, Klaus; Niedermann, Gabriele
2008-01-01
The giant cytosolic protease tripeptidyl peptidase II (TPPII) has been implicated in the regulation of proliferation and survival of malignant cells, particularly lymphoma cells. To address its functions in normal cellular and systemic physiology we have generated TPPII-deficient mice. TPPII deficiency activates cell type-specific death programs, including proliferative apoptosis in several T lineage subsets and premature cellular senescence in fibroblasts and CD8+ T cells. This coincides with up-regulation of p53 and dysregulation of NF-κB. Prominent degenerative alterations at the organismic level were a decreased lifespan and symptoms characteristic of immunohematopoietic senescence. These symptoms include accelerated thymic involution, lymphopenia, impaired proliferative T cell responses, extramedullary hematopoiesis, and inflammation. Thus, TPPII is important for maintaining normal cellular and systemic physiology, which may be relevant for potential therapeutic applications of TPPII inhibitors. PMID:18362329
Systems microscopy: an emerging strategy for the life sciences.
Lock, John G; Strömblad, Staffan
2010-05-01
Dynamic cellular processes occurring in time and space are fundamental to all physiology and disease. To understand complex and dynamic cellular processes therefore demands the capacity to record and integrate quantitative multiparametric data from the four spatiotemporal dimensions within which living cells self-organize, and to subsequently use these data for the mathematical modeling of cellular systems. To this end, a raft of complementary developments in automated fluorescence microscopy, cell microarray platforms, quantitative image analysis and data mining, combined with multivariate statistics and computational modeling, now coalesce to produce a new research strategy, "systems microscopy", which facilitates systems biology analyses of living cells. Systems microscopy provides the crucial capacities to simultaneously extract and interrogate multiparametric quantitative data at resolution levels ranging from the molecular to the cellular, thereby elucidating a more comprehensive and richly integrated understanding of complex and dynamic cellular systems. The unique capacities of systems microscopy suggest that it will become a vital cornerstone of systems biology, and here we describe the current status and future prospects of this emerging field, as well as outlining some of the key challenges that remain to be overcome. Copyright 2010 Elsevier Inc. All rights reserved.
77 FR 52751 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Molecular Neuropharmacology and Signaling Study Section. Date: September 24-25, 2012. Time: 8 a.m... 7770, Bethesda, MD 20892, (301) 435- 0684, [email protected] . Name of Committee: Molecular, Cellular...
76 FR 22907 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-25
...: Genes, Genomes, and Genetics Integrated Review Group; Molecular Genetics B Study Section. Date: June 1-2... . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group; Molecular Genetics A Study... Reproductive Sciences; Integrated Review Group. Molecular and Cellular Endocrinology Study Section. Date: June...
Learning STEM Through Integrative Visual Representations
NASA Astrophysics Data System (ADS)
Virk, Satyugjit Singh
Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with integrated animations of the key neural signal transmission subcomponents where the interrelationships between subcomponents are visually and verbally explicit, were hypothesized to perform significantly better on free response and diagram labeling questions, than students presented with isolated animations of these subcomponents. This is because the internal attentional cognitive load of chunking these concepts is greatly reduced and hence the overall cognitive load is less for the integrated visuals group than the isolated group, despite the higher external load for the integrated group of having the interrelationships between subcomponents presented explicitly. Experiment 1 demonstrated that integrating the subcomponents of the neuron significantly enhanced comprehension of the interconnections between cellular subcomponents and approached significance for enhancing comprehension of the layered molecular correlates of the cellular structures and their interconnections. Experiment 2 corrected time on task confounds from Experiment 1 and focused on the cellular subcomponents of the neuron only. Results from the free response essay subcomponent subscores did demonstrate significant differences in favor of the integrated group as well as some evidence from the diagram labeling section. Results from free response, short answer and What-If (problem solving), and diagram labeling detailed interrelationship subscores demonstrated the integrated group did indeed learn the extra material they were presented with. This data demonstrating the integrated group learned the extra material they were presented with provides some initial support for the assertion that chunking mediated the greater gains in learning for the neural subcomponent concepts over the control.
Autophagy in Alcohol-Induced Multiorgan Injury: Mechanisms and Potential Therapeutic Targets
Wang, Shaogui; Ni, Hong-Min; Huang, Heqing
2014-01-01
Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy. PMID:25140315
Applications of systems biology towards microbial fuel production.
Gowen, Christopher M; Fong, Stephen S
2011-10-01
Harnessing the immense natural diversity of biological functions for economical production of fuel has enormous potential benefits. Inevitably, however, the native capabilities for any given organism must be modified to increase the productivity or efficiency of a biofuel bioprocess. From a broad perspective, the challenge is to sufficiently understand the details of cellular functionality to be able to prospectively predict and modify the cellular function of a microorganism. Recent advances in experimental and computational systems biology approaches can be used to better understand cellular level function and guide future experiments. With pressure to quickly develop viable, renewable biofuel processes a balance must be maintained between obtaining depth of biological knowledge and applying that knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.
The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity.
Yasin, Hannah W R; van Rensburg, Samuel H; Feiler, Christina E; Johnson, Ruth I
2016-02-15
Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Rodriguez, María J.; Brown, Joseph; Giordano, Jodie; Lin, Samuel J.; Omenetto, Fiorenzo G.; Kaplan, David L.
2016-01-01
In the field of soft tissue reconstruction, custom implants could address the need for materials that can fill complex geometries. Our aim was to develop a material system with optimal rheology for material extrusion, that can be processed in physiological and non-toxic conditions and provide structural support for soft tissue reconstruction. To meet this need we developed silk based bioinks using gelatin as a bulking agent and glycerol as a non-toxic additive to induce physical crosslinking. We developed these inks optimizing printing efficacy and resolution for patient-specific geometries that can be used for soft tissue reconstruction. We demonstrated in vitro that the material was stable under physiological conditions and could be tuned to match soft tissue mechanical properties. We demonstrated in vivo that the material was biocompatible and could be tuned to maintain shape and volume up to three months while promoting cellular infiltration and tissue integration. PMID:27940389
Regulation of cellular iron metabolism
Wang, Jian; Pantopoulos, Kostas
2011-01-01
Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance. PMID:21348856
Grob, Alice; Colleran, Christine; McStay, Brian
2014-02-01
Human cell nuclei are functionally organized into structurally stable yet dynamic bodies whose cell cycle inheritance is poorly understood. Here, we investigate the biogenesis and propagation of nucleoli, sites of ribosome biogenesis and key regulators of cellular growth. Nucleolar and cell cycles are intimately connected. Nucleoli disappear during mitosis, reforming around prominent uncharacterized chromosomal features, nucleolar organizer regions (NORs). By examining the effects of UBF depletion on both endogenous NORs and synthetic pseudo-NORs, we reveal its essential role in maintaining competency and establishing a bookmark on mitotic NORs. Furthermore, we demonstrate that neo-NORs, UBF-binding site arrays coupled with rDNA transcription units, direct the de novo biogenesis of functional compartmentalized neonucleoli irrespective of their site of chromosomal integration. For the first time, we establish the sequence requirements for nucleolar biogenesis and provide proof that this is a staged process where UBF-dependent mitotic bookmarking precedes function-dependent nucleolar assembly.
Grob, Alice; Colleran, Christine; McStay, Brian
2014-01-01
Human cell nuclei are functionally organized into structurally stable yet dynamic bodies whose cell cycle inheritance is poorly understood. Here, we investigate the biogenesis and propagation of nucleoli, sites of ribosome biogenesis and key regulators of cellular growth. Nucleolar and cell cycles are intimately connected. Nucleoli disappear during mitosis, reforming around prominent uncharacterized chromosomal features, nucleolar organizer regions (NORs). By examining the effects of UBF depletion on both endogenous NORs and synthetic pseudo-NORs, we reveal its essential role in maintaining competency and establishing a bookmark on mitotic NORs. Furthermore, we demonstrate that neo-NORs, UBF-binding site arrays coupled with rDNA transcription units, direct the de novo biogenesis of functional compartmentalized neonucleoli irrespective of their site of chromosomal integration. For the first time, we establish the sequence requirements for nucleolar biogenesis and provide proof that this is a staged process where UBF-dependent mitotic bookmarking precedes function-dependent nucleolar assembly. PMID:24449107
DNA damage and repair in plants under ultraviolet and ionizing radiations.
Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra
2015-01-01
Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.
Kawaharada, Yasuyuki; Nielsen, Mette W.; Kelly, Simon; James, Euan K.; Andersen, Kasper R.; Rasmussen, Sheena R.; Füchtbauer, Winnie; Madsen, Lene H.; Heckmann, Anne B.; Radutoiu, Simona; Stougaard, Jens
2017-01-01
In Lotus japonicus, a LysM receptor kinase, EPR3, distinguishes compatible and incompatible rhizobial exopolysaccharides at the epidermis. However, the role of this recognition system in bacterial colonization of the root interior is unknown. Here we show that EPR3 advances the intracellular infection mechanism that mediates infection thread invasion of the root cortex and nodule primordia. At the cellular level, Epr3 expression delineates progression of infection threads into nodule primordia and cortical infection thread formation is impaired in epr3 mutants. Genetic dissection of this developmental coordination showed that Epr3 is integrated into the symbiosis signal transduction pathways. Further analysis showed differential expression of Epr3 in the epidermis and cortical primordia and identified key transcription factors controlling this tissue specificity. These results suggest that exopolysaccharide recognition is reiterated during the progressing infection and that EPR3 perception of compatible exopolysaccharide promotes an intracellular cortical infection mechanism maintaining bacteria enclosed in plant membranes. PMID:28230048
Histone chaperones: assisting histone traffic and nucleosome dynamics.
Gurard-Levin, Zachary A; Quivy, Jean-Pierre; Almouzni, Geneviève
2014-01-01
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.
DNA Charge Transport: From Chemical Principles to the Cell
Arnold, Anna R.; Grodick, Michael A.; Barton, Jacqueline K.
2016-01-01
The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology. PMID:26933744
Long Noncoding RNAs as a Key Player in Hepatocellular Carcinoma
Mehra, Mrigaya; Chauhan, Ranjit
2017-01-01
Hepatocellular carcinoma (HCC) is a major malignancy in the liver and has emerged as one of the main cancers in the world with a high mortality rate. However, the molecular mechanisms of HCC are still poorly understood. Long noncoding RNAs (lncRNAs) have recently come to the forefront as functional non–protein-coding RNAs that are involved in a variety of cellular processes ranging from maintaining the structural integrity of chromosomes to gene expression regulation in a spatiotemporal manner. Many recent studies have reported the involvement of lncRNAs in HCC which has led to a better understanding of the underlying molecular mechanisms operating in HCC. Long noncoding RNAs have been shown to regulate development and progression of HCC, and thus, lncRNAs have both diagnostic and therapeutic potentials. In this review, we present an overview of the lncRNAs involved in different stages of HCC and their potential in clinical applications which have been studied so far. PMID:29147078
Mechanics of epithelial closure over non-adherent environments
NASA Astrophysics Data System (ADS)
Vedula, Sri Ram Krishna; Peyret, Grégoire; Cheddadi, Ibrahim; Chen, Tianchi; Brugués, Agustí; Hirata, Hiroaki; Lopez-Menendez, Horacio; Toyama, Yusuke; Neves de Almeida, Luís; Trepat, Xavier; Lim, Chwee Teck; Ladoux, Benoit
2015-01-01
The closure of gaps within epithelia is crucial to maintain its integrity during biological processes such as wound healing and gastrulation. Depending on the distribution of extracellular matrix, gap closure occurs through assembly of multicellular actin-based contractile cables or protrusive activity of border cells into the gap. Here we show that the supracellular actomyosin contractility of cells near the gap edge exerts sufficient tension on the surrounding tissue to promote closure of non-adherent gaps. Using traction force microscopy, we observe that cell-generated forces on the substrate at the gap edge first point away from the centre of the gap and then increase in the radial direction pointing into the gap as closure proceeds. Combining with numerical simulations, we show that the increase in force relies less on localized purse-string contractility and more on large-scale remodelling of the suspended tissue around the gap. Our results provide a framework for understanding the assembly and the mechanics of cellular contractility at the tissue level.
Rodriguez, María J; Brown, Joseph; Giordano, Jodie; Lin, Samuel J; Omenetto, Fiorenzo G; Kaplan, David L
2017-02-01
In the field of soft tissue reconstruction, custom implants could address the need for materials that can fill complex geometries. Our aim was to develop a material system with optimal rheology for material extrusion, that can be processed in physiological and non-toxic conditions and provide structural support for soft tissue reconstruction. To meet this need we developed silk based bioinks using gelatin as a bulking agent and glycerol as a non-toxic additive to induce physical crosslinking. We developed these inks optimizing printing efficacy and resolution for patient-specific geometries that can be used for soft tissue reconstruction. We demonstrated in vitro that the material was stable under physiological conditions and could be tuned to match soft tissue mechanical properties. We demonstrated in vivo that the material was biocompatible and could be tuned to maintain shape and volume up to three months while promoting cellular infiltration and tissue integration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Generation of a TALEN-mediated, p63 knock-in in human induced pluripotent stem cells.
Kobayashi, Yuki; Hayashi, Ryuhei; Quantock, Andrew J; Nishida, Kohji
2017-12-01
The expression of p63 in surface ectodermal cells during development of the cornea, skin, oral mucosa and olfactory placodes is integral to the process of cellular self-renewal and the maintenance of the epithelial stem cell status. Here, we used TALEN technology to generate a p63 knock-in (KI) human induced pluripotent stem (hiPS) cell line in which p63 expression can be visualized via enhanced green fluorescent protein (EGFP) expression. The KI-hiPS cells maintained pluripotency and expressed the stem cell marker gene, ΔNp63α. They were also able to successfully differentiate into functional corneal epithelial cells as assessed by p63 expression in reconstructed corneal epithelium. This approach enables the tracing of p63-expressing cell lineages throughout epithelial development, and represents a promising application in the field of stem cell research. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Mechanics of epithelial closure over non-adherent environments
Vedula, Sri Ram Krishna; Peyret, Grégoire; Cheddadi, Ibrahim; Chen, Tianchi; Brugués, Agustí; Hirata, Hiroaki; Lopez-Menendez, Horacio; Toyama, Yusuke; Neves de Almeida, Luís; Trepat, Xavier; Lim, Chwee Teck; Ladoux, Benoit
2015-01-01
The closure of gaps within epithelia is crucial to maintain its integrity during biological processes such as wound healing and gastrulation. Depending on the distribution of extracellular matrix, gap closure occurs through assembly of multicellular actin-based contractile cables or protrusive activity of border cells into the gap. Here we show that the supracellular actomyosin contractility of cells near the gap edge exerts sufficient tension on the surrounding tissue to promote closure of non-adherent gaps. Using traction force microscopy, we observe that cell-generated forces on the substrate at the gap edge first point away from the centre of the gap and then increase in the radial direction pointing into the gap as closure proceeds. Combining with numerical simulations, we show that the increase in force relies less on localized purse-string contractility and more on large-scale remodelling of the suspended tissue around the gap. Our results provide a framework for understanding the assembly and the mechanics of cellular contractility at the tissue level. PMID:25608921
Redox biology of the intestine
Circu, Magdalena L.; Aw, Tak Yee
2011-01-01
The intestinal tract, known for its capability for self-renew, represents the first barrier of defense between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signaling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer. PMID:21831010
NASA Astrophysics Data System (ADS)
Close, Dan M.; Hahn, Ruth E.; Patterson, Stacey S.; Baek, Seung J.; Ripp, Steven A.; Sayler, Gary S.
2011-04-01
Bioluminescent and fluorescent reporter systems have enabled the rapid and continued growth of the optical imaging field over the last two decades. Of particular interest has been noninvasive signal detection from mammalian tissues under both cell culture and whole animal settings. Here we report on the advantages and limitations of imaging using a recently introduced bacterial luciferase (lux) reporter system engineered for increased bioluminescent expression in the mammalian cellular environment. Comparison with the bioluminescent firefly luciferase (Luc) system and green fluorescent protein system under cell culture conditions demonstrated a reduced average radiance, but maintained a more constant level of bioluminescent output without the need for substrate addition or exogenous excitation to elicit the production of signal. Comparison with the Luc system following subcutaneous and intraperitoneal injection into nude mice hosts demonstrated the ability to obtain similar detection patterns with in vitro experiments at cell population sizes above 2.5 × 104 cells but at the cost of increasing overall image integration time.
The Art of Being Flexible: How to Escape from Shade, Salt, and Drought1
Pierik, Ronald; Testerink, Christa
2014-01-01
Environmental stresses, such as shading of the shoot, drought, and soil salinity, threaten plant growth, yield, and survival. Plants can alleviate the impact of these stresses through various modes of phenotypic plasticity, such as shade avoidance and halotropism. Here, we review the current state of knowledge regarding the mechanisms that control plant developmental responses to shade, salt, and drought stress. We discuss plant hormones and cellular signaling pathways that control shoot branching and elongation responses to shade and root architecture modulation in response to drought and salinity. Because belowground stresses also result in aboveground changes and vice versa, we then outline how a wider palette of plant phenotypic traits is affected by the individual stresses. Consequently, we argue for a research agenda that integrates multiple plant organs, responses, and stresses. This will generate the scientific understanding needed for future crop improvement programs aiming at crops that can maintain yields under variable and suboptimal conditions. PMID:24972713
Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks
Letellier, Mathieu; Park, Yun Kyung; Chater, Thomas E.; Chipman, Peter H.; Gautam, Sunita Ghimire; Oshima-Takago, Tomoko; Goda, Yukiko
2016-01-01
Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-d-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca2+ signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca2+ channels. Intracellular infusion of NMDARs or Ca2+-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocyte-dependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites. PMID:27118849
Caenorhabditis elegans ABCRNAi transporters interact genetically with rde-2 and mut-7.
Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa
2008-02-01
RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABC(RNAi) mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABC(RNAi) gene class. Genetic complementation tests reveal functions for ABC(RNAi) transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABC(RNAi) proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABC(RNAi) mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABC(RNAi) gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABC(RNAi) transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity.
Caenorhabditis elegans ABCRNAi Transporters Interact Genetically With rde-2 and mut-7
Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa
2008-01-01
RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABCRNAi mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABCRNAi gene class. Genetic complementation tests reveal functions for ABCRNAi transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABCRNAi proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABCRNAi mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABCRNAi gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABCRNAi transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity. PMID:18245353
Desertification of the peritoneum by thin-film evaporation during laparoscopy.
Ott, Douglas E
2003-01-01
To assess the effects of gas flow during insufflation on peritoneal fluid and peritoneal tissue regarding transient thermal behavior and thin-film evaporation. The effects of laparoscopic gas on peritoneal cell desiccation and peritoneal fluid thin-film evaporation were analyzed. Measurment of tissue and peritoneal fluid and analysis of gas flow dynamics during laparoscopy. High-velocity gas interface conditions during laparoscopic gas insufflation result in peritoneal surface temperature and decreases up to 20 degrees C/second due to rapid thin-film evaporation of the peritoneal fluid. Evaporation of the thin film of peritoneal fluid extends quickly to the peritoneal cell membrane, causing peritoneal cell desiccation, internal cytoplasmic stress, and disruption of the cell membrane, resulting in loss of peritoneal surface continuity and integrity. Changing the gas conditions to 35 degrees C and 95% humidity maintains normal peritoneal fluid thin-film characteristics, cellular integrity, and prevents evaporative losses. Cold, dry gas and the characteristics of the laparoscopic gas delivery apparatus cause local peritoneal damaging alterations by high-velocity gas flow with extremely dry gas, creating extreme arid surface conditions, rapid evaporative and hydrological changes, tissue desiccation, and peritoneal fluid alterations that contribute to the process of desertification and thin-film evaporation. Peritoneal desertification is preventable by preconditioning the gas to 35 degrees C and 95% humidity.
van Riel, N A; Giuseppin, M L; Verrips, C T
2000-01-01
The theory of dynamic optimal metabolic control (DOMC), as developed by Giuseppin and Van Riel (Metab. Eng., 2000), is applied to model the central nitrogen metabolism (CNM) in Saccharomyces cerevisiae. The CNM represents a typical system encountered in advanced metabolic engineering. The CNM is the source of the cellular amino acids and proteins, including flavors and potentially valuable biomolecules; therefore, it is also of industrial interest. In the DOMC approach the cell is regarded as an optimally controlled system. Given the metabolic genotype, the cell faces a control problem to maintain an optimal flux distribution in a changing environment. The regulation is based on strategies and balances feedback control of homeostasis and feedforward regulation for adaptation. The DOMC approach is an integrative, holistic approach, not based on mechanistic descriptions and (therefore) not biased by the variation present in biochemical and molecular biological data. It is an effective tool to structure the rapidly increasing amount of data on the function of genes and pathways. The DOMC model is used successfully to predict the responses of pulses of ammonia and glutamine to nitrogen-limited continuous cultures of a wild-type strain and a glutamine synthetase-negative mutant. The simulation results are validated with experimental data.
Cancer prevention, the need to preserve the integrity of the genome at all cost.
Okafor, M T; Nwagha, T U; Anusiem, C; Okoli, U A; Nubila, N I; Al-Alloosh, F; Udenyia, I J
2018-05-01
The entire genetic information carried by an organism makes up its genome. Genes have a diverse number of functions. They code different proteins for normal proliferation of cells. However, changes in the base sequence of genes affect their protein by-products which act as messengers for normal cellular functions such as proliferation and repairs. Salient processes for maintaining the integrity of the genome are hinged on intricate mechanisms put in place for the evolution to tackle genomic stresses. To discuss how cells sense and repair damage to their deoxyribonucleic acid (DNA) as well as to highlight how defects in the genes involved in DNA repair contribute to cancer development. Methodology: Online searches on the following databases such as Google Scholar, PubMed, Biomed Central, and SciELO were done. Attempt was made to review articles with keywords such as cancer, cell cycle, tumor suppressor genes, and DNA repair. The cell cycle, tumor suppression genes, DNA repair mechanism, as well as their contribution to cancer development, were discussed and reviewed. Knowledge on how cells detect and repair DNA damage through an array of mechanisms should allay our anxiety as regards cancer development. More studies on DNA damage detection and repair processes are important toward a holistic approach to cancer treatment.
76 FR 57066 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review, Group, Cellular and Molecular Biology of Glia Study Section. Date: October 14, 2011. Time: 8 a.m. to 7... Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research, 93.306, 93.333...
75 FR 25275 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
...; Molecular Genetics B Study Section. Date: June 1-2, 2010. Time: 8 a.m. to 5 p.m. Agenda: To review and...-435- 1180, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date...
Hardwiring stem cell communication through tissue structure
Xin, Tianchi; Greco, Valentina; Myung, Peggy
2016-01-01
Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287
Chong, Zhao Zhong; Li, Faqi; Maiese, Kenneth
2007-06-01
Initially described as a modulator of embryogenesis for a number of organ systems, Wnt1 has recently been linked to the development of several neurodegenerative disorders, none being of greater significance than Alzheimer's disease. We therefore examined the ability of Wnt1 to oversee vital pathways responsible for cell survival during beta-amyloid (Abeta1-42) exposure. Here we show that Wnt1 is critical for protection in the SH-SY5Y neuronal cell line against genomic DNA degradation, membrane phosphatidylserine (PS) exposure, and microglial activation, since these neuroprotective attributes of Wnt1 are lost during gene silencing of Wnt1 protein expression. Intimately tied to Wnt1 protection is the presence and activation of Akt1. Pharmacological inhibition of the PI 3-K pathway or gene silencing of Akt1 expression can abrogate the protective capacity of Wnt1. Closely aligned with Wnt1 and Akt1 are the integrated canonical pathways of synthase kinase-3beta (GSK-3beta) and beta-catenin. Through Akt1 dependent pathways, Wnt1 phosphorylates GSK-3beta and maintains beta-catenin integrity to insure its translocation from the cytoplasm to the nucleus to block apoptosis. Our work outlines a highly novel role for Wnt1 and its integration with Akt1, GSK-3beta, and beta-catenin to foster neuronal cell survival and repress inflammatory microglial activation that can identify new avenues of therapy against neurodegenerative disorders.
Integration of Basic Sciences in Health's Courses
ERIC Educational Resources Information Center
Azzalis, L. A.; Giavarotti, L.; Sato, S. N.; Barros, N. M. T.; Junqueira, V. B. C.; Fonseca, F. L. A.
2012-01-01
Concepts from disciplines such as Biochemistry, Genetics, Cellular and Molecular Biology are essential to the understanding and treatment of an elevated number of illnesses, but often they are studied separately, with no integration between them. This article proposes a model for basic sciences integration based on problem-based learning (PBL) and…
77 FR 26302 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
..., Genomes, and Genetics Integrated Review Group; Therapeutic Approaches to Genetic Diseases Study Section...; Molecular and Integrative Signal Transduction Study Section. Date: May 31-June 1, 2012. Time: 8:00 a.m. to 5....gov . Name of Committee: Vascular and Hematology Integrated Review Group; Molecular and Cellular...
Development of Values and Moral Judgments of West Point Cadets,
1983-08-01
normative data, and relevance to traditional USMA concerns for integrity, duty, and career success . 3. Throughout the six years of this project...integrity, duty and career success , and these values are maintained throughout the four years. Their value profiles become more similar to the value...four years. Cadets enter the Academy with these values, and they maintain that approval throughout their four years. Integrity, duty, and career success are
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kloc, Malgorzata; Bilinski, Szczepan; Dougherty, Matthew T.
2007-05-01
Recent studies discovered a novel structural role of RNA in maintaining the integrity of the mitotic spindle and cellular cytoskeleton. In Xenopus laevis, non-coding Xlsirts and coding VegT RNAs play a structural role in anchoring localized RNAs, maintaining the organization of the cytokeratin cytoskeleton and germinal granules in the oocyte vegetal cortex and in subsequent development of the germline in the embryo. We studied the ultrastructural effects of antisense oligonucleotide driven ablation of Xlsirts and VegT RNAs on the organization of the cytokeratin, germ plasm and other components of the vegetal cortex. We developed a novel method to immunolabel andmore » visualize cytokeratin at the electron microscopy level, which allowed us to reconstruct the ultrastructural organization of the cytokeratin network relative to the components of the vegetal cortex in Xenopus oocytes. The removal of Xlsirts and VegT RNAs not only disrupts the cytokeratin cytoskeleton but also has a profound transcript-specific effect on the anchoring and distribution of germ plasm islands and their germinal granules and the arrangement of yolk platelets within the vegetal cortex. We suggest that the cytokeratin cytoskeleton plays a role in anchoring of germ plasm islands within the vegetal cortex and germinal granules within the germ plasm islands.« less
Odorant Metabolism Analysis by an Automated Ex Vivo Headspace Gas-Chromatography Method.
Faure, Philippe; Legendre, Arièle; Hanser, Hassan-Ismail; Andriot, Isabelle; Artur, Yves; Guichard, Elisabeth; Coureaud, Gérard; Heydel, Jean-Marie
2016-01-01
In the olfactory epithelium (OE), odorant metabolizing enzymes have the dual function of volatile component detoxification and active clearance of odorants from the perireceptor environment to respectively maintain the integrity of the tissues and the sensitivity of the detection. Although emphasized by recent studies, this enzymatic mechanism is poorly documented in mammals. Thus, olfactory metabolism has been characterized mainly in vitro and for a limited number of odorants. The automated ex vivo headspace gas-chromatography method that was developed here was validated to account for odorant olfactory metabolism. This method easily permits the measurement of the fate of an odorant in the OE environment, taking into account the odorant gaseous state and the cellular structure of the tissue, under experimental conditions close to physiological conditions and with a high reproducibility. We confirmed here our previous results showing that a high olfactory metabolizing activity of the mammary pheromone may be necessary to maintain a high level of sensitivity toward this molecule, which is critical for newborn rabbit survival. More generally, the method that is presented here may permit the screening of odorants metabolism alone or in mixture or studying the impact of aging, pathology, polymorphism or inhibitors on odorant metabolism. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells
Liu, Xinyue; Tang, Tzu-Chieh; Tham, Eléonore; Yuk, Hyunwoo; Lin, Shaoting; Lu, Timothy K.; Zhao, Xuanhe
2017-01-01
Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel–elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel–elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices. PMID:28202725
Lee, Yoon Kyeung; Jang, Kyung-In; Ma, Yinji; Koh, Ahyeon; Chen, Hang; Jung, Han Na; Kim, Yerim; Kwak, Jean Won; Wang, Liang; Xue, Yeguang; Yang, Yiyuan; Tian, Wenlong; Jiang, Yu; Zhang, Yihui; Feng, Xue; Huang, Yonggang
2017-01-01
A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements. PMID:28989338
Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells.
Buravkova, L B; Rylova, Y V; Andreeva, E R; Kulikov, A V; Pogodina, M V; Zhivotovsky, B; Gogvadze, V
2013-10-01
Multipotent mesenchymal stromal cells (MMSCs) are minimally differentiated precursors with great potential to transdifferentiate. These cells are quite resistant to oxygen limitation, suggesting that a hypoxic milieu can be physiological for MMSCs. Human MMSCs isolated from adipose tissue were grown at various oxygen concentrations. Alteration in cell immunophenotype was determined by flow cytometry after staining with specific antibodies. Concentrations of glucose and lactate were determined using the Biocon colorimetric test. Cellular respiration was assessed using oxygen electrode. The modes of cell death were analyzed by flow cytometry after staining with Annexin V and propidium iodide. We found that permanent oxygen deprivation attenuated cellular ATP levels in these cells, diminishing mitochondrial ATP production but stimulating glycolytic ATP production. At the same time, permanent hypoxia did not affect MMSCs' viability, stimulated their proliferation and reduced their capacity to differentiate. Further, permanent hypoxia decreased spontaneous cell death by MMSCs. Under hypoxic conditions glycolysis provides sufficient energy to maintain MMSCs in an uncommitted state. These findings are of interest not only for scientific reasons, but also in practical terms. Oxygen concentration makes an essential contribution to MMSC physiology and should be taken into account in the setting of protocols for cellular therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
The Role of Reactive-Oxygen-Species in Microbial Persistence and Inflammation
Spooner, Ralee; Yilmaz, Özlem
2011-01-01
The mechanisms of chronic infections caused by opportunistic pathogens are of keen interest to both researchers and health professionals globally. Typically, chronic infectious disease can be characterized by an elevation in immune response, a process that can often lead to further destruction. Reactive-Oxygen-Species (ROS) have been strongly implicated in the aforementioned detrimental response by host that results in self-damage. Unlike excessive ROS production resulting in robust cellular death typically induced by acute infection or inflammation, lower levels of ROS produced by host cells are increasingly recognized to play a critical physiological role for regulating a variety of homeostatic cellular functions including growth, apoptosis, immune response, and microbial colonization. Sources of cellular ROS stimulation can include “danger-signal-molecules” such as extracellular ATP (eATP) released by stressed, infected, or dying cells. Particularly, eATP-P2X7 receptor mediated ROS production has been lately found to be a key modulator for controlling chronic infection and inflammation. There is growing evidence that persistent microbes can alter host cell ROS production and modulate eATP-induced ROS for maintaining long-term carriage. Though these processes have yet to be fully understood, exploring potential positive traits of these “injurious” molecules could illuminate how opportunistic pathogens maintain persistence through physiological regulation of ROS signaling. PMID:21339989
NSAID-activated gene 1 and its implications for mucosal integrity and intervention beyond NSAIDs.
Moon, Yuseok
2017-07-01
In spite of the beneficial actions of non-steroid anti-inflammatory drugs (NSAIDs) in epithelial inflammation and cancers, their use is limited because of their cyclooxygenase-dependent or independent gastrointestinal toxicity. As an eicosanoid-independent mediator, NSAID-activated gene 1 (NAG-1) has been assessed for its involvement in cellular integrity and pathogenesis in mucosal inflammation and carcinogenesis. At the cellular levels, NAG-1 is involved in the cell growth regulation (cell death, cell cycle arrest, or proliferation) in epithelial and mesenchymal tissues. Moreover, NAG-1 can modulate inflammatory responses in either direct or indirect manner, which ultimately affects fibrogenic and tumorigenic processes in various disease states. Finally, NAG-1 has been assessed for its contribution to cellular behavior, such as the mobility of epithelial and malignant cells in response to the external insults or oncogenic stimulation in the mucosa. This review on the "Yin-Yang" nature of NAG-1-mediated responses provides comprehensive insights into therapeutic and diagnostic interventions for mucosal health and integrity in the human body. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.
Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M
2016-08-23
Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Production of Value-added Products by Lactic Acid Bacteria
USDA-ARS?s Scientific Manuscript database
Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...
Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall
Billaud, Marie; Lohman, Alexander W.; Johnstone, Scott R.; Biwer, Lauren A.; Mutchler, Stephanie; Isakson, Brant E.
2014-01-01
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function. PMID:24671377
Regulation of cellular communication by signaling microdomains in the blood vessel wall.
Billaud, Marie; Lohman, Alexander W; Johnstone, Scott R; Biwer, Lauren A; Mutchler, Stephanie; Isakson, Brant E
2014-01-01
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Maintaining Pedagogical Integrity of a Computer Mediated Course Delivery in Social Foundations
ERIC Educational Resources Information Center
Stewart, Shelley; Cobb-Roberts, Deirdre; Shircliffe, Barbara J.
2013-01-01
Transforming a face to face course to a computer mediated format in social foundations (interdisciplinary field in education), while maintaining pedagogical integrity, involves strategic collaboration between instructional technologists and content area experts. This type of planned partnership requires open dialogue and a mutual respect for prior…
Integrated biocircuits: engineering functional multicellular circuits and devices.
Prox, Jordan; Smith, Tory; Holl, Chad; Chehade, Nick; Guo, Liang
2018-04-01
Implantable neurotechnologies have revolutionized neuromodulatory medicine for treating the dysfunction of diseased neural circuitry. However, challenges with biocompatibility and lack of full control over neural network communication and function limits the potential to create more stable and robust neuromodulation devices. Thus, we propose a platform technology of implantable and programmable cellular systems, namely Integrated Biocircuits, which use only cells as the functional components of the device. We envision the foundational principles for this concept begins with novel in vitro platforms used for the study and reconstruction of cellular circuitry. Additionally, recent advancements in organoid and 3D culture systems account for microenvironment factors of cytoarchitecture to construct multicellular circuits as they are normally formed in the brain. We explore the current state of the art of these platforms to provide knowledge of their advancements in circuit fabrication and identify the current biological principles that could be applied in designing integrated biocircuit devices. We have highlighted the exemplary methodologies and techniques of in vitro circuit fabrication and propose the integration of selected controllable parameters, which would be required in creating suitable biodevices. We provide our perspective and propose new insights into the future of neuromodulaion devices within the scope of living cellular systems that can be applied in designing more reliable and biocompatible stimulation-based neuroprosthetics.
Integrated biocircuits: engineering functional multicellular circuits and devices
NASA Astrophysics Data System (ADS)
Prox, Jordan; Smith, Tory; Holl, Chad; Chehade, Nick; Guo, Liang
2018-04-01
Objective. Implantable neurotechnologies have revolutionized neuromodulatory medicine for treating the dysfunction of diseased neural circuitry. However, challenges with biocompatibility and lack of full control over neural network communication and function limits the potential to create more stable and robust neuromodulation devices. Thus, we propose a platform technology of implantable and programmable cellular systems, namely Integrated Biocircuits, which use only cells as the functional components of the device. Approach. We envision the foundational principles for this concept begins with novel in vitro platforms used for the study and reconstruction of cellular circuitry. Additionally, recent advancements in organoid and 3D culture systems account for microenvironment factors of cytoarchitecture to construct multicellular circuits as they are normally formed in the brain. We explore the current state of the art of these platforms to provide knowledge of their advancements in circuit fabrication and identify the current biological principles that could be applied in designing integrated biocircuit devices. Main results. We have highlighted the exemplary methodologies and techniques of in vitro circuit fabrication and propose the integration of selected controllable parameters, which would be required in creating suitable biodevices. Significance. We provide our perspective and propose new insights into the future of neuromodulaion devices within the scope of living cellular systems that can be applied in designing more reliable and biocompatible stimulation-based neuroprosthetics.
Digital Single-Cell Analysis of Plant Organ Development Using 3DCellAtlas[OPEN
Montenegro-Johnson, Thomas D.; Stamm, Petra; Strauss, Soeren; Topham, Alexander T.; Tsagris, Michail; Wood, Andrew T.A.; Smith, Richard S.; Bassel, George W.
2015-01-01
Diverse molecular networks underlying plant growth and development are rapidly being uncovered. Integrating these data into the spatial and temporal context of dynamic organ growth remains a technical challenge. We developed 3DCellAtlas, an integrative computational pipeline that semiautomatically identifies cell types and quantifies both 3D cellular anisotropy and reporter abundance at single-cell resolution across whole plant organs. Cell identification is no less than 97.8% accurate and does not require transgenic lineage markers or reference atlases. Cell positions within organs are defined using an internal indexing system generating cellular level organ atlases where data from multiple samples can be integrated. Using this approach, we quantified the organ-wide cell-type-specific 3D cellular anisotropy driving Arabidopsis thaliana hypocotyl elongation. The impact ethylene has on hypocotyl 3D cell anisotropy identified the preferential growth of endodermis in response to this hormone. The spatiotemporal dynamics of the endogenous DELLA protein RGA, expansin gene EXPA3, and cell expansion was quantified within distinct cell types of Arabidopsis roots. A significant regulatory relationship between RGA, EXPA3, and growth was present in the epidermis and endodermis. The use of single-cell analyses of plant development enables the dynamics of diverse regulatory networks to be integrated with 3D organ growth. PMID:25901089
Miniaturized integration of a fluorescence microscope
Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.
2013-01-01
The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102
Miniaturized integration of a fluorescence microscope.
Ghosh, Kunal K; Burns, Laurie D; Cocker, Eric D; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J
2011-09-11
The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals for relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including a semiconductor light source and sensor. This device enables high-speed cellular imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens.
Adolphe, M; Thenet, S
1990-01-01
The concept of cellular immortality, which arose from the historical studies of A. Carrel, is getting a new start with the progress of virology. However, the definition of cell immortalization is still ambiguous. Although scientists agree that cells regarded as immortal have acquired an infinite growth capacity, the relationship of this change with the first stages of transformation is difficult to clearly define. Immortalized cell lines have already been obtained from numerous cell types by using viral infection or transfection with viral and cellular genes. Immortalization of cells is interesting for three main reasons: it permits study of the steps in progression to transformation, allows establishment of cell lines for producing biological products, and permits various cell types to maintain a part of their differentiated functions. For example, hypothalamic neurosecretory cells, macrophages, astrocytes and intestinal epithelial cells have been immortalized and these lines can be used for understanding the balance between division and differentiation, and also for pharmacotoxicological studies. In our laboratory, we immortalized rabbit articular chondrocytes by transfection with SV40 large T and little t encoding genes. At the 9th subculture, when the control culture was senescent, clones of polygonal cells appeared in the transfected cell cultures. Three clones have been selected and have been maintained in culture for two years. Growth curves of normal and SV40-transfected chondrocytes were compared and displayed similar doubling times (approximately 20 hours). The exponential phase of growth was longer for immortalized cells resulting in a 2-fold higher saturation density. These cells appear to be not fully transformed and maintain some properties of differentiated chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis.
Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M; Li, Yang; Brown, Eric J; Russell, Helen R; McKinnon, Peter J
2017-01-25
The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G 2 /M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G 2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system. Copyright © 2017 the authors 0270-6474/17/370893-13$15.00/0.
A smart core-sheath nanofiber that captures and releases red blood cells from the blood
NASA Astrophysics Data System (ADS)
Shi, Q.; Hou, J.; Zhao, C.; Xin, Z.; Jin, J.; Li, C.; Wong, S.-C.; Yin, J.
2016-01-01
A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from the blood above phase-transition temperature of PNIPAAm. Meanwhile, the captured RBCs are readily released from the nanofibers with temperature stimuli in an undamaged manner. The release efficiency of up to 100% is obtained while maintaining cellular integrity and function. This work presents promising nanofibers to effectively capture non-adherent cells and release for subsequent molecular analysis and diagnosis of single cells.A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from the blood above phase-transition temperature of PNIPAAm. Meanwhile, the captured RBCs are readily released from the nanofibers with temperature stimuli in an undamaged manner. The release efficiency of up to 100% is obtained while maintaining cellular integrity and function. This work presents promising nanofibers to effectively capture non-adherent cells and release for subsequent molecular analysis and diagnosis of single cells. Electronic supplementary information (ESI) available: Electrospinning of polymer nanofibers; FTIR spectra and XPS spectra of PCL, PNIPAAm and PCL/PNIPAAm nanofibers; SEM images of PCL/PNIPAAm nanofibers with varied composition; PNIPAAm content on the sheath of nanofibers; stability of core-sheath PCL/PNIPAAm nanofibers. Platelet adhesion on the PCL/PNIPAAm nanofibers in the presence of NK; Protein adsorption on nanofibers. See DOI: 10.1039/c5nr07070h
Glutathione-related enzymes and the eye.
Ganea, Elena; Harding, John J
2006-01-01
Glutathione and the related enzymes belong to the defence system protecting the eye against chemical and oxidative stress. This review focuses on GSH and two key enzymes, glutathione reductase and glucose-6-phosphate dehydrogenase in lens, cornea, and retina. Lens contains a high concentration of reduced glutathione, which maintains the thiol groups in the reduced form. These contribute to lens complete transparency as well as to the transparent and refractive properties of the mammalian cornea, which are essential for proper image formation on the retina. In cornea, gluthatione also plays an important role in maintaining normal hydration level, and in protecting cellular membrane integrity. In retina, glutathione is distributed in the different types of retinal cells. Intracellular enzyme, glutathione reductase, involved in reducing the oxidized glutathione has been found at highest activity in human and primate lenses, as compared to other species. Besides the enzymes directly involved in maintaining the normal redox status of the cell, glucose-6-phosphate dehydrogenase which catalyzes the first reaction of the pentose phosphate pathway, plays a key role in protection of the eye against reactive oxygen species. Cornea has a high activity of the pentose phosphate pathway and glucose-6-phosphate dehydrogenase activity. Glycation, the non-enzymic reaction between a free amino group in proteins and a reducing sugar, slowly inactivates gluthathione-related and other enzymes. In addition, glutathione can be also glycated. The presence of glutathione, and of the related enzymes has been also reported in other parts of the eye, such as ciliary body and trabecular meshwork, suggesting that the same enzyme systems are present in all tissues of the eye to generate NADPH and to maintain gluthatione in the reduced form. Changes of glutathione and related enzymes activity in lens, cornea, retina and other eye tissues, occur with ageing, cataract, diabetes, irradiation and administration of some drugs.
Attaining and maintaining data integrity with configuration management
NASA Astrophysics Data System (ADS)
Huffman, Dorothy J.; Jeane, Shirley A.
1993-08-01
Managers and scientists are concerned about data integrity because they draw conclusions from data that can have far reaching effects. Projects managers use Configuration Management to insure that hardware, software, and project information are controlled. They have not, as yet, applied its rigorously to data. However, there is ample opportunity in the data collection and production process to jeopardize data integrity. Environmental changes, tampering and production problems can all affect data integrity. There are four functions included in the Configuration Management process: configuration identification, control, auditing and status accounting. These functions provide management the means to attain data integrity and the visibility into engineering processes needed to maintain data integrity. When project managers apply Configuration Management processes to data, the data user can trace back through history to validate data integrity. The user knows that the project allowed only orderly changes to the data. He is assured that project personnel followed procedures to maintain data quality. He also has access to status information about the data. The user receives data products with a known integrity level and a means to assess the impact of past events ont he conclusions derived from the data. To obtain these benefits, project managers should apply the Configuration Management discipline to data.
DNMT1 maintains progenitor function in self-renewing somatic tissue.
Sen, George L; Reuter, Jason A; Webster, Daniel E; Zhu, Lilly; Khavari, Paul A
2010-01-28
Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, the role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unclear. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis showed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, UHRF1 (refs 9, 10), a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A and B, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.
Chen, Sheng; Li, Xi; Wang, Yahong; Zeng, Jie; Ye, Chengsong; Li, Xianping; Guo, Lizheng; Zhang, Shenghua; Yu, Xin
2018-05-30
Many pathogens can enter into a viable but nonculturable (VBNC) state in response to harsh environmental stresses. Bacteria in this state can retain certain features of viable cells, such as cellular integrity, metabolic activity, or virulence and may present health risks associated with drinking water. In this study, we investigated the ability of chlorination and chloramination, which are widely used methods to disinfect drinking water, to induce Escherichia coli into a VBNC state. After treatment with chlorine and chloramine at concentrations of 1, 2, 3, and 4 mg/L, the counts of culturable E. coli cells decreased from 10 6 CFU/mL to 0 CFU/mL at 5-60 min post treatment. Meanwhile, viable cell counts were still approximately 10 3 -10 5 cells/mL. These viable E. coli cells may be induced into a VBNC state by chlorination and chloramination. Scanning electron microscopy and laser confocal microscopy showed that some bacteria maintained cellular integrity, but the average length of VBNC cells was less than that of culturable cells. Respiratory activity of VBNC cells decreased approximately 50% relative to that of culturable cells. We also used heavy water (D 2 O) combined with Raman microspectroscopy to show that E. coli in a VBNC state retained metabolic activity involving water (e.g. condensation reactions) at the single-cell level. Furthermore, soxR, gadA, and katG genes remained highly expressed, suggesting that VBNC cells were physiologically active. Finally, resuscitation of VBNC cells induced by chlorine in Luria-Bertani (LB) broth was identified by calculating the generation time. Results of this study will facilitate a better understanding of the health risks associated with VBNC bacteria and the development of more effective strategies for drinking water disinfection. Copyright © 2018. Published by Elsevier Ltd.
Radomski, Nadine; Rebbig, Annica; Leonhardt, Ralf M; Knittler, Michael R
2017-11-02
Autophagy is an evolutionarily ancient and highly conserved eukaryotic mechanism that targets cytoplasmic material for degradation. Autophagic flux involves the formation of autophagosomes and their degradation by lysosomes. The process plays a crucial role in maintaining cellular homeostasis and responds to various environmental conditions. While autophagy had previously been thought to be a non-selective process, it is now clear that it can also selectively target cellular organelles, such as mitochondria (referred to as mitophagy) and/or invading pathogens (referred to as xenophagy). Selective autophagy is characterized by specific substrate recognition and requires distinct cellular adaptor proteins. Here we review xenophagic mechanisms involved in the recognition and autolysosomal or autophagolysosomal degradation of different intracellular bacteria. In this context, we also discuss a recently discovered cellular self-defense pathway, termed mito-xenophagy, which occurs during bacterial infection of dendritic cells and depends on a TNF-α-mediated metabolic switch from oxidative phosphorylation to glycolysis. Copyright © 2017 Elsevier GmbH. All rights reserved.
Functional Implications of Novel Human Acid Sphingomyelinase Splice Variants
Rhein, Cosima; Tripal, Philipp; Seebahn, Angela; Konrad, Alice; Kramer, Marcel; Nagel, Christine; Kemper, Jonas; Bode, Jens; Mühle, Christiane; Gulbins, Erich; Reichel, Martin; Becker, Cord-Michael; Kornhuber, Johannes
2012-01-01
Background Acid sphingomyelinase (ASM) hydrolyses sphingomyelin and generates the lipid messenger ceramide, which mediates a variety of stress-related cellular processes. The pathological effects of dysregulated ASM activity are evident in several human diseases and indicate an important functional role for ASM regulation. We investigated alternative splicing as a possible mechanism for regulating cellular ASM activity. Methodology/Principal Findings We identified three novel ASM splice variants in human cells, termed ASM-5, -6 and -7, which lack portions of the catalytic- and/or carboxy-terminal domains in comparison to full-length ASM-1. Differential expression patterns in primary blood cells indicated that ASM splicing might be subject to regulatory processes. The newly identified ASM splice variants were catalytically inactive in biochemical in vitro assays, but they decreased the relative cellular ceramide content in overexpression studies and exerted a dominant-negative effect on ASM activity in physiological cell models. Conclusions/Significance These findings indicate that alternative splicing of ASM is of functional significance for the cellular stress response, possibly representing a mechanism for maintaining constant levels of cellular ASM enzyme activity. PMID:22558155
76 FR 26736 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... due to the timing limitations imposed by the review and funding cycle. Name of Committee: Molecular....gov . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Cellular and Molecular Biology of Glia Study Section. Date: June 2-3, 2011. Time: 8 a.m. to 4 p.m. Agenda...
78 FR 59361 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... Review Group; Molecular Genetics A Study Section. Date: October 21-22, 2013. Time: 8:30 a.m. to 1:30 p.m...-435- 0681, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Glia Study Section. Date: October 21, 2013. Time...
The preservation of riparian zones and other environmentally sensitive areas has long been recognized as one of the most cost-effective methods of managing stormwater and providing a broad range of ecosystem services. In this research, a cellular automata (CA)—Markov chain model ...
Viruses Associated with Human Cancer
McLaughlin-Drubin, Margaret E.; Munger, Karl
2008-01-01
It is estimated that viral infections contribute to 15–20% of all human cancers. As obligatory intracellular parasites, viruses encode proteins that reprogram host cellular signaling pathways that control proliferation, differentiation, cell death, genomic integrity, and recognition by the immune system. These cellular processes are governed by complex and redundant regulatory networks and are surveyed by sentinel mechanisms that ensure that aberrant cells are removed from the proliferative pool. Given that the genome size of a virus is highly restricted to ensure packaging within an infectious structure, viruses must target cellular regulatory nodes with limited redundancy and need to inactivate surveillance mechanisms that would normally recognize and extinguish such abnormal cells. In many cases, key proteins in these same regulatory networks are subject to mutation in non-virally associated diseases and cancers. Oncogenic viruses have thus served as important experimental models to identify and molecularly investigate such cellular networks. These include the discovery of oncogenes and tumor suppressors, identification of regulatory networks that are critical for maintenance of genomic integrity, and processes that govern immune surveillance. PMID:18201576
Nanobodies and recombinant binders in cell biology
Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge
2015-01-01
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137
Rapid Assay of Cellular Immunity in Q Fever.
1995-10-01
Integrated Diagnostics for activity by re-incubation with L929 cells and no infectious material was detected. This antigen was tested for the ability to...UNCLASSIFIED •%E L E• M1 lt*’E••l DEC 1 119954 F A CONTRACT NUMBER: DAND17-95-C-5057 TITLE: Rapid Assay of Cellular Immunity in Q Fever PRINCIPAL INVESTIGATOR...SUBTITLE 5. FUNDING NUMBERS Rapid Assay of Cellular Immunity in Q Fever DAMDI7-95-C-5057 6. AUTHOR(S) Marjorie Wier, Ph.D. 7. PERFORMING ORGANIZATION
Pericentrin in cellular function and disease
Delaval, Benedicte
2010-01-01
Pericentrin is an integral component of the centrosome that serves as a multifunctional scaffold for anchoring numerous proteins and protein complexes. Through these interactions, pericentrin contributes to a diversity of fundamental cellular processes. Recent studies link pericentrin to a growing list of human disorders. Studies on pericentrin at the cellular, molecular, and, more recently, organismal level, provide a platform for generating models to elucidate the etiology of these disorders. Although the complexity of phenotypes associated with pericentrin-mediated disorders is somewhat daunting, insights into the cellular basis of disease are beginning to come into focus. In this review, we focus on human conditions associated with loss or elevation of pericentrin and propose cellular and molecular models that might explain them. PMID:19951897
Ardeshiri, Ramtin; Mulcahy, Ben; Zhen, Mei; Rezai, Pouya
2016-01-01
C. elegans is a well-known model organism in biology and neuroscience with a simple cellular (959 cells) and nervous (302 neurons) system and a relatively homologous (40%) genome to humans. Lateral and longitudinal manipulation of C. elegans to a favorable orientation is important in many applications such as neural and cellular imaging, laser ablation, microinjection, and electrophysiology. In this paper, we describe a micro-electro-fluidic device for on-demand manipulation of C. elegans and demonstrate its application in imaging of organs and neurons that cannot be visualized efficiently under natural orientation. To achieve this, we have used the electrotaxis technique to longitudinally orient the worm in a microchannel and then insert it into an orientation and imaging channel in which we integrated a rotatable glass capillary for orientation of the worm in any desired direction. The success rates of longitudinal and lateral orientations were 76% and 100%, respectively. We have demonstrated the application of our device in optical and fluorescent imaging of vulva, uterine-vulval cell (uv1), vulB1\\2 (adult vulval toroid cells), and ventral nerve cord of wild-type and mutant worms. In comparison to existing methods, the developed technique is capable of orienting the worm at any desired angle and maintaining the orientation while providing access to the worm for potential post-manipulation assays. This versatile tool can be potentially used in various applications such as neurobehavioral imaging, neuronal ablation, microinjection, and electrophysiology. PMID:27990213
Regulation of programmed cell death or apoptosis in atherosclerosis.
Geng, Y J
1997-01-01
Intimal thickening caused by accumulation of cells, lipids, and connective tissue characterizes atherosclerosis, an arterial disease that leads to cardiac and cerebral infarction. Apoptosis, or genetically programmed cell death, is important for the development and morphogenesis of organs and tissues. As in other tissues, cells of cardiovascular tissues can undergo apoptosis. Increased apoptosis has been found in both human and animal atherosclerotic lesions, mediating tissue turnover and lesion development. In addition to vascular cells, many activated immune cells, mainly macrophages and T cells, are present in atherosclerotic lesions, where these cells produce biologically active substances such as the proinflammatory cytokines tumor necrosis factor, interleukin-1 (IL-1), and interferon-gamma. Simultaneous exposure to these cytokines may trigger apoptosis of vascular smooth muscle cells. The products of death-regulating genes including Fas/Fas ligand, members of IL-1 beta cysteinyl protease (caspase) family, the tumor suppressive gene p53, and the protooncogene c-myc have been found in vascular cells and may participate in the regulation of vascular apoptosis during the development of atherosclerosis. Abnormal occurrence of apoptosis may take place in atherosclerotic lesions, including attenuation or acceleration of the apoptotic death process. The former may cause an increase in the cellularity of the lesions, and the latter can reduce cellular components important for maintaining the integrity and stability of the plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of patients with atherosclerosis and its major complications, heart attack and stroke.
Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system.
McCaughey-Chapman, Amy; Connor, Bronwen
2017-02-01
Organotypic brain slice cultures are a useful tool to study neurological function as they provide a more complex, 3-dimensional system than standard 2-dimensional in vitro cell cultures. Building on a previously developed mouse brain slice culture protocol, we have developed a rat sagittal brain slice culture system as an ex vivo model of dopamine cell loss. We show that rat brain organotypic slice cultures remain viable for up to 6 weeks in culture. Using Fluoro-Gold axonal tracing, we demonstrate that the slice 3-dimensional cytoarchitecture is maintained over a 4 week culturing period, with particular focus on the nigrostriatal pathway. Treatment of the cultures with 6-hydroxydopamine and desipramine induces a progressive loss of Fluoro-Gold-positive nigral cells with a sustained loss of tyrosine hydroxylase-positive nigral cells. This recapitulates the pattern of dopaminergic degeneration observed in the rat partial 6-hydroxydopamine lesion model and, most importantly, the progressive pathology of Parkinson's disease. Our slice culture platform provides an advance over other systems, as we demonstrate for the first time 3-dimensional cytoarchitecture maintenance of rat nigrostriatal sagittal slices for up to 6 weeks. Our ex vivo organotypic slice culture system provides a long term cellular platform to model Parkinson's disease, allowing for the elucidation of mechanisms involved in dopaminergic neuron degeneration and the capability to study cellular integration and plasticity ex vivo. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, J; Guo, W; Long, C; Zhou, H; Wang, H; Sun, X
2016-03-01
Protein-protein interactions can regulate different cellular processes, such as transcription, translation, and oncogenic transformation. The split Renilla luciferase complementation assay (SRLCA) is one of the techniques that detect protein-protein interactions. The SRLCA is based on the complementation of the LN and LC non-functional halves of Renilla luciferase fused to possibly interacting proteins which after interaction form a functional enzyme and emit luminescence. The BGLF4 of Epstein-Barr virus (EBV) is a viral protein kinase that is expressed during the early and late stages of lytic cycles, which can regulate multiple cellular and viral substrates to optimize the DNA replication environment. The heat shock protein Hsp90 is a molecular chaperone that maintains the integrity of structure and function of various interacting proteins, which can form a complex with BGLF4 and stabilize its expression in cells. The interaction between BGLF4 and Hsp90 could be specifically detected through the SRLCA. The region of aa 250-295 of BGLF4 is essential for the BGLF4/Hsp90 interaction and the mutation of Phe-254, Leu-266, and Leu-267 can disrupt this interaction. These results suggest that the SRLCA can specifically detect the BGLF4/Hsp90 interaction and provide a reference to develop inhibitors that disrupt the BGLF4/Hsp90 interaction.
Generalized Connective Tissue Disease in Crtap-/- Mouse
Baldridge, Dustin; Lennington, Jennifer; Weis, MaryAnn; Homan, Erica P.; Jiang, Ming-Ming; Munivez, Elda; Keene, Douglas R.; Hogue, William R.; Pyott, Shawna; Byers, Peter H.; Krakow, Deborah; Cohn, Daniel H.; Eyre, David R.; Lee, Brendan; Morello, Roy
2010-01-01
Mutations in CRTAP (coding for cartilage-associated protein), LEPRE1 (coding for prolyl 3-hydroxylase 1 [P3H1]) or PPIB (coding for Cyclophilin B [CYPB]) cause recessive forms of osteogenesis imperfecta and loss or decrease of type I collagen prolyl 3-hydroxylation. A comprehensive analysis of the phenotype of the Crtap-/- mice revealed multiple abnormalities of connective tissue, including in the lungs, kidneys, and skin, consistent with systemic dysregulation of collagen homeostasis within the extracellular matrix. Both Crtap-/- lung and kidney glomeruli showed increased cellular proliferation. Histologically, the lungs showed increased alveolar spacing, while the kidneys showed evidence of segmental glomerulosclerosis, with abnormal collagen deposition. The Crtap-/- skin had decreased mechanical integrity. In addition to the expected loss of proline 986 3-hydroxylation in α1(I) and α1(II) chains, there was also loss of 3Hyp at proline 986 in α2(V) chains. In contrast, at two of the known 3Hyp sites in α1(IV) chains from Crtap-/- kidneys there were normal levels of 3-hydroxylation. On a cellular level, loss of CRTAP in human OI fibroblasts led to a secondary loss of P3H1, and vice versa. These data suggest that both CRTAP and P3H1 are required to maintain a stable complex that 3-hydroxylates canonical proline sites within clade A (types I, II, and V) collagen chains. Loss of this activity leads to a multi-systemic connective tissue disease that affects bone, cartilage, lung, kidney, and skin. PMID:20485499
Zuroff, Trevor R; Gu, Weimin; Fore, Rachel L; Leschine, Susan B; Curtis, Wayne R
2014-06-01
Biofilm formation is a critical component to the lifestyle of many naturally occurring cellulose-degrading microbes. In this work, cellular aggregation and biofilm formation of Clostridium phytofermentans, a cellulolytic anaerobic bacterium, was investigated using a combination of microscopy and analytical techniques. Aggregates included thread-like linkages and a DNA/protein-rich extracellular matrix when grown on soluble cellobiose. Similar dense biofilms formed on the surface of the model cellulosic substrate Whatman no. 1 filter paper. Following initially dispersed attachment, microcolonies of ~500 µm diameter formed on the filter paper after 6 days. Enzymic treatment of both the biofilm and cellular aggregates with DNase and proteinase resulted in significant loss of rigidity, pointing to the key role of extracellular DNA and proteins in the biofilm structure. A high-throughput biofilm assay was adapted for studying potential regulators of biofilm formation. Various media manipulations were shown to greatly impact biofilm formation, including repression in the presence of glucose but not the β(1→4)-linked disaccharide cellobiose, implicating a balance of hydrolytic activity and assimilation to maintain biofilm integrity. Using the microtitre plate biofilm assay, DNase and proteinase dispersed ~60 and 30 % of mature biofilms, respectively, whilst RNase had no impact. This work suggests that Clostridium phytofermentans has evolved a DNA/protein-rich biofilm matrix complementing its cellulolytic nature. These insights add to our current understanding of natural ecosystems as well as strategies for efficient bioprocess design. © 2014 The Authors.
Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.
Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi
2018-05-18
The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.
[Danger of cellular telephones and their relay stations].
Santini, R; Seigne, M; Bonhomme-Faivre, L
2000-07-01
Cellular phones and their base stations emit pulsed microwaves in the environment. Cellular phone users are exposed in the near field and, under this condition, a large part of the electromagnetic energy is absorbed by the head, leading to an increased brain temperature. The general population is exposed under far field conditions to an electromagnetic intensity depending on the distance from the base station, passive re-emitters, the number of communications maintained by the base station and their position in relation to antennae (in front of the antenna or behind). Biological effects have been reported, such as radiofrequency sickness, electroencephalographic and blood pressure changes and also cancer risks in humans and animals exposed to microwave irradiation. Some European countries (Italy, France, Belgium, etc.) have taken measures to protect their populations.
Autophagy and its link to type II diabetes mellitus
Yang, Jai-Sing; Lu, Chi-Cheng; Kuo, Sheng-Chu; Hsu, Yuan-Man; Tsai, Shih-Chang; Chen, Shih-Yin; Chen, Yng-Tay; Lin, Ying-Ju; Huang, Yu-Chuen; Chen, Chao-Jung; Lin, Wei-De; Liao, Wen-Lin; Lin, Wei-Yong; Liu, Yu-Huei; Sheu, Jinn-Chyuan; Tsai, Fuu-Jen
2017-01-01
Autophagy, a double-edged sword for cell survival, is the research object on 2016 Nobel Prize in Physiology or Medicine. Autophagy is a molecular mechanism for maintaining cellular physiology and promoting survival. Defects in autophagy lead to the etiology of many diseases, including diabetes mellitus (DM), cancer, neurodegeneration, infection disease and aging. DM is a metabolic and chronic disorder and has a higher prevalence in the world as well as in Taiwan. The character of diabetes mellitus is hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and failure of producing insulin on pancreatic beta cells. In T2DM, autophagy is not only providing nutrients to maintain cellular energy during fasting, but also removes damaged organelles, lipids and miss-folded proteins. In addition, autophagy plays an important role in pancreatic beta cell dysfunction and insulin resistance. In this review, we summarize the roles of autophagy in T2DM. PMID:28612706
Endoplasmic Reticulum Stress in Beta Cells and Development of Diabetes
Fonseca, Sonya G.; Burcin, Mark; Gromada, Jesper; Urano, Fumihiko
2009-01-01
The endoplasmic reticulum (ER) is a cellular compartment responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. A myriad of pathological and physiological factors perturb ER function and cause dysregulation of ER homeostasis, leading to ER stress. ER stress elicits a signaling cascade to mitigate stress, the Unfolded Protein Response (UPR). As long as the UPR can relieve stress, cells can produce the proper amount of proteins and maintain ER homeostasis. If the UPR, however, fails to maintain ER homeostasis, cells will undergo apoptosis. Activation of the UPR is critical to the survival of insulin-producing pancreatic β-cells with high secretory protein production. Any disruption of ER homeostasis in β-cells can lead to cell death and contribute to the pathogenesis of diabetes. There are several models of ER stress-mediated diabetes. In this review, we outline the underlying molecular mechanisms of ER stress-mediated β-cell dysfunction and death during the progression of diabetes. PMID:19665428
Mitochondrial respiratory control is lost during growth factor deprivation.
Gottlieb, Eyal; Armour, Sean M; Thompson, Craig B
2002-10-01
The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-x(L), restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control.
Adult Stem Cells and Diseases of Aging
Boyette, Lisa B.; Tuan, Rocky S.
2014-01-01
Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526
Zhang, Zhe; Tsukikawa, Mai; Peng, Min; Polyak, Erzsebet; Nakamaru-Ogiso, Eiko; Ostrovsky, Julian; McCormack, Shana; Place, Emily; Clarke, Colleen; Reiner, Gail; McCormick, Elizabeth; Rappaport, Eric; Haas, Richard; Baur, Joseph A.; Falk, Marni J.
2013-01-01
Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease. PMID:23894440
An Autonomous, Low Cost Platform for Seafloor Geodetic Observations
NASA Astrophysics Data System (ADS)
Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.
2015-12-01
The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce the costs of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Traditional ship-based methods of acquiring these measurements are often prohibitively expensive. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for the University of Hawaii Wave Glider which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider is able to interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of ocean bottom pressure and temperature data. The Wave Glider also functions as an integral part of the seafloor geodetic observing system, recording accurate sea surface elevations and barometric pressure; direct measurements of two of the primary sources of seafloor pressure change. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the results of our field tests and an assessment of our ability to determine cm-scale vertical seafloor motions by integrating our seafloor pressure measurements with the independent Wave Glider measurements of sea surface pressure and sea surface height. An overall summary of the performance and costs of making seafloor geodetic measurement with this system will be provided.
Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration
Luan, Lan; Wei, Xiaoling; Zhao, Zhengtuo; Siegel, Jennifer J.; Potnis, Ojas; Tuppen, Catherine A; Lin, Shengqing; Kazmi, Shams; Fowler, Robert A.; Holloway, Stewart; Dunn, Andrew K.; Chitwood, Raymond A.; Xie, Chong
2017-01-01
Implanted brain electrodes construct the only means to electrically interface with individual neurons in vivo, but their recording efficacy and biocompatibility pose limitations on scientific and clinical applications. We showed that nanoelectronic thread (NET) electrodes with subcellular dimensions, ultraflexibility, and cellular surgical footprints form reliable, glial scar–free neural integration. We demonstrated that NET electrodes reliably detected and tracked individual units for months; their impedance, noise level, single-unit recording yield, and the signal amplitude remained stable during long-term implantation. In vivo two-photon imaging and postmortem histological analysis revealed seamless, subcellular integration of NET probes with the local cellular and vasculature networks, featuring fully recovered capillaries with an intact blood-brain barrier and complete absence of chronic neuronal degradation and glial scar. PMID:28246640
Maintaining Academic Integrity among East African University Students
ERIC Educational Resources Information Center
Mwamwenda, T. S.
2012-01-01
The purpose of this research was to examine the extent to which academic integrity is maintained in the academic programmes of three East African university students selected from one of the universities in each one of the three countries. For confidentiality and identification purposes, the universities were labeled A, B and C. The level of…
Topic Structure Affects Semantic Integration: Evidence from Event-Related Potentials
Yang, Xiaohong; Chen, Xuhai; Chen, Shuang; Xu, Xiaoying; Yang, Yufang
2013-01-01
This study investigated whether semantic integration in discourse context could be influenced by topic structure using event-related brain potentials. Participants read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the topic established in the first sentence. The intervening sentences between the first and the last sentence of the discourse either maintained or shifted the original topic. Results showed that incongruent words in topic-maintained discourses elicited an N400 effect that was broadly distributed over the scalp while those in topic-shifted discourses elicited an N400 effect that was lateralized to the right hemisphere and localized over central and posterior areas. Moreover, a late positivity effect was only elicited by incongruent words in topic-shifted discourses, but not in topic-maintained discourses. This suggests an important role for discourse structure in semantic integration, such that compared with topic-maintained discourses, the complexity of discourse structure in topic-shifted condition reduces the initial stage of semantic integration and enhances the later stage in which a mental representation is updated. PMID:24348994
Topic structure affects semantic integration: evidence from event-related potentials.
Yang, Xiaohong; Chen, Xuhai; Chen, Shuang; Xu, Xiaoying; Yang, Yufang
2013-01-01
This study investigated whether semantic integration in discourse context could be influenced by topic structure using event-related brain potentials. Participants read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the topic established in the first sentence. The intervening sentences between the first and the last sentence of the discourse either maintained or shifted the original topic. Results showed that incongruent words in topic-maintained discourses elicited an N400 effect that was broadly distributed over the scalp while those in topic-shifted discourses elicited an N400 effect that was lateralized to the right hemisphere and localized over central and posterior areas. Moreover, a late positivity effect was only elicited by incongruent words in topic-shifted discourses, but not in topic-maintained discourses. This suggests an important role for discourse structure in semantic integration, such that compared with topic-maintained discourses, the complexity of discourse structure in topic-shifted condition reduces the initial stage of semantic integration and enhances the later stage in which a mental representation is updated.
An integrative view of storage of low- and high-level visual dimensions in visual short-term memory.
Magen, Hagit
2017-03-01
Efficient performance in an environment filled with complex objects is often achieved through the temporal maintenance of conjunctions of features from multiple dimensions. The most striking finding in the study of binding in visual short-term memory (VSTM) is equal memory performance for single features and for integrated multi-feature objects, a finding that has been central to several theories of VSTM. Nevertheless, research on binding in VSTM focused almost exclusively on low-level features, and little is known about how items from low- and high-level visual dimensions (e.g., colored manmade objects) are maintained simultaneously in VSTM. The present study tested memory for combinations of low-level features and high-level representations. In agreement with previous findings, Experiments 1 and 2 showed decrements in memory performance when non-integrated low- and high-level stimuli were maintained simultaneously compared to maintaining each dimension in isolation. However, contrary to previous findings the results of Experiments 3 and 4 showed decrements in memory performance even when integrated objects of low- and high-level stimuli were maintained in memory, compared to maintaining single-dimension objects. Overall, the results demonstrate that low- and high-level visual dimensions compete for the same limited memory capacity, and offer a more comprehensive view of VSTM.
Bjornson, Marta; Balcke, Gerd Ulrich; Xiao, Yanmei; de Souza, Amancio; Wang, Jin-Zheng; Zhabinskaya, Dina; Tagkopoulos, Ilias; Tissier, Alain; Dehesh, Katayoon
2017-07-01
To maintain homeostasis in the face of intrinsic and extrinsic insults, cells have evolved elaborate quality control networks to resolve damage at multiple levels. Interorganellar communication is a key requirement for this maintenance, however the underlying mechanisms of this communication have remained an enigma. Here we integrate the outcome of transcriptomic, proteomic, and metabolomics analyses of genotypes including ceh1, a mutant with constitutively elevated levels of both the stress-specific plastidial retrograde signaling metabolite methyl-erythritol cyclodiphosphate (MEcPP) and the defense hormone salicylic acid (SA), as well as the high MEcPP but SA deficient genotype ceh1/eds16, along with corresponding controls. Integration of multi-omic analyses enabled us to delineate the function of MEcPP from SA, and expose the compartmentalized role of this retrograde signaling metabolite in induction of distinct but interdependent signaling cascades instrumental in adaptive responses. Specifically, here we identify strata of MEcPP-sensitive stress-response cascades, among which we focus on selected pathways including organelle-specific regulation of jasmonate biosynthesis; simultaneous induction of synthesis and breakdown of SA; and MEcPP-mediated alteration of cellular redox status in particular glutathione redox balance. Collectively, these integrated multi-omic analyses provided a vehicle to gain an in-depth knowledge of genome-metabolism interactions, and to further probe the extent of these interactions and delineate their functional contributions. Through this approach we were able to pinpoint stress-mediated transcriptional and metabolic signatures and identify the downstream processes modulated by the independent or overlapping functions of MEcPP and SA in adaptive responses. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Bioelectronic Sensors and Devices
NASA Astrophysics Data System (ADS)
Reed, Mark
Nanoscale electronic devices have recently enabled the ability to controllably probe biological systems, from the molecular to the cellular level, opening up new applications and understanding of biological function and response. This talk reviews some of the advances in the field, ranging from diagnostic and therapeutic applications, to cellular manipulation and response, to the emulation of biological response. In diagnostics, integrated nanodevice biosensors compatible with CMOS technology have achieved unprecedented sensitivity, enabling a wide range of label-free biochemical and macromolecule sensing applications down to femtomolar concentrations. These systems have demonstrated integrated assays of biomarkers at clinically important concentrations for both diagnostics and as a quantitative tool for drug design and discovery. Cellular level response can also be observed, including immune response function and dynamics. Finally, the field is beginning to create devices that emulate function, and the demonstration of a solid state artificial ion channel will be discussed.
Tononi, Giulio; Cirelli, Chiara
2014-01-01
Summary Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the off-line, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This review considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity. PMID:24411729
Tononi, Giulio; Cirelli, Chiara
2014-01-08
Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the offline, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This Perspective considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.
Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model
NASA Astrophysics Data System (ADS)
Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo
2016-02-01
In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08358c
78 FR 3009 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... Committee: Center for Scientific Review Special Emphasis Panel; Behavioral Neuroscience. Date: February 6... . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group... Panel; Member Conflict: Integrative Functional and Cognitive Neurobiology. Date: February 13-14, 2013...
75 FR 54893 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
... 7850, Bethesda, MD 20892. 301-435-3009. [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Molecular Neuropharmacology and Signaling... . Name of Committee: Emerging Technologies and Training Neurosciences Integrated Review Group, Molecular...
Gordon Research Conference on Genetic Toxicology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Project Director Penelope Jeggo
2003-02-15
Genetic toxicology represents a study of the genetic damage that a cell can incur, the agents that induce such damage, the damage response mechanisms available to cells and organisms, and the potential consequences of such damage. Genotoxic agents are abundant in the environment and are also induced endogenously. The consequences of such damage can include carcinogenesis and teratogenesis. An understanding of genetic toxicology is essential to carry out risk evaluations of the impact of genotoxic agents and to assess how individual genetic differences influence the response to genotoxic damage. In recent years, the importance of maintaining genomic stability has becomemore » increasingly recognized, in part by the realization that failure of the damage response mechanisms underlies many, if not all, cancer incidence. The importance of these mechanisms is also underscored by their remarkable conservation between species, allowing the study of simple organisms to provide significant input into our understanding of the underlying mechanisms. It has also become clear that the damage response mechanisms interface closely with other aspects of cellular metabolism including replication, transcription and cell cycle regulation. Moreover, defects in many of these mechanisms, as observed for example in ataxia telangiectasia patients, confer disorders with associated developmental abnormalities demonstrating their essential roles during growth and development. In short, while a decade ago, a study of the impact of DNA damage was seen as a compartmentalized area of cellular research, it is now appreciated to lie at the centre of an array of cellular responses of crucial importance to human health. Consequently, this has become a dynamic and rapidly advancing area of research. The Genetic Toxicology Gordon Research Conference is biannual with an evolving change in the emphasis of the meetings. From evaluating the nature of genotoxic chemicals, which lay at the centre of the early conferences, the emphasis has moved to understanding how cells and organisms respond to the different forms of genotoxic damage incurred. By understanding these mechanisms, the risk to humans can be more rationally assessed and evaluated. More recently, the format of the meetings have aimed to facilitate input from the range of disciplines that can now provide insight into the field. This evolution in emphasis has been continued in the format of the proposed 2003 meeting. In the last Genetic Toxicology Gordon Conference (2001), the aim was to integrate studies on genetic toxicology at the structural, molecular and cellular level with those involving mice and humans (2 micron to Man). In the 2003 conference, we aim to integrate the approaches from 2 micron to man together with approaches where our basic knowledge has been exploited in an applied context (2 micron to Man to manipulation).« less
E-Professionalism for Early Care and Education Providers
ERIC Educational Resources Information Center
Harte, Helene Arbouet
2011-01-01
Teachers of young children work hard to be professional and to be viewed by others as professionals. These efforts to maintain professionalism must include e-professionalism. E-professionalism involves behavior related to professional standards and ethics when using electronic communication (Evans & Gerwitz, 2008). Cellular telephones, social…
ERIC Educational Resources Information Center
Silva, Alcino J.; Müller, Klaus-Robert
2015-01-01
The sheer volume and complexity of publications in the biological sciences are straining traditional approaches to research planning. Nowhere is this problem more serious than in molecular and cellular cognition, since in this neuroscience field, researchers routinely use approaches and information from a variety of areas in neuroscience and other…
A Concept of Operations for an Integrated Vehicle Health Assurance System
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Ross, Richard W.; Berger, David E.; Lekki, John D.; Mah, Robert W.; Perey, Danie F.; Schuet, Stefan R.; Simon, Donald L.; Smith, Stephen W.
2013-01-01
This document describes a Concept of Operations (ConOps) for an Integrated Vehicle Health Assurance System (IVHAS). This ConOps is associated with the Maintain Vehicle Safety (MVS) between Major Inspections Technical Challenge in the Vehicle Systems Safety Technologies (VSST) Project within NASA s Aviation Safety Program. In particular, this document seeks to describe an integrated system concept for vehicle health assurance that integrates ground-based inspection and repair information with in-flight measurement data for airframe, propulsion, and avionics subsystems. The MVS Technical Challenge intends to maintain vehicle safety between major inspections by developing and demonstrating new integrated health management and failure prevention technologies to assure the integrity of vehicle systems between major inspection intervals and maintain vehicle state awareness during flight. The approach provided by this ConOps is intended to help optimize technology selection and development, as well as allow the initial integration and demonstration of these subsystem technologies over the 5 year span of the VSST program, and serve as a guideline for developing IVHAS technologies under the Aviation Safety Program within the next 5 to 15 years. A long-term vision of IVHAS is provided to describe a basic roadmap for more intelligent and autonomous vehicle systems.
ERIC Educational Resources Information Center
Veblen, Kari K.; Elliott, David J.
2000-01-01
Argues in support of integrating music education with other subject areas, discussing the importance of maintaining music's integrity, combining the arts, reasons for integration, and whether integration is always good. Offers an opposing argument that views the integration of music with other subject areas as unsound. (CMK)
9 CFR 312.10 - Official mark for maintaining the identity and integrity of samples.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Official mark for maintaining the identity and integrity of samples. 312.10 Section 312.10 Animals and Animal Products FOOD SAFETY AND... of the Federal Meat Inspection Act shall bear the designation “Sample Seal” accompanied by the...
9 CFR 381.112 - Official mark for maintaining the identity and integrity of samples.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Official mark for maintaining the identity and integrity of samples. 381.112 Section 381.112 Animals and Animal Products FOOD SAFETY AND... Inspection Act shall bear the designation “Sample Seal” accompanied by the official USDA logo as shown below...
Boutin, Natalie; Holzbach, Ana; Mahanta, Lisa; Aldama, Jackie; Cerretani, Xander; Embree, Kevin; Leon, Irene; Rathi, Neeta; Vickers, Matilde
2016-01-01
The Biobank and Translational Genomics core at Partners Personalized Medicine requires robust software and hardware. This Information Technology (IT) infrastructure enables the storage and transfer of large amounts of data, drives efficiencies in the laboratory, maintains data integrity from the time of consent to the time that genomic data is distributed for research, and enables the management of complex genetic data. Here, we describe the functional components of the research IT infrastructure at Partners Personalized Medicine and how they integrate with existing clinical and research systems, review some of the ways in which this IT infrastructure maintains data integrity and security, and discuss some of the challenges inherent to building and maintaining such infrastructure. PMID:26805892
Rai, Vandna; Sharma, Naveen Kumar; Rai, Ashwani K
2006-09-01
Salinity, at a concentration of 10 mM NaCl affected the growth of Azolla pinnata-Anabaena azollae association and became lethal at 40 mM. Plants exposed up to 30 mM NaCl exhibited longer roots than the control, especially during the beginning of incubation. Average root number in plants exposed to 10 and 20 mM NaCl remained almost the same as in control. A further rise in NaCl concentration to 30 mM reduced the root number, and roots shed off at 40 mM NaCl. Presence of NaCl in the nutrient solution increased the cellular Na+ of the intact association exhibiting differential accumulation by individual partners, while it reduced the cellular Ca2+ level. However, cellular K+ content did not show significant change. Cellular Na+ based on fresh weight of respective individual partners (host tissues and cyanobiont) remained higher in the host tissues than the cyanobiont, while reverse was true for K+ and Ca2+ contents. The contribution of A. azollae in the total cellular ion content of the association was a little because of meagre contribution of the cyanobiont mass (19-21%). High salt sensitivity of Azolla-Anabaena complex is due to an inability of the association to maintain low Na+ and high Ca2+ cellular level.
Light-dependent governance of cell shape dimensions in cyanobacteria.
Montgomery, Beronda L
2015-01-01
The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.
Walline, Heather M; Goudsmit, Christine M; McHugh, Jonathan B; Tang, Alice L; Owen, John H; Teh, Bin T; McKean, Erin; Glover, Thomas W; Graham, Martin P; Prince, Mark E; Chepeha, Douglas B; Chinn, Steven B; Ferris, Robert L; Gollin, Susanne M; Hoffmann, Thomas K; Bier, Henning; Brakenhoff, Ruud; Bradford, Carol R; Carey, Thomas E
2017-05-01
Human papillomavirus (HPV)-positive oropharyngeal cancer is generally associated with excellent response to therapy, but some HPV-positive tumors progress despite aggressive therapy. The purpose of this study was to evaluate viral oncogene expression and viral integration sites in HPV16- and HPV18-positive squamous cell carcinoma lines. E6/E7 alternate transcripts were assessed by reverse transcriptase-polymerase chain reaction (RT-PCR). Detection of integrated papillomavirus sequences (DIPS-PCR) and sequencing identified viral insertion sites and affected host genes. Cellular gene expression was assessed across viral integration sites. All HPV-positive cell lines expressed alternate HPVE6/E7 splicing indicative of active viral oncogenesis. HPV integration occurred within cancer-related genes TP63, DCC, JAK1, TERT, ATR, ETV6, PGR, PTPRN2, and TMEM237 in 8 head and neck squamous cell carcinoma (HNSCC) lines but UM-SCC-105 and UM-GCC-1 had only intergenic integration. HPV integration into cancer-related genes occurred in 7 of 9 HPV-positive cell lines and of these 6 were from tumors that progressed. HPV integration into cancer-related genes may be a secondary carcinogenic driver in HPV-driven tumors. © 2017 Wiley Periodicals, Inc. Head Neck 39: 840-852, 2017. © 2017 Wiley Periodicals, Inc.
76 FR 54238 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
...-806-2515, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience... Neuroscience Integrated Review Group, Neurogenesis and Cell Fate Study Section. Date: October 5, 2011. Time: 8... Cognitive Neuroscience Integrated Review Group, Neuroendocrinology, Neuroimmunology, Rhythms and Sleep Study...
77 FR 3277 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... Training Neurosciences Integrated Review Group; Molecular Neurogenetics Study Section. Date: February 16-17..., [email protected] . Name of Committee: Vascular and Hematology Integrated Review Group; Molecular and...- 1213, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience...
NASA Astrophysics Data System (ADS)
Jie, Cui; Lei, Chen; Peng, Zhao; Xu, Niu; Yi, Liu
2014-06-01
A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than -45 dB isolation and maximum -103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator.
Chihib, N E; Tholozan, J L
1999-06-01
Pectinatus frisingensis is a strictly anaerobic mesophilic bacterium involved in bottled beer spoilage. Cellular volume, adenylate energy charge, intracellular pH and intracellular potassium concentration measurements were performed in late exponential-phase cell suspensions placed in different physiological conditions, to evaluate the capability of this bacterium to maintain cellular homeostasis. The intracellular pH was calculated from the intracellular accumulation of a [carboxyl-14C]benzoic acid. Optimum physiological conditions were the presence of a carbon source and pH of 6.2, hostile conditions were a pH 4.5, absence of a carbon source, and rapid cooling treatment. The cell was able to maintain a higher intracellular pH than the external pH under all conditions. Intracellular volume was lower at pH 4.5 than at pH 6.2. A low net potassium efflux rate was routinely measured in starving cells, while glucose addition promoted immediate net potassium uptake from the medium. Cooling treatment resulted in sudden net potassium efflux from the cell, a decrease of the intracellular pH, and low modifications of the adenylate energy charge in metabolizing-glucose cell suspensions. Thus, cold treatment perturbs the P. frisingensis homeostasis but the bacteria were able to restore their homeostasis in the presence of a carbon source, and under warm conditions.
Mattson, Mark P; Wan, Ruiqian
2005-03-01
Intermittent fasting (IF; reduced meal frequency) and caloric restriction (CR) extend lifespan and increase resistance to age-related diseases in rodents and monkeys and improve the health of overweight humans. Both IF and CR enhance cardiovascular and brain functions and improve several risk factors for coronary artery disease and stroke including a reduction in blood pressure and increased insulin sensitivity. Cardiovascular stress adaptation is improved and heart rate variability is increased in rodents maintained on an IF or a CR diet. Moreover, rodents maintained on an IF regimen exhibit increased resistance of heart and brain cells to ischemic injury in experimental models of myocardial infarction and stroke. The beneficial effects of IF and CR result from at least two mechanisms--reduced oxidative damage and increased cellular stress resistance. Recent findings suggest that some of the beneficial effects of IF on both the cardiovascular system and the brain are mediated by brain-derived neurotrophic factor signaling in the brain. Interestingly, cellular and molecular effects of IF and CR on the cardiovascular system and the brain are similar to those of regular physical exercise, suggesting shared mechanisms. A better understanding of the cellular and molecular mechanisms by which IF and CR affect the blood vessels and heart and brain cells will likely lead to novel preventative and therapeutic strategies for extending health span.
Immune function trade-offs in response to parasite threats.
Kirschman, Lucas J; Quade, Adam H; Zera, Anthony J; Warne, Robin W
2017-04-01
Immune function is often involved in physiological trade-offs because of the energetic costs of maintaining constitutive immunity and mounting responses to infection. However, immune function is a collection of discrete immunity factors and animals should allocate towards factors that combat the parasite threat with the highest fitness cost. For example, animals on dispersal fronts of expanding population may be released from density-dependent diseases. The costs of immunity, however, and life history trade-offs in general, are often context dependent. Trade-offs are often most apparent under conditions of unusually limited resources or when animals are particularly stressed, because the stress response can shift priorities. In this study we tested how humoral and cellular immune factors vary between phenotypes of a wing dimorphic cricket and how physiological stress influences these immune factors. We measured constitutive lysozyme activity, a humoral immune factor, and encapsulation response, a cellular immune factor. We also stressed the crickets with a sham predator in a full factorial design. We found that immune strategy could be explained by the selective pressures encountered by each morph and that stress decreased encapsulation, but not lysozyme activity. These results suggest a possible trade-off between humoral and cellular immunity. Given limited resources and the expense of immune factors, parasite pressures could play a key factor in maintaining insect polyphenism via disruptive selection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Domogala, Anna; Madrigal, J Alejandro; Saudemont, Aurore
2016-06-01
Natural killer (NK) cells offer the potential for a powerful cellular immunotherapy because they can target malignant cells without being direct effectors of graft-versus-host disease. We have previously shown that high numbers of functional NK cells can be differentiated in vitro from umbilical cord blood (CB) CD34(+) cells. To develop a readily available, off-the-shelf cellular product, it is essential that NK cells differentiated in vitro can be frozen and thawed while maintaining the same phenotype and functions. We evaluated the phenotype and function of fresh and frozen NK cells differentiated in vitro. We also assessed whether the concentration of NK cells at the time of freezing had an impact on cell viability. We found that cell concentration of NK cells at the time of freezing did not have an impact on their viability and on cell recovery post-thaw. Moreover, freezing of differentiated NK cells in vitro did not affect their phenotype, cytotoxicity and degranulation capacity toward K562 cells, cytokine production and proliferation. We are therefore able to generate large numbers of functional NK cells from CB CD34(+) cells that maintain the same phenotype and function post-cryopreservation, which will allow for multiple infusions of a highly cytotoxic NK cell product. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Sub-cellular distribution and translocation of TRP channels.
Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian
2011-01-01
Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.
The fate of chemoresistance in triple negative breast cancer (TNBC)
O’Reilly, Elma A.; Gubbins, Luke; Sharma, Shiva; Tully, Riona; Guang, Matthew Ho Zhing; Weiner-Gorzel, Karolina; McCaffrey, John; Harrison, Michele; Furlong, Fiona; Kell, Malcolm; McCann, Amanda
2015-01-01
Background Treatment options for women presenting with triple negative breast cancer (TNBC) are limited due to the lack of a therapeutic target and as a result, are managed with standard chemotherapy such as paclitaxel (Taxol®). Following chemotherapy, the ideal tumour response is apoptotic cell death. Post-chemotherapy, cells can maintain viability by undergoing viable cellular responses such as cellular senescence, generating secretomes which can directly enhance the malignant phenotype. Scope of Review How tumour cells retain viability in response to chemotherapeutic engagement is discussed. In addition we discuss the implications of this retained tumour cell viability in the context of the development of recurrent and metastatic TNBC disease. Current adjuvant and neo-adjuvant treatments available and the novel potential therapies that are being researched are also reviewed. Major conclusions Cellular senescence and cytoprotective autophagy are potential mechanisms of chemoresistance in TNBC. These two non-apoptotic outcomes in response to chemotherapy are inextricably linked and are neglected outcomes of investigation in the chemotherapeutic arena. Cellular fate assessments may therefore have the potential to predict TNBC patient outcome. General Significance Focusing on the fact that cancer cells can bypass the desired cellular apoptotic response to chemotherapy through cellular senescence and cytoprotective autophagy will highlight the importance of targeting non-apoptotic survival pathways to enhance chemotherapeutic efficacy. PMID:26676166
Role of resveratrol in regulation of cellular defense systems against oxidative stress.
Truong, Van-Long; Jun, Mira; Jeong, Woo-Sik
2018-01-01
Resveratrol, a natural polyphenolic compound, is found in various kinds of fruits, plants, and their commercial products such as red wine. It has been demonstrated to exhibit a variety of health-promoting effects including prevention and/or treatment of cardiovascular diseases, inflammation, diabetes, neurodegeneration, aging, and cancer. Cellular defensive properties of resveratrol can be explained through its ability of either directly neutralizing reactive oxygen species/reactive nitrogen species (ROS/RNS) or indirectly upregulating the expression of cellular defensive genes. As a direct antioxidant agent, resveratrol scavenges diverse ROS/RNS as well as secondary organic radicals with mechanisms of hydrogen atom transfer and sequential proton loss electron transfer, thereby protecting cellular biomolecules from oxidative damage. Resveratrol also enhances the expression of various antioxidant defensive enzymes such as heme oxygenase 1, catalase, glutathione peroxidase, and superoxide dismutase as well as the induction of glutathione level responsible for maintaining the cellular redox balance. Such defenses could be achieved by regulating various signaling pathways including sirtuin 1, nuclear factor-erythroid 2-related factor 2 and nuclear factor κB. This review provides current understanding and information on the role of resveratrol in cellular defense system against oxidative stress. © 2017 BioFactors, 44(1):36-49, 2018. © 2017 International Union of Biochemistry and Molecular Biology.
Drosophila cellular immunity: a story of migration and adhesion.
Fauvarque, Marie-Odile; Williams, Michael J
2011-05-01
Research during the past 15 years has led to significant breakthroughs, providing evidence of a high degree of similarity between insect and mammalian innate immune responses, both humoural and cellular, and highlighting Drosophila melanogaster as a model system for studying the evolution of innate immunity. In a manner similar to cells of the mammalian monocyte and macrophage lineage, Drosophila immunosurveillance cells (haemocytes) have a number of roles. For example, they respond to wound signals, are involved in wound healing and contribute to the coagulation response. Moreover, they participate in the phagocytosis and encapsulation of invading pathogens, are involved in the removal of apoptotic bodies and produce components of the extracellular matrix. There are several reasons for using the Drosophila cellular immune response as a model to understand cell signalling during adhesion and migration in vivo: many genes involved in the regulation of Drosophila haematopoiesis and cellular immunity have been maintained across taxonomic groups ranging from flies to humans, many aspects of Drosophila and mammalian innate immunity seem to be conserved, and Drosophila is a simplified and well-studied genetic model system. In the present Commentary, we will discuss what is known about cellular adhesion and migration in the Drosophila cellular immune response, during both embryonic and larval development, and where possible compare it with related mechanisms in vertebrates.
Nanobodies and recombinant binders in cell biology.
Helma, Jonas; Cardoso, M Cristina; Muyldermans, Serge; Leonhardt, Heinrich
2015-06-08
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. © 2015 Helma et al.
ERIC Educational Resources Information Center
Flannery, Maura C.
2004-01-01
An attempt is made to find how polarity arises and is maintained, which is a central issue in development. It is a fundamental attribute of living things and cellular polarity is also important in the development of multicellular organisms and controversial new work indicates that polarization in mammals may occur much earlier than previously…
The Regulation of Vesicle Trafficking by Small GTPases and Phospholipids during Pollen Tube Growth
USDA-ARS?s Scientific Manuscript database
Polarized and directional growth of pollen tubes is the only means by which immotile sperm of flowering plants reach the deeply embedded female gametes for fertilization. Vesicle trafficking is among the most critical cellular activities for pollen tube growth. Vesicle trafficking maintains membrane...
21 CFR 1271.250 - Labeling controls.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Labeling controls. 1271.250 Section 1271.250 Food..., AND CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.250 Labeling controls. (a) General. You must establish and maintain procedures to control the labeling of HCT/Ps. You must design...
21 CFR 1271.250 - Labeling controls.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Labeling controls. 1271.250 Section 1271.250 Food..., AND CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.250 Labeling controls. (a) General. You must establish and maintain procedures to control the labeling of HCT/Ps. You must design...
21 CFR 1271.250 - Labeling controls.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Labeling controls. 1271.250 Section 1271.250 Food..., AND CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.250 Labeling controls. (a) General. You must establish and maintain procedures to control the labeling of HCT/Ps. You must design...
21 CFR 1271.250 - Labeling controls.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Labeling controls. 1271.250 Section 1271.250 Food..., AND CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.250 Labeling controls. (a) General. You must establish and maintain procedures to control the labeling of HCT/Ps. You must design...
21 CFR 1271.250 - Labeling controls.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Labeling controls. 1271.250 Section 1271.250 Food..., AND CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.250 Labeling controls. (a) General. You must establish and maintain procedures to control the labeling of HCT/Ps. You must design...
Code of Federal Regulations, 2012 CFR
2012-10-01
... under surveillance maintain a circuit connection to the call. (4) Destination. A party or place to which... features to support lawfully authorized electronic surveillance, and specifies interfaces necessary to... provide to a LEA the assistance capability requirements regarding wire and electronic communications and...
Code of Federal Regulations, 2013 CFR
2013-10-01
... under surveillance maintain a circuit connection to the call. (4) Destination. A party or place to which... features to support lawfully authorized electronic surveillance, and specifies interfaces necessary to... provide to a LEA the assistance capability requirements regarding wire and electronic communications and...
Code of Federal Regulations, 2014 CFR
2014-10-01
... under surveillance maintain a circuit connection to the call. (4) Destination. A party or place to which... features to support lawfully authorized electronic surveillance, and specifies interfaces necessary to... provide to a LEA the assistance capability requirements regarding wire and electronic communications and...
Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?
Torstrick, F Brennan; Evans, Nathan T; Stevens, Hazel Y; Gall, Ken; Guldberg, Robert E
2016-11-01
Despite its widespread use in orthopaedic implants such as soft tissue fasteners and spinal intervertebral implants, polyetheretherketone (PEEK) often suffers from poor osseointegration. Introducing porosity can overcome this limitation by encouraging bone ingrowth; however, the corresponding decrease in implant strength can potentially reduce the implant's ability to bear physiologic loads. We have previously shown, using a single pore size, that limiting porosity to the surface of PEEK implants preserves strength while supporting in vivo osseointegration. However, additional work is needed to investigate the effect of pore size on both the mechanical properties and cellular response to PEEK. (1) Can surface porous PEEK (PEEK-SP) microstructure be reliably controlled? (2) What is the effect of pore size on the mechanical properties of PEEK-SP? (3) Do surface porosity and pore size influence the cellular response to PEEK? PEEK-SP was created by extruding PEEK through NaCl crystals of three controlled ranges: 200 to 312, 312 to 425, and 425 to 508 µm. Micro-CT was used to characterize the microstructure of PEEK-SP. Tensile, fatigue, and interfacial shear tests were performed to compare the mechanical properties of PEEK-SP with injection-molded PEEK (PEEK-IM). The cellular response to PEEK-SP, assessed by proliferation, alkaline phosphatase activity, vascular endothelial growth factor production, and calcium content of osteoblast, mesenchymal stem cell, and preosteoblast (MC3T3-E1) cultures, was compared with that of machined smooth PEEK and Ti6Al4V. Micro-CT analysis showed that PEEK-SP layers possessed pores that were 284 ± 35 µm, 341 ± 49 µm, and 416 ± 54 µm for each pore size group. Porosity and pore layer depth ranged from 61% to 69% and 303 to 391 µm, respectively. Mechanical testing revealed tensile strengths > 67 MPa and interfacial shear strengths > 20 MPa for all three pore size groups. All PEEK-SP groups exhibited > 50% decrease in ductility compared with PEEK-IM and demonstrated fatigue strength > 38 MPa at one million cycles. All PEEK-SP groups also supported greater proliferation and cell-mediated mineralization compared with smooth PEEK and Ti6Al4V. The PEEK-SP formulations evaluated in this study maintained favorable mechanical properties that merit further investigation into their use in load-bearing orthopaedic applications and supported greater in vitro osteogenic differentiation compared with smooth PEEK and Ti6Al4V. These results are independent of pore sizes ranging 200 µm to 508 µm. PEEK-SP may provide enhanced osseointegration compared with current implants while maintaining the structural integrity to be considered for several load-bearing orthopaedic applications such as spinal fusion or soft tissue repair.
Cellular Response to Ionizing Radiation: A MicroRNA Story
Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi
2012-01-01
MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775
Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin.
Sullivan-Brown, Jessica; Bisher, Margaret E; Burdine, Rebecca D
2011-01-01
Histological techniques are critical for observing tissue and cellular morphology. In this paper, we outline our protocol for embedding, serial sectioning, staining and visualizing zebrafish embryos embedded in JB-4 plastic resin-a glycol methacrylate-based medium that results in excellent preservation of tissue morphology. In addition, we describe our procedures for staining plastic sections with toluidine blue or hematoxylin and eosin, and show how to couple these stains with whole-mount RNA in situ hybridization. We also describe how to maintain and visualize immunofluorescence and EGFP signals in JB-4 resin. The protocol we outline-from embryo preparation, embedding, sectioning and staining to visualization-can be accomplished in 3 d. Overall, we reinforce that plastic embedding can provide higher resolution of cellular details and is a valuable tool for cellular and morphological studies in zebrafish.
Lu, Helen H; Cooper, James A; Manuel, Sharron; Freeman, Joseph W; Attawia, Mohammed A; Ko, Frank K; Laurencin, Cato T
2005-08-01
The anterior cruciate ligament (ACL) is the most commonly injured intra-articular ligament of the knee, and limitations in existing reconstruction grafts have prompted an interest in tissue engineered solutions. Previously, we reported on a tissue-engineered ACL scaffold fabricated using a novel, three-dimensional braiding technology. A critical factor in determining cellular response to such a graft is material selection. The objective of this in vitro study was to optimize the braided scaffold, focusing on material composition and the identification of an appropriate polymer. The selection criteria are based on cellular response, construct degradation, and the associated mechanical properties. Three compositions of poly-alpha-hydroxyester fibers, namely polyglycolic acid (PGA), poly-L-lactic acid (PLLA), and polylactic-co-glycolic acid 82:18 (PLAGA) were examined. The effects of polymer composition on scaffold mechanical properties and degradation were evaluated in physiologically relevant solutions. Prior to culturing with primary rabbit ACL cells, scaffolds were pre-coated with fibronectin (Fn, PGA-Fn, PLAGA-Fn, PLLA-Fn), an important protein which is upregulated during ligament healing. Cell attachment and growth were examined as a function of time and polymer composition. While PGA scaffolds measured the highest tensile strength followed by PLLA and PLAGA, its rapid degradation in vitro resulted in matrix disruption and cell death over time. PLLA-based scaffolds maintained their structural integrity and exhibited superior mechanical properties over time. The response of ACL cells was found to be dependent on polymer composition, with the highest cell number measured on PLLA-Fn scaffolds. Surface modification of polymer scaffolds with Fn improved cell attachment efficiency and effected the long-term matrix production by ACL cells on PLLA and PLAGA scaffolds. Therefore based on the overall cellular response and its temporal mechanical and degradation properties in vitro, the PLLA braided scaffold pre-coated with Fn was found to be the most suitable substrate for ACL tissue engineering.
Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I.; Nel, Andre E.
2014-01-01
We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (Ec) levels with the cellular redox potential (−4.12 to −4.84 eV) was strongly correlated to the ability of Co3O4, Cr2O3, Ni2O3, Mn2O3 and CoO nanoparticles to induce oxygen radicals, oxidative stress and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of CB57 Bl/6 mice. Co3O4, Ni2O3, Mn2O3 and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by Ec levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. Taken together, these results demonstrate, for the first time, that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials. PMID:22502734
Zhang, Haiyuan; Ji, Zhaoxia; Xia, Tian; Meng, Huan; Low-Kam, Cecile; Liu, Rong; Pokhrel, Suman; Lin, Sijie; Wang, Xiang; Liao, Yu-Pei; Wang, Meiying; Li, Linjiang; Rallo, Robert; Damoiseaux, Robert; Telesca, Donatello; Mädler, Lutz; Cohen, Yoram; Zink, Jeffrey I; Nel, Andre E
2012-05-22
We demonstrate for 24 metal oxide (MOx) nanoparticles that it is possible to use conduction band energy levels to delineate their toxicological potential at cellular and whole animal levels. Among the materials, the overlap of conduction band energy (E(c)) levels with the cellular redox potential (-4.12 to -4.84 eV) was strongly correlated to the ability of Co(3)O(4), Cr(2)O(3), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles to induce oxygen radicals, oxidative stress, and inflammation. This outcome is premised on permissible electron transfers from the biological redox couples that maintain the cellular redox equilibrium to the conduction band of the semiconductor particles. Both single-parameter cytotoxic as well as multi-parameter oxidative stress assays in cells showed excellent correlation to the generation of acute neutrophilic inflammation and cytokine responses in the lungs of C57 BL/6 mice. Co(3)O(4), Ni(2)O(3), Mn(2)O(3), and CoO nanoparticles could also oxidize cytochrome c as a representative redox couple involved in redox homeostasis. While CuO and ZnO generated oxidative stress and acute pulmonary inflammation that is not predicted by E(c) levels, the adverse biological effects of these materials could be explained by their solubility, as demonstrated by ICP-MS analysis. These results demonstrate that it is possible to predict the toxicity of a large series of MOx nanoparticles in the lung premised on semiconductor properties and an integrated in vitro/in vivo hazard ranking model premised on oxidative stress. This establishes a robust platform for modeling of MOx structure-activity relationships based on band gap energy levels and particle dissolution. This predictive toxicological paradigm is also of considerable importance for regulatory decision-making about this important class of engineered nanomaterials.
Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus
van den Akker, Guus G. H.; Surtel, Don A. M.; Cremers, Andy; Richardson, Stephen M.; Hoyland, Judith A.; van Rhijn, Lodewijk W.
2016-01-01
Introduction Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Methods Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). Results The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. Conclusion We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair. PMID:26794306
Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus.
van den Akker, Guus G H; Surtel, Don A M; Cremers, Andy; Richardson, Stephen M; Hoyland, Judith A; van Rhijn, Lodewijk W; Voncken, Jan Willem; Welting, Tim J M
2016-01-01
Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.
Control of cancer-related signal transduction networks
NASA Astrophysics Data System (ADS)
Albert, Reka
2013-03-01
Intra-cellular signaling networks are crucial to the maintenance of cellular homeostasis and for cell behavior (growth, survival, apoptosis, movement). Mutations or alterations in the expression of elements of cellular signaling networks can lead to incorrect behavioral decisions that could result in tumor development and/or the promotion of cell migration and metastasis. Thus, mitigation of the cascading effects of such dysregulations is an important control objective. My group at Penn State is collaborating with wet-bench biologists to develop and validate predictive models of various biological systems. Over the years we found that discrete dynamic modeling is very useful in molding qualitative interaction information into a predictive model. We recently demonstrated the effectiveness of network-based targeted manipulations on mitigating the disease T cell large granular lymphocyte (T-LGL) leukemia. The root of this disease is the abnormal survival of T cells which, after successfully fighting an infection, should undergo programmed cell death. We synthesized the relevant network of within-T-cell interactions from the literature, integrated it with qualitative knowledge of the dysregulated (abnormal) states of several network components, and formulated a Boolean dynamic model. The model indicated that the system possesses a steady state corresponding to the normal cell death state and a T-LGL steady state corresponding to the abnormal survival state. For each node, we evaluated the restorative manipulation consisting of maintaining the node in the state that is the opposite of its T-LGL state, e.g. knocking it out if it is overexpressed in the T-LGL state. We found that such control of any of 15 nodes led to the disappearance of the T-LGL steady state, leaving cell death as the only potential outcome from any initial condition. In four additional cases the probability of reaching the T-LGL state decreased dramatically, thus these nodes are also possible control targets. Our collaborators validated two of these predicted control mechanisms experimentally. Our work suggests that external control of a single node can be a fruitful therapeutic strategy.
Sauret-Güeto, Susanna; Calder, Grant; Harberd, Nicholas P
2012-02-01
The phytohormone gibberellin (GA) promotes plant growth by stimulating cellular expansion. Whilst it is known that GA acts by opposing the growth-repressing effects of DELLA proteins, it is not known how these events promote cellular expansion. Here we present a time-lapse analysis of the effects of a single pulse of GA on the growth of Arabidopsis hypocotyls. Our analyses permit kinetic resolution of the transient growth effects of GA on expanding cells. We show that pulsed application of GA to the relatively slowly growing cells of the unexpanded light-grown Arabidopsis hypocotyl results in a transient burst of anisotropic cellular growth. This burst, and the subsequent restoration of initial cellular elongation rates, occurred respectively following the degradation and subsequent reappearance of a GFP-tagged DELLA (GFP-RGA). In addition, we used a GFP-tagged α-tubulin 6 (GFP-TUA6) to visualise the behaviour of microtubules (MTs) on the outer tangential wall (OTW) of epidermal cells. In contrast to some current hypotheses concerning the effect of GA on MTs, we show that the GA-induced boost of hypocotyl cell elongation rate is not dependent upon the maintenance of transverse orientation of the OTW MTs. This confirms that transverse alignment of outer face MTs is not necessary to maintain rapid elongation rates of light-grown hypocotyls. Together with future studies on MT dynamics in other faces of epidermal cells and in cells deeper within the hypocotyl, our observations advance understanding of the mechanisms by which GA promotes plant cell and organ growth. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Lee, Jung Weon
2015-01-01
The membrane protein TM4SF5, a member of the transmembrane 4L six family, forms a tetraspanin-enriched microdomain (TEM) on the cell surface, where many different membrane proteins and receptors form a massive protein-protein complex to regulate cellular functions including transdifferentiation, migration, and invasion. We recently reported that TM4SF5 causes epithelial-mesenchymal transition (EMT), eventually contributing to aberrant multilayer cellular growth, drug resistance, enhanced migration, invasion, its circulation in the blood, tumor initiation for successful metastasis, and muscle development in zebrafish. In this review, I summarize the information on the role of TM4SF5 in EMT-related functions at TM4SF5-enriched microdomain (T5EM) on cell surface, where proteins such as TM4SF5, CD151, CD44, integrins, and epidermal growth factor receptor (EGFR) can form numerous protein complexes. TM4SF5-mediated EMT contributes to diverse cellular functions, leading to fibrotic phenotypes and initiating and maintaining tumors in primary and/or metastatic regions, in addition to its role in muscle development in zebrafish. Anti-TM4SF5 strategies for addressing the protein networks can lead to regulation of the fibrotic, tumorigenic, and tumor-maintaining functions of TM4SF5-positive hepatic cells. This review is for us to (re)consider the antifibrotic or antitumorigenic (i.e., anti-EMT-related diseases) strategies of dealing with protein networks that would be involved in cross-talks to regulate various cellular functions during TM4SF5-dependent progression from fibrotic to cancerous hepatic cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Integrating human stem cell expansion and neuronal differentiation in bioreactors
Serra, Margarida; Brito, Catarina; Costa, Eunice M; Sousa, Marcos FQ; Alves, Paula M
2009-01-01
Background Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. Results The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line) as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time. Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process. Conclusion The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors. PMID:19772662
DNMT1 Maintains Progenitor Function in Self-Renewing Somatic Tissue
Sen, George L.; Reuter, Jason A.; Webster, Daniel E.; Zhu, Lilly; Khavari, Paul A.
2010-01-01
Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation1,2. DNA methylation3,4,5 provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1)6,7 maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance,8 a clear role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unknown. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis revealed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, we show that UHRF1,9,10 a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A11,12 and B13, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue. PMID:20081831
75 FR 1397 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Molecular Neuropharmacology and Signaling Study Section. Date: February 4-5, 2010. Time: 8 a.m....gov . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group; Prokaryotic Cell and...
77 FR 24972 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... Committee: Immunology Integrated Review Group; Cellular and Molecular Immunology--B Study Section. Date: May..., Prevention and Health Behavior Integrated Review Group; Psychosocial Risk and Disease Prevention Study..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine...
Zhou, Li; Plattner, Florian; Liu, Mingxia; Parks, John S; Hammer, Robert E; Boucher, Philippe; Tsai, Shirling
2017-01-01
Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor with diverse physiological roles, ranging from cellular uptake of lipoproteins and other cargo by endocytosis to sensor of the extracellular environment and integrator of a wide range of signaling mechanisms. As a chylomicron remnant receptor, LRP1 controls systemic lipid metabolism in concert with the LDL receptor in the liver, whereas in smooth muscle cells (SMC) LRP1 functions as a co-receptor for TGFβ and PDGFRβ in reverse cholesterol transport and the maintenance of vascular wall integrity. Here we used a knockin mouse model to uncover a novel atheroprotective role for LRP1 in macrophages where tyrosine phosphorylation of an NPxY motif in its intracellular domain initiates a signaling cascade along an LRP1/SHC1/PI3K/AKT/PPARγ/LXR axis to regulate and integrate cellular cholesterol homeostasis through the expression of the major cholesterol exporter ABCA1 with apoptotic cell removal and inflammatory responses. PMID:29144234
2011-10-01
performance. We discuss novel systemic (heat acclimation) and cellular ( acquired thermal tolerance) adaptations that improve performance in hot and...cellular ( acquired thermal tolerance) adaptations that improve perfor- mance in hot and temperate environments and protect organs from heat stroke as...performance; (iii) newly identified adaptations associated with heat accli- mation/ acquired thermal tolerance that impact exercise-heat tolerance; (iv
Type IV Collagens and Basement Membrane Diseases: Cell Biology and Pathogenic Mechanisms.
Mao, Mao; Alavi, Marcel V; Labelle-Dumais, Cassandre; Gould, Douglas B
2015-01-01
Basement membranes are highly specialized extracellular matrices. Once considered inert scaffolds, basement membranes are now viewed as dynamic and versatile environments that modulate cellular behaviors to regulate tissue development, function, and repair. Increasing evidence suggests that, in addition to providing structural support to neighboring cells, basement membranes serve as reservoirs of growth factors that direct and fine-tune cellular functions. Type IV collagens are a major component of all basement membranes. They evolved along with the earliest multicellular organisms and have been integrated into diverse fundamental biological processes as time and evolution shaped the animal kingdom. The roles of basement membranes in humans are as complex and diverse as their distributions and molecular composition. As a result, basement membrane defects result in multisystem disorders with ambiguous and overlapping boundaries that likely reflect the simultaneous interplay and integration of multiple cellular pathways and processes. Consequently, there will be no single treatment for basement membrane disorders, and therapies are likely to be as varied as the phenotypes. Understanding tissue-specific pathology and the underlying molecular mechanism is the present challenge; personalized medicine will rely upon understanding how a given mutation impacts diverse cellular functions. Copyright © 2015 Elsevier Inc. All rights reserved.
Anderson, Rika E.; Sogin, Mitchell L.; Baross, John A.
2014-01-01
The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts’ functional capabilities. PMID:25279954
Bone Balance within a Cortical BMU: Local Controls of Bone Resorption and Formation
Smith, David W.; Gardiner, Bruce S.; Dunstan, Colin
2012-01-01
Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological processes compatible with the constraints of balance control. We first derive general control constraint equations and then introduce constitutive equations to identify potential control processes that link key variables that describe the state of the BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different control relationships may achieve the same objective, and the ‘integration of information’ occurring within a BMU may be interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU, which in turn leads to different observable BMU behaviors. PMID:22844401